Aus der Klinik für Pädiatrie mit Schwerpunkt Neurologie der Medizinischen Fakultät der Charité - Universitätsmedizin Berlin

DISSERTATION

Potenzierung der Neurotoxizität des Status epilepticus durch Antikonvulsiva im Pilocarpin-Modell der neugeborenen Ratte

Zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät der Charité – Universitätsmedizin Berlin

> von Mirka Rumi aus Berlin

Gutachter: 1. Prof. Dr. med. H. Ikonomidou

2. Prof. Dr. med. I. Bechmann

3. Prof. Dr. med. B. Schmitt

Datum der Promotion: 03.08.2006

Meinen Eltern

INHALT

KURZFASSUNG	6
ABSTRACT	8
1 EINLEITUNG	9
1.1 Formen epileptischer Anfälle im Kindesalter	9
1.2 Der epileptische Anfall im Experiment	10
1.2.1 Das Pilocarpin-Modell	10
1.2.2 Erkenntnisse zu den zellulären Mechanismen epileptischer Anfälle	10
1.3 Therapie zerebraler Krampfanfälle	16
1.3.1 Allgemeine Prinzipien	16
1.3.2 Wirkung und Nebenwirkungen der antikonvulsiven Therapie	16
1.4 Apoptose als Form des Zelluntergangs im unreifen Gehirn	19
1.4.1 Definition, Bedeutung	19
1.4.2 Regulation	20
1.5 Zielstellung	25
2 MATERIAL UND METHODEN	26
2.1 Material	26
2.1.1 Versuchstiere	26
2.1.2 Chemikalien	26
2.1.3 Puffer und Lösungen	28
2.1.4 Geräte	30
2.2 Methoden	31
2.2.1 Tierversuch	31
2.2.2 Histologie: Kupfer-Silber-Färbung	32
2.2.3 Morphologie: Elektronenmikroskopie	34
2.2.4 Molekularbiologie: Western Blot	34

3 ERGEBNISSE	39
3.1 Neurodegeneration	39
3.2 Morphologische Analyse	41
3.3 Regulation von PI3K- und ERK1/2- Kaskade	41
3.3.1 PI3K-Kaskade	42
3.3.2 ERK1/2-Kaskade	45
4 DISKUSSION_	52
4.1 Auswirkung des Status epilepticus auf das unreife Rattenhirn	52
4.1.1 Apoptotische Neurodegeneration nach Status epilepticus	52
4.1.2 Aktivierung antiapoptotischer Signalkaskaden im Status epilepticus	53
4.1.3 Neurodegeneration trotz Aktivierung antiapoptotischer Kaskaden?	56
4.2 Wirkung von Diazepam auf das unreife Rattenhirn	58
4.2.1 Keine apoptotische Neurodegeneration durch Diazepam	58
4.2.2 Diazepam reduziert die Aktivierung von PI3K- und ERK1/2-Kaskade	58
4.3 Kombinierte Wirkung von Status epilepticus und Antiepileptikum	59
4.3.1 Diazepam potenziert die Neurotoxizität des Status epilepticus	59
4.3.2 Diazepam hemmt die antiapoptotische Gegenregulation	59
4.4 Bedeutung des zeitlichen Verlaufs der Apoptoseregulation	60
4.5 Übertragbarkeit der Ergebnisse	61
4.5.1 Akut- und Langzeitschäden	61
4.5.2 Krampfinduktion	62
4.6 Schlussfolgerungen	63
5 ZUSAMMENFASSUNG	66
6 LITERATURVERZEICHNIS	68
ANHANG	77