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Abstract

Membranes are more than simple barriers between cells and their environment. They
must both protect the cells and enable the exchange of substances. This thesis analyzed two
aspects of membrane transport: The transport of water and the transport of ions, in particu-
lar the transport of cations, across the cellular membrane.
To analyze mechanisms involved in water transport, mammalian kidney cells were chosen
as model system. A combined approach based on biological experiments and mathemat-
ical modeling was used to investigate the intracellular signaling pathway regulating the
membrane abundance of the water channel Aquaporin-2 (AQP2) in the kidney. Data from
biological experiments with rat and canine kidney cells were used to estimate the model
parameters, thereby enabling the generation of species-specific models. Deletion of model
reactions and subsequent parameter estimation resulted in the generation of model variants.
Ranking of the model variants led to the conclusion that the importance of certain cellu-
lar reactions varies between different species. Moreover, reactions which are crucial for
the temporal behavior of the system were identified. Time-dependent sensitivity analysis
was performed demonstrating that membrane-located AQP2 reacts most sensitively when
changing the parameters directly involved in the translocation mechanism. Regarding po-
tential medical applications, the model based on canine kidney cells was used to investigate
individual and combinatorial treatments for different pathological conditions.
Due to the fact that many membrane transport systems are well conserved between yeast
and higher organisms, the regulation of cation transport was addressed in the yeast Saccha-
romyces cerevisiae. The theory of linear nonequilibrium-thermodynamics was applied to
build a model of cation homeostasis with its main focus on plasma membrane transporters.
With this approach it is possible to model passive ion fluxes driven by the electrochemical
potential differences but also primary or secondary active transport processes driven by the
interplay of different ions (symport, antiport) or by ATP consumption (ATPases). Data for
proton and potassium fluxes from MIFE and FLISE experiments (non-invasive techniques
to measure transmembrane ion fluxes) were used to estimate the model parameters. The
model was used to predict additional ion fluxes and identified chloride fluxes as potential
candidates. The Trk1,2p and Pma1p dynamics were analyzed by in silico mutation and in-
hibition experiments. Furthermore, the behavior of cells undergoing multiple salt stresses
was predicted showing a reduced activity for cells pretreated with higher KCl stimuli.

The present study illustrates the applicability of mathematical and thermodynamical mod-
eling to cellular membrane transport processes. The predictions derived from the models
are a valuable tool to guide future biological experiments.

Keywords: systems biology, parameter estimation, time-dependent sensitivity analy-
sis, linear nonequilibrium-thermodynamics, aquaporin-2, body water homeostasis, cation
homeostasis, yeast
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Systems biology and its areas of application

Cellular water and cation homeostasis

Homeostasis (i.e. the maintenance of an equilibrium) of various substances, nutrients and fluids through
membrane transport systems is essential for all living organisms. Of great importance are water and
ion homeostasis. A living organism needs to regulate the amount of water it excretes, depending on the
amount of water it takes up and the external environment (for example the temperature). Furthermore,
ion homeostasis, especially cation homeostasis, plays an important role because some cations, like potas-
sium, are necessary for processes like protein synthesis, enzyme activation, and osmotic regulation [119],
whereas other cations such as sodium can be toxic if present at higher intracellular concentrations.
In case water or ion homeostasis is impaired (e.g. due to external factors or because the organism has
lost the ability for regulation due to a disease), this can affect the organism dramatically. The impairment
to regulate body water homeostasis can be lethal, or it can lead to severe diseases such as Nephrogenic
diabetes insipidus (NDI) [88, 125]. The impairment to regulate ion homeostasis can lead to the inability
to cope with changes in the environment such as salt stress, inhibition of protein synthesis and growth, or
to cell death [3, 119].
For this reason it is of high importance to know, how those mechanisms function and how they can be
influenced in case of a disease.

Systems biology and its areas of application

Biological systems are very complex and often not completely understood. There exists a tightly regu-
lated interplay between genes, mRNAs, proteins, metabolites and also between physical properties like
cell volume or osmotic pressure. Quite often, a complicated network of feedback loops connects the
biological players. In many cases it is impossible to gain biological information for a specific compound
because it is technically or ethically impossible (e.g. unavailability of mutants or cellular reporters, pro-
tein or RNA concentrations below detection limit).

To gain information about biological systems despite high complexity or reduced availability of data,
systems biology combines two major approaches:

1. Experimentally (in vivo, in vitro),

2. Computationally (in silico).

A classical biological approach to gain knowledge about these processes is to systematically perturb or
knockout systemic players and to study the hereby resulting consequences, e.g. on the protein or RNA
level, or on the phenotype of an organism [2]. In systems biology, data resulting from those experiments
together with literature-based knowledge is used to generate mathematical models.

Based on the availability of biological data for a study that aims to contribute to the resolution of certain
open issues, different computational methods can be applied:

• Cellular networks and their analysis via Boolean or Bayesian modeling proves useful, when it
comes to gene regulation [62, 97] .
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Global Introduction

• Flux balance analysis and metabolic control theory are applicable to the analysis of metabolic
networks [63, 97].

• Mathematical modeling via ordinary differential equations (ODEs) is often applied while analyz-
ing signaling networks [63, 97].

• Stochastic modeling approaches are useful if only few particles of a certain substance (e.g. a tran-
scription factor) are involved and the inherent noise of a system strongly affects its dynamics [149].

• Partial differential equations (PDEs) or spatial discretization can be applied in case spatial resolu-
tion and compartmentalization are important [52].

• Thermodynamic methods are a useful basis or addition for systems biological models, espe-
cially if thermodynamic forces like heat, pressure, or electrochemical potential differences are
involved [23, 58].

The computational models can be used to simulate the biological system in silico and make hypotheses,
which can then be verified or falsified in a biological experiment. The result of the experiment can
be utilized to modify the computational model. The iterative cycle of modeling and experiment is the
cornerstone of systems biology an serves to strengthen the knowledge of the system.

Systems biology applied to water and cation transport
Within the present thesis systems biological as well as thermodynamic approaches were applied to en-
lighten the processes involved in two major areas of membrane transport:

1. The regulation of body water homeostasis by intracellular signaling pathways.
The water channel aquaporin-2 (AQP2) is expressed in the principal cells of the collecting duct in
the kidney. Upon a stimulus by the hormone arginine vasopressin (AVP) an intracellular signaling
cascade is activated, which leads to the translocation of the water channel aquaporin-2 (AQP2)
from intracellular vesicles to the apical plasma membrane. This results in an osmotically driven
water flow from the pro-urine through the cell into the blood and leads to increased storage of
water in the body. In this part the emphasis is on the intracellular signaling pathway that regulates
AQP2 trafficking:

a) Biological data collected from the literature were used to build mathematical models of the
signaling pathway. The models were analyzed and used to enlighten the difference between
two biological data sources, Madin-Darby canine kidney (MDCK) cells [20] and primary
cultures of rat inner medulla collecting duct (IMCD) cells [133].

b) The mathematical models were used to predict the effect of different input stimuli (i.e. differ-
ent concentrations of AVP) on the amount of AQP2 at the membrane. These predictions were
compared with wet lab experiments (done by myself with MDCK cells and by Klussmann et
al. with IMCD cells) to analyze the validity of the model.

c) Time dependent sensitivity analysis was performed to analyze the effect of small pertur-
bations in the model parameters. The resulting information can be used for guided model
verification and to identify potential drug targets.
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Structure of this thesis

d) Possible medical uses for cases of reduced availability of either AVP or AQP2 were simu-
lated in silico and the target identification tool TIde [126] was used to identify potential drug
targets for single and combinatorial treatments.

2. The regulation of yeast cation homeostasis.
Fungi live on animals, plants, and on their decaying products and can have beneficial or destructive
effects. They are important for medical treatments by producing antibiotics like penicillin and
cyclosporin, play an important role in food production (e.g. Saccharomyces cerevisiae is used
during bread, wine, and beer production). On the other hand they can lead to severe diseases (e.g.
Candida species can lead to superficial infections and sepsis [135]). Hence, what affects fungi has
also a high influence on health, economy and ecology.
What makes the unicellular fungus yeast an even better study object is that it is easy to handle
and that many ion transport proteins are highly conserved between yeast and higher organisms.
Therefore, yeast was developed into an ideal model to study alkali metal cation transport and
homeostasis. The early work in this field has been summarized in [24, 119]. The organism of
choice for the present work was the yeast Saccharomyces cerevisiae. In this organism, transport
of cations and cation homeostasis plays an important role because some ions, like potassium, are
necessary for processes like protein synthesis and enzyme activation, whereas other cations such
as sodium are rather toxic if present at higher concentrations. In this work a combined approach
based on biological experiments and thermodynamic modeling was used to analyze how cation
homeostasis is regulated by the flux of ions through the cellular plasma membrane driven by the
electrochemical potential and the usage of ATP driven pumps.
The workflow was as follows:

a) Data from MIFE and FLISE experiments (non-invasive approaches which can be used to
calculate transmembrane fluxes) were used for model generation and parameter estimation.

b) The model was used to predict the effect of different mutations and inhibitions, the cellular
behavior to multiple salt stresses as well as potential additional ion fluxes.

Structure of this thesis

This general introduction will be followed by two parts: “Mathematical Modeling of Aquaporin-2
Trafficking” and “Thermodynamic Model of the Cation Homeostasis in Yeast”. Each part highlights
one important aspect of the factors influencing the kinetic behavior of cellular membrane transport, cel-
lular homeostasis as well as its perturbation. The first part focuses on the underlying signaling pathway
modulating membrane transport proteins with the emphasis on the water channel AQP2. The major sig-
naling pathway for AQP2 trafficking is known from literature. However, there is yet no cure for diseases
like NDI and available treatments are rare and sometimes even dangerous. Within this thesis, the dynamic
behavior of the system is analyzed in silico based on biological data, and potential intracellular drug tar-
gets were identified.
In the second part the effects acting on membrane transport proteins already active and located at the
plasma membrane is analyzed, while focusing on the model system yeast. This is a powerful model
system for this purpose, because the major transport proteins in yeast are already known from literature.
Nevertheless, the exact mechanisms are still unclear. With a thermodynamic approach the collectivity of
membrane transport proteins was modeled and applied to measurements of net ion fluxes. Thereupon,
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Global Introduction

information was drawn from the model’s parameters on the kinetic behavior of individual membrane
transport proteins, namely Trk1,2p and Pma1p. Model predictions were made and it was investigated,
how the model is applicable to data from different wild-type strains.
Each part is subdivided into an introductory chapter including background information and aims of each
project in more detail, and a methods section specific for each project. Furthermore, in each part the
specific results will be presented, discussed and an outlook for further studies given. Finally, the ma-
jor aspects that both projects have in common will be summarized and the applicability of the different
biological model systems to cellular membrane transport and homeostasis will be discussed.
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Mathematical Modeling of
Aquaporin-2 Tra�cking
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Abstract Part I

The first part of this thesis presents kinetic models of the regulation and trafficking of the water channel
Aquaporin-2. The focus in this part is on the intracellular signal transduction starting with a trigger
by the hormone arginine vasopressin (AVP) and ending with the translocalization of AQP2 to the apical
plasma membrane and a resulting water flow through the cell.
Two different models were build, one based on data and knowledge from Madin-Darby canine kidney
(MDCK) cells and one on data from primary cultures of rat inner medullary collecting duct (IMCD)
cells.
The kinetic parameters of the MDCK and IMCD cell models were estimated with the use of literature-
based data sets. To get further insight into the systems behavior the models were analyzed by

• generation and ranking of model variants,

• time dependent sensitivity analysis.

The models were used to make predictions about the abundance of AQP2 at the membrane over time
and at different concentrations of vasopressin. Furthermore, the MDCK cell model was used to identify
potential individual and combinatorial drug treatments at different pathological conditions.

Additional biological data were generated to verify the models’ predictions concerning AQP2 at the mem-
brane at different vasopressin concentrations. The experiments on MDCK cells were performed by myself
in the laboratory of Prof. Peter Deen (Radboud University, Nijmegen, the Netherlands). Experiments on
IMCD cells were performed by Klussmann, Geelhaar et al. (Max Delbrück Center, Berlin-Buch, Ger-
many)
In the final pages of Part I, the results obtained from MDCK and IMCD cells will be discussed in the light
of the comparability of data from different cell lines and the use for medically relevant predictions.
The project was conducted within the Marie Curie Research Training Network in Aquaglyceroporin re-
search.
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1 Introduction

The aim of the here presented study was to apply mathematical modeling to achieve more knowledge
about Aquaporin-2 (AQP2) trafficking and regulation. In this introductory chapter the biological back-
ground will be introduced together with the clinical relevance of this project. To allow a better under-
standing of the following work, the general aspects of the regulation of body water homeostasis will be
summarized, followed by an introduction into AQP2 regulation and signaling via the hormone arginine
vasopressin (AVP). Since G-protein coupled receptors are involved in this process, they will be described
in more detail together with the regulation through their desensitization.
AQP2 is mainly regulated via phosphorylation or dephosphorylation at specific phosphorylation sites.
Because one side project focused on this type of regulation, a short introduction into AQP2 phosphoryla-
tion will be given.
Previous model approaches performed on the field of AQP2 regulation will be outlined together with the
data sets from the literature which were used for model generation and parameter estimation.
Finally, the clinical relevance of the project will be pointed out and the aims and structure of this thesis
part will be specified.

1.1 Biological Background

1.1.1 Regulation of body water homeostasis
The kidneys are responsible for blood filtration and regulation of water and electrolyte homeostasis. Dur-
ing the day, an enormous amount of blood is filtered by the kidneys, resulting in approximately 140 L
pro-urine per day [125]. A majority of the water (approximately 90% [14]) is constitutively reabsorbed
via the water channel aquaporin-1 in the proximal tubule and descending limb of Henle’s loop, being
important for the development of the counter current concentrating mechanism [125].
In addition to this constitutive reabsorption mechanism, body water homeostasis is tightly regulated. De-
hydration or excess of sodium results in the sensation of thirst and subsequent water uptake. Furthermore,
a mechanism to retain water within the body is activated. This is triggered by a release of AVP from the
pituitary. Via the blood stream, AVP reaches the principle cells of the cortical and medullary collecting
duct, there activating an intracellular signaling cascade and leading to increased reabsorption of water.
When isotonicity is restored, a reduction of the AVP level occurs [14].
A reduced or elevated water excretion is a common symptom of kidney disorders such as nephrogenic
diabetes insipidus (NDI). In NDI the excretion of up to 20 L urine per day has been observed [125],
thereby illustrating the importance of a well functioning regulatory system.

1.1.2 The water channel Aquaporin-2
Before 1992 it was not proven that water can cross cell membranes via specific channels. The discovery
of the water channel aquaporin-1 (AQP1, originally known as CHIP28 [1, 104]) led to the Nobel Price
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for Agre and coworkers in 2003. Nowadays it is known that the aquaglyceroporin family consists of
the aquaporins (only permeated by water) and the aquaglyceroporins (permeated by water plus glycerol).
This work focuses on AQP2 which is only permeated by water.
AQP2 is expressed in the principal cells of the collecting duct in the kidney. In an unstimulated state it is
located mainly in intracellular vesicles. Upon a stimulus by AVP an intracellular signaling cascade is ac-
tivated, which includes the activation of the vasopressin V2 receptor (V2R) at the basolateral membrane,
which is coupled to a trimeric G-protein. This results in an increase in intracellular cyclic AMP (cAMP)
by activation of the adenylyl cyclase [132], activation of protein kinase A (PKA) and phosphorylation and
subsequent translocation of AQP2 into the apical plasma membrane. This leads to an osmotically driven
water flow from the pro-urine into the cell via AQP2 and by the water channels AQP3 and AQP4 in the
basolateral membrane into the blood. Suppression of vasopressin reverses this mechanism and AQP2
becomes endocytosed from the membrane [125]. This is an important mechanism in the regulation of
body water homeostasis (see Fig. 1.1).
AQP2 trafficking as well as long term AQP2 abundance is regulated by vasopressin. In addition vaso-

Figure 1.1: Regulation of AQP2 trafficking. Vasopressin (AVP) released from the pituitary gland reaches the col-
lecting duct cells in the kidney via the bloodstream. After activation of the V2 receptor an intracellular signaling
cascade is activated, including cAMP production by the adenylate cyclase (AC), activation of PKA and phospho-
rylation of AQP2. Upon phosphorylation, AQP2 is translocalized from intracellular vesicles to the apical plasma
membrane. This leads to reabsorption of water from the pro-urine through the cells into the blood. (The image was
reproduced with permission from Robben et al., Am J Physiol Renal Physiol, 2006 [116].)

pressin positively regulates the abundance of AQP3, but not of AQP4 [125]. This work covers mainly the
regulation of AQP2 trafficking. Additionally, AQP2 abundance is analyzed in silico in form of varying
AQP2 concentrations.
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1.1 Biological Background

1.1.3 Signaling via vasopessin

AQP2 trafficking is regulated by AVP. In the following, the main players of the pathway shall be described
in more detail. Those are G-protein coupled receptors (GPCR), to which the V2R receptor belongs,
as well as the cAMP-PKA pathway, which is assumed to be the main regulatory pathway for AQP2
trafficking. Furthermore, desensitization of GPCRs is described, which plays a role in the kinetics of the
pathway.

• Signaling through G-protein coupled receptors
Signaling through GPCRs is generally used by all eukaryotes [2] and about 50% of all known
drugs work on GPCRs or their downstream signaling pathways. Analyses of the human genome
predict the existence of more than 1,000 GPCRs [57].
GPCRs act through trimeric GTP-binding proteins (G-proteins). In case the G-proteins are bound
to GDP, they form trimers composed of a , b and g subunits (see Fig. 1.2). The G-protein can be
physically attached to the GPCR also in the inactive state or it gets recruited after ligand binding.
Ligand binding further results in the release of the bound GDP from the a subunit, so that GTP
can bind, therefore it acts like a guanine nucleotide exchange factor (GEF). This triggers the de-
tachment of the G-protein from the receptor as well as a conformational change of the G-protein.
During this process previously covered surface of the subunits becomes exposed so that membrane
localized enzymes or ion channels can bind. In most of the cases this results in a dissociation of
the a from the b/g subunit. Both subunits are able to influence specific target proteins. One target
protein of the a subunit of the stimulatory G-protein (GS) is the adenylate cyclase [2, 78].
The a subunit acts as a GTPase. It hydrolyses GTP to GDP, which results in reassembly and inac-
tivation of the G-protein. Binding of the a subunit to other proteins including the target proteins
enhances the GTPase function, leading to faster inactivation of the protein.

Figure 1.2: Activation of a G-protein coupled receptor. After activation by an agonist the GPCR gets activated.
GDP bound to the G-protein gets replaced by GTP resulting in the detachment of the a and b/g subunits from the
receptor. The a or b/g subunits transmit the signal further. (Reprinted by permission from Macmillan Publishers
Ltd: Nature, Li et al., ©2002 [76].)

• Signaling via cAMP
cAMP is synthesized from adenosine triphosphate (ATP) by the adenylate cyclase. The only way to
degrade it is via cAMP phosphodiesterases to adenosine 5’-monophosphate (see Fig. 1.3) [2, 44].
Both processes are very fast. The basal cAMP concentration lies at approximately 10�7 M, but it
can increase more that 20-fold after addition of an extracellular signal [2].
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1 Introduction

AC is a large transmembrane protein with its catalytic domain on the cytosolic side of the plasma
membrane. There are at least 10 isoforms in mammals (nine membrane-bound and one solu-
ble [102]) which are regulated e.g. by G-proteins and Ca2+. Rieg et al. [111] showed that the AC
involved in the regulation of AQP2 trafficking is most likely AC6. Recent reviews focus on the
aspect of ACs as potential drug targets [98, 102].

Figure 1.3: cAMP synthesis and degradation. cAMP synthesis via the adenylate cyclase and degradation via
phosphodiesterases (image reproduced from [45]).

• Signaling via PKA
One of the major response proteins of cAMP is the PKA. It consists of two regulatory and two
catalytic subunits. The regulatory subunits can bind two molecules of cAMP each. After binding
of four cAMP molecules the two catalytic subunits get detached and can phosphorylate target pro-
teins throughout the cell (see Fig. 1.4).
AQP2 is phosphorylated by PKA at serine 256, which is part of a PKA consensus sequence and
was shown to be phosphorylated by PKA in vitro [42]. Furthermore, PKA can phosphorylate and
activate phosphodiesterases 1, thus establishing a negative feedback loop by degradation of cAMP.
Special A-kinase anchoring proteins are important for the spatial localization of PKA. They bind
to the regulatory subunit of PKA and also to AQP2 containing vesicles, therefore bringing both
molecules in close proximity [2, 133]. Phosphodiesterases can be included in this functional mod-
ule, which can affect the kinetics so that a long, weak PKA response can be converted into a strong,
transient, local PKA response.

• Desensitization of GPCRs
GPCRs can be desensitized after a strong stimulus either via alteration of the receptor structure
(G-proteins cannot bind to it any more), receptor sequestration (which means temporarily inter-
nalization of the receptor), or receptor internalization followed by degradation of the receptor.
Receptor internalization does not necessarily mean a termination of the signal. Receptors can be
stored in recycling vesicles and transported back to the plasma membrane, if needed. Degradation
of the receptor results in the termination of the signal.

Robben et al. [115] have shown that in case of MDCK cells stably transfected with V2R-GFP,
higher doses of the vasopressin analogon (deamino-Cys1, D-arg8)-vasopressin (desmopressin,

1According to recent publications, substrate specificity, activation by PKA, and expression of the protein in IMCD,
likely candidates are PDE3A and PDE4D [46, 92, 133].
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Figure 1.4: Activation of PKA by cAMP. The binding of two cAMP molecules to each of the regulatory subunits
leads to the release of the catalytic subunits. (Copyright 2002 from Molecular Biology of the Cell, Fourth Edition by
Alberts et al. Reproduced by permission of Garland Science/Taylor & Francis LLC.)

dDAVP) lead to V2 receptor internalization, which is stronger at higher dDAVP levels. Further-
more, they showed that after 1 h of stimulation with 100 nM dDAVP, 80.2% of the receptors end
up in lysosomes to be degraded. They did not observe V2R recycling, however, there is evidence
that this might be cell line specific and dependent on the stimulating agent [48, 115]. Furthermore,
Robben et al. [117] have also shown that agonists can activate V2R intracellularly.

1.1.4 AQP2: regulation via phosphorylation/dephosphorylation
The membrane transporter AQP2 can be phosphorylated at different amino acids at its C-terminus.
Known phosphorylation sites are serine 256, serine 261, serine 265, and serine 269 (see Fig. 1.5). De-
pending on the phosphoralytion state of these amino acids, AQP2 can be found at different locations
within the cell. Originally it was thought that a phosphorylation of S256 (S for serine) is sufficient for
a translocation of AQP2 to the apical plasma membrane [143]. Kamsteeg et al. have shown in Xenopus
oocytes transfected with AQP2-S256A and AQP2-S256D (mimicking non-phosphorylated and phospho-
rylated AQP2, respectively) that AQP2 is translocated to the apical membrane as soon as 3 of the 4
monomers in one AQP2 tetramer are phosphorylated [55]. More recently it has been shown that also the
other residues are of great importance. Hoffert et al. [42] discovered that AQP2 phosphorylated at S269
seems to be located exclusively at the apical plasma membrane and not in internal vesicles. The phos-
phorylation of S256 seems to be preceding the phosphorylation at S269. Furthermore, phosphorylation
at S261, which decreases after a vasopressin stimulus, may stabilize AQP2 ubiquitination and intracel-
lular localization [87, 140]. In this work the phosphorylation at S261 after different concentrations of
vasopressin was analyzed experimentally.

1.2 Previous model approaches
Knepper and Nielsen proposed the first mathematical model of the AQP2 trafficking [67]. They started
with a 3-state model including activated, inactivated, and reserve AQP2 (also called by them transporters)
and irreversible transition reactions between the states. Assuming that the transition between the in-
activated and the reserve state is very fast, this resulted in a two state model including only activated
(membrane located) and inactivated (intracellular) transporters as well as a transition from the inactivated
to the activated state (exocytosis) and vice versa (endocytosis).
They fitted their model to data from osmotic water permeability (Pf) measurements in rat inner medulla
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Figure 1.5: Different phosphorylation sites at the C-terminus of AQP2. Four different phosphorylation sites at
the C-terminus of AQP2 are known. They are either phosphorylated (S256, S264, and S269) or dephosphorylated
(S261) upon a stimulus by vasopressin (image adapted from [103]).

collecting duct (IMCD) after AVP addition and washout. Thereupon, they proposed that the optimal fit
results from a scenario where both, the exocytosis as well as the endocytosis of AQP2, is regulated by
vasopressin [67, 90].
Despite its usefulness their model was very much simplified and lacking the network of signaling path-
ways upstream of AQP2 translocation, which most likely involves the cAMP-PKA pathway. Moreover,
effects of positive or negative feedback loops in the system were not considered. Those aspects were
included in the models from this thesis. Thus, they can be used to analyze specific regulatory aspects
of the intracellular signaling cascade, e.g. perturbations in cAMP activation or receptor internalization,
and their effects on AQP2 trafficking. This was not possible with the model proposed by Knepper and
Nielsen.

1.3 Literature-based data sets

For kinetic modeling it is crucial to have time resolved, quantitative or at least semi-quantitative and in
itself consistent data sets. For this work it was decided to build two different models for AQP2 trafficking.
The first model is based on a data set from Deen et al. [20] derived from experiments performed with
MDCK cells. This data set consists of data for cAMP and Pf after stimulation with dDAVP. Furthermore,
Pf was measured over time after a stimulus followed by washout of dDAVP. The data are presented in
Fig. 1.6.
The second model is based on a data set by Stefan et al. [133] derived from experiments performed with
primary cultured rat IMCD cells. Stefan et al. measured PKA activation, intracellular cAMP content and
AQP2 at the membrane over time after a stimulus by vasopressin or forskolin with or without inhibition

16



1.4 Clinical disorders in body water homeostasis

of phosphodiesterases. The time courses used in this work are shown in Fig. 1.7.

(a) (b)

Figure 1.6: Data set from Deen et al. [20] based on experiments performed with MDCK cells. a) Stimulus
by 10�8 M dDAVP at time point 0 s. The dotted line represents intracellular cAMP, the solid line osmotic water
permeability (Pf). b) Open circles represent measurement of osmotic water permeability starting after 30 min of
pretreatment with dDAVP followed by washout at time point 0. Closed circles represent the same pretreatment, but
at time point 0 fresh dDAVP was added. The open squares represent the negative control, were no dDAVP was added.
(Reprinted by permission from the American Society of Nephrology, Deen et al., JASN, ©2007.)

1.4 Clinical disorders in body water homeostasis
To underline the importance of studying AQP2 trafficking and body water homeostasis, some examples
of their clinical relevance are listed below. It is shortly mentioned how the models proposed within the
present thesis can be used to address them.

• Hyponatremia and hypernatremia - The sodium concentrations in the serum are lower or higher
than normal. This is most often caused by disorders of water balance [96, 125]. Hyponatremia
usually occurs when the relative amount of total body water is higher compared to total body
solute, which most often derives from an inability to maximally suppress the hormone AVP.
Hypernatremia arises often from water deficiency of the organism due to a malfunctioning thirst
reflex, if sufficient drinking is impossible or during NDI.

• Primary polydipsia or compulsive water drinking - Often occur in patients with psychiatric disor-
ders or as side effects from medication resulting in the dryness of the oral mucosa [16, 125].
Individals who drink up to 12 litres per day can have normal plasma osmolality. If additional fac-
tors play a role, like disturbance of the kidney, heart or liver function, this may lead to severe water
intoxication. There exist regulatory mechanisms of the body to reduce the damage. For example,
10 days of increased water intake can lead to a form of AVP-resistant NDI. In this case AQP2
protein expression in the outer and inner medulla gets suppressed and the AQP2 abundance in the
apical membrane is decreased.

• Pregnancy - Although not being a disorder, water retention, edema, and a decrease in plasma os-
molality are very common during pregnancy. At plasma osmolalities that would normally suppress
AVP release, it can still be detected. Furthermore, there is an increase in thirst and fluid intake at
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(a)

(b) (c)

Figure 1.7: Data set from Stefan et al. [133] based on experiments performed with primary rat IMCD cells.
a) intracellular cAMP at different conditions as indicated, b) relative PKA activity, c) intracellular/plasma membrane
fluorescence intensity ratios for AQP2 before as well as 5, 10 and 15 min after a stimulus by AVP. (Reprinted by
permission from the American Society of Nephrology, Stefan et al., JASN, ©2007.)
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low plasma osmolality, that would normally suppress thirst. It has been shown in rat experiments
that AQP2 mRNA as well as membrane localized AQP2 is upregulated [125].

• Heart failure - Water retention and hyponatremia are common symptoms of advanced heart failure.
It has been shown in patients with heart failure, that plasma AVP can still be detected, even though
the observed hypoosmolality would suppress AVP release in healthy individuals. Furthermore,
AVP mRNA in the hypothalamus was significantly elevated indicating increased AVP synthesis.
Experiments in rats revealed that AQP2 trafficking and gene expression are increased. Experiments
with human patients pointed out that V2 receptor antagonists lead to increased plasma sodium
concentration and urine output, and decreased urinary AQP2 and osmolality, thus suggesting a
decrease of membrane located AQP2 (see [125] and reference therein).

• Central diabetic insipidus (CDI) - In CDI the production of AVP is impaired, mostly resulting from
a destruction of the AVP producing neurons in the neurohypophysis. Hence, only a reduced amount
of AVP is released into the blood, leading to insufficient activation of the water reabsorption in
the collecting duct. CDI appears in three forms, autosomal dominant, autosomal recessive and
X-linked. The autosomal dominant case is most frequent, resulting from mutations in the AVP
precursor. This in turn cannot fold and dimerize properly, leading to the accumulation of misfolded
precursors and to death of the AVP producing neurons (see Babey et al. [5] and references therein).
In the autosomal recessive case the AVP gene is mutated, leading to reduced biological activity of
AVP. In the X-linked recessive case a not yet identified gene is involved. In most cases, water
reabsorption can be restored by treatment with dDAVP.

• Nephrogenic diabetes insipidus (NDI) - In NDI the kidneys are unable to respond properly to AVP.
As a result, the patients lose an enormous amount of water and are in danger of dehydration. NDI
can be either congenital or acquired. Congenital NDI results in most cases from mutations of either
the V2R or AQP2. Approximately 90% of patients with congenital NDI suffer from mutations in
the V2R. In most cases the V2R is retained in the ER, thus the intracellular signaling cascade
including cAMP, PKA activation and AQP2 trafficking does not get activated. Since this kind of
NDI is X-linked, males are mostly affected and they may excrete up to 20 L of urine per day [125].
Without appropriate treatment, dehydration and mental retardation frequently occur. There exist
different strategies to reactivate those trapped V2R. One is by using V2R antagonists acting as
chaperones [10, 30], another one is to rescue the V2R by using non-peptide agonists [117].
10% of the families with congenital NDI have mutations in the AQP2 gene [125]. In the autosomal
recessive case the AQP2 mutant proteins are misfolded and retain in the endoplasmatic reticulum
(ER) whereas in the autosomal dominant case mutations of the C-terminus are involved, which is
of high importance for regulated AQP2 trafficking (see Sec. 1.1.4).
NDI can also be acquired through lithium treatment (often used as a therapy for bipolar disorder)
during which downregulation of AQP2 expression and trafficking could be observed. Furthermore,
special diets (e.g. potassium-deficient diet) as well as acute or chronic renal failure can result in
NDI. Usually, acquired NDI is less severe than congenital NDI [125].

The models proposed in this part of the thesis can assist in identifying how these problems can be investi-
gated at the kidney level. They can be used to identify relevant mechanisms, for example how membrane
localized AQP2 can be kept low despite elevated AVP levels (as it appears in heart failure or pregnancy).
Within the present thesis, the models were used to predict potential treatments in situations with reduced
amount of active AVP (as in CDI) and AQP2 (as in NDI).
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1.5 Aims and structure of this thesis part
Within the last years a lot of knowledge has been achieved concerning the regulation of AQP2. The aim
of the present thesis is to include this knowledge and build more detailed and predictive mathematical
models. With these models, questions can be answered through in silico experiments, such as:

• Which intracellular reactions have the most influence on the abundance of AQP2 at the membrane
and on water reabsorption?

• How do initial differences in the AQP2 abundance influence the water reabsorption?

• Which reactions are possible drug targets to inhibit or stimulate water reabsorption in case of a
disease?

• What can be learned from different biological model systems?

In Sec. 3 and Sec. 4 mathematical models of the AQP2 trafficking will be proposed, based on data from
MDCK and IMCD cells, respectively. Both models were analyzed by ranking of different model variants
(Sec. 3.3 and Sec. 4.3). The models were analyzed with sensitivity analysis (Sec. 3.4 and Sec. 4.4) and
time-dependent sensitivity analysis (Sec. 3.5 and Sec. 4.5). The models were used to make predictions
concerning AQP2 membrane localization. Those predictions were compared with newly generated data
from MDCK cells (Sec. 3.6 and Sec. 3.7), and from primary rat IMCD cells (Sec. 4.6). A summary
and comparison of the results from the two biological systems will be presented in Sec. 4.7.2 and dis-
cussed in Sec. 3.9.
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2 Methods

The models presented in this thesis are systems of equations and differential equations. They are imple-
mented and analyzed with the systems biology tool COmplex PAthway SImulator (COPASI) [43], and
with Mathematica® [150]. In the following sections, the methods used in this thesis part are described.
For the theoretical part a short introduction into differential equations, sensitivity analysis, and time de-
pendent sensitivity anaysis is given. Afterwards the conditions for the time course simulation, parameter
estimation, and sensitivity analysis used here are described in detail.
For the biological part first a general introduction into cell surface biotinylation is given, followed by an
explanation of the detailed experimental setup.

2.1 Computational techniques

Di�erential equations

In this work the focus lies on the investigation of the development of biological systems, which means
here a mathematical model with given start values, over time. The model consists of species and reactions,
which are described by a set of equations and ordinary differential equations (ODEs).
In a system containing r reactions and m species, the change of a species Si over time is given by the
formula

dSi

dt
=

r

Â
j=1

ni jv j for i = 1, . . . ,m (2.1)

were ni j is the stoichiometric coefficient for species i and reaction j. v j is the rate of reaction j, a function
of the species vector S = (S1,S2, . . . ,Sm)T and the parameter vector p = (p1, p2, . . . , pr)T of the system
and it depends on the kinetics of the reactions. An example of such a kinetic is the mass action kinetic,
where the rate of the reaction is proportional to the concentration of the reactants to the power of the
number in which they are entering the reaction [63, 145]. Also more complicated kinetics are possible,
like Michaelis-Menten [84] or Hill [39] kinetics or different forms of activation or inhibition [19, 127].
Simple systems of differential equations can be solved analytically, but for larger biological systems
usually numerical solvers are used. During this work, the LSODA method, which is implemented in
COPASI, was applied [43]. This method can automatically adapt to stiff differential equation systems,
which combine slow and fast processes, and can reduce the numerical effort to solve them [63].

Parameter estimation

The goal of parameter estimation or model fitting is to find the parameter set so that the model can repro-
duce given biological data best.
A prominent way to estimate the parameters of a model is via the least squares fitting [63]. For this a
model including the involved species and reactions is needed as well as biological data for at least one of
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the species at steady state or over time. Because in this work time resolved data were used, the description
concentrates on the latter.
Based on a given set of start parameters a simulation is performed with the model. The simulation of the
species is compared with the biological data and at each experimental data point the difference between
the simulation and the biological data is determined. With this differences the sum of squared residuals
is calculated which can be used as part of an objective function R(p) that has to be minimized,

R(p) = Â
i, j

w j · (xi, j � yi, j(p))
2 (2.2)

xi, j stands for the experimentally derived value of species S j at time i, yi, j(p) is the value of species S j at
time i simulated by the model given the parameter vector p.
If applicable, an individual weight function w j can be assigned to every data series [43].

An optimization method like the particle swarm algorithm [60] or evolutionary programming [27] can be
used to efficiently vary the parameters so that R(p) gets reduced.

Sensitivity analysis

When analyzing signaling pathways one is often interested in the sensitivity coefficients or concentration
response coefficients. They give information about the response of a species’ concentration to a small
perturbation in a parameter p (see Fig. 2.1). In classical metabolic control analysis (MCA) [38, 53] the
response of a steady state concentration SSS is analyzed. The unscaled concentration response coefficients
ŘS

p
SS

are given by the derivative

ŘS
p

SS
=

dSSS

d p
(2.3)

and the scaled response coefficients RS
p

SS
by

RS
p

SS
=

p
SSS · dSSS

d p
. (2.4)

The latter take into account that the magnitute of the species concentrations and parameters might be very
different. By multiplication of p

SSS the response coefficient becomes independent of units. It represents the
percentage of a change in the species’ steady state concentration as a result of a change of the parameter
value by 1%.
By knowing for which parameters and therefore reactions a species of interest is most sensitive, one can
identify the reactions which might be suitable drug targets.

Time dependent sensitivity analysis

Since signaling pathways are systems with the function to react on temporal changes, one is often not
only interested in the response of the species at the steady state, but also during the whole time course.
Ingalls and Sauro [47] proposed the time dependent response coefficients RS

p(t). Small changes of the
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Figure 2.1: Concentration response coefficient. The concentration response coefficient RS
p

SS is a measure of the
effect of minor changes of a parameter p on species S in steady state, in this example a minor change of parameter Km
of reaction 2 on species S1. (Adapted with permission from Wiley-VCH Verlag GmbH & Co. KGaA., Klipp et al.,
SystemsBiology: A Textbook, page 53, ©2009 [63].)

parameters (at the starting point of the simulation) and their effect on the species of the system are given
by

RS
q(t) :=

∂S(t,q)
∂q

|q=q0 = lim
Dq!0

S(t,q0 +Dq)�S(t,q0)

Dq
(2.5)

Ingalls and Sauro further proposed a computationally efficient calculation method by calculating in paral-
lel ∂Si

∂ t and ∂

∂ t
∂Si(t)

∂q . The calculation requires the reduced stoichiometric matrix NR, which is achieved by
ordering the stoichiometric matrix N with row rank n0 in such a way that the first n0 rows are independent.
Taking only the first n0 rows of the reordered N results in NR.
Furthermore the link matrix L = [

In0
L0

] and the unscaled elasticity coefficients ∂v(t)
∂S

, ∂v(t)
∂q

and ∂v(t)
∂Sd

are used
for efficient calculation of the response coefficients. This results in the following formula

∂

∂ t
∂Si(t)

∂q

= NR


∂v(t)
∂S

L

∂Si(t)
∂q

+
∂v(t)
∂Sd

∂T

∂q

+
∂v(t)

∂q

�
(2.6)

The vector q includes the parameters p of the system as well as the initial concentrations of the species.
T is a vector defined in terms of the initial conditions as T = Sd(0)�L0Si(0).

Time course simulation, parameter estimation and sensitivity analysis - details

Time course simulation and parameter estimation were performed with the systems biology tool CO-
PASI [43].
Parameter estimation for the MDCK cell model was performed by running evolutionary programming [27]
in COPASI 1000 times with 200 generations, a population size of 20, random number generator Mersenne
Twister [83] and a random seed. A Python script was used to run the algorithm with random initial pa-
rameter values as well as random upper and lower parameter bounds.
The best parameter set from the 1000 runs was taken, in case a parameter was located at a boundary, this
boundary was extended by a factor of 100, and a subsequent parameter estimation was performed using
the algorithm particle swarm [60] with iteration limit 2000, swarm size 50, standard deviation 1e�6, ran-
dom number generator Mersenne Twister and random seed.
Parameter estimation for the IMCD cell model was performed by running evolutionary programming
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3000 times with random initial parameter values as well as random upper and lower parameter bounds
(700 generations, population size 70, Mersenne Twister and random seed). The best parameter set from
the 1000 runs was taken, in case a parameter was located at a boundary, this boundary was extended by
a factor of 100, and a subsequent parameter estimation was performed (evolutionary programming, 700
generations, population size 70, Mersenne Twister and random seed).

For all parameter estimation tasks performed in this thesis, the mean function in COPASI w j =
1

<x j>2

was chosen as weight, and calculated manually so that it holds for the whole data set and not only within
the individual experiments.
The time course simulation was solved with the deterministic LSODA method, which is part of the ODE-
PACK library [41, 100].
Time dependent sensitivity analysis was performed using the algorithm proposed by Ingalls and Sauro [47]
which was implemented in Mathematica7.0 [150].

2.2 Experimental approaches

2.2.1 Cell surface biotinylation

Cell surface biotinylation - background

As mentioned in Sec. 1.1.2 an increase in water reabsorption occurs when more AQP2 is located at the
apical plasma membrane. Therefore, the relative amount of AQP2 at the membrane was investigated and
how it changes over time after a stimulus by vasopressin. There exist different methods how that can
be monitored. In an ideal world, AQP2 would be labeled with a fluorescent protein (e.g. GFP) and its
localization over time would be monitored and analyzed with image analysis tools. Unfortunately this
is not feasible, yet. Another method would be to perform immunocytochemistry. In this microscopic
approach, cells would be stimulated, AQP2 would be labeled with antibodies, and images could be taken
and analyzed. A further method would be to perform ultracentrifugation to separate the AQP2 vesicle
fraction from the membrane fraction and to semiquantify and compare both fractions by western blot
analysis.
For this work, a different method was chosen, which is cell surface biotinylation (see Fig. 2.2). With this
method it is possible to distinguish between AQP2 located at the apical and the basolateral part of the
cell.
The workflow for cell surface biotinylation is as follows. After stimulation of the cells with the desired
substance (here, vasopressin was used), the cells are transferred to ice to stop any further AQP2 translo-
cation. Afterwards the cells get biotinylated on the apical cell membrane (here, sulfo-NHS-SS-biotin was
used; the N-hydroxysulfosuccinimide ester group on this reagent binds to the epsilon-amine of lysine
residues and generates a stable product). After stopping the biotinylation reaction (quenching) the cells
are lysed. Afterwards, the proteins from the apical membrane (labeled with biotin) are separated from the
proteins from the cytoplasm, the intracellular membranes, and the basolateral membrane (all not labeled
with biotin). This is done by isolating the biotin labeled proteins with streptavidin beads (streptavidin
binds extremely strong to biotin with an affinity of 1015 M�1 [148] and is often used as a sensor for
biotin). The biotin labeled proteins are eluded with Laemmli buffer [72], which cuts the disulfide bridge
between the biotin and the protein.
The proteins from the apical membrane as well as the total lysate which serves as a control are analyzed
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and semiquantified by western blot analysis.

Figure 2.2: Workflow: cell surface biotinylation. 1. pretreatment of the cells as desired, 2. biotinylation of the cell
surface proteins (here: at the apical cell membrane), 3. stopping (quenching) the biotinylation reaction and cell lysis,
separation in test sample and control sample (total lysate) 4. use streptavidin beads to seperate biotinylated proteins
from others, 5. elude biotin labeled proteins with Laemmli buffer [72], 6. analyze eluded proteins as well as total
lysate by western blot analysis.

Cell surface biotinylation - experiment

For this work Madin-Darby canine kidney cells (MDCK-hAQP2-T269S) where seeded at a density of
2.7 ·105 cells/cm2 on semipermeable 4.7 cm2 filters (Transwell®, 0.4 µm pore size, Corning Costar, Cam-
bridge, MA, USA). The cells grew at 37�C for two days, then the medium was changed and 5 · 10�5 M
indomethacin was added for 1 more day to lower intracellular cAMP levels. After 3 days of seeding, the
basolateral side of the cells was exposed to medium with (deamino-Cys1, D-arg8)-vasopressin (dDAVP,
Sigma, St. Louis, MO, USA). Different concentrations of dDAVP were used (10�6 M and 10�8 M) for
durations of 0, 2, 5, 10, 20, 30 and 90 min. Apical cell surface biotinylation was performed as in [21].
The samples were denaturated for 30 min at 37�C. Samples from total lysate were sonicated for 20 s.
After SDS-PAGE on a 12% acrylamide gel the proteins were immunoblotted as in [21]. Incubation with
the primary antibody against the C-tail of AQP2 (750 K5007, 1:100,000 dilution, kindly provided by
Dr. M. Knepper, NIH, Bethesda) took place overnight at 4�C. The signal was amplified by 1:10,000-
diluted biotinylated anti-rabbit IgGs and 1:8,000-diluted streptavidin-peroxidase (HRP; Sigma, St. Louis,
MO, U.S.A.). Semi-quantification was performed with an Epson Expression 1640 XL (300dpi) using the
software AIDA - Advanced Image Data Analyzer (V4.10.020; raytest Isotopemessgeräte GmbH). The
experiment was done twice in duplicates.
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3 Modeling of AQP2 tra�cking in MDCK
cells

To understand measured dynamics of AQP2 regulation and trafficking and to get a tool for rationale drug
target prediction, a mathematical model was constructed based on knowledge from MDCK cells. In the
first section of this chapter the model building and data fitting process is described.
After generation, the MDCK cell model was analyzed by

• generating and ranking model variants,

• sensitivity analysis,

• time dependent sensitivity analysis,

• model predictions and comparison with newly generated data.

At the end of this chapter the results of the different analyses are discussed.

3.1 A mathematical model of AQP2 tra�cking in MDCK cells
A mathematical model was generated based on prior knowledge from MDCK cells to acquire new infor-
mation about AQP2 trafficking. The currently available data are mainly qualitative and rarely quantitative
and time course data are not available for most model components. In accordance with the availability
of data it was decided to generate a more general and less detailed model. The model consists of the
species vasopressin, cyclic AMP, inactive and active PKA, and AQP2 in internal vesicles as well as in the
apical membrane. The concentration dynamics of the involved components are represented as a system of
ordinary differential equations using mass action kinetics. The complete model version contains nine re-
actions: increase of cAMP via vasopressin, activation and inactivation of PKA, and endo- and exocytosis
of AQP2. cAMP can be degraded via negative feedback from active PKA on cAMP, which represents the
decrease of cAMP by phosphodiesterases as well as via a PKA independent mechanism. Since it has been
shown that treatment of MDCK cells with vasopressin leads to internalization of the V2 receptor [115],
the decrease of the stimulus was included into the model. Robben et al. [115] reported that the percentage
of internalized receptors increases at a stronger stimulus of dDAVP. Hence, second order kinetics were
used to implement that reaction. Furthermore, it was assumed that starting with a basal level of membrane
located AQP2, this level does not change without any vasopressin stimulus. To achieve this, a constitutive
exocytosis reaction was added to maintain a basal level of exocytosis and endocytosis.
The model does not include the regulation of endocytosis via vasopressin as proposed by Knepper and
Nielsen in rat terminal IMCD [67]. Using the model by Knepper and Nielsen and MDCK cell data [20]
it was shown that their model can reproduce the data reasonably well, when exclusively the exocytosis of
AQP2 is regulated [29].
A graphical representation of the model is shown in Fig. 3.1. The corresponding differential equations
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system is given in Table 3.1.

Figure 3.1: The MDCK cell model, using the Systems Biology Graphical Notation (SBGN) [49]. The model
consists of 6 different species and 9 reactions. Vasopressin stimulates directly the increase of intracellular cAMP
(re1). cAMP can form, together with PKA, in a reversible reaction PKAactive (re3), (re4). cAMP can be degraded in
a PKAactive dependent (re2) and independent (re7) reaction. PKAactive stimulates the integration of AQP2 into the
apical membrane (re5) which is assumed to occur also via a PKAactive independent reaction (re8). Endocytosis is
assumed to depend only on the concentration of AQP2membrane (re6). The stimulus by vasopressin can decrease over
time, which represents the internalization and desensitization of the V2 receptor (re9).

d[PKA]
dt = �(k3 · [PKA] · [cAMP])+(k4 · [PKAactive])

d[PKAactive]
dt = (k3 · [PKA] · [cAMP])� (k4 · [PKAactive])

d[cAMP]
dt = (k1 · [AVP])� (k2 · [cAMP] · [PKAactive])� (k3 · [PKA] · [cAMP])

+(k4 · [PKAactive])� k7 · [cAMP]
d[AQP2]

dt = �(k5 · [AQP2] · [PKAactive])+(k6 · [AQP2membrane])� (k8 · [AQP2])
d[AQP2membrane]

dt = (k5 · [AQP2] · [PKAactive])� (k6 · [AQP2membrane])+(k8 · [AQP2])
d[AVP]

dt = �(k9 · [AVP]2)

k8 = k6 · [AQP2membrane][0]
[AQP2][0]

k1, ...,k7,k9 were estimated

Table 3.1: Algebraic and differential equations describing the model for MDCK cells. The model includes dif-
ferential equations for the input stimulus vasopressin (AVP), cAMP, PKA and PKAactive as well as AQP2 and
AQP2membrane. Parameter k8 is calculated so that a basal amount of AQP2membrane is secured and the parameters
k1 to k7 and k9 are estimated with COPASI.
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3.2 Time course simulation and parameter estimation

3.2 Time course simulation and parameter estimation

The model parameters were estimated to fit the experimental data taken from Deen et al. [20]. They
measured the increase in osmotic water permeability (Pf) and the peak in [cAMP] after a stimulus by
dDAVP as well as the decrease in Pf after dDAVP washout. Furthermore, information was taken from
Xie et al. [152] to assign a range of the values for [AQP2membrane] between 114 µM and 255 µM with a
total concentration of AQP2 ([AQP2total ]) of 1000 µM. In the model it was assumed that, while starting
with a basal AQP2 level of 114 µM, this value should not change without any stimulus by vasopressin.
A total PKA concentration of 500 nM was taken which is in consistency with published data [70, 130].
The absolute values for [cAMP] were taken from Deen et al. [20] and translated to nM.
Parameter estimation was performed as described in materials and methods (see Sec. 2.1). The estimated
model parameters are presented in Tab. 3.2 and the resulting data fits in Fig. 3.2.

Parameter name Value Units
k1 2.94e+5 1/min
k2 1.02e�3 l/(nmol · min)
k3 3.21e�4 l/(nmol · min)
k4 4.04e�0 1/min
k5 2.59e�5 l/(nmol · min)
k6 2.15e�2 1/min
k7 3.04e�2 1/min
k8 2.76e�3 1/min
k9 3.74e�0 l/(nmol · min)

Table 3.2: Estimated model parameters for the complete MDCK model. The parameters for the model shown in
Fig. 3.1 with the differential equations given in Tab. 3.1 were estimated to reproduce the biological data (see Fig. 1.6)
best. The parameters were estimated with COPASI.

3.3 Model variations and ranking - To reproduce the data
either a negative feedback or degradation of the stimulus
has to be included

It was tested whether the data set from Deen et al. [20] could also be reproduced with a simpler variant of
the model to get an impression, which parts of the model are essential. Therefore, different model variants
were generated excluding either the negative feedback by phosphodiesterases (-re2), the reduction of the
signal representing internalization of the receptor (-re9) or both (-re2 -re9) (see Fig. 3.3). Parameter
estimation was performed for all model variants as described in Sec. 2.1. They were ranked according to
their objective function (see Fig. 3.4, the calculation of the objective function is described in Sec. 2.1).
The models including either the vasopressin receptor internalization or the negative feedback had a better
fit than the minimal model, which was not able to reproduce the peak of intracellular cAMP. The models
including vasopressin receptor internalization were able to reproduce the data best.
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(a)

(b)

(c)

Figure 3.2: Parameter estimation with the old and the new data set using COPASI. Fitting of intracellular cAMP
time course (a) and membrane localized AQP2 (b) after a stimulus with 10�8 M vasopressin, c) Fitting of membrane
localized AQP2 after addition of 10�8 M vasopressin for 30 min followed by washout of vasopressin.

30



3.3 Model variations and ranking - To reproduce the data either a negative feedback or

degradation of the stimulus has to be included

Figure 3.3: Generating of variants of the MDCK cell model. Generation of different model variants by deleting
the labeled reactions. The model variants are later referred to as: Complete: model version as shown in Fig. 3.1;
-re2: complete model reduced by reaction re2 representing negative feedback via phosphodiesterases; -re9: com-
plete model reduced by reaction re9, which represents the internalization and degradation of the receptor; -re2 -re9:
reduced by both reactions re2 and re9.

Figure 3.4: Ranking of variants of the MDCK cell model. Ranking of the model variants presented in Fig. 3.3 by
their objective function. Complete: model version as shown in Fig. 3.1; -re2: complete model reduced by reaction
re2 representing negative feedback via phosphodiesterases; -re9: complete model reduced by reaction re9, which
represents the internalization and degradation of the receptor; -re2 -re9: reduced by both reactions re2 and re9.
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3.4 Sensitivity analysis reveals importance of AQP2
endocytosis

It was investigated how sensitive the model species cAMP and AQP2 at the membrane react to minor per-
turbations in the parameter values. To get a first impression, the effect on the model species was analyzed
with the sensitivity analysis task in COPASI after a simulation of 120 min (the longest duration for which
experimental data was available, delta factor: 0.0001, delta minimum: 1e-12).
Fig. 3.5 shows that cAMP was highly sensitive to the parameters k1, k2 and k9, which represent the
activation of cAMP by vasopressin, the negative feedback loop, and decrease of vasopressin by reaction
re9, which represents the internalization of the receptor. Shortly after followed the parameters k3 and k4,
representing the binding of cAMP to PKA as well as the detachment of cAMP from PKA. k7, the PKA
independent cAMP degradation, has only minor effect.
AQP2membrane was highly sensitive to parameter k6, which characterizes the internalization of AQP2. Fur-
thermore k5 and k8 had high effects on AQP2membrane, which are the PKA depend and PKA independent
translocation of AQP2 to the membrane.
The hypothesis which could be drawn from this analysis was that if one wants to suppress or increase the
amount of AQP2membrane at the conditions present in the model simulation, the most effective way would
be to target the processes responsible for AQP2 internalization.

Figure 3.5: Sensitivity analysis of the MDCK cell model. Effect of small perturbations in the parameters on the
model species at time point 120 min. The normalized sensitivities were taken. The analysis was performed with
COPASI.

3.5 Time-dependent sensitivity analysis

While looking at signaling cascades, i.e. systems with the function to react on temporal changes, one is
mainly interested in the behavior over time and not only at the system at steady state or at one specific time
point. Therefore, in addition to the analysis performed in the previous section, time-dependent sensitivity
analysis was used to analyze the model [47].
It was analyzed how sensitive the model species cAMP and AQP2membrane react to minor changes in the
model parameter values (Fig. 3.6).
The analysis was applied on the complete model with the optimal set of parameters found in Sec. 3.2.
cAMP was highly sensitive to the parameters k1, k2 and k9, which represent the activation of cAMP by
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3.5 Time-dependent sensitivity analysis

(a)

(b)

Figure 3.6: Time-dependent sensitivity analysis. Time-dependent sensitivity analysis performed
with the complete MDCK cell model as shown in Fig. 3.1 with the optimal set of parame-
ters found. a) Time-dependent normalized response coefficients (RC) for all parameters in re-
spect to cAMP. b) Time-dependent normalized response coefficients (RC) for all parameters in
respect to AQP2 in the membrane.
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vasopressin, the negative feedback loop, and the decrease of vasopressin by reaction re9, corresponding
to the internalization of the receptor. While calculating the sensitivities over time, a change in k1 had the
strongest (positive) effect when cAMP got accumulated at the beginning of the stimulation, while k9 and
k2 affected cAMP mostly around the time when the peak started and finished decreasing, respectively.
AQP2membrane was highly sensitive to parameters k5 and k6, which characterize AQP2 translocation to
the membrane as well as its internalization. The effect of a small change in k5 was not as strong as a
change in k6, but it appeared earlier after the begin of the stimulus.

3.6 AQP2 translocation after dDAVP stimulation

After AQP2 is phosphorylated at S256 it is translocated to the apical plasma membrane [3]. Cell surface
biotinylation as described in Sec. 2.2.1 was performed to monitor the amount of AQP2 at the membrane
over time after a stimulus by dDAVP (see Fig. 3.7). The experiments were performed by myself in the
laboratory of Prof. Deen (Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands).
As can be seen in Fig. 3.8(a) and 3.8(b), there is an increase in AQP2 at the membrane over time after
treatment with 10�6 M and 10�8 M dDAVP, respectively. There appear two bands at approximately 28
and 29 kD (indicated by arrows), which seem to be AQP2 specific and are changing over time. In the
total lysate, only one band can be detected (see Figure 3.7). This might be a hint that AQP2 in internal
vesicles occurs mainly in one form, whereas AQP2 at the membrane occurs in two major forms that might
be phosphorylated and unphosphorylated or otherwise modified. Fig. 3.8(a) reveals an increase in AQP2
at the apical plasma membrane after a stimulus with 10�6 M dDAVP. Fig. 3.8(b) shows the time curve
after a stimulus by 10�8 M dDAVP. For these plots the intensity of the bands of the membrane fraction
(upper and lower band were added) were taken, first normalized with the intensity of the total lysate and
than normalized to one. At 10�6 M dDAVP, the curve shows an increase until it reaches its maximum
after 30 min. Then it drops slightly at 90 min. The curve with 10�8 M dDAVP treatment looks more
staggered. It increases first, decreases then slightly, increases again sharply till the maximum is reached
after 20 min. Then it starts decreasing again and after 90 min a value below 50% of the maximum is
reached.

Figure 3.7: Cell surface biotinylation, monitoring AQP2 translocation over time. Membrane fraction (upper
panel) and total lysate (lower panel) of cells treated with 10�6 M dDAVP and 10�8 M dDAVP for durations of 0, 2,
5, 10, 20, 30 and 90 min, loaded in random order. The sample labeled with ⇤ was left out from the calculation shown
in Fig. 3.8.
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(a) (b)

Figure 3.8: Cell surface biotinylation performed on MDCK cells. a) Amount of AQP2 at the membrane after
treatment with 10�6 M dDAVP. b) Amount of AQP2 at the membrane after treatment with 10�8 M dDAVP. (The
experiments were done twice in duplicates.)

3.7 Model predictions and comparison with recent data

An interesting analysis to perform with the model was how the system reacts to different input stimuli.
Important for the clinical analysis is here to study the amount of AQP2 at the membrane, because this
should be directly related to the amount of water being reabsorbed. Also interesting was how the intra-
cellular pathway behaves. Since data for cAMP was already available for one dDAVP concentration and
therefore at least one time course was fixed, it was decided to test also this model species in additional in
silico experiments.
The most reasonable model version from Sec. 3.3 together with the best set of model parameters found
in Sec. 3.2 was used to perform the experiments in silico.

3.7.1 Prediction of the dose response of vasopressin on AQP2 in the
membrane

The change of AQP2membrane in response to a variation in the input stimulus dDAVP was simulated. The
dDAVP concentration which was used for the model fitting process in Sec. 3.2 was 10�8 M. The change
of AQP2membrane was predicted after addition of 10�6 M to 10�14 M dDAVP as well as after stimulation
with dDAVP for 30 min followed by washout of dDAVP (see Fig. 3.9(a) and (b), respectively).
The model indicates that AQP2membrane is already saturated at a concentration of 10�9 M dDAVP, which
explains why no higher value of AQP2membrane was observed at 10�6 M in comparison to 10�8 M dDAVP
(see Fig. 3.8). This would also be reinforced by experiments performed by myself on the dephos-
phorylation of S261, which occurs during dDAVP stimulation. As with the membrane localization of
AQP2membrane also the dephosphorylation of S261 seems to be saturated at concentrations above 10�8 M
dDAVP (see Sec. 2 in the Appendix).
What could not be observed during the simulation was a difference between the sustained and tran-
sient response of the system at concentrations of 10�6 M and 10�8 M dDAVP. At both concentrations
AQP2membrane was rather similar over time, reached a maximum at around 50 min and decreased slowly
afterwards.

35



3 Modeling of AQP2 trafficking in MDCK cells

(a)

(b)

Figure 3.9: Prediction of AQP2membrane over time at different dDAVP concentrations using the MDCK cell
model. dDAVP concentration in log scale from 10�6 M to 10�14 M. a) Time course after stimulus with dDAVP at 0
min. b) Time course after stimulus with dDAVP at 0 min and washout of dDAVP at 30 min.
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3.7.2 Prediction of the dose response of vasopressin on cAMP

Since for this model system only the time course for cAMP at one concentration of dDAVP (10�8 M) was
available and could be used for parameter estimation, the complete model with the best set of parameters
found (see Fig. 3.1 and Tab. 3.2) was used to estimate the cAMP time courses at other dDAVP concen-
trations. In Fig. 3.10 the estimated time courses for the dDAVP concentrations from 10�8 M to 10�13 M
are presented. The inlet shows a detailed version of the dDAVP concentrations corresponding to AVP in
a more physiological range from 10�11 M to 10�13 M.
It can be seen that the cAMP peak in the beginning of the time course, which is very pronounced at high
dDAVP concentrations, vanishes at low dDAVP concentrations. One can still see a cAMP increase, but
no peak anymore. This supports the hypothesis that it is important to look at lower, more physiological
conditions, because here the whole kinetic behavior of the system might be different.
Furthermore, if looking at high dDAVP concentrations, it would be of significant importance to determine
the cAMP level within the first 5 min to verify or falsify the model hypothesis and, if necessary, to use
the newly generated data to improve the model.

Figure 3.10: Prediction of cAMP concentration over time at different dDAVP concentrations using the MDCK
cell model. The predictions were performed by using the complete model with the best set of parameters found (see
Fig. 3.1 and Tab. 3.2). Time course of [cAMP] after stimulus with dDAVP. dDAVP concentration in log scale from
10�8 M to 10�13 M. The figure inset on the upper right is a magnification of the y-axis and shows [cAMP] over time
at the three smallest dDAVP concentrations tested. dDAVP concentration in log scale from 10�11 M to 10�13 M.

3.8 Prediction of potential drug targets with TIde

Using the carefully parameterized model, it was investigated which reactions are suitable targets in case
of medically relevant perturbations. Therefore, the software TIde [126] was used to analyze the effect of
potential activators and inhibitors on AQP2membrane. TIde can automatically substitute individual model
reactions by corresponding modifier kinetics (e.g. non-competitive inhibition or non-essential activation).
For a reaction with the velocity v(S, p) the software generates a potential non-competitive inhibition with
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the velocity

vinh(S,p, Inh,Ki) = v(S,p) · ( 1
1+ Inh

Ki

)

and a non-essential activation reaction with the velocity

vact(S,p,Act,Ka) = v(S,p) · (1+ Act
Ka

).

S are the concentrations of the involved species, p the parameters of the original reaction, Inh the inhibitor
concentration, Act the activator concentration, and Ka and Ki the dissociation constant of the activator and
the inhibitor, respectively. To evaluate the quality of the different drug treatments, an objective function
(usually a formula containing substance concentrations or fluxes) can be defined by the user. Furthermore,
synergism analysis can be performed to identify synergistic or antagonistic effects, i.e. drug combinations
that, when taken together, increase or decrease each other’s effectiveness, respectively.
Applying the software to the model of AQP2 trafficking one can investigate for example, how one can
perturb the amount of AQP2membrane at or over a given time with activators and inhibitors. For this in
silico experiment once again the complete model with the best set of parameters found (see Fig. 3.1 and
Tab. 3.2) was used.
Two medically relevant use cases were analyzed in more detail:

Medical case 1:

• the gene expression of AQP2 is impaired and the concentration of AQP2total is re-
duced by 50%

• all other species remain unaffected

• the model reactions 5 and 8 (PKA dependent and independent AQP2 translocation
to the membrane) are affected by the same inhibitor or activator.

Medical case 2:

• the vasopressin abundance is impaired. In the current setup this means that, instead
of 10 nM, there is only a stimulus by 10 fM, 1 pM or 10 pM dDAVP.

• all other species remain unaffected

• the model reactions 5 and 8 (PKA dependent and independent AQP2 translocation
to the membrane) are affected by the same inhibitor or activator.

For both medical cases TIde was used to solve the following question:

• How can one influence the pathway to reach the same concentration of AQP2membrane as in the
"healthy" state?

Analysis of medical case 1:

By running the model with different concentrations of AQP2total it turned out that the amount of AQP2membrane

is predicted to be proportional to the amount of total AQP2 (see Fig. 1 in the Appendix). Therefore a re-
duction of [AQP2total] by 50% reduced also [AQP2membrane] by 50%.
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Hence, for the scenario of medical case 1, [AQP2total] was set to 500 µM instead of 1000 µM. The
maximal concentration of AQP2membrane during the 120 min simulation with the original concentration
of AQP2total was 260 µM at 52 min. By allowing some divergence from this value still to be classified
as "healthy", the objective function was set to 250 µM

AQP2membrane[52 min] . An inhibitor or activator concentration
leading to an objective function value of 1 or smaller was assumed to restore the "healthy" state.

Individual drugs First, all inhibitors and activators were analyzed individually with 1st line search
(lower and upper boundaries of 0.1 nM and 10 µM, respectively, increased in 50 steps logarithmically).
In Fig. 3.11 D the dose response relationship for all drugs are shown for which a value of 250 µM
AQP2membrane at 52 min was reached somewhere within the applied concentration range. For medical
case 1 only one potential drug was able to reach an objective value below 1, individually. This was
activatorre5,re8, which acts as an activator of the PKA dependent and independent translocation of AQP2
to the membrane.

Drug combinations Next, it was investigated which concentrations of potential drugs are in combina-
tion sufficient to reach 250 µM of AQP2membrane and whether there exist potential synergistic or antago-
nistic effects. Therefore, synergism analysis was performed with lower and upper boundaries of 0.1 nM
and 10 µM, respectively, increased in 50 steps logarithmically.
The most efficient drug combination was activatorre5,re8 and inhibitorre6. In Fig. 3.12 (blue squares) mini-
mal concentrations for the combination activatorre5,re8 and inhibitorre6 are shown, which were found with
the used step sizes. Whereas a treatment with activatorre5,re8 alone was able to restore the "healthy" state
at a concentration of 2.36 nM, as soon as the concentration of activatorre5,re8 was decreased, inhibitorre6

had to be increased strongly.
Simulations with varying dosage for this drug combination are given in 3.13. At a combination of high
activatorre5,re8 and low inhibitorre6 concentration, AQP2membrane increased up to 250 µM and decreased
slightly afterwards (see Fig. 3.13 A and B), which would be similar to the original data.
Instead, by using a combination of low activatorre5,re8 and high inhibitorre6 concentration, higher doses
of the drugs were necessary and AQP2membrane kept increasing after 52 min. In the long run, the amount
of water being reabsorbed might be too high (see Fig. 3.13 C and D).
For activatorre5,re8 and inhibitorre6 no synergism or antagonism was observed in the relevant concentra-
tion range.

Analysis of medical case 2:

In medical case 2 it was assumed that the concentration of vasopressin is reduced, as it would be the
case for central diabetes insipidus (CDI). Instead of 10 nM the system was stimulated by 10 fM, 1 pM or
10 pM dDAVP. All other species were kept unchanged. As before it was assumed that the reactions re5
and re8 (PKA dependent and independent AQP2 translocation to the membrane) are affected by the same
inhibitor or activator.
As in medical case 1, TIde was used to analyze potential individual drugs and drug combinations that
are able to rescue the concentration of AQP2membrane. Also here the desired goal was to reach 250 µM
AQP2membrane after 52 min dDAVP stimulation.
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Figure 3.11: Identification of potential drug targets with TIde. It was analyzed with 1st line search how the application of individual inhibitors or activators can influence the
concentration of AQP2membrane during medical case 1 and 2. An objective function value of 1 indicates that exactly 250 µM AQP2membrane were reached at the given concentration
of the inhibitor or activator. Objective function values smaller than 1 represent that AQP2membrane concentrations above 250 µM AQP2membrane were reached. A) 10 pM dDAVP B)
1 pM dDAVP C) 10 fM dDAVP D) 50% reduction in AQP2total .

40



3.8 Prediction of potential drug targets with TIde

Figure 3.12: Analysis of drug combinations for medical case 1 and 2. Minimal drug combinations of
activatorre5,re8 and inhibitorre6 that were able to reach the desired state during stimulation with 10 fM, 1 pM, and
10 pM dDAVP. For comparison, the combination necessary to bring medical case 1 into the desired range is also
presented here.

Individual drugs 1st line search was applied to analyze all inhibitors and activators individually (lower
and upper boundaries of 0.1 nM and 10 µM, respectively, increased in 50 steps logarithmically). In
Fig. 3.11 A-C the dose response relationships for all drugs are shown for which a value of at least 250 µM
AQP2membrane at time point 52 min was reached at any drug concentration within the applied range dur-
ing application of A) 10 pM dDAVP, B) 1 pM dDAVP, and C) 10 fM dDAVP. It was observed that with
decreasing concentration of dDAVP the selection of possible drugs able to rescue the concentration of
AQP2membrane gets reduced. By application of 10 pM dDAVP, 7 drugs were able to reach the desired
concentration of AQP2membrane; by application of 1 pM and 10 fM dDAVP this was the case for 5 and 2
drugs, respectively.
The most effective drug was in all cases activatorre5,re8 (affecting PKA dependent and independent AQP2
translocation to the membrane). The concentration which was necessary to reach a concentration of
AQP2membrane above 250 µM increased with decreasing dDAVP concentration (0.2 nM for 10 pM dDAVP,
0.83 nM for 1 pM dDAVP, 2.12 nM for 10 fM dDAVP).

The second most effective drug was at 10 pM dDAVP inhibitorre6, the inhibitor of the AQP2 internal-
ization reaction. This was the same for 1 pM dDAVP, if one focused at the lowest concentration neces-
sary to reach AQP2membrane concentrations above 250 µM. If the desired goal was to reach the highest
AQP2membrane concentration possible, also activatorre1, activatorre3 and inhibitorre4 became important
(activators of the cAMP production, PKA activation and inactivation).
For the lowest AVP concentration tested in silico, 10 fM dDAVP, activatorre1 (activator of the cAMP
production) was the only drug besides activatorre5,re8 that reached AQP2membrane concentrations above
250 µM in the tested concentration ranges, although much higher concentrations would be necessary.
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Figure 3.13: Analysis of drug combinations for medical case 1. Exemplary combinations of activatorre5,re8 and inhibitorre6 are shown. Those combinations are along the curve
for the minimal necessary concentrations to reach more than 250 µM AQP2membrane, which was defined as healthy in this use case. A: activatorre5,re8 1.87 nM, inhibitorre6 0 nM
B:, activatorre5,re8 0.93 nM, inhibitorre6 0.83 nM, C: activatorre5,re8 0.66 nM, inhibitorre6 1.87 nM, D: activatorre5,re8 0.13 nM, inhibitorre6 110 nM
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3.9 Discussion

Drug combinations The effect of drug combinations and their synergistic effects were tested with
synergism analysis (lower and upper boundaries of 0.1 nM and 10 µM, respectively, increased in 50
steps logarithmically). The most prominent drug combination was, same as with medical case 1, the
activatorre5,re8 and inhibitorre6. Except for the lowest dDAVP concentration (10 fM) this combination
was ranked as most efficient. Fig. 3.12 shows minimal combinations of activatorre5,re8 and inhibitorre6 for
the three dDAVP concentrations that were able to reach the desired state. It was observed that the lower
the dDAVP concentration, the higher dosage of drugs had to be used.
At 10 fM dDAVP the combination of activatorre5,re8 and activatorre1 were marked as most efficient, which
is in agreement with the results from 1st line search (Fig. 3.11 C).

3.9 Discussion
The aim of this chapter was to propose a mathematical model for AQP2 trafficking in MDCK cells, which
can be used to analyze the dynamic behavior of the system after dDAVP stimulation. The proposed model
includes the widely accepted pathway via intracellular cAMP and PKA. The parameters of the model were
estimated using data from Deen et al. [20].
The model was used to analyze the presence of a negative feedback representing phosphodiesterases as
well as a reduction of the signal representing internalization of the V2 receptor. cAMP and AQP2membrane

concentrations over time were predicted, the latter was compared with newly generated data. Sensitivity
as well as time-dependent sensitivity analysis were performed. Finally, potential drug treatments were
analyzed for different medical use cases.

To conclude the major results from this chapter:

• The proposed model was able to reproduce the biological data.

• Ranking of model variants showed that either internalization of the V2 receptor or the negative
feedback by phosphodiesterases has to be present to reproduce the biological data. Internalization
of the receptor seemed to be more important.

• Sensitivity analyses showed that AQP2membrane is highly sensitive to AQP2 internalization, which
might be a potential drug target.

• The model predicted that AQP2membrane has already reached its maximum value at AVP concen-
trations of 1 nM. This was supported by newly generated data.

• The drug target identification tool TIde identified the reactions directly involved in AQP2 traffick-
ing as feasible drug targets. Optimal single and combinatorial treatments with potential inhibitors
and activators of those reactions were proposed.

In the following, those results as well as the major aspects of the model shall be discussed.

MDCK cell model Due to the sparse amount of time resolved data available for the different species
involved in AQP2 trafficking, the model was restricted to the main players of the pathway (vasopressin,
cAMP, PKA, AQP2). The activation of the G-protein coupled receptor, the detachment of the subunits
and the activation of the adenylate cyclase were summarized in one reaction, the activation of cAMP
production by vasopressin. Due to the same reason, simple kinetics were chosen for the PKA activation,

43



3 Modeling of AQP2 trafficking in MDCK cells

which were already able to describe the kinetics of the available data.
Another possibility would have been to reuse a model for the cAMP/PKA pathway (e.g. from the model
of beta-adrenergic signaling in cardiac myocytes by Saucerman et al. [123]) and refit the parameters to
the MDCK cell data. Although first steps were made into this direction (data not shown), it was decided
to use a simplified model instead to avoid overparameterization.
In contrast to the proposed model by Knepper and Nielsen [90] based on work with isolated tubules, va-
sopressin dependent regulation of endocytosis was not included in the MDCK cell model. Applying their
2-state model to data from MDCK cells [20] led to the conclusion that this regulation would be irrelevant
in MDCK cells (see supplementary material in [29]).
During parameter estimation, the peak in cAMP was allowed to be higher than observed in the experi-
mental data, because the information about the cAMP concentration between 0 and 5 min was lacking.
The data from Deen et al. [20] is based on a whole population of MDCK cells. It remains to be verified
whether the peak of cAMP exists also in individual cells and if cell-to-cell variation exists. Also possible
would be that single cells exhibit damped cAMP oscillations which are synchronized shortly after dDAVP
stimulation and desynchronized on the longer run, therefore resulting in a peak if averaged over the whole
population.

Ranking of model variants To reproduce the experimental data for intracellular cAMP [20] either the
negative feedback representing phosphodiesterases or the reduction of the vasopressin signal is required.
Using mass action kinetics, the model version including the internalization of the receptor performed bet-
ter than the model which includes only the negative feedback. This might be a hint that in MDCK cells
the internalization of the V2 receptor is more important for the kinetic behavior of AQP2 trafficking than
the negative feedback by phosphodiesterases.

Sensitivity and time dependent sensitivity analysis Time dependent sensitivity analysis revealed
that cAMP is most sensitive to parameter k2 (influencing the rate of the PKA dependent cAMP degrada-
tion thereby representing phosphodiesterase activity). This was most prominent during the first 15 min
after dDAVP addition and could not be captured by the sensitivity analysis performed with COPASI at
120 min after the stimulus. The effect of a change in the parameters during the longer run of the sim-
ulation was less pronounced. One may conclude from this that if one wants to analyze the system in
more detail, to focus on changes of reaction re2 should be promising. One possibility would be to apply
different inhibitor concentrations of phosphodiesterases and focus in particular on the first 15 min after
dDAVP addition.
By including the pathway prior of AQP2 in the model, increase and decrease of membrane located AQP2
could be reproduced reasonably well even without including vasopressin regulated endocytosis of AQP2
into the model. Nevertheless, both, sensitivity and time dependent sensitivity analysis revealed that chang-
ing the parameter for the endocytosis reaction has the highest impact on AQP2 in the membrane. This
means that, even if a regulation of this reaction by vasopressin is not needed to fit the model to the data, it
might be useful to integrate in future versions of the model and analyze it in more detail. One can include
also information from Kamsteeg et al. [56], who proposed regulated endocytosis of AQP2 via short-chain
ubiquitination after washout of a stimulus. Nevertheless, one has to be careful with combining those data
sets. Kamsteeg et al. [56] used forskolin to stimulate the cells instead of dDAVP, which directly activates
the adenylate cyclase. Furthermore, they did not incubate the cells with the cyclo-oxigenase inhibitor
indomethacin prior the stimulation with forskolin, which was used in the present study and in Deen et
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al. [20] to reduce basal cAMP levels. This might alter the cellular response significantly.

Prediction of intracellular cAMP concentration over time By using the model to simulate cAMP
over time it has been observed that the initial peak in cAMP is less pronounced at lower dDAVP concen-
trations. This supports the hypothesis, that it is important to look at lower, more physiological conditions,
because there the whole kinetic behavior of the system might be different.
Furthermore, if looking at high dDAVP concentrations, it would be of significant importance to determine
the cAMP level within the first 5 min to verify or falsify the model hypothesis and, if necessary, to use
the newly generated data to improve the model.

AQP2 translocation after dDAVP stimulation - simulation and experiments The model was
used to simulate the time course of AQP2 at the membrane at different concentrations. The model in-
dicates that AQP2 at the membrane gets saturated already at a concentration of 10�9 M dDAVP. To
investigate whether AQP2membrane is consistent with the Pf measured by Deen et al. [20] and to verify the
model’s predictions, cell surface biotinylation was performed on MDCK cells after a given stimulus of
dDAVP and the change of AQP2 at the membrane was monitored over time. There was no difference in
the maximal amount of AQP2 at the membrane at the concentrations 10�8 M and 10�6 M dDAVP, which
supports the hypothesis that AQP2membrane is already saturated at those concentrations. At a concentra-
tion of 10�8 M dDAVP a transient response could be observed, whereas at a concentration of 10�6 M the
response was sustained. That slightly disagrees with the model’s predictions, because there a difference
between the two concentrations could not be observed.
It is not completely clear why different concentrations of dDAVP shall affect only the form and not the
amplitude of the curve. One possibility might be that at the time point of 90 min, which is relevant for
the difference between the two concentrations, additional effects have taken place on a transcriptional or
metabolic level, affecting the cell and influencing AQP2membrane. The integration of further mechanisms
might be of interest for future work, like AQP2 production, cell volume changes or growth.

Prediction of potential drug treatments with TIde The model was used to predict drug treatments
for medical use cases in which either vasopressin or AQP2 abundance was impaired. Analyses with the
drug target identification tool TIde identified the reactions directly involved in AQP2 trafficking as feasi-
ble drug targets. Furthermore, a reduction in dDAVP could be balanced by the application of activators or
inhibitors more easily than a reduction in AQP2 abundance. This result holds true as long as there is still
sufficient AQP2 present despite a reduction in vasopressin. In the long run, a reduction of vasopressin
might also reduce AQP2 abundance, leading to even more severe impairment not considered in the cur-
rent study.
While choosing the optimal drug or drug combination dosage, it is not only important to achieve the max-
imal effect. To avoid or reduce side effects it is favored to identify the minimal drug dosage still showing
the desired effect. As shown in Fig. 3.13 the exact amount of each component of a fixed-combination drug
can influence highly the kinetics of the system. In all four combinations of activatorre5,re8 and inhibitor6

the desired goal to rescue AQP2membrane was reached, but the response of the system is still different.
Drug dosages with high inhibitor6 and low activatorre5,re8 were leading to an overshoot of AQP2membrane

on the long run, which might most likely result in a higher reabsorption of water than desired. Therefore,
if possible, it might be better and more physiological to apply a treatment with high activatorre5,re8 and
low inhibitor6 concentrations.
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3 Modeling of AQP2 trafficking in MDCK cells

At the current stage the model predicts the importance for the AQP2 translocating mechanisms, but leaves
it open how exactly they can be regulated. It is known that AQP2 is inhibited by mutations in dynamin and
internalized via the clathrin pathway [136]. Furthermore, it is known that besides PKA, also calcyclin,
myosin Va, and proteins from the Rab small GTP-binding protein family [103] are involved in AQP2 lo-
calization, although specific information about the interactions and kinetics are still lacking. Presumably,
the phosphatases and kinases affecting the different AQP2 phosphorylation sites might be excellent drug
targets, and may even be specific for this signaling pathway, therefore reducing drug side effects.
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4 Modeling of AQP2 tra�cking in rat
IMCD primary cells

Primary cultures of IMCD cells express AQP2 endogenously [81] and do not need to be transfected prior
to the measurement. Therefore, they might be a good model for systems biological studies.
In Ch. 3 a model of the AQP2 regulation in MDCK cells was generated and analyzed. By using the
MDCK cell model it had been discovered that the kinetic behavior of the system can only be preserved in
silico, if the negative feedback by phosphodiesterases or the internalization of the V2 receptor are present,
with a slight preference for the latter. Furthermore, potential drug targets for increasing AQP2membrane

can most likely be found in the proximity of AQP2 by directly regulating its exo- or endocytosis. In
the current chapter, it was analyzed whether those results also hold true for primary rat IMCD cells and
whether the model can be used to identify potential species-specific differences.

To model AQP2 trafficking in primary rat IMCD cells the model from MDCK cells was reused and
adjusted accordingly (see Sec. 1.3 and Stefan et al. [133]). As with the MDCK cell model also the
primary rat IMCD cell model was analyzed by

• generating and ranking model variants,

• sensitivity analysis,

• time dependent sensitivity analysis,

• model predictions and comparison with newly generated data.

The results for MDCK and primary rat IMCD cells will be compared in section 4.7.2.

4.1 A mathematical model of AQP2 tra�cking in IMCD cells
To model AQP2 trafficking in rat IMCD primary cells the model from MDCK cells was adjusted to data
and knowledge from Stefan et al. [133] as follows. Since they did not use indomethacin to keep the basal
cAMP concentration low, a constitutive adenylate cyclase activity was assumed. This results in a basal
PKA activity and thus in basal PKA driven AQP2 exocytosis. For the IMCD cell model it was assumed
that this is the only mechanism to achieve a basal amount of membrane-localized AQP2 and that PKA
independent AQP2 exocytosis does not occur. This resulted in modifications of the model as follows:

1. Reaction re8 was deleted from the model.

2. A new re8 was added to represent basal, vasopressin independent adenylate cyclase activity and
hence cAMP production.
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4 Modeling of AQP2 trafficking in rat IMCD primary cells

3. The model was adjusted to guarantee the steady state conditions of cAMP, PKA and AQP2. This
resulted in dependencies between parameters according to the steady state conditions and had
the benefit that not all model parameters had to be estimated. The parameters k4, k6, k8 can be
calculated from the other model parameters and the species initial conditions as shown in Tab. 4.1.

4. AVP can inhibit the endocytosis of AQP2 (re6). This was motivated by results from Knepper and
Nielsen [67], demonstrating the importance of regulated endocytosis in rat IMCD, and by analysis
results derived with the MDCK cell model in the previous chapter (see Sec. 3.4 and 3.5). Time
dependent sensitivity analysis had led to the suggestion that the regulation of AQP2 endocytosis
can have a substantial effect on the kinetic behavior of the system.

The complete model for primary rat IMCD cells is presented in Fig. 4.1, the corresponding algebraic and
differential equations are provided in Tab. 4.1.

Figure 4.1: IMCD cell model. Complete model for primary rat IMCD cells after adjustment of the MDCK cell
model to IMCD cells. Instead of a basal AQP2 endocytosis a basal cAMP generation was included (re8), thereby
securing a basal level of cAMP, PKAactive and AQP2membrane. In addition, an inhibition of the AQP2 endocytosis by
vasopressin was included.

4.2 Time course simulation and parameter estimation
The remaining model parameters were estimated using COPASI and the experimental data from Stefan
et al. [133] for intracellular cAMP concentration, PKA activity and AQP2 plasma membrane abundance.
The cAMP concentrations could be utilized directly for the parameter estimation task. For PKAactive over
time only relative changes from FRET analysis were available. In the same publication PKA activity
was measured by a commercial assay (Upstate/Biomol, Hamburg, Germany) showing that PKA activity
increases 1.76 fold after 15 min of AVP stimulation. The time resolved curve of PKAactive was scaled
to this values and an initial concentration of 250 nM was chosen (values of 10 and 100 nM had failed
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4.3 Model Variations and Ranking indicate only moderate importance of negative feedback

d[PKA]
dt = �(k3 · [PKA] · [cAMP])+(k4 · [PKAactive])

d[PKAactive]
dt = (k3 · [PKA] · [cAMP])� (k4 · [PKAactive])

d[cAMP]
dt = (k1 · [AVP])� (k2 · rolipram · [cAMP] · [PKAactive])�

�(k3 · [PKA] · [cAMP])+(k4 · [PKAactive])�
�(k7 · [cAMP])+ k8

d[AQP2]
dt = �(k5 · [AQP2] · [PKAactive])+

k6·[AQP2membrane]
1+ AVP

Ki6
d[AQP2membrane]

dt = (k5 · [AQP2] · [PKAactive])� k6·[AQP2membrane]
1+ AVP

Ki6
d[AVP]

dt = �(k9 · [AVP]2)

k4 = k3·[PKA][0]·[cAMP][0]
[PKAactive][0]

k6 = k5·[AQP2][0]·[PKAactive][0]
[AQP2membrane][0]

k8 = k2 · [PKAactive][0]+ k7 · [cAMP][0]
k1, k2, k3, k5, k7, k9, Ki6 were estimated

Table 4.1: Algebraic and differential equations describing the model for primary rat IMCD cells. The model
includes differential equations for AVP, cAMP, PKA and PKAactive as well as AQP2 and AQP2membrane. rolipram= 0
(rolipram = 1) mean rolipram was present (not present) in the experiment. The parameters k4, k6 and k8 were
calculated so that a basal amount of cAMP, PKAactive and AQP2membrane was secured and the parameters k1, k2, k3,
k5, k7, k9 and Ki6 were estimated with COPASI.

to reproduce the PKA activity data in foregoing analysis, data not shown). AQP2membrane was calculated
from the ratio of intracellular/plasma membrane located AQP2 and assuming 1000 µM AQP2total (as
calculated for the MDCK cell model based on information from Xie et al. [152]).
Parameter estimation was performed as described in Sec. 2.1. The resulting best fit for cAMP, active PKA
and AQP2membrane can be seen in Fig. 4.2. The corresponding set of parameters is presented in Tab. 4.2.

4.3 Model Variations and Ranking indicate only moderate
importance of negative feedback

Different model variants were generated by removing either the negative feedback by phosphodiesterases
(-re2), the reduction of the signal representing internalization of the receptor (-re9) or both (-re2 -re9).
Parameter estimation was performed for all model variants as described in Sec. 2.1. They were ranked
according to their objective function (Fig. 4.3(a)).
The ranking of IMCD model variants did not show a difference between the complete model and the
model with a deletion of re9, whereas deletion of re2 shows an effect. The effect of deleting either re2,
re9 or both had a minor effect in primary rat IMCD cells compared to MDCK cells. The double-deletion
resulted in a 1.4-fold increase in the objective function compared to the complete model (instead of a
48-fold increase in the MDCK cell model).
Both the single deletion -re2 and the double deletion -re2-re9 exhibited a similar increase in the objec-
tive function. The fits for the model without the negative feedback are described in Sec. 3 in the Appendix.

As a control it was tested whether a deletion of the non-competitive inhibition of re6 followed by addi-
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4 Modeling of AQP2 trafficking in rat IMCD primary cells

(a)

(b)

(c)

Figure 4.2: Parameter estimation with COPASI: primary rat IMCD cells. a) Fitting of the intracellular cAMP
time courses. The cells were treated with AVP (100 nM), rolipram, or a combination of both for the indicated
time points. b) Reproduction of the PKA activity and c) fitting of the membrane localized AQP2 after treatment
with 100 nM AVP. The experimental data were taken from Stefan et al. [133]. cAMP could be directly used for
comparison, PKAactive was assumed to have an initial value of 250 nM and AQP2membrane was calculated from the
ratio of intracellular/plasma membrane located AQP2 and assuming 1000 µM AQP2total .
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4.4 Sensitivity analysis reveals importance of both AQP2 exo- and endocytosis

Parameter name Value Units Source
k1 12.98 1/min estimation
k2 2.635e�4 l/(nmol · min) estimation
k3 2.1497e�4 l/(nmol · min) estimation
k4 0.198 1/min calculation
k5 8.421e�4 l/(nmol · min) estimation
k6 0.345 1/min calculation
k7 9.069e�2 1/min estimation
k8 144.4 nmol/(l · min) calculation
k9 1e�12 1/min estimation

Ki6 150.4 nmol/l estimation

Table 4.2: Parameters for primary rat IMCD cell model. The parameters for the model presented in Fig. 4.1 were
estimated with COPASI. k4, k6, and k8 were calculated with the equations in Tab. 4.1.

tional parameter estimation shows any difference to the original model (Fig. 4.3(b)). The model including
re6 without the inhibition by AVP was able to reproduce the biological data only 3.4% worse than the
original model.

4.4 Sensitivity analysis reveals importance of both AQP2 exo-
and endocytosis

The effect of small perturbations of the initial parameter values on the amount of cAMP and AQP2membrane

was analyzed 21 min after starting the simulation (the longest duration for which experimental data was
available). The parameters with the strongest effect on cAMP was k1 (affecting the AVP dependent
activation of cAMP), followed by k2 and k7 (affecting PKA dependent and independent degradation of
cAMP). Changes in k9 (the decrease of the stimulus representing the degradation of the vasopressin V2
receptor) showed only a minor effect.
The major parameters affecting the abundance of AQP2 at the membrane were k5 and k6 (AQP2 exo- and
endocytosis, respectively) to similar amounts. The effect of a perturbation in the inhibitory constant Ki6
was less than half as strong as a change in the kinetic constants k5 and k6.

4.5 Time-dependent sensitivity analysis
In accordance with the analysis of the MDCK cell model, time dependent sensitivity analysis was per-
formed in Mathematica®. Again, the effect of small perturbations of the model parameters on cAMP and
AQP2membrane was analyzed (see Fig. 4.5).
In consistency with the sensitivity analysis performed in COPASI for time point 21 min, cAMP was
highly depending on k1 (affecting the AVP dependent activation of cAMP), followed by k2 and k7 (af-
fecting PKA dependent and independent cAMP degradation). A change in k1 affected the time course
instantaneously whereas for the parameters k2 or k7 the effect increased over time.
The change in the amount of AQP2membrane depended highly on k5 (affecting AQP2 exocytosis) at around
4 min. On the long run this effect decreased slightly and got equal to k6 (affecting AQP2 endocytosis)
at approximately 12 min. A perturbation in the inhibition constant Ki6 (k10) showed some importance
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(a)

(b)

Figure 4.3: Ranking of model variants. Different model variants were generated. For each model variant the
parameters were estimated individually. Afterwards they were ranked according to their objective function. a)
Complete: model version as shown in Fig. 4.1; -re2: complete model reduced by reaction re2 representing negative
feedback via phosphodiesterases; -re9: complete model reduced by reaction re9, which represents the internalization
and degradation of the receptor; -re2 -re9: reduced by both reactions re2 and re9. b) Complete: model version as
shown in Fig. 4.1, reaction re6 is inhibited by AVP. re6MA: the inhibition of re6 was deleted, instead normal mass
action kinetics were used.
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4.6 Model predictions and comparison with newly generated data indicate that regulated

endocytosis might have a minor effect in primary rat IMCD cells

Figure 4.4: Sensitivity analysis of the primary rat IMCD cell model. Effect of small changes in the parameters on
the model species at time point 21 min. The normalized sensitivities were taken. The analysis was performed with
COPASI.

but much less than a change in the kinetic constant k6. During the first 10 min also changes in k1, k3, k4
(affecting cAMP generation, PKA activation and deactivation) had an effect on the amount of AQP2 at
the membrane. The long term impact of minor changes of those parameters seemed to be neglectable.

4.6 Model predictions and comparison with newly generated
data indicate that regulated endocytosis might have a
minor e�ect in primary rat IMCD cells

The model proposed in Sec. 4.1 with the best set of parameters found in Sec. 4.2 was employed to make in
silico predictions. According to the analysis of the MDCK cell model AQP2membrane was simulated over
time at different concentrations of the stimulating hormone, here AVP. AVP concentrations from 0.1 nM
to 1 mM were applied. The results are presented in Fig. 4.6. The brown line shows the concentration
to which the model was fitted (100 nM). The maximal amount of AQP2membrane was reached at an AVP
concentration of 0.01 - 0.1 mM.

The simulation results were compared with newly generated data from immunofluorescence measure-
ments performed by Klussmann et al. (see Fig. 4.7). Primary rat IMCD cells were treated with

1. different amounts of AVP for 30 min (0.1, 1, 10, 50 and 100 nM AVP),

2. 100 nM AVP over different durations (0, 2, 5, 10, 20, 30 and 90 min).

A comparison of the new dose response measurement with the model predictions is presented in Fig. 4.8.
For this purpose the initial condition of AQP2membrane was calculated from the new dose response mea-
surement.
The model could predict the dose response of the new experimental data rather well. Yet, there were
some discrepancies. In the model prediction the increase at AVP concentrations below 10 nM was less
intense than in the experimental data, being most prominent there at the step between 0 and 0.1 nM AVP.
At concentrations higher than 10 nM the AQP2membrane increased more slowly in the experiment, but
still strongly in the model. The experiment left it open whether AQP2membrane had reached a plateau at
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(a)

(b)

Figure 4.5: Time-dependent sensitivity analysis performed with IMCD cell model. Time-dependent sensitivity
analysis was performed with the complete IMCD cell model as shown in Fig. 4.1 with the optimal set of parameters
found. a) Time-dependent normalized response coefficients (RC) for all parameters in respect to cAMP, b) Time-
dependent normalized response coefficients (RC) for all parameters in respect to AQP2 in the membrane. k10 is
handled as a synonym for Ki6 in this figure.
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endocytosis might have a minor effect in primary rat IMCD cells

100 nM AVP. Although the slope of the curve was decreasing at higher AVP concentrations. Instead, the
model predicted an increase of AQP2membrane up to 100% at higher AVP concentrations.

Figure 4.6: Prediction of AQP2membrane over time at varying AVP concentrations using the IMCD cell model.
AVP was added at 0 min in log scale from 0.1 nM to 1 mM.

Fig. 4.9 shows AQP2membrane over time in the old as well as in the new data set compared with the model
prediction. Two distinct in silico simulations are presented, either starting with a value for AQP2membrane

calculated from the Stefan et al. data set or from the new data set from Klussmann et al.

The comparison of both the old and the new data set revealed that the two measurements show a slightly
different behavior. The range in which AQP2membrane varied was narrower in the new than in the Ste-
fan et al. data set. Furthermore, the kinetic behavior seemed to be slightly different. In the new data set
AQP2membrane increased rather slowly with a half-maximum value around 13 min. In the Stefan et al.
data AQP2membrane increased the most in the first 5 min. Unfortunately, data between 0 and 5 min and
longer than 15 min were missing, therefore it was not known, whether the curve increased directly after
stimulation and whether the maximal value was already reached at 15 min. The same counted for the
time between 30 and 90 min in the new data set by Klussmann et al.
Due to the fact that the model was fitted to the Stefan et al. data set, in which AQP2membrane was increasing
faster, the simulation fitted nicely to the old, but not to the new data set. If the 0 min value of the Stefan et
al. data set was used as start value for the simulation, the differences were most prominent during the
first 20 min, where the simulation first underestimated (0 min) and then overestimated the actual data.
If the 0 min value of the new data set was used as start value for the simulation, the simulation highly
overestimated AQP2membrane at all following time points.

To analyze how the model characteristics change by fitting the model to the new AQP2membrane data, an
additional parameter estimation was performed with the previously estimated parameters as start values.
The results for the dose response measurements are shown in Fig. 4.10 (a) and (c). The comparison for
the time resolved measurements are presented in Fig. 4.11(a).
Although the model was now able to reproduce the 50 and 100 nM better, there were still discrepancies
at lower concentrations. The model predicted that after 30 min stimulation with 100 µM AVP 92% of the
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(a)

(b)

Figure 4.7: Ratio of AQP2 plasma membrane/intracellular fluorescence signal intensity in primary rat
IMCD cells. a) The cells were stimulated with the indicated concentrations of AVP. The AQP2 plasma mem-
brane/intracellular fluorescence signal intensity ratio was determined 30 min after the start of the stimulation (n � 57
cells for each condition). b) The cells were stimulated with 100 nM AVP. The AQP2 plasma membrane/intracellular
fluorescence signal intensity ratio was determined at the indicated time points (n � 23 cells for each time point). The
experimental setup was as described in [133]. The measurements were performed by Klussmann, Geelhaar et al.
(Max Delbrück Center, Berlin-Buch, Germany).
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endocytosis might have a minor effect in primary rat IMCD cells

(a)

(b)

Figure 4.8: Comparison of model and experiment for AQP2 localization in IMCD cells. Blue: experimental
data, orange: model prediction. a) AVP concentrations in linear scale, b) AVP concentrations in logarithmic scale.
AQP2membrane in % was calculated from the AQP2 plasma membrane/intracellular fluorescence signal intensity ratio
as determined 30 min after the start of the stimulation. Additional model predictions for 1, 10 and 100 µM were
included.
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Figure 4.9: Simulation of AQP2membrane in primary rat IMCD cells and comparison between the Stefan et al.

and the new data set. Squared symbols represent the data by Stefan et al., diamond-shaped symbols the newly
generated data from Klussmann et al.. The solid line shows the model simulation with the value for AQP2membrane
at time point 0 min calculated from the data by Stefan et al. whereas for the dashed line the value at time point 0 min
was calculated from the new data set.

AQP2 is located at the membrane.
The model with the newly estimated parameters was able to reproduce the time course of AQP2membrane

derived from the new data set reasonably well (see Fig. 4.11(a)). Presented are also model predictions for
time resolved AQP2membrane at the concentrations 0.1 nM - 1 mM.

Motivated by the result that in the sensitivity analysis performed in the present chapter the Ki6 (inhibition
of endocytosis by AVP) did not have such a prominent effect, a model variant lacking this regulation was
tested. As with the complete model the model variant was fitted to the new data set by using the estimated
parameters from the complete model and the Stefan et al. data set as start values. Fig. 4.10 b) and d) show
the dose response relationships and Fig. 4.11(b) the simulation of AQP2membrane over time for different
AVP concentrations (0.1 nM - 1 mM). Without the inhibition of re6 by AVP, AQP2membrane reached its
maximal value already at a concentration of 1 µM.

Due to the fact that the model variants with and without the inhibition of re6 varied the most at AVP
concentrations above 1 µM, it might be useful to have additional experiments for those concentrations,
to be able to distinguish between the two model variants.

4.7 Discussion

Within this chapter a model for AQP2 trafficking in primary rat IMCD cells was proposed. The aim
was to analyze the kinetic behavior of IMCD cells after stimulation with AVP and to analyze poten-
tial species-specific differences. The parameters of the model were estimated using data from Stefan et
al. [133]. Ranking of model variants, parameter estimation, sensitivity analysis and time dependent sen-
sitivity analysis as well as model predictions and comparison with newly generated data were performed.

To conclude the results from this part of the thesis:
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Figure 4.10: Comparison of model and experiment for AQP2 localization in IMCD cells (after additional
parameter estimation by using the new data set provided by Klussmann et al.). Blue: experimental data, orange:
model prediction. a) and c) model including the inhibition of endocytosis by AVP, b) and d) model without inhibition
of endocytosis by AVP. In a) and b) the AVP concentration is scaled linearly, in c) and d) logarithmically, additional
model predictions for 1, 10 and 100 µM are shown. AQP2membrane in % was calculated from the AQP2 plasma
membrane/intracellular fluorescence signal intensity ratio as determined 30 min after the start of the stimulation.
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(a)

(b)

Figure 4.11: Simulation of AQP2membrane after estimation of the parameters with the new data set.
AQP2membrane was simulated over time at different concentrations of AVP (0.1 nM - 1 mM) as indicated. a) Model
including the inhibition of endocytosis by AVP. b) Model in which the inhibition of endocytosis by AVP was deleted.
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• The model was able to reproduce the biological data for cAMP, PKA activity and AQP2membrane.
Only cAMP after treatment with AVP and rolipram could not be captured perfectly.

• Ranking of model variants suggested that the internalization of the receptor is not important in
IMCD cells. The negative feedback via PDEs is slightly important.

• Sensitivity analysis revealed importance of both AQP2 exo- and endocytosis. cAMP was most sen-
sitive to its generation reaction and on the long run on PKA dependent and constitutive degradation
via PDEs.

• The model fitted to the Stefan et al. data set predicted that the maximal amount of AQP2membrane

would be reached at AVP concentrations between of 0.01 - 0.1 mM.

• The model could reproduce the new data from Klussmann et al. reasonably well with or without
an inhibition of AQP2 endocytosis by AVP. An experimental setup to distinguish between the two
variants was proposed.

Those results and different aspects of the model will be discussed in Sec. 4.7.1. The results from MDCK
and IMCD cells will be compared and discussed in Sec. 4.7.2.

4.7.1 Primary rat IMCD cell model

Model generation and data usage The model for MDCK cells was adapted to IMCD cells as de-
scribed in Sec. 4.1. Therefore, some assumptions and simplifications had to be made. The simplifications
concerning the model structure have already been discussed for the MDCK cell model in Sec. 3.9.
Some difficulties arose while applying the model to experimental data from IMCD cells. The intracellular
cAMP concentration by Stefan et al. [133] was in pmoles/well. To convert it into nM, 1.9 cm2 surface per
well was used according to a 24-well plate [36] and a cell height of 10 µm was assumed. According to
the measurements of apical, basal and lateral cell surface areas of IMCD cells by Flamion and Spring [26]
the assumption of 10 µm should be reasonable.
With the PKA activity data by Stefan et al. [133] it was more challenging. The time resolved data from
FRET experiments were only relative, and no absolute values or percentages were available. In the same
publication PKA activity was measured by a commercial assay showing that PKA activity increases 1.76
fold after 15 min of AVP stimulation. The time resolved curve of PKAactive was scaled to this values and
an initial concentration of 250 nM was assumed. It might be possible that this value has been overesti-
mated, although previous parameter estimations using lower concentrations (10 nM, 100 nM) were not
able to reproduce PKAactive sufficiently. This points out once more the need for quantitative measure-
ments, e.g. of absolute concentrations of free catalytic subunits. AQP2membrane was calculated from the
ratio of intracellular/plasma membrane located AQP2. The calculation of the percentage of membrane
located AQP2 was quite convenient by using simple mathematics. From the percentage the concentra-
tion could be calculated by assuming a cell size of 1000 µm3 (based on Flamion and Spring [26]) and a
concentration of 1000 µM AQP2total . This was already applied in the MDCK cell model and based on cal-
culations by Xie et al. (see supplementary material in [152]) showing that there are around 4.4�6.7 ·108

copies of AQP2 per cell. However, this cannot completely make up for measurements of absolute AQP2
concentrations in IMCD cells.
Furthermore, one more uncertainty was added by using the PKA reporter AKAR1 for the measurement.
As stated by Zhang et al. [155] one cannot detect transient behavior with this reporter system. So even
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if the PKA would peak in this cell system, one would not be able to detect it. For future experiments,
AKAR2 or its successors should be used instead.

In the IMCD cell model, one exception was that the kinetics for the rolipram and AVP treated cells could
only be fitted moderately. Once more data becomes available for this inhibitor in IMCD cells, e.g. differ-
ent concentrations of the inhibitor, it might make sense to model this inhibition in more detail.
In the complete model, which includes the vasopressin degradation reaction, the kinetic parameter for
this reaction was estimated much lower than in the MDCK cell model. One reason for this might be
that in the primary rat IMCD cell data set intracellular cAMP increases and more important decreases
only moderately. Therefore, internalization of the V2 receptor seems not to be necessary for the observed
behavior. Nevertheless, this only holds if cAMP has the shape as observed in Stefan et al. [133]. If
somehow cAMP peaks already in the first 5 min this would show a completely different behavior. In that
case the parameters might be more similar to those estimated from MDCK cell data.

Ranking of model variants Model variants were generated by removing either the negative feedback
by phosphodiesterases (-re2), the reduction of the signal representing internalization of the receptor (-re9)
or both (-re2 -re9). Deletion of the negative feedback had a stronger effect on the objective function than
deletion of the degradation of the vasopressin signal. A reason for this might be that already in the com-
plete model this reaction seemed to be of minor importance.
The effect of deleting either AVP degradation, the negative feedback or both had a minor effect in primary
rat IMCD cells compared to MDCK cells. Even the double-deletion resulted only in a 1.4-fold increase in
the objective function instead of a 48-fold increase in the MDCK cell model. The reason for this should
be again the missing sharp peak in the cAMP data, which was observed in MDCK cells, but not in IMCD
cells (compare Fig. 1.6 A and 1.7 b).
Deletion of the negative feedback shows approximately the same results as deletion of the negative feed-
back and AVP degradation, together. Both single and double deletion variants showed an increase in the
objective function. This comes due to the fact, that with deletion of re2 (the degradation of cAMP by
phosphodiesterases) in the model also the effect of rolipram will fall apart. Since rolipram was modeled
to act only on re2 and not re7 (the PKA independent cAMP degradation), no difference between the pres-
ence and absence of rolipram could be observed and the rolipram dependent time courses could not be
fitted properly.
Furthermore, the ranking of different model variants shows that a model lacking the inhibition of AQP2
endocytosis by AVP can, after parameter estimation, reproduce the data nearly as good as the complete
model. This suggests that the inhibition has only a minor effect in primary rat IMCD cells. However,
if the parameter set from the complete model was used and the inhibition was deleted, this resulted in
reduced AQP2membrane at higher AVP concentrations (data not shown). To investigate this further one
idea might be to use specific PKC inhibitors and analyze the effect on AQP2membrane.

Sensitivity analyses reveal in the long run equal importance for AQP2 endo- and exocytosis
Sensitivity and time-dependent sensitivity analysis of the IMCD cell model revealed that cAMP is most
affected if the parameters for cAMP generation as well as PKA dependent and independent cAMP degra-
dation are disturbed. A small change in the parameter for internalization of the V2 receptor had no effect.
This strengthens the hypothesis drawn from the ranking of model variants, that this reaction might be less
important for the behavior of the system in IMCD than in MDCK cell. Although, it has to be kept in mind
that this analysis holds only for minor changes in the parameters.
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The hypothesis arising from sensitivity analysis on the MDCK cell model that the endocytosis of AQP2
has a crucial effect, did not hold completely true in primary rat IMCD cells. At the beginning of the
simulation a small modification in the parameter affecting AQP2 exocytosis has a higher effect than a
change in endocytosis, with a maximum at around 4 min after AVP addition. After approximately 12 min
the changes in exo- and endocytosis have the same effect.
The effect of a tiny change in the inhibitory constant Ki6 of the endocytosis revealed a moderate effect on
AQP2 at the membrane. Ki6 was estimated with 150.4 nmol/L, so with a concentration of 100 nM AVP,
less than 50% of the AQP2 internalization was inhibited.
One can discuss here the simplicity of the model, in which the inhibition acts directly from AVP on the
AQP2 endocytosis and was modeled with simple kinetics. In reality this might be an additional pathway
via inhibition of PKC [14, 56] and other involved proteins, which might result in a rather complex kinetic
behavior. Here, additional experiments have to be performed to secure PKC as the involved kinase. To
investigate the interplay of AQP2 exo- and endocytosis in more detail, it might be useful to test different
combinations of PKA and PKC inhibitors and to analyze the kinetic behavior of the system in more detail.
A crucial time point would be the behavior of the system around 4 min as well as at least one time point
above 12 min.

AQP2 translocation after dDAVP stimulation - simulation and experiments In the IMCD cell
line, this section incorporated

1. predictions with the model fitted to the Stefan et al. data set [133],

2. comparison of the predictions with the new data set provided by Klussmann et al.,

3. refit of the model to the new data set performed with 2 different model variants (with or without
inhibition of endocytosis by vasopressin).

The model fitted to the Stefan et al. data set could predict the newly generated dose response relationship
of AQP2membrane on AVP rather well. Yet, the slope of the dose response was slightly different. The
prediction of the time resolved data was not that good, increasing too fast and, by starting with the new
0 min value, far too high. Unfortunately, that had to be expected given the fact that also the experimental
values differ slightly between the Stefan et al. data set and the newly produced data set. In both the dose
response and the time resolved measurement the ranges between the minimal and the maximal value of
AQP2membrane were different, being more narrow in the new data set. Furthermore, AQP2membrane in-
creased more slowly over time in the new data set, compared to the old one.
The Stefan et al. data left it open whether AQP2membrane has reached a plateau at 15 min or whether it
continues increasing with higher concentrations. The model fitted to the Stefan et al. data set predicted
that AQP2membrane has already reached the maximum value at 15 min. Nevertheless, in the new data set
AQP2membrane was still increasing after 15 min.
The new data set left it open whether AQP2membrane has reached its maximum at 100 nM or whether it
continues increasing with higher concentrations. Comparison between model simulations and newly gen-
erated data has underlined the importance to analyze the behavior of the system at AVP concentrations
higher than 100 nM.

Two different model variants were used for refitting the model to the new data set (with or without inhibi-
tion of endocytosis by vasopressin). Both model variants could be fitted reasonably well to the data. The
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model with the inhibition predicted much higher AQP2membrane concentrations than the model without
the inhibition. According to the simulations, a way to distinguish between the two model variants would
be to apply higher AVP concentrations (e.g. 10-100 µM) and to measure AQP2membrane around 40 min
after AVP addition. For better comparison to the data from Klussmann et al. and because the effect, ac-
cording to the simulations, shall still be high enough, a measurement at 30 min would be recommendable.

Possible alternative pathways The model focuses on the regulation of AQP2 trafficking via the
cAMP/PKA pathway. Although the regulation via this pathway is widely accepted, there is still some
open discussion about alternative or additional pathways. Some publications suggest a responsibility for
Ca2+ for the AQP2 trafficking instead of the PKA pathway. Ca2+ is increased after a stimulus by vaso-
pressin in rat IMCD [18, 132], also Ca2+ oscillations were observed [154]. Chou et al. [17] proposed that
Ca2+ might affect non-muscle myosin II via the Ca2+-calmodulin pathway, which activates the myosin
light chain kinase.
Klussmann et al. [66] showed by application of the PKA inhibitor H89, that PKA activation is necessary
for AQP2 trafficking. However, a concentration of 30 µM H89 might have been too high to be PKA spe-
cific, since at 50 µM also the increase of intracellular Ca2+ gets inhibited [154]. The results from Lorenz
et al. [79] support the results from Klussmann et al. [66] by demonstrating that cAMP is sufficient to
trigger the exocytic recruitment of AQP2 in renal primary cells. Ca2+ could be clamped at a basal level
while AQP2 trafficking was still observed.
Another pathway thought to attenuate AQP2 endocytosis acts via the protein kinase C (PKC). It is
currently not known how the attenuation takes place directly. Drugs like 12-tetradecanoylphorbol-13-
acetate (TPA) are known to activate PKC and can induce AQP2 ubiquitination, internalization and degra-
dation [56, 88].
Hormones like extracellular purines and dopamine are known to counteract the AVP induced AQP2
translocation via a dual mechanism [15]. Both can activate PKC and increase AQP2 ubiquitination, S261
phosphorylation and degradation. Furthermore, they decrease intracellular cAMP levels. JNK, p38, and
CDK5/9 are also potential kinases responsible for S261 phosphorylation [112]. As soon as more detailed
knowledge and time resolved data for primary rat IMCD cells is available, the model can be extended and
those mechanisms can be analyzed in silico.

4.7.2 Comparison between MDCK and primary rat IMCD cells

First the data as well as the experimental setup that was used to obtained them will be compared for both
biological model systems. Then a summary of the analysis performed with the models will be presented
and how they can, despite those differences, be used to learn something about the biological system.

Comparison between the MDCK and the primary rat IMCD cell data

In the following, the major differences between the MDCK and IMCD cell data and the experimental
setup will be pointed out and discussed.

Differences already visible in the data sets What could be seen already by comparing the data from
MDCK and primary rat IMCD cells is that both data sets are different when it comes to intracellular
cAMP over time. While in MDCK cells a sharp peak in cAMP at approx. 5 min after dDAVP stimulation
was observable, this was not the case if primary rat IMCD cells were stimulated with AVP. AQP2 at the
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membrane after AVP/dDAVP stimulation changes quite similar qualitatively in both biological systems,
although in IMCD cells the translocation seemed to be faster than in MDCK cells. By looking at the data
one could not draw a conclusion about the long term behavior of AQP2membrane, because data were only
available over 15 min. For PKA activity over time data were only available in IMCD cells.

Differences in experimental setup The experiments used in this thesis differ in their experimental
setup. The crucial points to discuss here are

• different cell lines,

• different stimuli,

• different pretreatment,

• different measurements.

Different cell lines In Deen et al. [20] and in Sec. 3.6 of the present thesis, MDCK cells transfected with
AQP2 were used. In Deen et al. this were MDCK-hAQP2 and in this work MDCK-hAQP2-T269S cells.
The latter were used to compare the results from the present work with results from experiments with an
antibody against the ratified, phosphorylated form of serine 269 (data not shown). It can be assumed that
both cell lines behave similar upon dDAVP stimulation (personal communication with Prof. Dr. Peter
M.T. Deen). Nevertheless it has to be mentioned that in both cases cell cultures were used, that have lost
their endogenous AQP2 [20], are transfected with AQP2, and are a slightly artificial system. Furthermore,
as with all cell lines, they adapted various mutations.
In contrast, Stefan et al. [133] and Klussmann et al. (Sec. 4.6 of this thesis) used primary rat IMCD cells
for the experiments. Although the cells were removed from the rat and prepared for the experiment, they
were freshly harvested and still had their endogenous AQP2. Therefore they might be a better model for
systems biological studies.

Different stimuli In the work on MDCK cells within the present thesis and presented by Deen et
al. [20] the vasopressin analog dDAVP was used to stimulate the cells. However, Stefan et al. [133]
and Klussmann et al. used AVP for the stimulation of the primary rat IMCD cells. This might lead to
difficulties while comparing the results from both experiments.
It is known that dDAVP has a three times larger antidiuretic activity than AVP [50]. This might be part
of the reason why higher concentrations of AVP are necessary to saturate the system in the IMCD cell
experimental setup.

Different pretreatment Furthermore, in the work on MDCK cells indomethacin was added to the cells
one day prior the experiment to reduce the level of intracellular cAMP. This was not the case for IMCD
cells. This should most presumably be the reason why in MDCK cells the level in osmotic water perme-
ability (Pf) is quite low at the start of the experiment, whereas in IMCD cells AQP2membrane is already at
a high level without any stimulus by vasopressin.
This is a quite important point to discuss, because it might also influence future experiments. Stimulating
of the cells with indomethacin prior the experiment decreases the amount of intracellular cAMP, upon
which a change after the stimulation with AVP/dDAVP is more severe. This is important to increase
the signal-to-noise ratio. Nevertheless, if one wants to investigate biological system as close to nature
as possible, it might be better to resign the indomethacin and only measure and document the desired
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modification. In this case the stimulation with AVP/dDAVP should be the method of choice.

Different measurements Deen et al. [20] measured the Pf, in the experimental part of this thesis
AQP2membrane was measured via cell surface biotinylation and Stefan et al. used immunofluorescence
measurements to investigate the plasma membrane/intracellular ratio (M/C ratio) of AQP2. Since from
the M/C ratio the percentage of AQP2membrane can be calculated, it was assumed that this is linearly re-
lated to the measurement of AQP2membrane from the present study and can be compared.
As in Knepper and Nielsen [67], it was assumed that the measured Pf is proportional to AQP2membrane.
To verify this it would be necessary to measure the exact Pf/AQP2membrane relationship in these cells.
This might lead to difficulties with the experimental setup used by Deen et al. Using their setup, it takes
some time to reach the maximal value of AQP2membrane. By this time the concentration of the solu-
tion might have already changed, which might lead to an underestimation of the Pf. In fact, this could
also have been the case during the measurement in [20] and might be a reason for the drop in Pf at 90 min.

Although there are a lot of differences in the experimental setup and the resulting data, one can still learn
from both model systems. Especially the usage of different animal models (here the comparison between
dog and rat) is useful to identify similarities as well as differences between both model systems. Because
in the end, one major goal would be to map the gained information to the human body.

Comparison between the MDCK and the primary rat IMCD cell model

By analyzing the models for MDCK and primary rat IMCD cells the following major results were found
and compared (see Table 4.3). Ranking of the model variants showed that deletion of the negative feed-
back via phosphodiesterases as well as deletion of vasopressin degradation has a higher effect in MDCK
than in primary rat IMCD cells. In MDCK cells the internalization of the receptor is slightly more impor-
tant whereas in IMCD cells it is the negative feedback.
Time dependent sensitivity analysis showed that for cAMP in MDCK cells the negative feedback is very
important for the shape of the curve whereas in IMCD cells it is dependent on different factors, which are
mainly cAMP generation as well as PKA dependent and independent cAMP degradation. AQP2membrane

depends in MDCK cells mainly on the AQP2 internalization, whereas this cannot be stated that clearly in
IMCD cells, where it is (at the long term) equally dependent on AQP2 endo- and exocytosis. Both mod-
els show clearly that the highest change in the AQP2membrane abundance is reached if reactions directly
involved in AQP2 trafficking are perturbed.
The model predictions showed that AQP2membrane in MDCK cells has reached already a maximal level at
10�9 M dDAVP. In IMCD cells, using the model fitted to data from Stefan et al., AQP2membrane reaches
the maximal mount between 10�4 M and 10�5 M AVP.
Using the new Klussmann et al. data set for model fitting, subsequent analysis revealed that the model
including an inhibition of AQP2 endocytosis by AVP would reach its maximum value between 10�3 M
and 10�4 M AVP. Instead, a model not including the inhibition would reach its maximal value already
at 10�6 M AVP and would result in lower maximal AQP2 concentrations. Future experiments should be
able to distinguish between the two regulatory mechanisms.
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Analysis MDCK IMCD

Ranking of - negative feedback or internalization - both deletions have smaller effects
model variants of V2 receptor are important in IMCD than in MDCK cells

- internalization of V2 receptor is - negative feedback is more important
slightly more important than internalization of the V2 receptor

Time dependent - shape of cAMP peak is highly - cAMP is highly dependent on cAMP
sensitivity analysis dependent on PKA dependent cAMP generation, followed by PKA dependent

degradation and independent cAMP degradation

- importance for regulation of AQP2 - importance for both AQP2 exo- and
endocytosis (potential drug target) endocytosis

Model predictions - indicates that AQP2membrane gets - indicates that AQP2membrane gets
saturated at 1 nM dDAVP saturated at �1 µM AVP

Table 4.3: Comparison between the results from the MDCK and the rat IMCD cell model.

Concluding remarks

The present study demonstrated how the models can be used to interpret the individual biological data
sets in terms of relevant reactions, sensible parameters, and potential drug targets. With the help of the
models, suggestions could be made to assist the experimentalists in future experiments. For example, the
model predictions based on the new Klussmann dataset suggested which concentrations of AVP should
be applied and which time point is suitable for the measurement to obtain the highest information content.
In all presented data sets, cAMP and AQP2 at the membrane increased after stimulation with AVP. How-
ever, the kinetics were slightly different and in turn also the conclusion that could be drawn draw from
the different analyses. A comparison of the results nicely represented similarities as well as differences
between both datasets. For example in MDCK cells it seemed to be more important to investigate lower
concentrations of the stimulus, whereas in the IMCD cells one might learn more by adding higher stim-
uli.
However, the optimal setup to clearly analyze the species-specific differences without the influence of
other factors would be to use the same setup for both species. For example this might be

• perform experiment on two different species, e.g. rat and canine,

• use primary cell cultures,

• pre-incubation with no indomethacin added,

• stimulate cells with AVP,

• analyze samples from both species with immunofluorescence.

From the present study it is already known that this setup can be applied to primary rat IMCD cells. It
has to be clarified, whether the setup would also be applicable to primary canine IMCD cells. If this is
the case, the model can be a useful tool to guide experiments in both species.
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Thermodynamic Model of the
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Abstract Part II

The second part of this thesis presents a thermodynamic model of the cation homeostasis in the yeast Sac-
charomyces cerevisiae with its main focus on plasma-membrane transporters for cations, in particular
transporters for potassium and protons.
In contrast to the first part of this thesis, with the signaling pathway that triggers the trafficking of a
channel as its major aspect, the emphasis of the following part is on transport proteins that are already
located in the plasma membrane. It was monitored, how the flux of ions through the plasma membrane,
facilitated by the membrane transport proteins, changes due to different conditions and over time.
In order to model cation homeostasis, a thermodynamic approach based on the theory of linear nonequi-
librium thermodynamics [23, 58] was used. With this approach it is possible to model passive ion
fluxes driven by the electrochemical potential differences but also primary or secondary active trans-
port processes driven by the interplay of different ions (symport, antiport) or by ATP consumption
(ATPases) [108, 146].
In contrast to the frequently used approach to model the transporters in full detail [54, 114], linear non
equilibrium thermodynamics can be applied to model net ion fluxes and, thus, is perfectly suitable for
the available biological data. These were net proton and potassium fluxes from MIFE and FLISE mea-
surements (non-invasive approaches which were used to calculate transmembrane proton and potassium
fluxes).
The parameters of the model were estimated such that the model was able to reproduce the data from
measurements with S. cerevisiae wild-type strains being stimulated with different concentrations of KCl
followed by addition of glucose.
The carefully parameterized model was used to predict additional ion fluxes, and chloride was identified
as a potential candidate. Furthermore, the model was used to analyze potential mechanisms for Trk1,2p
transport dynamics and to make predictions about Trk1,2p and Pma1p mutations. Finally, the effect of
multiple KCl stimuli was predicted showing a reduced activity for cells pretreated with higher KCl stim-
uli.
Experimental data from MIFE measurements were provided by Prof. Sergey Shabala and Dr. Svetlana
Shabala (University of Tasmania). Data from FLISE measurements were provided by Ludwig et al. (Uni-
versity of Bonn, Germany). An initial version of the model was provided by Dr. Susanne Gerber [32].
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5 Introduction

5.1 Yeast as a model organism

In this thesis part the focus is on cation homeostasis in the yeast Saccharomyces cerevisiae. S. cerevisiae,
also named "bakers yeast", "brewers yeast" or "budding yeast" is widely known for its essential role in
beer, bread and wine production.
It is one of the best characterized eukaryotic organisms [131] and its genome was the first to be completely
sequenced [34]. As a unicellular fungus it is a very simple and easy to handle model system. It grows
very quickly and is generally recognized as safe (GRAS). It is able to survive in a haploid state and is easy
to manipulate. It is widely used as a model organism to study processes such as osmostress [64, 124],
cell cycle [7, 91], or metabolism [141].
Yeast is similar to higher eukaryotes regarding cell structure and physiological processes. In fact, many
homologous proteins are highly conserved in sequence and function between yeast and higher eukary-
otes. Thus, many results obtained from experiments on yeast also lead to insights in higher eukaryotes.
This makes S. cerevisiae an ideal model organism to study complex processes such as cation homeosta-
sis [137].

5.2 Cation homeostasis in S. cerevisiae

In natural environment the amount of sodium can be very high whereas the amount of potassium is rather
sparse. However, while potassium is essential for cellular processes such as protein synthesis and enzyme
activation, sodium is rather toxic if present at high concentrations. Furthermore, the interplay between
sodium and potassium is important to maintain the membrane potential. Therefore the amount of these
cations within the cells is highly regulated.
Under optimal conditions S. cerevisiae’s cellular amount of potassium is in the range of 200 to 300 mM
whereas in many environments it lies in the micromolar range [137]. S. cerevisiae is able to survive in
a very broad range of external potassium concentration (10 µM - 2.5 M) and up to 1.5 mM of external
sodium [3]. To maintain the proper intracellular ion distribution under such varying conditions, different
mechanisms are used by the cell. Such are the higher affinity of membrane transport proteins for ben-
eficial ions like potassium, efficient efflux systems for toxic cations like sodium and the sequestration
(compartmentalization) of toxic cations in cellular organelles like the vacuole [3, 137]. Diverse ion trans-
port proteins mediate the transport of ions either actively (primary active via ATPases or secondary active
via symport or antiport) or passive via ion channels or carriers.
S. cerevisiae, such as most microorganisms and plants, uses the energy from ATP hydrolysis to pump
protons out of the cell. The resulting proton gradient can be utilized to transport toxic cations out or
beneficial cations into the cell [3].
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5.3 Aim and structure of this thesis part
In the following part of this thesis a thermodynamic model of the cation homeostasis in the yeast Sac-
charomyces cerevisiae will be proposed, which is based on an initial model version by Dr. Susanne
Gerber. With a linear non-equilibrium thermodynamics approach the ion channels of the cellular plasma
membrane are modeled implicitly. The major enhancements introduced here are:

• Decomposition of the model parameters and mapping them to individual transporter types allow
for in silico mutation and knockout experiments.

• The pump affinities depend not only on the ATP hydrolysis reaction affinity but include back
pressure effects due to the involved ions.

• The membrane potential is now calculated as a time derivative of the excess of charges on both
sides of the membrane. This can be calculated directly via the flux of ions through the membrane.

In Sec. 5.4 the major cation transporting proteins in the yeast plasma membrane will be introduced, how
they are regulated and how they contribute to cation homeostasis. A major premise for active transport
events is the availability of energy for the cell. Therefore, short-term energy storage mechanisms impor-
tant for the processes described in the following will be shortly mentioned.
In Sec. 5.5 the foundation of thermodynamics and non linear thermodynamics will be introduced. Sec. 6
lists the relevant methods applied in this thesis part.
In Sec. 7.1 the thermodynamic model will be presented. The biological data, with which the model was
confronted with, will be introduced in Sec. 7.2. This were H+ and K+ flux measurements from MIFE
as well as FLISE experiments. First, estimation of the Onsager coefficients was performed to reproduce
the data from MIFE measurements in silico (Sec. 7.3). The resulting outcome concerning the importance
of specific parameters (Sec. 7.4), in silico knockout and inhibition experiments (Sec. 7.5), the analysis of
potential Trk1,2p transport mechanisms (Sec. 7.6), and the prediction of the model’s behavior at subse-
quent KCl stimuli (Sec. 7.7) will be presented. Finally, it was investigated whether the model can also be
applied to data from FLISE experiments (Sec. 7.8). The results will be discussed in Ch. 8.

5.4 Biological background

5.4.1 Membrane proteins influencing cation homeostasis
The major cation transport proteins in the yeast plasma membrane are the potassium uptake systems
Trk1p and Trk2p, the potassium channel Tok1p, the Na+/H+ antiporter Nha1p, the Pi-Na+ symporter
Pho89p, the H+-ATPases Pma1p and the Na+-ATPase Ena1p [3]. In addition, unspecific cation channels
like Nsc1p might exist [12].
The most relevant cation transport proteins in the yeast plasma membrane are shown in Fig. 5.1. Although
the model does not include the ion channels explicitly, it is important to understand the functional details
in order to interpret the Onsager coefficients (see Sec. 5.5.6) correctly.

Proton ATPase Pma1p

The electrogenic proton ATPase Pma1p is one of the most abundant proteins in the yeast plasma mem-
brane. It uses the hydrolysis of ATP to pump H+ out of the cell. Therefore it is responsible to generate
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Figure 5.1: Schematic yeast cell including the major cation transport proteins of the cellular plasma mem-
brane.

the proton motive force that is needed to transport ions against their gradients [3, 94].
The Pma1p activity is highly regulated, e.g. positively by a decrease in intracellular pH and increased
potassium uptake [3]. Seto-Young and Perlin [129] used a proteoliposome system to analyze the voltage
dependency of Pma1p. They discovered that an increase in the membrane potential of the proteoliposome
(corresponding to a more negative membrane potential in intact yeast cells) correlates with a decrease in
ATP hydrolysis.
It is known that at least 20% of the cellular ATP gets consumed by the Pma1p [3]. The addition of extra-
cellular glucose increases the ATPase activity of purified membranes up to 10-fold [73]. Apparently this
process depends not only on the increase of intracellular ATP, but it requires glucose metabolism [128].
Furthermore, Lecchi et al. [74] could show by using mass spectrometry methods that stepwise phospho-
rylation of Ser-911 and Thr-912 is responsible for glucose dependent Pma1p activation.
Perlin et al. [99] figured out in 1986 that the stoichiometry of proton pumps in Neurospora Crassa is 1
H+/ATP. They used membrane vesicles for their measurements and their results are in agreement with
previous estimates from electrophysiological measurements on whole cells.

K+-channel Tok1p

The K+-channel Tok1p shows outward rectification [75], which means that its conductance is voltage
dependent (the channel is open at some membrane potentials and closed at others [40]) and it passes K+

more easily in the outward direction. Unlike other voltage dependent K+ outward rectifying channels
Tok1p is not only dependent on the membrane voltage (V ), but also on the K+ equilibrium potential
(V �EK), which has been described for inward rectifying K+-channels [75].
Vergani et al. [144] verified that positive membrane voltages promote the outward current through Tok1p
while external K+ has an inhibitory effect. At external K+ concentrations below 1 mM, the Tok1p con-
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ductance is insensitive to external K+ whereas at concentrations above 3 mM the current-voltage curve
shifts in parallel with the K+ equilibrium potential.
Fairman et al. [25] supported with patch-clamp analysis on TOK1-hyperexpressing cells lacking Trk1,2p
that Tok1p shows an outward current at membrane potentials above the K+ equilibrium potential. Below
the K+ equilibrium potential he observed a small inward current. This means that under certain condi-
tions, yeast can take up K+ via Tok1p.
Further characteristics of Tok1p are that it is sensitive to internal, but not external pH (internal acidic pH
decreases the Tok1p activity [75]) and that removal of external divalent cations can cause inward currents
and a more linear current-voltage relationship [61].

K+-carriers Trk1p and Trk2p

The two potassium specific transporters Trk1p and Trk2p use the plasma membrane potential to transport
K+ into the cell [94]. They are homologous proteins and therefore very similar in structure and func-
tion [69]. They are often labeled as "Trk1,2p system", although no physical interaction is known between
the two proteins [3]. There exist similarities as well as differences between the two transporters.
Trk1p and its high affinity for potassium is the major player for potassium accumulation within the
cell [137]. Trk1p can switch its affinity depending on the internal K+ content from low affinity under
K+ abundance to high affinity under K+ starvation conditions. Therefore, it enables yeast cells to grow
at micromolar concentrations of K+ [11, 31, 107]. Trk1p is dependent on the internal pH and in turn also
influences H+ homeostasis [153].
Trk2p is also able to transport potassium with high/moderate affinity under K+ starvation conditions.
However, it is very poorly expressed under standard conditions and therefore its effect is not very high [3].
It can still enable a Dtrk1 deletion mutant to grow on medium with less than 10 mM K+, which a Dtrk1,2
double mutant is not able to [11]. In contrast to Trk1p, Trk2p seems to be independent of the internal
pH [106, 137].
Cells lacking both Trk1p and Trk2p are hypersensitive to acidic pH [85]. Both, the K+ transport de-
fect and low-pH hypersensitivity of Dtrk1,2 cells, can be overcome by overexpression of either TRK1 or
TRK2 [68, 85].
More recently it has been proposed that anions can exit the cell via Trkp transporters in a pH dependent
manner [71, 113].

Na+/H+ antiporter Nha1p

The Nha1p antiporter plays an important role in sodium tolerance, potassium homeostasis and intracellu-
lar pH [6, 138]. It combines H+ import with Na+ export and can further mediate the efflux of Li+, Rb+

and K+.
NHA1 expression is constitutive and very low. It has the most influence at low extracellular pH [137],
when it can use the high H+ inward gradient to transport toxic or surplus cations out of the cell. It is
especially important when the cells are grown under salt stress conditions and low external pH. Under
these conditions toxic cations can enter the cells unspecifically via various transport systems and the H+

gradient can be used for their active extrusion. At high external pH Nha1p fails to export toxic cations
even if they accumulate in high concentrations. Under these conditions the Ena1 ATPase becomes acti-
vated and exports the cations.
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Sodium ATPase Ena1p

The P-type Na+-ATPase Ena1p acts as a cellular detoxification system. Primary active transport via ATP
hydrolysis is used to export toxic sodium ions against their gradient [137]. It has been shown that Ena1p
can, in addition to Na+, also export K+ and Li+. Of those ions it is able to transport K+ and Na+ with
the same efficiency. Therefore, it is not only able to act as a sodium detoxification system but plays also
an important role in potassium homeostasis, especially if the medium is alkaline and thus Nha1p cannot
export potassium efficiently. Which ion gets exported depends highly on the external cation concentra-
tions. In case of high external sodium it would preferably export this cation [121].

Na+/Pi cotransporter Pho89p

The Na+/Pi high-affinity cotransporter Pho89p was identified by Martinez and Persson [82]. It uses the
Na+ gradient across the plasma membrane to transport anorganic Pi into the cell. It is active at high pH
and only expressed if Pi is limiting. Pho89p by itself is unable to sense extracellular phosphate levels
and is cation-dependent [156]. It is highly specific for Na+. It transports Na+ twice as efficient as K+

or Li+ [156]. Its gene expression is upregulated under Mg2+ starvation, Ca2+ stress, and alkaliniza-
tion [147].

Non-specific cation channel Nsc1p

Although its gene could not be identified, yet, a non-specific cation channel has been proposed and named
Nsc1p. This channel is most likely being responsible for the low-affinity K+ influx that could be observed
in Dtrk1,2 mutants [137].
Experiments showing that Dtrk1,2 mutants are not able to grow at a pH of 3.1 but at 5.8 [11], lead to the
conclusion that Nsc1p might be active under the condition of higher pH. Patch-clamp experiments verified
that the inward currents can be detected at high external K+ and decrease with reduced pH [11, 13].
Furthermore, it has been shown in patch-clamp experiments that Nsc1p is blocked by normal (mM)
calcium and other divalent metal ions whereas removal of calcium activates it [12, 13].

5.4.2 Energy storage in cells

Energy can be stored in cells in various ways. Long-term energy storage takes place mainly via glycogen
and fat in animal and fungal cells or via amylum in plant cells [2, 78]. Prominent variants of short-
term energy storage mechanisms are via the phosphate carrier ATP, via the electron carriers NADH and
NADPH, and via transmembrane H+ gradients [2, 101]. ATP can be hydrolyzed into ADP and Pi. During
that process, energy of approximately 50 kJ/mol gets released. Some enzymes use GTP, UTP or CTP in-
stead of ATP, but the resulting energies are equivalent. To avoid death the cell maintains a nonequilibrium
concentration of ATP, ADP and Pi [101].
Energy stored in ATP or NADH can be used by pumps to build up H+ gradients across the membrane.
Those gradients can be used for example for secondary active transport. Nutrients or several ions can
be transported in symport or antiport with H+ through the membrane, were H+ is transported with the
electrochemical gradient and the other substance against it.
The energy storage mechanisms via ATP and transmembrane H+ gradients are integrated into the model.
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5.5 Thermodynamical background
The model proposed here applies the theory of linear non-equilibrium thermodynamics [58] to cation
homeostasis in yeast. This approach allows for modeling systems in a general way even though less data
and information are available than commonly necessary for building up kinetic or statistical models.
In the following sections, the thermodynamical background will be introduced. To get an overview, the
foundation of thermodynamics, its basic characteristics and laws as well as the major differences between
equilibrium and nonequilibrium thermodynamics will be briefly outlined. Afterwards, entropy, entropy
production and the electrochemical potential will be explained. Thereupon, the basic concepts of linear
non-equilibrium thermodynamics will be introduced, i.e. the theory of the dependency between flows
and forces as well as Onsager’s reciprocal relation. Finally, the calculation of the ATP consumption, the
membrane potential, and fluxes due to individual transporter types will be derived, as it was implemented
in the model.

5.5.1 Thermodynamic systems

If one wants to study a process thermodynamically, one first has to define the thermodynamic system and
its boundaries. Three basic types of thermodynamic systems can be distinguished [58]:

1. adiabatic systems - are enclosed by walls that prevent exchange of heat or matter with the sur-
roundings,

2. closed systems - are surrounded by diathermal walls that prevent exchange of matter but allow
exchange of heat or thermal energy with the surroundings,

3. open systems - can exchange heat and matter with their surroundings.

The adiabatic and closed systems are the primary objects of classical thermodynamics whereas biological
systems fall into the last category.

A thermodynamic system is defined by a set of parameters which can be either external or internal. Ex-
ternal parameters define the interplay between the system with its surroundings, like external pressure or
the volume of the system. Internal parameters describe the internal state of the system, like local con-
centration or pressure differences. In case of equilibrium, the system can be described by using only the
external parameters. In non-equilibrium thermodynamics, the internal parameters have to be taken into
account, which increases the complexity of the system.
It is also possible to distinguish between extensive and intensive parameters. Extensive parameters de-
pend on the size of a system as a whole, like the volume or the mass of the system. Whereas intensive
parameters have different values at each point in the system, like local concentrations or pressure.
In the model proposed here extensive parameters like the entropy S, the volume V , or the number of par-
ticles N in the system will be used as well as intensive parameters like the chemical potential µ , which is
independent of the size of the system.

5.5.2 Equilibrium versus nonequilibrium thermodynamics

There exist different branches of thermodynamics and it depends on the task at hand, which one is the
best to be applied. In the following, equilibrium and non-equilibrium thermodynamics shall be mentioned
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[65]. To understand their field of application, first some more definitions have to be made.
A thermodynamic process can be either reversible or irreversible.
A reversible process is always in a state of equilibrium and is thus able to return from every state j to its
starting state i without any change in the external environment. In a reversible process the state variables,
i.e. the measurable physical quantities by which the state of the system is uniquely defined, are time
independent.
An irreversible process, as the name suggests, cannot be reversed. This means that a system, leaving a
specific state, cannot go back to this state without any change in the external environment. Irreversible
processes are necessary if one wants to model instantaneous processes that are far from equilibrium,
which is quite often the case in biological systems.
The equilibrium state is the state every isolated systems reaches at some point and will not leave after-
wards. This state can be described by a small amount of state variables. A non-equilibrium state is a state
a spatial inhomogeneous and time-dependent system is in until it reaches its equilibrium state.

Equilibrium thermodynamics addresses, which changes are possible for a system (e.g. the difference in
entropy). It does not consider the system’s properties on its way from the start to the equilibrium state.
The process under consideration can be reversible as well as irreversible.
Non-equilibrium thermodynamics enables to monitor systems over space and over time in inhomogeneous
systems that are not at equilibrium. Therefore, it is necessary to use state variables which are space
and time dependent. Just as equilibrium thermodynamics, non-equilibrium thermodynamics can handle
reversible as well as irreversible processes. Due to the fact that it can handle systems that are not in
equilibrium, its main benefit lies in the application to irreversible processes.
Linear processes are processes which are close to equilibrium, whereas non-linear processes are far from
equilibrium. Therefore, linear non-equilibrium thermodynamics handles processes, that do not have to
be in equilibrium, but are assumed to be close to equilibrium.

5.5.3 The laws of thermodynamics

The zeroth law of thermodynamics The zeroth law of thermodynamics [23, 58, 122] states that
in a closed system existing temperature differences will cancel each other out. This can also be applied to
a system with multiple subsystems. If subsystem A is in thermal equilibrium with subsystem B, and sub-
system B in thermal equilibrium with subsystem C, this implies that also A is in thermal equilibrium with
C. The whole system can be described by a single empirical parameter, the temperature T . T is a universal
function and depends on the state parameters ai and the energy of the ith system Ui, T = f (ai,Ui). When
the energy of the whole system increases this means that also the energy of all the subsystems increases
and, as a consequence, also its temperature is increasing (dU/dT > 0).

The first law of thermodynamics The first law of thermodynamics [23, 58, 122] is the law of
the conservation of energy. Helmholtz formulated it mathematically in 1847 as

dUA = dQ�dW (5.1)

where A is a closed system that can exchange heat with a surrounding adiabatic system. The internal
energy of the system A, dUA is given by the heat provided to the system (dQ) and the work performed on
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the system (dW ). The law states that energy can be transferred from one form to another, but it cannot be
produced out of nowhere.

The second law of thermodynamics The second law of thermodynamics [22, 58, 122] is an
attempt to describe natural and irreversible processes. As stated before, in reversible processes and in
equilibrium the system can be defined completely by the external parameters. If the external parameters
are changing so slow that the internal parameters can adjust every instant to the external ones, the tem-
poral process can be divided into a sequence of equilibrium states. Therefore, it is assumed that the laws
of equilibrium thermodynamics can, at least on a local scale, also be applied in nonequilibrium systems.
This assumption is referred to as the "local thermodynamic equilibrium postulate" and handles so called
"quasi-equilibrium processes". It is expected that this postulate holds for systems that are sufficiently
close to equilibrium.
Furthermore, the second law provides information about the direction of reactions and the resulting
change in energy. It states that during a reversible, cyclic process, the change in work is zero, whereas
during natural, irreversible processes, the change in work would be lower than zero.

5.5.4 Entropy and entropy production

The second law of thermodynamics can also be written in terms of a change in the entropy S [23, 58]. For
reversible processes it holds that

dS =
dQ
T

. (5.2)

The change in the extensive factor S is equal to the change in heat dQ divided by the intensive factor T ,
the total temperature of the system. The first and the second law of thermodynamics can be summarized
by inserting Eq. 5.2 into Eq. 5.1 resulting in

dU = T dS�dW (5.3)

where T dS is the heat added to the system and dW the work done on the system.

The change in entropy dS is the sum of the entropy produced internally diS and the entropy exchanged
with the surroundings deS

dS = diS+deS. (5.4)

If only reversible processes are involved, it holds that diS = 0 and deS = 0. If irreversible processes are
involved, the change of internal entropy cannot only be explained by the exchange with the surroundings,
additional entropy is produced internally and Eq. 5.2 will include the inequality

diS � dQ
T

(5.5)

This also means, that the entropy is no conserved quantity.
At the macroscopic equilibrium state the entropy reaches its maximum, no internal entropy is produced
and therefore diS = 0.
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The internal entropy production is the fundamental property of all irreversible processes. In the following
sections some important characteristics of the parameters used in the model will be derived from this
property.

Entropy and chemical reactions

In an isothermic and isobaric system the chemical affinity is the driving force for a reaction [58]. The
chemical affinity A of a reaction is

A =�
k

Â
i=1

viµi � 0, (5.6)

in which µi is the chemical potential and vi the stoichiometric coefficient of substance i in the reaction.
Integrated into the Gibbs equation and written in terms of entropy this leads to

dS =
dQ
T

+
A
T

dx , (5.7)

with dx the advancement of the reaction. In agreement with Eq. 5.4 this term can be divided into an
external and an internal entropy part. The first part deS = dQ

T represents the entropy exchanged with the
surroundings, whereas the second part diS = A

T dx > 0 stands for the entropy produced internally. As a
time differential this yields

diS
dt

=
A
T

dx

dt
=

A
T

Jch, (5.8)

with Jch =
dx

dt the velocity (also termed rate or flow) of the reaction [23, 33, 58, 101]. This means that for a
chemical reaction the change in entropy is given by the flow of the system multiplied by its corresponding
force, the affinity, divided by the temperature.
This formula will be used later for the description of the ATP dependent term of the flux equations.
In multiple reactions Eq. 5.8 can be written as

diS
dt

=
1
T

nr

Â
j=1

A jJch j � 0, (5.9)

with the sum over the nr different reactions. The sum of the products and not each product by itself has
to be greater than 0. By coupling different reactions, a reaction can also progress, even if its entropy is
decreasing.

Entropy production in irreversible regimes

By assuming local volume quantities, in which temperature T , pressure P and electrochemical potentials
µ̃i can assumed to be equal at all points and which are still large enough so that stochastic fluctuations
can be neglected, the local entropy production s can be written as

s = JJJq ·grad
1
T
+

n

Â
i=1

JJJi ·grad(� µ̃i

T
)+

nr

Â
j=1

Jch j

Ã j

T
(5.10)

which is a sum of products of flows with their conjugated forces [23, 58]. The first term relates to the
flow of heat JJJq driven by the gradient in temperature. The second term is the sum over all ion flows JJJi for
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each ion i driven by its electrochemical gradient. The last term is, in accordance with Eq. 5.9, the sum of
the change in matter Jch j due to the nr chemical reactions within the system. Each Jch j is driven by the
electrochemical affinity Ã j of the corresponding reaction j.

From the rules of differentiation it is known that

grad 1
T =� 1

T 2 ·gradT and grad(� µ̃i
T ) =� 1

T ·grad µ̃i +
µ̃i
T 2 ·gradT .

Applying this to the first and second term of Eq. 5.10 results in

s =

 
JJJq �Ân

i=1 µ̃iJJJi

T 2 ·grad(�T )+
n

Â
i=1

JJJi

T
·grad(�µ̃i)+

nr

Â
j=1

Jch j

Ã j

T

!
� 0. (5.11)

Substitution of JJJq�Ân
i=1 µ̃iJJJi
T with the flow of entropy JJJS and subsequent multiplication by T results in the

dissipation function

Y = T s =

 
JJJS ·grad(�T )+

n

Â
i=1

JJJi ·grad(�µ̃i)+
nr

Â
j=1

Jch j Ã j

!
� 0. (5.12)

For the proposed model, some simplifications could be made. During the experiment, the temperature is
assumed to be identical inside and outside the membrane and constant over time. Therefore grad (�T )
is zero and the first term disappears. Furthermore, only one chemical reaction is included, which is
the hydrolysis of ATP. For this reaction the electrochemical affinity Ã can be simplified to the chemical
affinity A. One more simplification that can be made while looking at transmembrane transport, is to
model it as a discontinuous system. Assuming a membrane with thickness x, instead of calculating Y for
every point in the membrane, one can integrate Y across the membrane [58]. This leads to YYY =

R Dx
0 Y,

with YYY the dissipation function for the membrane. Therefore, Eq. 5.12 can be reduced to

YYY =

 
�

n

Â
i=1

JJJi ·Dµ̃i + Jch A

!
� 0 (5.13)

with Dµ̃i the difference in the electrochemical potential of ion i on both sides of the membrane.

5.5.5 The electrochemical potential

Diffusion of particles is caused by concentration differences, whereas drift of ions is caused by potential
differences [51]. Fick’s law of diffusion states that

J =�D
∂ [C]

∂x
(5.14)

where J is the diffusion flux, D the diffusion coefficient, and [C] the concentration of an ion. The negative
sign indicates that the ions flow from high to low concentration. Diffusion is directly proportional to the
magnitude of the gradient.
Charged particles experience an additional force according to

Jdri f t = ∂elE =�µqz[C]
∂j

∂x
(5.15)
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which is the drift flux [51]. ∂el is the electrical conductivity and a measure of the materials ability to
accommodate the movement of an electric charge. E is the electric field with E = � ∂j

∂x , j the electric
potential, µq the electrical mobility, z the valence, and [C] the concentration of the ion. If positively
charged ions are within an electrical field, they will flow down the electrical potential gradient.
As shown by Einstein in 1905 the frictional resistance by the fluid medium is the same for diffusion and
for drift. D and µq can be related by the equation

D =
kT
q

µq (5.16)

were k is the Boltzmann constant ( 1.38·10�23 joule
K ), T the absolute temperature and q the charge of the ion

in Coulomb. This relation shows that diffusional and drift processes are additive.

The additivity of the diffusional and the drift processes leads to the combined ion flux

Jion = Jdi f f + Jdri f t =�D
∂ [C]

∂x
�µqz[C]

∂j

∂x
. (5.17)

Einstein’s relation can be used to simplify the equation by substitution of the diffusion coefficient. This
leads to the Nernst-Planck equation, which is

Jion =�(
µqkT

q
∂ [C]

∂x
+µqz[C]

∂j

∂x
). (5.18)

Substitution of the electrical mobility µq with the generalized mobility µgen via µgen = µq/q leads to

Jion =�(µgenkT
∂ [C]

∂x
+µgen ·qz[C]

∂j

∂x
). (5.19)

Division of µgen by Avogadro’s number leads to the Nernst-Planck equation in molar form

J =�(uRT
∂ [C]

∂x
+uzF [C]

∂j

∂x
) (5.20)

where u is the molar mobility, R the universal gas constant and F Faraday’s constant.

Applying L = [C]u and the derivation rule (ln f )0= f 0/ f results in

J =�(LRT
∂ ln[C]

∂x
+LzF

∂j

∂x
). (5.21)

For the application to membrane transport and in accordance with Eq. 5.13, Eq. 5.21 can be integrated
over the membrane leading to

J =�(LRT Dln[C]+LzFDj) (5.22)

with Dln[C] the difference in ln[C] across the membrane and Dj the membrane potential (see also
Sec. 5.5.7). Eq. 5.22 will be used in the following to model the fluxes due to electrochemical poten-
tial differences.

There exist different kinds of biological ion channels and it has to be mentioned that the Nernst-Planck
equation holds only for those who allow for ion movement that is proportional to the ion’s concentration
gradient. If there exist energy barriers or blocking sites within the channel, the use of the Nernst-Planck
equation might be incorrect [51].
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5.5.6 Linear non-equilibrium thermodynamics

Flows and forces

Linear non-equilibrium thermodynamics is based on the fact that in all diffusion processes a linear rela-
tionship exists between flows and their conjugated forces. The first relation between flows and forces was
obtained by Fourier in 1811. He showed that the flow of heat is linearly related to the gradient of tem-
perature. In the 19th century, Ohm showed that the electric current is proportional to the electromotive
force and Fick showed that the rate of diffusion of matter depends on the negative gradient of concentra-
tion [101].

The dissipation function given in Eq. 5.13 characterizes the fluxes and forces which are important for the
system considered here. In a more general way the linear relationship between a flow and its correspond-
ing force can be written as

Ji = Li,iXi, (5.23)

with the flux Ji, the corresponding force Xi and the phenomenological or so called Onsager coefficient Li,i

If a system consists of several flows and forces coupling of forces is possible, which was first studied
by Kelvin in 1854. In such a system, every flow can depend on every force in a complicated non-linear
manner. Close to equilibrium one can simplify this system of non-linear flow-force relationships by
expanding it in a Taylor series

Ji = Ji,eq (Xi = 0)+
n

Â
j=1

✓
∂Ji

∂Xj

◆

eq
Xj +

1
2!

n

Â
j=1

 
∂

2Ji

∂ X2
j

!

eq

X2
j + .... (5.24)

with the n standing for the amount of different species in the system.
The first term Ji,eq (Xi = 0) disappears, since the flux Ji,eq becomes 0 as soon as its corresponding force
disappears. One can now neglect the higher order non-linear terms and substitute the partial of the flux
Ji and force Xj at equilibrium ( ∂Ji

∂Xj
)eq with Li, j. This results in the phenomenological equations proposed

by Onsager which show the linear relationship between multiple thermodynamical flows and forces

J1 = L1,1 X1 +L1,2 X2 + · · ·+L1,n Xn

J2 = L2,1 X1 +L2,2 X2 + · · ·+L2,n Xn

...

Jn = Ln,1 X1 +Ln,2 X2 + · · ·+Ln,n Xn

(5.25)

or

Ji =
n

Â
j=1

Li, jXj. (5.26)

The physical meaning of this equation system is, that each flux Ji of an ion i depends in a linear rela-
tionship on its conjugated force Xi via the "straight coefficient" Li,i. Whether or not a force is conjugated
to a flux presupposes that the product JiXi has the dimensions of entropy production or decrease in free
energy with time [58].
Furthermore, a coupling is given with the other species of the system and their forces also in a linear
relation via the "coupling coefficients" Li, j. A flow Ji depends on a force Xj as soon as the coupling
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coefficients Li, j 6= 0.

Onsager’s law

One of the cornerstones of non-equilibrium thermodynamics was laid by Lars Onsager in 1931 [93]. He
showed that the matrix of phenomenological coefficients is symmetric so that

Li, j = L j,i. (5.27)

He derived from statistical considerations that Eq. 5.27 holds as long as the flows and forces of the
phenomenological equations have the form

s =
n

Â
i=1

JiXi. (5.28)

This reduces the amount of coefficients to be estimated from n2 to n·(n+1)
2

From the fact that the entropy production density has to be positive-semidefinite, one can deduce impor-
tant requirements for the Ls. Insertion of the flux equations from 5.26 into Eq. 5.28 results in

s =
n

Â
i=1

Li,iX2
i +

n�1

Â
i=1

n

Â
j=i+1

(Li, j +L j,i)XiXj � 0. (5.29)

In case of all except of one Xi vanish (which is theoretically possible) a resulting negative Li,i would
violate the positive semidefiniteness of s . Herefrom, one may deduce that the straight coefficients have
to be non-negative [65]:

Li,i � 0(i = 1, ..,n). (5.30)

In addition Eq. 5.29 will be positive-semidefinite only if the determinant of the matrix of phenomenolog-
ical coefficients is non-negative [58]. In general this means

����������

L1,1 L1,2 . . . L1,n

L2,1 L2,2 . . . L2,n
...

...
Ln,1 Ln,2 . . . Ln,n

����������

� 0 (5.31)

and it has to hold that
Li,iL j, j � L2

i, j. (5.32)

Thermodynamical description of the ATP consumption

Transmembrane ATPases like Pma1p or Ena1p (see Sec. 5.4.1) use the consumption of ATP to pump ions
through the membrane. The thermodynamic flux of ions defines also the spatial direction of the ion fluxes
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over the cell membrane, whereas in case of ATP only the intracellular concentration will be considered
in the following modeling approach.
The overall reaction of the ATP consumption is

ATP+H2O �*)� ADP+Pi. (5.33)

By assuming that H2O and Pi are in excess and do not influence the kinetics of the reaction, the consump-
tion of ATP was modeled as a chemical reaction system of only the two substances ATP and ADP [32] 1,

ATP �*)� ADP. (5.34)

The flux of JAT P represents the change of the internal ATP concentration as

JAT P =
d
dt

[AT P]i . (5.35)

As it is usual for thermodynamic fluxes of chemical reactions and already mentioned in paragraph 5.5.4,
the consumption of ATP is driven by the affinity A of their reaction

A =�Â
i

viµi = µAT P �µADP (5.36)

where the vi are the stoichiometric coefficients and µi the chemical potentials of the substances of interest.
Let µ̄i denote the chemical potential of substance i at equilibrium. It holds that for a system of two
substances at equilibrium µ̄1 = µ̄2 which can be applied to ATP consumption leading to

µ̄AT P = µ̄ADP. (5.37)

The flux of ATP should be proportional to the force, here the affinity, so that

JAT P = LA = L(µAT P �µADP). (5.38)

If c̄AT P and c̄ADP are the equilibrium concentrations of ATP and ADP, then one can define aAT P and aADP

as the deviations of the current concentrations from their equilibrium such as

aAT P = cAT P � c̄AT P

aADP = cADP � c̄ADP.
(5.39)

By assuming the conditions of constant temperature and pressure, the equation for the chemical potential
is

µi = µ

0
i +RT lnci. (5.40)

1This on Katchalsky and Curran [58] based derivation was in similar form already presented by Gerber [32]. For
the present study it was adjusted and is included here for completeness.
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Using this together with Eq. 5.38 and 5.39 the equation for the affinity is

A = µ

0
AT P +RT ln c̄AT P +RT ln

✓
1+

aAT P

c̄AT P

◆
�

�µ

0
ADP �RT ln c̄ADP �RT ln

✓
1+

aADP

c̄ADP

◆
.

(5.41)

By applying the equality 5.37 for chemical equilibrium this can be transferred into

A = RT


ln
✓

1+
aAT P

c̄AT P

◆
� ln

✓
1+

aADP

c̄ADP

◆�
. (5.42)

By assuming that aAT P/c̄AT P and aADP/c̄ADP are much smaller than 1, the logarithms can be expanded
in series and the term can be simplified to

A = RT
✓

aAT P

c̄AT P
� aADP

c̄ADP

◆

= RT
aAT P

c̄AT P
(1+K) , with K =

c̄AT P

c̄ADP

(5.43)

Together with equation 5.38 one ends up with

JAT P = L ·
✓

RT
c̄AT P

aAT P (1+K)

◆
. (5.44)

In the here presented model of cation homeostasis the L will be substituted by L1,4 and L2,4 in the equa-
tions for the ion fluxes and by L4,4 in the equation for the flux of ATP.
If ATP gets consumed within the cell, the flux of the reaction is defined here as positive. However, if ions
leave the cell their flux is defined to be negative in order to be in agreement with the biological data.

5.5.7 The membrane potential

In most parts of the living body, the total charges of anions are approximately equal to the total charges of
cations, which is called space-charge neutrality. The only exception is the separation of charges through
biological membranes (e.g. cell membrane or mitochondrial inner membrane). The amount of uncom-
pensated ions required to charge the membrane is very small and even in very small cells, more that
99.9% of the ions are compensated by ions of the opposite charge [51].
Due to the selectively permeable cell membrane different ion concentrations can accumulate inside and
outside of the cell. The flow of the ions through the membrane is driven by their electrochemical potential
gradients on both sides of the membrane. In the following, two different methods to calculate the poten-
tial difference over the membrane will be described and discussed, which are the Goldman-Hodgkin-Katz
equation [35] and the calculation via the excess of charge [59].
With the Goldman-Hodgkin-Katz equation the reversal potential Djrev is calculated. The reversal poten-
tial is the membrane potential which equilibrates when the membrane is at rest and no net ion fluxes exist.
It builds up when starting with given inside and outside concentrations for each ion and assuming that at
the beginning of the simulation, no membrane potential exists. The reversal potential is calculated by

Djrev =
RT
F

ln
ÂAnions Picin

i +ÂCations Pjcout
j

ÂAnions Picout
i +ÂCations Pjcin

j
(5.45)
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with the inside and outside concentrations of the anions (cin
i and cout

i ), the cations (cin
j and cout

j ), their
specific membrane permeability (Pi and Pj), and R, T , F having their usual meaning. The ion with the
highest permeability Pi will have the highest influence on the membrane potential. It will diffuse through
the membrane and thereby build up the membrane potential. The process will reach a steady state, if the
force due to the electrical potential will reach the same level as the force due to the chemical potential.
The voltage measured then is called the reversal or resting potential.
In the model of cation homeostasis by Gerber [32] the Goldman-Hodgkin-Katz equation was used to
calculate the membrane potential and it was assumed that the membrane potential adapts so fast, that it is
always in a state of quasi equilibrium in comparison to the slower ion transport processes. There, the ions
K+ and Cl� were used for the calculation. Due to the experimental setup, in which the cells were starved
in Milli-Q water prior to the experiment, it was assumed that the internal Na+ could be neglected during
the simulation. Given that also the measurement buffer was lacking Na+, it was completely excluded
from the calculation.
One general hypothesis is, that the active pumping of protons by the Pma1p plays a major role in the
generation of a membrane potential and that this potential drives than potassium ions into the cell [3].
Therefore, H+ ions were integrated into the Goldman-Hodgkin-Katz equation. This led to the final equa-
tion for the reversal potential

Djrev =
RT
F

ln
PK+ · [K+

out ]+PCl� · [Cl�in ]+PH+ · [H+
out ]

PK+ · [K+
in ]+P�

Cl · [Cl�out ]+PH+ · [H+
in ]

(5.46)

which was used in the model of Gerber.

Due to the fact that the Goldman-Hodgkin-Katz equation is only valid at thermodynamic equilibrium, its
applicability to living cells is limited. The membrane potential of a living cell is either a diffusion potential
or it is generated by electrogenic pumps. Only those ions that are transported solely by passive diffusion
are actually in equilibrium [33]. Another drawback is, that with the Goldman-Hodgkin-Katz equation it
is assumed that the ions are independent from each other. This is a contradiction if coupling between
ions exists, for example via symport or antiport mechanisms. Furthermore, the Goldman-Hodgkin-Katz
equation is based on the assumption of a constant electric field through the membrane, which might also
not be conformable with the existence of more structurally complicated membrane transport proteins.
Therefore, a second approach was tested, which is the calculation of the membrane potential Dj via the
excess of positive and negative charges across the membrane [59]

Dj =
F

Cm ·S · (Vin · ([H+
in ]ub +[K+

in ]+ [Na+in]� [Cl�in ])�

�Vout · ([H+
out ]+ [K+

out ]+ [Na+out ]� [Cl�out ])�X). (5.47)

With this approach the membrane voltage is calculated by the molar amounts of species at each side of the
membrane (for this purpose the volumes of the internal (Vin) and external (Vout ) compartment as well as
the molar concentrations of the involved species are taken into account). [H+

in ]ub stands for the unbuffered
H+

in concentration. This is the H+ concentration which would accumulate in case no intracellular buffering
of H+ ions exists (details of H+ buffering are presented in Sec. 7.1). X is the amount of large, intracellular
molecules that are unable to cross the cell membrane, e.g. negatively charged proteins. The charge on
each side of the membrane is integrated by multiplication of the right side of the equation with Faraday’s
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5.5 Thermodynamical background

constant F . By using the membrane capacitance Cm and the surface area of the cells S the voltage build
up by the access of ions on either side of the membrane is calculated.
In the model proposed here, instead of calculating dDj directly (which would lead to difficulties due to
the buffering of internal H+), the derivative of dDj over time was used

dDj

dt
=

d
dt

F
Cm ·S · (Vin · ([H+

in ]ub +[K+
in ]+ [Na+in]� [Cl�in ])�

�Vout · ([H+
out ]+ [K+

out ]+ [Na+out ]� [Cl�out ])�X). (5.48)

Rearranging the equation and assuming that Vin and Vout and X are constant during the simulation leads
to

dDj

dt
=

F
Cm ·S · (Vin ·

d
dt
[H+

in ]ub �Vout ·
d
dt
[H+

out ]+Vin ·
d
dt
[K+

in ]�Vout ·
d
dt
[K+

out ]+

+Vin ·
d
dt
[Na+in]�Vout ·

d
dt
[Na+out ]�Vin ·

d
dt
[Cl�in ]+Vout ·

d
dt
[Cl�out ]). (5.49)

Representing the time derivatives of the ions with their flux expressions results in

dDj

dt
=

F
Cm ·S · (Vin ·

JH ·S
Vin

�Vout ·
�JH ·S

Vout
+Vin ·

JK ·S
Vin

�Vout ·
�JK ·S

Vout
+

+Vin ·
JNa ·S

Vin
�Vout ·

�JNa ·S
Vout

�Vin ·
JCl ·S

Vin
+Vout ·

�JCl ·S
Vout

) (5.50)

where dDj

dt depends only on fluxes and not on concentrations. Rearranging and reducing the equation
leads to

dDj

dt
=

F
Cm

· (JH � (�JH)+ JK � (�JK)+ JNa � (�JNa)� JCl +(�JCl)). (5.51)

Reducing further results in

dDj

dt
=

F
Cm

· (2 · JH +2 · JK +2 · JNa �2 · JCl) (5.52)

which was implemented in the model proposed in this thesis.

It has to be noted, that all of the before mentioned attempts to model the membrane potential are ap-
proximations. In reality, the membrane potential depends highly on those membrane transport proteins
which are membrane localized and open at that particular moment. The membrane potential is mostly
influenced by the ion for which the membrane is most permeable. Due to the fact that some ion channels
are voltage dependent or dependent on the internal or external ion concentrations, these conditions can
change over time. This is neither integrated in the Goldman-Hodgkin-Katz equation, if the permeabilities
or the conductivity are kept constant over time, nor in the calculation via the excess of charges.

5.5.8 Representation of the di�erent transporter types

The approach applied here aims to build a representable model without modeling each transporter in full
detail. Nevertheless, the phenomenological coefficients cannot be chosen completely independently. As
was shown in Eq. 5.27, 5.30, and 5.32, there exist restrictions on the coefficients. Furthermore, if knock-
out experiments are performed in silico it is necessary to know the influence on a specific transporter or
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type of transporter on the coefficient. Hence, a level of intermediate complexity was chosen.
The transporters were separated into different groups: ion pumps, symporters or antiporters, and uni-
porters or fluxes due to leakage. Additionally, the stoichiometry of the transporters needs to be included.
In the following, this will be described for the different transporter types. The superscript S will be used
for ion importing pumps and symporters, A for ion exporting pumps and antiporters, and L for uniporters,
channels and leakage.
At the end of this chapter a small example for a system composed of multiple transporter types will be
given.

ATPases The overall reaction for a H+-ATPase is

nA
PH ·ATP+nA

PH ·H2O+nA
HP ·H+

in
�*)� nA

PH ·ADP+nA
PH ·Pi +nA

HP ·H+
out (5.53)

with nA
HP the amount of H+ ions pumped per nA

PH molecules of ATP.
The affinity AP or �DGP of the H+-ATPase is

AP =�DGP =�nA
HP ·Dµ̃H +nA

PH · (µAT P +µH2O �µADP �µPi) (5.54)

with Dµ̃H = µ̃Hout � µ̃Hin acting as a back pressure effect on the pump, making it slower at increasing
external H+ (negative pH) or at decreasing membrane potential [108]. It was assumed that DµP = µAT P+

µH2O �µADP �µPi can be approximated as Eq. 5.43.
Assuming that nA

HP H+ ions are pumped per nA
PH molecules of ATP, the equation system for the pump can

be written as

JA
H,AT P =�nA

HP
nA

PH
· JA

AT P,H (5.55)

JA
AT P,H =�nA

PH ·LA
HP · (nA

HP ·Dµ̃H +nA
PH ·DµP). (5.56)

Inserting Eq. 5.56 into Eq. 5.55 and separation into individual forces leads to

JA
H,AT P = nA

HP
2 ·LA

HP ·Dµ̃H �nA
HP ·nA

PH ·LA
HP ·DµP (5.57)

JA
AT P,H =�nA

HP ·nA
PH ·LA

HP ·Dµ̃H +nA
PH

2 ·LA
HP ·DµP. (5.58)

substitution of Dµ̃H and DµP according to Eq. 5.22 and Eq. 5.44 leads to

JA
H,AT P = nA

HP
2 ·LA

HP ·


RT ln
cout

H
cin

H
� zFDj

�
�nA

HP ·nA
PH ·LA

HP

✓
RT

c̄AT P
aAT P (1+K)

◆
(5.59)

JA
AT P,H =�nA

HP ·nA
PH ·LA

HP ·


RT ln
cout

H
cin

H
� zFDj

�
+nA

PH
2 ·LA

HP

✓
RT

c̄AT P
aAT P (1+K)

◆
. (5.60)

Symporters and Antiporters In the case of symporters and antiporters secondary active transport
is considered, which means that the ATP dependent term can be left out of the calculation. As an example
the ions H+ and K+ shall be considered. Application of the approach used for the ATPase to symport and
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antiport leads to

JS
H,K = nS

HK ·LS
HK · (nS

HK ·Dµ̃H +nS
KH ·Dµ̃K) (5.61)

JS
K,H =

nS
KH

nS
HK

· JS
H,K (5.62)

for symport and

JA
H,K = nA

HK ·LA
HK · (nA

HK ·Dµ̃H +nA
KH ·Dµ̃K) (5.63)

JA
K,H =�nA

KH
nA

HK
· JA

H,K (5.64)

for antiport. Substitution of JH in the equations for JK and of Dµ̃H and Dµ̃K according to Eq. 5.22 results
in

JS
H,K = nS

HK
2 ·LS

HK ·


RT ln
cout

H
cin

H
� zFDj

�
+nS

HK ·nS
KH ·LS

HK ·


RT ln
cout

K
cin

K
� zFDj

�
(5.65)

JS
K,H = nS

HK ·nS
KH ·LS

HK ·


RT ln
cout

H
cin

H
� zFDj

�
+nS

KH
2 ·LS

HK ·


RT ln
cout

K
cin

K
� zFDj

�

for symport and

JA
H,K = nA

HK
2 ·LA

HK ·


RT ln
cout

H
cin

H
� zFDj

�
�nA

HK ·nA
KH ·LA

HK ·


RT ln
cout

K
cin

K
� zFDj

�
(5.66)

JA
KH =�nA

HK ·nA
KH ·LA

HK ·


RT ln
cout

H
cin

H
� zFDj

�
+nA

KH
2 ·LA

HK ·


RT ln
cout

K
cin

K
� zFDj

�

for antiport.
Note here the sign preceding the phenomenological coefficient LS/A

HK , which is always positive for symport
and at the terms involved in coupling negative for antiport.

Passive transport and leakage of ions This includes passive transport due to uniporters, chan-
nels or leakage, where the transport of ions is assumed to be only dependent on their own electrochemical
potential differences. For H+ as an example this leads to

JL
H = LL

HH ·


RT ln
cout

H
cin

H
� zFDj

�
. (5.67)

Remember that, according to Eq. 5.30, the straight coefficients are always positive. Here, this means that
the sign preceding the straight coefficients is always positive.

System composed of multiple transporter types If a system is composed of multiple trans-
porters, the fluxes of the individual transporters add up to the net flux JH+ .
To illustrate how a system composed of multiple transporters would look like, JH+ for a cell including a
H+-ATPase, a H+/K+ symporter and H+ uniport/leakage would be calculated like this

JH+ = JL
H + JS

H,K + JA
H,AT P. (5.68)
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Inserting Eq. 5.59, 5.65 and 5.67 in Eq. 5.68 and reorganization leads to

JH+ =(LL
HH +nS

HK
2 ·LS

HK +nA
HP

2 ·LA
HP) ·


RT ln

cout
H
cin

H
� zFDj

�
+ (5.69)

+nS
HK ·nS

KH ·LS
HK ·


RT ln

cout
K
cin

K
� zFDj

�
�nA

HP ·nA
PH ·LA

HP

✓
RT

c̄AT P
aAT P (1+K)

◆

with

LH,H = LL
HH + nS

HK
2 ·LS

HK+ nA
HP

2 ·LA
HP

LH,K = nS
HK ·nS

KH ·LS
HK (5.70)

LH,AT P =�nA
HP ·nA

PH ·LA
HP

The complete equation system for the Ls used in the model will be presented in Sec. 7.1.
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In this part of the thesis, a thermodynamic model of cation homeostasis will be proposed (see Sec. 7). The
model’s parameters were estimated based on biological data from MIFE and FLISE experiments (non-
invasive techniques to measure transmembrane ion fluxes). 1000 replications of the parameter estimation
task were performed, the 50 best parameter sets were stored. Those top 50 parameter sets resulted still in a
variety of different simulation results. To get a better overview about the generated parameter sets, it was
chosen to not evaluate them solely via the best objective functions, but group the resulting simulations
first. Therefore, k-means clustering was applied to group the parameter sets according to their simulation
results. The cluster with the best objective function was further analyzed regarding simulation output and
parameter distribution.
In Sec. 6.1.1 the theory behind k-means clustering is described. In Sec. 6.1.2 the details of the com-
putational methods as applied for this thesis part are provided. A general introduction into differential
equations can be found in Sec. 2 in Part I of this thesis.

6.1 Computational techniques

6.1.1 k-means clustering

The term k-means was introduced by MacQueen in 1967 [80]. The k-means clustering is a method to
sort multidimensional items into specific groups. Different variants, modifications and similar algorithms
with slightly different implementation and purpose exist, e.g. the design of vector quantizers [77] or the
method from Forgy [28] and Jennrich for obtaining partitions.
Due to the fact that all those algorithms are slightly different, the focus shall be here on the algorithm
that is actually implemented in MATLAB. The algorithm is divided into two phases. In phase 1 the user
defines the amount of groups k as wells as how to choose the initial k centroids (e.g. select k samples
from the set of items randomly). Then the following two phases are performed iteratively:
In phase 1, each step is performed on all items of the set at once:

• assign each item to its closest centroid,

• recalculate the cluster centroids.

In phase 2 the algorithms starts with the centroids calculated in phase 1. For each item individually do

• assign the item to the centroid which is closest to it,

• recalculate the coordinates of the centroid.

Phase 2 guarantees that when the algorithm terminates, each change of an item to another cluster would
increase the total sum of all item to centroid distances.
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If squared Euclidean distance is chosen as a distance measure, the distance d is calculated as

d =
k

Â
i=1

Â
n2Si

(xn �µi)
2 (6.1)

In the current application the different model simulations are the different items and each time point rep-
resents a new dimension. A graphical example for classical k-means clustering is given in Fig. 6.1(a) and
an example for clustering of time courses in Fig. 6.1(b).

It has to be mentioned here, that the algorithm originally named k-means by MacQueen [80] does only
consider the addition of new items individually to clusters and subsequently recalculation of the centroids
afterwards. It does not consist of additional iteration steps.

(a) (b)

Figure 6.1: k-means clustering. Examples of clustering of data with the k-means algorithm: a) data with
2 dimensions (age and income). Image reproduced with permission from http://chem-eng.utoronto.ca/

~datamining/dmc/clustering_kmeans.htm, b) time course data, each time point in the data set represents one
dimension.

6.1.2 Parameter estimation and k-means clustering - details
Parameter estimation was performed in COPASI. As algorithm particle swarm [60] was used with itera-
tion limit 400, swarm size 40, standard deviation 1e�6, random number generator Mersenne Twister and
random seed. A Python script was used to run the algorithm 1000 times with random initial parameter
values as well as random upper and lower parameter bounds.
The simulation results of the model using the top 50 parameter sets were clustered with the k-means al-
gorithm. The kmeans(X,k) function available in MATLAB was used with squared Euclidean distance, 70
replications and a total of 6 clusters. During each run, the fluxes of K+ and H+ for all four KCl stimuli
were clustered simultaneously.
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7 Results

In this chapter, first the implementation of the model of cation homeostasis will be described by applica-
tion of the building blocks introduced in Sec. 5.5. This is followed by the presentation of the biological
data that were used for parameter estimation. The carefully parameterized model was employed to

• predict additional ion fluxes,

• identify the minimal set of parameters necessary to reproduce the biological data,

• perform predictions of mutations in Trk1,2p and Pma1p,

• analyze different aspects of Trk1,2p dynamics,

• predict the response of the system to a second KCl stimulus.

7.1 A thermodynamic model of cation homeostasis

In the following, the individual aspects of the model’s implementation will be introduced. A summary
of all equations and differential equations of the model as it was implemented in COPASI is presented in
Tab. 1 in the Appendix.

The model species The model species are the intracellular and extracellular ion concentrations as
well as ATP. In the experimental setup this were K+ and H+, for which net flux data were available. The
aim of the measurement was to analyze K+ uptake. H+ is important in this context because it is assumed
to be responsible for K+ uptake via energization of the cell membrane due to Pma1 pumping. Further-
more, Na+ was included. Although it can be assumed to be present only in low amounts within the cell,
and was not added externally, it might play a role as an additional ion flux to stabilize the membrane
within physiological ranges.
Cl� was included because it was present in high concentrations during the experiment (up to 30 mM). Fur-
thermore, there is evidence that it can enter or exit the cell in symport with H+ [118], trough Trk1,2p [71,
113] or due to leakage.

The fluxes The proposed model contains equations for the fluxes of H+, K+, Na+ and Cl�, as well
as for the change in intracellular ATP concentration. The ion fluxes and the flux of ATP are dependent on
the electrochemical potentials of the involved ions and on the reaction affinity for the ATP consumption
as derived in Sec. 5.5.6.
In case all possible coupling combinations are included the matrix notation of the model (see Eq. 5.26),
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linking ion fluxes J to differences in electrochemical potentials by the phenomenological coefficients Li j,
can be written as

0

BBBBBB@

JH+

JK+

JNa+

JCl�

JAT P

1

CCCCCCA
=

0

BBBBBB@

LH,H LH,K LH,Na LH,Cl LH,AT P

LK,H LK,K LK,Na LK,Cl LK,AT P
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LCl,H LCl,K LCl,Na LCl,Cl LCl,AT P
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1

CCCCCCA

0

BBBBBB@

Dµ̃H

Dµ̃K

Dµ̃Na

Dµ̃Cl

DµP

1

CCCCCCA
. (7.1)

The Dµ̃i are the electrochemical potentials of the involved ions. DµP denotes the affinity of the ATP
consumption 1 and can be approximated according to Eq. 5.44.

Due to the specific experimental conditions and information on available transporters, a number of as-
sumptions was made restricting the values of the Li j. Specifically, it was assumed that H+ might be
coupled to K+, Na+, Cl� and ATP (most likely via Nha1p, Trk1,2p, a potential H+/Cl� symporter and
the Pma1p). Na+ and Cl� were assumed to be only coupled to H+, presumably via Nha1p and a potential
H+/Cl� symporter. It can be assumed that ENA1, which is upregulated upon salt and pH stress, is not
expressed at the current experimental conditions [3], thus no Na+/ATP coupling was considered. K+ was
assumed to be coupled to H+ and in one model version also to ATP (via Nha1p, Trk1,2p and a potential
K+-ATPase).

Application of those assumptions and rearranging of the flux equations according to Gerber [32] resulted
in the reduced equation system
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
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(7.2)

JNa+ = RT

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A description of the ATP flux as implemented in this thesis will follow in the course of this section.

1The complete affinity of the pump Ap includes the affinity for the ATP consumption as well as back pressure effects
resulting from the involved ions. Reordering the equation as described in Sec. 5.5.8 results in the here presented
matrix.
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7.1 A thermodynamic model of cation homeostasis

Onsager coe�cients and individual transporter types Each net flux of the model is a compo-
sition of the fluxes of the individual transporters or, as presented in Sec. 5.5.8, of the individual transporter
types. Furthermore, the Onsager coefficients Li, j do not represent the Ls of single ion transporters, chan-
nels or pumps, but are composed of them. The composition of the Li, j from the Lk

i j for the transporter
types results in the following equation system.

LH,H = LL
HH + nS

HK
2 ·LS

HK + nA
HK

2 ·LA
HK + nS

HN
2 ·LS

HN+ nA
HN

2 ·LA
HN+

+ nS
HP

2 ·LS
HP + nA

HP
2 ·LA

HP + nS
HC

2 ·LS
HC + nA

HC
2 ·LA

HC

LH,K = nS
HK ·nS

KH ·LS
HK� nA

HK ·nA
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HK

LH,Na = nS
HN ·nS

NH ·LS
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HN ·nA
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HN

LH,AT P = nS
HP ·nS

PH ·LS
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HP ·nA
PH ·LA

HP (7.3)

LH,Cl = nS
HC ·nS

CH ·LS
HN � nA

HC ·nA
CH ·LA

HC

LK,K = LL
KK + nS

KH
2 ·LS

HK + nA
KH

2 ·LA
HK

LNa,Na = LL
NN + nS

NH
2 ·LS

HN + nA
NH

2 ·LA
HN

LCl,Cl = LL
CC + nS

CH
2 ·LS

HC + nA
CH

2 ·LA
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In Tab. 7.1 the potential contribution of each transporter or transporter type to the Onsager coefficient is
presented. Flux measurements for strains where specific transporters have been knocked out and subse-
quent parameter fitting can further enlighten these combinations.

Phenomenological Potential contribution of the transporters
Coefficients
LH,H Pma1p, Trk1,2p, Nha1p, leakage
LH,K Nha1p, Trk1,2p (if H+/K+ symport)
LH,Na Nha1p, Trk1,2p (if H+/Na+ symport)
LH,AT P Pma1p
LH,Cl H+/Cl� symporter?
LK,K Tok1p, Trk1,2p, Pho89p, Nsc1p, leakage
LK,AT P inward directed K+-ATPase?
LNa,Na Trk1,2p, Nsc1p, Pho89p, leakage
LCl,Cl Cl� leakage, Trk1,2p?, H+/Cl�symporter?

Table 7.1: Connection between the Ls and the proteins
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7 Results

Concentration changes The change in internal and external ion concentrations was calculated with
differential equations that include the ion flux through the membrane as well as the surface of the mem-
brane (Surface) and the size of either the intracellular (Vin) or extracellular compartment (Vout ).

d
dt
⇥
H+
⇤

out =
�JH+ ·Surface

Vout
d
dt
⇥
K+
⇤

in =
JK+ ·Surface

Vin

d
dt
⇥
K+
⇤

out =
�JK+ ·Surface

Vout
d
dt
⇥
Na+

⇤
in =

JNa+ ·Surface
Vin

d
dt
⇥
Na+

⇤
out =

�JNa+ ·Surface
Vout

d
dt
⇥
Cl�

⇤
in =

JCl� ·Surface
Vin

d
dt
⇥
Cl�

⇤
out =

�JCl� ·Surface
Vout

To obtain a value for Surface, the surface of an individual cell (which was assumed to be 63.6 µm2 based
on a round cell with a diameter of 4.5 µm) was multiplied with the total amount of cells (obtained from
the optical density of the suspension). Vin was calculated accordingly. By using the summation over all
cells, the ratios Surface

Vin
and Surface

Vout
were equal in the model and in the experiment.

Internal pH The amount of H+ that was extruded by the cell during the whole experiment was larger
than the total amount of intracellular protons freely available initially (based on the measurement of an
internal pH between 5 and 7 at time point zero (Ludwig et al., unpublished results)). Kahm [54] identified
by comparing flux and pH change data that a change of the internal pH by 1 represents approximately
a change of 200 mM of the internal H+ concentration. Therefore, a cellular pH buffer capacity pbc =
200 mM

pH was assumed in the model.
Instead of calculating d

dt [H
+]in directly, the change in internal pH was calculated from the flux JH+ by

the use of pbc. The internal H+ concentration in turn was derived from the internal pH (with the use of a
conversion factor cf = 1000 mM/M to obtain the proper units)

d pHin

dt
=

�JH+ ·Surface
Vin · pbc

⇥
H+
⇤

in = 10�pHin · cf .

The membrane potential The membrane potential Dj was calculated via the change in the excess
of charge on both sides of the membrane as introduced in Sec. 5.5.7

dDj

dt
=

F
Cm

· (2 · JH +2 · JK +2 · JNa �2 · JCl). (7.4)

ATP production and consumption In the model of Gerber [32] the ATP consumption was mod-
eled to be dependent on the affinity for the pump multiplied by the straight coefficient LAT P,AT P (there
named L44). This resulted in a predicted decrease in the ATP concentration after glucose addition. For
some experiments on batch cultures this has also been reported [95, 142]. Nevertheless, preliminary data
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7.1 A thermodynamic model of cation homeostasis

from Ludwig et al. on cells starved in water show an immediate increase in the ATP concentration after
glucose addition (unpublished result).
A first attempt for the model of this thesis was to use the complete flux equation

JAT P = RT

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c̄AT P
aAT P (1+K)

◆

with LAT P,K being zero in the model not including a K+-ATPase.
Nevertheless, by assuming a reasonable stoichiometry for the pumps in a range of 0.3-3 ions per ATP,
this would result in the consumption of much more ATP than is actually present (assuming that ATP
exists in a concentration of 2.5 mM (according to Özalp et al. [95]), whereas the internal unbuffered H+

concentration changes up to 200 mM (based on calculations with MIFE data)).
Therefore, two assumptions were made

• ATP starts with an initial concentration between zero and 2.5 mM. The exact value was estimated
together with the Li, j.

• ATP increases after glucose stimulation with a rate according to the following equation

d
dt

AT P = kAT Pincr � kAT Pdecr ·AT P (7.5)

with
kAT Pdecr =

kAT Pincr

AT Pmax
(7.6)

and AT Pmax being the maximal concentration of ATP during the experiment.

According to the preliminary data from Ludwig et al. this approach seemed to be reasonable. As soon as
there will be more information available on ATP concentration changes within the current experimental
setup, this can be adjusted.

Post-transcriptional modifications The aim of this project was to model ion fluxes without mod-
eling each transporter in full detail. Nevertheless, during model building it became obvious, that it is not
possible to reproduce the biological data, if all phenomenological coefficients Li, j are kept constant over
time. Due to the fact that the affinity of the ATPases change after glucose addition (for the Pma1p
see [73, 74]), a modification of the ATPase-related Ls (LA

iP for outward and LS
iP for inward directed

ATPases, with i 2 {H+,K+}) was included in the model. First, a step function was tested for the change
in the Ls, being zero before and nonzero after glucose addition. In case the ATPase was already "acti-
vated", but the ATP level was still low, the ions were able to reverse the ATPase flux while being driven by
their electrochemical potentials. Furthermore, the application of the step function resulted in very steep
fluxes after glucose addition. To overcome this, the Ls were changed more slowly and the kinetics of the
change were estimated. For the H+ exporting ATPase this was calculated as

d
dt

LA
HP = kincr � kdecr ·LA

HP. (7.7)

with kincr and kdecr being the parameters for the increase and the decrease of the value for LA
HP and

kdecr = kincr/LA
HPaG

. (7.8)
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The other ATPase-related Ls were changed accordingly.

KCl stimuli The stimulation of the cells with KCl and glucose was modeled in COPASI by using
events. The KCl stimulus during the MIFE experiment was modeled as Kout = Kout +KClstimulus and
Clout =Clout +KClstimulus. The value of KClstimulus was dependent on the experiment and either 0.01, 0.1,
1 or 10 mM.

7.2 Application of the model to cellular cation transport
The data sets that were used in order to estimate the model parameters were taken from MIFE and FLISE
measurements 2. The common experimental setup was as such, that the cells were starved for 4 h or over
night in Milli-Q water prior to the measurement to achieve the maximal affinity for K+ transport [120].
Afterwards, they were transferred to the measurement buffer. During the measurement different concen-
trations of KCl were added to each sample, followed by addition of glucose. The extracellular H+ and
K+ concentrations were measured over time and the H+ and K+ fluxes through the cell membrane were
calculated. The resulting fluxes from MIFE experiments are presented in Fig. 7.1(a).
A second rather similar data set was used to test whether the model can also be applied to data from
different sources. The experimental setup was similar to the one described before, in such a way that also
here starved cells were stimulated with KCl followed by the addition of glucose. In this case the FLISE
technique was used to measure changes in H+ and K+ concentrations in the medium. The resulting fluxes
are presented in Fig. 7.1(b).

The data used as orientation for the initial model concentrations were provided by Navarrete et al. [86],
Petrezsélyová et al. (unpublished result) and Gelis et al. (unpublished result) (intracellular K+ and Na+

concentrations after 5 h of K+ and Na+ starvation and intracellular K+ concentrations after over night
starvation in Milli-Q water). The MIFE experimental setup (extracellular pH, K+, Vin, Vout ) was provided
by Lichtenberg-Fraté et al.. The FLISE experimental setup (extracellular K+, H+ concentrations, Vin,
Vout ) was provided by Ludwig et al. (unpublished result).

7.3 The model fitted to experimental data predicts chloride
influx

The initial focus was on data from MIFE experiments and the data set from Shabala et. al. (Fig. 7.1(a))
was used for model fitting.
The model proposed in Sec. 7.1 was used and estimation of the Ls, the stoichiometric coefficients, the

2Flux-estimations using Ion Selective Electrodes (FLISE; Ludwig et al., University of Bonn, Germany) and Mi-
croelectrode ion flux measuring technique (MIFE; University of Tasmania, Hobart, Australia) as summarized in
Newman [89] are methods using ion selective electrodes that enable measurements of real time ion fluxes across
the plasma membrane. FLISE calculates net fluxes from extracellular concentration changes using cell suspen-
sions. MIFE periodically measures the concentration difference of a given ion at two different distances from
immobilized cells to calculate the net flux. Within the present thesis, data sets for H+ and K+ fluxes from MIFE
and FLISE experiments were utilized.
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7.3 The model fitted to experimental data predicts chloride influx

(a)

(b)

Figure 7.1: Data resulting from MIFE and FLISE experiments on S. cerevisiae wild-type. a) Data resulting
from microelectrode ion flux measurements (MIFE) of potassium fluxes (green) and proton fluxes (blue) in the S.
cerevisiae wild-type strain PLY232 [11] due to four different stimuli with KCl (0.01 mM, 0.1 mM, 1 mM, 10 mM)
followed by addition of glucose. b) Data resulting from flux estimations using ion selective electrodes (FLISE)
experiments of potassium fluxes (green) and proton fluxes (blue) in the S. cerevisiae wild-type strain BY4741 due to
seven different stimuli with KCl (0.01 mM, 0.03 mM, 0.1 mM, 0.3 mM, 1 mM, 3 mM, 10 mM) prior to the start of
the experiment followed by addition of glucose.
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ATP and ATPase kinetics and the initial conditions was performed with COPASI (1000 replications, Par-
ticle Swarm algorithm, iteration limit 400, swarm size 40, standard deviation 1e�6, Mersenne Twister
with seed 0). A python script was used to run the parameter estimation algorithm efficiently. The 50 best
results were used for subsequent analysis. The k-means algorithm as described in Sec. 6.1.1 was applied
to cluster the simulation results of the corresponding models. The simulations of all 4 KCl stimuli were
clustered simultaneously.

The model that was able to reproduce the data best contained a K+-importing ATPase. The data repro-
duction using the cluster with the best result as well as predictions performed with the model is presented
in Sec. 6 in the Appendix. Although this model showed the best result, it was assumed to be artificial.
First, the membrane potential obtained positive values after glucose addition (see Fig. 7(d) in the Ap-
pendix). Second, in this case the K+ influx and H+ efflux would be completely independent of the Pma1,
instead H+ would be driven out of the cell depending on the preceding active transport of K+ into the
cells. Furthermore, a K+-importing ATPase has not been identified in the plasma membrane of S. cere-
visiae, yet. Although, the existence of such an ATPase cannot completely be ruled out, the mechanism
resulting from those model parameters cannot be assumed to be very realistic (personal communication
with Ludwig et al.).

Thereupon, the model was fitted to the Shabala data with the restriction that no K+-ATPase exists
(LS

KP = 0). The resulting best fit can be seen in Fig. 7.2(a). The fluxes of the lower KCl concentra-
tions can be reproduced reasonably well, only the peak at the highest KCl concentration could not be
captured perfectly.

Furthermore, the model was used to simulate the flux of Na+ and Cl�, for which no experimental data
were available. At the applied initial conditions (internal Na+ concentration lower than 30 mM) no Na+

fluxes could be observed (data not shown). Instead, the model predicted an influx of Cl� ions, which was
maximally pronounced at KCl stimuli of 10 mM (see Fig. 7.2(b)).

7.4 A minimal set of membrane transport proteins is su�cient
to reproduce the biological data

The best cluster from the model excluding a K+-ATPase (see previous section) was analyzed in more
detail. In Fig. 7.3(a) the average and standard deviation of the parameters for the individual transporter
types are presented. LA

HPaG
is most prominent and tightly clustered, followed by LS

HC. LL
KK can reach very

high values, still it is broadly scattered, because in one of the estimates, LS
HKaG

had a large value instead,
with a stoichiometry of 3 K+ per 1.3 H+. LS

KPaG
and LA

KPaG
were 0 by definition.

Fig. 7.3(b) and Fig. 7.3(c) show the composed parameters (for details of the calculation see Eqs. 7.3) be-
fore and after glucose addition, respectively. The most prominent phenomenological coefficients before
glucose are LH,H , LH,Cl , LK,K LCl,Cl and LH,K . The first ones are unambiguous, whereas LH,K appeared
in a high positive and a low negative variant, being unimportant in two samples of the cluster and relevant
in one sample.
The most prominent phenomenological coefficients after glucose addition are LH,H and LH,AT P, affected
by the change in activity of the Pma1 (LA

HP). The K+ flux after glucose is affected mainly passively via
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7.4 A minimal set of membrane transport proteins is sufficient to reproduce the biological data

(a)

(b)

Figure 7.2: Simulation with model fitted to MIFE data. The model was used to reproduce the data from Shabala
et al. (Fig. 7.1(a)). a) model simulation (solid line) and data (squares), b) model simulation including predicted Cl�

fluxes. The K+ flux is labeled in green, H+ flux in blue. Cl� flux (predicted by the model) is shown in red. Darker
colors represent higher KCl concentrations used for the KCl stimulus at time point 300 s. Glucose was added in this
experiment at time point 660 s.
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LK,K , although in one sample also via LH,K caused by the high LS
HKaG

value representing coupling with
H+.

The overall behavior of the system could be reproduced by only four Onsager coefficients, LA
HPaG

, LS
HC

and either LL
KK or LS

HK , of which the estimated values are presented in Tab. 2 and Tab. 3 in the Appendix.
The remaining parameters could be set to 0 after the estimation, without affecting the goodness of fit.

7.5 Prediction of the e�ect of knocking out PMA1p and
coupled or uncoupled potassium transport

The model was used to predict the effect of a change in the Ls for specific transporter types. The aim was
to predict the effect of a knockout or inhibition of the transporters, which were assumed to contribute the
most to the respective L (e.g. Pma1p to LA

HP). Furthermore, it was investigated whether this approach
can be applied to distinguish between the model with an estimated high LL

KK value and the model with
an estimated high LS

HK value. A clear difference between the effect of mutations in both cases might
help to clarify whether Trk1,2p transport solely K+ (assumed to contribute to a high LL

KK value) or K+ in
symport with H+ (assumed to result in a high LS

HK value).

First, the effect of setting LL
KK to 0 was analyzed, which would represent a knockout or inhibition of the

whole solely K+ dependent K+ transport. This would include Tok1p, unspecific K+ transporters and
leakage as well as Trk1p and Trk2p, assuming that the latter work only as uniporters and not as sym-
porters. For the model including an estimated high LL

KK value, setting LL
KK to zero resulted in a complete

disappearance of the K+ flux (Fig. 7.4(a)). Nevertheless, a transient inward directed H+ flux could be
observed after KCl addition and after glucose addition. For the model including an estimated high LS

HK

value, setting LL
KK to zero had no effect (Fig. 7.4(b)).

Furthermore, the model was used to predict the effect of setting LS
HK to zero. It was assumed that this

would represent a complete inhibition of Trk1p and Trk2p in case they would act as symporters. For
the model including an estimated high LL

KK value, setting LS
HK to zero had no effect on the H+ and K+

fluxes (Fig. 7.4(c)). Instead, setting LS
12 to zero in the model with a high LS

HK value resulted in the disap-
pearance of the K+ flux and a transient inwards directed H+ flux (Fig. 7.4(d)).

Finally, the effect of knocking out the PMA1 by setting LA
HP to 0 over the whole time course was analyzed

using the parameter set exhibiting an estimated high LL
KK value (Fig. 7.4(e)) and an estimated high LS

HK

value (Fig. 7.4(f)), respectively. In both cases, it can be observed that, due to lacking activation of LA
HP,

the addition of glucose does not result in an increase of the fluxes.

The results demonstrate that the model can be used to perform predictions of knocking out Pma1p, as-
suming it contributes mostly to LA

HP. Furthermore, the model produced reasonable predictions about a
Dtrk1,2 mutant strain, assuming Trk1,2p contributes the most to LL

KK or LS
HK , whenever this was esti-

mated high. However, it was not able to solve the question, whether Trk1,2p acts in symport with H+ or
not.
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7.5 Prediction of the effect of knocking out PMA1p and coupled or uncoupled potassium

transport

(a)

(b)

(c)

Figure 7.3: Clustering and parameter analysis. The parameters of the model excluding a K+-ATPase were esti-
mated. Parameters involved in primary active transport were allowed to change after the addition of glucose (LS

HP,
LA

HP). LS
KPaG

and LA
KPaG

were zero by definition. Clustering with the k-means algorithm was performed as described
in Sec. 6.1.1. The simulations of all four KCl stimuli were clustered simultaneously. The 50 best of 1000 estimations
were used for clustering. a) shows the distribution of the Ls for the individual transporters, b) shows the resulting
composed Ls before and c) after glucose addition. The log10 of the parameters is plotted. Mean and standard de-
viation of the parameters were calculated after separating them into positive and negative values. Positive values,
symporters or inward directed pumps are colored in red, negative values, antiporters or outward directed pumps in
blue.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: In silico predictions using the model fitted to the Shabala data. a) Inhibition of K uniport and
leakage (LL

KK = 0), c) knockout of a potential H-K symporter (LS
HK = 0), and e) knockout of the Pma1 (LA

HP = 0) for
the models with estimated high LS

KK value (n=2). b) LL
KK = 0, d) LS

HK = 0, and f) LA
HP = 0 for the model with an

estimated high LS
HK value (n=1). The K+ flux is labeled in green, H+ flux in blue.
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7.6 Analysis of potential mechanisms for Trk1,2 transport

7.6 Analysis of potential mechanisms for Trk1,2 transport

One result of the previous chapters was that the K+ flux after glucose is affected either passively via LL
KK

or via coupling with H+ and thereby contributing to LS
HK , although with low stoichiometry. This indicates

that Trk1,2 either act as K+ uniporters or K+/H+ symporters (with transporting more K+ than H+ into
the cell). Unfortunately, further additional in silico experiments have not been able to rule out either of
those two transport mechanisms (see Sec. 7.5). Nevertheless, additional analyses were able to identify
the major mechanisms both transport variants have in common with respect to K+ transport as well as
some of the differences.
First, the net flux JK+ was separated into the influence due to the electrochemical potentials of the different
ions. As a result of the fact that only coupling between K+ and H+ was considered, this left over the H+

dependent part

JK+Hdep
= LK,H ·

✓
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cout
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H
�FDj

◆
(7.9)

and the K+ dependent part

JK+Kdep
= LK,K ·

✓
RT ln

cout
K
cin

K
�FDj

◆
(7.10)

with JK+ = JK+Hdep
+ JK+Kdep

. Fig. 7.5(a) shows JK+Hdep
and JK+Kdep

for the models with the parameter
sets including high LL

KK . It can be observed that, in this case, JK+ is exclusively dependent on its own
electrochemical potential. In the model using the parameter set with high LS

HK (Fig. 7.5(b)) and therefore
predicting a K+/H+ symporter to be involved, the force due to K+ and H+ equal each other out before
the KCl stimulus and also more or less after, although with different intensities dependent on the different
KCl stimuli. After glucose addition, the shape of the K+ dependent part is similar to Fig. 7.5(a), but much
lower and would even result in K+ efflux. Coupling to H+ is necessary for the K+ fluxes observed in the
experiment. The flux due to H+ stays constant over time, whereas the flux due to K+ decreases over time
again. The closer the K+ dependent flux gets to the additive inverse of the H+ dependent flux, the lower
gets the net flux JK+ (for comparison see Fig. 7.2).

Next, the dependency of JK+ on the force due to the chemical and the electrical potentials of the ions was
analyzed by separating the net flux into a part depending on the chemical potentials

JK+CP = RT
✓

LK,H ln
cout
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H
+LK,K ln

cout
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◆
(7.11)

and a part depending on the electrical potentials

JK+EP =�(LK,H +LK,K)FDj (7.12)

with JK+ = JK+CP + JK+EP .

It was observed that, although the model variants with either high LL
HK or LL

KK values exhibit distinct ion
dependency, they show a similar dependency on the chemical and the electrical potentials. Fig. 7.5(c)
shows JK+CP and JK+EP and Fig. 7.5(d) the quotient JK+EP/JK+CP . It was observed that the fluxes before
and after the KCl stimulus equal each other out, resulting in a close to zero net flux (for comparison see
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Fig. 7.2). After the addition of glucose, K+ efflux driven by the chemical potential is slowly increasing,
but influx due to the electrical potential is dominating. Directly after the stimulus, approximately three
times more K+ gets transported into the cell driven by the electrical potential than exerts the cell due to
chemical potential, resulting in net influx of K+. During the long run, JK+CP and JK+EP get again closer
to each other’s additive inverse, thereby approaching a new steady state.
Fig. 7.5(e) shows a prediction of the membrane potential from the models exhibiting K+ uniport, Fig. 7.5(f)
of the model exhibiting K+/H+ symport. In case of K+ uniport (only K+ dependent K+ transport) the
membrane potential would possess a lower value and changes after addition of KCl and glucose would
be more extreme.

7.7 Prediction of the e�ect of multiple KCl stimuli with the
model

Another interesting question would be, whether and how the yeast cells handle successive salt stresses.
Do they still react if a second KCl stimulus takes place? Do they react with the same intensity?
To simulate this in silico the model with the estimated parameters was used to predict the effect of a
second KCl stimulus of 10 mM at time point 1000 s. The resulting time courses for the H+ and K+ fluxes
are presented in Fig. 7.6.
Under all tested conditions (the four different KCl concentrations for the primary stimulus) it was ob-
served that the cells do also react to a second KCl stimulus. Although the second KCl stimulus was
10 mM in all experiments, the cells with different primary KCl stimuli reacted differently to it. It could
be observed that higher KCl stimuli led to more extreme fluxes after glucose addition and to less extreme
fluxes after the second KCl stimulus. At the two highest KCl stimuli a transient H+ influx was observed
shortly after the second KCl addition.

7.8 Application of the model to experimental data from FLISE
experiments

To analyze whether the model can also be applied to data from multiple sources, the FLISE data set (see
Fig. 7.1(b)) was used for parameter estimation. For reproduction of the FLISE experiments, some of the
model conditions had to be changed. Not only Vout was available but also Vin and Surface were calculated
for each flux measurement from the exact OD of the cell solution. Therefore, this knowledge could be
included into the parameter estimation process. Furthermore, the external concentrations in the overall
solution were documented and could be included. From the same source the initial concentrations for
the external H+ and K+ concentrations were known. For the FLISE experiment the simulation started
after addition of KCl, in consistency with the available data. The different K+ and Cl� concentrations
were included in the start conditions. The remaining initial conditions were estimated within reasonable
ranges together with the Ls. This resulted in the initial model conditions as can be seen in Tab. 4 in the
Appendix.
The same combination of parameters (LA

HP, LS
HC, and LL

KK), which was able to reproduce the MIFE data,
was also able to reproduce the data from FLISE experiments (see Fig. 7.7). However, an adjustment of
the parameter values was necessary. The estimated Ls as well as the initial conditions are presented in
Tab. 4 in the Appendix. It was be observed that the value of LL

KK is higher than after fitting to MIFE data.
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7.8 Application of the model to experimental data from FLISE experiments

(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Analysis of individual forces. Separation of JK into a K+ (green) and a H+ (blue) dependent part for
simulations with parameter sets including a) high LL

KK values (n=2) and b) high LS
HK values (n=1). c) Separation

of JK into a chemical (green) and a electrical (blue) potential dependent part (n=3). Fig. d) shows the quotient of
the electrical and the chemical potential dependent part of JK (n=3). Simulation of the membrane potential with the
parameter sets including e) high LL

KK values (n=2) and f) high LS
HK values (n=1).
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Figure 7.6: Prediction of second KCl stimulus. The model was used to predict the reaction of the system to a second
KCl stimulus following the glucose stimulus. As first stimulus the KCl concentrations 0.01, 0.1, 1 and 10 mM were
used, in consistency with the data used for model fitting. The second stimulus was modeled as additional 10 mM KCl
in all cases. The K+ flux is labeled in green, H+ flux in blue. Darker colors represent higher KCl concentrations used
for the first KCl stimulus (applied to the system prior to time point 300 s). Glucose was added in this experiment at
time point 660 s, the second KCl stimulus was at 1000 s.

Furthermore, the change in LA
HP after glucose was estimated to be more delayed, being consistent with

a slower increase in the fluxes after glucose addition. A sharp change in the fluxes was observed within
the first second after KCl addition, which occurred in the model at time point 0 s (data not shown). This
might be a hint that there additional regulatory processes might exist.
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7.8 Application of the model to experimental data from FLISE experiments

(a)

(b)

Figure 7.7: Simulation with model fitted to FLISE data. The model was fitted to the FLISE data set. It was
assumed that no K+-ATPase exists. a) Data (dotted line), simulation (solid line). b) Model simulation including
predicted Cl� fluxes. The K+ flux is labeled in green, H+ flux in blue. Cl� flux (predicted by the model) is shown in
red. Darker colors represent higher KCl concentrations used for the KCl stimulus (applied to the system prior to time
point 0). Glucose was added in this experiment at time point 560 s. Time points between 0 and 1 s were removed due
to transiently high fluxes.
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8 Conclusion and discussion

The thermodynamic approach applied here focuses on the effect of the different forces (chemical poten-
tial, electrical potential and reaction affinity) on the transmembrane fluxes. With this approach net ion
fluxes can be modeled. This makes it perfectly suitable for the available biological data, which were net
transmembrane K+ and H+ fluxes. Due to fragmentation of the Onsager coefficients into the individual
transporter types, a moderately detailed approach was used which allowed for in silico knockout and
inhibition experiments, while needing only reduced amount of prior knowledge. Another possible and
often used approach is to model the ion channels explicitly, as for example done in Kahm et al. [54] and
Rivetta et al. [114]. This detailed approach would rise the complexity of the model. Many parameters
would have to be estimated or taken from other sources, which might not be comparable with the exper-
imental conditions applied here. By using the thermodynamic approach the information can be reduced
and is included in the Onsager coefficients. With increasing availability of data and rising complexity, the
predictions from both model approaches should be more and more similar to each other.

To conclude the results from this part of the thesis:

• The proposed model was able to reproduce K+ and H+ flux data from MIFE experiments.

• The model predicts the existence of Cl� fluxes, predominantly at 10 mM KCl.

• The parameters LA
HP, LS

HC and either LL
KK or LS

HK are sufficient to reproduce the biological data.

• Predictions of mutations in LA
HP (assumed to be Pma1p) and LL

KK /LS
HK(Trk1,2p) result in vanishing

K+ fluxes. However, existing transient H+ fluxes (partly in the reversed reaction) might hint to not
yet captured regulatory mechanisms.

• The model was not able to solve the exact mechanism of Trk1,2 dynamics. However, possible
mechanisms were analyzed and a difference in the membrane potential has been observed.

• Application of multiple KCl stimuli in silico show that the cells do still react to a second KCl
stimulus, but with reversed intensity.

• The model can also be transfered to data from different sources, here to data from FLISE experi-
ments.

In the following, different aspects of the model shall be discussed.

Calculation of the membrane potential

For the computation of the membrane potential the calculation via the excess of charge was chosen, which
is common practice in thermodynamic modeling [8, 54, 59]. In the model, the ions K+, H+, Na+ and Cl�

can affect the membrane potential. It is known that Pma1p pumps proton out of the cell after a glucose
stimulus and it is assumed that this leads to a secondary active transport of other cations [3, 94], most

113



8 Conclusion and discussion

likely via energization of the cellular plasma membrane. Cl� was included in the model because the cells
were stimulated with KCl and the chloride counteracts with its negative charge the positive charge of the
K+ in the external medium. Due to the fact that also CaCl2 was added to the solution to inhibit Nsc1, the
external amount of Cl� is quite large (up to 30 mM) and potential Cl� fluxes can affect the membrane
potential. Ca2+ was assumed not to be able to cross the plasma membrane at the conditions applied here.
However, experiments are currently made by collaborators to rule out this possibility. Na+ was included
because there is low but still measurable Na+ inside the cells after potassium and sodium starvation con-
ditions (Navarrete, unpublished result), which can affect the membrane potential while flowing out of the
cells. According to the results obtained from the model, no Na+ fluxes can be observed at the current
experimental setup. However, it is also possible that other ions can affect the membrane potential, which
are not yet included in the model (e.g. HCO�

3 ). In principle, it would be better to measure the membrane
potential instead of calculating it. Unfortunately, there is currently no method known to measure absolute
values for the membrane potential in yeast. Experimentally derived information for membrane potential
changes during our experimental setup would be a major advantage to improve the model.

Potassium and proton flux not su�cient to explain the data

During the examination of the data from FLISE and MIFE experiments it became obvious that there are
discrepancies between H+ efflux and K+ influx. At KCl concentrations of or below 0.1 mM the net
H+ efflux is larger than the net K+ influx, whereas at KCl concentrations higher than 0.1 mM it is the
other way around. If only H+ and K+ were transported, this would lead to very high, unphysiological
membrane potentials. It is necessary that some additional ions move into or out of the cell. In the model
proposed by Gerber [32] this problem was evaded by application of the Goldman-Hodgkin-Katz equation
for calculation of the membrane potential, and estimating the permeabilities of the ions independent of the
Ls. This allowed to reach membrane potentials at a reasonable range while still allowing the H+ and K+

fluxes to be as observed in the experiment. Anyhow, this approach was a first approximation and contained
a variety of simplifications. On a closer look, the permeabilities cannot be chosen independently from
the Ls but are related [4]. Furthermore, the Goldman-Hodgkin-Katz equation calculates the reversal
potential, assumes only passive diffusion and does not take coupling of ions into account. Therefore,
in the present study, the calculation via the excess of charges [59] was used instead. However, using
this on the one hand more appropriate and correct approach resulted in other difficulties. Using the
calculation via the excess of charge in principle one has to include all potential ion fluxes, which is not
possible within the current experimental setup. However, Na+ and Cl� fluxes were assumed to be most
reasonable given the experimental setup. By including additional ions it was possible to reproduce the
asymmetric H+ and K+ fluxes (e.g. Fig. 7.7 in the main text and Fig. 7(a) in the Appendix). The model
predicted Cl� influx after glucose addition. This might be reasonable, because low affinity H+/Cl�

co-transport has been reported in patch clamp experiments [118]. Furthermore, chloride fluxes were
observed in preliminary data from MIFE experiments (data not shown). Nevertheless, Cl� electrodes are
very unspecific. Currently, algorithms are implemented by Klipp et al. to overcome this limitation.

Osmotic shock and volume changes

Addition of KCl to yeast cells can result in hyper-osmotic shock and cell shrinkage. Many eukaryotic
cells evolved mitogen-activated protein (MAP) kinase pathways to transmit the signal to the nucleus, were
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the gene expression can be rapidly adapted to the stress. In S. cerevisiae this is performed by the high
osmolarity glycerol (HOG) pathway [110, 139]. However, in Rep et al. [109, 110] and Wuytswinkel et
al. [151] 0.4-0.5 M NaCl were considered as mild osmotic shock, leading only to a transient translocation
of double phosphorylated HOG1. In the present study, KCl was added in concentrations of not more than
0.01 M. According to B. Nordlander (unpublished data) and Schaber et al. [124] this should not result
in significant shrinkage and activation of the HOG pathway. B. Nordlander showed that at 0.05 M NaCl
only 10% of the maximal possible HOG activation can be seen. In Schaber et al. an addition of 0.1 M
NaCl led to a cell shrinkage of 2 - 5%.
Wuytswinkel et al. [151] showed by the application of 1.4 M NaCl or 1.4 M KCl that the application of
severe stress is osmospecific and not sodium specific. Therefore, it was assumed that the addition of the
same amount of KCl instead of NaCl has no significantly higher effect.
In case that higher salt stresses are applied, it might be necessary to include cell volume changes and gene
regulatory effects into the model. However, the addition of higher salt stresses would lead the system far-
ther away from equilibrium, which might in turn also affect Onsager coefficients and Onsager symmetry.

Starvation in water

Some aspects should be kept in mind if this model is applied to other systems, e.g. cells in non-starved
conditions. As already pointed out by Haro and Rodríguez-Navarro [37], K+ starved cells are good study
objects because they show higher K+ affinity transport than cells grown in potassium containing medium.
Furthermore, yeast cells which are starved in Milli-Q water have a higher Km value for K+ and Rb+ than
K+ starved cells in medium [37, 120]. The change from a medium to a high affinity TRK1 takes 3 h to
be completed in a wild type strain [37]. In the experimental setup used here, the cells were starved for
4 h, which means Trk1p should be working with high affinity. Also other processes might be different
and the addition of glucose might activate further metabolic changes affecting the whole cell behavior.
As a consequence, the model of the present study should only be used for analyses with starved cells. If
applied to non-starved cells, the Onsager coefficients might have to be adjusted.

Internal pH and proton bu�er capacitance

With both the MIFE and the FLISE data sets one can make the following observation: while assuming
an internal pH between 5 and 7 and calculating the amount of change in internal H+ concentration from
the H+ flux data, more H+ ions would flow out of the cell than are actually inside it. Therefore, either
H+ is produced inside the cells by glycolysis and other metabolic processes, or H+ which was previously
buffered gets released.
Within the present thesis, a proton buffer capacity of 200 mM unbuffered H+ per unit pH change was used
according to the comparison between H+ fluxes and pH measurements ([54], Ludwig et al., unpublished
results).
In future model versions it might be an option to integrate a more flexible proton buffer capacitance that
changes with the current pH of the cell or with the current protein and metabolite composition.
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8 Conclusion and discussion

Additional regulatory mechanisms

Data and knowledge of the exact transporter mechanisms involved in cation homeostasis is still sparse.
Therefore, within the present thesis, the aim was to model cation homeostasis without modeling every
transporter in full detail. Furthermore, with the application of linear non-equilibrium thermodynamics it
was possible to model cation homeostasis without using pre-assumptions on the relative contribution of
the individual transporters. This information resulted here from parameter estimation.
The model was able to reproduce biological data from MIFE and FLISE experiments. However, some
mechanisms were observed that do not completely capture the experimental observations. The model
fitted to MIFE data simulated transient H+ and K+ fluxes directly after KCl and in knockout experiments
after glucose addition, whereas the model fitted to the FLISE data simulated steep transient fluxes directly
after KCl addition. The model predicted a strong change in the membrane potential after KCl and glucose
addition, which might influence the transporter permeabilities. In future models it might be reasonable
to reuse the approach of modeling net ion fluxes, while still including more information for individual
transporters, for which it is already known (e.g. voltage gating of Tok1p or pH dependence of Trk1p).
Experiments with strains where individual transporters have been knocked out, knocked down or overex-
pressed might shed more light on the contributions of individual transporters. In addition, measurements
of fluxes of other ions (especially Na+ and Cl�) would complete the picture. A potential later step is also
to include regulation of the transporters (posttranslational modifications, structural changes in different
pH, changes of transporter numbers through gene expression or regulated degradation).

Existence of a K+-importing ATPase in yeast?

Parameter estimation performed with the model fitted to the Shabala data set revealed that the model
can reproduce the data best if the existence of a K+-importing ATPase is assumed. However, in this
case the model exhibited a K+ transport mechanism mainly independent of the Pma1. Furthermore, the
membrane potential was observed to be increase after glucose addition (data not shown). Although this
is in general possible given the thermodynamic forces present at the membrane, it is unlikely given the
currently available literature-based knowledge of S. cerevisiae. However, ATPases mediating potassium
transport have already been found in other fungi [9].
In addition, there might be other possibilities how S. cerevisiae can exhibit ATP dependent K+ trans-
port. Haro and Rodríguez-Navarro [37] identified an active K+ transporting component in S. cerevisiae,
which was still existing if 80 µM of the uncoupler CCCP (carbonylcyanide m-chlorophenylhydrazone)
was used. Ramirez et al. [105] discovered by using PMA1 mutant strains the existence of K+ channels
able to be activated by intracellular ATP.
The investigation of primary active K+ transport mechanisms can be one aspect of further research.
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9 Outlook

The model proposed in this work includes H+, K+ Na+ and Cl� fluxes. In the experimental setup the
cells were starved in Milli-Q water prior the experiment. Throughout this process they lost internal K+

and Na+. During the experiment, K+ was added in form of KCl. Future experiments might focus more
on Na+ fluxes and different Na+ stimuli.
It would also be of interest to analyze combinations of salt stimuli, e.g. Na+ in the presence or absence of
K+. If K+ is limiting, Na+ can be used to restore the cell volume, pH and growth, whereas K+ would be
used instead if it is not limited [119]. Therefore, the kinetics for K+ and Na+ transport might be different
under those conditions.

The observed fluxes in the FLISE data set were lower than in the MIFE data set. As a result, although
the same combination of parameters could be used, their respective values had to be adjusted. This might
be a hint for different potassium transport properties in the two wild type strains. However, it it has to
be validated, whether this is caused by the different strains (MIFE: PLY232, FLISE: BY4741), by the
different treatments (addition of CaCl2 in FLISE to inhibit unspecific K+ flux) or by differences in the
measurement (e.g. immobilized cells in MIFE, cell solutions in FLISE). Currently, Ludwig et al., who
provided the FLISE data for this work, are establishing a MIFE system. This will allow for direct com-
parison of the two experimental setups. Furthermore, the influence of CaCl2 on the fluxes at the different
KCl concentrations will be analyzed.

The current model does not include water flux or volume changes. This can be justified because at con-
centrations below 0.1 M salt no significant volume changes occur [124]. Nevertheless, if higher salt
concentrations are used, the resulting osmotic stress might also lead to water fluxes into or out of the
cell. This might also lead to a change of the cellular volume, which will then again affect the internal
ion concentrations. For future work under different stress conditions it might therefore be necessary to
include water fluxes into the model.

In the current model version it was assumed that the ions are homogeneously distributed withing the cell
and in the extracellular volume. Furthermore, the stimulus by glucose addition implied an immediate
increase in intracellular ATP concentration. Further model versions could include gradients of ions and
ATP in space as well as finer changes in ATP concentration by generation via glycolysis and consumption.

The current model started with a linear approach for the thermodynamical model. This approach was
slightly modified by assuming that the ATP-dependent Onsager coefficients were able to change after a
glucose stimulus. It is further known that Pma1p and Tok1p are voltage dependent [129, 40] and Trk1p
has higher affinity at low than at high outside K+ concentrations [137]. Also one might include the sat-
uration of ion carriers at high concentrations, which might lead to a Michaelis-Menten-like instead of
a linear behavior. Therefore, it might make sense to integrate more complicated terms for the Onsager
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9 Outlook

coefficients, like saturated or voltage dependent terms.

Although the focus of this work lies exclusively on the transport proteins in the plasma membrane,
it should shortly be mentioned that there exist also various transport proteins in the organellar mem-
branes. The knowledge of the existence and kinetic behavior of those transporters is at the moment rather
sparse [3], but for further modeling and experimental approaches it might be useful to include e.g. trans-
port into the vacuole as cellular storage and detoxification system.
Experiments on the ion fluxes through the organellar membranes and the change in organellar pH are
currently performed by our collaborators.

It has to be investigated, whether Na+ and Cl� fluxes can be observed with the current experimental
setup. In case of Na+, coupling via Nha1p should have biological relevance, although it is not clear, if
already at the very low Na+ concentrations which are to be expected with starved cells. A comparison to
cells undergoing NaCl stress might be convenient here.
Another possibility is to include CO2 production after glucose addition as well as the bicarbonate reaction
into the model as done in Kahm et al. [54]. Part of the H+ transported out of the cell via the Pma1p might
originate from this reaction. In addition, efflux of HCO�

3 might add to the yet unknown ion fluxes.
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Kinetic and thermodynamic modeling are valuable tools to understand crucial aspects of water and ion
homeostasis. Within the present thesis, the underlying intracellular signaling processes were analyzed
with kinetic modeling, whereas ion fluxes were modeled with a thermodynamic approach. In both
projects, first models were generated from current knowledge and literature data. Data prepared by col-
laborators was used to estimate the model parameters. The models were used for analyses in silico such
as analysis of mutations, sensitivity analysis and time dependent sensitivity analysis as well as model
predictions. The modeling approach essentially contributed to both projects. Furthermore, within both
projects, it was used to analyze differences between individual species or strains.

Within the aquaporin project it was used to identify the parts of the signaling system, which are crucial
for the kinetic behavior of important species in the system. Time dependent sensitivity analysis as well as
application of the target identification tool TIde pointed out the importance of reactions directly involved
in AQP2 trafficking. A detailed analysis of the effect of activators and inhibitors acting on potential drug
targets could identify optimal single and combinatorial treatments.

Ranking and sensitivity analyses hint to the conclusion that in MDCK cells the internalization of the
vasopressin receptor has a higher effect on the intracellular cAMP kinetics than negative feedback via
phosphodiesterases. In primary rat IMCD cells this seems to be reversed. In addition, the overall contri-
bution of those two reactions seems to be less pronounced. If further studies focus on cAMP, the MDCK
cell model might be the better option.
The results from time dependent sensitivity analysis are able to contribute in two aspects. On one hand,
they identify reactions important for the kinetic behavior of the system. On the other hand, they can be
used for model guided experiments by indicating which reactions have to be disturbed and which time
points have to be chosen for a measurements, to obtain the highest information content. Part of this work
was published as M. Fröhlich, P. M. T. Deen and E. Klipp, A Systems Biology Approach: Modelling of
Aquaporin-2 Trafficking, Genome Inform. 2010;24:42-55.

One major benefit of the model of cation homeostasis was the use of linear non-equilibrium thermody-
namics. With this approach it was possible to employ the data of net ion fluxes provided by the exper-
imenters. Typically, individual transporters are modeled, requiring detailed information, which is often
unavailable. With linear non-equilibrium thermodynamics, the collectivity of membrane transporter pro-
teins can be modeled in a simplified way based on the forces acting on the system. This enables to move
one step further and to cope with yet unknown mechanisms.

The major contributions to the Translucent-2 project were the usage of the model to analyze Pma1 and
Trk1,2 transport dynamics. The available data suggested that proton and potassium fluxes alone are not
sufficient to explain the observed behavior and that additional ions have to flow to keep the membrane
potential within reasonable ranges. Within this thesis, sodium and chloride fluxes were included and their
parameters were estimated. By applying the experimental conditions and knowledge from the literature,
the model predicts the potential existence of chloride fluxes.
Part of this work will be published as M. Fröhlich, S. Gerber, H. Lichtenberg-Fraté, J. Ludwig, S. Shabala,
and E. Klipp, A basic thermodynamic model of cation homeostasis in the yeast Saccharomyces cerevisiae.
The model’s predictions will be verified by our collaborators. Due to the fact that electrodes for chloride
are very unspecific, this pointed out also the need for algorithms that can cope with the uncertainty in the
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measured fluxes. They are currently implemented in the Klipp group. Furthermore, it revealed the neces-
sity to obtain more information on the ATP content of the cell during the experiment, which is currently
investigated by the collaborators with fluorescent sensors.

In the optimal case, both water and ion transport would have been investigated within one and the same
organisms, e.g. either yeast or mammalian cells. However, the central point, and often also the bottleneck
of systems biology, is the availability of suitable data and the possibility to verify the model’s predic-
tions. Due to the fact that the collaboration with experimenters working on ion homeostasis in yeast
was already well established and data were already available, whereas no collaboration was existing with
experimenters working on ion transport in mammalian cells, the focus of this thesis was switched to this
organism. At the current experimental setup used to obtain the proton and potassium fluxes, water fluxes
could have been neglected. In the future, additional experiments will be done to test, model and investi-
gate both ion and water fluxes in yeast. Additionally, the knowledge gained from research in yeast, can
also be applied to mammalian cells.

The future work on cation homeostasis in yeast will focus more and more on the analysis of the cation
content of specific cellular organelles. Fluorescent markers and microscopic images will play a major
role, e.g. pHlourin, which is a reporter for cellular pH. The availability of data with spatial resolution will
open more opportunities, especially in direction of spatial modeling. Tools such as the Spatio-Temporal
Simulation Environment (STSE, Stoma, Fröhlich et al. [134]) can be used to digitize, and analyze data
from microscopical images and build a framework for efficient spatio-temporal modeling. Besides the ap-
plication to the organelles, spatio-temporal modeling can assist the further understanding of the processes
at the cell membrane, by including diffusion processes in the external and internal environment.
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Appendix

1 In silico variation of the amount of AQP2
The complete model with the best set of parameters found (see Fig. 3.1 and Tab. 3.2) was used to analyze
[AQP2membrane] dependent on the overall concentration of AQP2 (see Fig. 1). For this analysis it was
assumed that the percentage of initial [AQP2membrane] stays the same for each simulation. [AQP2membrane]
was analyzed 30 min after AVP addition.

Figure 1: Dependency of [AQP2total] on [AQP2membrane] . It was assumed that the percentage of initial
[AQP2membrane] stays the same for each simulation. [AQP2membrane] was analyzed 30 min after AVP addition.

2 Dephosphorylation of AQP2 at position S261 in MDCK cells
Experimental setup For this work Madin-Darby canine kidney cells (MDCK-hAQP2-T269S) where
seeded at a density of 2.7 · 105 cells/cm2 on semipermeable 1.13 cm2 filters (Transwell®, 0.4 µm pore
size, Corning Costar, Cambridge, MA, USA). The cells grew at 37�C for two days, then the medium
was changed and 5 ·10�5 M indomethacin was added for 1 more day to lower intracellular cAMP levels.
After 3 days of seeding, the basolateral side of the cells was exposed to medium with (deamino-Cys1, D-
arg8)-vasopressin (dDAVP, Sigma, St. Louis, MO, USA). Different concentrations of dDAVP were used
(10�6 M, 10�7 M, and 10�8 M) for durations of 0, 1, 2, 5, 10, 20, 30 and 90 min. The filters were excised
and transferred to 1x Laemmli with inhibitors of proteases and phosphatases. The samples were denatu-
rated for 30 min at 37�C and sonicated for 20 s. After SDS-PAGE on a 12% acrylamide gel the proteins
were immunoblotted as in [21]. Incubation with the primary antibody against AQP2-pS261 (1:2,000-
diluted, kindly provided by Dr. M. Knepper, NIH, Bethesda) took place overnight at 4�C. The signal was
amplified by 1:10,000-diluted biotinylated anti-rabbit IgGs and 1:8,000-diluted streptavidin-peroxidase
(HRP; Sigma, St. Louis, MO, U.S.A.). Semi-quantification was performed with an Epson Expression
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1640 XL (300dpi) using the software AIDA - Advanced Image Data Analyzer (V4.10.020; raytest Iso-
topemessgeräte GmbH). The experiment was done in duplicates.

Results Three different dDAVP concentrations were tested (10�6, 10�7 M, and 10�8 M, see Fig. 2).
The band intensities were quantified, averaged and normalized to 1. All three dDAVP concentrations
show a clear decrease in S261 phosphorylation. Fig. 2(a) shows phosphorylated S261 over time af-
ter treatment with 10�6 M dDAVP. The amount of phosphorylated S261 decreases until a minimum is
reached at 30 min. At the concentrations 10�7 M and 10�8 M dDAVP a slight increase can be detected
in the first 2 min. Afterwards the curve is decreasing, although not as smooth as at 10�6 M dDAVP. With
10�7 M dDAVP a plateau and with 10�8 M dDAVP a slight increasing peak can be measured at around
20 min. All three concentrations reach their minimum at 30 min and are slowly increasing afterwards.
The experiments were performed by myself in the laboratory of Prof. Deen (Radboud University Ni-
jmegen Medical Centre, Nijmegen, the Netherlands).

3 Model fitting results for the IMCD cell model without
negative feedback

The model as shown in Fig. 4.1 was used as a start. The negative feedback reaction representing the
existence of phosphodiesterases was deleted and parameter estimation was performed using the data set
from Stefan et al. [133]. The results are presented in Fig. 3.

4 Sensitivity analysis and time dependent sensitivity analysis
applied to the IMCD cell model with the new AQP2membrane

dataset produced by Klussmann et al.

After refitting the model for IMCD cells to the new dataset provided by Klussmann et al., the effect of
small changes of the initial parameter values on the amount of cAMP and AQP2membrane was investi-
gated 21 min after start of the simulation. The sensitivity coefficients of the parameters affecting cAMP
have similar values over time as by using the old dataset (for comparison, see Fig. 4.4 and Fig. 4). By
comparing the effect of a change of the parameters on AQP2membrane, one can observe that by using the
new dataset for model fitting, the sensitivity coefficient for k5 increases and of k6 decreases, slightly.
Furthermore and more prominent, the sensitivity coefficient of Ki6 (the inhibition constant for reaction
6) decreases. This indicates that the regulation of the AQP2 endocytosis might have a minor effect in
primary IMCD cells.
Time dependent sensitivity analysis was performed on the refitted model and the effect of small changes
of the model parameters on cAMP and AQP2membrane was analyzed (see Fig. 5).
The sensitivity coefficients of the parameters affecting cAMP have similar values over time as by using
the old dataset (compare Fig. 4.5 a) in the main text and Fig. 5 a) in this section)
In consistency with the sensitivity analysis performed in COPASI for time point 21 min, one could observe
that a change in the Ki6 has only a minor effect.
Due to the fact that AQP2membrane is increasing slower in the new compared to the old dataset, also the
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4 Sensitivity analysis and time dependent sensitivity analysis applied to the IMCD cell model

with the new AQP2membrane dataset produced by Klussmann et al.

(a)

(b)

(c)

Figure 2: Dephosphorylation of AQP2 at position S261. The cells were treated with different concentrations of
dDAVP for different durations (0, 1, 2, 5, 10, 20, 30, 90 min). The cells were lysed and immunoblotted for AQP2
phosphorylated at S261. a) 10�6 M, b) 10�7 M, c) 10�8 M.
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(a)

(b)

(c)

Figure 3: Model Fitting with COPASI: primary rat IMCD cell model without negative feedback (re2). a)
Fitting of intracellular cAMP time courses. The cells were treated with AVP (100 nM), rolipram, or a combina-
tion of both for the indicated time points. b) Reproduction of the PKA activity c) Fitting of membrane localized
AQP2. The experimental data were taken from Stefan et al. [133]. cAMP could be directly used for comparison,
PKAactive was assumed to have an initial value of 250 nM and AQP2membrane in % was calculated from the ratio of
intracellular/plasma membrane located AQP2.
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4 Sensitivity analysis and time dependent sensitivity analysis applied to the IMCD cell model

with the new AQP2membrane dataset produced by Klussmann et al.

Figure 4: Sensitivity analysis of the primary rat IMCD cell model fitted to the new AQP2membrane dataset
produced by Klussmann et al. Effect of small changes in the parameters on the model species at time point 21 min.
The normalized sensitivities were taken. The analysis was performed with COPASI.

time dependent sensitivity coefficients are different. By using the new dataset the effect of a change in k5
and k6 is less prominent at the beginning of the simulation, but increases over time.
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(a)

(b)

Figure 5: Time-dependent sensitivity analysis performed on complete IMCD cell model fitted to the new
dataset. Time-dependent sensitivity analysis was performed on the complete IMCD cell model as shown in Fig. 4.1
with the optimal set of parameters found by using the new dataset generated by Klussmann et al. a) Time-dependent
normalized response coefficients for all parameters in respect to cAMP, b) Time-dependent normalized response
coefficients for all parameters in respect to AQP2 in the membrane
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5 Cation homeostasis model as implemented in COPASI

5 Cation homeostasis model as implemented in COPASI
In Tab. 1 the algebraic and differential equations of the model are presented. The model was fitted to the
MIFE data set. The resulting initial conditions and estimated parameters containing an estimated high
LL

KK or an estimated high LS
HK value are presented in Tab. 2 and Tab. 3, respectively.

The parameters and initial conditions for the model fitted to the FLISE data are presented in Tab. 4.

6 MIFE - additional results
The model presented in Sec. 7.1 of the main text was fitted to the data from Shabala et al. (Fig. 7.1(a),
1000 replications, Particle Swarm algorithm, iteration limit 400, swarm size 40, standard deviation 1e-06,
Mersenne Twister with seed 0). The 50 best results were used for subsequent analysis. The k-means algo-
rithm as described in Sec. 6.1.1 was applied to cluster the simulation results of the corresponding models.
Here, no restrictions were made concerning the existence of a K+-ATPase. Only the phenomenologi-
cal coefficients involved in primary active transport (LS

HP, LA
HP, LS

KP, LA
KP) were allowed to change after

glucose. This model was able to reproduce the data from H+ and K+ fluxes best (see Fig. 7(a)) and
shows a high importance for a K+ inward directed pump (LA

KP). The parameter distribution is presented
in Fig. 6b), c) and d). Fig. 7(a) presents a knockout of the PMA1 (LA

HP = 0). The K+ flux is only slightly
affected. Instead if LKP = 0, representing a knockout of all potential K+-ATPases, no K+ flux can be
observed (see Fig. 6(b)). In Fig. 7(c), LL

KK was set to zero, representing DTrk1,2p mutant. This had not
effect on the fluxes. The same was observed for LS

HK = 0 (data not shown). Therefore, neither a K+

uniport, nor a K+/H+ symporter would play a role in the observed processes. Fig. 7(d) shows a positive
membrane potential for the wild-type strain after glucose addition.
Despite its availability to reproduce the experimental data, this model was assumed to be too artificial
given the currently available literature-based knowledge.
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2 ·LS
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2 ·LA
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LH,K = nS
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LH,Na = nS
HN ·nS

NH ·LS
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LH,AT P = nS
HP ·nS

PH ·LS
HP � nA

HP ·nA
PH ·LA
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LH,Cl = nS
HC ·nS

CH ·LS
HN � nA
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CH ·LA
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LK,K = LL
KK + nS

KH
2 ·LS

HK + nA
KH

2 ·LA
HK

LNa,Na = LL
NN + nS

NH
2 ·LS

HN + nA
NH

2 ·LA
HN

LCl,Cl = LL
CC + nS

CH
2 ·LS

HC + nA
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2 ·LA
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Table 1: Model as implemented in COPASI.
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6 MIFE - additional results

Global quantities and volumes Value Source
Vin 1.8 ·10�11 m3 Calculation
Vout 2.85 ·10�6 m3 Exp. condition
T 296 K Exp. condition
F 96,485 C/mol Faraday constant
Surface (of all cells) 2.29 ·10�05 m2 Calculation
Proton buffer capacity (pbc) 200 mM

pH Experimental observation
conversion factor (cf ) 1000 mM/M
K 1 ·10�6 estimated
c̄AT P 0.316 nM estimated
Dj -0.168 V estimated
Initial conditions Values Source
Hout 3.162 ·10�3 Exp. condition (pH 5.5)
Kout 0.1 Exp. condition
Clout 0.1 Exp. condition
ATP 2.48 mM estimated between 0 and 2.5 mM
ATPstimulus 2.5 Özalp et al. [95]
KClstimulus 0.01, 0.1, 1, 10 Exp. condition
pHin 5.51 estimated between 5 and 7
Kin 75.5 nM estimated between 60 and 100 nM
Clin 0.54 nM estimated between 0.1 and 10 nM
Nain 30 nM estimated between 5 and 30 nM
Naout 0.01 nM estimated between 0.01 and 0.1 nM
Phenomenological and Parameter values Source
stoichiometric coefficients
LL

KK 6.37 ·10�11 mol2/(J· m2· s) estimated
LA

HPinit
0 mol2/(J· m2· s) Assumption

LA
HPaG

0.001 mol2/(J· m2· s) estimated
LS

HC 1 ·10�9 mol2/(J· m2· s) estimated
nA

HP 1.36 estimated
nA

PH 1.4 estimated
nS

HC 1.27 estimated
nS

CH 1.02 estimated
kATPincr 10 estimated
kincr 1.09 ·10�9 mol2/(J· m2 · s2 ) estimated

Table 2: Initial concentrations, global quantities and volumes used for fitting the model to data from MIFE
experiments resulting in a high LL

KK value. Estimated model parameters for stress with 4 different concentrations
of KCl. Parameters for the model exhibiting a high LL

KK are presented. All other Ls and ns could be set to 0 without
affecting goodness of fit.
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Global quantities and volumes Value Source
Vin 1.8 ·10�11 m3 Calculation
Vout 2.85 ·10�6 m3 Exp. condition
T 296 K Exp. condition
F 96,485 C/mol Faraday constant
Surface (of all cells) 2.29 ·10�05 m2 Calculation
Proton buffer capacity (pbc) 200 mM

pH Experimental observation
conversion factor (cf ) 1000 mM/M
K 0.293899 estimated
c̄AT P 0.298098 nM estimated
Dj -0.124 V estimated
Initial conditions Values Source
Hout 3.162 ·10�3 Exp. condition (pH 5.5)
Kout 0.1 Exp. condition
Clout 0.1 Exp. condition
ATP 2.38 mM estimated between 0 and 2.5 mM
ATPstimulus 2.5 Özalp et al. [95]
KClstimulus 0.01, 0.1, 1, 10 Exp. condition
pHin 5.34 estimated between 5 and 7
Kin 99.9 nM estimated between 60 and 100 nM
Clin 0.37 nM estimated between 0.1 and 10 nM
Nain 14.3 nM estimated between 5 and 30 nM
Naout 0.087 nM estimated between 0.01 and 0.1 nM
Phenomenological and Parameter values Source
stoichiometric coefficients
LS

HK 8.3 ·10�12 mol2/(J· m2· s) estimated
LA

HPinit
0 mol2/(J· m2· s) Assumption

LA
HPaG

2.05265 ·10�7 mol2/(J· m2· s) estimated
LS

HC 1 ·10�7 mol2/(J· m2· s) estimated
nS

HK 1.3 estimated
nS

KH 2.9 estimated
nA

HP 1.9 estimated
nA

PH 1.0 estimated
nS

HC 1.4 estimated
nS

CH 1.1 estimated
kATPincr 1.84 ·10�2 mol/(m3· s) estimated
kincr 1.4 ·10�4 mol2/(J· m2 · s2 ) estimated

Table 3: Initial concentrations, global quantities and volumes used for fitting the model to data from MIFE
experiments resulting in a high LS

HK value. Estimated model parameters for stress with 4 different concentrations
of KCl. Parameters for the model exhibiting a high LS

HK are presented. All other Ls and ns could be set to 0 without
affecting goodness of fit.
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Global quantities and volumes Value Source
Vin 1.49�4.34 ·10�8 m3 Calculation, dependent on each experiment
Vout 2.12 ·10�6 m3 Exp. condition
T 296 K Exp. condition
F 96,485 C/mol Faraday constant
Surface (of all cells) 0.01990 - 0.05789 m2 Calculation, dependent on each experiment
Proton buffer capacity (pbc) 200 mM

pH Experimental observation
conversion factor (cf ) 1000 mM/M
K 2.08 estimated
c̄AT P 0.546 mM estimated
Dj -0.2, -0.17, -0.08, -0.58 V dependent on simulation
Initial conditions Values Source
Hout 2.76 ·10�2 Exp. condition (mean)
Kout 0.01, 0.1, 1, 10 mM Exp. condition
Clout 20 mM + Kout Exp. condition
ATP 1.2 estimated between 0 and 2.5 mM
ATPstimulus 2.5 Özalp et al. [95]
pHinnen 5.16 estimated between 5 and 7
Kin 100 mM estimated between 60 and 100 nM
Clin 3.1 mM estimated between 0.1 and 10 nM
Nain 5.3 mM estimated between 5 and 30 nM
Naout 0.09 mM estimated between 0.01 and 0.1 nM
Phenomenological Parameter Values Source
Coefficients
LL

KK 4.36 ·10�8 mol2/(J· m2· s) estimated
LA

HPinit
0 mol2/(J· m2· s) Assumption

LA
HPaG

1.18 ·10�12 mol2/(J· m2· s) estimated
LS

HC 2.36 ·10�8 mol2/(J· m2· s) estimated
nA

HP 2.98 estimated
nA

PH 2.71 estimated
nS

HC 1.04 estimated
nS

CH 2.50 estimated
kATPincr 1.2 mol/(m3·s) estimated
kincr 9.16 ·10�8 mol2/(J· m2 · s2 ) estimated

Table 4: Initial concentrations, global quantities and volumes, and estimated parameters for model fitted to
FLISE data. Estimated model parameters for stress with 4 different concentrations of KCl. All other Ls and ns
could be set to 0 without affecting goodness of fit.
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(a)

(b)

(c) (d)

Figure 6: Clustering and parameter analysis with the model including a K+-ATPase. The parameters of the
model including a K+-ATPase were estimated. Furthermore, it was restricted that the parameters do not change after
glucose addition, except for those involved in the primary active transport (LS

HP, LA
HP, LS

KP, LA
KP). Clustering with

the k-means algorithm was performed as described in Sec. 6.1.1. The simulations of all 4 KCl stimuli were clustered
simultaneously. The 50 best of 1000 estimations were used for clustering. a) shows the cluster with the best fit, b)
shows the parameter distribution for the individual transporters, c) shows the resulting composed Ls before and d)
after glucose addition. The log10 of the parameters is plotted. Mean and standard deviation of the parameters were
calculated after separating them into positive and negative values. Positive values, symporters or inward directed
pumps are colored in red, negative values, antiporters or outward directed pumps in blue.
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(a)

(b)

(c)

(d)

Figure 7: Predictions performed with the model including a K+-ATPase. The model including a K+-ATPase
was used to predict the knockout or inhibition of a) the Pma1p (LA

HP = 0), b) potential K+-ATPases (LK,AT P = 0), c)
the K+ uniport and leakage (LL

KK = 0). d) The model was used to predict the membrane potential for the wild-type
strain. Shown are the mean and standard deviation of the best cluster (n=2)

135





Bibliography

[1] P. Agre, G. M. Preston, B. L. Smith, J. S. Jung, S. Raina, C. Moon, W. B. Guggino, and S. Nielsen.
Aquaporin chip: the archetypal molecular water channel. Am J Physiol, 265(4 Pt 2):F463–F476,
Oct 1993.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the
Cell, Fourth Edition. Garland Science/Taylor & Francis LLC, 2002.

[3] J. Ariño, J. Ramos, and H. Sychrová. Alkali metal cation transport and homeostasis in yeasts.
Microbiol Mol Biol Rev, 74(1):95–120, 2010.

[4] B. Auclair, V. Nikonenko, C. Larchet, M. Métayer, and L. Dammak. Correlation between transport
parameters of ion-exchange membranes. Journal of Membrane Science, 195(1):89 – 102, 2002.

[5] M. Babey, P. Kopp, and G. L. Robertson. Familial forms of diabetes insipidus: clinical and molec-
ular characteristics. Nat Rev Endocrinol, 7(12):701–714, Dec 2011.

[6] M. A. Bañuelos, M. C. Ruiz, A. Jimenez, J. L. Souciet, S. Potier, and J. Ramos. Role of the Nha1
antiporter in regulating K(+) influx in Saccharomyces cerevisiae. Yeast, 19, 2002.

[7] M. Barberis, E. Klipp, M. Vanoni, and L. Alberghina. Cell size at s phase initiation: an emergent
property of the g1/s network. PLoS Comput Biol, 3(4):e64, Apr 2007.

[8] D. A. Beard. A biophysical model of the mitochondrial respiratory system and oxidative phospho-
rylation. PLoS Comput Biol, 1(4):e36, Sep 2005.

[9] B. Benito, B. Garciadeblás, P. Schreier, and A. Rodríguez-Navarro. Novel p-type atpases mediate
high-affinity potassium or sodium uptake in fungi. Eukaryot Cell, 3(2):359–368, Apr 2004.

[10] V. Bernier, J.-P. Morello, A. Zarruk, N. Debrand, A. Salahpour, M. Lonergan, M.-F. Arthus,
A. Laperrière, R. Brouard, M. Bouvier, and D. G. Bichet. Pharmacologic chaperones as a po-
tential treatment for x-linked nephrogenic diabetes insipidus. J Am Soc Nephrol, 17:232–243,
2006.

[11] A. Bertl, J. Ramos, J. Ludwig, H. Lichtenberg-Fraté, J. Reid, H. Bihler, F. Calero, P. Martínez, and
P. O. Ljungdahl. Characterization of potassium transport in wild-type and isogenic yeast strains
carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol, 47(3):767–780,
Feb 2003.

[12] H. Bihler, C. Slayman, and A. Bertl. Nsc1: A novel high-current inward rectifier for cations in the
plasma membrane of saccharomyces cerevisae. Febs Letters, 432:59–64, 1998.

137



Bibliography

[13] H. Bihler, C. L. Slayman, and A. Bertl. Low-affinity potassium uptake by saccharomyces cere-
visiae is mediated by nsc1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta,
1558(2):109–118, Feb 2002.

[14] M. Boone and P. M. T. Deen. Physiology and pathophysiology of the vasopressin-regulated renal
water reabsorption. Pflugers Arch, 456(6):1005–1024, Sep 2008.

[15] M. Boone, M. L. A. Kortenoeven, J. H. Robben, G. Tamma, and P. M. T. Deen. Counteracting
vasopressin-mediated water reabsorption by atp, dopamine, and phorbol esters: mechanisms of
action. Am J Physiol Renal Physiol, 300(3):F761–F771, Mar 2011.

[16] M. A. Cadnapaphornchai, S. N. Summer, S. Falk, J. M. Thurman, M. A. Knepper, and R. W.
Schrier. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am J
Physiol Renal Physiol, 285(5):F965–F971, Nov 2003.

[17] C.-L. Chou, B. M. Christensen, S. Frische, H. Vorum, R. A. Desai, J. D. Hoffert, P. de Lanerolle,
S. Nielsen, and M. A. Knepper. Non-muscle myosin ii and myosin light chain kinase are down-
stream targets for vasopressin signaling in the renal collecting duct. J Biol Chem, 279(47):49026–
49035, Nov 2004.

[18] C. L. Chou, K. P. Yip, L. Michea, K. Kador, J. D. Ferraris, J. B. Wade, and M. A. Knepper. Reg-
ulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. roles of ryanodine-
sensitive ca2+ stores and calmodulin. J Biol Chem, 275(47):36839–36846, Nov 2000.

[19] A. Cornish-Bowden. Fundamentals of Enzyme Kinetics. Portland Press Limited; Rev Sub edition,
1995.

[20] P. M. T. Deen, J. P. L. Rijss, S. M. Mulders, R. J. Errington, J. Van Baal, and C. H. Van
Os. Aquaporin-2 Transfection of Madin-Darby Canine Kidney Cells Reconstitutes Vasopressin-
Regulated Transcellular Osmotic Water Transport. J. Am. Soc. Nephrol., 8:1493–1501, 1997.

[21] P. M. T. Deen, B. W. Van Balkom, P. J. Savelkoul, E. J. Kamsteeg, M. Van Raak, M. L. Jennings,
T. R. Muth, V. Rajendran, and M. J. Caplan. Aquaporin-2: COOH terminus is necessary but not
sufficient for routing to the apical membrane. Am J Physiol Renal Physiol., 282:F330–40, 2002.

[22] S. DeGroot and P. Mazur. Non-Equilibrium Thermodynamics. Interscience, New York, 1962.

[23] Y. Demirel. Nonequilibrium Thermodynamics, Second Edition: Transport and Rate Processes in
Physical, Chemical and Biological Systems. Elsevier Science, 2007.

[24] A. A. Eddy and J. A. Barnett. A history of research on yeasts 11. the study of solute transport: the
first 90 years, simple and facilitated diffusion(1). Yeast, 24(12):1023–1059, Dec 2007.

[25] C. Fairman, X. Zhou, and C. Kung. Potassium uptake through the tok1 k+ channel in the budding
yeast. J Membr Biol, 168(2):149–157, Mar 1999.

[26] B. Flamion and K. R. Spring. Water permeability of apical and basolateral cell membranes of rat
inner medullary collecting duct. Am J Physiol, 259(6 Pt 2):F986–F999, Dec 1990.

138



Bibliography

[27] D. B. Fogel, L. J. Fogel, and J. W. Atmar. Meta-evolutionary programming. In 25th Asiloma
Conference on Signals, Systems and Computers. IEEE Computer Society, Asilomar , 540 - 545,
1992.

[28] E. W. Forgy. Cluster analysis of multivariate data: efficiency vs interpretability of classifications.
Biometrics, 21:768–769, 1965.

[29] M. Fröhlich, P. M. T. Deen, and E. Klipp. A systems biology approach: Modelling of aquaporin-2
trafficking. Genome Inform., 24:42–55, 2010.

[30] T. M. Fujiwara and D. G. Bichet. Molecular biology of hereditary diabetes insipidus. J Am Soc
Nephrol, 16(10):2836–2846, 2005.

[31] R. F. Gaber, C. A. Styles, and G. R. Fink. Trk1 encodes a plasma membrane protein required for
high-affinity potassium transport in saccharomyces cerevisiae. Mol Cell Biol, 8(7):2848–2859, Jul
1988.

[32] S. Gerber. In Silico Modeling of Cation Homeostasis in Saccharomyces cerevisiae. PhD thesis,
Humboldt-Universität zu Berlin, 2011.

[33] R. Glaser. Biophysics. Springer, 2000.

[34] A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D.
Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin,
and S. G. Oliver. Life with 6000 genes. Science, 274(5287):546, 563–546, 567, Oct 1996.

[35] D. Goldman. Potential, impedance and rectification in membranes. J Gen Physiol, 27:37–60,
1943.

[36] E. Grantcharova, J. Furkert, H. P. Reusch, H.-W. Krell, G. Papsdorf, M. Beyermann, R. Schulein,
W. Rosenthal, and A. Oksche. The extracellular n terminus of the endothelin b (etb) receptor
is cleaved by a metalloprotease in an agonist-dependent process. J Biol Chem, 277(46):43933–
43941, Nov 2002.

[37] R. Haro and A. Rodríguez-Navarro. Molecular analysis of the mechanism of potassium uptake
through the trk1 transporter of saccharomyces cerevisiae. Biochim Biophys Acta, 1564(1):114–
122, Aug 2002.

[38] R. Heinrich and T. A. Rapoport. A linear steady-state treatment of enzymatic chains. General
properties, control and effector strength. European Journal of Biochemistry, 42:89–95, 1974.

[39] A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on its dissoci-
ation curves. Journal of Physiology, 40:iv–vii, 1910.

[40] B. Hille. Ion Channels of Excitable Membranes. Sinauer Associates, 3rd edition edition, 2001.

[41] A. Hindmarsh. Odepack, a systematized collection of ode solvers. Scientific Computing, R. S.
Stepleman et al. (eds.), North-Holland, Amsterdam, IMACS Transactions on Scientific Computa-
tion, 1:55–64, 1983.

139



Bibliography

[42] J. D. Hoffert, R. A. Fenton, H. B. Moeller, B. Simons, D. Tchapyjnikov, B. W. McDill, M.-J.
Yu, T. Pisitkun, F. Chen, and M. A. Knepper. Vasopressin-stimulated increase in phosphorylation
at ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem, 283(36):24617–
24627, Sep 2008.

[43] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and
U. Kummer. COPASI - a COmplex PAthway SImulator. Bioinformatics, 83:3067–3074, 2006.

[44] M. D. Houslay and D. R. Adams. Pde4 camp phosphodiesterases: modular enzymes that orches-
trate signalling cross-talk, desensitization and compartmentalization. Biochem J, 370(Pt 1):1–18,
Feb 2003.

[45] http://www.thinkcopdifferently.com.

[46] J. Huling, D. Tchapyjnikov, A. N. Sachs, B. Ruttenberg, V. Jacob, G. Ma, J. D. Hoffert, T. Pisitkun,
and M. A. Knepper. Database of renal inner medullary collecting duct (imcd) proteins.

[47] B. Ingalls and H. Sauro. Sensitivity analysis of stoichiometric networks: an extension of metabolic
control analysis to non-steady state trajectories. Journal of Theoretical Biology, 222(1):23–36,
2003.

[48] D. A. Jans, P. Jans, H. Luzius, and F. Fahrenholz. Monensin-resistant llc-pk1 cell mutants are
affected in recycling of the adenylate cyclase-stimulating vasopressin v2-receptor. Mol Cell En-
docrinol, 81(1-3):165–174, Oct 1991.

[49] A. Jansson and M. Jirstrand. Biochemical modeling with Systems Biology Graphical Notation.
Drug Discovery Today, 2010. doi:10.1016/j.drudis.2010.02.012.

[50] M. D. Johnson, L. B. Kinter, and R. Beeuwkes. Effects of avp and ddavp on plasma renin activity
and electrolyte excretion in conscious dogs. Am J Physiol, 236(1):F66–F70, Jan 1979.

[51] D. Johnston and S. M.-S. Wu. Foundations of Cellular Neurophysiology. The MIT Press, 1994.

[52] D. S. Jones and B. D. Sleeman. Differential Equations and Mathematical Biology. Chapman and
Hall/CRC, 2003.

[53] H. Kacser and J. A. Burns. The control of flux. Symp. Soc. Exp. Biol., 27:65–104, 1973.

[54] M. Kahm, C. Navarrete, V. Llopis-Torregrosa, R. Herrera, L. Barreto, L. Yenush, J. Ariño,
J. Ramos, and M. Kschischo. Actuators of yeast potassium homeostasis revealed by mathematical
modeling. Manuscript in preparation.

[55] E. J. Kamsteeg, I. Heijnen, C. H. van Os, and P. M. Deen. The subcellular localization of an
aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated
monomers. J Cell Biol, 151(4):919–930, Nov 2000.

[56] E. J. Kamsteeg, G. Hendriks, M. Boone, I. B. Konings, V. Oorschot, P. van der Sluijs, J. Klumper-
man, and P. M. T. Deen. Short-chain ubiquitination mediates the regulated endocytosis of the
aquaporin-2 water channel. PNAS, 103:18344–18349, 2006.

140



Bibliography

[57] R. Karchin, K. Karplus, and D. Haussler. Classifying g-protein coupled receptors with support
vector machines. Bioinformatics, 18(1):147–159, Jan 2002.

[58] A. Katchalsky and P. Curran. Nonequilibrium Thermodynamics in Biophysics. Books in Bio-
physics, 1. Harvard Univ. Press, 1965.

[59] J. Keener and J. Sneyd. Mathematical Physiology. Springer, 1998.

[60] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proc. Conf. IEEE Int Neural Net-
works, volume 4, pages 1942–1948, 1995.

[61] K. A. Ketchum, W. J. Joiner, A. J. Sellers, L. K. Kaczmarek, and S. A. Goldstein. A new family
of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature,
376(6542):690–695, Aug 1995.

[62] H. Kitano. Foundations of Systems Biology. The MIT Press, 2009.

[63] E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, and R. Herwig. Systems Biology:
A Textbook. Wiley-VCH, 2009.

[64] E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, and S. Hohmann. Integrative model of the
response of yeast to osmotic shock. Nat Biotechnol, 23(8):975–982, Aug 2005.

[65] G. Kluge and G. Neugebauer. Grundlagen der Thermodynamik. Spektrum Akademischer Verlag,
1994.

[66] E. Klussmann, K. Maric, B. Wiesner, M. Beyermann, and W. Rosenthal. Protein kinase a anchoring
proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes
of renal principal cells. J Biol Chem, 274(8):4934–4938, Feb 1999.

[67] M. A. Knepper and S. Nielsen. Kinetic model of water and urea permeability regulation by vaso-
pressin in collecting duct. Am. J. Physiol., 265:F214–F224, 1993.

[68] C. H. Ko, A. M. Buckley, and R. F. Gaber. Trk2 is required for low affinity k+ transport in
saccharomyces cerevisiae. Genetics, 125(2):305–312, Jun 1990.

[69] C. H. Ko and R. F. Gaber. Trk1 and trk2 encode structurally related k+ transporters in saccha-
romyces cerevisiae. Mol Cell Biol, 11(8):4266–4273, Aug 1991.

[70] R. Kopperud, A. E. Christensen, E. Kjarland, K. Viste, H. Kleivdal, and S. O. Doskeland. For-
mation of Inactive cAMP-saturated Holoenzyme of cAMPdependent Protein Kinase under Physi-
ological Conditions. J. Biol. Chem., 277:13443–13448, 2002.

[71] T. Kuroda, H. Bihler, E. Bashi, C. L. Slayman, and A. Rivetta. Chloride channel function in the
yeast trk-potassium transporters. J Membr Biol, 198(3):177–192, Apr 2004.

[72] U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage
t4. Nature, 227(5259):680–685, Aug 1970.

141



Bibliography

[73] S. Lecchi, K. E. Allen, J. P. Pardo, A. B. Mason, and C. W. Slayman. Conformational changes
of yeast plasma membrane h(+)-atpase during activation by glucose: role of threonine-912 in the
carboxy-terminal tail. Biochemistry, 44(50):16624–16632, Dec 2005.

[74] S. Lecchi, C. J. Nelson, K. E. Allen, D. L. Swaney, K. L. Thompson, J. J. Coon, M. R. Sussman,
and C. W. Slayman. Tandem phosphorylation of ser-911 and thr-912 at the c terminus of yeast
plasma membrane h+-atpase leads to glucose-dependent activation. J Biol Chem, 282(49):35471–
35481, Dec 2007.

[75] F. Lesage, E. Guillemare, M. Fink, F. Duprat, M. Lazdunski, G. Romey, and J. Barhanin. A ph-
sensitive yeast outward rectifier k+ channel with two pore domains and novel gating properties. J
Biol Chem, 271(8):4183–4187, Feb 1996.

[76] J. Li, Y. Ning, W. Hedley, B. Saunders, Y. Chen, N. Tindill, T. Hannay, and S. Subramaniam. The
molecule pages database. Nature, 420(6916):716–717, Dec 2002.

[77] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE Trans. on
Communications, COM-28(1):84–95, Jan. 1980.

[78] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, B. Baltimore, and J. E. Darnell. Molekulare
Zellbiologie. Spektrum Akademischer Verlag, 2001.

[79] D. Lorenz, A. Krylov, D. Hahm, V. Hagen, W. Rosenthal, P. Pohl, and K. Maric. Cyclic amp is
sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO
Rep, 4(1):88–93, Jan 2003.

[80] J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M.
LeCam and J. Neyman, editors, Proc. of the 5th Berkeley Symp. on Mathematics Statistics and
Probability, 1967.

[81] K. Maric, A. Oksche, and W. Rosenthal. Aquaporin-2 expression in primary cultured rat inner
medullary collecting duct cells. Am J Physiol, 275(5 Pt 2):F796–F801, Nov 1998.

[82] P. Martinez and B. L. Persson. Identification, cloning and characterization of a derepressible na+-
coupled phosphate transporter in saccharomyces cerevisiae. Mol Gen Genet, 258(6):628–638, Jun
1998.

[83] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation, 8:3–
30, 1998.

[84] L. Michaelis and M. L. Menten. Die kinetik der invertinwirkung. Biochem. Z, 49(333-369):352,
1913.

[85] B. Michel, C. Lozano, M. Rodríguez, R. Coria, J. Ramírez, and A. Peña. The yeast potassium
transporter trk2 is able to substitute for trk1 in its biological function under low k and low ph
conditions. Yeast, 23(8):581–589, Jun 2006.

142



Bibliography

[86] C. Navarrete, S. Petrezsélyová, L. Barreto, J. L. Martínez, J. Zahrádka, J. Ariño, H. Sychrová,
and J. Ramos. Lack of main k+ uptake systems in saccharomyces cerevisiae cells affects yeast
performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res,
10(5):508–517, Aug 2010.

[87] P. I. Nedvetsky, V. Tabor, G. Tamma, S. Beulshausen, P. Skroblin, A. Kirschner, K. Mutig,
M. Boltzen, O. Petrucci, A. Vossenkämper, B. Wiesner, S. Bachmann, W. Rosenthal, and
E. Klussmann. Reciprocal regulation of aquaporin-2 abundance and degradation by protein ki-
nase a and p38-map kinase. J Am Soc Nephrol, 21(10):1645–1656, Oct 2010.

[88] P. I. Nedvetsky, G. Tamma, S. Beulshausen, G. Valenti, W. Rosenthal, and E. Klussman. Regula-
tion of aquaporin-2 trafficking. Aquaporins, Handbook of Experimental Pharmacology, 190:133–
157, 2009.

[89] I. A. Newman. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes
to characterize transporter function. Plant Cell Environ, 24(1):1–14, Jan 2001.

[90] S. Nielsen and M. A. Knepper. Vasopressin activates collecting duct urea transporters and water
channels by distinct physical processes. Am. J. Physiol., 265:F204–F213, 1993.

[91] B. Novak, J. J. Tyson, B. Gyorffy, and A. Csikasz-Nagy. Irreversible cell-cycle transitions are due
to systems-level feedback. Nat Cell Biol, 9(7):724–728, Jul 2007.

[92] K. Omori and J. Kotera. Overview of pdes and their regulation. Circ Res, 100(3):309–327, Feb
2007.

[93] L. Onsager. Reciprocal relations in irreversible processes i. Phys. Rev., 37(4):405–426, Feb 1931.

[94] R. Orij, S. Brul, and G. J. Smits. Intracellular ph is a tightly controlled signal in yeast. Biochim
Biophys Acta, Mar 2011.

[95] V. Özalp, T. Pedersen, L. Nielsen, and L. Olsen. Time-resolved measurements of intracellu-
lar atp in the yeast saccharomyces cerevisiae using a new type of nanobiosensor. J Biol Chem,
26(285(48)):37579–88, 2010.

[96] C. Palm, A. Wagner, and P. Gross. [Hypo- and hypernatremia]. Dtsch. Med. Wochenschr., 136:29–
33, 2011.

[97] B. O. Palsson. Systems Biology Properties of Reconstructed Networks. Cambridge University
Press, 2006.

[98] B. Pavan, C. Biondi, and A. Dalpiaz. Adenylyl cyclases as innovative therapeutic goals. Drug
Discov. Today, 14:982–991, 2009.

[99] D. S. Perlin, M. J. S. Francisco, C. W. Slayman, and B. P. Rosen. H+/atp stoichiometry of proton
pumps from neurospora crassa and escherichia coli. Arch Biochem Biophys, 248(1):53–61, Jul
1986.

[100] L. Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM Journal on Scientific and Statistical Computing, 4:136–148, 1983.

143



Bibliography

[101] R. Phillips, J. Kondev, and J. Theriot. Physical Biology of the Cell. Garland Science, 2008.

[102] S. Pierre, T. Eschenhagen, G. Geisslinger, and K. Scholich. Capturing adenylyl cyclases as poten-
tial drug targets. Nat Rev Drug Discov, 8:321–335, 2009.

[103] T. Pisitkun, J. D. Hoffert, M.-J. Yu, and M. A. Knepper. Tandem mass spectrometry in physiology.
Physiology (Bethesda), 22:390–400, Dec 2007.

[104] G. M. Preston, T. P. Carroll, W. B. Guggino, and P. Agre. Appearance of water channels in xenopus
oocytes expressing red cell chip28 protein. Science, 256(5055):385–387, Apr 1992.

[105] J. A. Ramirez, V. Vacata, J. H. McCusker, J. E. Haber, R. K. Mortimer, W. G. Owen, and H. Lecar.
Atp-sensitive k+ channels in a plasma membrane h+-atpase mutant of the yeast saccharomyces
cerevisiae. Proc Natl Acad Sci U S A, 86(20):7866–7870, Oct 1989.

[106] J. Ramos, R. Alijo, R. Haro, and A. Rodriguez-Navarro. Trk2 is not a low-affinity potassium
transporter in saccharomyces cerevisiae. J Bacteriol, 176(1):249–252, Jan 1994.

[107] J. Ramos, P. Contreras, and A. Rodríguez-Navarro. A potassium transport mutant of Saccha-
romyces cerevisiae. Archives of Microbiology, 143:88–93, 1985. 10.1007/BF00414774.

[108] S. I. Rapoport. The sodium-potassium exchange pump: relation of metabolism to electrical prop-
erties of the cell. Biophysical Journal, 10:246–259, 1970.

[109] M. Rep, M. Krantz, J. M. Thevelein, and S. Hohmann. The transcriptional response of saccha-
romyces cerevisiae to osmotic shock. hot1p and msn2p/msn4p are required for the induction of
subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem, 275(12):8290–8300,
Mar 2000.

[110] M. Rep, V. Reiser, U. Gartner, J. M. Thevelein, S. Hohmann, G. Ammerer, and H. Ruis. Osmotic
stress-induced gene expression in saccharomyces cerevisiae requires msn1p and the novel nuclear
factor hot1p. Mol Cell Biol, 19(8):5474–5485, Aug 1999.

[111] T. Rieg, T. Tang, F. Murray, J. Schroth, P. A. Insel, R. A. Fenton, H. K. Hammond, and V. Vallon.
Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking
in inner medulla. J. Am. Soc. Nephrol., 21:2059–2068, 2010.

[112] M. M. Rinschen, M.-J. Yu, G. Wang, E. S. Boja, J. D. Hoffert, T. Pisitkun, and M. A. Knep-
per. Quantitative phosphoproteomic analysis reveals vasopressin v2-receptor-dependent signaling
pathways in renal collecting duct cells. Proc Natl Acad Sci U S A, 107(8):3882–3887, Feb 2010.

[113] A. Rivetta, T. Kuroda, and C. Slayman. Anion currents in yeast k+ transporters (trk) characterize
a structural homologue of ligand-gated ion channels. Pflugers Arch, 462(2):315–330, Aug 2011.

[114] A. Rivetta, C. Slayman, and T. Kuroda. Quantitative modeling of chloride conductance in yeast
trk potassium transporters. Biophys J, 89(4):2412–2426, Oct 2005.

[115] J. H. Robben, N. V. A. M. Knoers, and P. M. T. Deen. Regulation of the Vasopressin V2 Receptor
by Vasopressin in Polarized Renal Collecting Duct Cells. Molecular Biology of the Cell, 15:5693–
5699, 2004.

144



Bibliography

[116] J. H. Robben, N. V. A. M. Knoers, and P. M. T. Deen. Cell biological aspects of the vasopressin
type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol
Renal Physiol, 291:F257–F270, 2006.

[117] J. H. Robben, M. L. Kortenoeven, M. Sze, C. Yae, G. Milligan, V. M. Oorschot, J. Klumperman,
N. V. Knoers, and P. M. Deen. Intracellular activation of vasopressin V2 receptor mutants in
nephrogenic diabetes insipidus by nonpeptide agonists. Proc. Natl. Acad. Sci. U.S.A., 106:12195–
12200, 2009.

[118] S. Roberts, G. Dixon, M. Fischer, and D. Sanders. A novel low-affinity h+-cl� co-transporter in
yeast: Characterization by patch clamp. Mycologia, 93(4):636–633, 2001.

[119] A. Rodríguez-Navarro. Potassium transport in fungi and plants. Biochim Biophys Acta, 1469(1):1–
30, Mar 2000.

[120] A. Rodríguez-Navarro and J. Ramos. Dual system for potassium transport in saccharomyces cere-
visiae. J Bacteriol, 159(3):940–945, Sep 1984.

[121] A. Ruiz and J. Ariño. Function and regulation of the saccharomyces cerevisiae ena sodium atpase
system. Eukaryot Cell, 6(12):2175–2183, Dec 2007.

[122] E. Sackmann and R. Merkel. Lehrbuch der Biophysik. Wiley-VCH, 2010.

[123] J. J. Saucerman, L. L. Brunton, A. P. Michailova, and A. D. McCulloch. Modeling beta-adrenergic
control of cardiac myocyte contractility in silico. J Biol Chem, 278(48):47997–48003, Nov 2003.

[124] J. Schaber, M. A. Adrover, E. Eriksson, S. Pelet, E. Petelenz-Kurdziel, D. Klein, F. Posas, M. Gok-
sör, M. Peter, S. Hohmann, and E. Klipp. Biophysical properties of saccharomyces cerevisiae and
their relationship with hog pathway activation. Eur Biophys J, 39(11):1547–1556, Oct 2010.

[125] R. W. Schrier. Body water homeostasis: clinical disorders of urinary dilution and concentration.
J. Am. Soc. Nephrol., 17:1820–1832, 2006.

[126] M. Schulz, B. M. Bakker, and E. Klipp. Tide: a software for the systematic scanning of drug
targets in kinetic network models. BMC Bioinformatics, 10:344, 2009.

[127] I. H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State
Enzyme Systems. Wiley-Interscience, 1993.

[128] R. Serrano. In vivo glucose activation of the yeast plasma membrane atpase. FEBS Lett, 156(1):11–
14, May 1983.

[129] D. Seto-Young and D. S. Perlin. Effect of membrane voltage on the plasma membrane H(+)-
ATPase of Saccharomyces cerevisiae. J. Biol. Chem., 266:1383–1389, 1991.

[130] C. Sette and M. Conti. Phosphorylation and Activation of a cAMP-specific Phosphodiesterase by
the cAMP-dependent Protein Kinase. J. Biol. Chem., 271:16526–16534, 1996.

[131] Smutzer. Yeast: An attractive, yet simple model. TheScientist, 15, 2001.

145



Bibliography

[132] R. A. Star, H. Nonoguchi, R. Balaban, and M. A. Knepper. Calcium and cyclic adenosine
monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J
Clin Invest., 81:1879–1888, 1988.

[133] E. Stefan, B. Wiesner, G. S. Baillie, R. Mollajew, V. Henn, D. Lorenz, J. Furkert, K. Santa-
maria, P. Nedvetsky, C. Hundsrucker, M. Beyermann, E. Krause, P. Pohl, I. Gall, A. N. MacIntyre,
S. Bachmann, M. D. Houslay, W. Rosenthal, and E. Klussmann. Compartmentalization of camp-
dependent signaling by phosphodiesterase-4d is involved in the regulation of vasopressin-mediated
water reabsorption in renal principal cells. J Am Soc Nephrol, 18(1):199–212, Jan 2007.

[134] S. Stoma, M. Fröhlich, S. Gerber, and E. Klipp. Stse: Spatio-temporal simulation environment
dedicated to biology. BMC Bioinformatics, 12:126, 2011.

[135] H. H. Stone, L. D. Kolb, C. A. Currie, C. E. Geheber, and J. Z. Cuzzell. Candida sepsis: patho-
genesis and principles of treatments. Ann Surg, 179(5):697–711, May 1974.

[136] T.-X. Sun, A. V. Hoek, Y. Huang, R. Bouley, M. McLaughlin, and D. Brown. Aquaporin-2 lo-
calization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J
Physiol Renal Physiol, 282(6):F998–1011, Jun 2002.

[137] H. Sychrová. Yeast as a model organism to study transport and homeostasis of alkali metal cations.
Physiol Res, 53 Suppl 1:S91–S98, 2004.

[138] H. Sychrová, J. Ramírez, and A. Peña. Involvement of nha1 antiporter in regulation of intracellular
ph in saccharomyces cerevisiae. FEMS Microbiol Lett, 171(2):167–172, Feb 1999.

[139] M. J. Tamás, M. Rep, J. M. Thevelein, and S. Hohmann. Stimulation of the yeast high osmolarity
glycerol (hog) pathway: evidence for a signal generated by a change in turgor rather than by water
stress. FEBS Lett, 472(1):159–165, Apr 2000.

[140] G. Tamma, J. H. Robben, C. Trimpert, M. Boone, and P. M. T. Deen. Regulation of aqp2 lo-
calization by s256 and s261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol,
300(3):C636–C646, Mar 2011.

[141] B. Teusink, J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. van der Weijden, M. Schepper, M. C.
Walsh, B. M. Bakker, K. van Dam, H. V. Westerhoff, and J. L. Snoep. Can yeast glycolysis be
understood in terms of in vitro kinetics of the constituent enzymes? testing biochemistry. Eur J
Biochem, 267(17):5313–5329, Sep 2000.

[142] U. Theobald, W. Mailinger, M. Baltes, M. Rizzi, and M. Reuss. In vivo analysis of metabolic dy-
namics in saccharomyces cerevisiae : I. experimental observations. Biotechnol Bioeng, 55(2):305–
316, Jul 1997.

[143] B. W. M. van Balkom, P. J. M. Savelkoul, D. Markovich, E. Hofman, S. Nielsen, P. van der Sluijs,
and P. M. T. Deen. The role of putative phosphorylation sites in the targeting and shuttling of the
aquaporin-2 water channel. J Biol Chem, 277(44):41473–41479, Nov 2002.

[144] P. Vergani, T. Miosga, S. M. Jarvis, and M. R. Blatt. Extracellular k+ and ba2+ mediate voltage-
dependent inactivation of the outward-rectifying k+ channel encoded by the yeast gene tok1. FEBS
Lett, 405(3):337–344, Apr 1997.

146



Bibliography

[145] P. Waage and C. Guldberg. Studies concerning affinity. Forhandlinger: Videnskabs-Selskabet,
Christiana, page pp 35, 1864.

[146] A. R. Waldeck, K. van Dam, J. Berden, and P. W. Kuchel. A non-equilibrium thermodynamics
model of reconstituted ca(2+)-atpase. Eur Biophys J, 27(3):255–262, 1998.

[147] G. Wiesenberger, K. Steinleitner, R. Malli, W. F. Graier, J. Vormann, R. J. Schweyen, and J. A.
Stadler. Mg2+ deprivation elicits rapid ca2+ uptake and activates ca2+/calcineurin signaling in
saccharomyces cerevisiae. Eukaryot Cell, 6(4):592–599, Apr 2007.

[148] M. Wilchek and E. A. Bayer. The avidin-biotin complex in bioanalytical applications. Anal.
Biochem., 171:1–32, 1988.

[149] D. J. Wilkinson. Stochastic Modelling for Systems Biology (second edition). CRC Press, 2012.

[150] Wolfram Research, Inc. Mathematica 7.0, 2008.

[151] O. V. Wuytswinkel, V. Reiser, M. Siderius, M. C. Kelders, G. Ammerer, H. Ruis, and W. H. Mager.
Response of saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation
mechanism of the hog map kinase pathway. Mol Microbiol, 37(2):382–397, Jul 2000.

[152] L. Xie, J. D. Hoffert, C. L. Chou, M. J. Yu, T. Pisitkun, M. A. Knepper, and R. A. Fenton. Quan-
titative analysis of aquaporin-2 phosphorylation. Am J Physiol Renal Physiol., 298:F1018–23,
2010.

[153] L. Yenush, S. Merchan, J. Holmes, and R. Serrano. ph-responsive, posttranslational regulation of
the trk1 potassium transporter by the type 1-related ppz1 phosphatase. Mol Cell Biol, 25(19):8683–
8692, Oct 2005.

[154] K.-P. Yip. Coupling of vasopressin-induced intracellular ca2+ mobilization and apical exocytosis
in perfused rat kidney collecting duct. J Physiol, 538(Pt 3):891–899, Feb 2002.

[155] J. Zhang, C. J. Hupfeld, S. S. Taylor, J. M. Olefsky, and R. Y. Tsien. Insulin disrupts beta-
adrenergic signalling to protein kinase a in adipocytes. Nature, 437(7058):569–573, Sep 2005.

[156] R. A. Zvyagilskaya, F. Lundh, D. Samyn, J. Pattison-Granberg, J.-M. Mouillon, Y. Popova, J. M.
Thevelein, and B. L. Persson. Characterization of the pho89 phosphate transporter by functional
hyperexpression in saccharomyces cerevisiae. FEMS Yeast Res, 8(5):685–696, Aug 2008.

147





List of Figures

1.1 Regulation of AQP2 trafficking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Activation of a G-protein coupled receptor. . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 cAMP synthesis and degradation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Activation of PKA by cAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Different phosphorylation sites at the C terminus of AQP2 . . . . . . . . . . . . . . . . 16
1.6 Data set from Deen et al. [20] based on experiments performed with MDCK cells. . . . . 17
1.7 Data set from Stefan et al. [133] based on experiments performed with primary rat IMCD

cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Concentration response coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Workflow: cell surface biotinylation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 The MDCK cell model, using the Systems Biology Graphical Notation (SBGN). . . . . 28
3.2 Parameter estimation with the old and the new data set. . . . . . . . . . . . . . . . . . . 30
3.3 Generating of variants of the MDCK cell model. . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Ranking of variants of the MDCK cell model. . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Sensitivity analysis of the MDCK cell model. . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Time-dependent sensitivity analysis performed with the MDCK cell model. . . . . . . . 33
3.7 Cell surface biotinylation on MDCK cells . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Cell surface biotinylation performed on MDCK cells . . . . . . . . . . . . . . . . . . . 35
3.9 Prediction of AQP2membrane over time at different dDAVP concentrations using the MDCK

cell model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Prediction of cAMP concentration over time at different dDAVP concentrations using the

MDCK cell model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.11 Identification of potential drug targets with TIde. . . . . . . . . . . . . . . . . . . . . . 40
3.12 Analysis of drug combinations for medical case 1 and 2. . . . . . . . . . . . . . . . . . 41
3.13 Analysis of drug combinations for medical case 1. . . . . . . . . . . . . . . . . . . . . . 42

4.1 IMCD cell model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Parameter estimation: primary rat IMCD cells . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Ranking of model variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Sensitivity analysis of the primary rat IMCD cell model. . . . . . . . . . . . . . . . . . 53
4.5 Time-dependent sensitivity analysis performed with IMCD cell model. . . . . . . . . . . 54
4.6 Prediction of AQP2membrane in primary rat IMCD cells . . . . . . . . . . . . . . . . . . 55
4.7 Ratio of AQP2 plasma membrane/intracellular fluorescence signal intensity in primary

rat IMCD cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Comparison of model and experiment for AQP2 localization in IMCD cells . . . . . . . 57

149



List of Figures

4.9 Simulation of AQP2membrane in primary rat IMCD cells and comparison between the Ste-
fan et al. and the new data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 Comparison of model and experiment for AQP2 localization in IMCD cells (after addi-
tional parameter estimation by using the new data set provided by Klussmann et al.) . . . 59

4.11 Simulation of AQP2membrane after estimation of the parameters with the new data set. . . 60

5.1 Schematic yeast cell including the major cation transport proteins of the cellular plasma
membrane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Data resulting from MIFE and FLISE experiments on S. cerevisiae wild-type. . . . . . . 101
7.2 Simulation with model fitted to MIFE data. . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 Clustering and parameter analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4 In silico predictions using the model fitted to the Shabala data. . . . . . . . . . . . . . . 106
7.5 Analysis of individual forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Prediction of second KCl stimulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 Simulation with model fitted to FLISE data. . . . . . . . . . . . . . . . . . . . . . . . . 111

1 Dependency of AQP2total on AQP2membrane . . . . . . . . . . . . . . . . . . . . . . . . . 123
2 Dephosphorylation of AQP2 at position S261. . . . . . . . . . . . . . . . . . . . . . . . 125
3 Model Fitting with COPASI: primary rat IMCD cell model without negative feedback . . 126
4 Sensitivity analysis of the primary rat IMCD cell model with new dataset. . . . . . . . . 127
5 Time-dependent sensitivity analysis performed on complete IMCD cell model fitted to

the new dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6 Clustering and parameter analysis with the model including a K+-ATPase. . . . . . . . . 134
7 Predictions performed with the model including a K+-ATPase. . . . . . . . . . . . . . . 135

150



List of Tables

3.1 Algebraic and differential equations describing the model for MDCK cells. . . . . . . . 28
3.2 Estimated model parameters for the complete MDCK model. . . . . . . . . . . . . . . . 29

4.1 Algebraic and differential equations describing the model for primary rat IMCD cells. . . 49
4.2 Parameters for primary rat IMCD cell model. . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Comparison between the results from the MDCK and the rat IMCD cell model. . . . . . 67

7.1 Connection between the Ls and the proteins . . . . . . . . . . . . . . . . . . . . . . . . 97

1 Model as implemented in COPASI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2 Initial concentrations, global quantities and volumes used for fitting the model to data

from MIFE experiments resulting in a high LL
KK value. . . . . . . . . . . . . . . . . . . 131

3 Initial concentrations, global quantities and volumes used for fitting the model to data
from MIFE experiments resulting in a high LS

HK value. . . . . . . . . . . . . . . . . . . 132
4 Initial concentrations, global quantities and volumes, and estimated parameters for model

fitted to FLISE data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

151





List of publications

Publications

M. Fröhlich, P. M. T. Deen and E. Klipp, A Systems Biology Approach: Modelling of Aquaporin-2 Traf-
ficking, Genome Inform. 2010;24:42-55.

Szymon Stoma, Martina Fröhlich, Susanne Gerber, Edda Klipp, STSE: Spatio-Temporal Simulation En-
vironment Dedicated to Biology, BMC Bioinformatics, 2011, 12(1):126

Martina Fröhlich, Susanne Gerber, Hella Lichtenberg-Fraté, Jost Ludwig, Sergey Shabala, and Edda
Klipp, A basic thermodynamic model of cation homeostasis in the yeast Saccharomyces cerevisiae,
manuscript in preparation.

Talks and presentations

07/2010 “The Tenth Annual International Workshop on Bioinformatics and Systems Bio-
logy”, Kyoto, Japan

09/2009 “The 10th International Conference on Systems Biology” (Poster), Stanford,
USA

07/2009 “The Ninth Annual International Workshop on Bioinformatics and Systems Bio-
logy” (Poster), Boston, USA

09/2008 “Global Researcher Conference of the NDI Foundation” (Poster), Amelia Island,
USA

08/2008 “The 9th International Conference on Systems Biology” (Poster), Gothenburg,
Sweden

05/2008 “Conference on Systems Biology of Mammalian Cells” (Poster), Dresden, Ger-
many

04/2008 Seventh Hiddensee Workshop “Genomics and Systems Biology of Molecular
Networks”, Hiddensee, Germany

2008 - 2010 Oral presentations of the ongoing work on the biannual meetings of the Marie
Curie Research Training Network in Aquaglyceroporin research and the SysMo
(Systems Biology of Microorganisms) ERA-NET project TRANSLUCENT.

Berlin, May 16, 2012

153



CURRICULUM VITAE

For reasons of data protection, the Curriculum vitae is not published in the online version.

154



155





Zusammenfassung

Membranen sind mehr als einfache Barrieren zwischen Zellen und ihrer Umgebung. Sie dienen sowohl
zum Schutz der Zelle, ermöglichen aber auch den Austausch von Substanzen. Für diese Arbeit wurden
zwei Aspekte des Membrantransports untersucht, zum einen der Transport von Wasser und zum anderen
der Transport von Ionen, insbesondere von Kationen.
Zur Untersuchung des Wassertransports wurden Säugernierenzellen als biologisches Modellsystem herange-
zogen. Es wurde ein Ansatz angewendet, der biologische Experimente mit der Generierung eines math-
ematischen Modells kombiniert. Dieser Ansatz wurde dazu verwendet, den intrazellulären Signalweg zu
untersuchen, welcher die Menge des Wasserkanals Aquaporin-2 in der Membran der Nierenzellen reg-
uliert. Aus Experimenten an Ratten- und Hundenierenzellen gewonnene Daten wurden zur Schätzung
der Modellparameter herangezogen. Dies ermöglichte die Erstellung von spezies-spezifischen Modellen.
Die Modelle wurden zur Untersuchung der zeitabhängigen Dynamik des Systems verwendet und wie
folgt analysiert. Durch Eliminieren von Reaktionen und anschließender Parameterschätzung wurden ver-
schiedene Modellvarianten generiert. Diese wurden, in Anhängigkeit davon, wie gut sie die biologis-
chen Daten wiedergeben konnten, sortiert. Die Ergebnisse zeigten, dass in Nierenzellen unterschiedlicher
Herkunft verschiedene Reaktionen wichtig sind und identifizierten jeweils diejenigen Reaktionen, die für
das zeitabhängige Verhalten des Systems entscheidend sind. Eine Sensitivitätsanalyse wurde durchgeführt
und zeigte, dass Veränderungen in den direkt am Translokationsmechanismus beteiligten Reaktionen den
größten Einfluss auf die zelluläre Verteilung von Aquaporin-2 haben. Basierend auf den Kenntnissen über
Funktionsstörungen der Wasserhomöostase wurden medizinische Fallbeispiele erzeugt. Mithilfe des auf
Hundenierenzellen basierenden Modells wurde eine für den jeweiligen Fall geeignete Behandlung iden-
tifiziert.
Da viele Membrantransportsysteme von Hefe sehr ähnlich zu denen höheren Organismen sind, wurde
die Regulierung des Kationentransports in der Hefe Saccharomyces cerevisiae untersucht. Die Theo-
rie der linearen Nichtgleichgewichtsthermodynamik wurde dazu verwendet, thermodynamische Modelle
der Kationenhomöostase zu erstellen. Dieser Ansatz ermöglichte die Modellierung passiver Ionenflüsse
angetrieben durch elektrochemische Potentialdifferenzen sowie primär und sekundär aktive Transport-
prozesse durch Symport, Antiport oder ATPasen. Biologische Daten für Kalium- und Protonenflüsse aus
MIFE- und FLISE-Experimenten (nicht-invasive Techniken zur Messung von transmembranen Ionen-
flüssen) wurden zur Schätzung der Modellparameter herangezogen. Das Modell wurde dazu verwendet,
Vorhersagen über zusätzliche Ionenflüsse zu machen und identifizierte Chloridflüsse als mögliche Kandi-
daten. Die Trk1/2p- und Pma1p-Dynamik wurde in Mutations- und Inhibierungs-Experimenten in silico
untersucht. Des Weiteren wurde das Modell dazu genutzt, das Verhalten der Zellen bei aufeinanderfolgen-
den Salzstressen zu analysieren und sagte reduzierte Ionenflüsse bei Zellen mit einem höheren primären
Stimulus voraus.
Die durchgeführten Untersuchungen verdeutlichen die Anwendbarkeit von mathematischer und thermo-
dynamischer Modellierung auf Membrantransportprozesse. Die Vorhersagen des Modells bieten wertvolle
Anhaltspunkte zur Planung und Durchführung zukünftiger Experimente.
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