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Zusammenfassung

SeqAn ist eine Programmbibliothek effizienter Algorithmen und Datenstruk-
turen zur Sequenzanalyse, d.h. zur Verarbeitung grofer Mengen biomedizi-
nischer Daten, insbesondere von Gen- und Proteinsequenzen. Die Entwick-
lung dieser Bibliothek zielt auf zwei Gruppen von Anwendern ab: Zum einen
soll sie Programmierern bei der Entwicklung neuer Softwarewerkzeuge helfen.
Derartige Softwarewerkzeuge sind unabdingbar fiir die biologische und medi-
zinische Forschung. Zum anderen sollen Algorithmendesigner die Bibliothek
als eine Grundlage fiir Entwicklung, Test und Vergleich von Algorithmen ver-
wenden konnen. Das Projekt versucht also, einen ingenieurwissenschaftlichen
Beitrag zur Bioinformatik zu leisten, und will damit letztlich der naturwis-
senschaftlichen Forschung im Bereich der Lebenswissenschaften dienen.

Eine ausfiihrlichere Zusammenfassung des SeqAn-Projekts und des Inhalts
dieser Arbeit findet sich in Kapitel 3. Welchen Beitrag der Autor bei der
Entwicklung der Bibliothek geleistet hat, wird in Abschnitt 3.3 erklart.

Abstract

SeqAn is a library of efficient algorithms and data structures for sequence anal-
ysis, which means processing large amounts of biomedical data like DNA or
proteine sequences. The library was developed for two groups of users: Soft-
ware engineers can use it for the implementation of new software tools. Such
tools are essential for biological and medical research. Algorithm designers may
also use the library as a platform for the development, testing and comparison
of algorithms. The project therefore contributes to bioinformatics engineering
with the eventual purpose to promote the scientific research in life science.

A more detailed abstract of the SeqAn project and the contents of this thesis
is provided in Chapter 3. The author’s contribution to the development of the
library is given in Section 3.3.
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Part 1

Background

In this part, we will first discuss in Chapter 1 the role of sequence analysis
in the life sciences. Chapter 2 explains how software libraries could facilitate
the development of new software tools and algorithms for sequence analysis. A
review of related work in Section 2.2 reveals that SeqAn is the only software
library available that focus explicitely on the development of highly performant
sequence analysis software by providing a comprehensive collection of the com-
mon algorithmic components and data structures. Chapter 3 gives a short
overview of the SeqAn project.
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Chapter 1

Sequence Analysis

1.1 Sequences in Bioinformatics

Sequences play a major role in biology as a means of abstraction. For ex-
ample deozyribonucleic acid (DNA), the carrier of genetic information in the
nucleus, as well as proteins, a main ingredient of the cell responsible for most
biological activity, can be represented as sequences over an alphabet of four,
respectively twenty characters. This is due to the fact that those molecules
are biopolymers, large organic molecules assembled from small building blocks
called ‘monomers’, which are all of the same kind and linked together to long
chains. The monomers of nucleic acids like DNA or RNA (ribonucleic acid) are
nucleotides, and each nucleotide contains one out of four possible nucleobases.
The structure of a nucleic acid strand is therefore defined by the actual se-
quence of bases in its nucleotides. Proteins on the other hand are composed of
amino acids. In natural proteins, twenty different kinds of amino acid occur.
They all have a phosphate backbone and differ in their residues. In proteins,
these amino acids may occur in any order and number. We call the information
about the succession of the monomers in a nucleic acid and protein its biological
sequence, and thus we consider these biopolymers a kind of ‘storage’ for this
information. Many functions which are fulfilled by biopolymers like nucleic
acids and proteins depend on their sequence composition. A DNA sequence
for example encodes genes, which are construction plans for proteins. The cell
first transcribes the genes into messenger RNA (mRNA), which is then, after
some modifications, translated into a peptide, where every three nucleobases
form a ‘codon’ that corresponds to one specific amino acid in the synthesized
protein. The sequence of nucleotides in the DNA therefore defines the order of
amino acids in the protein, which further specifies the three-dimensional shape
the protein folds into. RNA may also fold into a structure that is crucial to ful-
fill its purposes in the cell. Moreover the degree of molecular binding between
proteins and nucleic acids depends on their sequences; the protein synthesis
for example involves certain proteins that can ‘dock’ only on specific patterns
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in the DNA.

A deeper understanding of biological processes thus requires a broad knowl-
edge of the biomolecule sequences, and in the last decades a lot of research
was aimed to decode those sequences. The most prominent projects in this
field were certainly the Human Genome Project (International Human Genome
Sequencing Consortium 2001) and its counterpart by Celera Genomics (Ven-
ter et al. 2001) which both aimed to sequence the entire human genome.
Decrypted biological sequences are deposited in public databases as strings,
i.e. ordered sequences of characters from a finite alphabet 3. The succes-
sion of bases in a DNA can for example be stored in a string of the alphabet
Y. = {A,C,G, T}, where each letter stands for one nucleic base, e.g. ‘A’ for
‘adenine’. Figure 1 shows the rapid progression of the data volume deposited

nucleotides amino acids
101 109
10'\0

/ " g
109

/ 107
108

107 —V—/—F—"—F—F—"—"—T——T T 106 H——F—"—"—"+—"—"—"T"—"7+—"7——T—
1987 1990 1993 1996 1999 2002 2005 2008 1987 1990 1993 1996 1999 2002 2005 2008

Figure 1: Sequence Database Growth. Left: Total number of bases stored in GenBank
from the beginning of the year 1987 to the end of 2008. Right: Total number of million
residues that were stored in UniProtKB/Swiss-Prot database during the same period.
The data were taken from the release notes. Note the logarithmical scale.

in GenBank (Benson et al. 2008) and UniProtKB/Swiss-Prot (UniProt Con-
sortium 2008). The number of nucleotides stored in GenBank has doubled
approximately every 20 months and thus risen in two decades by four orders
of magnitude. The protein database Swiss-Prot grew somewhat slower: From
the beginning of the nineties, the amount of amino acids increased about 20%
per year, i.e. it doubles every four years.

Lately, several new sequencing technologies like ‘pyrosequencing’ (also known
as Roche/454 sequencing; Margulies et al. 2005) or ‘sequencing-by-synthesis’
(also known as Illumina/Solexa technology; Bentley 2006) were invented, and
they allow a much higher throughput than previous approaches. Hence, the
size of the databases is expected to grow even faster in the future, since the
availability and decreasing cost of sequencing open the door to new applications
in metagenomics or personalized medicine. The analysis of these data may help
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to explain processes in the cell, like the regulation of gene expression, and this
understanding offers the opportunity to develop new treatments of diseases or
improved agricultural crops, and it will give us deeper insights into evolution.

1.2 Sequence Analysis Examples

Sequence analysis is the processing of biological sequences by means of bioin-
formatics algorithms and data structures. The typical objective of sequence
analysis is to answer questions from biological or medical research. In this
section, we will present several examples of sequence analysis tasks as well as
some common tools for sequence analysis.

1.2.1 Sequence Assembly

All known methods for determining biological sequences are only capable to
directly decrypt sequences of limited lengths. We need sequence analysis algo-
rithms to produce longer sequences. For example, the first sequencing of the
human genome (Venter et al. 2001; International Human Genome Sequencing
Consortium 2001) was based on the chain-termination sequencing technique
(Sanger et al. 1977) which is only capable to produce sequence reads shorter
than a thousand nucleotides. For longer sequences a procedure called ‘shot-
gun sequencing’ proved to be viable, and it is able to determine even the
sequences of whole eucaryotic genomes (‘whole-genome shotgun sequencing’,
Staden 1997; see also Istrail et al. 2004). This method randomly samples and
sequences fragments from the DNA such that on average any part is covered
several times. The resulting sequence reads are then assembled by means of
sequence analysis methods to get the complete sequence. This is not trivial,
because errors occur during the sequencing of the reads, it is not clear which
strand of the double-helix the read stems from, and because genomes are highly
repetitive.

A first step in sequence assembly is usually to compute overlap alignments be-
tween the reads, for example by a dynamic programming alignment algorithm
(see Section 9.5.4 on page 92). If two reads significantly overlap, then they
putatively originate from the same location. For large numbers of reads, the
computation of all needed overlap alignments could be accelerated by applying
filtering. For example one could limit the search for overlapping candidates
to those pairs of reads that share at least a given number of common ¢-grams
(see Section 12.1.1 on page 142). The question is then how to conclude from
the overlapping reads to the putative complete sequence. Usually several pro-
cessing steps are necessary for computing a final consensus sequence (see e.g.
Huson et al. 2001). Sequence assembly is especially hard for DNA that con-
tains long repeats, since all reads that stem from repetitive regions cannot be
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g 2 DNA Strand
H H 1

' ' Fragments

— |

\
M Reads
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GATAAC ety ACGACC ¢
CCAATA e CGTACG A bi
TACTGA ............................... CACGAC
GAGTTA e TCCAAT Ssembly
ACCGAG: o coeees CTCATC AATATT +oovveeeenees ACGTAA
TTACTG ooy AATATT ‘l'
ACCGAGTTACTGATAACTCATCCAATATTNNCACGACCCGTACGTAA Sequence

Figure 2: Double-Barrel Shotgun Sequencing. Fragments of a DNA strand are se-
quenced from both sides. The sequence assembly problem is to reconstruct the sequence
of the DNA from the sequences of the reads.

definitely assigned to a single position. In this situation it could be helpful
to apply ‘double-barrel’ shotgun sequencing, that is to sequence both ends of
fragments that have a fixed length of several thousand nucleotides, see Fig-
ure 2. From that we get pairs of sequence reads with a certain distance in
between, so if one of these reads falls into a repeat region, it could still be
possible to determine its real position relative to its mate read. There are
several de-novo sequence assemblers available; some of the more recent tools
can even handle the rather short reads that are generated by next-generation
sequencing technologies (e.g. Dohm et al. 2007; Zerbino and Birney 2008).

1.2.2 BLAST: Finding Similar Regions

Searching is probably the most basic operation in sequence analysis, and a
program called ‘Basic Local Alignment Search Tool (BLAST, Altschul et al.
1990) has become the most widely used sequence analysis tool in bioscience.
Comparable tools like for example FASTA (Pearson 1990) or BLAT (Kent 2002)
are less popular. BLAST is a heuristic for finding optimal local alignments
(Section 11.1) in two input sequences a and b. That means it searches similar
substrings in a and b, where the similarity (Section 9.3.2 on page 85) between
two strings is defined by the score of an optimal alignment between them.
The longer the strings are and the less they differ, the higher is this score.
BLAST does not only compute similar regions and scores, but it also estimates
a statistical significance, i.e. it computes the probability for finding similar
regions of a certain length in two uncorrelated sequences a and b simply by
chance (Karlin and Altschul 1990). If this probability is very small, then we
can conclude that the regions in a and b are probably correlated and there
must be a reason for their similarity. Since BLAST runs very fast, it has
turned out to be an extremely useful tool in practice, and therefore the paper
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by Altschul, Gish, Miller, Myers, and Lipman (1990) became one of the most
cited publications in science history. There are several variants (e.g.‘blastp’
for Proteins or ‘blastn’ for DNA) and implementations (e.g.NCBI-BLAST or
WU-BLAST) of the tool.

In short, the algorithm works as follows: BLAST first searches for seeds (Sec-
tion 9.6.1), which are highly similar regions as for example exactly matching
substrings of a certain length ¢ (‘g-grams’). This means that BLAST finds only
those local alignments that contain a seed, so it will find more alignments if
the seed length ¢ is reduced, although this will also slow down the search. The
seeds may be found e.g. by an automaton (Section 13.1) or a g-gram hash
index (Section 12.1). Each seed is extended in both directions by a X -drop
extension (Section 11.2.1). The resulting local alignment is stored if it exceeds
a certain level of quality. In the end, the best local alignments are printed out.
SeqAn supports data structures and algorithms both for finding and extending
seeds (Section 9.6.1 and 11.2), as well as functions for parsing the output of
standard BLAST tool.

1.2.3 CLUSTAL W: Aligning Multiple Sequences

Among the most important tasks in sequence analysis is the alignment of se-
quences (Section 9.2): The sequences written one below the other form the
rows of a matrix, and blank characters are inserted into these rows such that
similar parts of the sequences are grouped together. The more matching char-
acters stand in the same columns and the less blanks we needed to insert, the
higher is usually the score of the alignment (Section 9.3.1). Alignments may
explain a lot about sequences, since they reveal both the similarities between
them but also the small differences within these similarities. If the sequences
for example originate from different species, then the optimal alignment can
be used to infer their phylogenetic relationship.

We will show in Section 9.5.1 how to compute an optimal alignment between
two sequences by dynamic programming in quadratic time. Unfortunately, the
runtime of grows exponentially for increasing numbers of sequences, and it
was shown that the alignment problem is NP-hard (Wang and Jiang 1994), so
practical tools for aligning multiple sequences are based on heuristics. One of
the most common tools of this kind is CLUSTAL W, that applies a progressive
approach, see Section 9.5.5. The tool works in three steps (see also Algorithm 5
on page 94):

(1) The pairwise distances between the sequences are computed, either by
counting common g-grams or by aligning them. The result is stored in a
distance matrix.

(2) From this distance matrix, a hierarchical clustering algorithm like UP-
GMA (e.g. Sneath and Sokal 1973) or neighbor-joining (Saitou and Nei
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1987) computes a rooted binary ‘guide tree’. The leaves of the guide tree
correspond to the sequences that are to be aligned.

(3) The sequences are aligned following the guide tree from the leaves to the
root. At each inner vertex of the tree, the multiple alignment between
all leaves below this vertex is computed by aligning the alignments of the
two child vertices, see Figure 3.

)

] | P
I I I 1mng
U | I

Figure 3: Progressive Multiple Sequence Alignment. The sequences on the left are
aligned following a guide tree. Each vertex aligns the alignments from its child vertices,
so the alignment on root vertex contains all input sequences.

This method is greedy, because once two sequences are aligned, then this align-
ment will be retained until the algorithm stops. A gap that is inserted will
never be moved or removed again, and new gaps always affect the whole col-
umn of the alignment, thus any error that occurs in the early stages of the
algorithm will be propagated to the end of the computation. As a remedy,
CLusTAL W applies a clustering algorithm to construct the guide tree, be-
cause this way similar sequences are joined earlier than distant sequences, and
similar sequences are more likely to be aligned correctly.

SeqAn also offers progressive alignment algorithms that follow the improved
T-Coffee tool (Notredame et al. 2000), see Section 9.5.5.



Chapter 2

Software Libraries

2.1 Software Libraries in General

One main goal of bioinformatics is to devise algorithms and develop software
tools for biological and medical research. In this section, we will discuss how
software libraries may improve the development of tools for sequence analysis.
A software library is a set of reusable components, i.e. data structures and
algorithms that use and manipulate these data structures. A component is
reusable, if it can be used in different programs and by different programmers.

Genomes
MUMmer 6\&6 é\gé Mauve

" (Enhanced) (Enhanced) Aho-Corasick, (Enhanced)
Find Seeds Suffix Array Suffix Array Trie Suffix Array
i Longest Increasing . Longest Increasing Locally Colinear
Chaining Subsequence Chainer Subsequence Blocks
Alian R Needleman- Needleman-
gn Rest Fr— Clustal W Wunsch Clustal W
| Alignments |

Figure 4: Components of Genome Alignment Tools.

This is illustrated in Figure 4 that shows the core components of four tools
for genome alignment: Mummer (Kurtz et al. 2004) MGA (Hohl et al. 2002)
LAGAN (Brudno et al. 2003) Mauve (Darling et al. 2004). All these tools
perform the following three steps: (1) search for seed fragments, (2) compute
an optimal chain from these seeds (Section 9.6), and finally (3) close the gaps
between the seeds. Obviously these tools apply similar building blocks, like
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(enhanced) suffiz arrays (Section 12.2) for seed finding, ‘longest increasing sub-
sequence’ (Section 13.2.2) for chaining, or the Needleman-Wunsch algorithm
(Section 9.5.1) for aligning the spaces between the chained seeds. In the ex-
ample it is evident, that the developers of these tools would have profited from
having a software library at hand that provides efficient implementations of
the named algorithmic components.

2.1.1 Benefits from Software Libraries

Software development may benefit from software libraries in several ways:
Their application simplifies the implementation of software, if a program-
mer can employ ready-to-use components from the library instead of re-
implementing every part of the program, or to bother about the implementa-
tion details of the actually used algorithms or data structures. This accelerates
the development process, which allows the program to be earlier on the market
or —in the case of a bioinformatic tool —in the laboratories. These time savings
reduce the costs of software development. Software libraries may also improve
the quality and robustness of the resulting code, because the components of a
library are widely used and therefore usually well tested. Moreover, the ap-
plication of library components may also improve the program’s performance,
since libraries are intended to be used many times, so they may offer advanced
but fast algorithms or data structures the implementation of which would not
pay out for a single project. This also shows that software libraries support
algorithm design by providing benchmarks for well known problems and act-
ing as test environments in which a new algorithm may prove its correctness
and possibly its superiority to previous approaches. A well designed library
invites the user to ‘play around’ with algorithms and data structures and thus
promotes a fast testing of new algorithmic ideas. Finally, the best way for a
new algorithm to arrive in software development is to publish it in a widely
used software library, so libraries may help to close the gap between theory
and practice in algorithmic research.

2.1.2 Software Library Examples

We will now shortly present two software libraries that are good examples
for the usefulness of libraries in software development and that influenced the
design of our library SeqAn.

LEDA

The ‘Library of Efficient Data Types and Algorithms’ (Mehlhorn and Naher
1999) is a C++ library for combinatorial and geometrical computing. Since it
was proposed in 1989 by Mehlhorn and Niher, LEDA grew to an extremely
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comprehensive software library. The range of its functions contains basic con-
tainers like arrays, lists, or sets, and it provides number types and graphs as
well as algorithms and data structures for linear algebra, geometry, compres-
sion, and cryptography. LEDA was designed from the beginning to advance the
transfer of theoretical algorithmic knowledge to practical tool programming,
and in this respect it became a model for software libraries like SeqAn.

STL

The ‘Standard Template Library’ (Stepanov and Lee 1995) is a C++ template
library of basic containers and algorithms. With some changes and extensions,
it became a part of the C++ standard library (ISO/IEC 1998; Josuttis 1999),
so we will call this part of the C++ standard library the STL. The STL was
one of the first C++ libraries that applied generic programming (e.g. Austern
1998, see Section 5.2), and it demonstrates that this programming paradigm
is capable to implement flexible and performant libraries. The algorithms of
the STL access and modify the contents of the containers by iterator objects;
further key concepts of the STL are functionals, i.e. objects that implement
the parenthesis operator (), and type traits, that resemble the metafunctions
that we use in SeqAn (Section 5.5). The library design of SeqAn (Chapter II)
can be regarded as an advancement of the techniques that were introduced
into library design by the STL.

2.2 Bioinformatics Libraries

During the last decades, data structures like suffiz trees (Section 12.3.2) or suf-
fiz arrays (Section 12.2) and algorithms like Needleman- Wunsch (Section 9.5.1)
or chaining by sparse dynamic programming (Section 9.6.3) were successfully
applied in a variety of bioinformatics tools. This suggests that software li-
braries could also be useful in the case of sequence analysis. In the following
paragraphs we will review existing sequence analysis projects and point out
the content and main purpose of the software libraries. There are several al-
ternatives to design a library, mostly chosen with certain goals in mind: Some
libraries want to glue together existing tools, possibly implemented in a vari-
ety of programming languages (Section 2.2.1), some others want to serve as a
development platform (Section 2.2.2). We will end this comparison with an
introductionary description of SeqAn in Chapter 3.

2.2.1 Libraries for Using Existing Tools

One way to solve sequence analysis problems is to ‘stitch’ together already
existing tools like BLAST (Altschul et al. 1990), CLusTAL W (Thompson
et al. 1994) or LAGAN (Brudno et al. 2003). Moreover, there are collections of
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well matched tools like EMBOSS (Rice et al. 2000) and Vmatch (Kurtz 2007).
Vmatch for example is a set of versatile programs that can be combined to
solve a variety of string matching tasks using a string index (see also Chap-
ter 12). Joining tools usually requires ‘glue code’ for controlling the overall
process, or for translating the output of one tool into a valid input for another
tool, Since most of the time consuming tasks are done by the joint tools, the
performance of the glue code is often less critical, so scripting languages like
Perl (Wall 2000) are convenient for that purpose. Software libraries like Bio-
perl (Stajich et al. 2002), Biopython (Chapman and Chang 2000), or Bioruby
(Goto et al. 2003) may facilitate the development of this glue code. They
offer comprehensive sets of wrappers to bioinformatics tools and input/output
capabilities for various file formats and data bases. They also facilitate the
access of sequence annotation data.

2.2.2 Libraries for Development of New Tools

Although the combination of already existing tools might be a good strategy for
cope with many problems in bioinformatics, this does obviously not solve the
problem of initially implementing the tools. For that reason a second kind of
software library is needed to provide algorithmic components that can be used
to implement new software tools. We will now shortly review some software
libraries (in alphabetical order) that offer a fair amount of functionality usable
for sequence analysis.

BATS

The ‘Basic Analysis Toolkit for Biological Sequences’ (BATS; Giancarlo et al.
2007) is a collection of some functions for approximate string search, sequence
alignment, sequence filtering and z-score computation. Parts of this library
were included into SeqAn.

Bio++

Biot+ (Dutheil et al. 2006) is a comprehensive software library that provides
reusable components for sequence analysis, phylogenetics, molecular evolution
and population genetics. The sequence analysis part contains data types for
storing and manipulating strings, string sets, alignments, and several convert-
ible alphabet types, it supports the management of sequence annotations, the
import and export of many file formats, and some basic sequence analysis tools
including the Needleman-Wunsch algorithm (Needleman and Wunsch 1970).
The strength of Bio++ is certainly its contribution to phylogenetics and molec-
ular evolution. In contrast to SeqAn which applies the generic programming
paradigm (Section 5.2), Bio++ is a purely object-oriented library that favors
ease of development over performance and scalability.
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Bioconductor

Bioconductor (Gentleman et al. 2004) takes advantage of the programming
language R (Thaka and Gentleman 1996) that was designed to perform tasks
in statistics. This software collection facilitates the (statistical) analysis of bio-
logical data by providing several hundred packages, many of them determined
for very special applications. Some of these packages — e.g. the ‘Biostrings’
module — also offer common sequence analysis functionality like alignment and
pattern matching.

BioJava

BioJava (Holland et al. 2008) is a very extensive library that implements
various data structures and algorithms for bioinformatics in the programming
language Java (Arnold et al. 2005). Beside many tasks that are typical for
‘tool-stitching’ libraries as we described them in Section 2.2.1, BioJava also
supports typical data structures and algorithms that are applied in common
sequence analysis tool, like the Needleman-Wunsch (see Section 9.5.1) and
Smith-Waterman (see Section 11.1.1) alignment algorithms, position specific
weight matrices, hidden Markov models, and suffix trees.

BTL

The ‘Bioinformatic Template Library’ (BTL; Pitt et al. 2001) emphasizes more
on basic mathematical algorithms and data structures than on sequence ana-
lysis. It currently comprises some graph classes and linear algebra algorithms,
but only a single sequence alignment algorithm: The Needleman-Wunsch algo-
rithm for general gap costs with cubic running time (Needleman and Wunsch
1970).

libcov

Libcov (Butt et al. 2005) has a focus on phylogenetics and clustering algo-
rithms. It offers only basic data structures to handle sets of sequences.

libsequence

The C++ class library libsequence (Thornton 2003) was designed to support
the development of tools for evolutionary genetic analysis by providing basic
sequence manipulation functions as well as algorithms for calculating sequence
divergences and for single nucleotide polymorphism (SNP) analysis.
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NcBI1 C++ Toolkit

The NcBI C++ Toolkit (Vakatov et al. 2003) contains some functionality that
was used to implement tools and services from the National Center for Biotech-
nology Information. The toolkit offers, beside other things, some sequence
analysis functionality, like several very fast algorithms for sequence alignment.
Moreover it contains an API for the NCBI implementation of BLAST (Altschul
et al. 1990).

ScL

The ‘Sequence Class Library’ (SCL; Vahrson et al. 1996) is a object-oriented
C++ library that provides some basic sequence analysis components. To our
knowledge it is not actively developed anymore.

2.2.3 Conclusion

The survey in the last section revealed that there was no software library
for developing new software tools in C/C++ that covers all relevant areas of
sequence analysis. The two most comprehensive libraries in the list — BioJava
and BioConductor — support other programming languages (Java and R), but
regarding the performance they cannot match up with C/C++; a comparison
between the running times of alignment algorithms in different libraries will
demonstrate this in Section 9.5, see the results in Table 30 on page 172.
Biot++ is yet the most elaborated library for C/C++, however it lacks basic se-
quence analysis functionality like string matching, motif searching and chain-
ing, and it also provide no data structures for string indices or automata.
Certainly Bio++ could be extended by these components; however we will ar-
gue in Section 5.3.2 that it is might be difficult to achieve very efficient code
in an object-oriented approach as it is used in Bio++. The development of the
BTL and ScL were stopped for years, and their contents have never reached
the extent of SeqAn or even Bio++. The rest of the proposed C/C++ libraries
(BATs, libcov, libsequence and the NCBI C++ Toolkit) were never designed to
become comprehensive sequence analysis libraries, but just confine to provide
a few useful tools or components. Moreover, the BTL, libcov and libsequence
mainly focus on other applications than sequence analysis.

Hence we believe that there is no extensive software library for sequence anal-
ysis that facilitates the development of software tools with nearly optimal
performance. The goal of the SeqAn project is to fill this gap.



Chapter 3

SeqAn

To conclude the introduction we summarize the goals and design of SeqAn,
our generic C++ template library of efficient data types and algorithms for
sequence analysis. The development of SeqAn has pursued two main goals,
namely:

(1) Enabling the rapid development of efficient tools for sequence analysis.

(2) Promoting the design, comparison, and testing of algorithms for sequence
analysis.

SeqAn accelerates the development process of tools and algorithms, and im-
proves the quality and performance of sequence analysis software. In addition,
it provides an experimental platform for algorithm engineering and closes the
gap between state-of-the-art algorithmic techniques and the actual algorithmic
components used in software tools (Section 2.1). SeqAn is the first software
library with this ambition that was actually realized, see Section 2.2.

Figure 5: The SeqAn Logo.
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3.1 Design of SeqAn

SeqAn was designed to promote (1) high performance of the provided compo-
nents, (2) simplicity and usability of the library’s handling, (3) generality of
data types and algorithms such that they are widely applicable, (4) the defini-
tion of special refinements of generic classes or algorithms, (5) the extensibility
of the library, and (6) easy integration with other libraries (Chapter 4).

We decided to implement the library in C++, since C++ provides language con-
structs that allow to achieve our design goals (see Section 5.1). The unique
library design of SeqAn bases on (1) the generic programming paradigm, (2)
a new technique for defining type hierarchies called template subclassing, (3)
global interfaces, and (4) metafunctions, which provide constants and depen-
dent types at compile time (Chapter 5). Our design differs from common
programming practice, in particular SeqAn does not use object-oriented pro-
gramming (Section 5.3.2). However, we will argue that in effect the library
greatly benefits from our approach, and all design goals are met (Chapter 14).

3.2 Contents of SeqAn

SeqAn is a comprehensive library that was intended to cover a wide range of
topics of sequence analysis. It offers a variety of practical state-of-the-art algo-
rithmic components that provide a sound basis for the development of sequence
analysis software. This includes: (1) data types for storing strings, segments of
strings and string sets, as well as functions for all common string manipulation
tasks including file input/output, (2) data types for storing gapped sequences
and alignments, and also algorithms for computing optimal sequence align-
ments, (3) algorithms for exact and approximate pattern matching and for
searching several patterns at once, (4) algorithms for finding common matches
and motifs in sequences, (5) string index data structures, and (6) graph types
for many purposes like automata and alignment graphs, as well as many algo-
rithms that work on graphs (Part III).

SeqAn offers several alternative implementations for all core data types like
strings, string sets, alignments, graphs, and indices. It also provides a variety
of different algorithms for central tasks like pattern matching, motif finding,
or the alignment of sequences. The user can therefore select the variant that
fits best to the actual application.

3.3 This Thesis

The thesis at hand gives a detailed description of the software library SeqAn.
The author contributed to this project mainly the following: He developed
the main library design (Part II), i.e. the basic structure of the library
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and the definition of the rules and methods used during the development
of the library, and he was also responsible for a good part of the essential
library functionality (see Chapters 7 to 11), both by means of personal
contribution and supervision of students who supported the implementation
in various projects and theses. Moreover, the author occupied coordinating
functions within the project, and designed the main part of the project’s
working environment like the built system and the documentation system (see
Section 14.2.2).

The following parts of the thesis describe the design and content of SeqAn:

Part II describes the general library design. We start in Section 4 by declaring
the main goals we want to achieve with the library design. The means to reach
these goals are proposed in Section 5, where the main programming techniques
used in SeqAn are elaborated on. The application of these techniques is
demonstrated using examples in Section 6.

Part IIT explicitly describes the components provided by SeqAn. After
proposing some basic functionality in Section 7, we describe sequence data
structures in Section 8, alignments in Section 9, pattern and motif search-
ing in Sections 10 and 11, string indices in Section 12, and graphs in Section 13.

Part IV is the conclusion of the thesis. Section 14 explains our measures for
quality assurance and the propagation of SeqAn, and argues why SeqAn is a
viable and useful software library. In Section 15 we use SeqAn to re-implement
the core functionality of the well-known software tool LAGAN (Brudno et al.
2003) for genome alignment. The resulting program takes only a hundred lines
of code and is competitive to the original software.
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Part 11

Design

SeqAn relies on a unique generic design. In this part, we explain the main
goals that we pursued by the library (Chapter 4), as well as the programming
techniques that we applied to achieve these goals (Chapter 5). These techniques
are illustrated by some examples in Chapter 6.
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Chapter 4

Design Considerations

4.1 Design Overview

In this part, we discuss the core library design of SeqAn. We call it ‘core’
design, because it answers very basic questions like: What are the strategies
for organizing the functionality in the library? What is the general form of
classes and functions? What language features are applied, and how they are
used? The core design does not specify what classes and functions should be
implemented in the library. This ‘detailed’ design will be the topic of Part III,
in which we will give a complete overview of the contents of SeqAn.

Although the core design is not directly connected with the actual contents of
the library, it is influenced by the kind of functionality the library offers. For
example we observe that sequence analysis relies on rather simple but generic
data structures like sequences (Chapter 8), alignments (Chapter 9), string
indices (Chapter 12), and graphs (Chapter 13) which makes it amenable to
the generic progamming paradigm, whereas libraries consisting of less generic
but very complex data structures would probably be better implemented in a
more object oriented way.

The decision for an appropriate core design also depends on the intended appli-
cation of the library. As we stated in Chapter 3, SeqAn has the purpose to fa-
cilitate the development of new sequence analysis tools, and it is an algorithm
engineering platform for comparing and developing efficient data structures
and algorithms. Both applications require that the components of the library
run as fast as possible, so performance is one of the most important objectives
during the library design phase.Considerations like this lead us in Section 4.2
to six main goals for the core design of SeqAn. In the following Chapter 5, we
will discuss by what programming techniques these goals can be achieved. It
turns out that only a few powerful techniques suffice. The mechanics of the
resulting core design is then demonstrated by examples in Chapter 6.
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4.2 Design Goals

4.2.1 Performance

A first — and maybe most important — objective for SeqAn is performance:

‘The library is designed to produce code
that runs as fast as possible.’

Since data structures usually must fit completely into main memory to be fast,
we also aspire to offer data structures with minimal space consumption.
While performance is of course a desired feature of any software, it plays a
critical role in the competition between software tools. For example, some
applications in bioinformatics involve huge problem instances which may take
running times of several hours or even days, so a tool’s speed can make the
difference between a feasible and an infeasible experiment if compute costs are
limited.

In sequence analysis the amount of data to be analyzed usually forbids the
application of brute force algorithms even for very basic tasks like searching
a pattern in a string or aligning two sequences. Hence, one has to resort to
efficient data structures and algorithms that achieve the required speedup.
A library can supply very complex algorithmic components, which are hard
or costly to implement for tool designers. Nevertheless, a tool designer has
always the option to solve the problem at hand by its own specialized code
or to resort to ad-hoc solutions, instead of using the components in a library.
Programming specifically for a given problem may even yield better results
than using standard components, depending on the effort involved, hence it
is crucial for the library components to be competitive in speed to specialized
code.

Optimal performance is also crucial for algorithm engineering: No algorithm
designer would be happy to sacrifice hard-earned speedups obtained from a
clever algorithmic advance due to suboptimal implementations. A comparison
between competing algorithms would always be influenced by varying imple-
mentation qualities, so the best way to make it fair is to compare implemen-
tations that are as effective as possible and are based on the same algorithmic
components.

The need for performance is also our main reason to choose C++ as program-
ming language (Stroustrup 2000) (ISO/IEC 1998), since carefully designed C++
code has best chances to outperform most alternative programming language
(see Section 5.1).

Achieving a good performance affects the library in many respects. If there is
a trade-off between speed or coding convenience, then performance is usually
favored. For example, we omit time consuming parameter checks in the release

build of the library.
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4.2.2 Simplicity

The second main goal for the library design of SeqAn is simplicity. Software
libraries should facilitate the development of software, and hence they need a
clear organization of their functionality. Plain interfaces improve a library’s
usability and accessibility, make it easier for a potential user to evaluate the
usefulness of the library, and reduce the training needed to use it. In addi-
tion the internal mechanisms of a library should never get too complex, since
this would slow down the development process of the library, complicate its
maintenance, and it could be a source of hidden errors. The more sophisti-
cated a library was constructed and the more elaborated language features
were applied, the higher is the risk for the user to become a victim of ex-
otic compiler behaviour, unreadable error messages, or inconsistencies in the
language standard.

Our goal is therefore:

‘All parts of the library are constructed and applicable
as simple as possible.’

We feel confident that the application of SeqAn is in fact simple, although this
is always in the eye of the beholder, and in this thesis we will demonstrate the
ease of use in a multitude of short code examples.

4.2.3 Generality

The next goal of SeqAn is generality: Library designers cannot completely
anticipate all applications a library will actually be used for, so it is advisable
to keep it as general as possible. A library that is useful in many circumstances
has better chances to be used. Also, the more probable it is that a library can
be re-used in future occasions, the more it pays for a user to get accustomed
with it. Hence our goal is:

‘All parts of the library are applicable
in as many circumstances as possible.’

General components are more intuitive to describe and easier to understand
than data structures and algorithms that are only usable for a few individual
cases, so generality also supports the simplicity (Section 4.2.2) of the library.
A good starting point for finding general components is to identify common
elements in different tools, as we described it in Section 2.1.

Generality also means that we try to avoid redundancy in the library: If, for
example, one algorithm can work on different types of classes, then it should
not be re-implemented for each class, but only once for all classes, in a single
piece of code. This makes the library more compact and easier to maintain.
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We will explain in Section 5.2 how generic programming enables us to create
data structures and algorithms that work on a variety of types, for example
how to implement strings of arbitrary alphabets, or algorithms that work an
any kind of string.

4.2.4 Refinebility

A good strategy for augmenting performance (Section 4.2.1) is to implement
specializations: Sometimes the implementation of a function can be signifi-
cantly improved, if we rely on a special context or the presence of some con-
straints. For example, searching an array is much faster if the values are sorted,
thus it is advisable to define both a general but relatively slow linear search al-
gorithm for unsorted arrays, and additionally a fast binary search algorithm for
sorted arrays. A specialization overloads the general solutions (Section 4.2.3)
for a special case, and the specialization can also be overloaded for an even
more special case, so in the end we get a ‘hierarchy of refinements’.

The ideal library concept therefore fulfills the following rule:

‘Whenever a specialization is reasonable,
it is possible to integrate it easily into the library.’

“To integrate’ means, that the new specialization works seamlessly together
with the rest of the library, and that it can be applied the same way as already
existing alternatives. Our design therefore supports polymorphism, i.e. that
the same interface may be realized by several implementations. This also
promotes the simplicity (Section 4.2.2) of the library.

We will see in Section 5.3, how template subclassing enables us to implement
specializations in a way, that the C++ compiler always uses the most appro-
priate — i.e. the most special — variant.

4.2.5 Extensibility

A classical slogan of good programming is the so called ‘open-closed princi-
ple’, which states that a program should be open for extension but closed for
modifications. We call this feature extensibility:

‘The library can always be extended
without changing already existing code.’

‘Extending the library’ means to overwrite default behavior by defining new
specializations (Section 4.2.4), or to add completely new functionality to the
library. Extensibility is important both during the implementation of the
library, because it simplifies its construction, and also for a user who wants to
adapt the library to his needs.
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4.2.6 Integration

It is often reasonable to use several libraries at once. This means that the
libraries must be able to collaborate with each other:

‘The library is able to work together with
other libraries and built-in types.’

This includes that SeqAn obeys some ‘rules of coexistence’, for example, to use
its own namespaces seqan in order not to contaminate the global namespace,
or not to define preprocessor macros that could conflict with code of other
libraries. Moreover, we aim at providing means for a direct integration of
external libraries: For example, string classes are provided not only by SeqAn
(see Section 8.3) but also by many other libraries like the STL (Plauger, Lee,
Musser, and Stepanov 2000) or LEDA (Mehlhorn and Néher 1999), and strings
can also be stored in char arrays, so called ‘C-style strings’. It would be of
great advantage, if we could implement algorithms that work on all these kinds
of string.

We will explain in Section 5.4 how the SeqAn library design supports this kind
of integration by using small global functions or metafunctions — so called
‘shims’ — to adapt external interfaces to the needs of SeqAn.
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Chapter 5

Programming Techniques

In this chapter, we discuss the main techniques used in SeqAn to achieve
the design goals that we described in Section 4.2, namely generic programming
(Section 5.2), template subclassing (Section 5.3), global interfaces (Section 5.4),
and metafunctions (Section 5.5). The combination of these four techniques
forms the core design of SeqAn. In Section 5.6 we will propose further pro-
gramming techniques that we apply in SeqAn. We start with discussing the
reasons for using the programming language C++.

5.1 The C++ Programming Language

The programming language C++ was proposed by Bjarne Stroustrup in 1983
(see Stroustrup 2000) as an extension of the procedural and imperative pro-
gramming language C (Kernighan and Ritchie 1988). SeqAn relies on ISO/IEC
standard conform C++ (ISO/IEC 1998) that is supported by several compilers
like the GNU C++ compiler (Griffith 2002) or the Visual C++ compiler (Visual
C++ 2002).

The programming language C was designed as “a relatively ‘low level’ language”
so that “the data types and control structures provided by C are supported
directly by most computers”.! Although C was formulated to be independent
from a particular architecture, it is in effect rather machine-oriented, which
means that C programs matches the capabilities of present computer archi-
tectures and have therefore best chances to run fast. During the compilation
of the C source code, the compiler may also apply optimizations to achieve
further speed-ups. C++ enhances C by concepts like object-oriented program-
ming and generic programming (Section 5.2), and though some of these new
features (e.g.‘virtual functions’) entail pitfalls to slow down the resulting pro-
grams, carefully employed C++ achieves in general the same performance as
C. Due to the prevalence of C/C++ in the last decades, the co-evolution of

'see (Kernighan and Ritchie 1988), pages 56
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computers and compilers made these language probably the best choice for
high-performance applications. We decided to implement SeqAn in C++, be-
cause performance is among our main goals (Section 4.2.1) and the extended
features of C++, namely templates (ISO/TEC 1998, 14), are well suited to attain
an excellent [tbrary design.

There are prominent examples of C++ software libraries in the area of algorithm
engineering like LEDA (Mehlhorn and Néher 1999) and CGAL (Fabri et al.
2000), many common software tools for sequence analysis like NCBI Blast
(Altschul et al. 1990) are implemented in C++.

5.2 Generic Programming

SeqAn adopts generic programming, a paradigm that was proven to be an
efficient design strategy in the C++ standard (ISO/IEC 1998). The standard
template library (STL) (Plauger, Lee, Musser, and Stepanov 2000) as part of
the C++ standard is a prototypical example for generic programming. Generic
programming designs algorithms and data structures in a way that they work
on all types that meet a minimal set of requirements. An example for a generic
data structure in the STL is the class vector: It is a container for storing
objects of a type T that are assignable (ISO/IEC 1998, 23.1), which means
that we can assign one instance s of T to another instance t of T, i.e. the
code T t = s is valid. This kind of requirement to the interface of a type T is
called a concept, and we say that a type T implements a concept, if it fulfills
all requirements stated by that concept; for example the concept ‘assignable’
is implemented by all built-in types and every class that has both a copy
assignment operator and a copy constructor. Generic programming has two
implications: (1) Data structures and algorithms work on all types T that
implement the relevant concept, i.e. relevant is not the type T itself but its
interface, and (2) this concept is minimal in the sense that it contains only
those requirements that are essential for the data structure or algorithm to
work on T. This way data structures and algorithms can be applied to as many
types as possible, and hence generic programming promotes the generality of
the library (see Section 4.2.3).

Generic data types and algorithms can be implemented in C++ using templates
(ISO/IEC 1998, 14). A class template parametrizes a class with a list of types
or constants. For example, a declaration for the class vector could be:

template <typename T> class vector;

where T stands for the value type, i.e. the type of the values that will be stored
in vector. The template is generic, it can be applied to any type T. For
example, a vector for storing int values is instantiated by:
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vector<int> my_vector;

That is we use int as template argument for T, and the result of the instanti-
ation is an object my_vector of the complete type vector<int>. The compiler
employs the same template, i.e. the same piece of code, for different template
argument types. The compilation succeeds if the applied template argument
type supports all uses of the parameter T within the template code, so the C++
template instantiation process implies the minimality of the concepts.

Listing 1 shows an example for a generic algorithm. The function template
max can be applied for two objects a and b of any type T that is assignable and
can be compared using the < operator. The compiler may implicitly derive the
type T from the given function arguments, for example max (2, 7) calls the
instantiation of max for T = int.

template <typename T>
T max(T a, T b)
{
if (a < b) return b;
else return a;

}

Listing 1: Example for a Generic Algorithm. The function template max returns the
maximum of two values a and b, where a and b could be from any suitable type T.

5.3 Template Subclassing

A generic algorithms that is applicable to a type T needs not to be optimal
for that type. The algorithm find in the standard library (ISO/IEC 1998,
25.3.1.1) for example performs a sequential linear time search and is therefore
capable of finding a given value in any standard compliant container. However,
the container map was designed to support a faster logarithmic time search, so
the algorithm find — though applicable — is not optimal for searching in map.
This shows that sometimes a special algorithm could be faster than a generic
algorithm. Hence, in order to achieve better performance (Section 4.2.1), we
require our library (see Section 4.2.4) to support refinements of algorithms. A
special version is only useful, if it really allows a speedup in some cases, and
only in this case it will actually be implemented. Therefore we assume that for
a given case always the most special applicable variant is the best, where we
have to assure that there is always a definite ‘most special’ candidate according
to the C++ function overload resolution rules (ISO/IEC 1998, 13.3 and 14.5.8).
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template <typename TValue,
typename TSpec>
class Container

{

// generic container
3
struct Map;

template <typename TValue>
class Container<TValue, Map>
{

// special map container

template <typename T>
void find(T &) {

// most general:

// for all types
}
template <typename TValue,

typename TSp>

void find(Container<TValue, TSp> &)
{

// more special:

// for all containers
}

template <typename TValue>

1 void find(Container<TValue, Map> &)
{
// even more special:
// only for maps
}

Listing 2: Template Subclassing Example. Note that SeqAn does not implement a class
Container.

Since one of our goals is simplicity (Section 4.2.2), and since it could be rather
demanding for the user to find out the best algorithm out of various alterna-
tives, we decide to apply polymorphism, that is all alternative implementations
of an algorithm support the same interface. So we can write find (obj) for any
container type obj, and this invokes the most suitable implementation of find
depending on the type of obj. Listing 2 gives an example for this idea: The
map is implemented in the specialization Container<Map> of the generic class
Container. Since the subclass is specified by choosing a template argument,
we call this approach template subclassing.

On the right side of Listing 2, we see different levels of specificity for find
algorithms: The first is applicable for any type — therefore we call it the most
general function —, the second for instances of Container, and the third only
for Container<Map> objects. The rules of C++ function overload resolution
(ISO/IEC 1998, 13.3) assures that the correct variant is called.

We need not to end the specialization on the level of Container<Map>. Sup-
pose that we define Map as a class template with a template parameter
TSpec, then we can also implement special variants of maps, for example
Container<Map<Hashing> >. This way, we can define specialization hierar-
chies of unlimited ramification.

Note that we make no demands on template argument types like Map that are
used for TSpec, in fact any type that is merely declared can be used as template
argument, so its only important aspect is to act as a switch between different
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specializations of Container. We call a class that is intended merely to serve
as switch a ‘tag class’. Tag classes can also be used to switch between different
modes of a function (see Section 5.6.2).

5.3.1 Template Subclassing Technique

The technique of template subclassing may be summarized as follows:

e The data types are realized as default implementation or specialization of
class templates, e.g. Class, which have at least one template parameter
TSpec.

e Refinements of Class are specified by using in TSpec a tag class, e.g.
Subclass, that means they are implemented as class template special-
izations Class<Subclass>.

e Whenever further refinements may be possible, we declare the tag classes
as class templates with at least one template parameter TSpec, in which
more tag classes can be used. For example we may implement a class
template specialization Class<Subgroup<Subsubgroup<...> > >. This
way, we can reach arbitrary levels of specialization.

e Algorithms can be implemented for each level of specialization. If mul-
tiple implementations for different levels of specialization exist, then the
C++ function overload resolution selects the most special from all appli-
cable variants.

Note that we only need to define a class template specialization
Class<Subclass> explicitely, if the members of the new refinement differ from
the members of its ‘parent class’ Class. We will see in the Sections 5.4 and 5.5,
that member functions and member types play a minor role in SeqAn, so in
many cases an actual specialization of the class template is not needed.

5.3.2 Comparison to Object Oriented Programming

Template subclassing resembles class derivation in standard object-oriented
programming. In the spirit of the object-oriented terminology we can
say that the class Container<Map> was ‘derived’ from the general class
Container, since all algorithms that are defined for Container also work for
Container<Map> and are therefore ‘inherited’. Let us compare this to ob-
ject oriented programming: The method find is inherited from the base class
Container to all derived classes, but it was overloaded for the class Map which
defines its own find method.

This approach has two drawbacks: The first disadvantage is that the method
find is not a generic algorithm according to the definition in Section 5.2 but
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Figure 6: Object Oriented Example.

a member function. Its usage has the form obj.find (), which differs com-
pletely from the application of the generic algorithm that would be called by
find(obj). If we try to achieve the refinement goal (Section 4.2.4) this way,
and if we therefore define both global functions and member functions, then
the handling of the library gets more complicated, so we lose simplicity.

Object-oriented programming has another drawback, see Figure 6: Suppose
that we want to define a function insert that adds a new value to a container,
and that insert calls find in order to check whether the container already
holds the given value. Since insert can be applied for all containers, we
implement it as a member function of Container, so it is inherited also by Map.
If we call insert to insert a value into a Map object, then insert should use
the correct £ind function, i.e. the special ‘logarithmic search’ that was defined
in Map rather than the general ‘linear search’ defined in Container. Therefore
find has to be declared virtual (ISO/IEC 1998, 10.3), which means that each
call of find costs an additional overhead: Virtual function calls are indirect
via the lookup in a table of function pointers, and they are therefore more
complicated than ‘ordinary’ function calls; in contrast non-virtual functions
have the advantage that C++ compilers may use function inlining to completely
save the overhead for calling them. The application of virtual functions in this
case therefore reduces the performance.

We conclude that template subclassing better fits to our design goals than
object-oriented programming: With template subclassing we can implement
polymorphic generic algorithms, which means that the refinements of algo-
rithms have the same interface as their generic counterparts. Template sub-
classing also needs no virtual functions but relies completely on static function
binding, that is the compiler determines during compile time which function
is called and can therefore apply optimizations to improve performance.
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5.4 Global Function Interfaces

A global function in C++ is a function that was declared in namespace scope
(ISO/IEC 1998, 3.3.5). In contrast to that, member functions are defined in
the scope of a class. Object-oriented programming prefers member functions,
because they work as methods which can be inherited and overloaded during
the class derivation. Generic programmingon the other hand also applies global
function templates for implementing generic algorithms (see Section 5.2). In
Section 5.3 we saw how we can use global function templates to implement
algorithms for different levels of specialization. SeqAn relies on global func-
tions anyway, and therefore the following design decision seems rather natural:
SeqAn abstains from accessing objects via member functions as far as possi-
ble, that is, all functionality in SeqAn is accessed via global functions, with
the exception of functions that must be members due to language restrictions,
like constructors, destructors, assignment operators, bracket and parenthesis
operators, and conversion functions. Since global functions substitute those
member functions that would otherwise form the interface of a class, we call
all functions that accept instances of a class as arguments the ‘global function
interface’ of this class. For example, to determine the length of a string str in
SeqAn, we call a global function length(str) instead of a member function
str.length(). Using global interfaces is a main feature of SeqAn, and we
will see in Section 5.5, that SeqAn also applies a global interface for accessing
types.

Obviously the most direct way to achieve global function interfaces is simply to
implement the functionality in global functions. This is also a prerequisite for
using template subclassing, so most implementations in SeqAn actually reside
in generic global functions, especially as far as this concerns the classes defined
in the library. Alternatively, one can implement the functionality in a member
function, and then call it via a ‘shim’ (Wilson (2004), Ch. 20), i.e. a small
global function that act as a ‘wrapper’ for the member function. Shims are a
good way to create new global interfaces for already existing data structures
or for built-in types. For example, SeqAn contains several global functions
length that work on the basic_string class from the C++ standard library or
on zero terminated char arrays (so called C-style strings). So for determining
the length of string str we can always call length(str) regardless whether
str is an instance of the SeqAn class String( Section 8.1), or a basic_string,
or an array of char. See Section 6.1 for more details about this example.

5.4.1 Advantages of Global Interfaces

Overall there are some good technical reasons to favor global functions over
member functions (see also Czarnecki and Eisenecker 2000, 6.10.2):

e Global functions greatly support the open-closed principle, i.e. they fa-
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vor the extensibility (Section 4.2.5): New functions can be added to the
library at any time without changing the library’s code. This holds true
for new specializations of already existing functions, as well as for com-
pletely new functionality. Moreover, it is possible to encapsulate the
declarations of global functions in different header files and include them
only if they are needed.

e The shim technique allows us to adapt arbitrary types to uniform in-
terfaces, so using global functions is a good way to attain integration
(Section 4.2.6) of the library with other libraries and built-in types.

e The difference between global ‘algorithms’ and non-global member func-
tions, as they are used for example in the standard template library, can
be somewhat confusing, especially if there exist algorithms and member
functions with the same name. Therefore, abandoning global functions
simplifies the library (Section 4.2.2). Moreover, global functions do not
assume that one special function parameter acts as the ‘owner’ of the
function, so they may sometimes be more intuitive e.g. when modeling
symmetric operations like a matrix multiplication, which has no prefer-
ence to be a member of the first or the second matrix.

e As we saw in Section 5.4, the obvious way to implement generic algo-
rithms in C++ is to use global function templates, so global functions
help to achieve a maximal generality (Section 4.2.3) of the library.

5.4.2 Discussion

Many programmers will probably at first be skeptical about our preference
of global functions, since our approach contradicts common rules of object
oriented programming, so we now discuss some possible objections.

Missing Protection

Global functions lack a protection model: They cannot be private nor pro-
tected, and they cannot access private and protected members of a class.

We addressed this problem by establishing rules of good coding practice. The
main reason for a protection model is to prevent the programmer from ac-
cessing functions or data members that are intended for internal use only. A
simple substitution for this feature is to establish clean naming conventions:
We state that a ¢_’-character within an identifier indicates that it is for inter-
nal use only. Global functions can access private members of a class C if they
are declare to be ‘friends’ of C, but our experience showed that this approach
is to inconvenient in practice, so we instead decided to declare data members
to be public, but only functions that belong to the core implementation of C

are allowed to access them by convention.
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Possible Ambiguities

One could argue that we risk ambiguities when we define functions for several
classes with the same name. Suppose that a class String and another class
Tree should both support a function length. Then we simply implement
two functions length(String & str) and length(Tree & str), and this will
work since both functions have different argument lists. A problem may only
arise if multiple functions could be applied for the given arguments, in this
case, we have to take care that there is always a ‘best’ alternative according
to the C++ rules for function overload resolution (ISO/IEC 1998, 13.3 and
14.5.8).

Handling of Namespaces

To avoid conflicts with other libraries, SeqAn defines all data types and func-
tions for public use in the special namespace segan. Nevertheless we need not
to specify this namespace whenever we call a global function, because C++
specifies a rule for argument-dependent name lookup, also known as ‘koenig
lookup’ (ISO/IEC 1998, 3.4.2), which means that if the compiler looks for the
actual function length that is called by length(str), then it also searches
the namespace in which the type of the argument str was defined, so if str is
an instance of the class String, then the matching function length is found,
since both the function and the class are defined in the same namespace seqgan,
see Listing 3. A function that get arguments from different namespaces may
cause ambiguities, so we decided not to use several namespaces in SeqAn.

namespace seqan
{

class String { ... };

size_t length(String &) { ... }
}

seqan: :String str;
length(str); //no namespace qualification needed

Listing 3: Koenig Lookup Example. We do not need to specify the namespace seqan
when calling the function length from outside the namespace, because it is found by
argument-dependent name lookup: The compiler searches in the namespace seqan for
length, since the argument str was defined there.

Inheritance and Dynamic Binding

One may think that global functions are not inherited during class derivation,
but in fact they are. Supposed that we have two classes Base and Derived and
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the second is derived from the first, then all functions that work for Base will
also work for Derived. Nevertheless we do not make use of this observation in
SeqAn, because we apply template subclassing instead, see Section 5.3.
Admittedly, global function cannot be virtual, but we will see that template
subclassing (Section 5.3) can substitute object-oriented polymorphism in many
cases, and since we use static binding instead of dynamic binding, our approach
is much more efficient. If dynamic binding is indispensable, one can still use
virtual functions and call them via global functions.

Performance Overhead

In general, the overhead for calling global functions and (non-virtual) member
functions is the same. Shims are very small functions and will usually be
inlined, so we do not need to expect that shims affect the performance of a
program if we apply an optimizing compiler.

5.5 Metafunctions

Generic algorithms usually have to know certain types that correspond to
their arguments: An algorithm on containers may need to know which type
of values are stored in the string, or what kind of iterator we need to access
it. The usual way in the STL (Austern 1998) is to define the value type of
a class like vector as a member typedef of this class, so it can be retrieved
by vector::value_type. Unfortunately member typedef declarations have
the same disadvantages as any members: Since they are specified by the class
definition, they cannot be changed or added to the class without changing the
code of the class, and it is not possible in C++ to define members for built-in
types. What we need therefore is a mechanism that returns an output type
(e.g. the value type) given an input type (e.g. the string) and that thereby
does not rely on members of the input type, but instead uses some kind of
global interface. Such task can be performed by metafunctions, also known
as type traits (Vandevoorde and Josuttis 2002, chapter 15). A metafunction
is a construct to map some types or constants to other entities like types,
constants, functions, or objects at compile time.

We use class templates to implement metafunctions in C++. Listing 4 shows
an example for the definition and application of a metafunction Value for
determining the value type of containers. The code defines Value for the
Container class from Listing 2 and for C++ arrays. The returned type is
defined as Type, so Value<T>: :Type is the value type of a container class T.
The generic algorithm swapvalues can be applied for both kinds of data type
for swapping the first two values stored in a container.

The metafunctions we propose here constitute a global interface for accessing
types, so they also share most of the advantages listed in Section 5.4.1.
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Metafunctions can also be used to define additional dependent types that are
not specified via template arguments. For example, SeqAn offers the metafunc-
tion Size which specifies the appropriate type for specifying memory amounts
(e.g. for storing lengths of containers). This type is by default size_t, and it
is hardly ever changed by the user, so it is not worth to specify it in another
template argument. Nevertheless it is possible to overwrite the default with a
new type, like a 64-bit integer (__int64) for those container classes that pro-
vide extra large storage by defining a new specialization of the metafunction
Size.

template <typename T> class Value;

template <typename TValue, typename TSpec>
class Value < Container<TValue, TSpec> >
{
typedef TValue Type;
s

template <typename T, size_t I>
class Value < T[I] >
{
typedef T Type;
s

template <typename T>

void swapvalues(T & container)

{
typedef typename Value<T>::Type TValue;
TValue help = container[0];
container[0] container[1];
container[1] = help;

Listing 4: Meta Functions Example. The example class Container was defined in
Listing 2; it is not part of SeqAn.

Our naming convention states, that the return type of a metafunction is called
Value. Another application of metafunctions is to define constants that depend
on types. If a metafunction returns a constant, than this is called VALUE. For
example, the metafunction ValueSize in SeqAn specifies for alphabet types
the number of different values in the alphabet, so for Dna the metafunction
call ValueSize<Dna>: :VALUE returns 4.
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5.6 Further Techniques

5.6.1 Metaprogramming

The name ‘metafunctions’ (Section 5.5) stems from the fact that one can con-
sider them as functions of a ‘metaprogramming language’ that is interpreted
by the compiler during the compilation process in order to produce the ac-
tual C++ code that is to be compiled afterwards. A metaprogram is processed
during compile time and therefore does not burden the run time. One can do
many things with metaprogramming (e.g. see Gurtovoy and Abrahams 2002),
but since this technique is rather complicated and hard to maintain, we de-
cided to use it only in limited circumstances. For example, SeqAn supports
the metafunction Log2 to calculates the integer logarithm of given constants,
see Listing 5. This function is very helpful for example to compute the number
of bits needed to store a value of a given alphabet type.

template < int numerus >
struct Log2

{

enum { VALUE = Log2<(numerus+1)/2 >::VALUE + 1 };
s
template <> struct Log2<1> { enum { VALUE = 0 }; };
template <> struct Log2<0> { enum { VALUE = 0 }; };

Listing 5: Metaprogram Example. This metaprogram computes the rounded up loga-
rithm to base 2. Call Log2<c>: :VALUE to compute [log,(c)] for a constant value c.

5.6.2 Tag Dispatching

Tag dispatching is a programming technique that uses the types of additional
function arguments, called ‘tag arguments’, for controlling the overload resolu-
tion, which is the process of determining the function that is actually executed
for a given function call (ISO/IEC 1998, 13.3 and 14.5.8). Since only the types
but not the actual instances of the function arguments are relevant for overload
resolution, a tag argument need not to have any members. Those classes are
called tag classes, and we showed in Section 5.3.1, how tag classes are used in
template subclassing to select a data structure out of several alternatives.

Listing 6 shows how we can use tag classes to switch between different imple-
mentation alternatives of algorithms. The third argument of globalAlignment
acts as tag argument that specifies the algorithm for computing a global align-
ment. In this example two algorithms are available: NeedlemanWunsch and
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struct NeedlemanWunsch;
struct Hirschberg;

template <typename TAlignment, typename TScoring>
void globalAlignment(TAlignment & ali,
TScoring const & scoring,
NeedlemanWunsch)
{
//Needleman-Wunsch algorithm
X

template <typename TAlignment, typename TScoring>
void globalAlignment(TAlignment & ali,
TScoring const & scoring,
Hirschberg)
{
//Hirschberg’s algorithm
X

Listing 6: Tag Dispatching Example.

Hirschberg. More tags of this kind supported by SeqAn are listed in Table 11
(in Section 9.5, page 87).

5.6.3 Defaults and Shortcuts

There are several ways for a further simplification of the data struc-
tures interface. Omne possibility is to define default arguments for tem-
plate parameters. For example, one can write String<char> instead of
String<char, Alloc<void> > in SeqAn, since the specialization Alloc is the
default, see Section 8.1.

Moreover, SeqAn defines several shortcuts for frequently used classes. For ex-
ample, we defined the type DnaString as a shortcut for String<Dna> and
Dnalterator for the iterator Iterator<DnaString>::Type of DnaString.
This way it is possible to program basic tasks in SeqAn even without explicitly
defining any template arguments.
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Chapter 6

The Design In Examples

The examples in this chapter will demonstrate the interplay of the program-
ming techniques that we described in Chapter 5.

6.1 Example 1: Value Counting

In this example, we want to implement a generic algorithm that counts for
each value in the alphabet how often it occurs in a given string. Algorithm 1
shows the general idea of this algorithm. The implementation should at least

> COUNTVALUES (@ ... ap)
counter|c] < 0 for each c € ¥
for i — 1 tom do

L counter|a;] < counter|a;] + 1
report counter

= W N =

Algorithm 1: Algorithm for Counting String Values. The algorithm counts for each
value ¢ of the alphabet 3 the number of occurrences of ¢ in the string a; . .. ay,.
support the following kinds of string for arbitrary value types:

o Instances of SeqAn string classes String.
e (C++ standard strings basic_string.

e Zero-terminated char arrays (C-style strings).

We will need the following functions and metafunctions: The metafunctions
Value and ValueSize to determine the value type and the number of different
values this type can get, the function length that returns the length of the
string, and the function value for accessing the string at a given position.
Note that all these functions and metafunctions are already defined in SeqAn;
we will discuss this how.

41
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6.1.1 The Metafunction Value

The metafunction Value determines the value type of a container. For SeqAn
strings, the value type is the first template argument, so we define:

template <typename T> struct Value;

template <typename TValue, typename TSpec>
struct Value < String<TValue, TSpec> >
{
typedef TValue Type;
s

The class basic_string of the C++ standard library has three template argu-
ments, and it defines the member template value_type, so we define a shim
for accessing its value type as follows:

template <typename TChar, typename TTraits, typename TAlloc>
struct Value < basic_string<TChar, TTraits, TAlloc> >
{

typedef basic_string<TChar, TTraits, TAlloc> TString;

typedef typename TString::value_type Type;
s

A metafunction Value for arrays was already describes in Listing 4 at page 37.
We define specializations both for arrays and pointers:

template <typename T, size_t I>
struct Value < T [I] >
{
typedef T Type;
3
template <typename T>
struct Value < T * >
{
typedef T Type;
s

Moreover, to implement Value also for the const versions of these types, we
specify the following rule, that delegates the metafunction call to the non-const
version:

template <typename T>
struct Value < T const >
{

typedef typename Value<T>::Type const Type;
s
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6.1.2 The Metafunction ValueSize

The metafunction ValueSize returns the number of different values a variable
of a given type T can get. The default implementation uses the number of bits
that are needed to store a value of type T: A type that takes n bits may store
at most 2" different values.

template <typename T>
struct ValueSize
{
enum { VALUE = 1 << (sizeof(T) * 8) };
};

Here we use an enum declaration; alternatively we could also define a static
member constant. Note that this implementation works on 32-bit machines
only for types T with sizeof (T) < 4. However this is no serious restriction in
our case, since the algorithm COUNTVALUES would not be appropriate anyway
for larger alphabets.

For some alphabets which do not use all the bits for representing their values,
SeqAn overloads ValueSize to define sharper bounds, e.g. for the nucleotide
alphabet Dna:

template <>
struct ValueSize < Dna >

{
enum { VALUE = 4 };
};

6.1.3 The Functions length

The implementation of length for SeqAn strings depends on the actual spe-
cialization of String, see Section 8.3. The length of the general purpose spe-
cialization A1loc for example results from the difference between the begin and
the end of the string, which are both stored as data members in the object, so
we may define:

template <typename TValue, typename TSpec> inline

typename Size< String< TValue, Alloc<TSpec> > const>::Type
length(String< TValue, Alloc<TSpec> > const & str)

{

return end(str) - begin(str);

}

Note that the return value of length is determined by the metafunction Size.
The default size type is size_t, which is sufficient for most applications. For
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standard strings we need again a shim function that wraps the member function
length of basic_string:

template <typename TChar, typename TTraits, typename TAlloc>
inline
typename Size< basic_string<TChar, TTraits, TAlloc> >::Type
length(basic_string<TChar, TTraits, TAlloc> const & str)
{

return str.length();
}

The length of C-style string is determined by searching its zero-termination:

template <typename T>
inline typename Size<T *>::Type
length(T * str)
{
if (!str) return 0;
T x it = str;
T zero = T();
while ( *it != zero) ++it;
return it - str;
}

A ‘zero’ is created by calling the default constructor of T. The length of a null
pointer is defined to be 0.

6.1.4 The Functions value

Since all kinds of string that we consider here support the subscript operator
[ 1 for accessing their values, we get by with a single default implementation
of value:

template <typename TString, typename TPosition>
inline typename Value<TString>::Type
value(TString * str,
TPosition pos)
{
return str[pos];

3

Note that a class that supports the subscript operator always implements
a member function ‘operator [ ]1’, so in order to avoid the application of
member functions (see Section 5.4), generic algorithms should always use the
global function value instead of square brackets.
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6.1.5 The Generic Algorithm countValues

Now we have all building blocks to implement COUNTVALUES. The result is
the generic algorithm shown in Listing 7. Here we used the function ordValue
that transforms a value of type TValue into unsigned int according to the
ord function in Section 7.4, which maps the letters in the alphabet to numbers
between 0 and the size of the alphabet —1.

template <typename TString>
void countValues(TString const & str)
{
typedef typename Value<TString>::Type TValue;
unsigned int const alphabet_size = ValueSize<TValue>::VALUE;
unsigned int counter[alphabet_size];
for (unsigned int i = 0; i < alphabet_size; ++i)
{
counter[i] = 0;
}
for (unsigned int i = 0; i < length(str); ++i)
{
TValue ¢ = value(str, i);
counter [ordValue(c)] += 1;
}
/* report counter */
}

Listing 7: Generic Algorithm for Counting String Values.

The function countValues can be used for all strings that support Value,
length, and value, and for all value types that support ValueSize. These
functions and metafunctions may be defined for all kinds of strings and all
reasonable value types, so COUNTVALUES has potentially a very large area of
application, and it is applicable to string types of different libraries, like SeqAn
and the C++ standard library, as well as to built-in C-style strings. Thus we
call this kind of programming ‘“library-spanning programming’.

6.2 Example 2: Locality-Sensitive Hashing

In Section 12.1.1 we will propose the class Shape for storing a (gapped) shape,
which is an ordered set s = (s1,...,s,) of integers s; =1 < sy < --- < s,. The
subsequence Gy Qiys, - - - Giys, Of a string a = ay ...a, is called the (gapped)
q-gram of a at position 0 <7 < n — s,. For a g-gram b, ...b,, we define the
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hash value .

hash(by ...bg) =Y _ ord(b;)[%|"™"

i=1
(see Figure 7), where ord returns for each value of the alphabet ¥ a unique
integer € {0,...,|3| — 1}, see Section 7.4.
A typical task in Bioinformatiks is to compute the hash values for all g-grams of
a given string, e.g. for building up a (gapped) g-gram index (Section 12.1), or
to apply locality-sensitive hashing (Indyk and Motwani 1998) for motif finding
(Section 11.3.1). Listing 8 shows a generic algorithm that iterates through str
and computes at each position the hash value by calling the function hash.

Shape [1]2]3[4]5 e[7]8]9] s=(1.2478,9)

Sequence . AGT ATT ATAC..
CIAIGIAIGIT]

Hash Value 102123, =1179,,

Figure 7: Locality-Sensitive Hashing. The example shows the application of the gapped
shape s = (1,2,4,7,8,9). The hash value of "CAGAGT" is 1179.

There are several ways for storing shapes of different kinds, see Table 22 on
page 142. We will now discuss how these shape classes could be implemented
in SeqAn.

template <typename TShape, typename TString>
void hashAll(TShape & shape,
TString & str)
{
typedef typename Iterator<TString>::Type TIterator;
TIterator it = begin(str);
TIterator it_end = end(str) - span(shape);
while (it != it_end)
{
unsigned int hash_value = hash(shape, it);
/* do some things with the hash value */
++it;
}
}

Listing 8: Generic Algorithm for Computing all ¢-Gram Hash Values. The function
span applied to the shape s = (s1,...,s,) returns s, — 1.
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6.2.1 The Base Class Shape

We decide to implement all shapes in SeqAn as refinements of the class Shape.
Each shape has to know the alphabet X, so we specify this value type in the
first template parameter of Shape. The actual specialization is selected in the
second template parameter TSpec:

template <typename TValue, typename TSpec = SimpleShape>
class Shape;

The default specialization is SimpleShape. We will define it in Section 6.2.3.
Note that there is no default implementation of Shape, i.e. all shapes classes
are defined as specializations.

6.2.2 Generic Gapped Shapes

The most straightforward implementation of a generic shape s = (s1,...,s,)
stores this sequence in a data member. We use the specialization GappedShape
of Shape for this variant.

template <typename TSpec = void>
struct GappedShape;

template <typename TValue, typename TSpec>
class Shape< TValue, GappedShape<TSpec> >
{
public:

unsigned span;

String<unsigned int> diffs;

};

As a shortcut for this specialization we define:

typedef GappedShape<> GenericShape;

Since it always holds that s; = 1, we need to store only ¢ — 1 differences
d; = si41 — s; in the container diffs. Moreover, we store s, —1 in the member
variable span, which can be retrieved by calling the function of the same name:

template <typename TValue, typename TSpec>
inline unsigned int
span(Shape< TValue, TSpec > const & shape)
{

return shape.span;

};
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Note that we define span in a way that it is also applicable for other special-
izations of Shape. The function hash can be implemented as follows:

template <typename TValue, typename TSpec, typename TIterator>
inline unsigned int
hash(Shape< TValue, GappedShape<TSpec> > const & shape,
TIterator it)

{

unsigned int val = *it;

for (unsigned int i = 0; i < length(shape.diffs); ++i)

{

it += shape.diffs[i];
val = val * ValueSize<TValue>::VALUE + *it;

X

return val;
s

6.2.3 Ungapped Shapes

The most frequently used shapes are ungapped, i.e. shapes s = (1,2,...,q).
Ungapped shapes can be stored much simpler than gapped shapes:

template <typename TValue>
class Shape< TValue, SimpleShape >

{
public:

unsigned int span;
s

That means we need not to store values s; or d; but only the ‘length’ ¢ of the
shape. If we know ¢ at compile time, then we can specify it in a template
parameter and define span as a static member:

template <unsigned int q = 0>
struct UngappedShape<qg>;

template <typename TValue, unsigned int g>
class Shape< TValue, UngappedShape<q> >

{
public:

static unsigned int const span = q;
s

We call this a ‘fixed shape’, since for these shapes the span ¢ cannot be changed
at run time. Since both variants of ungapped shapes are very similar (and we
do not need shapes for ¢ = 0) we define SimpleShape to be a sub-specialization
of UngappedShape as follows:
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typedef UngappedShape<0> SimpleShape;

This allows us to define functions for both kinds of ungapped shapes at once.
Ungapped shapes have the advantage, that the hash value of the i-th ¢-gram
can also be computed incrementally in constant type from the hash value of
the ¢ — 1-th g-gram according to the formula:

hash(a;t1 . .. Girq) = hash(a; . .. Giyq-1)q — @ X + a;4q

So we define a function hashNext that computes the next hash value, given
the previous hash value prev:!

template <typename TValue, unsigned int q, typename TIterator>
inline unsigned int
hashNext (Shape< TValue, UngappedShape<q> > const & shape,
TIterator it,
unsigned int prev)

{
unsigned int val = prev * ValueSize<TValue>::VALUE
- *it * shape.fac
+ *(it + shape.span);
return val;
s

In the above code we store the value |X|? in the member variable fac. In the
case of fixed shapes this member variable could be a static member constant,
so the compiler can apply additional optimizations which makes fixed shapes
faster than shapes of variable length q.

Using hashNext, we can define a specialization of hashAll for ungapped shapes
(Listing 9) that has a higher performance than the generic version in Listing 8.

6.2.4 Hardwired Shapes

We argued in the last section, that fixed shapes can be faster than variable
shapes, because a shape that is already defined at compile time is better opti-
mized. Therefore we define a specialization HardwiredShape of GappedShape
which encodes a (gapped) shape within template parameters:

template <int d1, int d2, int d3, int d4, ...>
struct HardwiredShape;

! Note that hashNext in SeqAn does not get prev as function argument, since the previous
hash value is stored in the shape.
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template <typename TValue, unsigned int g, typename TString>
void hashAll(Shape< TValue, UngappedShape<q> > & shape,
TString & str)
{
typedef typename Iterator<TString>::Type TIterator;

TIterator it = begin(str);
TIterator it_end = end(str) - span(shape);

unsigned int hash_value = hash(shape, it);
/* do some things with the hash value */

while (++it != it_end)
{
unsigned int hash_value = hashNext (shape, it, hash_value);
/* do some things with the hash value */
}
}

Listing 9: Special Algorithm for Computing all Hash Values of Ungapped g¢-
Grams. The first hash value is computed by hash, and the rest incrementally from the
previous value by hashNext.

For this shape type the function hash can be computed by recursive C++
templates, which in effect cause a loop unrolling during the compilation. In
practice, a ‘hardwired shape’ achieves a much better performance than the
generic gapped shape class from Section 6.2.2.

6.2.5 Conclusion

Figure 8 shows the hierarchy of specializations for Shape. The ‘left branch’
Shape «— Shape<GappedShape> «— Shape<GappedShape<Hardwiredshape> >
gives an example for the progressive specialization that we described in
Section 5.3.1, where the ‘derived’ class determines the TSpec slot of its
‘base’ class. In the ‘right branch’, the derivation Shape<UngappedShape>
«— Shape<SimpleShape> demonstrates that template subclassing is also ca-
pable of other kinds of class derivation: The shape class Shape<SimpleShape>
is created by defining a template specialization of Shape<UngappedShape<q> >
for g = 0.

Each specialization of Shape has its own purpose: If we want to define the ac-
tual shape at run time, then we need GenericShape or SimpleShape instead
of their faster ‘fixed’ variants HardwiredShape and UngappedShape, see Fig-
ure 9. For ungapped shapes, we better use the specializations SimpleShape
or UngappedShape instead of the much slower alternatives GenericShape or
HardwiredShape.
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Shape
+ hashAll
+ span
GappedShape UngappedShape
+ hash < + hashAll
+ hashNext
need no} + hash
virtual §
HardwiredShape Z}
+ span SimpleShape
+ hash <"

Figure 8: Specialization Hierarchy of Shape. The dotted pointer shows that hashAll
calls the hash functions from descendant specializations. This is done without the need
of ‘virtual’, since template subclassing relies on static function binding, i.e. it is known
at compile time which function is actually called.

[CPU cycles]
160
140 +——— M SimpleShape
120 O UngappedShape
H GenericShape
100 — O HardwiredShape

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 weightq

Figure 9: Runtimes for ¢-gram Hashing. Average runtimes for computing a hash
value of an ungapped g-gram, where SimpleShape and UngappedShape use the function
hashNext, and GenericShape and HardwiredShape the function hash. Alphabet size
|X| = 4. The compiler optimized ‘fixed’ versions UngappedShape and HardwiredShape
take only about 80% and 40% the time of their generic counterparts SimpleShape and
GenericShape, respectively.
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Part 111

Content

This part gives a detailed overview of the main contents of SeqAn from the
algorithmic point of view. Chapter 7 explains basic functionality of the library.
Sequence data structures like strings, segments or string sets are discussed in
Chapter 8, gapped sequences and sequence alignments in Chapter 9, algorithms
for searching patterns or finding motifs in sequences are proposed in the Chap-
ters 10 and 11. The topic of Chapter 12 are string indices, and finally, Chap-
ter 13 proposes the graph data structures and algorithms available in SeqAn.
The string indices (Chapter 12) are in large part the work of David Weese, the
graph library (Chapter 13) was implemented mainly by Tobias Rausch.

Note that this part is no programmers reference manual. The library documen-
tation (see also Section 14.2.2) which is available from the project homepage
www.seqan.de and part of the library releases contains all relevant information
about that. The documentation also provides tutorials for the library’s use.

23
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Chapter 7

Basics

In this chapter we describe basic functionality provided by SeqAn and we intro-
duce some fundamental concepts that we will need in the following chapters.
We start with the concept of containers of values in Section 7.1. The next
Section 7.2 concerns memory allocation, and in Section 7.3 we explain the idea
of move operations. The alphabet types provided by SeqAn are introduced in
Section 7.4, and iterators in Section 7.5. Section 7.6 is about the conversion
of types, and finally Section 7.7 describes the file input/output functionality
in SeqAn.

7.1 Containers and Values

A containeris a data structure that has the purpose to store values, i.e. objects
of another data type. For example, a data structure String that stores the
string "ACME" would contain the values ‘A’, ‘C’, ‘M’, and ‘E’. Typically, all
values stored in a container have the same type, we call it the value type of
the container. The metafunction Value determines the value type for a given
container type.

A pseudo container is a data structure that in fact does not store instances
of the value type, but merely offers the same interface as a ‘real’ container.
Saving memory is the main reason for using pseudo containers: For example a
pseudo container vector<bool> could store the information about its content
in a bit field instead of storing individual bool objects in a vector. By doing
this, the container will take only one bit per value instead of one byte per value
and thus save memory.

The interface of containers does not depend on the way they store the informa-
tion about their values. This, however, raises questions concerning the value
access. A very intuitive way of accessing the values within a container is a
function that returns references. A reference behaves like the object it refers
to but has a different type. This holds in particular for C++ reference types
(C++ Standard 8.3.2), e.g. int& that is a data type for storing references to

95
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int variables. It is also possible to design proxy classes that serve as refer-
ences. Proxy classes are necessary if an access function is applied to a pseudo
container, because pseudo containers do not store actual value objects, hence
access functions cannot return C++ references, so the references must be emu-
lated by a proxy class. Unfortunately, it is not possible in C++ to define proxy
classes that behave correctly as references in all circumstances. For example,
proxy objects usually do not fit into the same template subclassing hierarchy
(Section 5.3) as the types they refer to, so different function overloads my be
called if we use proxy objects instead of the values itself as function arguments.
An alternative way to access values within a container are ‘get’-functions like
getValue that either return a C++ reference to the value or, in case of a
pseudo container, a temporary copy of the value. The type returned by a
getValue can be determined by the metafunction GetValue, and the refer-
ence type by Reference. For example, GetValue<vector<bool> > returns
bool and Reference<vector<bool> > a proxy class instead of bool& because
vector<bool> is a pseudo container.

7.2 Memory Allocation

Controlling memory allocation is one of the big advantages of C++ compared
to other programming languages as for example Java. Depending on the size of
objects and the pattern they are allocated during the program execution, cer-
tain memory allocation strategies have advantages compared to others. SeqAn
supports a variety of memory allocation strategies.

The two functions allocate and deallocate are used in SeqAn to allocate
and deallocate dynamic memory (C++ Standard 3.7.3). Both functions take
an allocator as an argument. An allocator is an object that is thought as to be
‘responsible’ for allocated memory. The default implementations of allocate
and deallocate completely ignore the allocator but simply call the basic C++
operators new and delete. Although in principle every kind of object can be
used as allocator, typically the object that stores the pointer to the allocated
memory is used as allocator. For example, if memory is allocated for an alloc
string (see 8.3.1), this string itself acts as allocator. A memory block should
be deallocated using the same allocator object as it was allocated for.

The function allocate has an optional argument to specify the intended
allocator usage for the requested memory. The user can thereby special-
ize allocate for different allocator applications. For example, the tag
TagAllocateTemp specifies that the memory will only be used temporarily,
whereas TagAllocateStorage indicates that the memory will be used in the
long run for storing values of a container.

SeqAn also offers more complex allocators which support the function clear.
This function deallocates at once all memory blocks that were previously al-
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SimpleAlloc General purpose allocator.

SinglePool  Allocator that pools memory blocks of specific size. Blocks of different
sizes are not pooled.

ClassPool Allocator that pools memory blocks for a specific class. The underlying
functionality is the same as for SinglePool.

MultiPool Allocator that pools memory blocks. Only blocks up to a certain size
are pooled. The user can specify the size limit in a template argument.

ChunkPool Allocator that pools one or more consecutive memory blocks of a specific
size.

Table 1: Allocators. These specializations of Allocator support the clear function.

Pool Size

L [ [ [ [ [ [ Te]

Memory
Blocks
in
Pools

\ S
Block Size B

Begin m Recyclel % | Endl : |

Host Allocator

Pool
Allocator

Figure 10: Pool Allocator. The SinglePool allocator optimizes the allocation of memory
blocks of a certain size B that can be specified in a template argument. A host allocator —
by default a SimpleAlloc allocator — is used to allocate the pools and requested memory
blocks of size different than B. Not used memory blocks are displayed gray. Released
blocks are stored in a linked list starting with the pointer Recycle. If a new memory
block is requested from the pool, then it is taken from the beginning of this list or, if the
list is empty, the block at the end position is used.
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located. There are some allocator specializations for different uses predefined
(see Table 1). Most of these allocators are pool allocators. A pool alloca-
tor implements its own memory management: It reserves storage for multiple
memory blocks at a time and recycles deallocated blocks, see Figure 10. This
reduces the number of expensive new and delete calls and speeds up the al-
location and deallocation, see Figure 11 for timings.

[CPU Cycles]
5000
4000 —H
3000 =T7]

2000 LTI Simple Alloc
1000 + L
0 ]

5000
4000

3000 HHH <
2000 LI Single Pool
1000 - HHHHH

0 uan

5000
4000

3000 L .
2000 LI Multi Pool
1000 [I:I:I: L

0 oo0 | 1|

5000
4000 =
3000

2000 '|: L[] Chunk Pool
oo THHHHE I HHHHHE - H H H H H F RINININANI]

10 100 1000 Block Size

Figure 11: Allocator Run Times. The average time for allocating memory blocks of
different sizes using (1) SimpleAlloc (2) SinglePool<100> (3) MultiPool and (4)
ChunkPool1<100>. The times for getting memory from SimpleAlloc reflects the ex-
pense for requesting it directly from the heap manager. Blocks of size 100 (in case of
SinglePool<100>) or multiples of 100 (in case of ChunkPool<100>) are taken from the
pool; MultiPool pools blocks of size < 256. All other blocks are requested from the heap
manager. The figure shows that getting a memory block from a pool takes approximately
8% of the time needed to allocate the same amount of memory from the heap manager.

Note that the C++ standard concept ‘allocator’ (C++ Standard 20.1.5) differs
from the SeqAn allocator concept. For example, the C++ standard requires that
allocators implement several member functions, whereas the SeqAn library
design avoids member functions as possible, see Section 5.4. SeqAn offers
the adaptor class ToStdAllocator that fulfills the allocator requirements as
defined in the C++ standard and wraps the member functions allocate and
deallocate to their global counterparts. One purpose of ToStdAllocator is
to make standard containers use the SeqAn allocators for retrieving memory.

7.3 Move Operations

There is often an opportunity to speed up copy operations, if the source is
not needed any more after copying. Therefore, we introduce mowve operations,
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i.e. assignments that allow the destruction of the source. For example, if a
container stores its values in a dynamically allocated memory block, a move
operation may simply pass the memory block of the source object to the tar-
get. The source container will be empty after the move operation. Move
operations like moveValue are alternatives for regular assignment functions
like assignValue.

String<char> strl = "ACGT";

String<char> str2(strl, Move());

cout << str2; //output: "ACGT"
cout << length(strl); //output: 0

Listing 10: Move Constructor Example.

In many cases, SeqAn also offers special constructors that apply move oper-
ations. The move constructor differs from the regular copy constructor in an
additional tag argument Move (see Listing 10).

7.4 Alphabets

A value type that can take only a limited number of values is called a (finite)
alphabet . We can retrieve the number of different values of an alphabet
||, the alphabet size, by the metafunction ValueSize. Another useful meta-
function called ‘BitsPerValue’ can be used to determine the number of bits
needed to store a value of a given alphabet. Table 2 lists some alphabets pre-
defined in SeqAn. Let ¥ = {oy,...,0)5-1} be an alphabet, then we denote
ord(c;) = i. This number can be retrieved by calling the function ordvalue.
All predefined alphabets in SeqAn store their values in enumerated integers
{0,...,ValueSize—1}, so ordValue is for those value types a trivial function.

7.4.1 Simple Types

Containers in SeqAn are usually designed as generic data structures that can
be instantiated for arbitrary value types. The value type can therefore be any
user defined class as well as a simple type. A simple type is a type that does
not need a constructor to be created, a destructor to be destroyed, and neither
a constructor nor an assignment operator to be copied.

Simple objects have the advantage that they can be moved within the com-
puter’s main memory using fast memory manipulation functions. In many
cases, containers that work on simple types can therefore be implemented
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Dna Alphabet for storing nucleotides of deoxyribonucleic acid, i.e. ‘A’ ¢C?,
‘G’, and ‘T°.

Dnab Like Dna, but with an additional value ‘N’ for ‘unknown nucleotide’.

Rna Alphabet for storing nucleotides of ribonucleic acid, i.e. ‘A?, ¢C?, ‘G?, and
‘U,

Rnab Like Rna, but with an additional value ‘N’ for ‘unknown nucleotide’.

Tupac Iupac code for storing nucleotides of DNA/RNA. The Iupac codes are
enumerated in this order: ‘U= 0, ‘T?, ‘A?, ‘W’, ‘C’, ‘Y’, ‘M’, ‘H’, ‘G,
‘K2, ‘R?, ‘D?, ¢S?, ‘B?, ‘Y, ‘N’=15

AminoAcid Alphabet for storing amino acids.

Table 2: Alphabets in SeqAn. The listed characters are the result when a value is converted
into char.

much faster than generic containers that must copy values one after another
using the correct assignment operator or copy constructor.

POD (‘plain old data’) types (C++ Standard 3.9) are simple, for example built-
in types like char or wchar_t. A C++ class can also be simple even if it defines
constructors, destructors or assignment operators, as long as these functions
are not necessary for correctly creating, destroying, or copying instances of
this class. All value types listed in Table 2 are simple.

The metafunction IsSimple can be used to distinguish between simple and
non-simple types in metaprogramming.

7.4.2 Array Operations

In SeqAn a set of array operations serve as an abstraction layer to apply di-
vergent handling between simple types and other kinds of types. For example,
the general version of the function arrayCopy uses a loop to copy a range of
objects into a target range, whereas a specialized version of arrayCopy for
simple types applies the fast memory manipulation function memmove (C++
Standard 20.4.6).

7.4.3 Alphabet Modifiers

A modifier is a class that adapts types in a way that the adapted type
is still of the same kind but shows some differences compared to the un-
modified type. The alphabet expansion modifier ModExpand for exam-
ple transform an alphabet into another alphabet that contains an addi-
tional character, i.e. the walue size is increased by one. For exam-
ple ModifiedAlphabet<TValue, ModExpand<’-’> > expands the alphabet
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¢

TValue by a gap character ‘-’. This alphabet is used in the context of gapped
sequences and alignments, see Chapter 9. It is returned by the metafunction
GappedValueType for value types that do not already contain a gap value.
SeqAn also offers string modifiers, see Section 8.5.

7.5 Iterators

An steratoris an object that is used to browse through the values of a container.
The metafunction Iterator can be used to determine an appropriate iterator
type given a container. Figure 12 shows some examples. Some containers offer
several kinds of iterators, which can be selected by an optional argument of
Iterator. For example, the tag Standard can be used to get an iterator type
that resembles the C++ standard random access iterator (see C++ Standard
24.1.5). The more elaborated rooted iterator, i.e. an iterator that ‘knows’ its
container, can be selected by specifying the Rooted tag.

Sequence
0 p
HEEEEEEEEEEEEEEN
4 f A \
Sequencel E I Sequence E
Pointer
Pointer E Position E
Standard Rooted Stable

Figure 12: Iterators for Alloc Strings. See Section 8.3.1. The standard iterator is just
a pointer to a value in the string. The rooted iterator also stores a pointer to the string
itself. The stable iterator stored the position instead of a pointer to a value since pointers
could be invalid when the alloc string is resized.

Rooted iterator offer some convenience for the user: They offer additional
functions like container for determining the container on which the itera-
tor works, and they simplify the interface for other functions like atEnd, see
Listing 11. Moreover, rooted iterators may change the container’s length or
capacity, which makes it possible to implement a more intuitive variant of a
remove algorithm (see C++ Standard 25.2.7). On the other hand, standard it-
erators can often be implemented simply as pointers, and in practice they are
faster than rooted iterators, which typically suffer from an abstraction penalty,
see Section 5.2. Hence, the default iterator is set to Standard for most con-
tainers. This default is defined by the metafunction DefaultIteratorSpec.

While rooted iterators can usually be converted into standard iterators, it is
not always possible to convert standard iterators back into rooted iterators,
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since standard iterators may lack the information about the container they
work on. Therefore, many functions that return iterators like begin or end
return rooted iterators instead of standard iterators; this way, they can be used
to set both rooted and standard iterator variables. Alternatively it is possible
to specify the returned iterator type explicitly by passing the iterator kind as
a tag argument.

String<char> str = "ACME";

Iterator<String<char>, Rooted> it; //a rooted iterator
for (it = begin(str); !'atEnd(it); ++it)
{

cout << *it;

3

Listing 11: Rooted Iterator Example. Since it is a rooted iterator, it supports the unary
function atEnd that returns true if and only if the iterator points behind the end of its
container. A standard iterator that does not ‘know’ its container could not support this
function.

An iterator is stable if it stays valid even if its container is expanded, otherwise
it is unstable. For example, the standard iterator of alloc strings (Section 8.3.1)
— which is a simple pointer to a value in the string — is unstable, since during the
expansion of an alloc string, all values are moved to new memory addresses. A
typical implementation of stable iterators for strings store the position instead
of a pointer to the current value. The Iterator metafunction called with the
Stable tag returns a type for stable iterators.

7.6 Conversions

The function convert transforms objects from one type TSource into another
type TTarget (see Listing 12). There are two possibilities for doing that: If
the object can simply be reinterpreted as an object of type TTarget, convert
returns a TTarget& referring to the original object. Otherwise, convert re-
turns a temporary (C++ Standard 12.2) object of type TTarget. The actual
return type can be determined by the metafunction Convert.

TSource obj;
Convert<TTarget, TSource>::Type obj2 = convert<TTarget>(obj);

Listing 12: Value Conversion. The program converts an object of type TSource into
an object of type TTarget. Convert<TTarget, TSource>::Type is either TTarget& or
TTarget, according as obj can be reinterpreted as TTarget object or not.
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7.6.1 Sequence Conversions

A sequence of one value type can be converted into a sequence of another value

type,

if the two value types are convertible. SeqAn offers three different ways

for sequence conversion:

(1)

(2)

Copy conversion. The source sequence is copied into the target se-
quence, e.g. during construction, by assignment (operator =), or using
the function assign.

Move conversion. In some cases, the function move can perform an in-
place conversion. For example, if source and target sequence are Alloc
strings (see Section 8.3.1) and if the two value types have the same size,
then move transfers the value storage of the source to the target string.
After that, all values are converted to the new value type.

Modifier conversion. A modifier can ‘emulate’ a sequence with a differ-
ent value type instead of creating an actual target sequence, see Section
8.5.

7.7 File Input/Output

SeqAn supports several ways for reading and writing sequences and alignments
in different file formats. Table 3 shows some supported file formats. There are
two ways for accessing a file in SeqAn:

(1)

File Access Functions: The function read loads data from a file and
write saves data to a file. Both C-style FILE handles or C++ stream
objects can be used as files. Many file formats like Fasta or Embl are
designed to store multiple records, where each record contains a sequence
and some meta data about this sequence. The meta data is loaded by
loadMeta and saved by setting an optional argument of write. Function
goNext skips the current record.

SeqAn also implements stream operators >> and <<, which are wrapped
to read and write using the Raw file format.

File Reader Strings: The most simple way of reading a file that con-
tains sequence data is to use a file reader string that emulates a constant
string on a given file. It is implemented in the specialization FileReader
of String. File reader strings support almost the complete string inter-
face, including iteration. A file reader string should nevertheless be read
sequencially, because random accesses can be very time consuming. Note
that the contents of a file reader string cannot be changed.
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Raw

Fasta

Embl

Genbank

DotDrawing File format for graphs (see Chapter 13), write only.

The default file format. Raw applied to sequences means that the file
content is directly interpreted as a sequence. Raw applied for writing an
alignment generates a pretty print.

A common file formats for storing sequences or alignments (Pearson and
Lipman 1988). Each record consists of a single line starting with ¢> that
contains meta data, followed by the sequence data.

The EMBL/Swissprot file format (Stoehr and Cameron 1991) for storing
sequences and complex meta data. Each meta data entry starts with a
two letter code (see EMBL User Manual 2008, 2008).

The GenBank file format (Benson et al. 2008); an alternative notation of
EMBL/Swissprot file format for sequence data.

Table 3: Some File Formats.

The functions read and write can also be used for loading and storing scoring
matrices, i.e. ScoreMatrix specialization of class Score, see Section 9.3.1.
Graphs (see Chapter 13) can be saved to files using the DotDrawing file for-

mat.



Chapter 8

Sequences

8.1 Strings

A sequence is a container that stores an ordered list of values. The number
of these values is called the length of the sequence. The values in a sequence
are ordered, We define 7 — 1 to be the position of the i-th value in a sequence,
i.e. the first value in the sequence stands at position 0 and the last at position
‘length — 17, as it is standard in C. We call 0 the begin position and the length
of the sequence the end position. Note that the end position is not the position
of the last value in the sequence but the position after the last value.

In computer science, a string is usually defined as a sequence of characters
taken from a finite alphabet, but since there is — concerning the design of data
structures — no reason to distinguish between ‘characters’ and other kinds of
values, we apply a divergent notation here: We call all sequences ‘strings’
that support constant time random access to their values. ‘Random access
means that the string supports a function that returns the value stored at a
specified position. Functions of this kind are value and getValue, as well
as the subscript operator [ ]. In contrast to that, sequences that do not
allow random access to their values, for example streams, are not called string.
Note that we distinguish between ‘simple’ and ‘non-simple’ value types rather
than between ‘characters’ and ‘non-characters’ (see Section 7.4.1), but this
distinction has no impact on whether a sequence is called a ‘string’ or not. All
string classes in SeqAn (with the exception of the external string, see Section
8.3.5) are designed as generic data structures that can be instantiated both for
‘simple’ and ‘non-simple’ value types.

SeqAn implements several string types as specializations of the class String.
These specializations are described in Section 8.3. There is another special-
ized class StringSet that offers an implementation of ‘strings of strings’, i.e.
strings that use again strings as value types. StringSet will be described in
Section 8.8.

A sequence is contiguous if it stores its values consecutively in a single memory

K
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block. Applied to a sequence type T, the metafunction IsContiguous returns
True if T is contiguous, otherwise False. Examples for contiguous strings are
the standard library basic_string (see C++ Standard 21.3) and simple char
arrays.

8.2 Overflow Strategies

Some sequence types reserve space of storing values in advance. The number
of values for which a sequence has reserved space is called the capacity of
this sequence. The capacity is therefore an upper bound for the length of a
sequence. A sequence is called ‘expandable’, if its capacity can be changed. All
string classes in SeqAn— except of the array string (see Section 8.3.2) — are
expandable. Changing the capacity can take much time, e.g. expanding an
alloc string (see Section 8.3.1) necessitates to copy all values of this string into
a new memory block.

Exact Expand the sequence exactly as far as needed. The capacity is only changed
if the current capacity is not large enough.

Generous Whenever the capacity is exceeded, the new capacity is chosen somewhat
large than currently needed. This way, the number of capacity changes is
limited in a way that resizing the sequence only takes amortized constant

time.

Limit Instead of changing the capacity, the contents are limited to current capacity.
All values that exceed the capacity are lost.

Insist No capacity check is performed, so the user has to ensure that the container’s
capacity is large enough.

Table 4: Overflow Strategies.

There are numerous functions in SeqAn that can change the length of a se-
quence. If the current capacity of a sequence is exceeded by changing the
length, we say that the sequence ‘overflows’. The overflow strategy (see Table
4) determines the behaviour of a sequence in the case of an overflow. The
user can specify the overflow strategy by applying a switch argument. Other-
wise the overflow strategy is determined depending on the sequence class: For
functions that are used to ezplicitly change a sequence’s length (like resize
or £ill) or capacity (reserve), the metafunction DefaultOverflowExplicit
specifies the default overflow strategy. Functions like appendValue or replace
that primarily serve other needs than changing lengths or capacities may
also cause an overflow implicitly. For these functions, the metafunction
DefaultOverflowImplicit is used to determine the default overflow strat-
egy. For example, the alloc string uses Exact as explicit and Generous as
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implicit default expansion strategy. Listing 13 gives an example for the ef-
fect of overflow strategies. The overflow strategy Generous is used to achieve

String<char> str;

//default expansion strategy Exact:
resize(str, 5);
//now the capacity of str is 5

//use expansion strategy Limit:
assign(str, "abcdefghi", Limit());
//only "abcde" was assigned to str.

//default expansion strategy Generous:
append(str, "ABCDEFG");
//now str == "abcdeABCDEFG"

Listing 13: Overflow Strategies Example.

amortized constant costs for appending single values to a string, e.g. the alloc
string. When the string is expanded, the function computeGenerousCapacity
is called to compute a new capacity for this string. The default implementation
— which can be overwritten by the user — reserves 50% extra space for stor-
ing values. This additional memory is used to store values that are appended
afterwards. One can easily show that the number of expansions of a string is
logarithmic in the number of value appends, and that each value in the string
is moved at most three times on average.

8.3 String Specializations

We will now describe the different specializations of the class String (see Table
5 for an overview).

8.3.1 Alloc Strings

SeqAn offers two contiguous string specializations: Alloc and Array. Alloc
strings use dynamic memory (C++ Standard 3.7.3) for storing values. Ex-
panding the string means therefore that we need to move all values into a
new allocated larger memory block. That in turn makes most iterators unsta-
ble (see Section 7.5). The amortized costs for appending a value (e.g. using
appendValue) is constant if the overflow strategy ‘Generous’ is used (see Sec-
tion 8.2).

Since alloc strings are a good choice for most applications, Alloc is the default
string specialization.
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Alloc

Array

Block

Packed

External

The default string implementation that can be used for general purposes.
The values are stored in a contiguous memory block on the heap. Changing
the capacity can be very costly since all values must be copied into a new
memory block.

A fast but non-expandable string that stores it values in a member variable
and that is therefore best suited for holding small temporary sequences.

A string that stores its content in blocks, so that the capacity of the string
can quickly be increased without copying existing values. Though iteration
and random access to values are slightly slower than for alloc strings, block
strings are a good choice for growing strings and stacks.

A string that stores as many values in one machine word as possible and
that is therefore suitable for storing very large strings in memory. Since
each value access takes some bit operations, packed strings are in general
slower than other in-memory strings.

A string that stores the values in secondary memory (e.g. a hard disk).
Only parts of the string are loaded into main memory whenever needed.
This way, the total string length is not limited by the machine’s physical

memory.

[CPU cycles]

10000

1000

Table 5: String Specializations.
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Figure 13: String Value Accessing Run Times. Left: Run times for copying a random
value into a random place depending on the length of the strings. Right: Run times for
iterating a string and moving the whole string one value further.
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0 Values el ¢
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Figure 14: Contiguous String. The figure shows an alloc string. The values are stored in
a single contiguous piece of memory. The string also stores the capacity of the storage
and the begin and end of the currently used part.

8.3.2 Array Strings

Array strings store values in an array data member. This array has a fixed
size, which is specified by a template argument. The advantage of array strings
is that no expenses are incurred for allocating dynamic memory if the string
is created with static or automatic storage duration (C++ Standard 3.7.2), i.e.
the string is stored on the call stack at compile time. This can also speed up the
value access, since the call stack is a frequently used part of the memory and
has therefore a good chance to stay in the cache. On the other hand, the finite
size of the call stack limits the capacity of the string. A typical application for
the array strings is to provide quickly limited storage for sequences.

8.3.3 Block Strings

A Block string stores values in a set of fixed size memory blocks. The location
of these blocks is stored in a directory. Block strings are expanded by adding
new memory blocks. The advantage — compared to contiguous strings —is, that
this can be done without moving values in memory. Block string iterators are
therefore always stable (see Section 7.5), and it is uncritical to store pointers
to values that are stored in a block string. Random access to a value at a given
position in the block string is done in four steps: (1) Determine the number of
the block the value is stored, (2) look up in the directory the location of the
block, (3) determine the offset at which the value is stored within the block,
(4) access the value. If the block size is set to a power of two, step (1) take only
one shift- and step (3) one and-operation. Nevertheless, random accesses to
values in block strings are up to three times slower than random accesses to
values in contiguous strings, and iterating over a block string takes about two
times longer than iterating over a contiguous string (see Figure 13).

The block string is optimized for appending and removing single values at the
end of the string. It supports the functions push — a synonym for appendValue
— and pop, and it is therefore best suited to be used as stack.

8.3.4 Packed Strings

Objects in C++ have at least a size of one byte (C++ Standard 1.7), hence
each value takes at least eight bits. But this is more than actually needed
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Figure 15: Block String. The values are stored in a set of blocks, each of the same size
that is a power of two. A directory sequence stores pointers to these blocks. All blocks
except of the last one are completely filled.
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Figure 16: Append Value Times. The average time needed to append a single value to
a string depending on the string length. Appending a single value to a contiguous string
could be very expensive, if this causes an expansion of the string buffer, which means
that the complete string must be copied. The two displayed corridors give the upper and
lower bound for appending (1) a simple type value or (2) a non-simple type value to a
contiguous string, where the sizeof of a single value is 1. The upper bound is reached,
if the string was expanded during the last appending, and the lower bound, if the next
appending would cause a buffer expansion. Block strings need no buffer expansions, so
the times for appending a value is less dependent from the kind of object stored in it.
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for some value types. For example, the alphabet Dna has only four letters
‘A’ ‘C’, ‘G’, and ‘T’, so that a Dna value can be encoded in only two bits.
The metafunction BitsPerValue returns the number of bits needed to store a
value.

The Packed string stores the values ‘packed’; i.e. each value takes only the
minimal number of bytes. For example, the packed string compresses a Dna
sequences down to a quarter of its ‘unpacked’ size.

|

2 = F10 F15 F20 F25 F30 [35

machine word

Fa7

Fa  Fo F13 F19 [o4 Fo9 Faa [

0

Beginl E I End EJ Length

Figure 17: Packed String. The string stores as many values per machine word as possible.
In this example, each value takes six bits. The packed string stores five instead of four
values per 32 bit machine word, only two bits per machine word are wasted.

’(uu

However, the handling of packed strings is slower than for all other in-memory
string types in SeqAn. In practice, random accesses in packed strings are
up to two orders of magnitude slower than random accesses in contiguous
strings (see Figure 13). This difference has three reasons: (1) Accessing a
value in a packed string is much more complicated than accessing a value in
a contiguous string, because each access takes multiple operations to filter
out the relevant bits, (2) the high complexity of access operations obstruct an
efficient optimization by the compiler, and (3) since packed strings are suitable
to handle very long sequences, SeqAn packed string uses 64 bit position types,
but this slows down random accesses on 32 bit machines by a factor of about
two. The packed string’s iterator was optimized to speed up accesses, but an
iteration still takes eight times longer than iterating an unpacked contiguous
string (see Figure 13). For that reason, the application of packed strings is only
advisable if the handled sequences are too long to be stored in main memory.

8.3.5 External Strings

The External string stores its values on external memory, i.e. in a file, with
the effect that the main memory size does not limit the sequence length any
more. In particular, external strings can be larger than 4 GB even on 32 bit
machines, where we need then 64 bit words to store a positions of a value
within the string. The file is organized into fixed length blocks, and only some
of them are cached in main memory. Both block length and number of cached
blocks can be specified in template arguments. When the user accesses a value
of an uncached block, the block is loaded into memory, and in return, the
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least recently used block in the cache is written back to the file. During an
iteration, the external string’s iterator prefetches asynchronously the next-in-
line memory block. This ‘trick’ speeds up the sequential iteration, but random
accesses to values in external strings are very slow, see Figure 13.

8.4 Sequence Adaptors

SeqAn also implements complete string interface adaptors — both functions
and metafunctions — for data types that are not part of SeqAn. This way,
these data types can be accessed in the same way as SeqAn sequences, i.e.
string algorithms in SeqAn can be applied to these data types. There are
three adaptions:

(1) For zero terminated char arrays, also known as ‘C-style strings’, the
‘classical” way for storing strings in the programming language C. For ex-
ample, the length function for C-style strings calls the standard library
function strlen. The interface applies to arrays of char or char_t and
to char * and wchar_t * pointers.

Unfortunately, it is not possible to distinguish between C-style strings
and char pointers, which could also be iterators for C-style strings or
other string classes, so if the user calls for example append to attach
a char * to a string str, then we could either append a sequence of
char or a single char *. Note that it is not possible to decide this just
regarding the value type of str, since this could be any type into which
either char or char * can be converted.

Another limitation of C-style strings is that we cannot define all common
operators like operator = for built-in types like char *.

2) For the standard library class basic_string, that is widely used in C++
y g y
programs. For example, the length function for basic_string string
calls the member function length.

However, there is a slight problem due to the iterators of
basic_string. According to the standard, the iterator types
are only known via member typedefs basic_string::iterator or
basic_string::const_iterator, but it is not possible in C++ to spe-
cialize functions or metafunctions for member typedefs, because the com-
piler can not deduce the type defining class (in this case basic_string)
given the defined type (the iterator). For example the following code
to define the metafunction Value does not work, because the template
arguments cannot be resolved given the actual iterator type:
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template <typename TValue, typename TTrait, typename TAlloc>

{
typedef TValue Type;
s

struct Value<::std:: basic_string<TValue, TTrait, TAlloc>::iterator>

We solved this problem by implementing a new iterator specialization
StdIteratorAdaptor for basic_string that wraps the native iterator

basic_string::iterator.

(3) Finally, there is also a generic sequence interface that applies to any data

type (if there is no further implementation) in a way, that an arbitrary

object is regarded as a sequence of these objects of length 1.

8.5 Sequence Modifiers

SeqAn supports several modifiers (see Section 7.4.3) for strings that allow
a different ‘view’ to a given string, see Table 6. Modifiers for strings are
implemented in specializations of the class ModifierString. The required
space of a modifier is constant, i.e. it does not depend on the length of the

sequence.

appropriate iterator and segment data types (Section 8.6).

Each modifier exports a complete string interface, including an

ModView

ModReverse The reverse a,, ...a; of the string a; ... a,.-

SeqAn offers the following predefined functionals:

ModView<FunctorConvert>: Converts the value type.

ModView<FunctorLowcase>: Converts to lower case characters, e.g. ‘A’

is converted to ‘a’.

ModView<FunctorUpcase>: Converts to upper case characters, e.g. ‘b’

is converted to ‘B’.

ModView<FunctorComplement>: Converts nucleotide value Dna or Dnab
to their complement, e.g. ‘A’ is converted to ‘T?, ‘C’ to ‘G’, and vice

versa.

Transforms the values of a string aj ...a, using a custom functional.
The type of the functional is specified as template argument of ModView.

Table 6: String Modifiers.

Modifiers can also be nested, for example the following program shows how to
get the reverse complement of a given Dna string by applying two modifiers on

it:
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String<Dna> myString = "attacgag";

typedef ModifiedString<String<Dna>, ModComplementDna> TMyComplement;
typedef ModifiedString<TMyComplement, ModReverse> TMyReverseComplement;
TMyReverseComplement myReverseComplement (myString) ;

std::cout << myReverseComplement << endl; //prints "CTCGTAAT"

Since accessing a string through a modifier causes a certain overhead, it could
be advisable to convert the string itself — though this has the disadvantage that
the original string gets lost. SeqAn therefore offers ‘in-place’ modifier func-
tions reverseInPlace and convertInPlace. The following example program
converts a Dna string to its reverse complement:

String<Dna> myString = "attacgag";
convertInPlace(myString, FunctorComplement<Dna>());
reverselInPlace(myString) ;

std::cout << myString << endl; //prints "CTCGTAAT"

8.6 Segments

A segment is a contiguous part of a sequence. The sequence is called the host
of the segment. SeqAn implements segment data types for infixes, prefixes,
and suffixes: A prefiz is a segment that starts with the first value of the host,
a suffir is a segment that ends with the last value of the host, and an infix is
an arbitrary segment.

The segment data structures in SeqAn are pseudo containers: They do not
store values itself but a link to their host and the begin and end borders of the
segment, see Figure 18. These borders can be set either during the construction
of the segment or by functions like setBegin or setEnd. Changing the content
of a segment means to change the content of its host, see Listing 14.

Host Sequence

Segment /

o [§] oo [5] e []

Figure 18: Segment. The infix segment stores a pointer to the host and the begin and end
position of the subsequence.

The metafunctions Infix, Prefix, and Suffix, respectively, return for a given
sequence an appropriate data type for storing the segment. The functions
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String<char> str = "start_middle_end";
Infix<String<char> > inf = infix(str, 6, 12);

cout << inf; //output: "middle"

inf = "overwrite";

cout << str; //output: "start_overwrite_end";
prefix(str, 5) = "XYZ";

cout << str; //output: "XYZ_overwrite_end";

Listing 14: Segment Example. This program demonstrates how the content of a string
str can be changed by assigning new values to segments.

infix, prefix, and suffix create temporary segments that can directly be
used to manipulate their host sequence. It is also possible to create segments
of segments, but this does not introduce new types: A segment A of a segment,
B of a sequence S is again a segment of S. Note that changing the borders of
B does not affect the borders of A.

8.7 Comparators

Let A = agay ...a, and B = byb; . ..b,, be two sequences. If the value types of
A and B support the ‘equal’ operator ==, then we can derive an operator == for
sequences as follows: A == B is true if n = m and a;==b; for all 7; otherwise
A == Bis false. If the value types also support the less operator <, we define
the lexicographic order < for sequences as follows: A < B is true if either (1)
A but not B is the empty sequence "", or (2) a;<b;, where [ is the length of the
longest common prefix of A and B; otherwise A< B is false. If A and B share a
common prefix , then their longest common prefiz is the longest sequence that
is both a prefix of A and B, otherwise it is the empty sequence. If < for the
value types is a strict total ordering — which is the case for built-in types like
int or simple alphabets like Dna — the lexicographic order is also a strict total
ordering. Based on == and <, we can also define the other common compare
operations =!, >, <=, and >= as usual.

Each comparison involves a scan of the two sequences for searching the first
mismatch between the strings. This could be expensive if the two sequences
share a long common prefix. Suppose for example that we want to branch in
a program depending on whether A < B, A== B, or A > B, for example:

if (A < B) { /* code for case "A < B" %/ }
else if (A > B) { /* code for case "A > B" x/ }
else { /* code for case "A == B" %/ }

In this case, although only one scan would be enough to decide what case is to
be applied, each operator > and < performs a new comparison. SeqAn offers
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lexicals to avoid such unnecessary sequence scans. A lezical is an object that
stores the result of a comparison. Applying a lexical to the example above
leads to the following code:

Lexical<> comp(A, B);

if (isLess(comp))

else if (isGreater(comp)) { /* code for case "A > B" */ }

else

{ /* code for case "A < B" */ }

{ /* code for case "A == B" %/ }

The two sequences A and B are compared during the construction of the lexical
comp. The result is stored in the lexical and is accessed via the functions
isLess and isGreater.

Owner

Owner<ConcatDirect>

Dependent<Tight>

Dependent<Generous>

The default specialization of StringSet. The sequences in
this string set are stored in a string of string data structure.
concat returns a special ‘concatenator’ object that simulates
the concatenation of all these strings.

The sequences are stored as parts of a long string.  Since
the sequences are already concatenated, concat just need to
returns this string. The string set also stores lengths and start-
ing positions of the strings. Inserting new strings into the set
or removing strings from the set is more expensive than for
the default Owner specialization, since this involves moving all
subsequent sequences in memory.

This specialization stores sequence pointers consecutively in
an array. Another array stores an id value for each sequence.
That means that accessing given an id needs a search through
the id array.

The sequence pointers are stored in an array at the position
of their ids. If a specific id is not present, the array stores a
zero at this position. The advantage of this specialization is
that accessing the sequence given its id is very fast. On the
other hand, accessing a sequence given its position ¢ can be
expensive, since this means we have to find the i-th non-zero
value in the array of sequence pointers. The space requirements
of a string set object depends on the largest id rather than the
number of sequences stored in the set. This could be inefficient
for string sets that store a small subset out of a large number
of sequences.

Table 7: StringSet Specializations.
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8.8 String Sets

A set of sequences can either be stored in a sequence of sequences, for ex-
ample in a String< String<char> > or in StringSet. One advantage of
using StringSet is that it supports the function concat that returns a con-
catenator of all sequences in the string set. A concatenator is an object that
represents the concatenation of a set of strings. This way it is possible to build
up index data structures for multiple sequences by using the same construc-
tion methods as for single sequences, (see Chapter 12). The specialization
Owner<ConcatDirect> already stores the sequences in a concatenation. The
concatenators for all other specializations of StringSet are ‘virtual’ sequences,
that means their interface ‘simulates’ a concatenation of the sequences, but
they do not literally concatenate the sequences into a single sequence. Hence
in any case the sequences need not to be copied when a concatenator is created.
There are two kinds of StringSet specializations in SeqAn: Owner and
Dependent, see Table 7. Owner string sets actually store the sequences, whereas
Dependent string sets just refer to sequences that are stored outside of the
string set.

One string can be an element of several Dependent string sets. Typical tasks
are therefore to find a specific string in a stringset, or to test whether the strings
in two string sets are the same. Therefore a mechanism to identify the strings in
the string set is needed, and, for performance reasons, this identification should
not involve string comparisons. We solved this problem by introducing ids,
which are by default unsigned int values. There are two ways for accessing
the sequences in a string set: (1) the function value returns a reference to
the sequence at a specific position within the sequence of sequences, and (2)
valueById accesses a sequence given its ¢d. In the case of Owner string sets,
id and position of a string are always the same, but for Dependent string sets,
the ids can differ from the positions. For example, if a Dependent string sets
is used to represent subsets of strings that are stored in Owner string sets,
one can use the position of the string within the Owner string set as id of the
strings.
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Chapter 9

Alignments

An alignment (see Section 1.2.3) is a compact notation for the similarities
and the differences between two or more sequences. To get the similar re-
gions together, the alignment process allows the insertion of gaps into the
sequences, so we will first discuss in Section 9.1 which data structures for stor-
ing gapped sequences are provided in SeqAn, before we propose the alignment
data structures in Section 9.2. Algorithms for computing (global) alignments
are explained in Section 9.4 to 9.6.

9.1 Gaps Data Structures

In alignments obviously arises the need to store gapped sequences, i.e. se-
quences that contain gaps between the values. The simplest way to store a
gapped sequence is to store it as a usual sequence using a value type that is
extended by an extra blank value ‘-’. The gaps in the sequence are then
represented by the regions in the sequences that contain blank values. On the
other hand, it could be advantageous to store the ‘ungapped’ sequence and
the position of the gaps separately for at least three reasons: (1) this way, we
can extend arbitrary sequence data structures to gapped sequences without
copying the sequence, (2) one sequence — or parts of it — can participate in
several alignments, and (3) storing gaps as sequences of blank values could be
very expensive for long gaps or for repeated manipulation of the gaps.

The class Gaps implements in SeqAn data structures for storing the positions
of gaps or, more precisely spoken, ‘gap patterns’. A gap pattern of a sequence
a = ajas...a, is a strictly monotonically increasing function p that maps
the values {1,2,...,n} to values in N (see Figure 19). The sequence a is in
general a segment of a larger host sequence s, which is called the source of p.
The source position of a; is its position within the source sequence s, e.g. if
a = s, then the source position of a; is 7 — 1.

For p(i) = j, we call j — 1 the view position of a;. A j that is not a view
position of any value in a is called a blank. A maximal run of blanks is called

79
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source begin source end
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Figure 19: Gaps Data Structure. This is an example for a gap pattern function: p(1) = 4,
p(2)=5p03)="7,...

a gap. For example the L blanks j +1,j 4+ 2,...,5 + L between p(i) = j
and p(i + 1) = j+ 1+ L are a gap of length L. Given a sequence a and
a gap pattern p, the corresponding gapped sequence b = biby...0b,, of length
m = p(n) is defined by:

b — a; if there is an i such that p(i) = j
771 ‘-’ (i.e. a blank character) otherwise

The gapped sequence is also called the view of the gap pattern. If there are
blanks 0,1,...,p(1) — 1 at the beginning of b, they are called the leading gap
of b. We call p(1) — 1 the begin view position and p(n) the end view position
of p, i.e. they are the begin and end position of the gapped sequence without
the leading gap. The gapped sequence b can also be thought to be followed by
an endless number of trailing blanks b,,11 = b0 = ... = ‘=?. We call these
trailing blanks the ‘trailing gap’. A run of values without blanks between two

gaps is called a non-gap.

SequenceGaps A sequence of values including blank signs ¢-?.
ArrayGaps The lengths of gaps and non-gaps are stored in an array.

SumlistGaps  The gap pattern is stored in a two dimensional sum list.

Table 8: Gaps Specializations Overview.

SeqAn offers three different specializations for Gaps, each of which has
certain advantages: (1) SequenceGapsGaps, (2) ArrayGapsGaps, and (3)
SumlistGapsGaps (see Table 8). All implementations of gaps data struc-
tures offer functions for inserting and deleting gaps, for changing a gap’s size,
and for converting view positions to source positions and vice versa, which is
necessary for example for random access of the values in the gapped sequence
given a view position. The differences between the three specializations will
be described now.
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SequenceGaps | ArrayGaps | SumlistGaps
inserting a new gap O(n) O(9) O(log(g))
removing a gap O(n) O(g) O(log(g))
changing a gap’s size O(n) o(1) O(log(g))
conversion view to source O(n) O(g) O(log(g))
conversion source to view O(n) O(9) O(log(g))
accessing the value at a given view position 0(1) O(9) O(log(g))
accessing the value of an iterator o(1) o(1) 0O(1)
moving an iterator to the next position o(1) o(1) 0O(1)
moving an iterator to a given view position o(1) O(g) O(log(g))

Table 9: Time Consumption of Operations on Gapped Sequences. n is length of
the gapped sequence, g is the number of gaps in the gapped sequence.

9.1.1 SequenceGaps Specialization

The SequenceGaps specialization of Gaps is the most obvious implementa-
tion of a gaps data structure: It stores a gapped sequence simply as a se-
quence including ‘-’ blank values. Each gap of size L take therefore L blank
values, except for the leading and the trailing gap that are known because
SequenceGaps explicitly saves the begin view position and the length of the
sequence in member variables. This special treatment of leading gaps makes
sense because the leading and trailing gaps could be very long, especially if the
Gaps data structure is used to store a line in a multiple sequence alignment as
described in Section 9.2. Since SequenceGaps stores the source together with
the gaps, it cannot refer to an external source sequence. If the ‘ungapped’
source is accessed by calling the function source, a temporary source string is
created and returned by value.

The specialization SequenceGaps stores the view of the gapped sequence di-
rectly, so both iterating and random accessing its values are very fast. However,
inserting and deleting blanks could be very expensive, because for each such
operation the whole part of the view behind the modified position must be
moved. A conversion between view and source position is also rather time
consuming, because it involves a linear scan through the gapped sequence.
Although SequenceGaps is rather space efficient for gapped sequences that
only contain short gaps, SequenceGaps becomes wasteful for very large gaps,
because the space needed to store a gap is linear to its size.

9.1.2 ArrayGaps Specialization

The ArrayGaps specialization of Gaps stores the sizes of gaps and gap free
parts. For example, for the gapped sequence in Figure 19, it stores the array
{3,2,1,1,2,3,1,1}. Every second number in this array corresponds to a non-
gap’s size, the rest corresponds to the lengths of the gaps. The first number
in the array is the size of the leading gap. The source sequence can either be
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stored within the Gaps object or separately.

The advantage of ArrayGaps is to store the gaps more space efficient than
SequenceGaps even for very large gaps.

9.1.3 SumlistGaps Specialization

The SumlistGaps specialization of Gaps stores a sequence of pairs, one pair
for each non-gap in the gapped sequence. Each pair stores (1) the size of
the non-gap and (2) the size of the non-gap plus the size of the preceding
gap. For example, for the gapped sequence in Figure 19 on page 80, it stores
the following sequence of pairs: {(2,5),(1,2),(3,5),(1,2)}. These pairs are
saved in a two dimensional sum list, see Appendix A.2. Given a sum S and
a dimension d, the sum list pair,, pairs, ..., pair; allows a fast search for the
first pair pair; in the list, for which holds: The d-th dimension of sum; :=
pairy + pairg + ... + pair; is greater or equal to S. The search returns both
pair; and sum;. Note that sum; is a pair of source position sum;[0] and view
position sum;[1] for the first blank behind the i-th non-gap. The conversion
between view position and source position works as follows:

(1) source = view:
Given a source position S, search the first dimension of the sum list for
S and find pair;. The view position V' that corresponds to S is given by:

V = sum;[1] — (sumy[0] — S)

(2) view = source:
Given a view position V', search the second dimension of the sum list for
V' and find pair;. The source position S that corresponds to V' is given
by:

o {sumj 0] — pair;[0] if V' is the position of a blank,

sum;[0] — (sum;[1] — V) otherwise

All operations on a sum list that are relevant for the implementation of
SumlistGaps — like searching, inserting a pair, removing a pair, and changing
a value of a pair — take O(logt) time, where ¢ is the number of pairs in the
list. This affects the runtime of operations on SumlistGaps gapped sequences:
Inserting or removing gaps, changing a gap’s size, conversion between view
position and source position, and accessing the value at a given view position
take time logarithmic to the number of gaps (see Table 9).
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Figure 20: Gaps Data Structure Run Times. Run times for (1) converting source to
view position of the last value and (2) inserting a gap at the front of a gapped sequence,
depending on the total number of gaps in the gapped sequence. We used a gapped
sequence of minimal length, which is best-case for SequenceGaps.

9.2 Alignment Data Structures

Let us write a set of gap patterns {pi,pa,...,pr} for & > 2 sequences
a',a?,...,a" in a matrix, i.e. the rows are the gap patterns and the columns

the view positions, see Figure 21.

gap column
a -AC--AAG-CGTAGCAS
a2 -AC-TACGA-G-AGCA-|
as CACTTATG-CC-AG- -\\-J,"
Figure 21: Example of an Alignment. An alignment of three sequences a', a?, and a>.

(Note that the gap column has to be removed in order to get a proper alignment.)

A position j is called a gap column, if it is a blank in all gap patterns. Moreover,
if j is a part of the leading gaps of all p;, then j is a leading gap column, and
if 7 is a part of the trailing gaps of all p;, then j is a trailing gap column. The
set {p1,pa, ..., pr} is called an alignment A of the sequences a',a?, ..., da", if it
contains no gaps columns but, potentially, leading and trailing gap columns.
We say that values are ‘aligned’, if they belong to the same column. We can
transform an arbitrary set of gap patterns into an alignment by removing all
gap columns, e.g. using the function removeGapCols. For each proper subset
M c {1,2,...,k}, a ‘projection’ Ay; of the alignment A is defined as the set
{pi| i € M} after removing all gap columns. There are two ways for storing
alignments in SeqAn: (1) the Align data structures, and (2) alignment graphs
(see Section 13.2).

The data structure Align is implemented as a sequence of Gaps objects that
store the rows of the alignment and are accessible via the function rows. An
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alignment can also be considered as sequence of columns, which can be re-
trieved using the function cols. The smallest position that is not a gap column
is called the ‘begin position’, and the position of the first trailing gap column is
called the ‘end position’ of the columns sequence. The iterator of the column
sequence is implemented as a set of k iterators, one iterator for each row. This
means that iterating the column sequence of an alignment could be costly for
alignments that contain many sequences.

Note that Align objects support gap columns, so it is the user’s responsibility
to remove them if necessary.

9.3 Alignment Scoring

9.3.1 Scoring Schemes

A scoring scheme for alignments is a function that maps alignments to nu-
merical scores like int or double values. SeqAn supports alignment scoring
schemes that are defined (1) by a function « that scores pairs of aligned values
and (2) a function v for scoring gaps. A gap of size [ scores:

Y = Gopen T Gextend * (l - 1), (91)

i.e. the first blank in the gap scores gopen, and Gentena is added to vy for each
further blank in the gap. Usually, we demand gopen < Gextena < 0, S0 7 is a
convex function and larger gaps get a discount. If gopen = Gextenda, then we call
v ‘linear’, otherwise v is ‘affine’.

Simple Defines the function « by two values amaten and amismaten as follows:
a(,y) = amateh, if © = y, otherwise a(z,y) = amismateh- If N0 other
values are specified, this scoring scheme implements the edit distance
(Equation 9.4).

ScoreMatrix Stores the function « in a matrix, which can be loaded from a file. Some
common scoring matrices for AminoAcid values by Henikoff and Henikoff
(1992) are predefined: Blosum30, Blosum62, and Blosum80. The matrix
can be loaded by the function read from a file and stored by the function
write to a file, see Section 7.7.

Pam This is series of common scoring schemes for AminoAcid values by Day-
hoff, Schwartz, and Orcutt (1978). A variant by Jones, Taylor, and
Thornton (1992) is also available.

Table 10: Alignment Scoring Schemes. Specializations for Score.

The class Score implements some scoring schemes, see Table 10.
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If A is an alignment of two sequences a' and a?, then we define the score of A
by:
score(A) := Z a(z,y) + Z 7(9) (9.2)

aligned values (z,y) in A gaps g in A

For alignments A of more than two sequences, we define the ‘sum of pairs’
score to be the sum of the scores of all pairwise sub alignments:

score(A) 1= Z score(Ag; jy) (9.3)
i#]

9.3.2 Sequence Similarity and Sequence Distance

Based on alignment scoring, we define a similarity measure for sequences as
follows: The sequence similarity sim(a', a*) between two sequences a' and a?
with respect to a given scoring scheme score is the maximum score alignments
between a' and a? can get, i.e.:

sim(a', a”) := max (score(A) where A aligns a' and a*)

An alignment of a' and a® with score sim(a',a?) is called an optimal align-
ment of a' and a?. We will describe some algorithms for computing optimal
alignments in the next sections.

Note that all scoring schemes in SeqAn are meant to be ‘the higher, the better’,
that is alignment algorithms always try to mazimize scores. However, we can
also apply these algorithms for minimizing scores simply by maximizing their
negative values: Let A* be an alignment that scores minimal with respect to
a scoring scheme score, then it is easy to prove that A* also scores mazimal
with respect to the scoring scheme score’ that is defined by: score’(A) :=
—score(A) for each alignment A.

A minimal alignment score score’(A*) can be seen as a distance between two
sequences, so we define the sequence distance dist(a',a®) of two sequences a'
and a? to be the negative value of their similarity:

dist(a',a®) = — sim(a', a?)

If score is defined according to Equation 9.1 and 9.2, and if a(z,z) = 0,
a(x,y) <0 for z # y, and gopen, Jextend < 0, then dist is a metric, that means
it is positive definite, symmetric, and it holds the triangle inequality, i.e. for
all sequences a', a?, and a?:

dist(a',a®) > 0and dist(a',a®) =0 if and only if a' = a®
dist(a*,a®) = dist(a® a')
dist(a',a®) > dist(a',a®) + dist(a®, a®)
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A well known example of a sequence distance metric called ‘edit distance’ or
‘Levenshtein distance’ (Levenshtein 1965) is defined by the following scoring
scheme:

0,if z =
Oé(l‘,y) = Y . YJopen = Jextend = —1. (94)
—1, otherwise

9.4 Alignment Problems Overview

The alignment problem means to find an alignment with optimal score in the
space of all possible alignments between two or more sequences. There are
some variants of alignment problem:

(1) Global Alignment Problem. Alignments between complete sequences
are global alignments. One way of solving the global alignment problem
is dynamic programming, which is discussed in the next Section 9.5.

(2) Maximum Weight Trace Problem. Finding an optimal subgraph of
a given alignment graph that is compatible with some optimal alignment
(i.e. a ‘trace’) is called the mazimum weight trace problem. We will
discuss this in Section 13.2.2.

(3) Local Alignment Problem. A local alignment between two sequences
a and b is a global alignment between a substring of a and substring of
b, and the local alignment problem is to find an optimal local alignment.
Local aligning is therefore a kind of motif finding; we will discuss it in
Section 11.1.

(4) Semi Global Alignment. A mix between global and local aligning is
the so called ‘semzi global alignment problem’ that means globally aligning
two sequences where some start or end gaps are free. One example for
semi global alignment are owerlap alignments, that is finding the best
possible alignment between a suffix of one sequence and a prefix of the
other sequence. We will show in Section 9.5.4 how the user can decide
in SeqAn, what start gap or end gap should be free when aligning two
sequences.

9.5 Global Alignments

The global alignment problem is defined as follows: For a given set of sequences
a',a?,...,a", find an alignment A* of these sequences that scores optimal
with respect to a given scoring scheme. Finding an optimal alignment of
multiple sequences using sum-of-pair scoring (Section 9.3.1) is known to be

NP-hard (Wang and Jiang 1994), but for a fixed number k of sequences, the
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alignment problem can be solved in time O(n*), where n is the length of the
sequences.

NeedlemanWunsch A dynamic programming algorithm by Needleman and Wunsch
(1970) for linear gap costs. It aligns two sequences in quadratic
time and space.

Gotoh An extension of the Needleman-Wunsch algorithm that can deal
with affine gap costs. (Gotoh 1982)

Hirschberg An linear space dynamic programming algorithm. (Hirschberg 1975)

MyersHirschberg A combination of the bit parallel algorithm by Myers (1999) and
Hirschberg’s algorithm. It aligns two sequences in linear space using
edit distance.

Table 11: Global Alignment Algorithms. These algorithms base on dynamic program-
ming.

Algorithms for finding good global alignments in SeqAn can be accessed by
calling the globalAlignment function. This function has as arguments (1) an
Align object, alignment graph object or stream that will be used to store or
display the found alignment, (2) a string set that contains the strings to align, if
the strings are not already defined by the first argument, (3) a scoring scheme,
and (4) a tag that specifies the algorithms that will be used for aligning, see
Table 11. The function returns the score of the computed alignment.

9.5.1 Needleman-Wunsch Algorithm

In 1970, Needleman and Wunsch introduced an algorithm based on dynamic
programming (Bellman 1957) to solve the global alignment problem with linear
gap costs for two sequences @ = ay...a, and b = by...b,,. This algorithm
is based on the following observation: Let A;; be an optimal alignment of
the prefixes a;...a; and by...b; for i € {1,...,n} and j € {1,...,m}, and
M; j = score(A; ;). Then the alignment A; ; that we get after deleting the last
column C from A4, ; is an optimal alignment, and

score(A; ;) = score(A; ;) + score(C). (9.5)

There are three cases: (1) C aligns a; and bj, then score(A;} ;) = M; 11, or
(2) C aligns a; to a blank, then score(A;;) = M; 1, or (3) C aligns b; to a
blank, then score(A; ;) = M; ;1. Therefore we can compute M; ; according to
the recursion:
Mifl,jfl + Oé(CLZ', bj)
M;; «—maxq M;_1;+g (9.6)
Mij-1+g
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where a(a;,b;) is the score for aligning a; and b;, ¢ is the score for a blank,
and M;o = ¢ *p, and My; = j * p. Algorithm 2 enumerates all pairs (i, 7)
for 1 <i <nand 1l < j < m in increasing order for ¢ and j, so M; 4 ;_1,
M;_y;, and M, ;_; are already known before M, ; is computed. FILLMATRIX
also protocols in 7;; which of the three case was applied to compute M; ;.
This information is used in TRACEBACK to construct an optimal alignment.
The overall time consumption is O(n x m), and since TRACEBACK requires a
complete score matrix 7', the space requirements are also O(n x m).

Moo
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Figure 22: Needleman-Wunsch Algorithm. The dynamic programming matrices for
aligning a ="AATCTAGCGT" and b ="GTACATTTGACG". The values of M for edit distance
scoring, and T is visualized by pointers to the best predecessors. The optimal alignment
on the bottom corresponds to the black printed path, its score —7 is the value in the
lower right cell. The gray fields are part of back traces for alternative optimal alignments.

There is no need to store the complete matrix M during the execution of FILL-
MATRIX, because at any time at most m-+1 cells of M are needed for proceed-
ing: After computing M, ;, only the values in M, ;_1,..., M, j_1,My;,...M;;
play a role for the rest of the computation. We can therefore adapt FILLMA-
TRIX to compute the optimal score M, ,,, in linear space.

Note that it is possible to generalize the Needleman-Wunsch algorithm in a
way that it can compute optimal alignments for arbitrary gap costs in time
O(n?), but this algorithm is quite slow and hence rarely applied in practice,
so it is not provided by SeqAn.

9.5.2 Gotoh’s Algorithm

The algorithm by Needleman and Wunsch (Section 9.5.1) does not work for
affine gap costs, i.e. if gaps of length [ score gopen + Gextend * ([ — 1) with gopen 7#
Gextend- Let C be the last column of an alignment A; ; = A’; ;C. If C extends a
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> NEEDLEMANWUNSCH(ay . .. Gp, by ... bpy)
(M, T) « FILLMATRIX(@1 . .. Qp, by ... by,)
2| return TRACEBACK(ay...an, by ...0p, T)

> FILLMATRIX(a; . .. ap, by ... D)

1 M070 — 0

2| M;g—ixgforie{l,...,n}

3| Moy —jxgforje{l,...,m}

4| fori«+—1tondo

5 for j — 1 tom do
Mifl,jfl + Oé(&i, bj) = CAS€djaqg

6 M;; «—max{ M, 1;+g = Caseyy
M;i—1+g = Cas€ief

71 L T; ; < argmax, casey,

8| return (M,T)

> TRACEBACK(CLl coaai, byl bj, T)
1| caset=j =0

2 return

3| caseT;;=uporj=0:

a;

4 return | TRACEBACK(a;...aj—1,01...0;,T)

5/ caseT;; = left ori=0:

6 return TRACEBACK(CH coa Qg by ... bj—17 T)

I bj
7| case T;; = diag:

8 return

.

|

a;

TRrRACEBACK(ag ...

a;—1, b1 e bjfl, T)

bj

|

89

initialization

break
condition

recursion

Algorithm 2: Needleman Wunsch Algorithm. a(a;,b;) is the score for aligning a; and
bj, g is the score for a blank.
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gap of Aj ;, then score(A; ;) = score(Aj ;) + Gextena 7 score(A; ;) + gopen, hence
equation 9.5 does not hold anymore.

To deal with affine gap costs, Gotoh adapted the algorithm in 1982 such that
it computes for each i € {1,...,n} and j € {1,...,m} the following three
scores of alignments between a; . ..a; and by ...b,: (1) the optimal alignment
score M; j, (2) the best score I{; of alignments that align a; to a blank, and (3)
the best score Iib’j of alignments that align b; to a blank. This can be done by
modifying FILLMATRIX as it is shown in Algorithm 3. The asymptotic time
and space requirements are the same as for the algorithm by Needleman and
Wunsch (O(n x m)) but with larger constant factors, since the algorithm by
Gotoh must store and fill three matrices instead of one.

If a(ai,b;) > Gopen + Gextena for any a; and b;, then the algorithm can also be
implemented by only two matrices M and I, where I; ; stores the best score
of alignments a; ...a; and b, ...b,, that either align a; or b; to a blank. This
optimization is currently not provided by SeqAn.

> FILLMATRIXGOTOH(ay . . . Gy, by . .. by,)

1 MO,O «— O
2| Mo < 7% Gextend fori € {1,...,n} o
3| Moy < J * Gextend for j € {1,...,m} 1n1t.1al1-
4| I§; < —ooforje{l,...,m} zation
5| I}y« —ooforie{l,...,n}
6 for i — 1 ton do
7 for j — 1 tom do
M; 4 N

8 [ij «— max 1,7 T Yope

7 Izq—l,j + GJextend

Mi —1 + Jopen
9 If’j —maxq 7 i
i,j—1 + Jextend

Mi—l,j—l -+ oz(az-, b]) = CASE diag
.. a —
10 M; j — max ¢ I7, = CaSeyy
b _
Ii’j = CaSCeft
11 L L T;; < argmax, casey,

12| return (M,T)

Algorithm 3: The Recursion of Gotoh’s Algorithm.

9.5.3 Hirschberg’s Algorithm

Unlike the Needleman-Wunsch algorithm (Section 9.5.1) or Gotoh’s algo-
rithm (Section 9.5.2), which both take space O(n x m) to compute optimal
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alignments of two sequences @ = ay...a, and b = by...b,,, the algorithm
by Hirschberg (1975) only needs linear space. Hirschberg’s algorithm (Algo-
rithm 4) applies a divide-and-conquer strategy: It splits both a and b into two
parts and aligns them separately.

> HIRSCHBERG(a; . . . Gp, by ... byy,)

1| if n < 2 then

2| | A+ NEEDLEMANWUNSCH(a; ...ayn, b1 ...by)

3| else

5 M* «+ FILLMATRIX(ay ...a; by ... by)

6 MR «+ FILLMATRIX(ay, . .. Qi11,bpm - .. b1) find +
7 t «— argmax;(Mf + MF, )

8 L < HIRSCHBERG(ay ...a;,by...b;) ,
9 R « HIRSCHBERG(@jy1 ... Gn, bip1 ... b)) }recursmn
10 - A— LR
11| return A

Algorithm 4: Hirschberg’s Algorithm.

The sequence a is cut at position ¢ = [§] (for n > 1) into two halves a; .. .a;
and a;.q ...a,. The main problem is to find an appropriate cutting position j
in 0, such that an optimal alignment between a and b exists that aligns a; . .. a;
to by...bj and a4y ...a, to bjy1...by,. For any j € {0,...,m}, let £7 be an
optimal alignment of the prefixes a;...a; and b;...b;, and R’ an optimal
alignment of the suffixes a;;1...a, and b;j;1...b,. Thereis a t € {0,...,m}
for which the combination A’ := £L'R! is an optimal alignment of a and b. For
finding a ¢ that maximizes the total score score(L') + score(R"), we have to
compute the scores of all £7 and R7. A single call of FILLMATRIX(a; . . . a;, b)
in line 5 of HIRSCHBERG computes Mf; = score(L7) for all j. The scores of
the R’ are computed similarly in line 6 by passing the reverses of a;11...a,
and b to FILLMATRIX: The entry M}, . of the computed matrix M* is
the optimal score for aligning a, ...a;1; and by, ...b;41, which is the same
as the best score for aligning a;y1...a, and bj;;...b,. FILLMATRIX only
takes linear space for computing the scores needed. Hence, the total space
requirement of HIRSCHBERG is O(n + m). It is easy to prove by induction
that HIRSCHBERG takes time O(n x m).

The implementation of Hirschberg’s algorithm in SeqAn combines it with Go-
toh’s algorithm (Section 9.5.2) for sequence alignments using affine gap cost
schemes.

The alignment algorithm MyersHirschberg, which is the fastest algorithm in
SeqAn for global sequence alignment (see Table 30), can be used when aligning
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404> >
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Figure 23: Hirschberg’s Algorithm. This figure visualizes three recursion steps when
aligning a ="AATCTAGCGT" and b ="GTACATTTGACG". The black printed path corresponds
to the alignment that is about to be computed. The gray cells need not to be recomputed
during the next recursion step.

two sequences using edit distance scoring. This variant of Hirschberg’s algo-
rithm uses Myers’ bitvector algorithm (see Section 10.3.2) instead of FILLMA-
TRIX for computing the scores for £/ and R/.

9.5.4 Aligning with Free Start or End Gaps

After some simple modifications, both the Needleman-Wunsch algorithm and
Gotoh’s algorithm can also be used to compute alignments with free start gaps
or end gaps. A start gap contains a blank that is aligned to a; or by, and an
end gap contains a blank that is aligned to a, or b,,. Gap scores are usually
non-positive values, and we call a gap free, if it scores 0.

Start gaps in a become free when M, are set to 0 for all i« € {1,...,n}
(FILLMATRIX, line 2). For free start gaps in b, we set My; = 0 for j €
{1,...,m} (FILLMATRIX, line 3).

Let imax = argmax;eqy,  nyMim and jmax = argmax;cy 1M, ;. The al-
gorithm TRACEBACK(a .. .a;,,, ,b) computes an optimal alignment A; . of
aj...a;,. and b. If end gaps in a — but not in b — are free, then this is also the
best alignment of ¢ and b. For free end gaps in b — but not in a —, the function
call TRACEBACK(a, by .. .bj,..) returns the optimal alignment A;  of a and
b. If end gaps are free both in a and b, then either A; _ or A is optimal,

tmax Jmax
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whichever is better.

The class AlignConfig can be used to specify, which start gap or end gap
are free when calling globalAlignment. AlignConfig has four bool template
arguments; true means ‘gap is free’. Listing 15 shows an example for using
AlignConfig.

StringSet<CharString> string_set;

appendValue(string_set, a);

appendValue(string_set, b);

Align<CharString> alignment (string_set);

globalAlignment (alignment,
Score<int>(),
AlignConfig<false, false, true, false>(),
NeedlemanWunsch()) ;

Listing 15: Example for Using AlignConfig. The two sequences a and b are aligned, end
gaps for b are free.

9.5.5 Progressive Alignment

SeqAn also offers a progressive heuristic for finding good alignments between
more than two sequences (Rausch, Emde, Weese, Déoring, Notredame, and
Reinert 2008). We already described the idea of this algorithm in Section 1.2.3
when we discussed the software tool CLUSTAL W (Thompson et al. 1994): The
sequences a', ..., a? are aligned step by step following a binary guide tree 7T,
which is constructed by a hierarchical clustering algorithm (line 2 of PROGRES-
SIVEALIGN), on the basis of the pairwise distances between the sequences.
SeqAn supports agglomerative clustering (complete linkage, single linkage and
UPGMA; see e.g. Sneath and Sokal 1973) and neighbor-joining (Saitou and Nei
1987). FOLLOWGUIDETREE aligns the sequences following the guide tree from
the leaves to the root. At each vertex v, the alignments A’ and A" from both
children of v are aligned (line 8), where we conceive A! and A" as sequences
of columns, so they can be aligned by any pairwise global sequence alignment
algorithm like Needleman-Wunsch (see Section 9.5.1). The score a(c!, c") for
aligning two alignment columns ¢! and ¢" is defined as the (weighted) sum of
scores a(al,a"), where a' € ¢! and a” € ¢ (‘sum of pairs score’). Inserting a
gap into A’ or A" means to insert a gap column, i.e. inserting a gap into all
sequences of A' or A", respectively.

The progressive alignment idea was also used in the software tool ‘T-Coffee’
by Notredame et al. (2000) that uses a much more elaborated scoring function
a, which is computed from a given set C of pairwise local or global alignments
between the sequences a', ..., a%. T-Coffee first defines for any pair of charac-
ters b and b that stem from different sequences a’ and o’ an individual score
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> PROGRESSIVEALIGN(al, . . ., a?)

Dli, j] + dist(a’,a’) for all i,j € {1,...,d}
7 — CLUSTERING(D)

A «— FOLLOWGUIDETREE(a!, ..., a%, 7T)
return A

= W N =

> FOLLOWGUIDETREE(a!, . .., a%, T)

v« root of T

if v is leaf then

| A <« the sequence a’ on v

else
T!,T" « left and right subtrees below v
Al «— FOLLOWGUIDETREE(a!, . .., a%, T!)
A" «— FOLLOWGUIDETREE(d!, ..., a%, 7T7)
A « align A" and A"

return A

© 00 N O Ut b= W N

Algorithm 5: Progressive Alignment. We omit the function CLUSTERING that applies a
clustering algorithm to compute the guide tree 7 for a given distance matrix D.

a(b,b') that depends on the total score of alignments A € C in which b and ¥’
are aligned. In a second step, T-Coffee uses a method called ‘triplet extension’,
that applies the following rule: If two values b and b" are aligned in A € C, and
b and b” are aligned in another alignment A’ € C, then we reinforce the score
a(b,b") that we get for aligning b and b”. The triplet extension helps to find
an agreement between the pairwise alignments € C, and this results in much
better multiple alignments.

The implementation of T-Coffee in SeqAn stores these values o as weights on
the edges of an alignment graph (Section 13.2) between a!,... a, and the
alignment problem can then be defined as a maximum weight trace problem
(Section 13.2.2).

9.6 Chaining

We saw in Section 9.5 that computing the best alignment between two se-
quences using dynamic programming takes quadratic time, and the alignment
of d > 2 sequences even takes exponential time in d. Fortunately there are
faster heuristics for finding good — but not necessarily optimal — alignments.
One way is to search for highly similar substrings, so called seeds, and to com-
bine them in a process called chaining. A chain of seeds then can be used as a
backbone for a banded alignment of the two sequences, see Section 9.6.4. We
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demonstrate this principle in all details for the algorithm LAGAN in Section 15.
This section concerns about chaining seeds to global alignments. Similar tech-

niques could also be used to get good local alignments, as we will see in Sec-
tion 11.2.2. How to find seeds will be discussed in Chapter 11.

9.6.1 Seeds

Basically, a seed S is a set of non-empty segments s',...,s? of sequences
al,...,a?, where d > 2 is called the dimension of S. We call left;(S) the begin
position of s* and right;(S) the end position of the segment s; fori € {1,...,d}.
According to the conventions stated in Section 8.1, the position of the value a;
in a sequence a; ... an, is i—1, and the begin position of a segment e . . . Aright
is left —1 and the end position right.

SeqAn offers a class Seed for storing seeds; the specializations of this class are
listed in Table 12. All seed types implement the functions leftPosition and
rightPosition to access the begin and end positions of their segments, and
the functions setLeftPosition and setRightPosition to set them. More-
over, each seed S stores the score weight(S) of an optimal alignment between
its segments, which can be retrieved by the function weight and set by the
function setWeight. Chaining only requires information about the dimen-
sion, borders, and scores of the seeds, i.e. we need not to know the complete
alignments.

SimpleSeed A seed of dimension d = 2. This is the preferred seed type for seed
merging, extending, and local chaining algorithms, see Section 11.2. The
default specialization of Seed.

MultiSeed A seed type of arbitrary dimension d > 2 that was designed for global

chaining.

Table 12: Specializations of class Seed.

9.6.2 Generic Chaining

Let in the following the seed dimension d be fixed. We say that S; can be
appended to another seed Sy, if S; is ‘right of’ Si, that is if right;(Sk) <
left;(S;) for all i@ € {1,...,d}. Given a set of seeds {Si,...,S,}, we de-
fine the top seed Sy to be the seed with left;(Sy) = right;(So) = 0 for all
i € {1,...,d} and weight(Sy) = 0. The bottom seed S, is defined by
left;(Sny1) = right,(S,+1) = max;{right;(S;)} and weight(S,+1) = 0. Note
that all seeds can be appended to Sy and that S, 1 can be appended to all
seeds. An ordered set C = §;,,S;,,...,S;, of seeds is called a chain, if S;

it+1
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can be appended to S;, for each i € {1,...,k —1}. The score of a chain is
defined by:

k k—1
score(C) = Z weight(S;,) + Z gapscore(S;,, S\ ),
i=1 i=1
where gapscore(S;,, S;,, ) is the (usually non-positive) score for appending Sj,
to Sj,.
> GENERICCHAINING(S, ..., S,)

1| sort &,...,S, in increasing order of right,(S;)

2| compute top seed Sy and bottom seed S,

3] forj«—1ton+1do

4 M; «— gapscore(Sy, Sj) + weight(S;)

5 T, <0

6 for k< 1toj—1do )

. ) compute

7 if right,(S,) < left,(S;) for alli € {2,...,d} then best

8 score «— My, + gapscore(Sy, S;) + weight(S;) prede-
9 if score > Mj then cessor
10 L M; « score for S;
11 L L T, —k )
12| return CHAINTRACEBACK(Sy,...,S,11,n+1,7T)

> CHAINTRACEBACK(Sy, ..., Sni1,7, 1)

1| if j =0 then

2 | return S,

3| else

4| L return CHAINTRACEBACK(Sy,...,Sut1,15,T),S;

Algorithm 6: Generic Chaining Algorithm. S;,...,S, is a set of d-dimensional seeds,
d > 2. The algorithm computes a maximal global chain; its score is stored in M, 4.

The global chaining problem is to find a maximal scoring chain C that starts
with Sy and ends with S,;1. GENERICCHAINING (Algorithm 6) solves this
problem in time O(dn?) by dynamic programming. The algorithm computes
for each seed §; the ‘predecessor’ S; for which the chain Sy, ..., S, S; gets
the optimal score. The score of this chain is stored in A; and the index &
of the predecessor is stored in Tj. The best global chain is reconstructed in
CHAINTRACEBACK by following 7" starting from S,,,1. The algorithm applies
a sweep line technique (Shamos and Hoey 1976) by sorting the seeds in line 1
of Algorithm 6. This guarantees that the seed S; can only be appended to
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seeds S with k£ < j, hence M} was already computed before it is used in line 8
to compute M;.

The function globalChaining implements chaining algorithms in SeqAn. The
actual algorithm is specified by a tag; see Listing 16 for an example.

String< Seed<int, MultiSeed> > seeds;

String< Seed<int, MultiSeed> > chain;
Score<int, Manhattan> scoring;
int score = globalChaining(seeds, chain, scoring);

Listing 16: Global Chaining Example. We omit the process of filling the container seeds
with seeds.

9.6.3 Chaining Using Sparse Dynamic Programming

The algorithm GENERICCHAINING takes quadratic time, because it has to
examine a linear number of predecessor candidates S;, for each seed S;.We
can improve this for some gapscore functions by using efficient data structures
that allow to determine an optimal predecessor seed in sublinear time. This
technique called sparse dynamic programming (Eppstein et al. 1992) may
speed up chaining as long as the dimension d of the seeds is small compared
to the number n of seeds. Table 24 shows the gap scoring functions for which
SeqAn implements optimized chaining algorithms. For example, Algorithm 7
(described in Gusfield 1997, pages 325-329) solves the chaining problem for
d =2 and gapscore = 0 (i.e. the scoring scheme ‘Zero’) in time O(nlogn).

SPARSECHAINING enumerates all positions left,(S;) and right,(S;) in increas-
ing order. If the begin position of a seed S; is processed (lines 9 and 10),
then the optimal score M; of chains ending in §; is computed, and the algo-
rithm appends S; to a seed Sy € D, where D is a set of potentially optimal
predecessors for subsequent seeds. D is updated whenever the end position
of a seed is processed (lines 12 to 15). Let S; and Sj be two different seeds
with right,(S;) < righty(Sy) and M; > Mj. Then all subsequent seeds S; that
can be appended to S; can also be appended to §; without losing score. If
S; € D, then there is no need to keep Sy € D. We say that S; ‘dominates’
Sk. A seed S; is added to D in line 15, if and only if it is not dominated by
any other seed in D, and in this case, all seeds S, that are dominated by S§;
are extracted from D in line 14. If follows that (1) D contains all seeds that
were already processed except some seeds that are dominated by other seeds
in D, and (2) no seed in D is dominated by another seed in D. Therefore D
contains an optimal predecessor for any seed S; that is about to be appended,
and this is the seed Sy, € D found in line 9 because a ‘better’ seed S € D
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by by by by by by
a, ay ‘ EN
Sk Sk Sk
Ay ‘
M M B M ;
‘ § 9(A1-A)
""""""""""""""""" Y V N
an M+weight(Sj) an M+A1+A2+weight(sj) an M+mA2+g(A1-A2)+we/‘ght(sj)
Zero Manhattan ChainSoP
Zero All gaps between seeds score 0, that is gapscore(Sg,S;) = 0 for all seeds
Sk and Sj.
Manhattan The gap score is proportional to the sum of the distances between the
segments in the seed, that is
d
gapscore(Sk, S;) = gy | A,
i=1
where A; = left;(S;) — right;(Sk) and g < 0 is the score for a single blank.
ChainSoP  This gap scoring scheme was proposed by Myers and Miller (1995). For

d = 2, the segments between Sy, and S; are aligned as long as possible with
mismatches, and the rest is filled up with blanks, that is:

mAg + g(A1 — Ayg), if Ay > Ay

S 78. :S =
gapscore(Sk, Sj) = S12 {mAl +g(Ay — Ay), if Ay <Ay

where A; = left;(S;) — right;(Sk) and g, m < 0 are the scores for a single
blank and a single mismatch.
For d > 2, gapscore is the sum-of-pairs score:

gapscore(Sk, S;) = Z Si it

1<i<i’<d

Figure 24: Gap Scoring Schemes for Chaining. The score of a gap between a seed S; and
a predecessor Sy; three specialization of class Score are listed. Note that gapscore(Si, S;)
is only defined if S; can be appended to S, i.e. if A; = left;(S;) — right;(Sk) > 0 for all
ied{l,...,d}.
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with right,(Sk) < lefty(S;) and My > My, would dominate Sz,. Note that
the results of the ‘argmax’ operation in line 9 is well defined, because there is
always a seed Sy € D such that right,(Sg) = 0.

If we apply a suitable dictionary data structures for storing D like a skip list
that sorts the seeds S according to right,(S), then each operation for searching,
adding, and extracting seeds in D takes time O(logn). The complete algorithm
runs in O(nlogn), since each seed S is added to D and extracted from D only
once.

We can apply SPARSECHAINING for the gap scoring scheme Manhattan,
if we modify the condition for ‘S; dominates &;’: Suppose that a seed
S, can be appended either to §; and ;. Then §; would be preferred,
if M; + gapscore(S;,S;) > My + gapscore(Sg,S;). This is equivalent to
M; > M, where M, = M, + S right;(S.). Note that this is indepen-
dent from the appended seed S;, so we can define that §; dominates Sy, if
righty(S;) < righty(Sg) and Mj > M.

> SPARSECHAINING(Sy, ..., Sy)

1| compute top seed Sy and bottom seed S,,11

2 MO — 0

4 S0

5/ for j«— 1ton+1do

6 |— S<_SU{<leﬂ1(83)>j>}U{<mght1(‘9])>]>}

7| for each (pos,j) € S in increasing order of pos do

8 if pos = left,(S;) then

9 T; « argmax;{ right,(Sy) < lefty(S;)| Sy € D} aopend S.
10 L M « Mz, + gapscore(Sy, S;) + weight(S;) PP J
11 if pos = right,(S;) then
12 if no seed € D dominates S, then
13 for each S, € D dominated by S; do update D
14 L D« D\ {S:}
150 L L D — DU{S;}
16| return CHAINTRACEBACK(Sy,...,Sni1,n+ 1,T)

Algorithm 7: Global Chaining by Sparse Dynamic Programming. &i,...,S, is a
set of 2-dimensional seeds. The algorithm may be used for gap scoring functions Zero
and Manhattan, where the semantic of ‘dominate’ depends on the scoring function.

SeqAn also implements a sparse dynamic programming algorithm by Myers
and Miller (1995) with some modifications by Abouelhoda and Ohlebusch
(2003) for ChainSoP scoring and arbitrary d > 2, see Wohrle (2006) for more
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details. Note that both runtime and space requirements of this algorithm grow
exponentially with respect to the seed dimension d.

9.6.4 Banded Alignment

Given a chain C = (Sy,...,S,) of seeds between two sequences a = ay ...a,
and b = by...b,, we can find a good alignment using ‘banded alignment’.
Like the alignment algorithms we described in Section 9.5, this method bases
on dynamic programming. Remember that the Needleman-Wunsch algorithm
(Section 9.5.1) computes n x m score M, ; of the best alignments between the
prefixes a; ...a; and by ...b;. Since C gives us an estimate of the approximate
optimal alignment, we need to compute only those values M, ; that lay near
to C. This ‘band’ of width B contains the following pairs of coordinates, see
Figure 25: (1) for any two characters a, and b, that are aligned by a seed Sj, € C
all pairs (7, 7) with |i —z| 4+ |j —y| < B, and (2) the square of pairs (7, j) with
right; (Sk) — B < i < left;(Sg+1) + B and rights(Si) — B < j < lefty(Sk+1) + B
for k € {1,...,n}. Computing only these cells of M speeds up the alignment
process. SeqAn provides the function bandedChainAlignment that computes
an optimal banded alignment following a chain.

bl bm
4
'l.....- < left; (51)
o "ighty (Sz)
- left, (Sz)
drighty (Sz)
an
A A A 4

left,(S,)  right,(S;) left, (S,) right, (S,)

Figure 25: Banded Alignment. The white area of matrix M represents the ‘band’ of
width B = 3 around the chain C = (51, S2).
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Pattern Matching

The pattern matching problem is to find a given ‘needle’ sequence p in a
‘haystack’ sequence t, for example to determine where a string ¢ contains the
string p as a substring. There are several variants of this problem:

e Exact Matching: Find substrings p in ¢. See Section 10.1 for single
searching needles, and Section 10.2 for searching multiple needles.

e Approximate Matching: Find substrings s in ¢ with score(s,p) > k
for a given threshold k. See Section 10.3 for alignment scoring schemes
score.

e Complex Pattern Searching: p is an expression that encodes a set of
strings to be find in ¢. See for example in Section 10.4.2 how to search
for regular expressions.

In SeqAn, the function find finds an occurrence of a needle in a haystack; it
can repeatedly called to find all occurrences. find needs the following infor-
mation to work: The haystack, the needle, what kind of algorithm to be used,
the current state of the search (e.g. the last found position), and possibly —
depending on the algorithm — some preprocessing data. This information is
divided onto two objects: (1) the finder that holds all information related to
the haystack, and (2) the pattern that holds information related to the needle,
see Figure 26.

Splitting the data this way has several advantages:

e [t reduces type dependencies, since finder types are independent from
the type of needles, and pattern types are independent from the type of
the haystack. This simplifies the code both for using pattern matching
algorithms and for implementing new finder or pattern types.

e The preprocessing of the needle is stored in the pattern object and can
be re-used when searching this needle in several haystacks.

101
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Online Searching

Finder | Haystack II‘ Position II‘ | Pattern

c|m|o|O
BNISIESIN
—

Haystack JTT|E[X[T[O[C[CJUIR[T[E[X][T[? Needle [O][C]CIU]R]

Index Searching

Finder | Indexlzl Position|I|| Pattern/Needle [O]C[C]U[R]

Index

Haystack T[E[X]T[OJC[CIUIR]T]E]X]T[?

Figure 26: Online Searching and Index Searching. Top: Calling find for online
searching. The search algorithm is determined by the type of the pattern, which con-
tains all relevant preprocessing data. Bottom: Calling find for index searching (see
Chapter 12). The search algorithm depends on the finder type. The needle sequence
acts directly as a pattern.



10.1. EXACT SEARCHING 103

e The applied algorithm is implicitly selected by the choice of the finder
and pattern types. For example, calling find with an instance of the
Horspool specialization of Pattern means that Horspool’s algorithm
(see Section 10.1.2) is applied.

e If no further information related to the needle has to be stored (e.g.
for index searching algorithms, see Chapter 12), then the needle itself
acts as pattern, and that again simplifies the handling of SeqAn pattern
matching algorithms.

The last found match position is stored in the finder and can be retrieved by the
function position. This is for most searching algorithms the position of the
first value of the match, except for approximate searching algorithms: Since
finding the begin position of an approximate match needs some additional
overhead, the function position returns the position of the last character of
the match (see Section 10.3). SeqAn also offers the functions beginPosition
and endPosition for determining the begin and and position of matches ex-
plicitly, where endPosition is immediately available after calling find, and
beginPosition requires in the case of approximate string matching a previous
call of the function findBegin in order to find the beginning of the match. The
position of a finder can also be set by the user via the function setPosition.
If searching is started or resumed at a specific position pos, then only occur-
rences on positions > pos will be found. Moreover, all algorithms in SeqAn
guarantee that the occurrences found by calling find are emitted in order of
increasing positions.

In this chapter, we will focus on online searching algorithms, which solve the
pattern matching problems by preprocessing the needle, not the haystack.
Most online searching algorithms implemented in SeqAn are also described in
(Navarro and Raffinot 2002).

10.1 Exact Searching

The exact searching problem is to find for a given needle p; ... p,, and haystack
t1...t, all positions j for which p; ...p, =1t;...t;4m—1. Table 13 shows some
online searching algorithms for exact searching provided by SeqAn. Listing 17
shows how to use these algorithms. The performance of online algorithm de-
pends (beside other things) from the alphabet size ¥ and the needle length m,
see Figure 28.

10.1.1 Brute-Force Exact Searching

The most simple way for searching a needle p = p;...p, in a haystack
t = t1...1, is to compare p with t,0511...¢pos+m for each position pos €
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Simple A brute-force but generic searching algorithm that can deal with sequences
of all value types.

Horspool Horspool’s algorithm (Horspool 1980) is a simple yet fast algorithm with in
average sublinear searching time that is suitable for many pattern matching
settings.

ShiftOr  An algorithm that uses bit parallelism. Should only be used for patterns
that are not longer than a machine word, i.e. 32 or 64 characters. Even
for small patterns, it is outperformed by Horspool for alphabets larger than
Dna.

BFAM Backward Factor Automaton Matching is an algorithm that applies an au-
tomaton of the reversed needle’s substrings. It is a good choice for long
patterns.

BndmAlgo The Backward Nondeterministic DAWG (Directed Acyclic Word Graph)
Matching algorithm uses a special automaton to scan through the haystack.
It is an alternative to BFAM for medium sized patterns.

Table 13: Exact Pattern Matching Algorithms.
String<char> t = "he_is_the_hero";
String<char> p = "he";

Finder<String<char> > finder(t);
Pattern<String<char>, Horspool> pattern(p);
while (find(finder, pattern))

{

std::cout << position(finder) << ","; //output: 0,7,10

}

Listing 17: Exact Online Searching Example.
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{0,...,n —m} (Algorithm 8). This method takes time O(n x m), and it is
rather slow compared to other algorithms. SIMPLESEARCH has the advantage
that it is completely generic and works for arbitrary value types. All other
exact searching algorithms in SeqAn need some additional space for storing
preprocessed data, and this space could exceed memory when large alphabets
are used; SIMPLESEARCH on the other hand is not limited this way, since it
needs no preprocessing data at all.

> SIMPLESEARCH (p1...Dm,t1...1,)
for pos — 0 ton —m do

9 L if D1 P = tpos 41 .- . tpos +m then
L report match at position pos + 1

—

w

Algorithm 8: Brute-Force Exact Searching.

10.1.2 Horspool’s Algorithm

Horspool’s algorithm (Horspool 1980) (see Algorithm 9) is a simplification of
an algorithm by Boyer and Moore (1977). The algorithm compares the needle
P1-..Pm With the substring ¢,,5 11 ... tpos +m Of the haystack, where the search
starts at pos = 0. After each comparison, pos is increased by a ‘safe shift width’
k, which means that k is small enough that no possible match in between gets
lost. Suppose that pos is increased by i, then ¢, 1., will be compared to p,,_;
during the next comparison step. Hence if p,,_; # tpos4m for all 1 < i <k,
then k is ‘safe’. The maximum safe shift width for each possible value of ¢,45 1,
is stored in a preprocessed table skip.

The worst case running time of Horspool’s algorithm is O(n?), but in practice
it runs in linear or even sublinear time on average. This algorithm is a good
choice for most exact pattern matching problems, except (1) if the alphabet
(and hence the shift width) is very small compared to the pattern length,
since in this case it is outperformed by other algorithms, or (2) for very large
alphabets, since storing skip gets inefficient then.

Horspool’s algorithm is applied when the Horspool specialization of the class
Pattern is used as pattern, see Listing 17 for an example.

10.1.3 Shift-Or Algorithm

Shift-Or is a simple online algorithm for exact pattern matching that benefits
from bit-parallelism. For a given needle p = p; ...p,, and a haystack ¢ ...%,,
we define for each j € {1,...,n} a length-m vector &’ of booleans

2

bg = “p1...p; does not match to a suffix of ¢, ...¢,”,
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> HORSPOOL (p1 ...pm,t1 ... tn)
skip[c] < m for all c € & ,
for i — 1 tom — 1 do skip[p;] — m —i }preprocessmg
pos «— 0 )
while pos < n —m do
1 Mm
while p; = t,05 4+, do
if i =1 then searching
|_ report match at position pos+ 1
break
1—1—1
L pos «— pos + skip[tpos +m)

© 0o SO s W N

—
o

—
—

Algorithm 9: Horspool’s Algorithm.

i € {1,...m}. If not®’ , then p matches ¢t at a position j —m + 1. At each
time j, SHIFTOR stores b’ in a bit vector b. When j is increased, b is updated
according to the recursion:
bl = b2y or (i # 1))

SHIFTOR applies bit-parallelism, hence this takes only one left-shift operation
on b and one bit-wise or operation with a bit vector mask|t;] (see Algorithm 10,
line 5). The bit vectors mask[c| are preprocessed for each possible value ¢ € ¥;
mask[c]; = 0, iff p; = c.

> SHIFTOR (p1 ... Pm,t1 .. tn)
mask[c] < 1™ for all c € &
for i — 1 to m do mask[p;]; — 0
b—1m
for j «— 1 ton do
b— (b << 1)| mask][t;] searching
if b,, = 0 then
L report a match at j —m + 1

} preprocessing

N O Ot s W N

Algorithm 10: Shift-Or Algorithm.

The Shift-Or algorithm is quite fast, as long as b fits into one machine word, i.e.
as long as m <= 32 or 64. For longer patterns, multiple machine words must
be used, but this diminishes the positive effect of the bit-parallelism. Moreover,
Shift-Or is outperformed by Horspool’s algorithm (Section 10.1.2) for all but
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very small alphabets (see Figure 27 on page 110). Shift-Or is therefore best
for small patterns and small alphabets.

10.1.4 Backward Factor Automaton Matching

Backward Factor Automaton Matching (BFAM) is an exact online algorithm
that applies an automaton, e.g. an oracle automaton as described by Allauzen,
Crochemore, and Raffinot (2001) or a ¢rie. The principle of BFAM is Backward
Factor Searching as presented in Algorithm 11: BF reads a suffix of ¢1 . . . £ o5 4m
from back to front until either a match of p is found, or p does not contain
any substring (‘factor’) that matches to the read suffix. If p does not contain
Tpos +k - - - tpos +m, then k is a ‘safe shift’, i.e. pos can be increased by k without
losing a match, since any substring of ¢ that starts at a position between pos +1
to pos +k also contains t,os 11 - - - tpos +m-

>BF (p=p1...pm,t1...10)
pos «— 0
while pos < n —m do
k«—m
while p contains t,o 4 - - - Lpos +m dO
if £k =1 then
|_ report match at pos +1
break
k—k-—1
L pos < pos +k

© 00 N O Ot = W N =

Algorithm 11: Backward Factor Searching Principle.

The main question in BF is how to check the condition in line 4 whether
p contains fpos 1k - - - tpos +m- For that purpose, BEAM (Algorithm 12) ap-
plies an factor automaton on the reverse needle p,,...p;, i.e. an automaton
that accepts all substrings of this sequence. This automaton is processed on
tpos +m - - - tpos +1 until either a match is found, or an undefined state is reached
because the needle does not contain the string £,os 14 - - - tpos +m-

In SeqAn, the kind of automaton is specified when choosing the specialization
of the class Pattern: The specialization BFAM<Oracle> is used for applying
an oracle automaton (see Section 13.1.2) and BFAM<Trie> for an suffix trie (see
Section 13.1.1).

Oracle automata may also accept strings other than substrings of p,, ... p1, and
this may lead to shorter shift widths. Fortunately, the only length-m string
accepted by the oracle is p,, ... p; itself, so we need no additional verification
in line 6 of Algorithm 11, as it will be necessary for MULTIBFAM in line 15
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of Algorithm 15. Oracles are more compact than suffix tries: The oracle of
DPm - - - p1 has only m+1 states and at most 2 X m transitions, whereas the num-
ber of states and transitions of a suffix trie can be quadratic. This parsimony
benefits the run time, because a smaller automaton has better chances to stay
in cache, and because oracles take less time to be built up. A comparison
between the run times of the two variants (Figure 27 on page 110) reveals that
BFAM<TRIE> is slightly faster that BFAM<ORACLE> for small alphabets
and needle lengths, whereas for large alphabets or needle lengths the oracle
takes advantage of its space efficiency.

> BFAM (p1...pm,t1.. . tn)
a «BUILDFACTORAUTOMATON(p,, ...p1) |preprocessing
pos «— 0 )
while pos < n —m do

q < 0,(initial state of @, tpos+m)
k«—m

while ¢ is defined do

if k=1 then searching
L report match at pos +1

break
k—Fk—1

q <— 6a (Q7 tpos +k)
pos «+— pos +k

© 00~ O O = W N =

—_ =
= O

—
[N}
|

Algorithm 12: Backward Factor Automaton Searching. §, is the transition function
of a. Note that a is built on the reverse needle p,, ...p1.

10.1.5 Backward Nondeterministic DAWG Matching

The BNDM algorithm (‘Backward Nondeterministic Directed Acyclic Word
Graph Matching’) is a bit-parallel variant of an algorithm by Crochemore
et al. (1994). It applies bit-parallelism for tracking the substrings of the
needle during backward factor searching (BF, see Algorithm 11, line 4). Let
us define for each k € {1,...,m} a length-m vector b* of booleans

7

bf = “tpos +k - - - tpos +m matches a prefix of p; ... py".

BNDM (Algorithm 13) stores b* in a bit vector b, which is updated when  is
decreased according to the recursion:

bf = by and (pi = tyos +)-



10.1. EXACT SEARCHING 109

This takes two bit-parallel operations: One right shift in line 14 and one
bit-wise ‘and’ with a preprocessed bit vector mask|[tp,s1:] in line 9 of Algo-
rithm 13. The bit vectors mask|c| are preprocessed for each possible value
c € X; masklcl; = 1, iff p; = c.

BNDM improves the ‘safe’ shift width of BF as follows: If 0¥ = 0, then
Tpos +k - - - tpos +m does not match to a prefix of p, hence p does not match ¢ at
position pos +k. Suppose that k is a ‘safe’ shift, then k£ 4+ 1 will also be ‘safe’.
Hence, we need only to take into account shift widths k& with ¥ = 1. The
variable skip stores the last found k for which b, = 1 (line 12). skip is then
used in line 15 as shift width.

> BNDM (p1...pm,t1...t,)
1| mask[c] < 0™ for all c € & :
2| for i« 1 to m do mask[p;; — 1 }preprocessmg
3| pos «—0 A
4| while pos <n—m do
5 k —m
6 skip «— m
7 b — 1
8 while b # 0™ do
9 b — b A mask[tpos +i] searching
10 k—k—1
11 if by = 1 then
12 L if £ > 0 then skip — k
13 else report match at pos +1
14 - b—b>>1
15 L pos «— pos + skip )

Algorithm 13: Backward Nondeterministic DAWG Matching.

10.1.6 Results

Figure 27 shows the average run times divided by the length of the searched
haystack for searching needles of length m. The machine word size was 32,
so the run times of the bit parallel algorithm ShiftOr and BndmAlgo are dis-
continuous at multitudes of 32. For small alphabets like DNA (|X| = 4), the
fastest algorithms are ShiftOr for small m, BFAM<Trie> for middle sized m,
and BFAM<Oracle> for large m. For larger alphabets, e.g. when searching
proteins or English texts, either Horspool for small m or BFAM for larger m is
the fastest, see Figure 28. Compared with the results of Navarro and Raffinot
(2002, Fig. 2.22), our implementation of the BNDM algorithm is outperformed
in any parameter setting.
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Figure 27: Run Times of Exact Pattern Matching Algorithms. The average run
times per haystack value for different exact pattern matching algorithms depending on
the length m of the needle. We searched for patterns in (1) the genome of Escherichia
Coli, (2) proteins from the Swiss-Prot database, and (3) the English Bible.
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Figure 28: Fastest Exact Pattern Matching Algorithm. The best algorithm for search-
ing all exact occurrences of length-m patterns in random haystacks, depending on the
size |X| of the alphabet. Since the pattern is a random string, Horspool gains ground
compared to Figure 27.
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10.2 Exact Searching of Multiple Needles

In this section, we describe algorithm that search several needles p!, ..., p*
in a haystack t;...t, at once, which is in general faster than searching one
needle after the other. We search the pairs (7, 7) for which p’ matches a prefix
of t;...t,. Many algorithms proposed in (Navarro and Raffinot 2002) are
implemented in SeqAn, see Table 14. Here, we will only describe two of them
in more details, since these two outperform all others in almost any case.

WuManber An extension of Horspool’s algorithm (Horspool 1980) for search-
ing multiple needles. The favoured algorithm in many cases.

MultiBFAM Backward Factor Automaton Matching for Multiple sequences is
an extension of BFAM for searching multiple sequences. It applies
an automaton that accepts the reversed substrings of the needles’
prefixes. This algorithm is a good choice for long patterns, small
alphabets, or large needle sets.

AhoCorasick An algorithm by Aho and Corasick (1975) that uses an extended
trie automaton to scan through the haystack sequence. It performs
well especially for small alphabets pattern lengths.

MultipleShiftAnd An extension of the Shift-And algorithm for multiple patterns.
This algorithm is competitive only if the sum of the needle lengths
is smaller than the size of one machine word.

SetHorspool Another extension of Horspool’s algorithm (Horspool 1980) for
multi-pattern searching that applies a trie of the reverse needles.

In practice, it is outperformed by WuManber.

Table 14: Exact Pattern Matching Algorithms for Searching Multiple Needles.

Listing 18 shows an example how to use the function find to search for mul-
tiple patterns at once. After each call, position(pattern) returns the index
number of the needle that was recently found starting at position(finder)
in the haystack.

Some algorithms ensure that hits emerge in a certain order. For example,
the hits found by WuManber and MultiBFAM are sorted in increasing order
by position(finder), and two hits at the same position position(finder)
are sorted in increasing order by position(pattern). The example program
therefore finds first "the" at position 0, then "hero" at position 4, then
"theory" at position 11, and finally "the", also at position 11.

10.2.1 Wu-Manber Algorithm

The algorithm by Wu and Manber (1994) is an extension of Horspool’s al-
gorithm (see Section 10.1.2, page 105) for multiple needles. WUMANBER
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String<char> t = "the_heroes_theory";
String<String<char> > p;

appendValue(p, "theory");

appendValue(p, "hero");

appendValue(p, "the");

Finder<String<char> > finder(t);
Pattern<String<String<char> >, WuManber> pattern(p);
while (find(finder, pattern))

{
std::cout << "found pattern " << position(pattern)
<< "at position " << position(finder)
<< n s n ;
}

Listing 18: Multiple Pattern Searching Example.

(Algorithm 14) compares the needles p', ..., p* to the haystack ¢ at a position
pos, which is then increased by a safe shift width. For multiple needles, it is
not advisable to select the shift width depending on the occurrences of a single
value t,5 +m within the needles, as it is done by HOorspooL (Algorithm 9,
page 106), since this would lead to rather small shift widths and hence a poor
performance, because it is rather probable to find each possible value in the
ending region of at least one of the needles. WUMANBER uses therefore ¢ > 2
values tpos +m—g+1 - - - tpos +m fOr determining the shift widths. A preprocessed
table shift stores for each g-gram w € X9 a safe shift width. shift may use
hashing if a table size |X|? would be too large for storing a shift width for each
g-gram in memory. A second table verify is used to determine which needles
possibly match and are verified.

The expected shift widths are optimal if ¢ is selected such that the number |X|
of possible g-grams is about the number of overlapping g-grams occurring in
needles. In practice, the optimal ¢ may be smaller, because the computation
of a hash value needed to access shift and verify takes time O(q), and this
dominates the performance of the main loop (lines 11 to 18).

10.2.2 Multiple BFAM Algorithm

The Multiple Backward Factor Automaton Matching algorithm extends the
BFAM algorithm (see Section 10.1.4, page 107) for searching multiple needles.
The factor automaton, e.g. a factor oracle (Section 13.1.2), is built for the
reverse needles p', ..., p". Since the maximal safe shift width cannot be larger
than the length m of shortest needle, the automaton considers only the prefixes
of the needles that do not exceed that length. During the search, the automa-
ton processes a part tpos+1 - - . tpos +m Of the haystack from back to front. If the
whole substring can be processed, MULTIBFAM tests all needles in verify[q],
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> WUMANBER (P = {p',...,p"},t1...1,)

1| m « minimum length of p’

2| 2z —m—q+1

3| shiftjw] « z for all w € 3¢

4| for i« 1to zdo ' _
5 L for j — 1 to k do build shift
6 L shz’ﬁ[p{...pg+q_1]<—z—i

7| wverifylw] < {} for all w € X1

8| for j < 1tokdo build verify
of L werify[pl...pl] — verify[pl...pl JU{j}
10| pos «— 0 )
11| while pos <n —m do
12 W Tpos 42 - - - tpos +m
13 if shiftjw] =0 then
14 for each j € verify[w] do searching
15 L report if p/ matches ¢ at pos +1
16 pos «— pos +1
17 else
18| L L pos < pos+ shift|w] )

Algorithm 14: Wu-Manber Searching of Multiple Needles.
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Number of Needles k [CPU cycles]
100 100

MultiBFAM<Oracle

\

DNA

Value Size =4

10

MultiBFAM<Trie> WuManbe

k=10
10 >
MultiBFAM<Trie>
WuManber 1 - Yol
MultiBFAM<Oracle
2
2 10 100 1000 2 10 100 1000

100 100

WuManber

10 /\ k=10Q,
AT

AminoAcid
Value Size =24

MultiBFAM 1
WuManbe
2
2 10 100 1000 2 10 100 1000
100 100
C h ar WuManber

Value Size =256
10

10

MultiBFAM
It \\ /\ k=3;1

MultiBFAM
2 10 100 1000 2 10 100 1000
Needle Length m Needle Length m

Figure 29: Fastest Multiple Pattern Matching Algorithm. Left: The optimal al-
gorithm for finding k patterns of length m in parts of (1) the Escherichia Coli genome
(2) proteins from the Swiss-Prot database, and (3) the English Bible. If |3 = 4|, then
WuManber is optimal for small m and MultiBFAM for large m. For larger alphabets, the
reverse is true. Right: Slices through the left figures show the actual run time per
searched haystack value for searching ¥ = 10 (Dna or AminoAcid) or k = 3 (char) pat-
terns. Both algorithms are sublinear, so for large m the run times may even fall below 1
CPU cycles per haystack value.
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which gives for the current automaton state ¢ the list of needles with prefix

tpos +1 - - - Lpos +m-

© 00 N O Ot = W N =

—
N o= O

e O e T = T
© 0 O Ot = W

> MULTIBFAM (P = {p*,...,p"}, t1.. . t)

m < minimum length of p’

rev’ <—p7mp§L for j e {1,...,k}

a « BUILDFACTORAUTOMATON(rev?, ..., revk)
verify|q] « {} for all states ¢ in a

for j — 1 to k do

L q < the state of a after processing rev’

verifylq] < verifylql U {5}
pos «— 0
while pos < n —m do
q < 0,(initial state of @, tpos +m)

k+—m
while ¢ is defined do
if Kk =1 then

L report if p' matches ¢ at pos +1
break
k —k—1
- q — 6&(Q7tpos+k)
L pos < pos +k

\‘ for each i € verify[q] do

} build a

3\

build verify

searching

Algorithm 15: Backward Factor Automaton Matching for Multiple Needles.

10.3 Approximate Searching

So far, we discussed ezact matching, that means a match of the search is a
substring s of the haystack ¢ that equals the pattern p. In this section, we
will relax this condition, such that a match s needs not to be equal but only
sufficiently ‘similar’ to p. More precisely spoken, we want to find all substrings
s of t for which the distance dist(s,p) with respect to a certain distance met-
ric dist does not exceed a certain threshold 7'. This is called approzimate
string matching. In its most general form, dist could be any sequence distance
measure based on alignment scores as described in Section 9.3.1, though most
approximate search algorithms are specialized for edit distance. SeqAn also
supports approximate search algorithms that only allow mismatches between
s and p but no inserts or deletes; we will describe them in Section 10.4.1.
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When an approximate searching algorithm searches the haystack ¢ starting
from a position pos, then we can either search for matching substrings of
tpos - - - tn (‘infiz search’), or for matching prefixes of ¢, . .. t, (‘prefic search’).
We will focus on infix search in this section. SeqAn offers two algorithms for
prefix search, namely the algorithms by Sellers and Myers that can be easily
adapted for prefix search.

In SeqAn, finding all infix hits s in ¢ is done in two steps:

(1) First, the function find looks for a position in ¢ at which a match ends.
The threshold T is either set by calling setScoreLimit or simply passed
to find as a third function argument.

(2) If a match was found, the function findBegin can be used to search
its begin position. The threshold T for that approximate search can
be passed as a third argument, otherwise the function applies the same
threshold as during the last call of find. Subsequent calls of findBegin
may be used to find several begin positions to the same end position.

Technically, findBegin is implemented as a prefix search on the reverse needle
and haystack strings. Listing 19 demonstrates how to use find and findBegin.

String<char> t = "babybanana";

String<char> p = "babana";

Finder<String<char> > finder(t);
Pattern<String<char>, Myers<FindInfix> > pattern(p);
while (find(finder, pattern, -2))

{
std::cout << "end: " << endPosition(finder) << std::endl;
while (findBegin(finder, pattern, getScore(pattern)))
{
std::cout << "begin: " << beginPosition(finder) << std::endl;
std::cout << infix(finder) << " matches with score "
<< getBeginScore(pattern) << std::endl;
}
}

Listing 19: Approximate String Searching Example. The program finds six substrings
"babyba", "byban", "bybana", "banan", "bybanan", and "banana" of the haystack
"babybanana" that match the needle "babana" with at least two errors (edit distance).
Note that the two matches "banan" and "bybanan" both end at the same position 9.
The third argument of findBegin is optional; the default is the score limit 7" of the last
call of find, i.e. —2 in this example. If we use this, six more matches would be found.

The algorithms for approximate string matching supported by SeqAn are listed
in Table 15. They are also described in the book of Navarro and Raffinot
(2002). Another good survey of approximate string matching algorithms can
be found in (Navarro 2001).
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DPSearch  An algorithm by Sellers (1980) that is based on the dynamic programming
algorithm for sequence alignment by Needleman and Wunsch (1970). It
can also be used for prefix search.

Myers A fast searching algorithm for edit distance using bit parallelism by Myers
(1999). It can also be used for prefix search.

Pex A filtering technique by Navarro and Baeza-Yates (1999) that splits the
needle into k + 1 pieces and search these pieces exact in the haystack.

AbndmAlgo Approximate Backward Nondeterministic DAWG Matching, an adaption
of the BNDM algorithm for approximate string matching.

Table 15: Approximate Pattern Matching. Specializations of Pattern.

10.3.1 Sellers’ Algorithm

The algorithm by Sellers (1980) resembles the dynamic programming align-
ment algorithm (Needleman and Wunsch 1970) with free start gaps for
the haystack ¢, as it was described in Section 9.5.4. Remember that
FILLMATRIX(D; ... pm, t1 ... t,) (see Algorithm 2 on page 89) uses a matrix
M, where M; ; is the optimal score for aligning the two prefixes p;...p; and
ty...t;. If we initialize M, ; « O for all j € {1,...,n}, then each M, ; is filled
with the optimal score of alignments between p; ...p; and a suffix of ¢; .. .¢;.
The j-th pass of the outer loop in SELLERS (Algorithm 16) computes the j-
th column C' of the matrix M. The inner loop computes in line 7 the value
C; = M, ; according to Equation 9.6 (page 87). The variable d was previously
set to M;_1 ;1 (case 1), v to M;_y; (case 2), and h to M; ;1 (case 3). At the
end of the inner loop (line 10), the value v = C,,, = M,, ; is the optimal score
of an alignment between p = p; ... p,, and a suffix s of ¢, ...¢;. If the sequence
distance —v between s and p is < T', then s is an approximate match and its
end position j is reported.

SELLERS can easily be extended to support affine gap costs following Gotoh’s
idea (Gotoh 1982), which we described in Section 9.5.2. SeqAn supports both
variants for linear and for non-linear gap costs, and selects it according to the
applied scoring scheme.

The algorithm can also be adapted for prefiz searching, we just have to change
the initialization to make start gaps in the text non-free. That is, we change
the lines 3 and 4 in SELLERS to ‘v «— i X g’ and ‘d < (i — 1) X g’.

Ukkonen’s Trick

Sellers” algorithm takes time O(nm) for finding the occurrences of a pattern
P1-..Dm in a text t1...t,. With a slightly modification (Ukkonen 1985), this
can be accelerated for edit distance scoring to O(km) on average, where k = —T
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> SELLERS (p1...pm,t1...tn, T)
C;—ixgforeachie{l,...,m}
for j «— 1 ton do

v« 20 )
d—0

for i — 1 to m do Com‘pute in C

v« max {d + a(p;, t;), max{v, h} + g} Colurpn of the
C; —wv matrix M

d«—h )
if —v < T then report match end position
-]

© 00 N O Ut = W N

[y
)

Algorithm 16: Sellers’ Algorithm. « returns the score of aligning two values; ¢ is the
(usual negative) gap score.

is the number of allowed errors per match. The ‘trick’ is to compute just the
cells C; for i < iy, where 7g is minimal such that Cy < T for all ¢/ > iy. At the
beginning of SELLERS C}; is initialized to C; = ig = —1, so we set iy «— —T1..
Suppose that we know an 7y for a given column j; one can easily prove that
for the next column j + 1 holds Cy < T for all ¢/ > iy + 1, i.e. the iy must be
increased by at most one. After computing the values Cy, Cy,...,Cy, Cipt1,
we can easily calculate the actual iy in (amortized) constant time.

10.3.2 Myers’ Bitvector Algorithm

Myers (1999) uses bit parallelism to speed up Sellers’ algorithm for edit dis-
tance.! Remember that the edit distance between two sequences is the negative
score of their optimal alignment where each match scores 0 and each mismatch
and gap scores -1 (see Section 9.3.1). The main idea of this algorithm is to
encode the j-th column of the matrix M of the Needleman-Wunsch algorithm
(Algorithm 2) in five bit vectors, each of length m (the length of the needle):

VPZ = (M’L,] = M’i*l,j — 1) VNZ = (Mz,] = Mifl,j + 1)
.[‘.I‘I.PZ = (Mi,j = i,j—1 — 1) EU\/VZ = (Mi,j = Mi,j—l -+ 1)
D0; == (Mj; = M;_1 ;1)

where ¢ € {1,...,m}. In each pass of the main loop, MYERS (Algorithm 17)
computes these five vectors for column j based on of the vectors for column
7 — 1, which takes 15 bit vector operations. The details are explained in
Appendix A.1

"'We present here the variant by Hyyro and Fi (2001).
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If the bit vectors does not fit into one machine word, then several machine
words per bit vector must be used to store VP and VN — all other bit vectors
need not to be stored completely. MYERS also keeps track of the current score
score and reports the position j whenever it climbs above the (negative) score
limit 7', i.e. the number of errors falls below —7'.

> MYERS (p1---Pmyt1---tn, T)
1| mask[c] < 0™ for all c € & ,
2| for i« 1 to m do mask[p;]; — 1 }preprocessmg
3] VP« 1™ )
4 VN <« Q™
5 score <— —m
6| for j < 1tondo
7 X «— mask[t;] vV VN
8 DO — ((VP+(VPAX))® VP)V X
9 HN «— VP A DO
10 HP «— VN Vv—(VPV D0) searching
11 Y «— HP << 1
12 VN «— Y A DO
13 VP «— (HN << 1)V (Y VvV D0)
14 if HP,, then score < score —1
15 else if HN,, then score « score +1
16 if score > T then
17 L L report match end position j )

Algorithm 17: Myers’ Bit-Vector Algorithm.

MYERS would perform a prefix search if we force My; = My;—1 — 1, ie.
HPy = 1. This can simply be done by changing line 11 to Y «— HP << 1|1.
SeqAn contains two implementations of Myers’ algorithm, one for needle length
up to one machine word, and a second for longer needles. The algorithm is the
fastest approximate searching function in SeqAn for high edit distances (e.g.
< 60% identity, see Figure 30).

We combined Myers’ algorithm with Ukkonen’s Trick (Section 10.3.1), so the
algorithm will usually compute only the first machine word of the bit vectors
at all positions in the haystack but those at which it has regions very similar to
the pattern. This makes the average running time roughly independent from
the pattern length m, see Figure 30.

10.3.3 Partition Filtering

In this section, we will discuss an algorithm by Navarro and Baeza-Yates (1999)
that bases on a simple idea proposed by Wu and Manber (1992): Let T be
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the threshold for the edit distance score when searching the needle p in the
haystack ¢, that is we want to find all occurrences of p in t with < k = —T
errors. If we cut p into k 4+ 1 pieces, than each approximate match of p in ¢
must contain at least one of these pieces unchanged. So we start with an exact
multi-pattern search for the pieces and then ‘verify’ each occurrence of one of
these pieces, that is we try to find p in the neighborhood of the found piece,
see Algorithm 18. The following lemma guarantees that this approach works:

Lemma 1 (Pidgeonhole Principle)

Let a'...a' = a be a partition of the string a into m substrings, and let
r!,...,7" be [ positive integer numbers. If a matches to a string b with
less than 7! + 72 4 ... 4+ 7! errors, then at least one a’ matches with less

than r? errors to a substring of b.

The lemma follows directly from the fact that, for linear gap costs, the score
of an alignment is the sum of the scores of its pieces. Hence, if each a’ matches
to it’s counterpart in b with > r? errors, then a and b would match only with
>l 424 4 7™ errors.

In our case, we uses the lemma with [ =k +1landr' =72=... =7 =1.

>PEX (p=p1...pm,t =11...1,,—k)
divide p into k + 1 parts p*...pr*!
pieces —FINDEXACT({p!,...,p""1} 1)
for each (i, pos) € pieces do

let p' =pi...Piem

hits «—FINDAPPROX(D, tpos —i—k - - - Lpos +m—k» —k) verification

report all matches in hits

SO s W N

Algorithm 18: Partition Filtering Algorithm. FINDEXACT could be any exact searching
algorithm for multiple needles, e.g. WUMANBER or MULTIBFAM, and FINDAPPROX any
other stand-alone approximate string matching algorithm, e.g.SELLERS or MYERS.

We call this technique filtering, since all parts of the haystack that do not
contain any piece of the pattern are ‘filtered out’ and only the rest is passed
to the verification process. This works well for long patterns and small error
rates, since in this case the pieces are relatively long, so the expected false
positive rate of the filtering is low. A good partitioning strategy is to split the
needle p; ... p,, into k+1 pieces of approximately equal length > [m/(k + 1)].
On the other hand, the costs for each verification move up for large patterns.
For that reason, Navarro and Baeza-Yates (1999) applied an optimization
called ‘hierarchical verification’: Let 7 be a tree with k + 1 leafs that are
labeled from p' to p*T!. We use a balanced binary tree, but the idea works for
any tree topology. We label each vertex v of 7 with the concatenated pieces
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of p on the leafs of the subtree rooted in v, and we call this label p(v) and the
number of leafs in this subtree r(v). The root of 7 is therefore labeled with
p. Suppose that we find in the haystack at position pos an exact match of p,
then we follow the path from the i-th leaf to the root. At each vertex v of
this path, we search p(v) in the neighborhood of pos with less then r(v) errors.
If no occurrence of p(v) is found, the verification stops, otherwise we proceed
with parent of v in 7 until the root has been reached and a match of p was
verified.

It is easy to prove that this kind of verification is correct, i.e. no approximate
match gets lost: Let v1,..., v, be the children of the root, then r(vy) + ...+
r(v;) = k + 1. Hence, according to Lemma 1, any approximate match of p
with at most & errors also contains some p(v') with less than r(v*) errors. The
same argument can recursively applied to v?, then to one of its children, and
so forth.

10.4 Other Pattern Matching Problems

There are many more variants of pattern matching problems, and SeqAn pro-
vides algorithms for some of them. In this section, we will describe two of
them: (1) the k-mismatch problem and (2) searching with wildcards.

10.4.1 k-Mismatch Searching

A mismatch between a sequence a = ay . . . a, and another sequence b = by ...b,
is a position ¢ € {1,...,n} such that a; # b;. The number of mismatches be-
tween a and b is called the ‘Hamming distance’ of the two sequences. Given
a needle p;...p, and a haystack t...t,, then searching with k mismatches
means to find all substrings ¢p.s 41 ... tpos +m that have Hamming distance to
p1 - . .pm of < k. This kind of searching resembles approximate string matching
as described in Section 10.3 but without inserts or deletes, gaps are forbidden.
Sellers’ algorithm (Section 10.3.1) can be used for searching with mismatches if
the costs for gaps are set to +o00; but of course there are also algorithms espe-
cially for the k-mismatch problem. SeqAn for example offers the specialization
HammingHorspool of Pattern, that implements an adaption of the exact pat-
tern matching algorithm (Section 10.1.2) proposed by Tarhio and Ukkonen
(1990).

10.4.2 Searching with Wildcards

SeqAn provides the algorithm WildShifAnd that is able to search for regular
expressions (e.g. Navarro and Raffinot (2002), 4.5.1). Note that this algorithm
does not support the complete functionality of usual regular expressions, e.g.
it does not support alternatives, and quantifiers like *, +, ? and {7, j} can
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Figure 30: Fastest Approximate Matching Algorithm. Left: The optimal algorithm
for finding a pattern of length m with at most k errors (edit distance) in parts of (1) the
Escherichia Coli genome (2) proteins from the Swiss-Prot database, and (3) the English
Bible. Right: Slices through the left figures show the actual run time per searched
haystack value for &k = 10
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refer only to single characters or character classes. A pattern for searching in
texts ¢, ...t, of the alphabet X is a string c!...c™ that is the concatenation
of clauses, where each clause ¢’ has one of the forms in Table 16. For example,
the pattern

[A—Z70—9].%

matches to all strings that start with a capital letter or a digit.

Clause Description
w a string
. any character
af{i,j}  repeat a at least ¢ and at most j times

ax repeat a for 0,1, or more times
a+ repeat a for 1 or more times
a? optional a, same as a{0, 1}

[b'...b*] a character in a class: Each b’ is either
a set of characters from 3, or it has the
form ‘a;-as’ which denotes all charac-
ters in ¥ between a; and as.

Table 16: Regular Expression Syntax. A regular expression may contain several clauses.
w is a string of values from 3, and a is either a single character from ¥ or a character
class [b'...b"].
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Chapter 11

Motif Discovery

Motif finding means to find matching substrings of d > 2 given sequences
a',...,a%, where ‘matching’ can either be meant to be exact, i.e. the matching
substrings must be exactly the same, or approzimate, i.e. differences between
the substrings are allowed. The matching substrings are called ‘motifs’. In
the following, we will first concentrate on the pairwise motif finding problem,
that is finding motifs in d = 2 sequences. In contrast to pattern matching (see
Chapter 10), where we search for a complete needle sequence in a haystack
sequence, (pairwise) motif adresses the problem of finding parts of the needle
within the haystack. In most cases, we are only interested in motifs that fulfill
certain criteria of quality, for example a minimal length, a minimum alignment
score or — in the case of approximate motif finding — a maximum mismatch
count.

SeqAn offers algorithms for solving various kinds of motif finding problems
which are spread over several modules of the library:

e Local Alignments: Algorithms for solving the global alignment prob-
lem (see Section 9.5), that is to find an optimal alignment between two
complete sequences, can be adapted for motif finding, that is to find
optimal alignments between substrings of two sequences. This is called
‘local alignment’, and we describe it in Section 11.1. The motifs found
by this search are local alignments stored in alignment data structures,
see Section 9.2.

e Index Iterators: Some index data structures, as for example the suf-
fiz trees or the enhanced suffiz arrays (ESA), can be used to find exact
matches between two or more sequences. SeqAn offers some special iter-
ators (see Section 12.3.2) that can be used to browse through all exact
motifs, which are defined by the begin positions and the length of the
matching substrings.

e Seed Based Motif Search: Algorithms for expanding and combin-
ing small motifs (so called ‘seeds’) to larger motifs are introduced in the

125
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Section 11.2. Seeds are represented essentially by the begin and end posi-
tions of the matching substrings, which can be stored in a data structure
called Seed, see Section 9.6.1.

e Multiple Sequence Motifs: Algorithms for finding subtle motifs of
fixed length in multiple sequences are discussed in Section 11.3. Motifs of
this kind are either represented by a consensus sequence or by a position
dependent weight matrix.

11.1 Local Alignments

11.1.1 Smith-Waterman Algorithm

Smith and Waterman 1981 adapted the Needleman-Wunsch algorithm (Needle-
man and Wunsch (1970), see Section 9.5.1), for finding motifs in two sequences
a and b: The algorithm finds a substring a’ of @ and a substring b’ of b and an
alignment A between o’ and ¢/, such that the score of A is as least as good as
the score of any other alignment between a substring of a and a substring of
b. In this case, we call A an ‘optimal local alignment’ between a and b.

The Smith-Waterman algorithm works as follows: SMITHWATERMAN (Algo-
rithm 19) computes — just like NEEDLEMANWUNSCH (Algorithm 2) on page 89
—an m X n matrix M of scores, but other than the Needleman-Wunsch algo-
rithm that set M; ; to the score of the optimal alignment between a, ...a; and
by ...b;, the Smith-Waterman algorithm computes instead the optimal score
of any alignment between a suffiz of a; ...a; and a suffiz of by ...b;. Let these
suffixes be a’ and ¥’ for a given 7 and j. Note that @’ or &’ or both could be the
empty string e. If both ' = ' =€, then M, ; = score(e,€) = 0. Otherwise,
M, ; can be computed by recursion (9.6) on page 87. If either i = 0 or j =0,
then obviously M, ; = 0. After filling the complete matrix M, we get an op-
timal local alignment by starting a trace back at a cell M, ; with a maximal
value, which is the score of the optimal local alignment.

Align< String<char> > ali;

appendValue(rows(ali), "aphilologicaltheorem");
appendValue(rows(ali), "bizarreamphibology");

Score<int> scoring(3,-3,-2);

int score = localAlignment(ali, scoring, SmithWaterman());
cout << ali;

Listing 20: Smith-Waterman Algorithm. Finding an optimal local alignment by using
the Smith-Waterman algorithm.

In SeqAn, this algorithm can be used by calling the function 1localAlignment,
see Listing 20 for an example.
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> SMITHWATERMAN(@1 . .. @y, by . .. by)

(M, T) « FILLMATRIXSW (a; . .. an, b1 ... by)
2| let M;; be maximal in M

return TRACEBACKSW (a; ...a;,b1...0;,T)

> FILLMATRIXSW (ay ... ap, by ... by,)

8| return (M,T)

1 M070 —0

2 Mi,0<—0f0ri€{1,...,n}

3| Moy, —0forje{l,...,m}

4| fori+1tondo

5 for j «— 1 to m do
0 = CAS€stop
M;_1 .1+ ala;,b;)) = casegyq

6 Mi,j < Imax Li-1 ( ]) diag
Mi1;+g = CASeyp
Mij1+g = CASeleft

7| L L T, < argmax, casey

> TRACEBACKSW(a1 ... Gy, by ... bj, T)
1| caseT;; =stopori=j=0:

2 return

3| caseT;;=uporj=0:

4 return |TRACEBACKSW(ay...a;—1,b1...0;,T)

5/ caseT;; = left ori=0:

6 return TRACEBACKSW(al ... Qg by ... bj—17 T)

7| case T;; = diag:

8 return TRACEBACKSW(CH e @i—1, by ... bj—17 T)

"

a;

bj

|

127

initialization

break
condition

recursion

Algorithm 19: Smith-Waterman Algorithm. a(a;, b;) is the score for aligning a; and b;,

g is the score for a blank.
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11.1.2 Waterman-Eggert Algorithm

Sometimes also suboptimal local alignments between two sequences aj ... a,,
and by ...b, are of interest. Waterman and Eggert (1987) modified the Smith-
Waterman algorithm such that it computes non-intersecting local alignments
between two sequences. We say that two alignments do not intersect, if they
have no match or mismatch in common.

> WATERMANEGGERT(a; . . . Gy, by . . . by, limit)
(M, T) < FILLMATRIXSW(a; .. .a,, b ... by,)
repeat
let M; ; be the maximal cell in M not jet used
if M;; < limit then break
A — TRACEBACKSW(CLl ooy by bj, T)
Report A
Recompute M and T following A

N O Ot s W N =

Algorithm 20: Waterman-Eggert Algorithm.

WATERMANEGGERT (Algorithm 20) repeatedly calls TRACEBACKSW on dif-
ferent prefixes a;...a; and by ...b; for decreasing M; ;. Each call computes
an alignment of score M ;, and the algorithm stops as soon as the score falls
below a certain limit. To ensure that the computed local alignments do not
intersect, the algorithm modifies M and T after each call of TRACEBACKSW:
Suppose that the algorithm just computed a local alignment A which aligns
the two characters a; and b;. Then subsequent local alignments must not align
a; and b;, so we need to recompute M; ; and T; ; such that casegq, (see lines 6
and 7 in FILLMATRIXSW) is forbidden there. If we change M, ;, then we pos-
sibly also need to change My, M; 1, or M;yq 1. Waterman and Eggert
recalculate only the part of M that need to be updated by enumerating them
from top left to bottom right.

Listing 21 shows how to compute non-intersecting suboptimal alignments in
SeqAn. Each call of function localAlignmentNext performs one step of the
Waterman-Eggert algorithm to compute the next best local alignment.

11.2 Seed Based Motif Search

Finding exact motifs is relatively easy. For example, we will show in Sec-
tion 12.1 how to use index data structures to find all common g-grams be-
tween sequences in linear time. Many efficient heuristics to find high scoring
but inezact local alignments therefore start with such small exact (or at least
highly similar) motifs, so called ‘seeds’, and extend or combine them to get
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Align< String<Dna> > ali;
appendValue(rows(ali), "ataagcgtctcg");
appendValue(rows(ali), "tcatagagttgc");

LocalAlignmentFinder<> finder(ali);
Score<int> scoring(2,-1,-2,0);
while (localAlignment(ali, finder, scoring, 2))
{
cout << "Score=" << getScore(finder) << endl;
cout << ali;

Listing 21: Waterman-Eggert Algorithm. Applying the Waterman-Eggert algorithm
in SeqAn. The algorithm computes non-overlapping local alignments with scores better
than 2.

larger motifs. Probably the most prominent tool of this kind is the ‘Basic Lo-
cal Alignment Search Tool’ (BLAST) (Altschul et al. 1990), which we already
discussed in Section 1.2.2, but there are many other examples like FASTA
(Pearson 1990) or LAGAN (Brudno et al. 2003) (see Chapter 15).

SeqAn offers the class Seed for storing seeds, see Section 9.6.1. In this section,
we will primarily use the specialization SimpleSeed of this class, which is
especially designed for finding good motifs between two sequences (d = 2).
Suppose that we store a seed that corresponds to an alignment A between
the two substrings a, - . . Gright, and befy, - . . byigns, , then beside the ‘borders’
lefty, right,, left;, and right,, SimpleSeed also knows two boundaries lower
and upper for the ‘diagonal’ 7 — i of any two aligned values a; and b; in A,
that is lower < 7 — 1 < upper. The function bandedAlignment can be used to
retrieve an alignment for given a seed. It applies a variant of the Needleman-
Wunsch algorithm (see Section 9.5.1) on ajefr, - - - Gright, and biesr, - - . brigne, that
is ‘banded’ by lower and upper, i.e. it only computes such values of the matrix
M; ; for which j — ¢ lays within these boundaries.

There are two main tasks when processing seeds: Extending seeds to make
them longer, and chaining several seeds together. In Section 11.2.1, we will
describe how to extend seeds in SeqAn. The chaining of seeds to longer motifs
will be the topic of Section 11.2.2. More details about seed based motif search
in SeqAn can also be found in Kemena (2008).

11.2.1 Extending Seeds

Let S be a seed. Then we call another seed £ an extension of S, if for all
i holds left;(€) < left;(S) and right;(S) < right;(£). A good method for
extending seeds should compute an extension £ that scores as high as possible
for a given seed S. SeqAn supports several algorithms for seed extension (see
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Table 17). The function extendSeed extends a single seed while the function
extendSeeds extends all seeds that are stored in a container. The user can
determine the directions a seed will be extended, i.e. to the ‘left’ or to the
‘right’ or both. We will describe in the following only the extension to the
‘right’; the extension to the ‘left’ works similar.

MatchExtend A simple extension algorithm that extends seeds until the first mis-
match occurs.

UngappedXDrop An X-drop extension without gaps. The algorithm extends the seed
until the score falls more than a given value X.

GappedXDrop An X-drop extension variant of UngappedXDrop that also allows gaps
in the extended seed.

Table 17: Seed Extension Algorithms

This simple extension method (see Algorithm 21) extends the seed until the
first mismatch occurs. The algorithm does not create gaps. Listing 22 shows
an example.

SEEDabXcdXefXXX
SEEDabYcdefYYYY

String<char> a = "SEEDabXcdXefXXX";

String<char> b = "SEEDabYcdefYYYY";

Seed<> seed(0, 0, 4); //left=0; length=4
extendSeed(seed, a, b, 1, MatchExtend());

cout << rightPosition(seed, 0) << endl; //output: 6

cout << rightPosition(seed, 1) << endl; //output: 6

Listing 22: Match Extension Example. The seed SEED is extended to the ‘right’ by ab;
then the extension stops since X and Y do not match. The direction of the extension was
selected by setting the fourth argument of extendSeed to 1.

> MATCHEXTEND (ay . .., by ... by, righty, right;)

1| while (ayight, +1 = bright, +1) and

(righty < m) and (right; < n) do
2 righty <« righty +1
3 right; < right; +1

Algorithm 21: Match Extension.

MATCHEXTEND has the disadvantage that a single mismatch stops the exten-
sion immediately, so that subsequent matches are lost. Altschul et al. (1990)
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therefore preferred an extension algorithm called ‘X-drop extension’ that al-
lows some mismatches. An X-drop is a part of an alignment that scores < —X
for a certain value X > 0, where X is called the ‘depth’ of the X-drop. The
X-drop extension stops extending before the alignment ends in an X-drop.
This guarantees that all drops in the extended part of the alignment have
depth < X, thus the complete seed may contain an X-drop (but no 2X-drop),
especially if it was extended into both directions.

SEEDabXcdXe f XXX
SEEDabYecdefYYYY
String<char> a = "SEEDabXcdXefXXX";
String<char> b = "SEEDabYcdefYYYY";
Seed<> seed(0, 0, 4); //left=0; length=4

Score<> scoring(1, -1, -1);

extendSeed(seed, 2, scoring, a, b, 1, UngappedXDrop());
cout << rightPosition(seed, 0) << endl; //output: 9
cout << rightPosition(seed, 1) << endl; //output: 9

Listing 23: Ungapped X-Drop Extension Example. In this example, we set X = 2
(this is the second argument of extendSeed). The seed SEED is extended to the ‘right’
by abXcd and abYcd.

> UNGAPPEDXDROP (ay ... Gy, by ... by, righty, right;, X)

score, best «— 0

1+ 1

while (righty +i < m) and (right; +i < n) do

score «— score +(Arighty +i, Oright; +i)

if score < best —X then break

if score > best then
righty < Tighty +1i }extend
right; <« right; +i the seed
best < score

© 00 N O Ot = W N -

71
else
L L j—4+1

—_ =
- O

—
[\

Algorithm 22: Ungapped X-Drop Extension. The function « returns the score for
aligning two values.

SeqAn supports an ungapped (Algorithm 22) and a gapped (Algorithm 23)
variant of this algorithm. Listing 23 shows an example for ungapped X-drop
extension.
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For the gapped variant, SeqAn implements an algorithm described by Zhang
et al. (2000) that applies dynamic programming similar to the Needleman-
Wunsch algorithm (see Section 9.5.1). GAPPEDXDROP (see Algorithm 23)
computes values M, ; for ¢ > righty) and j > right;, where M, ; is the score of
the optimal alignment between a,ight, +1-..a; and bpgne, 41...0;. The values
M; ; are computed in ascending order of their antidiagonal k = i + j. The
highest score found so far is tracked in best. The algorithm limits the drop
depth by setting all those M; ; to —oo that fall below best —X, which means
that alignments going through M ; will not be continued. Instead, we only
need to compute values M;; with L < ¢ < U, where the bounds L and U are
computed in lines 20 and 21 in a way that all relevant values are computed.
The algorithm stops if either the diagonal n + m was reached, or all values in
the last two antidiagonals £ — 1 and k were assigned to —oo, since in this case
that all further values would also be —oo. The seed is then extended to the
maximum M, ;. Listing 24 shows how to use this algorithm in SeqAn.

SEEDabXcdXefXXX
SEEDabYcd-efYYYY

extendSeed(seed, 2, scoring, a, b, 1, GappedXDrop());
cout << rightPosition(seed, 0) << endl; //output: 12
cout << rightPosition(seed, 1) << endl; //output: 11

Listing 24: Gapped X-Drop Extension Example. The same as in Listing 23 but with
GappedXDrop.

11.2.2 Combining Seeds

In this section we will show how to combine seeds to larger seeds. We dis-
cussed in Section 9.6 how seeds are threaded to get global seed chains by ap-
pending one seed to another. Remember that we can append a seed S; to
another S, if right;,(Si) < left,(S;) for all i € {1,2}. It may also be that
left;(Sk) < left;(S;) < right,(Sk) < right;(S;) for all i € {1,...,d}, then we
say that S; overlaps with S, and the two seeds can be merged. SeqAn sup-
ports some methods for both, appending and merging seeds. In both cases,
the combination of §; and §; is denoted by S;, 0 S;.

Combining seeds is certainly useful only if the score of the resulting motif
exceeds the scores of both individual seeds, so it is sufficient to consider only
neighboring seeds when we are looking for seeds to combine, because seeds that
are too widely separated would hardly achieve high scores. This is advanta-
geous compared to global chaining that requires to find a predecessor for each
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> GAPPEDXDROP (ay ... am, by ... by, righty, right;, X)
k <« righty + right;
best, scorey, «— 0

L «— righty

U « righty +1
while £ <n +m do

k—k+1
L «— max(L, k —n)
U « min(U, m)
for : — L to U do
) —k—1
M1 j-1 + afas, b;)
M;j «— max § M;_1;+g
M;j1+g
if M;; < best —X then
L M;; — —
if M;; > best then
L righty «— 1
right; «— k — 1
scorey, «— max;(M,; j—;)
if score, = score,_1 = —oo then break

best «— max(best, scorey,)
L — mln{Z‘th,Z > —00 or Mifl,kfi > —OO}

| U «— max{i + 1‘Mi,k7i > —00 Or Mi,kfifl > —OO}

133

initalization

compute
M; ; on
antidiago-
nal k

extend the
seed

Algorithm 23: Gapped X-Drop Extension. a(a;,b;) is the score for aligning a; and b;,
g is the score for a blank. We assume M; ; = —oo for all ¢ and j until M; ; is set in line

11.
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limit
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Figure 31: Range of Possible Predecessors. The ‘right end’ of a predecessor Sy, for S;
must be within the white area, which is: (1) ‘left’ from S;, (2) between the two diagonals
in distance bandwidth from the diagonal of the ‘left end’ of S;, and (3) in distance limit
from left,(S;).
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Algorithm 24: Greedy Local Chaining Heuristic.

> LOCALCHAINING(Sy, ..., Sy)
sort Sy, ..., S, in increasing order of right,(S;)
D — {8}
for j — 2 ton do
S — Sj

for each S, € D within the range of S; do

if right,(Si) < right,(S;) — limit then
report motif S,
D «— D\ {S:}
else if weight(S;oS;) > weight(S) then
L L S Sk
if S =S, then
| D—DuU{S;}
else
D «— D\ {S}
| D+« DU {S 9 Sj}
report all motifs € D

find best
‘partner’

S € D for S

The algorithm combines seeds as

long as this benefits the score. Sj o S; is the seed that we get by merging S; and Sk
or appending S; to Si. The constant limit determines the maximal distance between to
seeds that may be combined.
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seed, no matter of its distance. LOCALCHAINING (Algorithm 24) instead con-
siders only seeds S, that are within a certain ‘range’ relative to a given seed S;.
This range is defined by two constants bandwidth and limit as follows: (1) the
diagonal rightdiag(Sy) = righty(Sk) — right,(Sk) of Si’s right border must be
at most bandwidth away from the diagonal leftdiag(S;) = lefto(S;) — left,(S;)
of S;’s left border, i.e. |leftdiag(S;) — rightdiag(Sk)| < bandwidth, and (2)
the distance between the right borders of §; and Sj is below limit, i.e.
| left,(S;) — right,(Sk)| < limit and | lefty(S;) — righty(Sk)| < limit, see Fig-
ure 31. The class SeedSet in SeqAn implements a suitable data structure D.
It stores all processed seeds in a map that allows fast searching for S that
meet condition (1). Seeds that violate condition (2) are removed from D in
line 6.

The application of SeedSet is demonstrated in Section 15.2, see the listings
on page 183. One call of function addSeed implements the inner loop of Al-
gorithm 24. addSeed offers several modes for appending or merging seeds, see
Table 18. If the desired mode for adding S, to the SeedSet is not possible
because it contains no suitable ‘partner’ seed Sy, then addSeed returns false.

Single The seed is just added to the SeedSet.
Merge The added seed is merged with a seed in the SeedSet if this benefits the
score.

SimpleChain The added seed is appended to a seed in the SeedSet if this benefits the
score.

Chaos The added seed is appended to a seed in the SeedSet if this benefits the
score. Both seeds are expanded in a way that the resulting alignment
contains at most one gap. The position of this gap is selected such that
the score is maximized.

Blat The added seed is appended to a seed in the SeedSet if this benefits
the score. The gap between the two seeds is tried to be filled up with
smaller matches.

Table 18: Modes for Adding Seeds using addSeed.

11.3 Multiple Sequence Motifs

So far, we discussed methods for pairwise motif finding. SeqAn also implements
several algorithms to find motifs in d > 2 sequences a', ..., a?, see Table 20.
Since the complexity for searching approximate motifs grows heavily when we
want to find them in more than two sequences, we simplify the problem as
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follows:! (1) the length [ of the wanted motif is given in advance, and (2) we
allow a certain number of mismatches between a motif and its occurrences, but
no inserts or deletes. An occurrence of m = m, ... my; in a string a’ is therefore
a substring aj,. ., ...al,, ; that differs from m only in < k values, and the
occurrence is exact, if they differ in ezactly k values.

00PS ‘one occurrence per sequence’: m is an 00PS motif, if each sequence a', ..., a*

contains exactly one occurrence of m.

OMOPS ‘one ore more occurrence per sequence’: m is an 0MOPS motif, if each sequence

a',..., a® contains at least one occurrence of m.

ZOOPS ‘zero ore one occurrence per sequence’: m is a Z00PS motif, if at least £k out of

k sequences a', . ..,a" contain one occurrence of m (0 < ¢ < 1).
TCM ‘two-component mixture’: m is a TCM motif, if at least £k out of k sequences
al,...,a* contain at least one occurrence of m (0 < & < 1).
occurrences no one more
00PS 0 k 0
OMOPS 0 k
Z00PS <(1-9Ok|>¢k] 0
TCM < 1=k > ¢k

Table 19: Motif Models. The table shows the number of sequences a',...,a* with no,
one, or more occurrence of motif m.

SeqAn offers several alternatives to define the concept ‘motif’, which differ
in the number of required occurrences in the sequences, see Table 19. We
call this the motif/model, and together with the decision whether exact or
non-exact occurrences are to be counted, the motif model defines the kind of
search. The three models 00PS, Z00PS, and TCM were introduced by Bailey
and Elkan (1995), where the latter two depend on a parameter 0 < £ < 1 that
is the minimum fraction of the d sequences that must contain occurrences of
m. Moreover, we implemented a new variant OMOPS (Lim 2007) that resembles
TCM with & = 1.

Motif searching in SeqAn can be accessed via findMotif, which get three
arguments: (1) an instance of the class MotifFinder that specifies the applied
algorithm (Table 20) stores all needed temporary data for processing the search
together with all necessary constants, like the number of allowed errors &, (2)
the sequences a', . . ., a?, and (3) a tag that specifies the motif model (Table 19).
See Listing 25 for an example.

INevertheless, the problem stays NP-hard (Lanctot et al. 1999).
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SeqAn supports two kinds of motif finding algorithms: randomized heuristics
(Projection, EPatternBranching) and exhaustive enumeration algorithms
(PMS1, PMSP). As an example for the former, we will sketch in the following
Projection as an example, and PMSP for the latter.

Projection A heuristic by Buhler and Tompa (2001) that use local sensitive
hashing to get promising input estimates for the EM-algorithm,
see Section 11.3.1.

EPatternBranching This heuristic by Davila, Balla, and Rajasekaran (2006) is an
extension of the ‘Pattern Branching’ algorithm by Price et al.
(2003). It applies local search techniques to optimize motif can-
didates. The current implementation supports only the motif
models 00PS and OMOPS.

PMS1 An enumerating algorithm by Rajasekaran et al. (2005).
PMSP A space-saving variant of PMS1 (Davila et al. 2006), see Sec-
tion 11.3.2.

Table 20: Motif Finding Algorithms. Specializations of MotifFinder.

11.3.1 The Randomized Heuristic Projection

Suppose that an unknown [-mer m was ‘planted’ according to the current
motif model with & or up to k errors at random positions into d random
sequences a', ..., a?, then finding m can be formulated as mazimum likelihood
estimation: ‘Find an estimate for m for which the chance of observing a', . . ., a?
is maximal’. Some tools like MEME (Bailey and Elkan 1994) and Projection
(Buhler and Tompa 2001) apply an ‘expectation-maximization’ algorithm to
identify estimates for m. The EM-algorithm (Dempster et al. 1977) has the
advantage that it can handle incomplete data, e.g. in our case, that we do not
know the actual positions at which the motif was planted into the sequences.
Let the ‘model parameters’ 6, . be estimates of p(“my = ¢”), and define the
‘unknown variables’ Z; ; as:

B {1, if m was planted into a' at position j

1,7 —

0, otherwise

The algorithm optimizes 6, . by repeating two steps:
(1) E-step: We compute the expected values for Z; ; given the current esti-
mates for 05, ., i.e. we get according to Bayes’ theorem:
p(ai\Zm = 1,0)

E(Z; :|a",0) — :
(Zigld',6) > i p(a'|Zi, = 1,0)
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unsigned int const 1
unsigned int const k

4; //length of motif
1; //number of substitutions

String<DnaString> dataset;

appendValue(dataset ,DnaString("ACAGCA")) ;
appendValue(dataset ,DnaString("AGGCAG")) ;
appendValue(dataset,DnaString ("TCAGTC"));

MotifFinder<Dna, PMSP> finder(1l, k, true);
findMotif (finder, dataset, OMOPS());
cout << getMotif(finder) << endl;

Listing 25: Motif Finding Example. The motif model is OMOPS (specified by the third
argument of findMotif) with exact occurrences (specified by true in the third argument
of the finder’s constructor.

(2) M-step: We use the values Z;; from the last E-step to re-estimate
p(“my, = ¢”) such that the likelihood of getting a', ..., a? is maximized.

Dempster, Laird, and Rubin (1977) showed that the model variables 6 of the
EM-algorithm converge to a local maximum for the likelihood of the observed
data. Which local maximum is reached depends on the estimate 6 the algo-
rithm starts.

> PROJECTION(a!, ..., a%, 1, R, limit)

repeat for up to R loop cycles

f « random locality-sensitive hash function
bucket[z] < () for each hash value x

for each [-mer w in a', ..., a? do
L bucket[f(w)] « bucket[f(w)] U {w}
for each x with | bucket|x]| > limit do

generate 0 from bucket|z]

m «— EM-ALGORITHM()

if m complies motif model then

|_ report m

return

© 00~ O Ot s W N

—_
o

—_
—_

Algorithm 25: Projection Algorithm for Motif Finding.

PROJECTION (Algorithm 25) applies locality-sensitive hashing (Indyk and Mot-
wani 1998) to determine promising inputs for the EM-algorithm. A hashing
function f is called ‘locality-sensitive’, if the probability for collisions (i.e.
f(a) = f(b)) between two hashed objects a # b is higher for similar objects
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than for dissimilar objects. Buhler and Tompa used gapped g-gram shapes (see
Section 12.1.1) as hash functions. The similarity between different occurrences
of the motif m is above the expected similarity between random [-grams, hence
if we apply locality-sensitive hashing to all l-grams in a', ..., a? then occur-
rences of m have an above-average probability to collide with other [-grams,
namely with other occurrences of m. In reverse, there is a good chance for
[-mers with many collisions to be occurrences of m, thus those [-mers are good
input candidates 6 for the EM-Algorithm.

> PMSP(al,...,a% 1, k)
1| for j < 0 to length(a') — I do
2 for s — 2 to d do
3 L N® < GET2KNEIGHBORS(a!,a’, [, k, )
4 for each I-gram m with d(m,aj,,...aj,,) =k
do
5 if for each s € {2,...,d} exists w® € N*® with
L(S(m, w®) = k then
6 L report motif m
> GET2KNEIGHBORS(a, b, [, k, j)
N «— 0
2| for i < length(b) — | down to 0 do
5(@1...al,bi+1...bi+l) lf]:O
D,y —6(a;,b;) + (a1, bisy) otherwise
if D; <2k then
L N<—NU{bZ+1bl+l}
6| return N

Algorithm 26: PMSP Algorithm for Motif Finding. Motif model is OMOPS, only exact
occurrences are counted. §(z,y) is the Hamming distance between two strings x and y.

11.3.2 The Enumerating Algorithm PMSP

PMSP is an exhaustive motif search algorithm by Davila et al. (2006). SeqAn
implements PMSP for all motif models; Algorithm 26 shows it for OMOPS and
exact occurrences. OMOPS means, that a motif occurs somewhere in a! with
k errors, so PMSP enumerates all [-grams m with Hamming distance k to a
substring aj,, ...aj,; of a'. If one of these m also occurs in all other sequences
a® for s € {2,...,d}, then m is a motif. The distance between m and an
occurrence w® in a® is k, thus the distance between w® and aj, ... a;,; is < 2k.
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To determine all [-grams in a® that fulfills this condition, GET2KNEIGHBORS
computes their distances to a}ﬂ .. .a}H (line 3). For j > 0, these distances
are computed incrementally from the distances for j — 1.



Chapter 12

Indices

Indices are data structures that store processed data about a sequence or a set
of sequences to facilitate searching in them. For example, indices allow fast
exact pattern matching or exact motif finding. Listing 26 shows for example
how to search an indexed text in SeqAn. SeqAn implements several index data
structures. Table 21 lists the available specializations of the class Index.

Index_QGram A simple hashing table of all (gapped) ¢g-grams of a string or string set,
see Section 12.1.

Index_ESA A suffiz array (Manber and Myers 1990), that can be extended by a
set of additional tables to an enhanced suffix array (Abouelhoda, Kurtz,
and Ohlebusch 2002), see Section 12.2. The index implements iterators
that allow using the data structure like a suffix tree (Weiner 1973), see
Section 12.3.2.

Index_Wotd A lazy suffix tree (Giegerich, Kurtz, and Stoye 1999). The index is
deferred, which means that it is built up during the use.

PizzaChili A wrapper for the index structures from the Pizza & Chili Corpus (Fer-
ragina and Navarro ), e.g. for compressed text indexes.

Table 21: Index Data Structures. Specializations of Index.

Many indices consist of several parts, we say it is a ‘bunch’ of ‘fibers’. An
enhanced suffix array (Index_ESA) for example has at least the fiber ESA_Text
that is the indexed text and the fiber ESA_SA that contains the suffix table.
More fibers like the ‘longest common prefix’-table (fiber ESA_LCP) can be cre-
ated when needed. The types of fibers can be determined by the metafunction
Fiber, and the function getFibre is used for accessing the fibers of an index.
String indices in SeqAn are in general capable of working on multiple sequences
a',...,a? at once. This could be done by building up the index for the con-
catenated string a'...a?, e.g. by using the concatenator of a StringSet, see

Section 8.8.

141
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Index< String<char>, Index_ESA > index_esa("tobeornottobe");
Finder< Index< String<char> > > finder_esa(index_esa);
while (find(finder_esa, "be"))
{

cout << position(finder_esa) << endl;

3

Listing 26: Exact Searching in an Index. The program prints out the positions of all
occurrences of "be" in "tobeornottobe", i.e. 2 and 11.

12.1 ¢-Gram Indices

12.1.1 Shapes

A g-gram (in the narrow sense) is a string of length ¢, and ‘the’ g-grams of a text
a=ay...a, are the n—q+1 length-g substrings of this text. We also call this
kind of ¢g-gram ‘ungapped’ since it consists of g successive values a;y1 ... aj1q. A
gapped q-gram on the other hand is a subsequence a; 1, a;s, - . . a;1s, of a, where
s = (S1,...,54) is an ordered set of positions s; =1 < 59 < -+ < 5,. We call
s a shape, and we define weight(s) = ¢ and span(s) = s,. Ungapped g¢-grams
are therefore a special case of gapped g-grams with the shape s = (1,...,q).

SimpleShape An ungapped shape. The length ¢ can be set at run time by calling
the function resize.

UngappedShape  An ungapped shape of fixed length, i.e. the length is specified at
compile time as a template argument constant.

GappedShape A generic gapped shape that can be changed at run time. It is defined
for example by calling the function stringToShape that translates a
string of characters ‘1’ (relevant position) and ‘0’ (irrelevant gap
position) into a shape, i.e. the string "11100101" would be translated
into the shape s = (1,2, 3,6, 8).

HardwiredShape This subspecialization of GappedShape stores a gapped shape that
is defined at compile time. The shape (si,s2,...,s4) is encoded
in a list of the ¢ — 1 differences sy — 51,83 — s2,...,8¢ — S¢4—1,
which are specified as template argument constants of the tag class
HardwiredShape. For example, the shape s = (1,2,3,6,8) would be
encoded as HardwiredShape<1, 1, 3, 2>.

Table 22: Shape Specializations.

SeqAn offers several alternative data structures for storing gapped or ungapped
shapes, see Table 22 and Figure 8 on page 51. The main purpose of these
shape classes is to compute hash values: Given a shape s = (s1,...,s,), then
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we define the hash value of a g-gram as,, ..., as, to be !

q
hash(as, .. .as,) = Z ord(as, )2
i=1

In other words, hash regards ord(as,) ... ord(a,,) as a number of base [3| with
q digits. Obviously hash(a') # hash(a?) for two different g-grams a' # a?.
The specializations of Shape differ in the performance of computing hash val-
ues, see Figure 9 on page 51. For example, the ‘ungapped’ specializations are
faster than their ‘gapped’ counterparts if we need to compute the hash values
of all g-grams in a text, since the hash value of the i-th ungapped ¢-gram can
be incrementally computed in constant time from the hash value of the ¢ — 1-th
ungapped ¢-gram by:

hash(ait1 . .. Girq) = hash(a; ... Giyq-1)q — a;| X7 + a4

Moreover, ‘fixed’ variants are faster than their ‘variable’ counterparts, because
the the compiler can optimize the code better if the shape is known at compile
time.

12.1.2 ¢-Gram Index Construction

Let s = (s1,...,5,) be a shape. A ¢g-gram index allows to look up in constant
time all occurrences of a given ¢-gram b in a text a = ay...a,. The index
consists of two tables (see Figure 32): (1) The position table P that enumerates
the starting positions j € {0,...,n — s,} of all g-grams in the text ordered by
hashgs(ajys, - .- Gjts,), and (2) the directory table D that stores for each value
k€ {0,...,]X]?} the number of g-grams b in the text with hashs(b) < k. With
these two tables, it is easy to look up the occurrences of b in a at the positions
P[Dlhashy(b)]], ..., P[D[hash(b) + 1] — 1].

Both tables can be built up together in time O(n) using count sort (Algo-
rithm 27). COUNTSORT sorts the positions py, ..., p, by the keys ki,... &k,
in three steps: (1) For each k£ € {0,...,Z — 1} it counts in D the number
of k; = k, (2) the counts in D are summed up such that each D[k| contains
the number of k; < k — 1, and (3) the p; are sorted into P guided by D.
The sorting is stable: If k; = k; for ¢ < j, then p; is sorted before p; into D.
BUILDQGRAMINDEX calls COUNTSORT using the hash values of all ¢g-grams
as keys. This algorithm can be implemented ‘lightweight’, i.e. only the space
of D and P is needed, by computing the hash values ‘on the fly’ when they
are needed in the steps (1) and (3).

SeqAn also supports building up P without D, which is especially useful if
|X|? gets too large. The function createQGramIndexSAOnly applies the sort
algorithm from the standard C++ library.

'Remember that ord returns for each value € ¥ a unique integer € {0,...,|%| — 1}, see
Section 7.4.
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find CT
0 7 16
AA AC AG AT CA CC GA GC GG GT TA TC TG
Directory 8 12(13|13|14(14|15(18 20|20|

lVQﬂ\V“QQV/\\Q

Positions |3 14| 4 115[19] 8|2 7] 0 5 1016]13[18[12] 1 6 9[11/17] |

=\

Text [C[T|C[A[A|CITICIAIT|CIT|G[G|A[A|CITIG|A[G]
0 5 10 16 20

Figure 32: g-gram Index. In this example, the 2-gram index of "CTCAACTCATCTGGAACTGAG"
is searched for all occurrences of "CT". We first compute hash("CT") = 7, and then we
find in the ‘Positions’ table at P[D[7]],..., P[D[8] — 1] the positions 0, 5, 10, and 16.
(D is the ‘Directory’ table).

> BUILDQGRAMINDEX (ay ... ap, (S1,...,5,))
P—(0,1,2...,n—s,) P = positions
hi < hash(ys, ... aiys,) fori € P
K — (ho,. .., hn—s,) K = keys
return COUNTSORT (P, K, |X]9)

= W N =

> COUNTSORT ((p1, .-, 0m)s (k1 -, km), Z)

D[j] < 0 for j €{0,...,Z}

for j — 1 tom do count keys k;

count «— m

for j — Z down to 1 do sum up
count «— count —D/j] counters

L DJj] < count

for j — 1 tom do
PIDIk; + 1]] — p,

L D[kj+ 1)« D[k; + 1] +1

return (P, D)

sort positions
pj into P

© 00 N O Ot k= W N -

— =
- O

Algorithm 27: Count Sort Algorithm for ¢-Gram Index Construction. The shape
{81,...,8¢} is used for indexing a text ai ...a, of alphabet X. The algorithm returns
both the position table P and the directory table D. It is assumed that n > s, and
|27 > 2.
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QGram_Text The indexed text.
QGram_SA The position table that stores the positions P of the g-gram occurrences.

QGram_Dir The directory table D that allow to look up where QGram_SA stores
positions of occurrences of a given g-gram.

QGram_Shape The shape of the g-gram that specifies, which ¢ values of a string are
used to compute the hash value.

Table 23: g-gram Index Fibers.

12.2 Suffix Arrays

Let a = aj...a, be a text and ¥/ = a;jy...a, the j-th suffix of a. The
suffix array S of a is a table that stores all positions j € {0,...,n — 1} in
the lexicographical order <., of the /. Considering that given the text a the
suffix ¥/ is completely determined by the position j, we simplifying say that
‘S contains the suffixes »/’. Figure 33 shows an example. Manber and Myers
introduced this data structure in 1990.

0 10
Text [C[T[CIAJAICITICIA[TIC]

0

AACTCATC
ACTCATC

ATC

C

CAACTCATC
CATC
CTCAACTCATC
CTCATC

TC
TCAACTCATC
10 TCATC

Suffix Array LCP Table Sorted Suffixes

o|Nvjo|u|o|wN|S|o|s|w
WIN|[O|H_IFIN|FR|(O|R|F

10

Figure 33: Suffix Array and LCP Table. The suffix array contains the begin positions of
the lexicographically sorted suffixes of "CTCAACTCATC". The Lcp table stores the length
of the longest common prefixes between two neighbouring suffixes, see Section 12.3.1.

12.2.1 Suffix Array Construction

SeqAn implements several algorithms for constructing suffix arrays, see Ta-
ble 24. Listing 27 shows an example of how to construct a suffix array in
SeqAn by calling the function createSuffixArray.

In the following, we will discuss SKEW (see Algorithm 28, 29), a linear time
algorithm by Kérkkiinen and Sanders (2003, revised in 2006), which is used in
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String<char> text = "hello world!";
String<unsigned int> sa;

resize(sa, length(text));
createSuffixArray(sa, text, Skew7());

Listing 27: Using createSuffixArray to Build Up a Suffix Array. In this example,
the applied algorithm is Skew7.

SeqAn as default method for suffix array construction, since it is fast, generic,
and it is also excellent for building up suffix arrays on external memory (De-
mentiev et al. 2008). SKEW bases on the idea of merge sort:  The set of
suffixes is divided in two parts S'? and S°, each part is sorted separately (by
SORTS12 and SORTSO0), and then they are merged together by MERGE.

We define for z € {0, 1,2} the sets S* = {j € S|j = z + 3i for integer i}, and
S12 = S1uS2. SORTS12 bases on the following observation: Instead of sorting
every third suffix of a, we can also sort every suffix of a string ¢, where each
character of ¢ consists of three successive characters of a. SORTS12 constructs
values k7 for j € S2 that conserve the order of first three characters of the
suffixes &’. Since we want also consider suffixes with length < 3, we define
in line 2 of Algorithm 28 the values a,,1 = ap12 = a,43 = $, where $ is a
character not used in a for which holds ord($) < ord(c) for all ¢ € X.2 If
all these k7 are different, then sorting the &7 already sorts the b°. Otherwise
(lines 6 to 15), SORTS12 applies a recursive call of SKEW to sort the suffixes
of a string t = t'¢?, where t! and ¢? correspond to the suffixes with positions
in S and S?, respectively. For minimizing the alphabet size of ¢, SORTS12
previously computes values 7'(k’) by enumerating the k7, such that the T'(k’)
conserve the order of the &k’ (lines 6 to 9). Hence the alphabet size of ¢ is
bounded by the length of the input sequence n. Note that appending 2 to ¢!
does not affect the mutual order of the suffixes in ¢!, since the last character
in ¢! is unique in ¢ by construction. After that (in lines 13 to 15), the values
in S12 are translated from positions in ¢ into positions in a.

SORTO (Algorithm 29) sort the suffixes of a at positions in SY. Obviously
bt <lex b2 for two pOSitiOIIS jl,jg c SO, if either Aj 41 < Qjyt1, O Ajy+1 = Ayt
and v <., 2L The last condition was already checked in SORTS12, since
g1+ 1,50 +1 € St C 82 Therefore SORTO first sorts the positions j € S°
according to the occurrences of j + 1 in S'? (lines 1 to 5), and then it uses
‘stable sorting’ to sort them again by a;; (line 7).

MERGE scans both S° and S'2) and in each step it appends either z = S°[i]
or y = S'[j] to S, depending on the lexicographical order between b* and Y.
If y € S, then both . +1 € S'2 and y+ 1 € S'2. Hence b <., b9 if x4+ 1

2For the implementation of SKEW in SeqAn, we modified the algorithm such that it does
not require a special character $ (Weese 2006).
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Skew3 A linear time algorithm by Kérkkdinen and Sanders (2003), which
applies a merge sort approach, where two thirds of the suffixes are
recursively sorted, see SKEW, Algorithm 28, 29.

Skew7 A variant of Skew3 that recursively sorts three seventh (instead of
two thirds) of the suffixes (Weese 2006). This reduces the number
of recursive calls, so Skew?7 is slightly faster than Skew3.

ManberMyers The algorithm by Manber and Myers (1990) that bases on ‘pre-
fix doubling’. It is quite slow in practice, though the run time is
O(nlogn).

LarssonSadakane The algorithm by Larsson and Sadakane (2007).

SAQSort If this tag is specified, the suffixes are sorted using the function
sort of the standard C++ library. This is not recommended when
a repetitive text is indexed.

Table 24: Suffix Array Construction Algorithms.

comes before y + 1 in S'? that is if I(xz +1) < I(y + 1), where I is the inverse
suffiz array of S™. Therefore b” <jop WY if Gyi1 <jex Qyi1 OF Gyr1 = ayyq and
I(x+1) < I(y+1). If on the other hand y € S?, then z+2,y+2 € S'2, hence
b <pew WY If Gui10p42 <iew Qyi1Qyio OF Apy1Guio = Qyi1Gyio and (x4 2) <
I(y +2).

12.2.2 Searching in Suffix Arrays

Let S be the suffix array of a text t = ¢,...t,, p = p1...pn a pattern, and
s =lg[jj41- - - tn the suffix in S at j € {0,...,n — 1}. We define

L= max{j ‘ s' <jen p for alli<j}
R = max{j ‘ s* <jep p for alli<j}

Obviously L < R, and if L < R, then p occurs in t at positions S[L], S[L +
1],...,S[R —1], and only there. SEARCHSA (Algorithm 30) shows how L can
be found using binary searches. In each pass of the main loop, the interval
[left, ..., right] is cut into halves at the position mid. If p <i, s™9, then
L < mid and therefore L € [left, ..., mid], otherwise L € [mid 41, ..., right].
The algorithm stops if the interval only contains L = left = right.

For computing R, we need to change the condition at line 11 to

i <nand (j >mor p; <. ti),

which is equivalent to p <, s™¢. If this condition is fulfilled, then R €
[left, ..., mid], otherwise R € [mid +1,..., right].
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> SKEW (a =ajy ...ay,)
if n =1 then return (0)
else
S'2 « SORTS12(a)
{ SY « SORTSO0(a, S*?)
return MERGE(a, S'2, S?)

> SORTS12 (a)

S12 (1,2,4,5,...,3i+1,3i+2,...) positions < n
kj — hash(aj+1aj+2aj+2) fOI'j € 512

Ko (Y k2 RN B R B2

(S12, D) « COUNTSORT(S'?, K, |%J?)

if k' = k/ for any two i # j then

E—0
for j — 0to |X]*—1do
LT[j]<—k;
if D[j| # D[j+ 1] then k — k+1

tY— Tk TKY TIET] ... T[t3 ] ...

t2 «— Tk T[KP] T[K®] ... T[¢3+2) ...

S12 — SKEW(t'1?)

for j — 0 to |S'?| — 1 do

L if S'2[j] < |t!| then S'2[j] « 3S2[j] + 1
L else S™2[j] « 3(S™*[j] — [t']) + 2

remove from S'? all entries > n

return S

sort 3-grams

reduce
alphabet size

-

recursion

transform
positions

Algorithm 28: Skew Algorithm for Suffix Array Construction (part one). In line 2,
we define a,11 = any2 = anys = $. SORTSO and MERGE are defined in Algorithm 29,
COUNTSORT in Algorithm 27.
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Algorithm 29:

> SORTSO (a, S'?)
m <« 0
for j — 0 to |[S?| — 1 do

if S2[j] = 3i + 1 for an integer ¢ then
L SO[m)] «— 3i
m <+ m+1
k7 «— ord(agop;11) for j € {0,...,m
(S° D) « CouNTSORT (S, (k°,
return S°

— 1}
SL AN M)

> MERGE (a, S'2, 5%)

for j «— 0 to |[S'?| — 1 do I[S™?[j]] « i
1,7 <0

while 1 + j < n do

if 1 > |S°| then select «— false

else if j > |S'?| then select < true
else select «— SELECT (S°[i], S*?[j],a, I)
if select then

Sli+ 5] < S°i]

1—1+1

else

Sli+ ] < 5™

L L je=j+1

return S

> SELECT (z,y,a,I)

if y = 3¢+ 1 for an integer ¢ then

| return a, 1 I[x + 1] <jer ay1 Iy + 1]

else

L return a, ia,21[2 + 2] <jex ayi1ay121[y + 2]

COUNTSORT is defined in Algorithm 27.
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sort SY by S1

stable resort
SY by a

I = inverse S'2

compare SO
and S12(j

}append SO[4]
to S

} append S12[j]
to S

Skew Algorithm for Suffix Array Construction (part two).
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SEARCHSA computes two values [ and r for which the following invariants
hold: (1) There is an x < left such that p and s share the first [ — 1 values,
and (2) p and s™" share the first 7 — 1 values. Therefore each suffix s™
with x < mid < right share at least the first min(l,7) — 1 with p, so these
values need no further examination when want to compare p and s™¢ (see
lines 6 to 10). This speeds up the search, although the wort case runtime is
still Q(mlogn).

> SEARCHSA (p=p1...pm,t =1t1...1,,5)
1 left <0
2| right <—n
3| L,r—1
4| while left < right do
5 mid — Lleft—l—QrightJ
6 J < min(l, )
7 i« S[mid] + j
o ‘ compare
8 whll'e Ji g m and ¢ < n and p; = t; do p and s™i4
9 J—J+1
10 1—1+1
11 if (j > m) or (z <n and p; <j, t;) then e
12 right <— mad g
. go left
13 <)
14 else mid.
15 left «<— mid +1 p >l_” s
16 | l— go right
17| return left

Algorithm 30: Searching a Suffix Array. S is the suffix array of the text ¢, and p
the pattern that is searched in ¢. The algorithm returns L; it would compute R if the
condition in line 11 is changed to ‘¢ < n and (j > m or p; <ies t;)’. The pattern p occurs
in ¢t at positions S[L], S[L +1],...,S[R —1].

12.3 Enhanced Suffix Arrays

The suffix array can be extended to the very powerful data structure ‘enhanced
suffiz array’ by adding some further tables, see Table 25. We will discuss the
Lcp table (ESA_LCP) in Section 12.3.1. Together with the suffix table, the
LCP table allows a depth-first search in the suffiz tree of the text, and we will
describe applications for it in Section 12.3.2.
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ESA_Text The indexed text.

ESA_SA The suffiz array that contains the positions of the lexicographical or-
dered suffixes of the indexed text ESA_Text, see Section 12.2.

ESA_LCP A table that contains the lengths of the longest common substrings
between adjacent suffixes in the suffix array ESA_SA, see Section 12.3.1.

ESA_ChildTab A table that contains all structural information about the suffiz tree
that is missing in ESA_SA and ESA_LCP (Abouelhoda et al. 2002).

ESA_BWT The Burrows-Wheeler transformation of the indexed text ESA_Text
(Burrows and Wheeler 1994). It contains the preceding character a;_;
to each suffix a; ...a, in ESA_SA.

Table 25: Enhanced Suffix Array Fibers.

12.3.1 LCP Table

Let S be the suffix array of the text a = a;...a, and V¥ = @41 ... Gy the
j-th suffix of a. The LCP table L stores in L[k| the length of the longest
common prefiz between the suffix b°*) and its predecessor b5*~1 in S, i.e.
L[k] = lep(b5F=1 b5 for k € {1,...,n — 1}, where

lep(xy .o xpyyr - oy) =max{i |z ...2; =y1... ¥}

The L¢P table can be constructed in linear time (Kasai et al. 2001) due to the
following observation: If ' <;., / and lcp(b', /) = h > 0, then b <., O/ 1!
and lep(b, W) = h — 1. Any common prefix between ™! and b is
also a prefix of the predecessor of ¥*! in S, thus the entry in L for t/*! is
> h — 1. BUILDLCPTAB (Algorithm 31) enumerates the suffixes ¢°,... b"!
and computes for each & its entry in L. The inverse suffiz array I of S is used
to determine the predecessor b* = b'U1=1 of ¥/ in S. Suppose that the entry in
L for b® is h, then the entry for ¢/ in L is at least h — 1, so we can save h — 1
comparisons in line 6. Since h < n — 1, the inner loop is executed at most 2n
times, and the runtime of BUILDLCPTAB is therefore O(n).

SeqAn implements an ‘in-place’ variant of this algorithm that does not need
extra space for storing the inverse suffix array I (Weese 2006).

12.3.2 Suffix Trees Iterators

A suffiz tree (Weiner 1973) 7 of a text a = a; ... a,, is the unique rooted tree
with the minimum number of vertices that has the following characteristics (see
Figure 34): Let r = vy,vs,...,v; = v be the path in 7 from the root vertex
r to a vertex v, then all edges from v;_; to v; are labeled with non-empty
strings s~1?, and the concatenated path label s'?s*3 ... s*"1F is a substring
of a; ...a,$, where $ is a special ‘end-of-string’ character that does not occur

i—1,
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> BUILDLCPTAB (a; . ..ay, S)

for j «— 0ton—1do I[S[j]] —
h 0
for j«—0ton—1do

if I[j] # 0 then

i — S[I[j] —1]

while i+ h < n and j+h <n and

L Aithel = Gjypy1 dO
h—h+1

L[I[j]] < h

if h>0then h«<— h—1

10| return L

I = inverse S

compare
Sj[ﬂ and Sl[j]_l

Algorithm 31: Construction of the LCP Table. S is the suffix array of a; ... a,.

anywhere in a. We define s(v) to be the path label of v without the a trailing
$ character. 7 has exactly n leaves [, which are labeled with the numbers
i € {0,...,n — 1}, such that s(I*) = a;;;...a,, i.e. the path labels of the
leaves are the suffixes of the text. For any two leaves I* and I/ exists a vertex
v on the paths to [* and I/ such that s(v) is the longest common prefix of s(I°)

and s(l7).

0 10
Text [C[T[C[A[AIC]TICIA[TIC]

Figure 34: Suffix Tree. The suffix tree of "CTCAACTCATC".

The suffix tree is a versatile index data structure with many applications,
see Gusfield (1997), chapters 5 to 9. SeqAn ‘emulates’ suffix trees by the
more space efficient enhanced suffix array. An enhanced suffix array that
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consists of the suffix table ESA_SA, the LcP table ESA_LCP, and the ‘child table’
ESA_ChildTab is capable to replace the suffix tree in all of its applications
(Abouelhoda et al. 2004). Algorithm 32 demonstrates that we only need
suffix table S and LcP table L to emulate a bottom-up traversal of a suffix tree
T, that is to enumerate all vertices in 7 in a way that the children appear
earlier than their parents. BOTTOMUPTRAVERSAL reports for each vertex
v in 7 the set of its leaves. From the construction of 7 follows, that the
path labels of these leaves are the suffixes that share the common prefix s(v),
hence the labels of the leaves are listed consecutively in the suffix array, e.g.
in S[l],...,S[r — 1], and all entries L[l + 1],..., L[r — 1] > |s(v)|, whereas
L[l], L[r] < |s(v)|. BOTTOMUPTRAVERSAL therefore scans L for consecutive
runs of values > m € L, and this way, it finds all inner vertices of 7.

> BOTTOMUPTRAVERSAL (S, L)
1| for each (l,r,m) reported by TRAVERSE (S, L,0,0) do
2| L report vertex in 7 with leaves S[I], ..., S[r — 1]

> TRAVERSE (S, L, [, m)
r—Il+1
while » < n do
if L[r] < m then break
else if L[r] > m then
| 7« TRAVERSE (S, L,7, L[r])
elser «—r—+1
report (I, r,m)
return r

0 J O Ut = W N

Algorithm 32: Emulated Bottom-up Traversal of a Suffix Tree. S is the suffix array
and L the LcP table of a length-n text. A vertex of the suffix tree is represented by the
set of its leaves. The last reported vertex is the root that covers all leaves of the tree.

SeqAn supports several iterators that emulate a traversal of a suffix tree, see
Table 26. We will explain how these iterators work for the example of the
SuperMaxRepeats iterator specialization, that computes all supermazimal re-
peats of the indexed text a, see Listing 28 for a code example. A repeat is a
substring that occurs at least twice in the text, and it is supermaximal, if none
of its occurrences is a substring of any other repeat. Let a be a text and 7
the suffix tree of a, then for each supermaximal repeat w in a exists a vertex
v in 7, such that s(v) = w. Now let v be any inner vertex of the suffix tree
7T of a, and let I C {0,...,n — 1} be the set of occurrences of s(v) in a, that
is 5(v) = @ip1...Gip|sy for all 2 € 1. Then |I| > 2, and if for all 4,5 € I
holds (1) a; # a;, and (2) @it (s@w)|+1 F Gj+|s(w)|+1, then s(v) is a supermaximal
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repeat. This suggests the simple Algorithm 33 for finding all supermaximal
repeats in a (Abouelhoda et al. 2002). SUPERMAXIMALREPEATS enumerate
all inner vertices v in 7 and reports each v that fulfills both conditions (1) and
(2). Note that we can check these conditions in O(|%]).

> SUPERMAXIMALREPEATS (a; . ..a,,S, L)

for each (l,r,m) reported by TRAVERSE (S, L, 0,0) do
2 if r — [ > 2 then

3 if for each i,7 € {l,...,r — 1} holds:

(1) asy) # asy) and

(2) asfijtm+1 # as(jjym+1 then
4 L report supermaximal repeat As[)+1 - - - AS[]+m

[t

Algorithm 33: Finding All Supermaximal Repeats in a Text. S is the suffix array
and L the Lcp table of the length-n text a. In line 3, we define ag # ¢ and a,4+1 # ¢ for
each value ¢ € X.

String<char> text = "How many wood would a woodchuck chuck.";
typedef Index< String<char> > TIndex;
TIndex idx(text);

Iterator<TMyIndex, SuperMaxRepeats>::Type it(idx, 3);
while (!atEnd(it))

{
for (unsigned int i=0; i < countOccurrences(it); ++i)
{
cout << getOccurrences(it)[i] << ",";
}

cout << repLength(it) << ", ";
cout << representative(it) << endl;
++it;

Listing 28: Searching Supermaximal Repeats. This example finds all supermaximal
repeats of length > 3 in a text. For each supermaximal repeat, the program prints out
the positions of its occurrences (getOccurrences), the length of the repeat (repLength),
and the repeat string (representative).
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| MaxRepeats |

| ParentLinks

| SuperMaxRepeats || MultiMEMs |

BottomUp

MaxRepeats

SuperMaxRepeats

MUMs

MultiMEMs

TopDown

ParentLinks

Generic bottom-up iterator. It enumerates the vertices of the ‘em-
ulated’ suffix tree during a post-order depth-first-search, see Algo-
rithm 32.

A bottom-up iterator that enumerates all pairs of repeat occur-
rences that cannot be extended to the left or to the right.

A bottom-up iterator that enumerates all supermaximal repeats,
see Algorithm 33.

A bottom-up iterator that enumerates maximal unique matches
(MUMs) between two texts, i.e. all substrings that occur exactly
once in both texts and that cannot be extended to the left or right.

Like MUMs, but for more than two texts.

An iterator that allows to go further to any child of the current
vertex. For this iterator, the child table ESA_ChildTab is required.

Like TopDown but with the additional option to move from the cur-
rent vertex to its parent. The iterator allows therefore any walk up
and down through the ‘emulated’ suffix tree. It requires the child
table ESA_ChildTab

Table 26: Hierarchy of Suffix Tree Iterators.
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Chapter 13

Graphs

A graph G consists of a set V' of vertices and a set £ C V xV of edges between
the vertices. G is called undirected, if for each edge e = (v,u) € E also the
reverse (u,v) € E, otherwise G is directed. For an edge (v,u) of a directed
graph we say that it ‘goes from v to w’, and that the vertices v and wu are
‘adjacent’.

Graphs are very common in computer science, and they have also many appli-
cations in sequence analysis, for example automata (Section 13.1) or alignment
graphs (Section 13.2). Although SeqAn is no declared graph library like the
Boost Graph Library (Siek et al. 2002) or LEDA (Mehlhorn and Néher 1999),
it offers a variety of graph types and algorithms. Graph data structures in
SeqAn are implemented as specializations of the class Graph, see Table 27.
Functions like addVertex, removeVertex, addEdge, or removeEdge can be
used to add or remove vertices and edges. Each vertex and each edge in a
graph is identified by a so called ‘descriptor’. The usual descriptor type for
vertices is unsigned int, it can be determined by calling the metafunction
VertexDescriptor. The metafunction EdgeDescriptor returns the descriptor
type for edges, which is usually a pointer to the data structure that holds
information about the edge. The following example shows how to build up a
simple graph:

typedef Graph< Directed<> > TGraph;
typedef VertexDescriptor<TGraph>::Type TVertexDescriptor;
typedef EdgeDescriptor<TGraph>::Type TEdgeDescriptor;

TGraph g;

TVertexDescriptor v = addVertex(g);
TVertexDescriptor u = addVertex(g);
TEdgeDescriptor e = addEdge(g, v, u);

Auxiliary information about vertices and edges like ‘vertex colors’ or ‘edge
labels’ can be stored in property maps. Any container can be used as prop-

157
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Directed Undirected Tree

| Gle

Automaton WordGraph Alignment

Directed A general purpose directed graph. It stores for each vertex v € V an
‘adjacency list’ of all vertices u € V' with (v,u) € E.

Undirected A general purpose undirected graph. As for Directed, the edges are
stored in an adjacency list. Functions like addEdge for inserting or
removeEdge for removing edges always affect both edges (v,u) and its
reverse (u,v).

Tree One vertex of this directed graph is marked as ‘root’. A tree can be built
up ‘from the root to the leaves’ by calling the function addChild.

Automaton A graph with character labeled edges that can be used to scan sequences,
see Section 13.1.

WordGraph A subspecialization of Automaton that labels the edges with sequences
instead of single characters.

Alignment  Alignment graphs are a very flexible way for storing alignments between
two or more sequences, see Section 13.2.

Hmm This graph type is used to store hidden Markov models (HMMs).

Table 27: Graph Data Structures. Specializations of the class Graph.
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erty map; for example the following program stores an integer distance value
associated to the edge e in the graph g in a String<int> object:

String<int> distances;
resizeEdgeMap(g, distances);
assignProperty(distances, e, 100);
cout << getProperty(distances, e);

There are several iterators in SeqAn for traversing vertices or edges, and to
traverse graphs, see Table 28. This is demonstrated by the following example
program that enumerates the vertices of the graph g and prints out their
descriptors:

typedef Iterator<TGraph, Adjacencylterator>::Type TAdjacencylterator;
for (TAdjacencylterator it(g); !atEnd(it) ;goNext(it))

{
std::cout << *it << ",";
}
Vertex Iterators
VertexIterator Enumerates all vertices of a graph in increasing order of their

descriptor.
AdjacencyIterator Enumerates for a vertex v all vertices u such that (v,u) € E.

DfsPreorder Starting from a given vertex (e.g. the root in case of a Tree
or Automaton), this iterator enumerates all reachable vertices in
depth-first-search ordering.

BfsIterator Starting from a given vertex (e.g. the root in case of a Tree
or Automaton), this iterator enumerates all reachable vertices in
breadth-first-search ordering.

Edge Iterators

EdgeIterator Enumerates all edges of a graph.

OutEdgelterator Enumerates for a vertex v all edges (v,u) € E.

Table 28: Graph Iterators. These tags are used as template arguments for the Iterator
metafunction to select the iterator type for a Graph object.

SeqAn implements a variety of standard algorithms on graphs, see Table 29,
most of them are described in Cormen et al. (2001). For lack of space we
will focus on algorithms especially for automata (Section 13.1) and alignment
graphs (Section 13.2).
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Searching Breadth-first-search: breadth_first_search.
Depth-first-search: depth_first_search.

(Both can also be done by iterators, see Table 28)

Topological Sort topological_sort.
Components strongly_connected_components.
Shortest Path Single-source shortest path problem: dag_shortest_path,

dijkstra, bellman_ford_algorithm
All-pairs shortest path problem: floyd_warshall.

Minimum Spanning Tree prims_algorithm, kruskals_algorithm
Maximum Flow ford_fulkerson.

Transitive Closure transitive_closure.

Table 29: Overview of Common Graph Algorithms in SeqAn. We omit here algo-
rithms especially designed for automata (see Section 13.1) and alignment graphs (see
Section 13.2).

13.1 Automata

The specialization Automaton of Graph serves the purpose of storing determin-
istic finite automata (dfa). A dfa G is a directed graph that allows multiple
edges (u,v) between two vertices v and v. The edges are labeled with char-
acters such that two different edges (u,v) and (u,v’) going out from the same
vertex u have different labels. A certain vertex called the ‘root’ can be used as
a starting point for a run through the automaton guided by a coincident scan
through a sequence: Let r = v, v, ..., v, = v be a path p in G, and let st~
be the label of the edge from v;_; to v;, then we call s(p) = sh2s23 .. g1+
the path label of p. By definition, deterministic automata are constructed such
that s(p') # s(p?) for two different paths p' and p? both starting in the root.
Let a = ay...a, be a string, then we say that a graph G scans a, if there
is a path p starting from the root in G with s(p) = a. If G scans a, than it
obviously also scans all prefixes a; .. .a; of a. Finding the maximal prefix that
is scanned by a given graph is part of pattern matching algorithms like BFAM
(Section 10.1.4) or MULTIBFAM (Section 10.2.2), and it can also be done in
SeqAn by calling the function parseString.

Note that Graph objects do not store a set of ‘accept states’ as it is usually
supposed in the literature about automata theory (e.g. Hopcroft and Ullman,
1990). If accept states are needed, then we can use a property map of bool to
store for each vertex whether it is accepting or not.

In the following, we will discuss two special kinds of automata in more detail,
namely tries (Section 13.1.1) and factor oracles (Section 13.1.2).
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13.1.1 Tries

A dfa is called a ‘trie’, if it is also a tree, i.e. if the root has no incoming edges
and there is for each vertex u a unique path from the root to u, see Figure 35.

-

!
II

T C

i

Figure 35: Trie. The trie of the sequences "ACGGAT", "ACTTAAA", "ACTTAC", "CGCC",
"TAACTTA", and "TAAGAC".

>

‘“The’ trie of a set of sequences a', ..., a? is the unique minimal trie that scans
all sequences a’. In SeqAn, the function createTrie implements the simple
algorithm BUILDTRIE (Algorithm 34) for building up ‘the’ trie for a given
set of sequences. This takes O(n) time and space, where n is the sum of the
sequence lengths.

> BUILDTRIE (a',d?, ..., a%)

G « graph that only contains the root r
for i+ 1toddo

n' « length of o’

k — max{j < n' |G scans the prefix a} ...a}}

if £ < n’ then add a' to G
L v < the vertex in G with s(v) =d}...a}

append to v a new branch with labels a, ... a

N OOt s W N =

1
ni

Algorithm 34: Trie Construction. The algorithm builds up the trie of the sequences

a',a?,...,a%.

The suffiz trie of a sequence a = ay...a, is the trie of all suffixes
a;...a,. A suffix trie of a scans exactly the substrings of a. The function
createSuffixTrie can be used to construct suffix tries.
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13.1.2 Factor Oracles

Suffix tries for sequences a', ..., a? of total length n have worst case size Q(n?).
Allauzen, Crochemore, and Raffinot (1999) proposed an alternative dfa called
factor oracle that also scans all suffixes a', . .., a%, but has only < n+1 vertices
and < 2n edges. The factor oracle may — other than the factor trie — also scan
sequences that are no substrings of any a’. For example, the factor oracle in
Figure 36 scans "CAC", which is no substring of "CTCAACTCATC".

Figure 36: Factor Oracle. The oracle of the sequence "CTCAACTCATC". The dotted arrows
visualize the supply array S.

Algorithm 35 shows how to construct a factor oracle in linear time by adding
at most n more edges to the trie of a',...,a%. BUILDORACLE traverses the
trie starting from the root r. Let u € V be a vertex and s(u) = sy ...s,, the
label of the path from r to w in the trie, let v € V' be the predecessor to u on
this path, and let ¢ be the label of its last edge (v,u). When the main loop
reaches u, then the algorithm extends G to ensure that it scans all suffixes of
s(u). So G will scan all suffixes of a!,...,a¢ once all vertices are processed.
Since the vertex v was processed before u, we already made G to scan all
suffixes of s(v) = s1...8,_1. Let v be the vertex that is reached if we scan in
G for the i-th suffix s(v') = s;... 8,1, where i € {0,...,m — 1}. We want G
to scan also the suffixes s(v®)c of s(u), so we just need to take care that each
v® has a c-edge, which means that v® has an outgoing edge labeled with c. For
v? = v such an edge already exists in the trie; all other v* can be found by
following a linked list stored in the ‘supply array’ S. BUILDORACLE constructs
S in a way that S[v] is the vertex v’ # v with minimal 4, i.e. s(S[v]) is the
longest suffix of all suffixes s(v?) with v’ # v. All s(v?) with v’ # v are suffixes
s(S[v]), so the next largest suffix of s(v) smaller than s(S[v]) is s(S[S[v]]). The
set {v, S[v], S?[v], S®[v],...,r} therefore contains all vertices v in descending
order their suffix lengths. Enumerating the vertices u in breadth-first search
order (line 4) ensures that the supply values of all vertices v’ are already
computed.

For each vertex S7[v] without c-edge, we add in line 12 an edge (S’[v],u)
labeled with c. From now on G scans the suffix s(57[v])c of s(u). Since each
scan that reaches w can go further in the trie, G now also scans all suffixes
of al,...,a? that start with s(S’[v])c. There exists at least one suffix of that
kind, and for this suffix we will never need to insert another edge into G. The
number of edges added in line 12 of BUILDORACLE is therefore bounded by
the number of suffixes of a!, ..., a% i.e. it is < n.
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Note that we can stop the enumeration of the S’[v] as soon as we found a
vertex S7[v] with a c-edge (S’[v], w), since in this case, w is a vertex that was
already processed by G, and therefore all further vertices S[v’], S*[v?], ... have
c-edges. Therefore the total runtime of BUILDORACLE is O(n).

> BUILDORACLE (a',a?, ..., a%)
1| G=(V,E) < BUILDTRIE(a',a?, ..., a?)
2| r<«rootof G
3| S[r] « nil
4| for each v € V'\ {r} in bfs order do
5 v «— the predecessor vertex of u in the trie
6 ¢ < label of (v, u)
7 repeat
8 v «— S[v]
9 if exists (v, w) € F labeled with ¢ then
10 L Slu] «— w
11 break
12 insert edge (v, u) into E with label ¢
13 if v =7 then
14 |_ Slu| «—r
15 - = break
16| return ¢

Algorithm 35: Factor Oracle Construction. The algorithm builds up the oracle for the

sequences a',a?, ..., a%.

SeqAn implements this algorithm in the function createOracle.

13.2 Alignment Graphs

13.2.1 Alignment Graph Data Structure

Alignment graphs are, beside Align data structures (see Section 9.2), the
second representation for alignments in SeqAn. They were initially introduced
by Kececioglu (1993) and later extended by Kececioglu et al. (2000).

An alignment graph G (see Figure 37) for d sequences a', a?, ..., a? is an undi-
rected d-partite graph with a set V' of vertices and a set E of edges that meet

the following criteria:

(1) V= VIuV2U...UV? where V' partitions a' into non-overlapping
segments (for 1 < i < d), i.e. each value in a’ belongs to exactly one
vertex in V.
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Alignment Matrix

as  -AC--AAG-CGTAGCA
a2 -AC-TACGA-G-AGCA
as CACTTATG-CC-AG- -

Alignment Graph
a A C A A G| [C]G|T]A G|C|A]
1
. [BC) MACGR
a; [CIAC|TITIAT Gl [CIC] [AG

Figure 37: Alignment Matrix and Alignment Graph. An alignment of three sequences

a', a?, and a3, displayed both in matrix style and as alignment graph.

(2) EC {(v",v?) |v; € Viand v/ € V? and 1 < 4,5 < d and i # j and the
segments v* and v/ have the same length}.

559 950 et

A-BC

. ABC
DE-F = DEF ®®0O
-GHIl |  GHI @%%
A-BC ©
chol 000
AB-C @®/®
pe-F O8O0
G-HI

Figure 38: Alignment Graph Examples. For the sequences "ABC", "DEF", and "GHI".
Left: A unique trace and the compatible alignment. Middle: A non-unique trace and
compatible alignments. The last two alignments contain changing gaps at columns 2 and
3. Right: Three alignment graphs that are no traces.

An alignment A and an alignment graph G are compatible, if for each edge
(v',v7) in G, the segments v’ and v/ are aligned in A without gaps. An align-
ment graph that is compatible to at least one alignment is called a trace, and
we call a trace ‘unique’, if it is compatible to exactly one alignment. Figure 37
and Figure 38 (left) show examples for unique traces.

Some alignments are not compatible to any unique trace, because they contain
changing gaps (see Figure 38, middle), i.e. in the alignment are two flanking
columns ¢ and 7 + 1 that together contain at most one value of each sequence.
Note that optimal alignments usually do not contain changing gaps, since, for
reasonable scoring schemes, the score gets better when the two columns ¢ and
i+ 1 are merged (see Section 9.3.1).

For an alignment A4 that does not contain changing gaps, the alignment graph
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G = (V,E) with V := {a | a is a value in one of the sequences of A} and
E = {(a,b) | a and b are aligned in A} is a unique trace compatible to A.
This alignment graph is constructed for a given Align object when calling the
function convertAlignment. Another function of the same name can be used
to convert a unique trace into its compatible alignment.

13.2.2 Maximum Weight Trace Problem

Most algorithms in SeqAn for computing optimal global alignments (Sec-
tion 9.5) or local alignments (Section 11.1) accept alignment graphs for storing
the results. Beside of that, we can also use alignment graphs to formulate align-
ment problems in a new way (Kececioglu 1993): Given an alignment graph G
and scores weight(e) > 0 for each edge e in G, then the mazimum weight trace
problem is to find a trace G* that is a subgraph of G and for which the sum of
the edge scores is maximal. This kind of alignment problem is especially inter-
esting for ‘sparse’ alignment graphs G = (V, E'), because in this case algorithms
exists that are more efficient than e.g. the Needleman-Wunsch algorithm (Sec-
tion 9.5.1), which takes exponential time in the number of sequences.

In the following we concentrate on pairwise alignment graphs G = (V' U V2 E)
between two sequences a' and a?. Since the edges (v',v?) € E can be consid-
ered as seeds between the two segments v! € V! and v? € V2, and since the
segments in V! and V2 do not overlap, the maximum weight trace problem can
be formulated as a global chaining problem, see Section 9.6.3. On the other
hand, one can also reduces the maximum weight trace problem to the ‘heavi-
est common subsequence problem’ (Jacobson and Vo 1992), for which SeqAn
implements an efficient algorithm in function heaviestCommonSubsequence,
that allows to compute a maximum weight trace in time O(|E|log|E]). In
fact, this algorithm is equivalent to a simplified version of SPARSECHAINING
(Algorithm 7, page 99), which uses sparse dynamic programming for global
chaining, see Section 9.6.3.

V'!is a partition of sequence a', and each seed covers only one segment of al,
hence MAXWEIGHTTRACE (Algorithm 36) needs not to handle the ‘left’ and
‘right’ positions of the seeds separately, as it was done in SPARSECHAINING.
Let for both ¢« € {1,2} the segments in the sets V' = (vi, v}, ...) be ordered
according to their occurrences in a’, and for each edge e; = (v}, v2) € E
we define pos;(e;) = p and posy(e;) = q. A seed e; € E can be appended
to another seed e, € E, if pos;(e;) < pos;(e2) for both ¢ € {1,2}, and two
edges e;, e, € I/ can only be part of the same trace G*, if one of them can be
appended to the other.

The algorithm enumerates the seeds e; in increasing order of their positions
pos,(e;) (line 4), searches in a set D of active seeds for an optimal predecessor
er; (line 5), computes the score of the best chain ending in e; (lines 6 to 9),
deletes all seeds e, in D that are ‘dominated’ from e;, i.e. those e, with
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> MAXWEIGHTTRACE (G = (V,E = {e1,...,€e,}), w)
sort e; € E in decreasing order of pos,(e;)

stable sort e; € E in increasing order of pos (e;)
D10

for each e¢; € E in sorted order do

Ty — argmax,ep{ poss(er)] posaler) < poss(ey)}
if 7} is defined then

| M; « My, 4 weight(e;)

else

L M; — weight(e;)

for each k € D with pos,(er) > pos,(e;) and
L Mk S Mj do
D «— D\ {k}
L D~ DU{j}
j < last element of D
E* — {e;}
while T is defined do
V=
E* — E*U{e;}
return G* = (V, E*)

find best
chain to e;

update D

build new
edge set
E*

Algorithm 36: Maximum Weight Trace by Sparse Dynamic Programming. The
algorithm is a simplified variation of Algorithm 7 on page 99. It computes a maximum
weight trace subgraph G* of G, where w(e) > 0 are the weights of the edges in G. The
sorted set D stores all active seeds, M is the score of the best chain that ends with e;,
and T the predecessor of e; in that chain. Note that argmax in line 5 returns ‘undefined’
if it is applied to an empty set. In this case e; has no predecessor.
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posy(ex) > posy(e;) and smaller chain score M), < M; (lines 10 to 11), and
finally inserts e; into D (line 12). To take care that e; is not appended to
another seed e, with pos,(ex) = pos;(e;), we enumerate seeds with equal
position pos; in decreasing order of their position pos, (line 1). At the end,
all edges on the trace back starting from the last item in D are added to
G* = (V, E*), which is a maximal weight trace subgraph of the input graph G.

13.2.3 Segment Match Refinement

A good strategy for getting an alignment graph G = (V. E) which is ‘sparse
enough’ to be a viable input for Algorithm 36 of Section 13.2.2 is to add only
those edges to V' that have a good chance for becoming part of the optimal
alignment, i.e. edges that connect high scoring matches between the sequences
a',...,a’. If we want to construct an alignment graph G for a given set
S = {S1,...,8,} of seeds, where each S; aligns segments of two sequences
€ {a',...,a?}, then this could be problematic because (1) alignment graphs
allow only matches between segments of equal length, and (2) it is possible

that two seeds S; and Sy, overlap, i.e. the aligned segments overlap. Figure 39

{GGTACAAGTOCTTTAD..
.(ACC--TGAGO..
.(GGTACAAGTOCTTTAQ..

Figure 39: Segment Match Refinement.

shows the solution for both problems: We need to cut the seeds into a set
of parts R = {S],...,S,,} such that (1) each S} € R aligns two segments
of the same length, and (2) a segment that is aligned by a seed S} is either
identical or disjoint to the segments that is aligned by any other seed S, € R.
Condition (1) is automatically done when the alignment is transformed into its
alignment graph representation. Finding a refinement R of minimal size that
fulfills condition (2) is called the segment match refinement problem (Halpern,
Huson, and Reinert 2002). SeqAn implements an algorithm matchRef inement
that solves this problem for an arbitrary number of sequences (Emde 2007).
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Part 1V

Discussion

In the final part of this thesis, we will argue that our library is actually capable
to fulfill its purpose. In Chapter 14, we will discuss the library’s quality, and
we explain our measures for quality assurance and propagation of the library.
A short program that we propose in Chapter 15 demonstrates how SeqAn can
be used to create software tools. Chapter 16 offers a summery and gives an
outlook of future plans with SeqAn.
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Chapter 14

Library Quality and Applicability

This chapter is about the quality of SeqAn and its core design. First we ask
the question: “How good is our library design?” There are two possibilities
to answer this question: We can either analyze whether the design actually
complies with the goals we described in Section 4.2, i.e. we say that our library
design is ‘good’, if it excellently meets all design goals. This will be discussed
in Section 14.1.

An alternative approach is to derive a statement about the quality of the
design from the quality of the library that was implemented using this design,
i.e. we say that the design is ‘good’ if it facilitated the implementation of a
‘good’ library. Then the next question is: “What makes a library ‘good’?” The
obvious answer is: “A library is ‘good’, if it serves its purpose well, namely the
design of algorithms and software tools.” We will discuss this in Section 14.2.

14.1 Design Quality

We will now show that our library design (see Chapter 5) complies to all design
goals that we demanded in Section 4.2.

14.1.1 Performance

The core design supports the performance of the library by enabling refine-
ments of data structures and algorithms such that faster solutions for special
cases can be implemented. Template subclassing (Section 5.3) allows for faster
code than classical object-oriented programming, because it avoids the over-
head of virtual functions. We argued in Section 5.1 that the choice of using
the programming language C++ also results in better performance. During the
implementation of SeqAn we put a special emphasis on optimization; for exam-
ple we abstained in the release version of the library from any time consuming
tests about the coherence of function arguments.
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We proved the success of our efforts by simply conducting runtime analyses for
the various algorithms, for example in Part IIT of this thesis. Another example
can be found in Table 30, which shows that SeqAn provides the fastest edit
distance alignment algorithm (Myers-Hirschberg) of all tested libraries.

linear gap costs affine gap costs
time (s) space (MB) time (s) space (MB)

SeqAn
Needleman-Wunsch 3.3 236 6.3 236
Hirschberg 14.7 4
Myers-Hirschberg 0.2 3
NCBI C++ toolkit
Needleman-Wunsch 4.0 245
Hirschberg 6.6 14
Bio++ 13.4 2100 28.0 ~6000
BTL 96162 933
BioJava 76 2000 93 ~6000

Table 30: Runtimes and Internal Space Requirements for Computing Sequence
Alignments. The table shows average time and space requirements for aligning the
genomes of two human influenza viruses, each of length about 15.6kbp, using alignment
functions in SeqAn, the NCBI C++ toolkit, Bio+-+, the BTL, and BioJava (see Sec-
tion 2.2.2 on page 12). Runtimes printed in bold face show for each library the time of
the fastest algorithm for computing an alignment using edit distance.

14.1.2 Simplicity

We showed in Chapter 5 that the core design of SeqAn consists only of a hand-
ful of techniques, each of limited complexity. Although our approach may be
not as common for most programmers than standard object-oriented program-
ming, we think that the code of the library and possible error messages during
compiling are still rather understandable. Since template subclassing supports
both generality and refinements, the code becomes less redundant. The li-
brary design facilitates not only the implementation of the library itself but
also its application for programming tools: Polymorphism and the application
of tag dispatching make the interface more comprehensible, and global inter-
faces avoid the confusion between ‘algorithms’ and ‘other functions’ of the STL.
The range of functionality in SeqAn comprises many elements that improve
coding convenience. For example, SeqAn offers many shortcuts for frequently
used classes (see Section 5.6.3) like DnaString for String< Dna, Alloc<> >.
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The simplicity of SeqAn is demonstrated in various code examples that can be
found throughout this thesis.

14.1.3 Generality

Generic programming is one of the main techniques for SeqAn (see Section 5.2)
and the library uses both generic data structures and generic algorithms that
can be applied to all suitable types. The fact that we also pursue the in-
tegration goal furthermore expands the library’s area of application. During
the implementation, we tried to find the most general abstract data types that
solve the problem without loss of performance. In Chapter 15 of this thesis, we
showed that the resulting data structures and algorithms are suitable for solv-
ing specific problems. Note that SeqAn was designed for multiple platforms
and compilers, see Section 14.2.3.

14.1.4 Refinebility

Template subclassing allows to define unlimited hierarchies of refinements.
Within this pedigree of derivation, every single function on every hierarchical
level can be overloaded and replaced by a better alternative. We demonstrated
this e.g. in Chapter 6. Another example are the numerous String data types
(Section 8.3) or the rich hierarchy of suffix tree iterators (Section 12.3.2).

14.1.5 Extensibility

In contrast to member functions that can only be added by changing the class
definition, global functions and metafunctions can be added at any time to the
library without changing it. Therefore we can easily extend the library, either
by defining completely new functionality, or by overloading already existing
functions or metafunctions. Creating new class refinements is also simple,
because it only requires a new tag class and possibly the definition of a cor-
responding template specialization. In order to achieve optimal extensibility,
every base class template and every tag class in SeqAn has the additional tem-
plate parameter TSpec for defining further specializations. After all, it was
only possible to implement SeqAn because it was extensible, since nobody can
program a software of this size in a single effort.

14.1.6 Integration

The idea of global interfaces imply the possibility of using shims, which make
the library adaptable both for additional external data structures and for built-
in types. We demonstrated in Section 6.1, that algorithms in SeqAn may be
generic to an extend that we called ‘library spanning programming’, because
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they can be used for data structures from arbitrary sources, as soon as the
necessary shims are available. SeqAn comes with an adaptor for basic_string
of the standard library (and its iterators), as well as for C-style strings, i.e.
for zero-terminated char arrays. However, it is also quite possible to integrate
other third party libraries easily into SeqAn.

14.2 Stability, Usability, Accessibility

The quality of a library has at least the following two aspects:

(1) Stability: “Does the library’s functionality works properly?” The fact
that SeqAn was already applied in some projects shows that its stabil-
ity was obviously high enough at least in these cases. We discuss in
Section 14.2.1 our practice for testing all parts of the library.

(2) Usability: “Does the library meets its intended purpose and can actually
be applied by the users to facilitate the software or algorithm development
process?” SeqAn was already applied for the development of several
state-of-the-art software, e.g. Schulz et al. (2008), Weese and Schulz
(2008) Rausch et al. (2008), Langmead et al. (2009), and Rausch et al.
(2009). This demonstrates its usability. We will also substantiate this
claim in Chapter 15, where we use SeqAn to re-implement the well known
tool LAGAN (Brudno et al. 2003). The library’s compliance to our design
goals (see Section 14.1) is also an argument for its usability.

One prerequisite for the usability of a software library is a comprehensive
documentation, see Section 14.2.2. Section 14.2.3 describes our efforts to make
SeqAn accessible, that is how we tried to prepare the way for the user to get
and apply our library.

14.2.1 Testing

Each published part of SeqAn is exhaustively tested. We used two testing
strategies (Myers et al. 2004):

(1) Unit Testing: For each module of SeqAn exists a program which tests
all data structures and functions that reside in this module. These are
mainly black-box tests, i.e. the program does not inspect the actual
implementation but only check the correctness of output generated by
the tested library part. In many cases the input data is predefined within
in the test program; some other tests generate repeatedly random inputs
and compare the outputs of alternative implementation.
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=0
é;E‘ -
Login | Settings = Help/Guide | About Trac

[ [ Wik [ Timeine | Rosdmap | Grovse source  [NRENACCRON vewtiket |
Available Reports  Custom Query.

{6} All Tickets By Milestone (Including closed)

A more complex example to show how to make advanced reports.

Ticket Summary Component _ Status Resolution _ Version Type Priority Owner Modified
#25 Documentation should specify headers to include Core Library  new None 1.1 enhancement major doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#58 trac search does not work Core Library  new None 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  01/07/09
#61 Incorrect calculation of max Repeat of size 1 Indices new None 1.1 defect major weese@PCPOOL.MI.FU-BERLIN.DE  01/23/09
#62 Fehler unter MinGW Core Library  new None 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  01/26/09
#63 sequence test doesn't compile with g++ version >=4.3.2 Core Library new None 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  01/29/09
#65 licence issues Core Library  new None 1.1 task major doering@PCPOOL.MI.FU-BERLIN.DE  02/12/09
#66 gcc 4.3.2 problems Core Library  reopened 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  02/12/09
#68 ModifiedAlphabet test doesn't work Core Library new None 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  02/19/09
#7 A naive patch fixing Mac OS X / Intel / gcc4 problems Core Library  assigned None 1.0 enhancement minor weese@PCPOOL.MI.FU-BERLIN.DE  07/31/08
#52 Make SeqAn usable with Boost.ForEach Core Library  new None 1.1 enhancement minor doering@PCPOOL.MI.FU-BERLIN.DE  02/10/09
#59 Missing "Raw" specialization for FileReader Core Library  new None 1.1 enhancement minor doering@PCPOOL.MI.FU-BERLIN.DE  01/14/09
#71 please add a README Core Library new None 1.1 defect minor doering@PCPOOL.MI.FU-BERLIN.DE  02/27/09
#73 inconsistent naming of acronyms Core Library  new None enhancement minor doering@PCPOOL.MI.FU-BERLIN.DE  02/27/09
#75 _MakeSigned wrong for unsigned long long Core Library  new None defect minor doering@PCPOOL.MI.FU-BERLIN.DE  03/03/09
#72 please document SupremumValue Core Library  new None defect trivial doering@PCPOOL.MI.FU-BERLIN.DE  02/27/09
#74 cannot use Manber-Myers Core Library  closed fixed defect major doering@PCPOOL.MI.FU-BERLIN.DE  03/03/09
#70 projects/library/extra/shawarma/get.sh is not executable Core Library  closed fixed defect minor doering@PCPOOL.MI.FU-BERLIN.DE  02/27/09
#69 shawarma makefile uses hardcoded -m32 option Core Library  closed fixed defect trivial doering@PCPOOL.MI.FU-BERLIN.DE  02/21/09
#67 FileReader c'tor error Core Library  closed fixed 1.1 defect blocker doering@PCPOOL.MI.FU-BERLIN.DE  02/12/09
#48  Example "find_approx" does not compile Core Library  closed fixed 1.1 defect major  doering@PCPOOL.MI.FU-BERLIN.DE 02/12/09
#60 Using "seqan/map.h" fails to compile Core Library  closed invalid 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  01/15/09
#57 Bug in alignment with segment Alignments closed fixed 1.1 defect major rausch@PCPOOL.MI.FU-BERLIN.DE  01/14/09
#56 i can't compile align test Core Library  closed fixed 1.1 defect major  doering@PCPOOL.MI.FU-BERLIN.DE  01/14/09
#36 Container of ModifiedIterator must be a modified container Modifiers closed fixed 1.1 defect minor weese@PCPOOL.MI.FU-BERLIN.DE  01/05/09
#39  TopDown iterator has copy constructor but no assignment Indices closed fixed 1.1 enhancement minor  weese@PCPOOL.MI.FU-BERLIN.DE ~ 01/05/09
operator
#50 Problem with return type of representative function Indices closed fixed 1.1 defect major weese@PCPOOL.MI.FU-BERLIN.DE  01/05/09
#55 operator== ill-defined for char* Core Library  closed fixed 1.1 defect minor doering@PCPOOL.MI.FU-BERLIN.DE  01/05/09
#38 example code in file documentation does not work Core Library  closed fixed 1.1 defect major doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#33  Memory leaks in sequence test Core Library  closed fixed 1.1 defect major  doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#37  Genbank parser aborts, if an empty line is present in the flatfile.  Core Library  closed worksforme 1.1 defect minor  doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#22 bug in file_format_fasta.h Core Library  closed fixed 1.0 defect trivial doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#28 Iterator<Map> misses 'operator ->' Core Library  closed fixed 1.1 defect trivial doering@PCPOOL.MI.FU-BERLIN.DE  12/09/08
#53 checkout for * misc/build_forwards.py" Core Library__closed wontfix 1.1 defect blocker doering@PCPOOL.MIFU-BERLIN.DE  11/27/08

Figure 40: SeqAn Trac. The screen shot shows a list of messages and issues posted by
SeqAn users from around the world.

(2) Function Coverage Testing: The extensively use of C++ templates in
SeqAn raises a special testing problem: Usually C++ compilers perform
only shallow syntax checks during the parsing of template code, so it is
possible that a test program compiles correctly even if some templates
contain syntax errors, just because these templates are never instanti-
ated. We therefore apply a white-boz testing method that ensures each
template function to be instantiated at least once in the test. This is
done by inserting the preprocessor macro SEQAN_CHECKPOINT at the be-
ginning of each template function of the library, and maybe also in some
further parts of the program for which we want to check that they are
reached by the test. If testing is activated, this macro expands to a short
piece of code that protocols the current source file and line of code. At
the end of the test, the source files are scanned for SEQAN_CHECKPOINT
and all occurrences that were never reached are reported. If testing is not
activated, than the macro is defined to be empty, so SEQAN_CHECKPOINT
has in this case no impact to the program’s efficiency.

Since even the best testing cannot guarantee the correctness of a program, we
used the open source error tracking system Trac', so the library’s users can
report their bugs and give suggestions for improvement, see Figure 40.

!See trac.edgewall.org
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Overview Class ,/

Concepts Stri n g b,u

Classes

» Aggregates General purpose container for sequences.

» Alignments

» Basic | Container |

r8last o

» Graph [ String |

 Index I T I ! T I 1

: :;'ap"tlouw“t [Atloc string | [Array string | [Block string | [ cstyle String | [ External String | [ File Reader String |

» Miscellaneous ——

::g;jilfhsegarch [Packed string | [ Pizza & Chili String |

» Pipelining

» Searching String<TValue, TSpec>

» Seed Handling

v Sequences
Gaps
Segment Tvalue | The value type, that is the type of the items/characters stored in the string.

String Metafunctions: Value
StringSet

Parameters

TSpec | The specializing type.

Specializations Metafunctions: Spec

Shortcuts .
Functions Default: Allcc<>, see Alloc String.
Metafunctions
Tags Implem_ents
Adaptions Container
Examples Specializations
Searching Alloc String Expandable string that is stored on heap.
] Array String Fast but non-expandable string.
Block String String optimized for push_back, top, and pop (Stack behaviour).
CStyle String Allows adaption of strings to C-style strings.
External String String that is stored in external memory.
File Reader String | Read sequence data from file.
Packed String A string that stores as many values in one machine word as possible.

Pizza & Chili String | String used by the Pizza & Chili indices.

Metafunctions

DefaultOverflowExplicit | The default overflow strategy for explicit resize.

Figure 41: SeqAn Documentation Using DDDOC. The screen shot shows a part of the
documentation for the class String.

14.2.2 Documentation

The common documentation systems for C++ like Dozygen? are designed with
regard to object-oriented programming, so we developed our own documenta-
tion system DotDotDoc (DDDOC), which is especially suited for documenting
generic programming software. The documentation is deposited in C++ com-
ments that are extracted from the library’s source files using a Python (Lutz
2006) script. The format orientates on the XML documentation format® that
is used for Microsoft C#, but it uses a simple human readable notation style
instead of XML. DDDOC creates a heavily cross-linked and searchable docu-
mentation (See Figure 41), that extensively describes all public classes, spe-
cializations, functions and metafunctions available in SeqAn on HTML pages,
which can be viewed in common HTML browsers. The SeqAn documentation
also contains several tutorials and example programs. It can be downloaded
from the SeqAn web site and viewed online on www.seqan.de/dddoc.

2See www.doxygen. org
3see msdn.microsoft.com
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Welcome to SegAn

What is SeqAn?

Home

Projects
Downloads
Documentation
Development
Contact Us

SegAn is an open source C++ library of efficient algorithms and data structures for
the analysis of sequences with the focus on biological data. Our library applies a
unique generic design that guarantees high performance, generality, extensibility,
and integration with other libraries. SeqAn is easy to use and simplifies the
development of new software tools with a minimal loss of performance.

Download
q Segan_Release_1.1.zip

»Installation Instructions

News
» New Version 1.1 Released
» SegAn Trac online

» SeqAn paper published

Projects
SEQUENCES | SEARCHING | |ALIGNMENTS INDICES GRAPHS BIOLOGICALS
» Consensus
Z » RazerS
< 7 R
Za » SegAn T-Coffee
I ) VA LO./_I » PISAtoolbox

» DFI

Programming Language: IS
Supported Platforms:  Windows: Visual C++ 7 [.net 2003), Visual C++ 8 (.net 2005), MinGW
G++ 3.x, G++ 4x

LGPL 3 (see also GPL 3)

DONATE
License:

News
08-Jun-2008

» New Version 1.1 Released

We just released a new version 1.1 of SegAn. You can download it here.

Figure 42: SeqAn Website.

14.2.3 Distribution

During the development process we took care to keep SeqAn compatible to
multiple platforms. For that reason, we implemented a simple but powerful
built-system that allows the compilation of applications and test programs
using different compilers and operating systems. Our library now works on
all common platforms, namely Microsoft Windows, Mac OS X, Solaris, and
several Linux clones, and it was tested for Microsoft Visual C++ compilers
(version 7 or above) and GCC compilers (version 3 or above).

SeqAn is open source and free software published under the ‘Gnu Lesser Gen-
eral Public License’ (LGPL) version 3.* This license allows the free use and
distribution of the library also for commercial application. Both the library
sources and the documentation can be viewed and downloaded from the SeqAn
web site www.seqan.de, which was designed to be the central place for all news
and information about the project, see Figure 42. Beside detailed descriptions
of SeqAn and its associated projects, this web page also contains a bug tracker
system that can be used to return feedback to the library’s developers, see also
Section 14.2.1.

“See www.gnu.org/licenses/lgpl.txt
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Chapter 15

Example Application LAGAN

In this Chapter, we use SeqAn to re-implement the basic functionality of the
common software tool LAGAN by Brudno et al. (2003).

15.1 The LAGAN Algorithm

LAGAN is a tool for aligning two long sequences a; ...a, and b; ...b,,, and it
uses a seed chaining approach, see Section 9.6. The applied procedure (see
Algorithm 37 for line numbers) works in four steps, see Figure 43:

@ - Sequence B @
NN\ NN

Sequence B

/
%
/
7%

Sequence B

Sequence A
Sequence A
Sequence A

Figure 43: The Four Steps of LAGAN. (1) Finding seeds, (2) chaining, (3) recursively
filling up gaps, and (4) banded alignment following the best chain. The result is a global
alignment between the sequences.

(1) Finding Seeds (lines 2 to 6): For a given length ¢ = ¢yax, all common
g-grams of ay ...a, and by ...b,, are found, e.g. by using a g-gram index

179
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(Section 12.1), and then combined to a set D of seeds by local chaining
(Algorithm 24 on page 134), where the seed extension mode Chaos is
used (Table 18 on page 135). If no common ¢-grams are found, the ¢ is
decreased until a minimal bound ¢, is reached.

> LAGAN(ay ... Gp, by ... by)
C «+ LAGANCHAINING(a, b, Gmax) steps 1-3
A «— BANDEDALIGNMENT(C) step 4

3| return A

> LAGANCHAINING(ay ... ap, b1 .. . by, Q)

if (n < gapsmaz) and (m < gapsmaz) then return ()
Q10 )
while Q = () and g < guin do
L @ < all common ¢-grams between a and b step 1

q—q—2

D «— LOCALCHAINING(Q)
(S0 - -y Sk—1) < SPARSECHAINING(D) step 2

fori<— 0tok+1do
\; o Qrighty(S;) - - - Alefto(Sit1)

© 00 =~ O Ot = W N =

—
o

V' bright,(8,) - - - Dieft,(Si41) step 3
C; < LAGANCHAINING(d', V', q)
C—{S,....SulU ¢
return sorted C

—
—

— =
wW N

Algorithm 37: The Algorithm of LAGAN. The size ¢ starts with gna.x and may go down
tO ¢min. LAGANCHAINING is only used if the lengths of both sequences a and b are
at least gapsmax. For LOCALCHAINING see Algorithm 24 on page 134, and for SPAR-
SECHAINING see Algorithm 7 on page 99. We omit the details of BANDEDALIGNMENT,
see Section 9.6.4.

(2) Global Chaining (line 7): A chaining algorithm like SPARSECHAIN-
ING (Algorithm 7 on page 99) computes the optimal global chain
(So, .-, Sk—1), where Sy is the top seed and Syy1 the bottom seed (see
Section 9.6.2), and the rest Sy,...,S; € D.

(3) Filling Up Gaps (lines 8 to 12): We fill up the gaps between any two
successive seeds S; and S;;; for i € {0,...,k} by applying step (1) to
(3) recursively on the gaps for a smaller g. This recursion stops if either
the length of the gap is in both dimensions smaller than gapsmazx, or q
falls below ¢y (line 1).
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(4) Banded Alignment (line 2): Following the chain C that was computed
in the steps (1) to (3), a banded alignment algorithm (see Section 9.6.4)
is used to compute a global alignment A between a and b.

15.2 Implementation of LAGAN

Before we start to implement Algorithm 37 in C++, we have to chose the data
structures we want to use. Our objective is to align two DNA sequences a and b,
so we use String<Dna> for storing them. The seeds §; are 2-dimensional, so we
apply the specialization SimpleSeed of Seed (see Section 9.6.1). These seeds
are locally aligned, so the most appropriate data structure for D is SeedSet.
We apply the ‘scored’ variant, since this supports the functionality that is used
in the original tool. For storing the chains (Sy,...,Sk_1) and C;, we need a
container class that supports fast insertion operation for merging several chains
in line 12 of Algorithm 37, so a list type would be a good choice. We decide
to use the class std::1list from the standard library.

The complete source code of our program is printed in Appendix A.3.' It
consists of two functions: The main function that implements LAGAN of Al-
gorithm 37 and laganChaining that implements LAGANCHAINING.

We start the main function by loading the two input sequences a and b from
FASTA files. For that purpose, we use FileReader strings (Section 7.7) that
are copied to ‘in-memory’ strings of type String<Dna> for speeding up the
further processing:

typedef String<Dna> TString;
TString a = String<Dna, FileReader<Fasta> >(argv[1]);
TString b = String<Dna, FileReader<Fasta> >(argv[2]);

Then we call the function laganChaining, which is described below, to perform
the steps (1) to (3) of Algorithm 37:

typedef Seed<int, SimpleSeed> TSeed;
std::1ist<TSeed> chain;

laganChaining(chain,
infix(a, 0, length(a)),
infix(b, 0, length(b)), gq_max);

The first argument is a list in which laganChaining will return a chain of
seeds. Since in step (3) of the algorithm, the function will be called repeatedly
on varying substrings of a and b, it expects the input sequences to be passed

! This program bases on Carsten Kemena’s master thesis (Kemena 2008).
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as segment objects (Section 8.6). The main function conveys the complete
sequences.

The last argument is the length of the g-grams laganChaining will start with.
The initial call of laganChaining sets the size of the g-grams to 13, and this
q may fall down to q_min= 7 during the execution.

Step (1)

In laganChaining, we need three data structures to perform step (1) of Al-
gorithm 37: A seed set for storing and merging the seeds, a g-gram index for
the input sequence b, and a finder for searching the g-gram index:

typedef typename Value<TSeed>::Type TPosition;
typedef SeedSet<TPosition, SimpleSeed, DefaultScore> TSeedSet;
TSeedSet seedset(limit, score_min, scoring_scheme);

typedef Index< TSegment, Index_(QGram<SimpleShape > > TQGramIndex;
TQGramIndex index_qgram(b);

typedef Finder<TQGramIndex> TFinder;
TFinder finder(index_qgram);

The constants 1limit and score_min define the area in which local chaining
searches for predecessor seeds (Section 11.2.2). The local chaining also needs
scoring_scheme to compute scores of seeds.

As long as no seeds are found, and q is at least q_min, we search for common
g-grams in a and b and add them to seedset:

while (length(seedset) == 0)
{
if (q < q_min) return;

resize(indexShape(index_qgram), q);

for (int i = 0; i < length(a)-q+1; ++i)

{
while (find(finder, infix(a, i, i+q)))
{
// add gq-gram to seedset
}
clear(finder);
}
q-=2;
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The variable i iterates through all g-gram positions in a, and the finder then
enumerates all occurrences of the i-th g-gram of a in the indexed sequence b.
In the inner while loop, we compute the starting positions of the common g-
grams relative to the complete sequences, and then add the g-gram to seedset:

// add gq-gram to seedset

typedef typename Position<TFinder>::Type TPosition;
TPosition a_pos = beginPosition(a)+ij;

TPosition b_pos = beginPosition(b)+position(finder);

if (!addSeed(seedset, a_pos, b_pos, q, 0, Merge()))
if (!addSeed(seedset, a_pos, b_pos, q,
host(a), host(b), bandwidth, Chaos()))
addSeed(seedset, a_pos, b_pos, q, Single());

So we first try to merge the new g-gram S with another overlapping g-gram
on the same diagonal. If no such g-gram is available in seedset, then we
try to find instead a predecessor S’ within in the area defined by limit and
score_min. If a suitable &’ is found, then we merge S’ and S to a single seed
in the ‘chaos style’, i.e. with a single gap in between (Table 18 on page 135).
Otherwise we just add S to seedset.

Step (2)

Step (2) of Algorithm 37 just takes a single line of code:

globalChaining(seedset, chain);

The function globalChaining uses sparse dynamic programming to compute
the optimal chain of seeds without a penalty for the gaps between the seeds
(Section 9.6.3). Note that the resulting chain that is stored in chain does not
contain a top seed or a bottom seed, but only the ‘inner seeds’ from the chain.

Step (3)

Note that q was decremented at least once during step (1). If q is still > q_min,
then we enumerate all gaps between two succeeding seeds in chain and try to
fill them up by recursive calls of laganChaining. After each call, all new seeds
that are returned in subchain are inserted into chain between the seeds *it
and seed *it2:
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1list<TSeed> subchain;
typedef typename list<TSeed>::iterator TIterator;

TIterator it = chain.begin();
TIterator it2 = it;

++it2;

while (it2 != chain.end())

{
laganChaining(subchain,
infix(host(a), rightDimO(*it), leftDim0(*it2)),
infix(host(b), rightDiml(*it), leftDiml(*it2)), q);
chain.splice(it2, subchain);
it = it2;
++it2;
}

Note that we have to do the same for the gaps before the first seed and behind
the last seed in chain.

Step (4)

Back in the main function, it remains last step (4) of Algorithm 37: We add a
and b as rows to an Align object (Section 9.2) and call bandedChainAlignment
(see Section 9.6.4):

Align<TString, ArrayGaps> alignment;

resize(rows(alignment), 2);

setSource(row(alignment, 0), a);

setSource(row(alignment, 1), b);

int score = bandedChainAlignment(chain, B, alignment, scoring_scheme);

The constant B is the used band width, and scoring_scheme defines the
applied scoring scheme.
At the end, we print out the resulting alignment and its score:

cout << "Score: " << score << endl;
cout << alignment << endl;

15.3 Results

The original tool was published in (2003) by Brudno, Do, Cooper, Kim, Davy-
dov, Program, Green, Sidow, and Batzoglou, and it was implemented in a
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combination of C programs that were stitched together by several Perl scripts.
Its source code is much more extensive than our program, which takes about
one hundred lines of code, see Appendix A.3; for example the source code of
the tool ‘chaos’ that is responsible for step (1) and (2) of the algorithm is more
than twenty fold larger than our program. Although the original tool is cer-
tainly more elaborated and therefore more complex than ours, both programs
compute alignments of similar quality, and Figure 44 shows that the running
times are also comparable.

Runtime [s]
12

100 90 80 70 60 % ldentity

Figure 44: Runtimes of LAGAN and SeqAn. We aligned a 100kbp part of the genome
of Escherichia Coli with a point mutated counterpart. The figure shows the average
runtimes (in seconds) of the original LAGAN tool and and the SeqAn program from
Appendix A.3 depending on the similarity between the two sequences.

This example shows that programs which were developed with SeqAn can
match up with ‘hand written’ tools. Moreover we demonstrated the compo-
nents provided SeqAn are indeed useful for tool design, and that the application
of SeqAn leads to concise and comprehensible solutions.
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Chapter 16

Conclusion

In this thesis we presented the software library SeqAn that provides various
data structures and algorithms for sequence analysis. We described the basic
design principles used in SeqAn, and we explained how our library supports the
development of new software tools. The SeqAn Project was started in 2003.
A first version was published in 2007 (Déring, Weese, Rausch, and Reinert
2008). Presently, four PhD projects are in progress, which concentrate on
the development of SeqAn and contribute significantly to its functionality.
Some parts of the library were created during the course of master theses by
Weese (2006), Wohrle (2006), Lim (2007), Emde (2007), and Kemena (2008).
Many other students contributed smaller parts to the library in their software
projects and bachelor theses. While this thesis was in progress, SeqAn has
already become an indispensable work bench for ourselves which can be seen
by the number of research papers that used SeqAn. The library now covers
the basic areas of sequence analysis; this was shown at length in Part III.
Nevertheless, considering all the research on bioinformatics done in the last
few decades, it is obvious that SeqAn is still far away from being ‘complete’.
The library will stay under active development, and its range of functions
will be extended, for example by statistical data structures like hidden markov
models and statistical context free grammars (see e.g. Durbin et al. 1999). The
library will further advanced to support multi threading and massive parallel
hardware like graphic cards or multi core processor achitectures. Applying
our library to current problems in life science will certainly be increasingly
important in our future work. We hope that more and more scientists will use
and contribute to the library in the future.
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Appendix

A.1 Proof to Myers’ Bitvector Algorithm

In this section, we will explain Myers’ bitvector algorithm for approximate
string matching, see Algorithm 17 in Section 10.3.2. This algorithm finds all
occurrences of a needle p in a haystack ¢ with edit distance below a given
threshold. Remember that the edit distance between two sequences is the
negative score of their optimal alignment where each match scores 0 and each
mismatch and gap scores —1 (see Section 9.3.1).

Let us call in the fOHOWiIIg r = i—-1j—-1, U = i—1,55 h = ij—1s and
d := M;_1;-1,. Using that notation, we can rewrite the main recursion of
the Sellers” dynamic programming algorithm (Equation 9.6, page 87) for edit
distance as follows:

r =max{d— (p; #t;),v—1,h—1} (A.1)
A simple induction shows that:

M, ; —M,;_,; € {-1,0,1}
M;j— M1 €{-1,0,1} (A.2)
M;; — M;_1 ;-1 € {—1,0}

For each j € {1,...,n}, we define five vectors VP?, VN, HP’, HN?, and D0’
of booleans, each of length m, as follows:

VPZ::(x:U—l) VN{:Z(xZU-I—l)
HP!:=(x=h—-1) HN]:=(x=h+1)
DO} = (z = d)

We will now explain how Algorithm 17 computes these five vectors for 5 based
on of the vectors for j — 1:
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e From (A.2) follows z < d < v+ 1. If VN7 (that is v + 1 = ), then

this becomes an equality, so that in this case DOJ (since x = d) and
HP]_, (since v = d —1). The reverse also holds, so that we can state the
equivalence:

VN? = D0 A HP_,
The same way we can show:

HN? = Do} A VP

From (A.2) follows v —1 < 2 < d. If HNJ_, (that is d = v — 1), then this
becomes an equality, so that in this case VPZ (since z = v —1). Suppose
now that neither D07 nor HP?_ |, hence z+1 = d < v; then this becomes
an equality due to v < z + 1 from (A.2), and it follows again VP? (since
v =x+1). So we can state: if HN? |V (=D0J A —~HP’_,) then VP
The reverse also holds: Suppose that VPZ and not HN?_I, hence x+1 =
v < d. Then this becomes an equality due to d < z + 1 from (A.2), so
it follows D07 (since = + 1 = d) and ~HP?_| (since v = d). Hence we
proved the following equivalence:

VP! = HNJ_, v —~(D0} v HP?_,)
The same way we can show:
HP? = VNI™' v ~(D0? v vPI™1)

From (A.2) follows v — 1 < # < d. If HN?_, (that is d = v — 1), then
this becomes an equality, hence DO{ (since © = d). The same way we
can prove that Vfol implies DO?. A third reason for DO? being true
is a match between p; and t;: From (A.1) follows x > d — (p; # t;). If
pi = tj, then x > d, and since z < d due to A.2 it follows D0. So we
can state: if (p; =t;) vV VN?~' vV HN? | then D0?.

The reverse also holds: Suppose that D07 and ~HN?_, and = VNI
From —HN?J_, (that is v < d) follows v — 1 < d — 1 < d — (p; # t;), and
from = VN?_| (that is h < d) follows g —1 < d—1 < d— (p; # t;). Hence
from (A.1) follows: = d — (p; # t;), and since D0} (that is d = z) it
follows p; = t;. This proved the equivalence:

DO = (pi=t;)V VNI™'v HNI_,

There is a cyclic dependency in the equivalences above:' D0; depends on
HN; 1, which again depends from D0;_ 1, so we get:

!From now on, we will leave away the j superscript for a better readability.



A.1. PROOF TO MYERS’ BITVECTOR ALGORITHM 191

where X; := (p; = t;) V VN,. Even so we can compute D0 using some bit-
parallel operations, including the addition

S :=VP+(VPANX).

Let C; be ‘carry-in’ bit during the addition of VP; and (VP; A X;), that is:

c {1, if i > 0 and (VPioy + (VPioa A Xict) + Cio) > 1 (A4
0, otherwise
S;i=VP; & (VP; AN X;) ® C; (A.5)
We will show by induction that

For i = 0 this is obviously the case. Now assume that (A.6) holds for i —1 > 0,
that is DOi_l = Xi—l V Oi—l- From (A4) follows: If VPi_l, then Oz = Xi—l vV
C;—1 = D0;_,. Otherwise, if = VP, 1, then C; = 0. So we get:

Ci - VPZ‘,1 A DOZ‘,l.

Together with (A.3) follows (A.6) for i.

We need only four bit-vector operations to compute D0 given X and VP: From
(A.5) follows C' = S@® VP @ (VP AX), that is D0 = XV (S& VP@ (VP AX)),
which can be simplified to D0 = X V (S @ VP), hence:

DO=((VP+(VPAX))@® VP)V X

The complete recursion is shown in Algorithm 17 on page 119.
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A.2 Sum Lists

In Section 9.1.3, we used a data type called ‘sum list’ that was capable to store
gap patterns efficiently. We will now describe this data type in more details,
and we will explain how it was implemented in SeqAn. Let £ = (r! ... 77)
be an ordered set of d-dimensional tuples, where each 7% contains d numbers
7*[0],...,7%[d — 1]. The abstract data type that stores £ is a d-dimensional
sum list, if it supports at least the following operations:

(1) insert(7*,k): Inserts a new tuple 7* at a specific position k, such that
1 k

afterwards £ = (71, ... 7F 7% 7FFL )
(2) delete(k): Removes a tuple 7% from the list, such that afterwards £ =
C P Lt Lt U )

(3) change(k,i,x): Sets the i-th value of the k-th tuple to z, i.e. 77 « z.

(4) search(S,i): Finds the minimal k such that of > S, where o =
Z?Zl 77 is the sum of the first & tuples.

We implemented the sum list in SeqAn such that each operation takes time
O(dlogn). The data structure that we used for that purpose resembles a skip
list (Pugh 1990):> We store the tuples 7!, ..., 7" in a linked list, where each list
element has one pointer to the next list element (we call it the level-0 pointer),
and maybe some additional ‘skip pointers’. The number of skip pointers h;
for the j-th list element is randomly chosen and geometrical distributed, i.e.
the chance for a list element of having > h skip pointers is 1/2". The only
exception is the first list element which always gets the maximum number
hy = max}_, h; of skip pointers. It is easy to show that the expected value
of hy is O(logn). For each level ¢ € {0,...,hy}, all list elements that have
> t pointers are chained to a list that is linked by their level-¢ pointers, see
Figure 45. We write at each skip pointer the partial sum of the tuples that it
skips, i.e. a skip pointer from 7% to 7! is marked by Zijc 77. If the k-th list
element is the last in the list of a given level ¢, then the level-¢ pointer directs
to nil and is marked by > 77, 77.

For the j-th list element, we define trace; to be the set of the pointers that
points to the k-th list element conjoint with all pointers that skip the k-th list
element. Obviously |tracex| = h;+1. We can easily compute tracey, for a given
k by starting a search from the first list element. We begin with level t = hy,
and follow the level-¢ pointers as long as possible without skipping the k-th
list element. Then we proceed the search with pointers of level £ — 1, and this

2Some proofs about the expected height h; and the expected runtimes for searching the
sum list are identical to corresponding proofs shown by Pugh (1990) for skip lists. Therefore
we omit these proofs here.
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start
94
94
78
48 30
8 P40 > 3 27
8 >12p 7 21> 3 [ 8
1 2 3 4 5 6

Figure 45: Sum List. This example shows a 1-dimensional sum list of n = 9 values.
‘Start’ directs to the pointer at which the search begins. The fat values are the 1-tuples
Ty,...,Ty, and the fat cells correspond to the pointer set traces.

is repeated with decreasing ¢ until we actually find the k-th list element. One
can show that one search takes an average time of O(logn).

The operations insert, delete or change applied to the k-th list element affect
only the pointers in tracey, so each operation takes time O(d hy) = O(dlogn)
for updating these pointers and recalculating their partial sums. insert more-
over takes O(d) to create a new list element and update its expected number
of 2 pointers and partial sums.

> SEARCHSUMLIST (£ = (71, ...,7,), S, 1)
t «— hy (the height of £)
k1
o T
while t > 0 do
oP¥ « partial sum stored at level-t pointer of 7,
7; + tuple the level-t pointer of 75, points to
if (7, = nil) or (o; + ¢ > S) then
| t—t—1
else
og«—0o+o
- k1
return (k, 7, 0)
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Algorithm 38: Search Sum List. This algorithm implements the operation search(S,1).
It searches in the sum list £ for the minimal k& with af > S.

The implementation of search(S,:) requires a slightly different search, see
Algorithm 38: When we follow the pointers of level ¢, we sum up the partial
sums on the pointers to ¢ as long as o; < S. If o; would become > S, then we
decrease the level by one and proceed with the pointers of level £ — 1. Since
this takes on average O(logn) steps and each step takes O(d) time, the total
time needed for search is O(dlogn).
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A.3 LAGAN Sources

This is the complete source code of the LAGAN program that we described in
Chapter 15.

#include <iostream>
#include <segan/seeds.h>
#include <seqan/file.h>

'llSiIlg namespace seqan,

//define some constants
int const gaps_max = 1000; //minimal sequence length for chaining

int const gq_max = 13; //start value for q
int const q_min = 7; //minimal q
int const limit = 20; //local seed chaining limit

int const bandwidth = 5; //local seed chaining bandwidth

int const score_min = 30; //minimal score for local seed chaining
SimpleScore const scoring_scheme(3, -2, -1, -3); //scoring scheme
int const B = 7; //width for banded alignment

//function laganChaining
template <typename TSeed, typename TSegment, typename TSize>
void laganChaining(std::1ist<TSeed> & chain,

TSegment const & a,

TSegment const & b,

TSize q)

if ((length(a) <= gaps_max) && (length(b) <= gaps_max)) return;

//Step 1: find seeds

typedef typename Value<TSeed>::Type TPosition;

typedef SeedSet<TPosition, SimpleSeed, DefaultScore> TSeedSet;
TSeedSet seedset(limit, score_min, scoring_scheme);

typedef Index< TSegment, Index_QGram<SimpleShape > > TQGramIndex;
TQGramIndex index_qggram(b);

typedef Finder<TQGramIndex> TFinder;
TFinder finder (index_qggram);
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while (length(seedset) == 0)

{

}

if (q < q_min) return;
resize(indexShape (index_qgram), q);

for (int i = 0; i < length(a)-qg+1; ++i)

{
while (find(finder, infix(a, i, i+q)))
{
typedef typename Position<TFinder>::Type TPosition;
TPosition a_pos = beginPosition(a)+i;
TPosition b_pos = beginPosition(b)+position(finder);
if ('addSeed(seedset, a_pos, b_pos, q, 0, Merge()))
if ('addSeed(seedset, a_pos, b_pos, q, host(a), host(b),
bandwidth, Chaos()))
addSeed(seedset, a_pos, b_pos, q, Single());
}
clear(finder);
}
q-=2;

//Step 2: global chaining
globalChaining(seedset, chain);
clear(seedset);

//Step 3: recursively fill gaps
if (q > q_min)

{

std::1ist<TSeed> subchain;
typedef typename std::1list<TSeed>::iterator TIterator;

TIterator it = chain.begin();
TIterator it2 = it;
++it2;

laganChaining(subchain,
infix(host(a), beginPosition(a), leftDimO(*it)),
infix(host(b), beginPosition(b), leftDiml(*it)), q);
chain.splice(it, subchain);

while(it2 !'= chain.end())
{
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int main( int argc, const char* argv[] )

{

laganChaining(subchain,
infix(host(a), rightDim0(*it), leftDimO(*it2)),
infix(host(b), rightDiml(*it), leftDiml(*it2)), q);
chain.splice(it2, subchain);

it = it2;
++it2;
}
laganChaining(subchain,
infix(host(a), rightDimO(*it), endPosition(a)),
infix(host(b), rightDiml(*it), endPosition(b)), q);
chain.splice(it2, subchain);

//1load sequences

typedef String<Dna> TString;

TString a = String<Dna, FileReader<Fasta> >(argv[1]);
TString b = String<Dna, FileReader<Fasta> >(argv[2]);
if ((length(a) == 0) || (length(b) == 0))

{
std::cout << "Error - file problem" << std::endl;
return 1;

X

//LAGAN

typedef Seed<int, SimpleSeed> TSeed;
std: :1list<TSeed> chain;

//Step 1 to 3

laganChaining(chain,
infix(a, 0, length(a)),
infix(b, 0, length(b)), g_max);

//Step 4: banded alignment

Align<TString, ArrayGaps> alignment;

resize(rows(alignment), 2);

setSource(row(alignment, 0), a);

setSource(row(alignment, 1), b);

int score = bandedChainAlignment(chain, B, alignment, scoring_scheme);

//print results
std::cout << "Score: " << score << std::endl;

std::cout << alignment << std::endl;

return O;
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seed based, Sec 11.2
segment  match
Sec 13.2.3
Smith-Waterman, Sec 11.1.1
Waterman-Eggert, Sec 11.1.2
alignment problem, 86
Alloc (spec), 39, 43, 63, 67-69, Fig 14
allocate (Func), 96, 98
Allocator (Class), 57, Tab 1
allocator, 56
runtimes, 58, Fig 11
usage, 56
alphabet, 55, 59
simple, 59
size, 59, 103
types, 60, Tab 1
amino acid, 3
AminoAcid (Class), 60, 84
antidiagonal, 132

refinement,
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append (Func), 72
appending seeds, 95, 165
appendValue (Func), 66, 69
approximate
motif finding, 125
string matching, 115, Sec 10.3
algorithms, 117, Tab 15
best algorithm, 122, Fig 30
argument-dependent name lookup,
35
Array (Spec), 67-69
array string, 66, Sec 8.3.2
arrayCopy (Func), 60
ArrayGaps (Spec), 80-82
assembly, Sec 1.2.1
assign (Func), 63
assignable, 28, 29
assignValue (Func), 59
atEnd (Func), 62
Automaton (spec), 158, 160
Automaton (Tag), 159
automaton, 160, Sec 13.1

Backward Factor Searching, 107

banded alignment, 94, 100, Fig 25,
Sec 9.6.4, 181

bandedAlignment (Func), 129

bandedChainAlignment (Func), 100,
184

basic contents of SeqAn, Ch 7

BATS (software library), 12

begin (Func), 62

begin position, 65, 84

begin view position, 80

beginPosition (Func), 103

bellman_ford_algorithm (Func), 160

BFAM (spec), 104, 109, 111

BFAM algorithm, Sec 10.1.4, 108,
Alg 12

BFAM<QOracle> (Spec), 109

BFAM<Trie> (Spec), 109

BfsIterator (Tag), 109

binary search, 147

INDEX

Bio++, 12
Bioperl, 12
Biopython, 12
Bioruby, 12
Bioconductor, 13
bioinformatics

libraries, Sec 2.2

sequences, Sec 1.1
BioJava, 13
biological sequence, 3
biopolymer, 3
bits, 69
BitsPerValue (Meta), 59, 71
blank, 79
BLAST, 6, Sec 1.2.2
Blat (Tag), 135
Block (spec), 68-70, Fig 15
block string, Sec 8.3.3
Blosum30 (Class), 84
Blosum62 (Class), 84
Blosum80 (Class), 84
BNDM algorithm, 108, Sec 10.1.5,

109, Alg 13

BndmAlgo (spec), 104, 109
bottom seed, 95, 180, 183
bottom-up traversal, 153, Alg 32
BottomUp (spec), 155
breadth_first_search (Func), 160
brute-force searching, Sec 10.1.1
BTL (software library), 13
bunch, 141
byte, 69

C++, Sec 5.1

C-style string, 33, 72

capacity, 66

chain, 95

chain score, 96

chaining, 11, 94, Sec 9.6, 180
gap scoring schemes, 98, Fig 24
generic, 96, Alg 6
global, 94
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local, 132, Sec 11.2.2, 134,
Alg 24, Fig 31
sparse dynamic programming,
99, Alg 7
ChainSoP (spec), 98, 99
changing gaps, 164
Chaos (Tag), 135, 180
ChunkPool (Spec), 57
ClassPool (Spec), 57
clear (Func), 56, 57
Clustal W, Sec 1.2.3
clustering, 7, 93
agglomerative, 93
neighbor-joining, 93
codon, 3
cols (Func), 84
comparator, Sec 8.7
compatible alignments, 164
components of tools, 9, Fig 4
computeGenerousCapacity (Func), 67
concat (Func), 76, 77
ConcatDirect (Spec), 76
concatenator, 77, 141
concept, 28
conclusion, Ch 16
container, 55
container (Func), 61
contiguous sequence, 65
conversion, 55, Sec 7.6
Convert (Meta), 62
convert (Func), 62
convertAlignment (Func), 165
convertInPlace (Func), 74
core design, 27
count sort, 143
counting of string values, 41, Alg 1
createlracle (Func), 163
createQGramIndexSAOnly (Func), 143
createSuffixArray (Func), 145, 146
createSuffixTrie (Func), 161
createTrie (Func), 161

dag_shortest_path (Func), 160
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database growth, 4, Fig 1
DDDoc, see DotDotDoc
deallocate (Func), 56, 58
DefaultIteratorSpec (Meta), 61
DefaultOverflowExplicit (Meta),
66
DefaultOverflowImplicit
66

deferred data structure, 141
deoxyribonucleic acid, see DNA
Dependent (Spec), 77
dependent type, 37
depth_first_search (Func), 160
descriptor, 157
design

examples, Ch 6

goals, Sec 4.2

of SeqAn, Ch 4

quality, Ch 14

techniques, Ch 5
dfa, 160
DfsPreorder (Tag), 159
diagonal, 129
dictionary, 99
dijkstra (Func), 160
dimension (of a seed), 95
Directed (spec), 158
directed graph, 157
directory table, 143
distance

of seeds, 85

of sequences, Sec 9.3.2
distribution (of SeqAn), Sec 14.2.1
DNA, 3, 60
Dna (Class), 37 43 60 71 73 75
Dna (Spec), 104
Dnab (Class), 60, 73
documentation, Sec 14.2.2
DotDotDoc, 176, Fig 41
DotDrawing (Tag), 64
DPSearch (spec), 117
dynamic function binding, 36

(Meta),
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dynamic programming, 5, 7, 86, 87,
96, 100
sparse, 97
chaining, 99, Alg 7
maximum weight trace, 166,

Alg 36

edge, 157
EdgeDescriptor (Meta), 157
EdgeIterator (Tag), 159
edit distance, 84, 86, 92, 115, 117,
118, 122
EM-algorithm, 137
Embl (Tag), 63, 64
EMBOSS, 12
end (Func), 62
end gap, 92
end position, 65, 84
end view position, 80
end-gaps free alignment, Sec 9.5.4
endPosition (Func), 103
enhanced suffix array, 125, 150,
Sec 12.3
EPatternBranching (spec), 137
ESA_BUWT (Tag), 151
ESA_ChildTab (Tag), 151, 153, 155
ESA_LCP (Tag), 141, 150, 151, 153
ESA_SA (Tag), 141, 151, 153
ESA_Text (Tag), 141, 151
Exact (Tag), 66
exact motif finding, 125
exact pattern matching, 103,
Sec 10.1
algorithms, 104, Tab 13
best online algorithm, 110,
Fig 28
expandable, 66
extendSeed (Func), 130, 131
extendSeeds (Func), 130
extensibility, 24, Sec 4.2.5, 34, 173
extension, see seed extension
External (spec), 68, 71
external string, Sec 8.3.5
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factor, see segment
automaton, 107
based searching, 107, Alg 11
oracle, 160, 162, Fig 36
construction, 163, Alg 35
trie, 162
construction, 161, Alg 34
False (Tag), 66
Fasta (Tag), 63, 64
Fiber (Meta), 141
fiber, 141
of g-gram index, 145, Tab 23
of suffix array, 151, Tab 25
file formats, 64, Tab 3
DotDrawing (Tag), 64
Embl (Tag), 64
Fasta (Tag), 64
Genbank (Tag), 64
Raw (Tag), 64
file input/output, Sec 7.7
file reader string, 63
FileReader (spec), 63, 181
£ill (Func), 66
filtering, 120
find (Func), 101, 102, Fig 26, 103, 111,
116
findBegin (Func), 103, 116
finder, 101
finding, see motif finding, see search-
ing
findMotif (func), 136
floyd_warshall (Func), 160
ford_fulkerson (Func), 160
free gap, 92
function overload resolution, 30
functionals, 11

gap, 79, 80
column, 83
costs

affine, 84
linear, 84
leading, 80
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pattern, 79, 192
scoring for chaining, 98, Fig 24
trailing, 80
gapped g-gram, 45, 142
gapped sequence, 79, Sec 9.1, 80
runtimes, 83, Fig 20
GappedShape (Spec), 47, 142
GappedValueType (Meta), 61
GappedXDrop (Tag), 130, 132
Gaps (Class), 79, 80, Fig 19, Tab 8, 81—
83
ArrayGaps (Spec), 81
SequenceGaps (Spec), 81
SumlistGaps (Spec), 82
GenBank, 4, Fig 1
Genbank (Tag), 64
gene, 3
generality, 23, Sec 4.2.3, 28, 34, 172
generic, 21, 33
generic programming, 11, 12, 16, 24,
27, 28, Sec 5.2, 33, 173
GenericShape (Spec), 50, 51
Generous (Spec), 76
Generous (Tag), 66, 67
genome assembly, Sec 1.2.1
getFibre (Func), 141
getOccurrences (Func), 154
GetValue (Meta), 56
getValue (Func), 56, 65
global alignment, 86, Sec 9.5
global chaining, 94, 96, 180
global function, 33
global interface, 16, 27, Sec 5.4, 172,
173
globalAlignment (Func), 38, 87, 93
globalChaining (Func), 97, 183
goNext (Func), 63
Gotoh (Tag), 87, 88
Gotoh’s algorithm, Sec 9.5.2, 90,
Alg 3
Graph (class), 157, 158, Tab 27, 159,
160
Alignment (Spec), 163
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Automaton (Spec), 160
Directed (spec), 158
Hmm (Spec), 158
Tree (Spec), 198
Undirected (Spec), 158
WordGraph (spec), 158
graph, 157
algorithms, 160, Tab 29
alignment graph, Sec 13.2
automata, Sec 13.1
data structures, Ch 13
directed, 157
undirected, 157
graph iterators, 159, Tab 28
AdjacencyIterator (Tag), 159
BfsIterator (Tag), 159
DfsPreorder (Tag), 159
EdgeIterator (Tag), 159
OutEdgeIterator (Tag), 159
VertexIterator (Tag), 159
greedy, 8
guide tree, 8, 93

Hamming distance, 121, 139
HammingHorspool (Spec), 121
HardwiredShape (Spec), 50, 51, 142
hash (Func), 46, 48, 51
hashing
locality-sensitive, 46, Fig 7
runtimes, 51, Fig 9
hashNext (Func), 49, 51
haystack, 101
heaviestCommonSubsequence (Func),
165
hierarchical
clustering, 7, 93
verification, 120
hierarchy of refinements, 24
Hirschberg (Tag), 39, 87, 90
Hirschberg’s algorithm, Sec 9.5.3, 91,
Alg 4, 92, Fig 23
Hmm (Spec), 158
Horspool (spec), 103-105, 109
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Horspool’s algorithm, 105,
Sec 10.1.2, 106, Alg 9
Human Genome Project, 4

Index (Class), 141, Tab 21
Index_ESA (Spec), 150
Index_QGram (Spec), 142
Index_Wotd (Spec), 141
PizzaChili (Spec), 141

index, 141
enhanced suffix array, Sec 12.3
g-gram, Sec 12.1
suffix array, Sec 12.2

index data structure, Ch 12

Index_ESA (Spec), 141, 150

Index_QGram (Spec), 141, 142

Index_Wotd (Spec), 141

Infix (Meta), 74

infix, 74

infix (Func), 75

infix searchlng, 116

integration, Sec 4.2.6, 34, 173

interface, 33

intersecting alignments, 128

inverse suffix array, 147, 151

IsContiguous (Meta), 66

IsSimple (Meta), 60

Iter (Class), 155, Tab 26
BottomUp (spec), 155
MUMSs (Spec), 155
MaxRepeats (Spec), 155
MultiMEMs (Spec), 195
ParentLinks (Spec), 195
StdIteratorAdaptor (Spec), 73
SuperMaxRepeats (Spec), 155
TopDown (Spec), 155

Iterator (Meta), 61, 62, 159

iterator, 11, 55, 61, Sec 7.5, 159, see

Iter (Class)
of suffix trees, 155, Fig 26
iterator types
Rooted (Tag), 61
Stable (Tag), 62

INDEX
Standard (Tag), 61
Tupac (Class), 60
Java, 13
k-mismatch problem, 121
koenig lookup, see argument-

dependent name lookup
kruskals_algorithm (Func), 160

LAGAN, Ch 15, 180, Alg 37
algorithm, 179, Fig 43
run times, 185, Fig 44
source code, Sec A.3
LarssonSadakane (Tag), 147
LCP table, 145, Fig 33, 151,
Sec 12.3.1
construction, 152, Alg 31
leading gap, 80
leftPosition (Func), 95
length, 65
length (Func), 33, 41, 45, 72
Levenshtein distance, 86
lexical, 76
lexicographic order, 75
LGPL, 177
libcov, 13
library
design, 11, 19, 21, Ch 4, 28
examples, Ch 6
for bioinformatics, Sec 2.2
quality, Ch 14
tool stitching, Sec 2.2.1
library-spanning programming, 45
libsequence, 13
linear gap costs, 84
loadMeta (Func), 63
local alignment,
Sec 11.1
Smith-Waterman algorithm, 127,
Alg 19
Waterman-Eggert
128, Alg 20

6, 86, 125, 126,

algorithm,
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local chaining, 132, Sec 11.2.2, 134,
Alg 24, Fig 31, 180

localAlignment (Func), 126

localAlignmentNext (Func), 128

locality-sensitive hashing, 46, Fig 7,
138

L0g2 (Meta), 38

logo of SeqAn, 15, Fig 5

longest common prefix, 75, 151

table, see LCP table
longest common substring, 151

ManberMyers (Tag), 147
Manhattan (spec), 98, 99
match refinement, 167, Fig 39
MatchExtend (Tag), 130
matchRefinement (Func), 167
maximum likelihood estimation, 137
maximum weight trace problem, 86,
94, 165, Sec 13.2.2, 166,
Alg 36
MaxRepeats (Spec), 155
member function, 33
memory allocation, Sec 7.2
memory usage
TagAllocateStorage (Tag), 56
TagAllocateTemp (Tag), 56
Merge (Tag), 135
merge sort, 146
merging seeds, 132
meta data, 63
metafunction, 11, 16, 27, 36, Sec 5.5
metaprogramming, Sec 5.6.1
method (in OOP), 33
metric, 85
mismatch, 121
searching, Sec 10.4.1
ModExpand (spec), 60
modifier, 60, 73
ModifierString (Class), 73, Tab 6
ModReverse (Spec), 73
ModView (Spec), 73
ModReverse (Spec), 73
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ModView (Spec), 73
monomer, 3
most general function, 30
motif, 125
in multiple sequences, Sec 11.3
model, 136
OMOPS (Tag), 136
00PS (Tag), 136
TCM (Tag), 136
ZOOPS (Tag), 136
occurrence, 136
exact, 136
motif discovery, see motif finding
motif finding, 86, 125, Ch 11
algorithms, 137, Tab 20
PMSP, 139, Alg 26
Projection, 138, Alg 25
Smith-Waterman, 127, Alg 19
Waterman-Eggert, 128, Alg 20
heuristic, Sec 11.3.1
MotifFinder (Class), 136, 137
Move (Tag), 59
move, 55
constructor, 59
operation, 58, Sec 7.2
move (Func), 63
moveValue (Func), 09
mRNA, 3
MultiBFAM (Spec), 111
MultiMEMs (Spec), 155
Multiple BFAM algorithm,
Sec 10.2.2, 115, Alg 15
multiple pattern matching, Sec 10.2
algorithms, 111, Tab 14
best online algorithm, 114,
Fig 29
multiple sequence motif, Sec 11.3
MultipleShiftAnd (Spec), 111
MultiPool (Spec), 57
MultiSeed (Spec), 95
MUMs (Spec), 155
Myers (Spec), 117
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Myers’ algorithm, Sec 10.3.2, 119,
Alg 17, Sec A.1
MyersHirschberg (Tag), 87, 91

NCBI C++ Toolkit, 14

needle, 101

Needleman-Wunsch algorithm, 11,
Sec 9.5.1, 88, Fig 22, 89,
Alg 2

NeedlemanWunsch (Tag), 38, 87

neighbor-joining, 7, 93

node, 157

non-gaps, 80

nucleobase, 3

nucleotide, 3

object-oriented programming, 21, 27,
32, Fig 6, 33, 171

OMOPS (Tag), 136-139

online searching, 103

OOP, see object-oriented program-
ming

00PS (Tag), 136, 137

open-closed principle, 24, 33

optimal alignment, 85

oracle, 107, 162, Fig 36

construction, 163, Alg 35

ord, 59, 143

ordValue (Func), 45, 59

OutEdgeIterator (Tag), 159

overflow strategy, 66, Sec 8.2, Tab 4

overlap alignment, 5, 86

overlapping seeds, 132

overload resolution, 38

Owner (Spec), 76, 77

Owner<ConcatDirect> (Spec), 77

Packed (spec), 68, 71, Flg 17
packed string, Sec 8.3.4
pairwise motif finding, 125
Pam (Spec), 84

ParentLinks (Spec), 195
parseString (Func), 160
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partition filtering, Sec 10.3.3, 120,
Alg 18
path label, 160
in a suffix tree, 151
Pattern (Class), 103, 105, 107, 117,
121
HammingHorspool (Spec), 121
Horspool (spec), 105
WildShifAnd (Spec), 121
pattern, 101
pattern matching, 101, Ch 10, 125
performance, 21, 22, Sec 4.2.1, 28,
32,171
Pex (Spec), 117
PEX algorithm, Sec 10.3.3
PizzaChili (Spec), 141
PMS1 (Spec), 137
PMSP (spec), 137, 139, Alg 25
POD (plain old data), 60
polymorphism, 24, 30, 172
pool allocator, 57, Fig 17, 58
POp (Func), 69
position, 65
position (Func), 103
position table, 143
positive definiteness, 85
Prefix (Meta), 74
prefix, 74
prefix (Func), 75
prefix searchlng, 116, 117
prims_algorithm (Func), 160
progressive alignment, 7, 8, Fig 3,
Sec 9.5.5, 94, Alg 5
Projection (Spec), 137, 138, Alg 25
projection, 83
property map, 157
protein, 3
proxy class, 56
pseudo container, 55
push (Func), 69

q-gram, 7, 142
gapped, 142



INDEX

hashing, 139, 142
index, Sec 12.1, 144, Fig 17
construction, 144, Alg 27
fibers, 145, Tab 23
ungapped, 142
QGram_Dir (Tag), 145
QGram_SA (Tag), 145
QGram_Shape (Tag), 145
QGram_Text (Tag), 145
quality of SeqAn, Ch 14

R (programming language), 13

random access, 65

Raw (Tag), 63, 64

read (Func), 63, 64, 84

Reference (Meta), 56

reference, 55

refinement, Sec 4.2.4, 29, 32, 167,
171, 172

regular expression, 123, Tab 16

removeEdge (Func), 157, 158

removeGapCols (Func), 83

removeVertex (Func), 157

repeat, 153

replace (Func), 66

repLength (Func), 154

representative (Func), 154

reserve (Func), 66

residue, 3

resize (Func), 66, 142

reusability, 9

reverseInPlace (Func), 74

ribonucleic acid, 3

rightPosition (Func), 95

Rna (Class), 60

Rnab (Class), 60

Rooted (Tag), 61

rooted iterator, 61

TOwWS (Func), 83

runtime

for alignment algorithms, 172,
Tab 30
for hashing, 51, Fig 9
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for searching, 110, Fig 27
approximate, 122, Fig 30
exact, 110, Fig 28
multiple, 114, Fig 29

of allocators, 58, Fig 11

of gapped sequences, 81, Tab 9,

83, Fig 20

of strings
appending values, 70, Fig 16
for random access, 68, Fig 13

safe shift width, 105, 112
SAQSort (Tag), 147
scan, 160
SCL (software library), 14
Score (Class), 64, 84, Tab 10, 98
ChainSoP (Spec), 98
Manhattan (Spec), 98
Pam (Spec), 84
ScoreMatrix (Spec), 84
Simple (Spec), 84
Zero (Spec), 98
score, 7
alignment, 85
chain, 96
sum of pairs, 85
ScoreMatrix (Spec), 64, 84
scoring scheme, 84, Sec 9.3.1
script languages, Sec 2.2.1
searching, Ch 10, 102, Fig 26
approximate, Sec 10.3, 117,
Tab 15
Myers, Sec 10.3.2, 119, Alg 17
partition filtering, Sec 10.3.3,
120, Alg 18
runtimes, 122, Fig 30
Sellers, Sec 10.3.1, 118, Alg 16
exact, 104, Tab 13
BFAM, Sec 10.1.4, 108, Alg 12
BNDM, Sec 10.1.5, 109, Alg 13
brute-force, Sec 10.1.1, 105,
Alg 8
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factor based search, 107,
Alg 11
Horspool, Sec 10.1.2, 106,
Alg 9

runtimes, 110, Fig 27, Fig 28
Shift-Or, Sec 10.1.3
k-mismatch problem, Sec 10.4.1
motifs, see motif finding
multiple, 111, Sec 10.2, Tab 14
Multiple BFAM, Sec 10.2.2,
115, Alg 15
runtimes, 114, Fig 29
Wu-Manber, Sec 10.2.1, 113,
Alg 14
with mismatches, 121
with wildcards, Sec 10.4.2
Seed (Class), 95, Tab 12, 126, 129, 181
MultiSeed (Spec), 99
SimpleSeed (Spec), 95
seed, 7, 94, Sec 9.6.1, 128, 165, 167
adding modes, 135, Tab 18
bottom, 95
chain, 95, 132
chain score, 96
combination, Sec 11.2.2
dimension, 95
extension, 129, 130, Tab 17
gapped X-drop, 133, Alg 23
match extension, 130, Alg 21
ungapped X-drop, 131, Alg 22
top, 95
weight, 95
seed based motif finding, Sec 11.2
seed extension, Sec 11.2.1
SeedSet (Class), 135, 181
segment, 74, Fig 18, Sec 8.6, 182
host, 74

match refinement, 167,
Sec 13.2.3
Sellers’ algorithm, Sec 10.3.1, 118,
Alg 16
semi global alignment, 86
SeqAn, 15

INDEX

documentation, 176, Fig 41
library design, Ch 4
logo, 15, Fig 5
project, Ch 3
sequence, 65, Ch 8
adaptor, Sec 8.4
analysis, 1, Ch 1, 11
examples, Sec 1.2
assembly, 5, Sec 1.2.1
databases, 4, Fig 1
distance, 85, Sec 9.3.2
in bioinformatics, Sec 1.1
modifier, Sec 8.5
similarity, 6, 85, Sec 9.3.2
sequence analysis, 5
SequenceGaps (Spec), 80-82
sequencing
read, 5
shotgun, 6, Fig 2
setBegin (Func), 74
setEnd (Func), 74
SetHorspool (Spec), 111
setLeftPosition (Func), 95
setPosition (Func), 103
setRightPosition (Func), 95
setScoreLimit (Func), 116
setWeight (Func), 95
Shape (class), 45, 47, 48, 50, 51, Fig 8,
142, Tab 22, 143
GappedShape (spec), 142
HardwiredShape (Spec), 142
SimpleShape (Spec), 142
UngappedShape (Spec), 142
shape, 45, 142
Shift-Or algorithm, 105, Sec 10.1.3
ShiftOr (spec), 104, 109
shim, 25, 33, 42, 44, 173
shortcut, 39, Sec 5.6.3, 172
shotgun sequencing, 5, 6, Fig 2
similarity ~ (of  sequences), 85,
Sec 9.3.2
Simple (Spec), 84, 104
simple type, 59, 65, see alphabet
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SimpleAlloc (Spec), o7
SimpleChain (Tag), 135
SimpleSeed (Spec), 95, 129, 181
SimpleShape (spec), 47, 48, 50, 51,
142
simplicity, 23, Sec 4.2.2, 30, 32
Single (Tag), 135
single nucleotide polymorphism, 13
SinglePool (Spec), o7
Size (Meta), 37 43
skew algonthm, 145
Skew3 (Tag), 147
Skew7 (Tag), 146, 147
skip list, 99, 192
Smith-Waterman algorithm, 127,
Alg 19
software development, 10
software library, 1, 9, Ch 2
software tools
BLAST, Sec 1.2.2
Clustal W, Sec 1.2.3
LAGAN, Ch 15
source, 79
source (Func), 81
source position, 79
span (Func), 4648
span (of a shape), 142
sparse dynamic programming, 11,
97, 165
chaining, 99, Alg 7
maximum weight trace, 166,
Alg 36
specialization, 24
Allocator (Class), 57, Tab 1
Gaps (Class), 80, Tab 8
Graph (Class), 158, Tab 27
Index (Class), 141, Tab 21
Iter (Class), 155, Tab 26
ModifierString (Class), 73, Tab 6
Score (Class), 84, Tab 10
Shape (Class), 142 Tab 22
StringSet (Class), 76, Tab 7
String (Class), 68, Tab 5
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specializationSeed (Class), 95, Tab 12
stability, Sec 14.2
Stable (Tag), 62
stable iterator, 62
stable sort, 143
stable sorting, 146
Standard (Tag), 61
start gap, 92
static function binding, 36, 51
StdIteratorAdaptor (Spec), 73
streams, 65
String (Class), 33, 35, 41, 43, 63, 65,
67, 68, Tab 5, 173, 176, 181
Alloc (spec), 67
Array (spec), 69
Block (Spec), 69
External (Spec), 71
FileReader (spec), 63
Packed (spec), 71
string, 4, 65, Sec 8.1, see
String (Class)
runtimes for appending, 70,
Fig 16
runtimes for random access, 68,
Fig 13
value counting, 41, Alg 1
string indices, Ch 12
string set, Sec 8.8
id, 77
StringSet (Class),
141
ConcatDirect (Spec), 76
Dependent (Spec), 77
Generous (Spec), 76
Owner (Spec), 76 7
Tlght (Spec), 76
stringToShape (Func), 142
suboptimal local alignments, 128
substring, see segment
Suffix (Meta), 74
suffix, 74
suffix (Func), 75

65, 76, Tab 7, 77,
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suffix array, 10, 11, 141, 145, Fig 33,
Sec 12.2, 151
construction, 145, 147, Tab 24,
148, Alg 29, 149, Alg 29
enhanced, 141, 150, Sec 12.3
fibers, 151, Tab 25
searching, 147, 150, Alg 30
suffix tree, 11, 125, 141, 150-152,
Fig 34
bottom-up traversal, 153, Alg 32
iterators, 155, Fig 26
suffix trie, 161
sum list, 82, 192, Sec A.2, 193, Fig 45
searching, 193, Alg 38
sum of pairs score, 85, 93
SumlistGaps (Spec), 8082
supermaximal repeat, 153, 154,
Alg 33
SuperMaxRepeats (spec), 153, 155
supply array, 162
sweep line, 96
Swiss-Prot, 4, Fig 1
switch argument, 66
symmetry (of distance metric), 85

tag class, 31, 38

tag dispatching, 38, Sec 5.6.2, 172

TagAllocateStorage (Tag), 56

TagAllocateTemp (Tag), 56

TCM (Tag), 136

techniques used in SeqAn, Ch 5

template, 28

template subclassing, 16, 24, 27,
Sec 5.3, 30, 31, 33, 36, 38,
50, 51, 172, 173

testing, 174, Sec 14.2.1

Tlght (Spec), 76

tool stitching, Sec 2.2.1

tools, see software tools

top seed, 95, 180, 183

TopDown (Spec), 155

topological_sort (Func), 160

ToStdAllocator (Class), o8
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Trac, 175, Fig 40

trace, 86, 164, Fig 38
unique, 164

trailing gap, 80

transcription, 3

transitive_closure (Func), 160

translation, 3

Tree (Spec), 158

Tree (Tag), 159

triangle inequality, 85

trie, 107, 160, 161, Fig 35
construction, 161, Alg 34
factor trie, 162
suffix trie, 161

triplet extension, 94

True (Tag), 66

type traits, 11

Undirected (Spec), 158

undirected graph, 157

ungapped q-gram, 48, 142
UngappedShape (spec), 48, 50, 51, 142
UngappedXDrop (Tag), 130

unique trace, 164

unstable, 62

usability, Sec 14.2

Value (Meta), 36, 41, 42, 45, 55, 72
value, 55

size, 60

type, 28, 36, 42, 47, 55
value (Func), 41, 44, 45, 65, 77
valueById (Func), 77
ValueSize (Meta), 37, 41, 43, 45, 59
vertex, 157
VertexDescriptor (Meta), 157
VertexIterator (Tag), 199
view, 80
view position, 79
virtual function, 32

Waterman-Eggert algorithm, 128,
Alg 20
weight
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of a seed, 95
of a shape, 142
weight (Func), 95
wildcard searching, 121, Sec 10.4.2
syntax, 123, Tab 16
WildShifAnd (spec), 121
WordGraph (spec), 158
write (Func), 63, 64, 84
Wu-Manber algorithm, Sec 10.2.1,
113, Alg 14
WuManber (Spec), 111

X-drop, 131

X-drop extension, 131
gapped, 133, Alg 23
ungapped, 131, Alg 22

X-drop extension, 7

Zero (Spec), 97-99

zero terminated string, see C-style
string

Z0OOPS (Tag), 136
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