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Preface

The first part of the thesis in Chapter 3 was published in the journal Science, as part
of a collaborative study that addressed the first application of RNA-Seq experiments
to two human cell lines in 2008 [147]. The methods for prediction and quantification
of alternative isoforms and their application presented in Chapter 3 and 4 appeared
in the journal Nucleic Acids Research in 2010 [129]. The last part about the de novo
transcriptome assembly method Oases has not been published yet, but a manuscript
is in preparation. The successful application of Oases to human, fly, and worm RNA-
Seq data will be published in the report about the RGASP competition this year.

My contributions to these papers was the design of statistical methods and the anal-
ysis of alternative splicing with junctions reads for the Science paper. I designed,
implemented, and analyzed the CASI and DASI method. I was involved in the con-
ception and analysis of the POEM method, analysis of the exon array data, as well
as primer design for the PCR experiments and their evaluation. I implemented a
preliminary R version of the initial steps of the transcriptome assembler, addressing
loci and trivial transcript reconstruction. I developed the theory in Section 5.1 and
made the analysis with Oases in Sections 5.3 and 5.4. I was involved in the algorithm
design in Section 5.3 and error analysis of the Oases software. I did the transcriptome
assembly and parts of the downstream analysis for the RGASP submissions.

There are a number of other contributions that are unfortunately not in the thesis. I
have implemented linear time algorithms for the construction of variable order Markov
chains and the first algorithm for the score distribution computation for ontological
similarity searches, presented at the WABI conference in 2008 and 2009 [142, 141].
Also I designed and implemented a linear time truncated suffix tree algorithm [140].
Further, I was involved as a co-author in projects about clinical diagnostics with
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ontologies [81], basepair-precise breakpoint detection of human structural variations
in resequencing data [27, 170], the influence of highly conserved sequence elements
on gene expression [132, 54], and algorithms for frequency pattern mining [164].
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Chapter 1

Introduction

1.1 DNA, Gene Expression, and Alternative

Splicing

DNA

The deoxyribonucleic acid (DNA) molecule is the carrier of the genetic information in
our cells. Each DNA molecule consists of the four nucleotides Adenine (A), Cytosine
(C), Guanine (G), and Thymine (T). It is organized as a double-helix and the two
strands of the DNA molecule are complementary to each other. The base-pairing is
fixed, where A is complementary to T and G is complementary to C. The formation
of the double-helix from two single strand molecules is called hybridization, which
is an important step of many of the experimental procedures explained later. The
complete genome is composed of a set of different DNA molecules which are called
chromosomes. Eukaryotes, i.e., organisms that have cellular nuclei, store the chromo-
somes in the nuclei of their cells. For example humans have 23 chromosomes which
amount to a total of 3 billion nucleotides and each chromosome appears in two copies
in each cell .

An important functional unit on a chromosome is the gene. The central dogma in
molecular biology is that gene regions are transcribed to ribonucleic acid (RNA),
which is then translated to proteins. In RNA molecules the nucleotide Thymine is
replaced by Uracil (U) and is often single stranded compared to DNA. The half-life
of RNA molecules is shorter than that of DNA molecules.
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Figure 1.1: All exons of a gene are transcribed into the pre-mRNA. The splicing ma-
chinery removes intron sequences and may additionally remove some of the exons
through the process of alternative splicing. These mRNAs are then translated into
different proteins. Inspired by an illustration in [56].

Gene Expression

A gene is composed of exons and introns. Exons are the essential parts of the mes-
senger RNA (mRNA) that is the template sequence for the protein, whereas introns
mostly have a regulatory rule. The complete gene region is first transcribed into a
precursor mRNA (pre-mRNA) molecule that consists of exons and introns, see Fig.
1.1. The process of transcription is controlled by proteins, called transcription fac-
tors, that bind in or near the promoter region that resides directly upstream of the
gene. A process called splicing is inititated by RNA binding proteins called splicing
factors and the intron sequences of the pre-mRNA are removed. The recognition of
intron-exon boundaries is facilitated through the detection of short sequences called
splice sites. Polyadenylation is the addition of a poly-A tail, consisting of a series of
Adenine nucleotides, to an RNA molecule. The process of polyadenylation is initiated
by binding of proteins to a polyadenylation site in an untranslated region of an exon
in the pre-mRNA. After splicing and polyadenylation of the pre-mRNA, the final
mRNA is obtained. The poly-A tail is important for the transport of the mRNA to
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1.1 DNA, Gene Expression, and Alternative Splicing

the cell cytoplasm and controls further the half-life of the mRNA. The processes of
transcription, splicing, and polyadenylation are most likely coupled [80].

Alternative Exon Events

There are three important mechanisms that change the final exon content of a gene’s
mRNA; alternative splicing, alternative promoters, and alternative polyadenylation.
Altogether, these events are summarized as alternative exon events (AEEs). Different
mRNAs from the same gene are called alternative isoforms. Exons that are involved
in at least one AEE of a gene are called alternative exons, all other exons of a gene
are called constitutive.

Figure 1.2: Depicted are possible alternative
splicing events. Reproduced from [12].

Alternative splicing (AS) is the mech-
anism by which a common pre-mRNA
produces different mRNA variants, by
extending, shortening, skipping, or in-
cluding exon, or retaining intron se-
quences. An overview of possible AS
events is shown in Fig. 1.2. The
combinatorics of such AS events gen-
erates a large variability at the post-
transcriptional level accounting for an
organism’s proteome complexity [17,
104], see Fig. 1.1. It has been estimated
that 75-92% of all human genes give rise
to alternative isoforms [75, 119, 158].

The transcription of a gene can be in-
titiated from alternative promoters due
to regulation of transcription factors, re-
sulting in different pre-mRNAs that per-
form alternative functions in the cell [40].
Inititation of polyadenylation can simi-
larly be done from different regions in
the pre-mRNA through binding of polyadenylation factors. These factors recognize
the polyadenylation site, a short sequence in untranslated regions of exons. If two
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Chapter 1 Introduction

different polyadenylation sites are used in a pre-mRNA, mRNAs with different 3’
ends are produced, which is called alternative polyadenylation [174]. There can be
a coupling between alternative exon events, for example if transcription is initiated
from an alternative promoter there might be additional alternative splicing of some
of the exons, see Fig. 1.2. Various gene isoforms generated by AEEs have specific
roles in particular cell compartments, tissues, stages of development, etc. In addition,
many diseases (e.g. cancer) have been related to alterations in the splicing machinery,
highlighting the relevance of AS to therapy [36, 51, 79].

1.2 DNA sequencing

The field of DNA sequencing has a diverse history. In the early 1990s DNA sequencing
was conducted dominantly trough application of Sanger sequencing using capillary-
based semi-automated sequencers, see Fig. 1.3a. Sanger sequencing was used for
sequencing a large fraction of genomes currently used in modern databases, including
the human genome [83, 154]. In the past few years a number of sequencing technolo-
gies have been developed that are parallelizable and therefore able to create more
sequence output compared to convential Sanger sequencing. These are collectively
called next-generation sequencing (NGS) approaches. Although these approaches
differ in biochemistry they all follow the principle of cyclic-array sequencing, where
colonies of immobilized DNA features are sequenced in iterative cycles of enzymatic
reactions and imaging-based data detection, see Fig. 1.3b. These technologies have
been released as commercial products, e.g., the Solexa Genome Analyzer (marketed
by Illumina, San Diego), the SOLiD platform (marketed by Applied Biosystems; Fos-
ter City; CA, USA), 454 Genome Sequencers (Roche Applied Science; Basel), and
the HeliScope Single Molecule Sequencer technology (Helicos; Cambridge, MA, USA).
These technologies create reads of length 25 - 250 bps and with up to 40 million reads
per run.

1.3 Methods for Detection of Alternative Splicing

Systematic analysis of alternative isoforms was based on the analysis of expressed
sequence tags (ESTs), splicing microarray experiments, or RNA sequencing using
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1.3 Methods for Detection of Alternative Splicing

NGS technologies (RNA-Seq). ESTs have been initially used for the detection and
prediction of alternative splice forms in different organisms and cell types [17, 55, 88,
169].

Expressed Sequence Tags

mRNA sequences from expressed genes cannot be cloned directly, and are thus reverse
transcribed to double-stranded complementary DNA (cDNA). The resultant cDNA is
cloned to make cDNA libraries that represent a set of expressed mRNAs of the original
cell or tissue. These cDNA clones are sequenced at random from both directions in
a single-pass run of the polymerase without validation or sequencing full-length to
obtain 5’ and 3’ expressed sequence tags (ESTs). These ESTs range in length between
100 to 800 bps. The first human gene map was constructed using ESTs [139] and a
large collection of ESTs for different species can be found in dbEST [14]. However,
EST sequencing showed inherent limitations associated with cloning strategies, non-
uniform transcript coverage and low abundance for individual tissues [55, 87].

Splicing Microarrays

The first genome-scale detection methods for the measure of alternative splicing were
splicing microarrays. In microarrays small DNA oligonucleotides (called probes) are
attached to a solid surface. The probes can be designed to hybridize against comple-
mentatry DNA or RNA target samples of, for example, known genes. The strength
of the hybridization is quantified by detection of fluorescence labeled targets [136].
Splicing microarrays come in different variants using exon body probes (exon arrays)
and/or probes spanning splice junctions (exon junction arrays) [75, 88, 12, 29, 85].
Custom arrays, combining exon body and splice junction probes were designed and
used for quantifying transcript expression levels [120]. The standard platform pro-
vided by the Affymetrix human exon array allows the monitoring of 106 exons de-
rived from 18,000 known genes and approximately 262,000 predicted transcripts [28].
However, several problems inherent to the use of splicing microarrays, such as probe
hybridization behaviour, cross hybridization of related probes, and deconvoluting
signal-to-noise ratios [87] are difficult to overcome. For instance, for the human
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Chapter 1 Introduction

Figure 1.3: Work flow of Sanger sequencing versus next-generation sequencing. (a)
With high-throughput shotgun Sanger sequencing, DNA is fragmented and subse-
quently cloned to a plasmid vector and transformed into E. coli. A single bacterial
colony is selected for each sequencing reaction and the DNA is isolated. Each cycle
sequencing reaction creates a ladder of dye-labeled products, which are subjected to
electrophoretic separation in one run of a sequencing instrument. A detector for flu-
orescently labeled fragments of discrete sizes in the four-channel emission spectrum
facilitates the sequencing trace. (b) In next-generation shotgun sequencing, common
adaptors are ligated to fragmented genomic DNA. The DNA is treated to create
millions of immobilized PCR colonies, called polonies, each containing copies of a
single shotgun library fragment. In cyclic reactions, sequencing and detection of fluo-
rescence labels determines a contigous sequencing read for each polony. Reproduced
from [143].

Affymetrix exon arrays, the validation rate ranges from 33% [52] to 86% [28]. Be-

6



1.4 Thesis Organization

sides, the computational analysis of exon arrays remains a complex task [168, 126].

RNA-Seq

The sequencing of expressed RNAs with NGS approaches is abbreviated as RNA-
Seq. In this work it means in particular sequencing of mRNAs. In 2008 a number
of papers appeared that applied RNA-Seq to transcriptomes of different organisms
[113, 31, 117, 147, 98, 158, 93, 119] and many followed since then. These papers and
reviews [32, 13, 161] have established RNA-Seq experiments provide in-depth informa-
tion on the transcriptional landscape with unprecedented sensitivity and throughput
and outperform the previous techniques of EST sequencing and splicing microarrays.
RNA-Seq experiments are highly reproducible [107, 147] and have increased sensitiv-
ity, therefore more statistical power for the detection of differentially expressed genes,
alternative splicing events, and unannotated transcriptional units.

The basic protocol consists of the following steps (i) polyadenylated RNAs in the
biological sample are extracted, (ii) these RNAs are converted into more stable cDNA
molecules which are randomly sheared, (iii) a size selection on the sheared fragments
is done for optimiziation of later steps or paired-end sequencing, (iv) the fragments
are amplified and adapters are ligated to the fragments, and finally (v) sequencing
of the fragments is carried out using an NGS approach (Figure 1.4). Reads can be
obtained from only one end of a fragment (single-end sequencing) or from both ends
of a fragment (paired-end sequencing). For paired-end sequencing the approximate
fragment size or insert length is used for distance estimates between both ends. The
reads in the basic protocol loose their orientation and therefore it is not known from
which strand of the DNA the mRNA originates.

1.4 Thesis Organization

Sequences and Graphs in Computational Biology Chapter 2 introduces
definitions for strings and graphs. A short introduction to sequence alignment is
given and the two main approaches for genome assembly are introduced. The Velvet
genome assembler is explained in detail. Further, approaches for EST assembly are
presented and the splicing graph is introduced.
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Figure 1.4: Summary of the basic RNA-Seq protocol. As a first step in the protocol only
polyadenylated RNAs are extracted. The exact protocol varies mostly in the aspects
of shearing the cDNA (e.g. nebulization or sonication), the strategy of amplification
(before/after fragmentation), and the type of sequencing (i.e. single end or paired
end sequencing). In the basic protocol the orientation of the reads is lost.

Prediction of Alternative Isoforms In Chapter 3 a set of methods is introduced
that enable the detection of AEEs within or between conditions using a given gene
annotation. All methods are based on a stochastic model of the read distribution
along a transcript that is introduced. At first the detection using reads spanning exon-
exon junctions is investigated. Secondly, two statistical indices, the Cell type-specific
Alternative uSage Index (CASI) for prediction of AEEs within a given condition, e.g.
one cell line, and the Differential Alternative uSage Index (DASI) for prediction of
AEEs differentiating two conditions are introduced. All methods are applied to a
data set from a human embryonic kidney (HEK) and a B cell line. The robustness
of the predictions was assessed by bootstrapping. Several thousands of AEEs were
predicted and RT-PCR experiments were conducted for validation. In addition, a
comparison of splicing prediction by RNA-Seq to predictions made from exon arrays
with the same sample is given.
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1.4 Thesis Organization

Quantification of Alternative Isoforms Chapter 4 descibes a new method
for inferring isoform expression levels from RNA-Seq data. The PrOportion Es-
tiMation (POEM) method enables the relative quantification of known transcript
structures within a given condition. Using the Poisson distribution an Expectation-
Maximization approach is utilized in the POEMmethod for maximizing the likelihood
of the data and computing the isoform expression levels. The POEM method is ap-
plied to RNA-Seq data of the HEK and B cell line and isoform expression levels for
sufficiently expressed genes are estimated, after investigating the theoretical power of
the method with simulations. Quantitative RT-PCR experiments were used to assess
the accuracy of the predictions.

De Novo Assembly of Transcripts considering Alternative Isoforms In
Chapter 5 the first method for the de novo assembly of an organism’s transcriptome
from short read RNA-Seq data is introduced. The approach is based on de Bruijn
graphs. Similarities to splicing graphs are explored and a theory for de novo predic-
tion of AEEs is developed. Based on the graph structure and error correction steps
of the Velvet genome assembler, new algorithms are presented that derive transcript
clusters, called loci, from short read data and predict full length transcripts for each
cluster. A merged assembly approach is devised that improves the results. An ap-
plication to real data demonstrates the improvement compared to de novo genome
assemblers that have been utilized so far for RNA-Seq datasets. Further a comparison
with a transcriptome assembler that uses the genome is made.
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Chapter 2

Sequences and Graphs in

Computational Biology

2.1 Definitions

2.1.1 Strings

Let w be a string or sequence over the aphabet Σ. The length of string w is denoted
|w| and the size of Σ is denoted |Σ|. The ith character of a string w is denoted by w[i].
If 1 ≤ i ≤ j ≤ |w|, then w[i, j] denotes the substring beginning at the ith position and
ending at the jth position, inclusive. If there exists, i, j such that v = w[i, j], then
v is called a substring of w. The number of occurrences of a substring v in a string
w is denoted as occw(v). Let posw(v) be the first starting position of substring v in
string w. A string of length k is called a k-mer. The k-spectrum(w) is the set of all
k-mers that are substrings of w. Analogously, let k-spectrum(v, w) be the set of all
k-mers that are substrings of v or w. The reverse complement string of w is denoted
←−w . Concatenation of two strings w and v is denoted wv. A string w overlaps v if
there exists a maximal length non-empty string x which is a prefix of w and a suffix
of v.

11



Chapter 2 Sequences and Graphs in Computational Biology

2.1.2 Graphs

A graph G = (V,E) has nodes V and edges E. Each edge contains a pair of nodes
v and w, v, w ∈ V . An edge is directed if one endpoint is designated the head and
the other the tail. A directed graph denoted as digraph has only directed edges. If
an edge has no direction it is undirected. A directed edge is called ingoing at a node
if the node is an endpoint for the edge and outgoing if the node is the startpoint for
the edge. The indegree indeg(v) of node v is the number of ingoing edges and the
outdegree outdeg(v) the number of outgoing edges. The degree of node v is denoted
deg(v) and is equal to the sum of all ingoing and outgoing edges of v. A complete
graph is a graph such that every pair of nodes is joined by an edge. The underlying
graph of a digraph is the graph that results from replacing all directed edges with
undirected edges.

A walk or path from node v1 to node vk is a sequence v1, e1, . . . , ek−1, vk , alternating
between nodes and edges, such that the endpoints of edge ei are vi and vi+1, for
i = 1, . . . , k − 1. A walk is called cyclical if its endpoints v1 and vk are the same. A
graph is called acyclic if it contains no cyclical walk. A graph is said to be connected
if there exists a walk between every pair of nodes in the underlying graph. A graph
that is acyclic and directed is called an acyclic directed graph (DAG).

2.1.3 Sensitivity and Specificity

Sensitivity and specificity are measures of the performance of classification tests.
Let TP be the number of true positive predictions, FP the number of false positive
predictions, and FN be the number of false negative predictions, then

Sensitivity =
TP

TP + FN
(2.1)

Specificity =
TP

TP + FP
. (2.2)

For example, in Chapter 5 the exon sensitivity and exon specificity are used to assess
the prediction performance against known transcript annotation. Exon specificity
denotes the proportion of correct predictions among all predictions, whereas exon
sensitivity denotes the proportion of correctly predicted exons among all annotated
exons. A common way to compare the tradeoff between the two measures is the
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Receiver Operating Characteristic (ROC) curve, which depicts the prediction perfor-
mance of a classifier as sensitivity on the x-axis and 1-specificity on the y-axis.

2.2 Sequence Alignment

Probably the most fundamental task in computational biology is sequence alignment.
A sequence alignment is a way of arranging the letters of DNA, RNA, or protein
sequences to identify regions of similarity due to structural, functional, or evolution-
ary relationships between the sequences. In a pairwise alignment two sequences are
aligned against each other and in a multiple alignment more than two sequences are
aligned. An alignment is called global if it spans the full length of the sequences and
it is a local alignment otherwise. A local alignment between sequences is also called a
match. Pairwise alignments can be solved in optimal O(ab) time for two sequences of
length a and b [162]. However, in practice programs often resort to heuristics that are
not guaranteed to return the optimal alignment. In most of the cases a seed & extend
strategy is utilized, i.e., starting from exact subsequences as seeds the alignment is
extended with more accurate but time-intensive algorithms [162]. Due to the short
length of sequencing reads from next-generation sequencing machines that have to
be aligned against complete genomes, a number of new approaches have been devel-
oped [96, 94, 130, 84, 163, 65]. These programs differentiate between read matches
that are unique and non-unique. An alignment or match is unique, if it is the only
best scoring alignment, where the score is often just sequence identity but might also
include the quality of the sequencing read [94]. If several alignments have the same
score it is non-unique. It is a topic of current research how to handle non-unique
matches [60, 113].

Spliced Alignment

If cDNA or EST sequences are to be aligned against the genome, the alignment
program has to consider the introns that are in the genome. The cDNA is said to
be "spliced" against the genome and therefore this type of alignment is called spliced
alignment. Most of the programs use a predictor for splice sites in order to improve
exon boundary prediction and resort to seed & extend strategies. Routinely used
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programs include est_genome [114], sim4 [49], Blat [78], and Exonerate [145]. RNA-
Seq read spliced alignment is especially difficult and an approach based on known
annotations is presented in Section 3.2.1. More recent developments are discussed at
the end of Chapter 3.

2.3 Data structures and Algorithms for Genome

Assembly

In the following the two most prominent approaches to de novo genome assembly
are introduced. The first one is based on the Overlap-Layout-Consensus paradigm
that proved useful for a number of whole genome assemblies, for example Drosophila
[115]. The second one is based on an Eulerian path approach to genome assembly
using de Bruijn graphs [123]. A classical measure for the comparison of genome
assemblies produced by different programs is the N50. Given a set of sequences of
different lengths, the N50 length denotes the length N for which 50% of all bases in
the sequences are in a sequence of length l < N , that is why it is sometimes called
median weighted contig length. Analogously, the N25 and N75 are defined.

2.3.1 Genome Assembly with the Overlap-Layout-Consensus

Paradigm

The traditional approach to genome assembly is the Overlap-Layout-Consensus (OLC)
paradigm, which consists of the following three phases:

1. Overlap: In an all-against-all comparison of reads, pairwise overlaps between
read sequences are discovered. The comparison is done using a heuristic seed &
extend approach by finding a set of common k-mers between two reads, which
are used as seeds for an alignment between them.

2. Layout: An overlap graph, where the nodes are the reads and edges indicate
overlap between two reads, is manipulated and gives an approximate layout
of the read sequences. In this phase uniquely assemblable contigs (unitigs)
are produced by collecting fragments whose layout is uncontested by overlap
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of other fragments. Repeat resolution of the intermediate fragments groups
unitigs into larger structures called scaffolds.

3. Consensus: In the final phase, a multiple sequence alignment from the reads
determines the exact read layout and the final consensus sequence.

The OLC paradigm was ideal for assemblies based on long Sanger reads and successful
softwares include among others the Celera assembler [115] , Arachne [7, 73], and CAP3
[68]. A few works also adapted the OLC paradigm for reads of length a few hundred
bases from next-generation sequencing based approaches like 454 [106, 109] and even
for short reads from Illumina or SOLiD [64, 66]. The assembly problem is to find
a Hamilton path that visits each node exactly once in the overlap graph, which is
known to be NP-complete.

2.3.2 Genome Assembly Using the Eulerian Path Paradigm

Different from the idea to create an overlap graph between the reads to find the best
layout in the graph, Idury and Waterman [70] and later Pevzner, Tang and Waterman
[123] suggested to build a de Bruijn graph of the sequencing reads.

Definition 2.3.1. A de Bruijn graph of dimension k has nodes V that represent
k-mers and edges E that represent all suffix-to-prefix perfect overlaps between the
k-mers in V . These overlaps have a fixed size of k-1.

In the original definition by de Bruijn [41] V is the k-spectrum(Σn), i.e., the set of all
possible k-mers of an alphabet Σ. Therefore the graph has Σn · |Σ| many edges. In
the paper by Pevzner et al. nodes V represent all k-mers observed in the reads and
edges E represent all overlaps between k-mers observed in the reads [123]. Therefore,
Pevzner’s de Bruijn graph is sometimes called simply word graph or k-mer graph as
it is in most of the cases a subgraph of the original de Bruijn graph [103, 110]. In this
work, all de Bruijn graphs are built from data and are thus subgraphs of the original
de Bruijn graph.

The main idea for the use of de Bruijn graphs for genome assembly is that, in the per-
fect case where error-free reads have complete genome coverage and no repeats longer
than k exist, the genome would form a de Bruijn graph that contains the genome
sequence as an Eulerian path. An Eulerian path in a graph, is a path that traverses
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each edge exactly once, that is why the program was called the Euler assembler [123].
It was hoped that this approach could lead to a polynomial time algorithm. How-
ever, the task is to find an Eulerian path that includes all the read paths, as so called
superwalk. Medvedev et al. [108] formulated this as the De Bruijn Graph Superwalk
problem and showed that it is NP -hard for |Σ| ≥ 3 and any positive integer k.

De Bruijn Graphs for Short Read Data

Although the OLC and the de Bruijn graph approach are NP -hard, the de Bruijn
graph approach is very appealing for genome assembly from a set of millions of
short reads. Most importantly, the time consuming overlap computation in the OLC
paradigm is substituted by the detection of overlaps of size k-1 as a direct result of the
graph construction. The graph construction is efficiently done using hash table based
approaches. In addition, because the de Bruijn graph compresses the information of
overlapping reads to the extend that reads share k-mers, it leads to a more compact
representation of the original reads, especially compared to the overlap graph, where
each node is a read.

Unfortunately, the de Bruijn graph approach suffers a number of practical problems
with short read data: (i) Each repeat in the data that is longer than k induces a
cycle and complicates the genome reconstruction and (ii) the influence of sequencing
errors in the read data increases with size k. Further, the data are double barreled
and the original orientation of a read is unknown, which complicates the algorithms
(this is true for the OLC approach as well).

Many different assembly algorithms have been designed to cope in different ways
with the aforementioned problems, often inspired by approaches introduced in the
Euler assembler. Among others, these programs include Euler-SR [25, 24], Velvet
[172, 173], Allpaths [20, 100], ABySS [144], and more recently SOAPdenovo [97].
The graph construction and error correction procedures of Velvet are explained in
detail, because a de novo transcriptome assembler based on Velvet is presented in
Chapter 5.
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Figure 2.1: The basic steps of Velvet from hashing, simplification of chains, and error
correction by tip clipping and bubble removal. Reproduced and modified from [48].
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Figure 2.2: An excerpt of a de Bruijn graph in Velvet for k=5. A series of overlapping
k-mers (shown above or below) is associated with each node (rectangle) in the graph.
The sequence of last nucleotides (in red) of the associated k-mers in a node denotes
the sequence of the node. The attached twin node recognizes the reverse series
of reverse complementary k-mers. Directed edges are shown as arrows. The last
k-mer of an edge’s origin overlaps with k − 1 nucleotides with the first k-mer of
its destination. For example the edge from the node labeled "CTG" to the node
labeled "ATTG" represents the overlapping string "ACTG" of length k−1. Note the
opposing direction of edges between two nodes due to the symmetry of twin nodes.
Both nodes on the left could be simplified as they represent a chain. Reproduced
from [172].

2.3.3 The Velvet Genome Assembler

Velvet first hashes all the reads according to a fixed k-mer length [172], with the
program velveth. k has to be odd to ensure that a k-mer cannot be the reverse com-
plement of itself. Then a de Bruijn graph from the k-mers in the data is constructed
with the program velvetg. After construction of the graph chains of nodes are simpli-
fied without loss of information, similar to unitigging in overlap graphs, by collapsing
them into one node. These steps and the following error correction procedures are
depicted in Figure 2.1. Note that a de Bruijn graph can be directly build in its
simplified form, thereby reducing peak memory consumption [127].

In order to accommodate data with unknown read orientation a k-mer stored in a
node in Velvet has its reverse complement k-mer represented in a so called twin node,
see Fig. 2.2. As described in the figure legend, the length of a node n in Velvet is the
marginal information of each node (red sequence) and is denoted ln. Any operation
on a k-mer node in the graph is symmetrically performed on its twin node.
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Error Correction

There are three essential error corection steps for the graph which are depicted in
Figure 2.1. The first is tip clipping. A tip is a node that has only one connection
and is likely to represent a sequencing error. A tip connected to a node n is removed
when its length is smaller than 2k, to account for two overlapping errors, and when
its edge has the smallest number of supporting reads among other edges connected to
n. Secondly, small bubbles in the graph are removed by the Tour Bus algorithm, that
extracts neighboring paths in a bubble and aligns them against each other. Whether
two paths are merged is decided based on three thresholds. (i) Both paths must
have less than 200 nodes, (ii) their respective sequences must be shorter than 100
bps, and (iii) the sequence similarity between them must be at least 80%. Lastly, a
coverage cutoff for nodes that have not been removed through the previous corrections
is applied based on the notion of the k-mer coverage (k-cov) of a node n:

k-cov(n) =
Yn · (r − k + 1)

ln
, (2.3)

where Yn is the number of reads in the node and ln is the length of the node. By
default k-cov(n) = 3.

Scaffolding with Paired-end Reads

As most of the short read assemblers, Velvet utilizes paired-end reads to scaffold
contigs. The first algorithm, called Breadcrumb [172], was later substituted by the
Pebble algorithm [173] that explores distances from unique nodes. Unique nodes
are flagged by coverage statistics and the shortest path between two unique nodes is
found by a heuristic depth-first search. The distance between two nodes is estimated
using the maximum likelihood estimator that was used in the greedy-path-merging
algorithm in overlap graphs [69]. The estimated distance d between two nodes using
paired-end reads is computed as:

d =

∑m
i=1

Xi
σ2
i∑m

i=1
1
σ2
i

, (2.4)

where Xi is the distance according to the i-th read pair and σ2
i the variance of the

insert length of the i-th pair.
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Scaffolding with Long Reads

In addition to paired-end reads, Velvet can make use of long reads, e.g., contigs from
previous assemblies. The algorithm, called Rock Band, uses long reads to resolve
repeats. Each path between two unique nodes, supported by at least two long reads
and not contradicting any other long read, is merged and possibly missing sequence
is filled from the long reads [173].

2.4 Data Structures and Algorithms for EST

Assembly and Analysis

2.4.1 EST Assembly

In order to assemble EST sequences the first step involves clustering ESTs. The
purpose of EST clustering is to collect overlapping ESTs related to the same gene.
There are two common approaches. When a reference sequence is available the ESTs
can be aligned with a spliced alignment algorithm (see section 2.2) and all ESTs
mapping in genomic proximity can be analyzed further [118, 37, 167]. If no reference
sequence for mapping is available, the ESTs are often clustered by computing all
pairwise alignments between them similar to the overlap phase in genome assembly.
Different criteria, like sequence similarity, are defined to form final EST clusters
[139, 111, 89, 125].

After EST clusters have been defined, the task emerges to predict consensus sequences
that possibly represent full length transcripts of a gene. At first, methods for nor-
mal genome assembly, have been used to create single isoforms [118], like the TIGR
assembler [89] or CAP3 [68]. However these methods treat the ESTs only as linear
sequences. A change in thinking occurred with the proposal of the splicing graph.

2.4.2 Splicing Graphs

The splicing graph was introduced by Heber et al. [62] as follows. Let {T1, . . . , Tz} be
the set of transcript sequences that are given for the gene of interest. Every transcript
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sequence Ti is described as a set of genomic positions Vi with Vi 6= Vj, for i 6= j. The
complete set of all transcribed positions V = ∪zi=1Vi is defined as the union of all sets
Vi [62]. The splicing graph SG = (V,E) is the directed acyclic graph on the set of
transcribed positions V that contain an edge from v to w if and only if v and w are
consecutive positions in at least one transcript Tj. In such a graph every transcript
Tj is represented as a path. Although the SG is the union of z such paths, there
might be paths in SG that do not correspond to a transcript Tj.

It is common to simplify the graph by collapsing all nodes v in SG where indeg(v) =

outdeg(v) = 1, which leads to a more compact representation. Splicing graphs have
been used with slight modifications to the original definition of Heber et al. [86, 23,
134]. One important addition to the original definition are start and end nodes in the
graph [45, 134, 133, 23]. The start node is connected to each smallest genomic position
of a transcript Ti, i.e., for each Ti there is an edge from the start node pointing to
minVi. Analogously for each Ti there is an outgoing edge from each maxVi pointing
to the end node in a SG. Only when a start and end node are defined, the splicing
graph can be used to detect the complete set of alternative exon events defined in
section 1.1 [133].

A main feature of splicing graphs is that nodes v with indeg(v) > 1 or outdeg(v) > 1

are a witness of an alternative exon event. Many algorithms exist for predicting
pairwise AEEs, i.e., considering each AEE in isolation to other AEEs, from ESTs
and cDNA data [86, 23, 134, 45, 57]. Only recently, the classification of ESTs into
complete AEEs was done by Sammeth [133]. Sammeth introduced an algorithmic
framework designed to facilitate the extraction of minimal subgraphs in the splicing
graph that explain AEEs between a fixed number of transcripts. In his work he defines
a bubble as the minimal subgraph that describes the deviation of intersecting paths of
transcripts in the splicing graph. The dimension of the bubble is the minimal number
of paths that disagree inside the bubble. Importantly, this leads to the observation
that each AEE is represented in a bubble. For later reference, this fact is formulated
for the pairwise case with two transcripts in the next lemma:

Lemma 2.4.1. Consider a splicing graph SG build from two transcripts Ti and Tj.
Each bubble in SG describes an AEE between the two transcripts [133].

A bubble is a cycle in the underlying subgraph. It is straightforward to see that two
isoforms have different paths in the splicing graph. The intersecting edges or nodes
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in the graph where these paths diverge and converge are created by an AEE between
them.

The primary use of splicing graphs is to facilitate the extraction of possible AEEs
or possible transcript sequences for a gene. This has been exploited to define the
AEE landscape for different species on a genome level [134, 23] and a number of
databases exist that have catalogued AEEs for different species using splicing graphs
[150, 90, 50].

Note that Heber et al. [62] and later Malde et al. [103] described how to construct
a splicing graph from k-mers of the EST data by constructing a de Bruijn graph.
This approach is extended to compute the complete transcriptome without reference
annotation from RNA-Seq data in Chapter 5.
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Chapter 3

Prediction of Alternative Isoforms

3.1 Prediction of Alternative Splicing Events from

RNA-Seq Data

Here, we provide a set of methods that enable the detection of alternative exon
events (AEEs) within or between conditions using a given gene annotation. First
direct detection with short reads that map to splice junction sequences between two
exons are investigated. Subsequently the detection of AEEs using read that map to
exonic regions of genes are investiaged, The Cell type-specific Alternative uSage Index
(CASI) predicts AEEs within a given condition, e.g. one cell line. The Differential
Alternative uSage Index (DASI) predicts AEEs differentiating two conditions, e.g.
between two cell lines. All methods are based on a stochastic model of the read
distribution along a transcript and show high robustness based on simulations. The
methods were applied to a new RNA-Seq dataset from HEK and B cell lines.

3.1.1 A General Stochastic Count Model for Transcriptome

Analysis

All reads from an RNA-Seq experiment are of the same length r, usually around 25-
76 bps. Due to the nature of the RNA-Seq protocol, which involves random shearing
of the mRNA molecules (see Section 1.3), it is assumed that the set of sequenced
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fragments is picked randomly out of a bag of transcript positions. We assume that
the total number of reads T covering a gene is determined by a Poisson process:

T ∼ P(λ · s · p), (3.1)

where s is the total length of the gene, p is the sample-relative proportion of the
gene compared to all other expressed genes in the sample, and λ is a normalizing
factor related to sampling depth or transcript length. The Poisson framework is
suited especially for low-coverage datasets, where a normal distribution cannot serve
as a good approximation [22]. This model has already been proposed for abundance
of EST data [5], as well as SAGE libraries [8]. Marioni et al. [107] have further
demonstrated that the variation across technical replicates of RNA-Seq experiments
can be captured using a Poisson model, as only 0.5% of the genes showed a statistically
significant deviation from the model.

For ease of notation, the approach is described for one gene, but all formulas can
be extended for a set of genes. Due to the hypothesis that the reads are positioned
randomly along every transcript, the number of observed reads within exons

Y = (Ye)e=1...n (3.2)

is drawn according to a multinomial distribution

M((pe)
n
e=1 · T ) . (3.3)

The probability pe that a read falls in exon e is parameterized for every gene according
to the properties of the RNA-Seq experiment. An obvious parameter for pe is the
effective length le of an exon. The effective exon length corrects for exonic regions
where reads of length r cannot be uniquely mapped due to highly homologous gene
families, pseudogenes, repeats or low sequence complexity. Any other information
affecting the read coverage – such as GC bias or a bias specific to the protocol used
– can be optionally included in the definition of effective exon length. Finally, the
normalized expression ỹe of an exon e is defined as the observed exon read count ye
normalized by the exon relative proportion and the gene length:

ỹe =
ye
pe · s

. (3.4)

In Chapter 4 the model is extended to individual transcripts of a gene.
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Computation of Normalized Exon Expression Levels

For each gene, all exons were extracted from the annotated transcript database (En-
sembl v.46 [47]) and concatenated, considering the longest exonic form. For the
resulting virtual transcripts the sequence of all possible transcript reads of length r,
in our case 27 bp, was extracted. All transcript reads were mapped with the Eland
software (Gerald module v.1.27, Illumina) against the human genome and flagged as
either unique or non-unique reads. For each exon e, φe = {unique reads in e} is
recorded and the effective exon length

le =
|φe|
s
, (3.5)

is computed, assuming a uniform read distribution. This apporach also removes the
reads that are shared by duplicated genes or repeat regions within genes. In addition,
overlapping gene regions from different strands were excluded from the analysis, as
the orientation of the RNA-Seq reads was unknown (see 1.4). This provided the
theoretical total number of unique 27-mers representing a given exon. Only 517
genes in the set had exons devoid of any unique read (

∑
e le = 0) and ca. 1,000

genes were poorly represented (
∑

e le < 0.4). As suggested above le is plugged into
the normalized expresson ỹe for an exon (3.4).

3.2 Prediction of Alternative Splicing Events with

Exon Junction Read Evidence

3.2.1 Reference based Spliced Alignment of RNA-Seq Reads

First the procedure is explaind that was utilized to map short reads against the
genome, as well as to identify known and possibly new exon-exon junctions given
transcript annotations. Recall the definition of the splicing graph introduced in Sub-
section (2.4.2), one obvious approach is to map the reads against the edges in the
graph, as all edges correspond to splicing events. The complete splicing graph is de-
fined in order to identify previously unobserved exon-exon junctions that agree with
a given gene annotation. The complete splicing graph has the same nodes and edges
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as the splicing graph, but contains in addition all possible transitive edges, see Fig.
3.1.

A dataset of splice junction sequences from the complete splicing graph was generated
for different databases, such that the coverage of detected events was increased. For
every annotated gene locus retrieved from the UCSC database
(hg18, http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/) and from the
ElDorado database including EST sequences (Genomatix, release 05/2007) a com-
plete splicing graph was constructed. Splice junctions sequences of length 50-52
bps were retrieved, centered on the junction between the connected exons. In to-
tal 2,334,049 and 2,828,506 splice junctions for all gene complete splicing graphs of
UCSC and ElDorado were obtained, respectively.

A B 

Figure 3.1: A) Depiction of a complete splicing graph for a gene with normal edges
(plain) and a new transitive edge (dashed). The dashed edge represents potentially
novel splicing events. B) The splice junction sequences adjacent to each edge are
extracted and added to the database for read mapping. Reads mapping to the
sequences are indicated as black boxes.

Random Model for Junction Hits

The reads obtained from the sequencer were 27 bp long, which brought up the ques-
tion of what is the probability to obtain random matches on the large sets of extracted
splice junctions? A model to study the probability of random hits for reads of length
r on splice junctions of length j was considered. Depending on the matching strategy
up to σ substitution errors between the read and junction sequence are allowed to
occur. Assuming a uniform i.i.d. random model for DNA sequences the probability
P (r, σ, j) that a read of length r matches a splice junction of size j bps with no more
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than σ substitution errors is:

P (r, σ, j) = (j − r + 1)
σ∑
k−0

(
r

k

)(
3

4

)k (
1

4

)r−k
. (3.6)

The sum describes the possible sequences of length r that deviate by no more than
σ substitution errors [18] and the first factor gives the number of possible matching
positions along the junction sequence. The expected number of reads that match the
considered splice junctions is calculated by multiplying the number of splice junctions
J and number of considered reads R:

Er,σ,j,J ,R = P (r, σ, j) · J · R. (3.7)

Expected Number of Splice Junctions per Gene

The expected number of reads hitting splice junctions of a gene by chance is given
by:

EJ = Yex ·
Pr

1− Pr
, (3.8)

where Yex is the number of reads that fall inside exons of the gene, with Pr being the
probability that a read from a gene hits a junction and no exonic position:

Pr =
(m− 1) · (j − r + 1)

s− r + 1
, (3.9)

where s is the gene length, m the number of exons in the gene, and j the length of a
splice junction. The complete gene with all its exons was considered as one isoform,
but exons for which less than half of the positions corresponded to unique hits were
ignored for the estimation.

Identification of Alternative Splicing Events from Exon Junction Reads

After having mapped the reads to the complete splice graph, it is straightforward to
predict alternative splicing. An edge E is said to be expressed, if at least one read
maps uniquely to edge E. Given gene annotation all edges of the complete splicing
graph are flagged as either constitutive or alternative. Whenever an alternative edge is
expressed in a complete splicing graph, the gene is considered as alternatively spliced.
In the present analysis alternative edges in the graph describing skipped exons, 5’,
and 3’ alternative splice sites were considered, see Section 1.1.
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Figure 3.2: Distribution of the three major types of alternative splicing: cassette exons,
alternative 5’ and 3’ splice sites in the HEK (blue) and B (red) cell lines

3.2.2 Application to Human RNA-Seq data

The mRNA content of two human cell lines, a human embryonic kidney (HEK)
and a B cell lymphoma cell line were sequenced using single end RNA-Seq. In total
8,638,919 and 7,682,230 reads of length r = 27 for HEK and B cells were aligned to the
human genome (hg18, NCBI build 36.1) using Eland software (Gerald module v.1.27,
Illumina). The mapping criteria imposed by Eland allow up to two mismatches.
With this setup, 50% of the reads matched to locations unique in the human genome,
whereas 16-18% of the tags mapped to more than one genomic position (Table 3.1).

Reads not mapping to the genome were mapped in a second round to two sets of
extracted splice junctions from UCSC and ElDorado again with Eland, see above.
75,662 and 59,889 splice junctions were identified on the UCSC junction set, for
HEK and B cells, respectively. Whereas 69,952 and 56,000 splice junctions had reads
matching to the Eldorado junction set. The two resulting datasets from Eldorado and
UCSC were merged to have one reference data set of splice junctions. For merging
the genomic start and end positions of the splice junctions were compared with a
tolerance of +3/-3 bps. Redundant junctions were removed leading to a total set of
83,239 and 66,330 identified splice junctions for HEK and B cells, see Table 3.1.

On average 7.2 junctions per gene and a mean density of 3.8 reads per junction were
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observed. Although 29,689 junctions in HEK and 24,848 in B cells had only one
read, those were considered highly significant as at most 23 reads hitting a junction
by chance are expected in the entire dataset as computed using the random model
for junction hits. Splice junctions were associated with 81% of the expressed genes.
The fact that 2,275 expressed genes in HEK and 2,013 in B cells had no splice
junction reads correlats with the fact that those genes contain fewer exons and a lower
expression than the average, thus reducing the probability to hit a splice junction.

95% of the splicing events expected in this dataset were observed, given the current
sequencing depth (Table 3.1). A set of 4,096 novel splice junctions in 3,106 genes
were identified, mostly called by single reads and unique to one cell type. Many of
the new junctions were associated with actively transcribed genes exhibiting more
exons than average, pointing to rare splicing events. in total 6% of all splice junction
reads identified AS events (6,416 junctions in 3,916 genes in HEK and 5,195 junctions
in 3,262 genes in B cells, (Supplemental Table S0A-B).

Within a cell type, junction reads identify AS in 30% of the genes expressed genes,
where exon skipping was largely over-represented, see Fig. 3.2. An example of al-
ternative splicing is given for the 6th exon of the NONO gene (Fig. 3.5 A). It was
observed that splice junction reads allow the detection of very complex patterns of
AS. For instance, for the gene EIF4G1, coding for the eukaryotic translation initia-
tion factor 4 gamma, 12 AS junctions in B cells were found, of which five were novel.
While AS is known to regulate the expression of EIF4G1 [21, 34], such a complex
pattern was never described before.

3.3 Prediction of Alternative Isoforms with Exon

Expression Levels

In here we turn to exploit another source for the detection of alternative exon events,
namely the reads residing in exonic regions. For reads as short as 27 bp this con-
stitutes another rich source of information. First, a test framework to detect AEEs
occurring within a given cell type (CASI method) is provided and later a framework
to test the presence of different isoform patterns between two cell types or condi-
tions (DASI method). In both cases, a two-step procedure was applied, which (i)
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HEK cells B cells

Total reads 8,638,919 7,682,230
Low quality reads 234,160 194,999
Reads with non-unique matches 1,546,361 1,324,770
Reads with unique matches 4,640,112 3,895,643
Reads mapping to RNAs (Ensembl + Eldorado) 3,712,476 2,902,387
Ensembl genes with at least 5 reads 12,567 10,668
Ensembl genes with at least 1 read 14,963 13,739
Reads with no match to the genome 2,218,286 2,266,818
Reads aligned to splice junctions 307,904 229,453
Identified junctions (expected) 78,880 (81,302) 62,596 (66,981)
Genes (at least 5 reads) with junctions 10,292 8,655
Genes (at least 1 read) with junctions 10,558 8,910
Genes (at least 1 read) with novel junctions 2,078 1,732
Novel junctions 2,397 1,965
Novel junctions identified by > 1 read 203 182

Table 3.1: Analysis of the reference based mapping statistics for HEK and B cell RNA-
Seq data.
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detects genes with AEEs based on CASI and DASI p-values and (ii) highlights exons
predicted to be alternative according to a ze-score statistic. The ze-score statistic is
computed for each exon e as:

ze =
Re −median(R∗)

MAD(R∗)
, (3.10)

where R is defined according to each exon log normalized expression or expression
ratio (see below). The median and maximum absolute deviation (MAD) were used
as robust estimates of mean and standard deviation to avoid a bias for genes with
few exons. This statistic assumes that the majority of the exons are constitutive.

3.3.1 Alternative Exon Usage within a Condition

Under the null hypothesis that one transcript includes all the exons of the gene,
the counts within exons follow a multinomial distribution of parameters pe and T .
The presence of AEEs within a condition was assessed by using Pearson’s chi-square
test on Formula (3.3), where the p-value was corrected for multiple testing using
the Benjamini-Hochberg procedure [9]. A gene with a small CASI p-value means
either that (i) two or more transcripts from one gene are present or (ii) a single
isoform is present that expresses only a subpart of the annotated exon. Case (ii) can
correspond to events of alternative donor or acceptor sites, where only a part of the
exon is expressed. The zC score (CASI) is computed for each exon according to its
log-normalized expression

RC
e = log(ỹe). (3.11)

Exons with less than five counts were not considered for CASI computation. Only
genes with at least two expressed exons were tested. The CASI p-value was set to
0.05.

Simulations

In order to assess the theoretical accuracy for CASI, simulation of a single exon
skipping event for a template gene model were conducted. The inclusion rate of the
exon as well as the length of the skipped exon and the gene expression level varied.
Reads were drawn randomly along exons according to the distribution introduced
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Figure 3.3: (A) Boxplots of sensitivity and specificity (y-axis) for CASI AEE prediction
for different alternative isoform proportions (x-axis) based on simulations with 20%
noise. (B) Robustness estimation for predictions on HEK data shown as boxplots.
The change in predicted number of AEEs is shown relative to the total number of
predictions for the whole dataset (y-axis) for 500 bootstrap samples using a zCe ≤ −2.
The x-axis shows the reduction in length that was introduced to an exon at random
(p = 0.25).

previously. Noise was introduced by choosing one exon at random and artificially
modifying the proportion of reads mapping to it by 20%.

The simulations for CASI assumed a gene with six exons and a length of 150 bp
per exon. Different expression levels for two isoforms (proportion 0.05-0.95) were
simulated such that the total read number in all exons was 300. The proportion of
genes detected by CASI where the skipped exon was properly flagged as an AEE
(sensitivity) was evaluated. Similarly, the proportion of genes detected by the test
where only a truly skipped exon was predicted as an AEE (specificity) was evaluated.
For different levels of noise, 500 simulations on 1,000 genes were performed.

Figure 3.3A shows the specificity and sensitivity of CASI predictions with noise. The
predictions are very robust with >80% specificity. For low expression values of the
minor form the test is not able to predict the AEE. The sensitivity increases according
to the expression level of the minor isoform and for values between 0.65 and 0.8 it
reaches 100% sensitivity.
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Figure 3.4: Validation of the CASI method with splice junction reads and RT-PCR.
Left) Sensitivity of CASI predictions compared to splice junction reads. All AEEs
detected by at least 3 splice junction reads are taken as the positive set. The y-axis
shows the percentage of CASI AEEs that overlap with the positive set (Sensitivity)
for different values of zCe on the x-axis. Right) ROC curve of RT-PCR results (pos-
itive/negative) testing 61 AEEs predicted by the CASI method. Each exon tested
by RT-PCR was associated to its corresponding CASI zCe (numbers at each each
data point). The best qualifier uses a zCe ≤ −4 (dotted circle) with a specificity of
89% and sensitivity of 51%. Note that the sensitivity for CASI predictions derived by
comparison to splice junction reads (left figure) is highly similar with 48% sensitivity
for a zCe ≤ −4 in both cell lines.

Application to Human RNA-Seq Data

The CASI test was calculated for all genes expressing at least two exons in a given
cell line (12,140 genes in HEK and 10,417 genes in B cells). A total of 7,991 genes
in HEK and of 6,837 genes in B cells showed a significant CASI p-value (see above).
Data were filtered further by imposing a threshold on the CASI zCe ≤ −2 to yield
maximal sensitivity (see below). There remained 4,459 genes in HEK and 3,490 genes
in B cells with a significant CASI, for which 6,869 and 5,008 AEEs were predicted,
respectively. CASI predicted more than one AEE for 666 and 841 genes in HEK and
B cells, respectively. A total of 2,650 AEEs (in 2,428 genes) were shared between
HEK and B cells pointing to events common to very diverse cell types (Supplemental
Table S1 A-B).
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Sensitivity and Bootstrap Analysis

A data-based estimate of sensitivity for CASI predictions was derived for AEEs iden-
tified by reads mapping to splice junction sequences (see Subsection 3.2.1). The set
of identified AEEs with reads mapping to splice junction sequences was compared
to the set of AEEs predicted by CASI for varying zCe values, see Fig. 3.4A. At a
zCe ≤ −2, all AEEs identified by splice junctions were predicted by CASI, such that
the sensitivity reached 100%.

Local heterogeneity of the read distribution along a transcript could lead to false pos-
itive predictions. Possible sources for an uneven read distribution along a transcript
are preferred break points of the RNA fragments in the sample preparation step or a
higher sequencing efficiency for short cDNA fragments with certain sequence charac-
teristics [43, 113, 59, 95]. It was ruled out that such unevenness significantly affects
the predictions by performing a bootstrap procedure for each gene.

For each bootstrap sample (total of 500), each exon of a given gene was randomly
picked, with a probability of 0.25, and shortened on one end by 5, 10, 15 and 20%.
Only exons with more than 80 unique positions were shortened. The read count and
the effective exon length le for an exon were recomputed for each shortened exon and
treated as a new transcript annotation set. The prediction was repeated on every
new transcript annotation set. In this context, a highly uneven read distribution will
significantly impact the number of predictions. However, the predictions are shown
to be very robust with less than 5% relative error even when up to 20% of the exonic
region was removed (Fig. 3.3B).

Experimental Validation

In order to optimize the CASI predictions, a subset of predicted AEEs was tested by
RT-PCR. Though CASI does not provide indications on the nature of the detected
AEEs, the PCR experiments were designed for testing exon-skipping events, as it is
the most prevalent form of AS in this cell lines, as shown in Section 3.2.1. A selection
of 61 AEEs (50 in HEK and 11 in B cells) was tested, of which more than 50% had
CASI as the sole indicator of an alternative isoform (Supplemental Table S2). Thirty-
five CASI predictions were validated as true exon skipping events, of which 17 were
not supported by junction reads. This emphasizes the power of CASI in identifying
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Figure 3.5: (A) RT-PCR validation of a predicted AEE in the NONO gene in HEK
cells (CASI); it shows the observed exon-exon junction (blue arrows) and the corre-
sponding number of reads (above the arrows) for all exons of the three annotated
isoforms (Ensembl v.46). S1 and S2 primers are placed on the splice junctions of the
constitutive and the skipped forms, respectively (red dashed line) to uniquely amplify
two different splice variants of NONO. R1 and S3 primers were designed inside sur-
rounding exons. Exons not considered in CASI analysis are marked by an asterisk.
(B) Agarose gels (1.5%) showing the RT-PCR amplification results of S1-R1, S2-R1
and S3-R1 fragments. The observed sizes of the bands correspond to the expected
sizes.

AEEs as illustrated for the NONO gene (exon three, Fig. 3.5A). Among the 26 AEEs
that could not be validated, one likely false negative case was observed, corresponding
to a skipped exon in the gene TCOF1 in HEK supported by only one junction read.
As the remaining 25 CASI predictions could, in principle, involve alternative donor
or acceptor sites, it was examined whether other sources (e.g. junction reads, ESTs,
or annotations in Ensembl) provide clues that could infer these types of AS. Indeed,
nine exons were annotated for another type of AEE in at least one source, among
which four AEEs were detected by junction reads, such as the usage of an alternative
acceptor site in the DUS1L gene (Appendix Fig. 6.1). Based on these experimental
verifications, the specificity of the CASI predictions was estimated to be close to
60%.

Further, the predictive power of the procedure was estimated by using the receiver
operating characteristic curve (see Section 2.1.3), where each exon tested by RT-PCR
(negative or positive) was associated with its corresponding zCe . Based on these PCR
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Figure 3.6: Comparison of alternatively spliced events identified with CASI zCe ≤ −4
(zCe ≤ −2) and junction reads: Venn diagrams show the number of genes, for each
cell line, with at least one AEE according to CASI (blue) or splice junction reads
(red). A gene is selected if any of its exons (3’, 5’, or internal exons) is flagged as an
AEE. The comparison is based on the total set of genes analysed with CASI (12,140
in HEK and 10,417 for B cells).

results, a specificity of 89% and a sensitivity of 51% was obtained for the CASI method
(zCe ≤ −4), in line with the genome-wide estimate of sensitivity deduced by splice
junction analysis (Fig 3.4B). The number of false positives (1 - specificity) cannot be
deduced from the mapping of splice junctions alone, due to the problem of non-unique
spliced alignment matches for short reads and the low expression of many alternative
transcripts. However, the simulation and bootstrapping results hint to the fact that
the number of false positives is not much higher than the 11% observed by PCR
experiments on 61 AEEs. By applying the more conservative threshold (zCe ≤ −4),
2,499 AEEs in 2,070 genes for HEK and 1,775 AEEs in 1,532 genes for B cells were
predicted, respectively. Of those 712 AEEs in 693 genes were common to both two
cell lines.

It is of particular relevance to compare the respective performances of CASI versus
prediction with splice junction reads in their abilities to detect genes with AEEs. Out
of the 3,858 genes predicted to have an AEE by any of these two methods in HEK
cells, only 845 were detected simultaneously by CASI and junction reads, see Fig.
3.6. Moreover, there are notable qualitative differences in the detected AEEs. Splice
junction reads revealed a larger number of internal AS exons [147], whereas most of
the events detected by CASI targeted terminal exons, particularly the most 3’-exons
(Fig. 3.7).
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Figure 3.7: Distribution of the number of AEEs predicted by CASI. Bars show the
number of 5’- (black), internal (grey) and 3’-exons (white) predicted as AEE with
CASI (zCe ≤ −4). The whiskers were obtained by shortening the length of the 5’-
and 3’-exons artificially by 20% in order to estimate the error due to the annotation
in the 5’- and 3’-end of a gene.

EST-based Validation

The significant expression variation detected in terminal exons might reflect the pres-
ence of multiple alternative polyadenylation sites, which are generally poorly anno-
tated in the current databases. As an independent set for validation of the predicted
AEEs EST data was consulted. A set of genes with detected alternative polyadenyla-
tion sites from EST data from the GeneNest database was generated [58] by screening
for putative polyadenylation signals (sequences AATAAA and ATTAAA). To gener-
ate a high-confidence set, only EST sequences annotated as 3’-end sequences and
aligned in the appropriate orientation were selected. A reliable polyadenylation sig-
nal was defined when at least two ESTs carried a putative polyadenylation signal
within their 3’-terminus (less than 35 bp) at the same position in the cDNA con-
sensus sequence. Signals not supported by the respective genomic sequence were
discarded.

Globally, differential expression involving the 3’-terminal exon was frequently ob-
served in the human dataset, in particular in genes annotated for alternative polyadeny-
lation sites based on the independent EST dataset (B cells: 3.3e−244, HEK cells:
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1.6e−291, hypergeometric p-value). This is in line with the observations of Sandberg
et al. [135], who showed that a large fraction of genes in proliferating cell lines ex-
press shortened 3’-UTRs. The gene HIP2 reported in the publication shows the same
behaviour (Appendix Fig. 6.2).

In addition, a set of genes with alternative TSSs from EST consensus sequences that
were mapped to the human genome was compiled. For each Ensembl gene, only
consensus sequences covering at least two exons and with an exon boundary quality
50 (defined by Gupta et al. [55]) were selected. The 5’-termini of mutually exclusive
first exons of these consensus sequences were defined as putative TSS. Again, CASI
5’-terminal exons were more frequently found in genes annotated for an alternative
TSS, namely 67% in HEK and 74% in B cells (5.6e−17 and 4.1e−14, hypergeometric
p-value).

These results illustrate the complementarities between CASI and junction reads for
detection of alternative exon usage within one condition. CASI performed better
than junction reads for identifying rare splice junctions, whereas junction reads can
detect multiple AS events for complex transcript isoforms where CASI performance
is poor. In terms of AEEs involving internal exons, only one-fourth of the CASI
predictions were corroborated by junction reads. Further, the predicted AEEs (zCe ≤
−4) were compared against a set of 73,948 known AEEs in EST data (Genenest EST
database[58], Supplemental Table S3). Data indicated that 22% (126 out of 563) of
the predicted internal AEEs in HEK cells and 24% (98 out of 414) in B cells were
novel, and that most of these novel AEEs were cell type specific. Taken together, the
data indicate that 30% of the genes are expressing alternative isoforms in each cell
type. In combination, in these two cell types 49% of the genes express alternative
isoforms.

3.3.2 Alternative Exon Usage between two Conditions

So far the expression of alternative isoforms in one condition was analyzed. Another
important question, namely to identify AEEs differentiating between two conditions,
e.g. control and disease sample, was investigated. Two observed read distributions
y1 = (y1

1, . . . , y
1
m) and y2 = (y2

1, . . . , y
2
m) are considered for the same gene in two dif-

ferent experiments. The difference in exon usage pattern between the two conditions
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was analysed for every gene conditionally on its expression in both conditions. The
presence of differential AEEs was assessed with the FDR-corrected p-value of Fisher’s
exact test (Benjamini-Hochberg procedure [9]). Every exon e of the gene was assigned
a zD score (DASI) based on the log-ratio of reads between the two experiments

RD
e = log

(
y1
e

y2
e

)
. (3.12)

Exons with less than five read counts in both conditions were not considered. A
pseudo count of 1 was added to y1

e and y2
e if its original value was 0. The DASI

p-value cutoff was set to 0.05 and the zDe ≥ 2. Genes showing a significant difference
between the two biological replicates were removed from the DASI analysis.

Application to Human RNA-Seq Data

This procedure was applied to the 9,242 genes expressed in both HEK and B cells
(genes with at least 5 reads), leading to the identification of 613 genes with a signif-
icant DASI p-value (5%). After applying |zDe | ≥ 2, it was predicted that 968 exons
(in 365 genes) were differentially expressed between the two cell types (Supplemental
Table S6), from which the majority (78%) were internal exons. A total of 161 genes
had more than one differential AEE between HEK and B cells.

Functional Analysis

In order to check for functional categories that are enriched in the set of DASI genes
the Bibliosphere package [137] associating gene ontology categories and PubMed lit-
erature mining was utilized with default parameters. Analysis of the functional prop-
erties of these 365 genes showed that DASI-predicted genes were enriched for factors
whose molecular functions are related to translation and RNA metabolic processes,
nucleic acid transport, ribonucleoprotein complex biogenesis and assembly and tran-
scriptional regulation. Three transcription factors (MEF2B, MAZ and SMARCB1 )
were among the top 20 genes showing the most significant DASI p-values (Appendix
Table 6.1). The most striking candidate, MEF2B, known to be involved in B cell dif-
ferentiation [148] showed indeed an alternative TSS in B cells (Appendix Fig. 6.3),
suggesting the usage of alternative promoters associated with its specific function.
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Figure 3.8: qPCR validation of a predicted AEE in MKI67 between HEK (blue) and B
cells (red) (DASI). (A) Screenshot of the MKI67 gene. The primers were designed
to compare the inclusion rate of exon 7 between HEK cells and B cells. (B) RT-PCR
results validate the presence of the constitutive and the skipped form in both cell lines.
For both S1-R1 (constitutive) and S2-R1 (skipped), a PCR product of length 163 bp
is expected if the form is expressed, otherwise no band should be visible. (C) Bar
charts representing the normalized expression values for the constitutive form (black)
and the skipped form (grey) obtained by qPCR. The results show that the skipped
form is more abundant in B cells relative to the constitutive form, as predicted by
the DASI method (zDe = 5.2).

Experimental Validation

As before a subset of 16 high-scoring DASI events was analyzed further by qPCR
experiments. Comparison of the expression ratios of the skipped versus constitutive
exons between the two cell lines showed that the DASI predictions and the qPCR
results were concordant, with a validation rate of 69% (considering a fold change of
at least 1.5 for the qPCR) (Supplemental Table S7). An illustrative example is the
proliferation marker gene MKI67, which is universally expressed in proliferating cells
but almost absent in quiescent cells [153]. The MKI67 mRNA that contains the large
exon 7 is equally abundant in B cells and HEK cells, but the skipped form without
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Figure 3.9: Comparison of RNA-Seq (DASI) and exon arrays (MIDAS) for differential
exon usage analysis between HEK and B cells. Both methods consist of 2 steps: 1)
a corrected p-value identifies genes likely to be alternatively used between HEK and
B cell (FDR-corrected p-value ≤ 0.05 and ≤ 0.2 for DASI and MIDAS, respectively);
2) AEEs are scored according to a exon usage index called DASI for RNA-Seq and
SI for exon-arrays. The number of predicted AEE genes that passes the threshold
criteria at each steps are shown on the figure.

exon number 7 is more highly expressed in B cells than in HEK cells (Fig. 3.8).

Comparison with Exon Arrays

Previous attempts, to systematically decipher AEEs occurring in different condi-
tions or tissues, used of exon arrays alone or in combination with splice junction
arrays [51, 28, 52, 39]. For comparative purposes, the human Affymetrix exon arrays
1.0ST were interrogated using the same source of material as well as one biological
replicate. A model-based analysis for tiling arrays [76] was applied to perform the
intrachip normalization, with the adjustment for exon arrays described by Kapur et
al. [77]. Quantile normalization was then applied between arrays [71] from the Affy
package in BioConductor [53]. Detection call p-values were computed for each probe
set with a paired Wilcoxon signed rank test that compares probe intensity to control
probes of similar GC content. More precisely, each probe is compared with the 75%
quantile of the set of control probes with similar GC content. The detection call
p-value of a probe set was calculated using the chip-wise pairing of probe intensi-
ties to control intensities. An exon or gene probe set was called present when the
corresponding FDR corrected p-value was below 5% (see Gardina et al. [52]). The
probe-to-exon and probe-to-gene assignment was done using a chip description file
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(HsEx10stv2_Hs_ENSE), based on Ensembl v.46, and provided as R package [38].
Exon and gene expression were defined as the mean over probe intensities for both
replicates.

For sake of simplicity, the present analysis focused on the probe sets corresponding
to all exons annotated in Ensembl, i.e. 149,079 exons in 16,527 genes. A total of
70,627 exons (9,322 genes) in HEK cells and of 57,406 exons (7,823 genes) in B cells
were found expressed by both technologies. In terms of detected exons, arrays and
RNA-Seq were in agreement, where 90% of the genes detected by exon arrays were
also scored by RNA-Seq. As previously reported [147], RNA-Seq is more sensitive
than arrays, with 26,300 and 23,866 additional exons detected in HEK and B cells.

For detecting differential AS with exon arrays, the standard MIDAS algorithm of the
Affymetrix ExAcT software version 1.8.0 [1] on normalized values was employed. A
log ratio for each exon e between condition 1 and 2, called the Splicing Index (SIe),
is introduced:

SIe =
log2

(
exp1e
exp1g

)
log2

(
exp2e
exp2g

) (3.13)

where exp1
e denotes the expression of exon e and exp1

g denotes the gene expression
for condition 1. MIDAS employs the Splicing Index in an ANOVA model to test the
hypothesis that no alternative splicing occurs for a particular exon [52, 1].

The MIDAS p-values were subsequently corrected using the Benjamini-Hochberg pro-
cedure [9] and the threshold set to 0.2. This threshold was chosen since only a single
gene was found with a corrected p-value <0.05. The threshold for the SIe (|SIe| ≥
0.5) was set as reported previously [52]. The following filters were further applied: (i)
the corresponding gene is expressed in both conditions, (ii) gene expression is higher
than the 50% quantile in both conditions, and (iii) the exon is called present in either
one of the two conditions.

Comparison of the DASI results with MIDAS showed little agreement in the detection
of genes with AEEs between HEK and B cells (10 genes with 16 exons are in common,
Fig. 3.9). All genes with predicted AEEs by DASI and MIDAS were among the most
highly expressed ones in both cell lines.

In order to investigate the platform differences, the quadratic mean distance for every
gene was calculated, between RNA-Seq and exon arrays over exon expression log-
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3.3 Prediction of Alternative Isoforms with Exon Expression Levels

Figure 3.10: Left) Boxplot of the gene-wise mean squared error in exon-expression log-
ratios measured with RNA-Seq and exon arrays. The error (y-axis) is shown for 1)
genes with predicted AEE only by DASI, 2) genes with predicted exon with DASI and
MIDAS (both), and 3) genes with predicted AEE only by MIDAS. Right) Boxplot of
gene-wise Pearson correlation of exon-expression log-ratios from RNA-Seq and exon
arrays. The Pearson correlation is plotted according to the same three classes as
before.

ratios (HEK versus B cells). The quadratic mean distances associated with genes with
AEEs predicted by either DASI only, MIDAS only, or by both methods simultaneously
did not show major differences (Fig. 3.10). The lack of agreement between the
methods could reflect the fact that the analysis of alternative isoforms is very sensitive
to subtle variations in expression values that arise both at the individual exon and
whole gene expression level, eminent from a difference in correlation at the gene level.
In this context, a minor variation of expression between exons is a pre-requisite for
pinpointing variable exons with a reasonable specificity. This problem appeared to be
less prominent with RNA-Seq, showing clearly a smaller variation of expression values
across exons of a given gene (Appendix Fig. 6.4). The RCC1 gene, for example, was
detected by DASI and validated by qPCR, but not detected by MIDAS (Appendix
Fig. 6.5). In this case, the alternative exon was below the detection threshold on
arrays. Only two of the eight DASI predictions verified by qPCR were also detected
by MIDAS (genes MDC1 and MKI67 ).
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Chapter 4

Quantification of Alternative

Isoforms

4.1 From Gene to Transcript Expression Levels

In the previous chapter the identification of alternative exon events (AEEs) was
described. Another important issue is to estimate the respective proportions of the
various transcript isoforms. Given the increased sensitivity and coverage of RNA-
Seq data it can be expected that transcript expression measurements can be derived
substituting gene expression measurements. As demonstrated below, consideration
of the complete gene as the expressed sequence region can lead to false conclusions.

Consider the problem of the construction of a gene regulatory network. Gene expres-
sion measurements for genes with alternative isoforms could be imprecise and lead
to false positive and false negative associations of regulatory factors. For example, in
Fig. 4.1 (top), regulatory sites of TFs and miRNAs are annotated to the complete
gene region. However, considering the complete gene hides the fact that binding sites
of TF1 and miRNA are not involved in the regulation of the expressed transcript B
in the gene (bottom Fig. 4.1), but instead a different factor TF2 is involved in the
regulation. Especially for higher eukaryotic organisms, where a large fraction of genes
expresses alternative isoforms, network analysis or inference based on gene expression
rather than on transcript expression has a limited accuracy.

In this chapter a new PrOportion EstiMation (POEM) Method is explained that
estimates the abundance of known isoforms based on a probabilistic model that inte-
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Figure 4.1: A hypothetical gene with 4 exons (boxes) transcribed from left to right
with transcripts A and B. If only gene expression measurements exist for the gene
and it is known that miRNA is expressed in the condition it seems likely that miRNA
has no or no strong influence on the gene expression (top). However, if transcript
expression levels are obtained, it can be deduced that the expression of transcript A is
effectively shut down by miRNA and/or that TF2 drives the expression of transcript
B and therefore gene expression (bottom).

grates the number of reads in exons and the information from transcript annotations.
This underlying idea of POEM is shared with previous approaches that were designed
for the analysis of splicing arrays combining exon and splice junction probes [159, 3]
or EST analysis [169]. However, these approaches have used other assumptions of
the underlying model. In here the Poisson framework introduced in Section 3.1.1 is
extended for the case of a set of transcripts of a gene.

4.2 Quantification of Transcript Expression Levels

It is assumed that a set of transcripts S = {S1, . . . , Sk} of a gene is expressed with read
counts T1, . . . , Tk, respectively. The membership of exons e = 1, . . . ,m to a transcript
Sj is encoded in the exon-transcript indicator matrix Ie,j or indicator matrix for
short:

Ie,j =

1 , if transcript j contains exon e

0 , else .
(4.1)

See Figure 4.2 for an example with three transcripts.

Naturally, the exon read count Ye for exon e = 1, . . . ,m is defined as the number of
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Figure 4.2: A hypothetical gene with three transcripts is depicted in (A). The belonging
of exons to the three transcripts is encoded in the exon-transcript indicator matrix
Ie,j in (B). Note that the matrix Ie,j has not full rank because the columns are linearly
dependent and therefore the transcripts are not identifiable, see text.

reads that fall within the exon considering each of the k transcripts:

Ye =
k∑
j=1

pe
m∑
i=1

pi · Ii,j
· Ie,j · Tj, (4.2)

where again pe is set to the effective exon length le in order to accommodate non-
unique matches in exonic regions as explained in Section 3.1.1.

Definition 4.2.1. Given the exon-transcript indicator matrix Ie,j and a set of exon
read counts Ye, e = 1, . . . ,m, the transcript quantification problem is to infer the
transcript expression levels Tj.

A necessary condition to obtain a unique solution for the transcript quantification
problem is the identifiability of the indicator matrix Ir,j as shown by Lacroix et al.
[82].

Lemma 4.2.1. The transcript quantification problem can be uniquely solved iff the
exon-transcript indicator matrix Ie,j has full rank.

Consider Figure 4.2A for an example where the problem has no unique solution, as
transcript 1 is a linear combination of transcript 2 and 3. In the application to data
in Section 4.2 the expression is only computed for the annotated genes where Ie,j has
full rank.
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There are different ways how to the solve formula (4.2) to estimate the unobserved
transcript expression levels Tj. For example, substituting Ye and T by their expected
values, unique mean estimates of the Tj can be obtained by solving a linear system,
given that the matrix Ye is of full rank.

It will be shown that the likelihood function under the Poisson model is easy and
an Expectation-Maximization (EM) strategy is suggested for maximizing the likeli-
hood, and to infer the unobserved transcript proportions Tj. The EM formalism is
used because it leads to easy recurrences and allows the addition of more complex
parameters in the future.

The approach suggested here for solving the transcript quantification problem is to
compute the maximum-likelihood solution within the Poisson framework.
Let qj =

Tj
T

be the gene-relative transcript proportion of transcript j compared to
total gene read count T . It follows

∑k
i=j qj = 1. Let q = (q1, . . . , qk), be the vector of

gene-relative transcript proportions for the k transcripts of the gene. The exon read
counts Ye,j of isoform j in exon e are fully described by the next two formulas:

Tj ∼ P(λj) with λj := λ · 1∑
i

pi · Ii,j
· qj . (4.3)

Each transcript Tj is distributed according to a Poisson distribution that depends
on λj as a function of transcript length, relative transcript proportion qj, and the
normalizing factor λ that accounts for other effects, for example sequencing depth.
The counts for individual exons in a transcript j are described by a multinomial
distribution:

P ((Y1,j, Y2,j, . . . , Ym,j)|Tj = tj) ∼ M


 pe

m∑
i=1

pi · Ii,j
· Ie,j


m

e=1

, tj

∀j = 1, . . . , k .

(4.4)

Note that the exons should not overlap, as could be the case with an alternative 5’
splicing event for example. In such cases the exon is split into two subexons that do
not overlap anymore.

We denote as ye,j the observed read count of the isoform j in exon e and tj as the
total observed read count of isoform j.
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Likelihood

From formula (4.3) and (4.4) the complete likelihood of the data can be written as:

P(y1,1, . . . , ym,k) =
k∏
j=1

exp−λj λ
tj
j

tj!
·
(

tj
y1,j, . . . , yn,j

)
·
m∏
e=1

 pe
m∑
i=1

pi · Ii,j
· Ie,j


ye,j ,

(4.5)

The complete likelihood incorporates the transcript read count Tj which needs to be
estimated given only the marginal read counts on the exons

Ye =
k∑
j=1

Y j
e . (4.6)

The task is to estimate λ and qj given, Ie,j, yi, and pi, in order to get to the desired
transcript read counts Tj. The likelihood of exon read count Ye under the Poisson
distribution is:

L(Ye|µe) = P (Ye = ye|µe) =
e−µeµyee
µe!

with µe := λ · 1

pe
·

k∑
j=1

qj · Ie,j . (4.7)

Let µ = (µ1, . . . , µm) and assuming that all the exons are independent, the log-
likelihood for all exons becomes:

log(L(Y1, . . . , Ym|µ)) = log(P (Y1 = y1, . . . , Ym = ym|µ)) (4.8)

= log

(
m∏
e=1

e−µeµyee
µe!

)
(4.9)

=
m∑
e=1

log

(
e−µeµyee
µe!

)
(4.10)

=
m∑
e=1

log
(
e−µeµyee

)
−

m∑
e=1

log(µe!) (4.11)

= −
m∑
e=1

µe +
m∑
e=1

ye log µe −
m∑
e=1

log(µe!) . (4.12)

49



Chapter 4 Quantification of Alternative Isoforms

In order to maximize the complete likelihood the iterative Expectation-Maximization
(EM) procedure is used [42]. In the E-step the expected transcript read count t̂j

(υ+1)

is computed from the previously estimated q̂(υ)
j values that have been maximized in

the M-step.

E-step

Assuming current parameters are known, the a posteriori count of isoform j at step
υ can be written as:

t̂
(υ+1)
j = Eq(υ)(Tj|y1, . . . , ym) =

m∑
e=1

peq
(υ)
j Ie,j

k∑
l=1

peq
(υ)
l Ie,l

· ye . (4.13)

M-step

The following estimator is obtained by maximizing the complete likelihood condition-
ally on t̂j :

q̂
(υ+1)
j =

m∑
e=1

peIe,j ·
t̂
(υ)
j

T
. (4.14)

The method is initialized from random estimates and convergence is assumed when
the relative increase of the log-likelihood is lower than a threshold value ε. For all
experiments ε = 10−6 was fixed. Note that due to the linearity of the likelihood
function the EM procedure will always converge to the global maximum.

Note that although the definitions are made for exonic regions, there is no theoretical
constraint to include exon-exon junctions as a Ye. The junctions are by definition not
overlapping so the independence is given.

Quality score

As transcript annotation for genes is imperfect, it may happen that a transcript that
is expressed in the analyzed RNA-Seq dataset is not yet annotated in the database.
In this scenario, the POEM method produces the maximum likelihood solution for

50



4.2 Quantification of Transcript Expression Levels

the wrong annotation. Thus, it would be good to have a quality measure of the esti-
mated proportions (q̂1, . . . , q̂k) for transcripts 1, . . . , k that can pinpoint low quality
estimations. A test statistic is defined that assesses if the observed and expected
counts are significantly different (according to the counts observed on the exons):

χ2
G =

m∑
e=1

(ye − Y exp
e )2

Y exp
e

, (4.15)

where Y exp
e is the expected count of exon e proportionally to the expression of the

full transcript. χ2
G follows a χ2 distribution with (n − 1) degrees of freedom. The

quality score is computed for each gene as the log10 of the p-value.

Transcript Database Construction

Annotation of human transcript structures for POEM (i.e. the indicator matrix
I) was derived from Ensembl (version 46)[47]. All protein coding transcripts have
been downloaded. As mentioned earlier, in order to allow description of any possible
isoform (for instance, alternative 5’ and alternative 3’ sites), exons overlapping with
different boundaries across isoforms were further subdivided. Redundant transcripts
were filtered out. To this end, two transcripts were recursively clustered when the
sequence identity, relative to the mean length of both transcripts, was at least 95%.
A representative of each cluster was chosen by taking the union of the corresponding
rows in I. From initial 42,635 transcripts in Ensembl, 37,177 remained after clustering
and filtering. As stated in lemma 4.2 a necessary condition to compute the transcript
expression levels is the independence of all considered transcripts. Only genes with
an indicator matrix I of full rank have been used for quantification.

4.2.1 Simulations

In order to assess the accuracy of POEM for different values of transcript expression
levels and alternative splicing complexity, two simulations were conducted. Two
different error measure were considered. The average error for a set of x simulations
is defined as:

average(q̂, q) =

∑x
o=1 |q̂o − qo|

x
, (4.16)

51



Chapter 4 Quantification of Alternative Isoforms

where q̂oj denotes the o-th estimated proportion for a transcript and qo the correct
proportion. Similarly, the max error is defined as:

max(q̂, q) = max
o=1,...,x

|q̂o − qo| . (4.17)

First, simulations were performed on a template gene of 1,200 bp and considering
one exon-skipping event. The length of the skipped exon (120, 240, and 360 bp) was
varied, as well as the exon inclusion rate (20 and 80%) and the gene expression level
(100-600 reads) to assess their impact on the estimation error rate. Two thousand
simulations were performed for each combination of the parameters. In Figure 4.3A
it can be seen that the average error on proportion estimations decreased with gene
expression level, as expected. Furthermore, the error of estimation was inversely
correlated with the length of the skipped exon (Fig. 4.3A, grey to dark lines). The
exon inclusion rate also had an influence on the error, as a 20% inclusion rate (Fig.
4.3A, dashed lines) had constantly higher estimation error than an 80% inclusion rate
(Fig. 4.3A, plain lines). A minimum of 300 reads in the gene achieves a reasonable
accuracy for POEM.

Secondly, the expected global accuracy of POEM was addressed with a second sim-
ulation on all annotated transcripts (Ensembl v.46). The estimation error made was
monitored and plotted as a function of gene expression (Fig. 4.3). The number of
expressed isoforms was fixed to two, and the relative proportions were incremented
in steps of equal size from 16.7% to 83.3% (10,000 runs for each combination). The
sampling of the transcripts was done as follows. First, a gene was chosen uniformly
among all genes annotated with more than two isoforms in Ensembl. Then, two
transcripts were uniformly sampled among the annotated isoforms of the gene. The
90% quantile of errors show that, with a minimum of 300 reads within the gene (Fig.
4.3B, vertical line), the average error is <12.6% (maximum error is <18.6%).

4.2.2 Proportion Estimation with Junction Reads

For comparison, reads mapping to splice junctions were used to directly quantify
AEEs by computing the proportion of reads mapping to the constitutive junction.
As a constitutive exon is adjacent to two splice junctions, the proportions deduced
from both splice junction read counts identifying the same AEE was averaged. An
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Figure 4.3: POEM simulations:(A) Plot showing the 90% quantile of the average error
for proportion estimation by POEM based on simulations for one gene with one exon-
skipping event. The average error (y-axis) is calculated for simulations with different
total read count in the gene (x-axis) and for various skipped exon lengths: 120 bp
(light grey), 240 bp (grey), or 360 bp (black). The average error is shown for a
proportion of 20% (dashed lines) and 80% (plain line). (B) This plot shows the 90%
quantile of the average (circles) and maximum (squares) error (y-axis) for POEM
predictions on all human Ensembl (v.46) transcripts.

illustrative example is shown in Figure 4.4C, where the inclusion rate of exon 5 (0.84)
was calculated as the average of (i) counts on junctions 4–5 and 4–6 [8 / (8 + 2) =
0.8] and (ii) counts on junctions 5–6 and 4–6 [14 / (14 + 2) = 0.87].

As stated above the exon-exon junction read counts can also be included in the EM-
formalism, but this was not investigated due to the short length of the reads.

4.3 Application to Human RNA-Seq Data

In what follows the POEM method is applied to the data of the human HEK and B
cell lines presented in Chapter 3. POEM was applied to all genes in both dataset with
at least 300 reads mapping inside the exons of the gene, as suggested by the simula-
tions above. Only genes with at least two isoforms indicative of alternative splicing in
internal exons were considered. The CASI analysis showed that large modifications
are occurring on the most 3’- or 5’-exons (Subsection 3.3.1). Therefore, POEM esti-
mation focused on information from internal exons, by artificially removing the first
and last exon of every transcript before POEM estimation. In this, the relative iso-
form proportions for 830 and 640 genes in HEK and B cells was estimated, which were
annotated with 2,412 and 1,911 transcript variants, respectively (Supplemental Table
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S4). From this set, POEM estimated proportions for 1,920 and 1,487 transcripts for
HEK and B cells, respectively. These estimations were verified by (i) analysing the
number of reads mapping to exon-exon junctions and (ii) experimental validations
using qPCR. For instance, Figure 4.4C shows that the inclusion rate of exon 5 in the
gene MPI could be deduced from the ratio of exon-exon junctions reads, estimated
as 84%. The POEM predictions were compared with the information provided by
junction reads for 267 constitutive AEEs (149 pairs in HEK and 118 pairs in B cells),
showing at least three exon-exon junction read counts. On the whole, POEM agreed
well with the estimates deduced from junction read counts, with a correlation coeffi-
cient of 0.65 and an estimated proportion difference of <20% for 80% of the events
(Figure 4.4A).

4.3.1 Experimental Validation

Estimates based on the junction read counts alone are not sufficient, as they were
taken from the same RNA-Seq dataset that could probably be biased. In order to get
an independent estimate of the isoform proportion for some transcripts, PCR primers
have been designed to recognize skipped exon events, similar to Section 3.3.1 The
comparison of POEM estimates with qPCR measurements for a total of 47 AEEs in
both cell lines (22 exon-skipping events, two mutually exclusive events, Supplemental
TableS5) shows a high correlation (PCC = 0.81, Fig. 4.4B). For qPCR and POEM
data comparison, POEM estimates were derived for the skipped and constitutive
isoforms only, irrespective of other transcripts annotated in Ensembl. The gene MPI
is an illustrative example (Fig. 4.4C), which is also confirmed by junction reads.
Precise inference of a large difference in relative expression levels is hampered if an
isoform has a very low expression value. This is illustrated in Figure 4.4B, where
13 events (with qPCR AEE proportion close to 0% or 100%) display an expression
level difference of 2-3 orders of magnitude between the constitutive and the skipped
isoform.

It is worth mentioning that 38 out of the 47 tested AEEs were supported by junction
reads. The comparisons of the estimated proportions derived from junction reads with
the estimates from qPCR for these 38 AEEs showed a slightly lower correlation (PCC
= 0.74). This is due to the paucity of reads identifying junctions, reducing the signif-
icance of ratios associated with low read counts for estimating AEEs. Besides, with
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twice 8 million reads sequenced, the junction read depth is still far from saturation,
so it is expect to see at most 50% of the expressed junctions. Therefore, exploiting
the number of counts in exons offers complementary information in detecting and
quantifying AEEs, in particular when the dataset does not reach saturation.
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Figure 4.4: POEM validations: (A) Scatter plot of inclusion rates (constitutive iso-
forms) on 123 AEEs derived from exon-exon junction counts (x-axis) and POEM
estimations (y-axis) is shown (PCC = 0.65). Cross marks denote AEEs in genes
with a quality score ≤ -14. Dashed lines represent the 20% error margin and the
dotted middle line is just for orientation in (A) and (B). (B) Scatter plot of inclusion
rates on 47 AEEs measured by qPCR (x-axis) and estimated by POEM for a single
exon-skipping event (y-axis) is shown (PCC = 0.81). Plus marks denote unanno-
tated AEEs in Ensembl v.46. (C) POEM estimation for annotated transcripts of
MPI in HEK cells. Numbers reported on light blue arrows represent the expected
counts on exon-exon junctions according to the estimated proportions with POEM
for the three annotated isoforms (ENST000000379693, ENST000000352410, and
ENST000000323744). The proportion estimate for each isoform is shown to the
right (in %). qPCR primers were designed to estimate the inclusion rate of exon 2.
The skipping event of exon 3 was not annotated in Ensembl v.46, but was supported
by an observed junction read. (D) The bar chart shows the inclusion rate of exon 2
computed by POEM (grey) and measured by qPCR (black) for HEK and B cells.
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Chapter 5

De Novo Assembly of Transcripts

considering Alternative Isoforms

5.1 De Novo Assembly of Transcript Sequences

Instead of using annotation to identify alternative exon events (AEEs) or quantify
the expression levels of isoforms as presented in the previous chapters, the task is
to assemble transcript sequences directly from RNA-Seq data as input. The aim is
to reconstruct full length transcripts from short read data de novo, i.e., without the
use of a genomic reference sequence. Such a method will be necessary to allow the
tanscriptome analysis of genomes for which a genomic reference sequence does not
exist. Depending on the application it might become feasible to avoid sequencing of
the reference genome alltogether. Except for this obvious argument, there are other
practical arguments that vote for the de novo approach to transcriptome assembly.

There are a number of cases in biology where the existence of a reference genome of
one individual of a species does not easily allow the retrieval of expressed transcript
sequences:

1. In the transcriptomes of cancer cells one important issue is to identify fu-

sion transcripts of genes that have undergone rearrangements in the cancer
genome [101, 102, 91]. These fusion transcripts can be the result of a chromo-
some translocation, fusing two genes from different chromosomes. With short
single-end reads such an analysis requires a database of known gene fusions
[101]. Paired-end or long reads allow improved detection of fusion transcripts if
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alignment algorithms exist that allow mapping on different chromosomes [102].
An additional complication for the detection of these cases could be the in-
cidence of alternative splicing in fusion genes, something which could not be
investigated so far due to a limit in resolution.

2. Organisms like the flatworm Schistosoma mansoni, the plantArabidopsis thaliana,
and also humans have genes that contain stretches of so called micro-exons,
exons of length≤ 25 bp [10, 57]. These micro-exons are among the most difficult
problems for gene finding and spliced alignment algorithms and specially de-
signed algorithms exist to handle them [156]. In particular short read alignment
under consideration of micro-exons is infeasible because of too many random
matches in the genome.

3. In parasite transcriptomes like Trypanosoma brucei or Schistosoma mansoni
and few suggested cases in other organisms like humans, a biologically unclear
process called transplicing fuses the pre-mRNA sequences from two different
genes to create a fused mRNA that harbors exons from both genes [128, 6,
63]. On the mRNA level it is similar to the fusion transcripts in cancer cells,
although the biological mechanism is different. Transplicing may have unknown
regulatory roles which can now be investigated.

In addition, prediction of alternative splicing events is possible directly from the de
Bruijn graph over sequences, as shown later. This could lead to a new way of thinking
about functional studies in organisms whithout known reference sequence.

However, de novo transcriptome assembly is conceptionally more difficult than tran-
scriptome assembly with a reference genome. A few studies reporting results with ge-
nomic assemblers applied to RNA-Seq data have been published using Velvet [35, 157],
ABySS [11], and a parallel assembler by Jackson et al. [72]. In this chapter the ad-
ditional difficulties of de novo transcriptome assembly are explained. A new set of
algorithms for de novo transcriptome assembly called Oases is presented. Application
to real RNA-Seq data show the improvement compared to genomic de novo assem-
blers and assemblers that use the genome. First the theoretical capacities of de Bruijn
graphs built from RNA-Seq reads are investigated.
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5.1.1 Problem Statement

Assume a set of m reads R = R1, . . . , Rm each of length r that are the result of
an RNA-Seq experiment of a sample. Assume further that a set of transcripts T =

T1, . . . , To is present in the sample and the set of reads R is derived from all possible
r-mers of these transcripts Ri ∈ r-spectrum(T ), i = 1, . . . ,m.

From a given R reconstruct all the transcripts in the sample, what is called the de
novo transcriptome assembly problem:

Definition 5.1.1. The de novo transcriptome assembly problem is, given a set of
reads R = R1, . . . , Rm derived from a set of transcripts T = T1, . . . , To with Ri ∈
r-spectrum(T ), i = 1, . . . ,m, reconstruct the set of original transcripts T .

5.1.2 Transcript de Bruijn Graphs

Transcript de Bruijn graphs (TGs) are de Bruijn graphs constructed from k-mers of
transcript sequences. It is assumed that chains of nodes in TGs have been simplified
(Section 2.3.3). The TG is related to the simplified splicing graph, where each chain
of exon nodes was merged into one large node (see Section 2.4.2). However, sometimes
the TG can be far more complex than the simplified splicing graph.

In the work of Heber and co-workers in 2002 [62] it is mentioned for the first time
that a splicing graph over EST sequences can be built without EST alignment by
constructing a de Bruijn graph over the EST sequences directly. However, they
considered a special case of TGs, (i) they build the TG for a cluster of ESTs that
mapped to the same genomic locus without contamination of, e.g., ESTs from homol-
ogous genes and (ii) the correct orientation of all ESTs was known and thus the use
of digraphs was not necessary. Further, they have the genomic position for each EST,
and thus for each k-mer of an EST. Therefore, they study alternative splicing in the
TG without treatment of induced cycles by repeated k-mers [62]. One way to cope
with cycles was described by Malde et al. [103], where running in cycles of the TG
was avoided by maintaining a map of genomic positions for the k-mers in ESTs.

TGs as presented here are digraphs and will sometimes be cyclic, thus complicating
the analysis. However, under some circumstances a TG is acyclic as shown later. Cy-
cles in TGs are induced by repeated k-mers and their reverse complement sequences.
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Figure 5.1: Cycles in Transcript de Bruijn Graphs. A) Depicted is a transcript with a
repeat (brown block). B) The cyclic de Bruijn graph for transcript in A. C) Depicted
are two transcripts that have the same repeat (brown and yellow blocks) but in a
different order. D) The cyclic de Bruijn graph for transcripts in C.

Cycles in Transcript de Bruijn Graphs

Definition 5.1.2. A k-mer ω is said to be repeated in a transcript Ti,
if occi(ω) + occi(←−ω ) ≥ 2.

That means k-mer ω occurs at least twice or together with its reverse complementary
k-mer ←−ω in Ti. The next observation describes two main mechanisms that create
cycles in TGs as observed in practice.

Observation 5.1.1. A Transcript de Bruijn graph T G of dimension k over a set of
transcript sequences T = {T1, . . . , Tx} is cyclic if one of the following conditions is
true:
(i) ∃ i ∈ [1, x]N, . . . , x, s.t. Ti has a repeated k-mer,
(ii) ∃ i, j ∈ [1, x]N, k-spectrum(Ti,

←−
Ti) ∩ k-spectrum(Tj,

←−
Tj) = {ω, v},

s.t. posTi(ω) < posTi(v) and posTj(v) < posTj(ω)

Proof. In the first condition a k-mer is repeated in a transcript thus inducing a loop
in T G, see Fig. 5.1A+B. The second scenario is a special case for two transcripts,
where two k-mers ω and v are not repeated in Ti or Tj but their order of occurrence
is reversed in both transcripts, again forming a loop in T G, see Fig. 5.1C+D.

Condition (ii) could in fact be generalized to more than two transcript in such a way
that a series of overlapping k-mers, contributed by a number of transcripts, creates
a path in T G starting from and ending with the same k-mer.
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It should be mentioned here, that the solution to the de novo transcriptome assembly
problem using transcript de Bruijn graphs is found by solving the De Bruijn Graph
Superwalk problem, which was shown to be NP-hard for |Σ| ≥ 3 and any posi-
tive integer k [108] (see Section 2.3.2). Therefore no polynomial time algorithm for
transcript de Bruijn graphs can be designed to find an exact solution for the DNA
alphabet.

Nevertheless, acyclic TGs are easy to work with and allow the detection of alternative
exon events and the reconstruction of underlying transcripts, see Sections 5.1.3 and
5.2.4 respectively.

Construction of Splicing Graphs from Transcript de Bruijn Graphs

Before it is shown how to construct splicing graphs from Transcript de Bruijn graphs
a few necessary definitions are made for a set of transcripts that share a path in a
TG. Let G be a gene, G1 and G2 two different genes, and if a transcript Ti belongs
to a gene G it is denoted Ti ∈ G. Recall that a gene has constitutive exons which are
not involved in any AEE in the gene, whereas alternative exons are involved in at
least one AEE. Denote as constG(Ti) the set of k-mers that are substrings of Ti and
that belong to constitutive exons of a gene G. Denote as altG(Ti) the set of k-mers
that are substrings of Ti and that belong to or overlap with alternative exons of G.

Definition 5.1.3. Two transcripts Ti, Tj ∈ G are called k-alternative, iff their con-
stitutive exons share a word of length k, 0 < k ≤ min(|Ti|, |Tj|) and their alternative
exons do not share a word of length k , i.e., constG(Ti) ∩ constG(Tj) 6= ∅ and
altG(Ti) ∩ altG(Tj) = ∅.

This definition is a way of phrasing alternative splicing in k-mer space. Observe
that this relation must not hold for arbitrary k for each pair of alternatively spliced
transcripts Ti, Tj ∈ G. For example, if Ti and Tj differ by an alternative last exon, both
are not k-alternative for k = min(|Ti|, |Tj|), namely the size of the smaller transcript.
The additional constraint that alternative exons share no k-mer is needed to ensure
that no loop in the graph can be created that does not represent an alternative exon
event later.

As no genomic positions of the transcripts are known, two transcripts from different
genes may share a k-mer as well.
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Definition 5.1.4. Two transcripts Ti ∈ G1, Tj ∈ G2 are called k-homologous, if they
share a word of length k, k ≤ min(|Ti|, |Tj|), i.e., k-spectrum(Ti,

←−
Ti) ∩ k-spectrum(Tj,

←−
Tj)

6= ∅.

Note that both the k-spectrum of the transcript and its reverse complement are
considered, as the orientation of reads from most of the RNA-Seq experiments today
is unknown (see Fig. 1.4). k-homologous transcripts can be either transcripts from
genes that share a repeat region or from transcripts of overlapping genes on different
strands of the DNA. If k is clear from the context, it will be referred to as alternative
and homologous instead of k-alternative and k-homologous.

Obviously the smaller k the higher the chance that two transcripts are k-homologous.
That is why one ideally would like to work on the maximum k-spectrum (with k =

read length r) to solve the de novo transcriptome assembly problem, but in practice
such an approach is very prone to sequencing errors as discussed in Section 2.3.3.

A locus L = {T1, . . . , Tx} is introduced to describe a set of x transcripts. A slight
abuse of the word locus is made, defined in biology for the specific location of a
gene or DNA sequence, to underline the basic idea of the algorithm later that the
transcripts are related in k-mer space. Analogously to the above definitions. A locus
L is called k-homologous if at least one pair of transcripts in L is k-homologous.

Definition 5.1.5. A locus L = {T1, . . . , Tx} ⊆ G is called k-alternative iff
(i) ∀i ∈ [1, x]N ∃j ∈ [1, x]N with i 6= j, s.t. Ti and Tj are k-alternative, and
(ii) ∀i, j ∈ [1, x]N with i 6= j, s.t. altG(Ti) ∩ altG(Tj) = ∅ .

Note here that for a locus L it is enforced that no pair of transcripts shares k-mers in
their alternative exons (condition (ii)). The next lemma describes the basic similarity
between TGs and splicing graphs.

Lemma 5.1.2. A simplified transcript de Bruijn graph T G of dimension k over a
locus L = {T1, . . . , Tx} can be transformed to a simplified splicing graph over L iff
T G is acyclic and L is k-alternative.

Proof. A constructive proof is given. Each node of T G is mapped to the genome,
assuming error-free spliced alignment, and each node is labeled with its genomic
sequence positions. It is ensured that nodes of T G map to the same gene as L is
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Figure 5.2: A) A gene locus with 4 transcripts is depicted. The colored boxes demarcate
exonic regions of the gene with poly-A tail indicated at the 3’-end. B) The four
transcripts can be grouped by ambiguity, indicated by ellipse I and II. Transcripts
1-3 differ by alternative promoter events and are ambiguous in the de Bruijn graph.
For all transcripts in ellipse I, Transcript 3 would be reported. Transcript 4 can be
differentiated from the others due to the poly-A tail that creates an alternate path
in the de Bruijn graph.

k-alternative. Further each node must map to a unique genomic position as T G is
acyclic and no alternative exons of the transcripts in L share k-mers. Small nodes in
T G that only recognize overlaps of two alternatively spliced exons are removed and
the two adjacent nodes in T G are connected by a new edge. Edges between nodes in
T G that describe alternative splicing events can be slightly offset, due to similarity
in overlapping k-mers at the junction, which can be corrected with the overlayed
sequence position information.

Note that it might be possible to transform a TG built over a locus that is k-
homologous and acyclic into a set of splicing graphs, one for each gene.

Ambiguity of Alternative Promoters and Alternative Polyadenylation Sites in

Transcript de Bruijn Graphs

It is impossible to resolve alternative transcription start sites (TSSs) in a gene directly
from the TG topology as the transcripts do not have a special signal or sequence at
their 5’-end. If a TG over a set of transcripts is built which differ by alternative
TSSs, the start point of the shorter form is lost in TGs and the longest form will be

63



Chapter 5 De Novo Assembly of Transcripts considering Alternative Isoforms

reported, see Fig. 5.2, i.e., the reported form is maxmimal by inclusion. With full-
length transcripts, artificial start nodes in the TG can be introduced that induce a
split in the graph and indicate an alternative start, as is done for splicing graphs [133],
see Section 2.4.2. Unless the RNA-Seq protocol is adapted and artificial linkers at the
5’-ends of transcripts are attached before sequencing, the identification of alternative
start sites has to be delayed to a postprocessing step of the assembly, for example
using variable read coverage as discussed later.

In contrast, the detection of alternative polyadenylation sites (APSs) is feasible given
that the mRNAs are sequenced with their poly-A tail attached. In RNA-Seq data
each alternative end in an expressed isoform contains reads that span the transition
from the last exon into the poly-A node in a TG, a highly repeated k-mer containing
mostly A nucleotides. In the TG formalism a split at the end of two transcripts with
an APSs is induced and can be reported, see Fig. 5.2.

5.1.3 Recognition of Alternative Exon Events in Transcript de

Bruijn Graphs

In previous works splicing graphs have been computed after aligning transcript se-
quences to the genome. Therefore, splice sites in intronic regions of the correspond-
ing gene and ordering of the exons can be used to infer alternative exon events (see
Section 2.4.2). Many different algorithms for splicing graphs have been proposed
[62, 45, 134, 16]. Because TGs are built de novo, the use of sequence information
from intronic regions in the genome is impossible. Nevertheless, under some assump-
tions it can be shown that alternative isoforms in simplified TGs can be classified into
distinct alternative exon events given information of the organism’s 3’ and 5’ splice
sites. It is assumed that chains of nodes in a TG have been simplified.

Nodes v in a TG that have an indeg(v) > 1 or outdeg(v) > 1 maybe a witness of
an alternative exon event. The simple alternative exon events form bubbles in the
TG. This definition is on purpose restricted to small cycles and not as general as
defined by Sammeth [133] for splicing graphs, because only simple events in TGs are
considered.

Definition 5.1.6. Given an acyclic transcript de Bruijn graph T G over a locus L
that is k-alternative, a cycle of size three or four in the underlying subgraph of T G is
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called a bubble.

Lemma 5.1.3. A bubble in a transcript de Bruijn graph T G of dimension k over a
locus L = {T1, . . . , Tx} is induced by an alternative exon event between two transcripts
Ti and Tj ∈ L.

Proof. As shown in Lemma 5.1.2, T G can be transformed into a splicing graph,
because T G is acyclic and L is k-alternative. In a splicing graph every bubble induced
by two transcripts is caused by an alternative exon event, see Lemma 2.4.1.

After establishing that simple alternative exon events are to be found in bubbles in
TGs, the next step is to show that there are distinct topological attributes and/or se-
quence motifs associated with the six most abundant alternative exon events: skipped
exon, alternative 5’, and 3’ site, intron retention, alternative polyadenylation, and
mutually exclusive exons. These events are by far the most common alternative exon
events among higher eukaryotes, although with different species-specific frequencies
[134]. These simple events can be considered in the context of two alternatively
spliced isoforms denoted as pairwise detection of alternative splicing [134].

In order to make a distinction between the six events, it is useful to differentiate
between source, sink, and alternative nodes in a bubble.

Definition 5.1.7. In a bubble a node n is called source node, if indeg(n)=0 and
outdeg(n)=2 .

Definition 5.1.8. In a bubble a node n is called sink node, if indeg(n)=2 and
outdeg(n)=0.

Definition 5.1.9. In a bubble a node n is called alternative node, if
indeg(n)=outdeg(n)=1.

For example consider the bubble in Fig. 5.3 (on the left). Exon A is the source node,
exon D is the sink node, and exons B and C are the alternative nodes.

There is a special case of an alternative node in a bubble which is caused by the
sequence that describes the overlap between two exons or an exon with the poly-A
node only, the junction node.
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Figure 5.3: Maximum Parsimony Alternative Exon Events in Bubbles without a Splice
Junction Node. For alternative last exons both alternative nodes contain a polyadeny-
lation site (PAS) at their 3’-end and the sink node is derived from the poly-A tail
of the transcript (right). If both alternative exons are devoid of a PAS the bubble
describes a mutually exclusive exon event (left).

Definition 5.1.10. In a bubble an alternative node n is called a junction node, if it
recognizes the splice junction of two exons or the junction between an exon and the
poly-A.

It holds that 0 ≤ ln ≤ k-1, for a junction node n. It is straightforward to see that
the maximum length of n is k-1, the number of k-mers that describe the overlapping
sequence between the two exons. On the other hand, in the worst case none of the
k-1 k-mers is unique compared to the other alternative node in the bubble and thus
node n is missing. This is the only case when a bubble has size 3 instead of 4.

Before the topology and sequence motifs in bubbles are analyzed a number of as-
sumptions are made. First the principle of maximum parsimony is applied, which
means the alternative exon event with the least involved alternative splicing reac-
tions is preferred. For example, if one and two skipped exons are possible events, one
exon skipping is predicted, as skipping two exons would require more splicing factors
to bind the pre-mRNA. The second assumption is that the orientation of the nodes
in the bubble is known. Lastly, it is assumed that splice sites and polyadenylation
signals (PAS) can be predicted with 100% accuracy.

If there is no splice junction node in a bubble, there must be a mutually exclusive
exon or an alternative last exon event as the next observation shows.

Observation 5.1.4. Consider a bubble of size 4 in a transcript de Bruijn graph T G
that has no splice junction node. It follows that the alternative exon sequences a and b
contribute unique sequence. The most parsimonious alternative exon event underlying
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the bubble is either
(i) an alternative last exon event if a and b contain a PAS, or otherwise
(ii) it is a mutually exclusive exon event.

Proof. The only two possible alternative exon events that form a bubble and where
both alternative exons have unique sequence with respect to each other are two
alternative last exons or two mutually exclusive exons (see Fig. 1.2). The only
difference between both events is that alternative last exons contain PASs that are
recognized by factors initiating polyadenylation. If no PASs are present the exons
must be mutually exclusive, see Fig. 5.3.

Note that the above observation could be extended for the detection of alternative
promoters, if a unique sequence tag would be added to the 5’-ends of transcripts
before sequencing as mentioned in Section 5.1.2.

A direct consequence of Definition 5.1.10 is that there must be at least one other
alternative node in the bubble that contributes unique exon sequence, which leads to
the following observation.

Observation 5.1.5. Consider a bubble in a transcript de Bruijn graph T G that is
either of size 4 and has a splice junction node or has size 3. Let n be the alternative
node that is not a splice junction node. The most parsimonious alternative exon event
underlying the bubble is either
(i) an alternative polyadenylation event if n and the sink node contain a PAS, or
(ii) an intron retention event if n contains a 5’ and a 3’ splice site, or
(iii) an alternative acceptor event if n contains only a 3’ splice site, or
(iv) an alternative donor event if n contains only 5’ splice site, or otherwise
(v) it is a skipped exon exon event.

Proof. (i) Compared to observation 5.1.4, an alternative polyadenylation event is the
shortening of the 3’ UTR in an exon and therefore no unique sequence is present.
(ii) If both a 5’ and a 3’ splice sites are present in n, the most parsimonious event is
an intron retention event, where the splicing reactions of constitutive splice sites are
prevented. (iii,iv) If either a 5’ or a 3’ splice site is present in n the most parsimonious
explanation is an alternative acceptor or alternative donor event, respectively. (v)
Finally, if no splice site is present in n, it must be a skipped exon event.

67



Chapter 5 De Novo Assembly of Transcripts considering Alternative Isoforms

A1 

A2 

A1-POLYA 

Poly-A 

P
A
S 

A 

B 

A-C 

C 

0 ≤ len ≤ k-1 

A 

A-C 

C 

0 ≤ len ≤ k-1 

5‘ 3‘ 

5‘ 3‘ Intron or exon enclosed by 5‘ and 3‘ splice site 

A1 

A2 

A1-B 

B 

0 ≤ len ≤ k-1 

5‘ 

Alt. 5‘ splicing exon A B1 3‘ Alt. 3‘ splicing exon B 

A 

B1 

A-B2 

B2 

0 ≤ len ≤ k-1 

3‘ 

A Exon A Polyadenylation site exon A A1 
P
A
S transition from A to poly-A  

Alternative Polyadenylation 

0 ≤ len ≤ k-1 

A-C splice junction node 

P
A
S 

A1-POLYA 

Skipped Exon 

Intron Retention Alternative 5‘-Splicing Alternative 3‘-Splicing 

A2 5‘ 

Figure 5.4: Maximum Parsimony Alternative Exon Events in Bubbles with a Splice
Junction Node. The occurrence of splice sites or polyadenylations site (PAS) lead to
the different depicted alternative exon events, see Observation 5.1.5.

Note that if the assumption of maximum parsimony is dropped, alternative 5’ and 3’
splicing might be coupled to one or more exon skipping events. Similarly, an intron
retention event might be a coupled alternative 5’ and 3’ splicing event instead.

5.2 Oases: a de novo Transcriptome Assembler

Based on Transcript de Bruijn Graphs

After the theoretical capabilities of Transcript de Bruijn graphs have been presented
in the previous section, a new set of algorithms is explained in this section. These
algorithms are based on the graph structure of the Velvet package and are collectively
called Oases. The two executables of velvet, velveth and velvetg, perform the first
steps, namely hashing into k-mers, de Bruijn graph construction, simplification ,and
finally error correction (Section 2.3.3).
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5.2.1 Error Correction and Collapsing

An essential step of any short-read assembler is error correction. RNA-Seq short-read
data are exposed to the same errors as resequencing data and therefore these steps
of Velvet are not altered. Tip clipping and the Tour Bus algorithm are needed to
remove sequencing errors, small polymorphisms due to allele-specific isoforms [112],
and substitutions caused by RNA editing [26]. A minimum k-mer coverage cutoff
on the remaining nodes is imposed to remove lowly abundant splice forms, which
are indistinguishable from sequencing errors (Section 2.3.3). It is assumed that after
these corrections no sequencing errors and polymorphisms exist in the node sequences
of the graph.

Depending on the organism these steps have to be used with caution. For example,
micro-exons [156] form small bubbles that might be removed by the Tour Bus algo-
rithm if the sequence identity cutoff between two nodes is too low. In addition, tip
clipping may remove short alternative ends, especially for high k-mer sizes.

Further, a trivial step is to remove chains of nodes in the de Bruijn graph in order to
decrease the memory consumption, see Section 2.3.1. In what follows it is assumed
that all chains of nodes have been simplified in the de Bruijn graph.

5.2.2 Scaffolding of Loci

As introduced in the previous section, the task is to identify reads from transcripts
that are related through alternative splicing. In an ideal scenario all transcripts that
are sequenced form groups of transcripts, called loci, which are only k-alternative.
Therefore the basic idea is to compute the connected components of the transcript
de Bruijn graph, each representing one locus. The length of a node is an indicator of
its uniqueness [173], nodes are called short if their length is smaller than 50+k − 1

bps and they are called long otherwise. Nodes that are connected by at least one
single read are called direct. If a connection is supported only by paired-end reads it
is called indirect.

In the next part it is outlined which filters on direct and indirect connections are
imposed to reduce false positive association of loci.
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Construction and filtering of the scaffold

The de Bruijn graph partitions each read into its k-mers and thus the read path in
the de Bruijn graph may span over several nodes. If node connections are direct
the distance beween nodes can be computed from the read sequence connecting both
nodes. Otherwise the distance has to be estimated from the indirect connections, see
2.3.1. There are two measures associated to each connection or edge in the graph.
The first is called the support of a node, that is the number of direct reads or indirect
read-pairs that span the connection. The second is a more finegrained measure. Each
edge between node ni and nj is assigned a weight wij. wij is the sum of the weights
wijk of all read sequences Rk that establish a connection between node ni and node
nj:

wij =
∑

∀Rk:ni→nj

wijk . (5.1)

The individual weights differ for single-end and paired-end reads. For single-end reads
the weights are set to wijk = 1, as each read gives direct connection information for
this edge. For paired-end reads the situation is slightly different and the insert size
between both reads has to be considered. A natural way of setting the edge weights
is to relate them according to their probability of occurence which is approximated
by the probability of the distance D according to the normal distribution centered
around µ, with standard deviation σ. If d is the estimated distance between the two
reads of a given pair, then the weight wijk for the pair is:

wijk =
1√
2π
e−

(d−µ)2

2σ2 . (5.2)

After calculation of the weights each edge is filtered if its support < 4 (by default) and
its weight wij ≤ 0.1. These rules apply only for connections between long nodes. A
connection between a short and a long node must be direct. Only direct connections
between two short nodes are considered, but only if there is no intermediate gap
between them.

In order to account for random connections between nodes from highly expressed
transcripts the number of expected connections is further computed between long

70



5.2 Oases: a de novo Transcriptome Assembler Based on Transcript de Bruijn Graphs

nodes using a modified version of the statistic presented in [173]. The number of
connecting read pairs between nodes na and nb of a gene with a single transcript Ti
is estimated to be:

E(X) = ρa

[
σ

(
Φ(M)− Φ(N)−M

∫ N

M

Φ

)
+ lB

∫ O

N

Φ− σ

(
Φ(O)− Φ(P )− P

∫ P

O

Φ

)]
(5.3)

M =
D − µ
σ

(5.4)

N =
D + la − µ

σ
(5.5)

O =
D + la − µ

σ
(5.6)

P =
D + la + lb − µ

σ
, (5.7)

where ρa is the mean density of reads in na. la and lb denote the length of nodes na
and nb, w.l.o.g. assuming that la ≥ lb. Φ denotes the standard normal probability
distribution function. In this model it is assumed that the probability between two
read pairs depends only on the read position and the read pair insert length. However,
the above formula is only true if Ti is the only transcript expressed in the gene. If
an alternative isoform Tj is expressed as well, that does not contain the sequence of
na or nb, the value of formula 5.3 overestimates the number of expected connections.
Therefore, ρa is substituted by the density ρ∗a, which is adapted for the case that one
of the two nodes is part of an alterntive exon:

ρ∗a = min{ρa, ρb} , (5.8)

where ρb is the density of reads in nb respectively.

Finally, all indirect connections with support < E(X)× 0.1 are eliminated.

After false positive connections have been removed according to the criteria defined
above, the clustering into loci is conducted similar to Butler et al. [20]. First, con-
nected components between long nodes (default 50+k-1 bps) in the graph are con-
structed, because these long nodes have a higher likelihood of being unique. Second,
small nodes that share direct sequence overlap with long nodes are added to form the
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Figure 5.5: (1) The locus is built around a connected component of long nodes (white
boxes). (2) To these nodes are added the short nodes (black) which share a direct
connection with one of the long nodes. (3) Transitive connections are removed from
the locus.

locus, see Figure 5.5 for a simple example. Transitive connections are removed, see
below.

Orientation of the loci

As mentioned before, the reads from an RNA-Seq experiment normally come without
the orientation of the fragment. However, for running the algorithm explained in
Section 5.2.4 it is necessary to determine if a node sequence belongs to the sense or
antisense strand of a gene. Oases uses a simple heuristic to process all nodes in a
locus in consistent orientation. In a locus that is k-alternative all connections belong
to exon parts from the same gene, therefore the orientation is imputed at the locus
level. The number of stop codons for each node’s sequence and its reverse complement
sequence is computed for each of the three possible reading frames. Independent of
node size, the orientation of each node is the one with the minimum number of stop
codons in all reading frames. Finally, the orientation of a locus is decided by majority
vote, weighted by node length. If a locus is in majority antisense, all of its nodes are
replaced by their reverse complements, otherwise it is left unmodified.

This is the same problem as predicting the orientation of ESTs, which has been
addressed by many researchers and different tools have been designed for finding
coding sequences in ESTs and thereby predicting the orientation of the fragment
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Figure 5.6: The following topologies have only one or two possible transcripts, which
can easily be deduced: (A) linear graphs, (B) forks, and (C) bubbles. Boxes denote
nodes in the graph with indirect connections that cannot be simplified.

[118, 99]. Most of these tools rely on codon usage composition tables in one way or
another. As efficient tools exist to orient partial transcripts, the simple predictions
made by Oases can later be corrected in a postprocessing step if codon usage tables
for the same or closely related species exist.

Transitive Reduction

Finally, for the following analyses to function properly, it is necessary to remove
redundant long distance connections. A connection is considered redundant if it con-
nects two nodes which are connected by a distinct path of connections of comparable
total length. An efficient algorithm exists for this task originally designed for string
graphs by Myers [116]. This algorithm was adapted to the fact that short nodes
can be repeated and induce a cycle in the TG, see Section 5.1.2. Because of this,
occasional situations arise where every connection leaving a node can be transitively
reduced by another one, thus removing all of them, and breaking the connectivity of
the locus. To avoid this, a limit is imposed on the number of removed connections,
such that each node keeps at least one in- and one outgoing node. If two connections
have the capacity to reduce each other, the shortest one is preserved.
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5.2.3 Recognition of Trivial Structures

After each locus has been processed as detailed above, the task is to reconstruct the
expressed transcripts. In many cases, the loci present a simple topology which can be
trivially and uniquely decomposed into one or two transcripts. The three categories
of trivial locus topologies are: chains, forks, and bubbles (Figure 5.6). These three
topologies are easily identifiable thanks to the node degree distribution of the locus,
that can be computed with a linear traversal of the graph with V nodes and E edges
in O(V + E) time.

Oases computes for each node the indegree (indeg) and the outdegree (outdeg), for a
total of t nodes in the locus. It is assumed, w.l.o.g., that all nodes in the graph are
considered in the same direction. If t-2 nodes have indeg=1 and outdeg=1, one node
only indeg=1 and the other node only outdeg=1, then the locus graph is necessarily
linear. Only one maximal transcript can be produced from this locus. If t-4 nodes
have indeg=1 and outdeg=1, one node has indeg=1 and outdeg=2, two nodes only
indeg=1, and the remaining node has only outdeg=1, then the graph presents a simple
fork. Finally, if t-3 nodes have indeg=1 and outdeg=1, one node has indeg=1 and
outdeg=2, one node only outdeg=1, and the remaining node only indeg=2, then the
locus graph presents a bubble. In these latter cases, only two maximal transcripts
can be extracted.

Note that for trivial cases even if the locus is homologous, the corresponding tran-
scripts would be reconstructed correctly.

5.2.4 Prediction of Full Length Transcript Sequences

The task remains to produce the underlying transcript sequences from a locus graph
that has no trivial topology . The idea is that among all possible paths in the graph
the one with highest read coverage is likely to represent an actual transcript. A
heuristic is applied that utilizes the fact that the sequencing coverage of a transcript is
directly linked to its expression (for standard RNA-Seq protocols where the expression
levels are not normalized). The assumption is that the isoforms in a locus share the
majority of the exons. Further, alternative exon events in a locus are assumed to
be statistically independent, unless additional data, like paired end reads, indicate
otherwise.
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The algorithm of Lee and co-workers, initially suggested for the reconstruction of
consensus sequences from ESTs, can be adapted to solve this problem [86, 167]. The
algorithm has been proposed for splicing graphs (they call them partial order graphs)
built from EST data after alignment to a reference genome. The orientation of RNA-
Seq short-read data is unknown (Fig. 1.4), but for the purpose of this algorithm all
nodes in the TG will be considered only in sense or antisense direction as explained
in Section 5.2.2.

Dynamic Programming Algorithm

The algorithm is based on dynamic programming (DP) and works on the directed
TG with node weights si and edge weights wij for two nodes ni and nj. The weight of
each node is defined as the read density in the node si = ρi. The implementation in
Oases differs in that the TG may have cycles which are treated separately and that
edge weights from direct and paired-end reads are considered, as defined in Section
5.2.2.

The following recursion is applied. Each sj is maximized according to the predecessor
with maximum edge weight:

chooseBestPredecessor(j) = arg max
∀i, ni=pred(nj)

(wij), (5.9)

where pred(nj) denotes a predecessor node of nj.

Cycle Removal

As the DP-algorithm was originally designed to work on acyclic graphs, that can be
partially ordered, it could always be guaranteed that the calculations for all predeces-
sor nodes pred(na) of node na could be completed. In case of cycles in the graph this
is no longer given. There are two cases that may occur which are treated differently
in the algorithm. In both cases heuristic rules are applied to remove the cycle but
retain precious sequence, inspired by the bulge removal in A-bruijn graphs for repeat
analysis [124].
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Figure 5.7: Removal of cycles in Transcript de Bruijn graphs that block the DP-
recursion from na. Nodes are displayed as black dots. (A) The predeccesor node nb
is also a succesor of node na. The outgoing cycle edge of nb is cut and a new node
nc is created. (B) The upstream cycle prevents completion of predeccesor node nb.
The incoming cycle edge of nb is cut to form a chain starting with nc.

In the first case, node na has another node nb as its, not necessarily direct, predecessor
and as its succesor node at the same time. If this case is detected, the outgoing arc
from nb is detached and a new starting node nc is created (Figure 5.7A). In the
second case, the predeccessor node nb of na lies downstream of a cycle that cannot be
resolved. This time the incoming cycle edge to nb is detached and a chain of nodes
starting with the new node nc is created. In both cases the DP-algorithm is restarted
from nc.

Iterated Traversal

After all nodes in the graph have been processed the highest expressed transcript
is found by backtracking from the node in the graph with maximum score maxi si.
After one iteration of DP, the weights in the graph are adjusted and edges that have
not been visited previously are upweighted. The idea being, that long and highly
expressed nodes which are not part of any so far predicted transcript from the locus
are enforced to be part of the next generated transcript. Unassigned nodes are sorted
by expression and the most highly expressed node ni is selected. Connecting edges
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of ni are upweighted as follows:

wij = f · wij and wji = f · wji . (5.10)

f is a scaling factor for the weights (f=1000 as in Lee et al. [86]). Note that
this couples non-adjacent nodes that have indirect connections. At the end of each
iteration all edge weights are first set to their original value, the next unassigned node
ni is selected, the edge weights are upweight and a new transcript is predicted in the
next iteration. In Oases each locus can generate up to 10 such transcripts.

The running time of the DP-algorithm is O(t(V +E)+(c ·E)), where the first term is
the traversal of the locus graph with V nodes and E edges which is done for each of
the reconstructed t transcripts. The second term is the contribution from the removal
of c cycles each of which involves the traversal of at most E edges.

5.2.5 Merged Assemblies

A common problem in de Bruijn graph assemblers is the optimization of k, see Section
2.3.1. For Transcript de Bruijn graphs this optimization is more subtle as transcript
expression levels are distributed over a wide range, see Section 5.4.2. A way to avoid
the dependence on the parameter k is to produce a merged transcriptome assembly
or meta assembly of previously generated transcripts from Oases. Oases is run for
a set of K = {k1, . . . , kz} values and the produced transcript output is stored. All
predicted transcripts from runs in K are then fed into Oases again. The de Bruijn
graph is built over the transcripts and all steps are repeated, error correction, loci
assembly, and the DP algorithm. The output from this run is considered the merged
transcriptome assembly. A clear disadvantage of this strategy is the running time, as
the graph needs to be built and analyzed for every single k.

As it is possible to build the de Bruijn graph in Velvet with additional long reads
that allow the resolution of long repeats and merging of disconnected regions [173],
Oases can also be run with additional input from previous sequencing experiments
or known cDNAs that may help to resolve alternative splicing events for example.
Therefore predicted transcripts from previous runs are fed into Oases as long reads
for the merged transcriptome assembly.
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5.2.6 Transcript Confidence Scores

The proposed DP-algorithm produces for each input graph the set of highly expressed
transcripts. However, depending on the complexity of the locus the confidence of these
predictions may vary. Especially, when a locus is k-homologous with a large number
of transcripts from different genes, the initial assumption of the DP-algorithm is
violated. Many scenarios can be imagined where two parts of transcripts from distinct
genes are fused by the algorithm to create a false positive fusion transcript.

Ideally, one would like to have a confidence value for each reconstructed transcript
to discard low quality ones, for example in an application where no closely related
reference genome exists. Unfortunately, there is no direct indicator of such a scenario.
Nevertheless, the number of nodes in a locus can point to an unusually complex locus.
Unless a k-alternative locus is repetitive or has many complex isoforms, the number of
nodes rarely exceeds 10, see Section 5.3. Therefore a simple confidence score has been
implemented in Oases. Each transcript Ti from a locus L is attributed a confidence
value C (Ti) as follows:

C(Ti) = 1, if Ti is derived from a trivial locus, otherwise (5.11)

C(Ti) =
nodes(Ti)

nodes(L)
, (5.12)

where nodes(Ti) and nodes(L) denote the number of nodes in the transcript Ti and
the locus L, respectively.

5.2.7 Prediction of Alternative Exon Events

Transcript de Bruijn graphs offer the base-pair resolution necessary to distinguish
between different common alternative exon events, as illustrated in Section 5.1.3.
Examining the topology and the sequences around the breakpoints in bubbles, it is
possible to infer what type of alternative exon event took place. Oases therefore
scans through the breakpoints of the graph and reports all of the identifiable al-
ternative exon events. However, the prediction of splice sites is a difficult problem
in bioinformatics and many different methods have been proposed to cope with the
high degeneracy and short length of splice sites [171, 131, 105]. Currently Oases uses
simple sequence motifs as listed in Table 5.1.
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event motif(s) comment

poly-A tail A-rich, > 95% A’s 3’ end of mRNAs, ≤ 200 bps
polyadenylation signal AATAAA, ATTAAA 10-30 bps distance to poly-A
5’ splice (donor) site GT directly after the exon
3’ splice (acceptor) site AG directly before the exon

Table 5.1: Simple sequence motifs that are searched in bubbles in transcript de Bruijn
graphs.

In order to allow the report of alternative exon events, the nomenclature of Sammeth
et al. [134] for splicing graphs is applied to transcript de Bruijn graphs. Instead of
annotating the boundaries of splicing graphs, referred to as sites, the start and end
points of nodes in a locus in the transcript de Bruijn graph are utilized.

5.3 Influence of Repeats, Domains and Paralogs

Before Oases is applied to real data the influence of repetitive sequences, protein
domains, and paralogous genes on the composition of loci in transcript de Bruijn
graphs in Oases is investigated. The complete transcriptomes of H. sapiens (version
57), M. musculus (version 57), and D. melanogaster (version 56) have been down-
loaded from the Ensembl database in FASTA format. Further statistics about the
gene and transcript content for each species are listed in Table 5.2.

Species Ensembl Version #Genes Protein Coding Total cDNAs

D. melanogaster 56 15,160 14,076 22,071
M. musculus 57 31,464 23,062 79,168
H. sapiens 57 44,670 22,318 130,240

Table 5.2: General statistics of the number of genes and downloaded cDNAs for En-
sembl genomes of D. melanogaster, M. musculus, and H. sapiens.

As mentioned in the introduction and Section 5.1.2, a fundamental problem of de
Bruijn graphs is the limit to sequence overlaps of size k-1. In Section 5.2.2 about
the scaffolding of loci in Oases a couple of filters have been introduced to assure the
assumption that each loci constructed in Oases is k-alternative and does therefore

79



Chapter 5 De Novo Assembly of Transcripts considering Alternative Isoforms

N
um

b
e

r 
o

f 
Lo

ci

Size k

0

5000

10000

15000

20000

25000

30000

35000

15 20 25 30 35 40 45 50 55

Human Orientation Known

Human Orientation Unknown

Mouse Orientation Known

Mouse Orientation Unknown

Fly Orientation Known

Fly Orientation Unknown

Human Orientation Known

Human Orientation Unknown

Mouse Orientation Known

Mouse Orientation Unknown

Fly Orientation Known

Fly Orientation Unknown

Figure 5.8: Computation of the number of loci assembled by Oases for different k. The
numbers are reported for the complete transcriptomes of Human (boxes), Mouse (di-
amonds), and Fly (circles). In order to understand the difference between strand
specific transcripts Oases was run with or without known orientation of the tran-
scripts.

not contain transcripts from different genes. Recall that the initial computation of
connected components in the graph is restricted to long nodes (by default (50+k-
1) bps) and short nodes are only added to such a component if they have a direct
connection to one of the long nodes, see Fig. 5.5. Oases was run for each species
with all cDNA sequences provided as long reads (-long option). With this option
the filtering by support is disabled and loci scaffolding through direct connection
of cDNAs in long nodes is investigated. This analysis provides a worst-case upper
bound on the complexity of each transcriptome, which simulates the scenario that
many different tissues of an organism are sequenced and the data are pooled.

Transcript de Bruijn graphs were built for the transcriptome of each species for a
series of k = 19, . . . , 53 and the number of resulting loci are reported in Fig 5.8. In
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general, the smaller k the smaller the number of loci, because the chance increases
that a node has length smaller than 50+k-1 bps and recognizes overlaps due to (i)
repetitive, domain, and paralogous sequences, or (ii) overlapping gene regions from
different strands of the chromosome. The separation into loci is very stable and
only for k = 19 or 21 large jumps are observed. For all three species the number
of loci is unchanged if 41 ≤ k ≤ 53. If we take k = 23 as an example the number
of loci reported for human cDNAs is 24,966. That is quite a loss compared to the
theoretical number of 44,670 genes in human (Table 5.2) of which, however, 12,308
are pseudogenes that might still share considerable amount of sequence with their
template gene.

Overlaps due to (ii) can be removed by treating the de Bruijn graph not as a digraph
but treating both strands independently (-strand_specific yes option in velveth), see
Fig. 5.8. In all three species the number of genes overlapping on the opposite strand
clearly decreases the number of loci. For example, even for k as large as 53 in mouse
and human approximately 2000 genes are clustered into the same locus because they
have overlaps on the opposite strand in the genome.

The previous analysis hides the fact that for small k, repetitive sequences often create
small nodes with possibly many cycles that complicate the reconstruction of the
transcript. Therefore, Drosophila transcripts have been masked for repeats with
RepeatMasker version 3.2.8 with default parameters and the -species Flies option.
Additionally, annotation for Pfam domains [46] and paralogous genes was downloaded
for Drosophila transcripts from Ensembl version 56. In Table 5.3 the number of nodes
per Oases locus are depicted for different values of k. Although the scaffolding often
prevents that k-homologus transcripts are clustered into the same locus, more than
2,500 loci have at least 21 nodes for k=19. The repeat, domain, and paralogous
information of each transcript was projected onto its locus in the graph. Taking
k=27 as an example, all loci that had no annotation with any of the three categories
had ≤ 6 nodes. In contrast, loci that had ≥ 10 nodes, were always annotated by
more than one category.
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k nodes(L) ≤ 10 11≤ nodes(L) ≤ 20 20 < nodes(L)

19 6,682 1,604 2665
23 10,224 902 932
27 11,108 622 446

Table 5.3: Number of loci with 1-10, 11-20, and >20 nodes, when Oases is applied to
the complete Drosophila transcriptome. The higher the k the smaller is the influence
of repeats on locus size.

5.4 Application to Paired-End RNA-Seq data

After analysis of the properties of perfect long reads with full expression, this section
will deal with real data where transcripts differ by expression and sequencing errors
complicate their detection. The influence of parameter k for real data is investigated
and Oases is compared against the de novo genome assembler ABySS [144] and the
recently developed transcriptome assembler Cufflinks [152]. In this section the term
transfrag, for transcribed sequence fragment, is used for assembly output of one of
the programs. Whereas the term transcript refers to a full length transcript given in
Ensembl or expressed in the cell.

5.4.1 Data Sets

Two datasets were retrieved from the Short Read Archive
(http://www.ncbi.nlm.nih.gov/sra). The first data set was produced in a study by
Heap et al., where poly(A)-selected RNAs from human primary CD4(+) T cells were
sequenced [61]. Paired-end reads of length 45 bp with an insert size of 200 bps
from one human individual (studyID SRX011545) were downloaded. All reads were
processed by (i) removing Ns from both ends, (ii) clipping bases with a Sanger quality
≤ 10, and (iii) removing all pairs where one read had more than 6 bases with Sanger
quality ≤ 10 after steps (i) and (ii), leading to a total of 30,940,088 reads.

The second data set was taken from the recently published study of Trapnell and
co-workers [152]. The authors did a timeseries experiment of C2C12 myoblast mouse
cells and sequenced paired-end reads of length 75bp with an insert size of 300bps.
Read data from the 60hr timepoint (study id SRX017794) was kindly provided by
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the authors due to problems with the Short Read Archive. The authors published
the predictions of their transcriptome assembler Cufflinks, which were downloaded
for later analyses. The obtained 67,261,680 reads have not been further processed as
was done by the authors for running Cufflinks.

For each data set the reads were aligned onto the complete transcriptome of En-
sembl with RazerS [163]. The minimum sequence identity required was 92 % and
further the following parameters were set for RazerS -m 20 -dr 2 -pa -mN -of 1 -s
1111011010001110011 -t 3. Read counts have been summarized on the gene level in
order to compute Reads Per Kilobase per Million mapped reads (RPKM) values for
each gene [113]

RPKM =
109 · Y
N · s

, (5.13)

where Y is the observed number of reads in the gene, N the total number of mapped
reads in the experiment, and s the gene length. Matches of non-unique reads were
equally weighted with 1

δ
, where δ represents the number of different mapping positions

in the transcriptome. Finally, each gene was grouped into one of the following three
expression categories for each data set: (i) low= 0 < RPKM ≤ 1, (ii) med = 1 <
RPKM ≤ 20, and (iii) high =20 < RPKM.

In all following experiments with Oases the coverage cutoff was set to three and the
minimum support for connections to four if not stated otherwise. Predicted transfrags
of Oases and ABySS were aligned against the genome using Blat [78] with default
parameters and the sensitivity and specificity values against Ensembl annotation were
computed with Cuffcompare [152].

5.4.2 Influence of Parameter k

It was shown in the previous section that a large k is generally preferable over a
smaller k, in order to simplify the locus topology. But the common problem of de
Bruijn graph based sequence assemblers is the susceptibility to sequencing errors.
Each sequencing error can destroy up to k k-mers and therefore the influence of
sequencing errors has to be balanced against the gain in repeat resolution when
choosing k. In RNA-Seq data an additional difficulty is that a large fraction of the
expressed transcripts is represented with very few sequence reads as often only 5% of
the expressed genes contribute ≥ 50% of all reads [19]. In consequence, a large k will
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Figure 5.9: Application of Oases to the paired-end mouse C2C12 dataset for different
values of k (x-axis). The nucleotide sensitivity for the med and high expression level
categories as well as the total set of Ensembl 57 annotations is depicted (y-axis).
Highly expressed transcripts are more accurately reconstructed with large k values,
where repeat resolution is easier.

additionally favor highly expressed transcripts. In order to observe these oppositional
influences Oases was run for k = 21, . . . , 35 on the mouse C2C12 data set and the
nucleotide sensitivity for the expression categories low, med, and high was recorded
(see above). Categories high and med are shown in Figure 5.9. For k = 21 the
nucleotide sensitivity in the med category is superior to the high category, due to
complex locus topologies for highly expressed transcripts. However, with each step-
wise increase of k the sensitivity drops in the med category and rises in the high
category until it finally starts to drop in the high category for k ≥ 35. Nevertheless,
if the nucleotide sensitivity is computed against all genes in Ensembl, the best value
is attained for k=23 because there are more genes in the med category than in the
high category.

The above observations directly show that the computation for one single k is limited,
as results are only adequate for a subset of all expressed transcripts. Interestingly, it
can be observed in Figure 5.9 that the total sensitivity for the displayed range of k
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should increase when the sequence output for multiple k values is combined, due to the
large increase in nucleotide sensitivity in the high category for k=33. As mentioned
in Section 5.2.5, Oases is able to make use of previously assembled transfrags and
can produce a merged assembly for all of them. Application of the merged assembly
approach with the considered range of K = {21, . . . , 35} for the mouse data set
increases the total nucleotide sensitivity from 24.6 to 27.5 as discussed later for the
comparison with Cufflinks.

5.4.3 Comparison with ABySS

As mentioned in the beginning of this chapter, genomic assemblers have been applied
to RNA-Seq data [35, 157]. The most comprehensive study was conducted by the
group that developed ABySS [144, 11] that applied ABySS to a set of over 150 Mio.
human paired-end RNA-Seq reads. However, ABySS was still run as a genomic as-
sembler and the authors analyzed small contigs that described junction nodes. ABySS
does not aim at reporting alternative isoforms though. In order to show the advan-
tage of Oases against a genomic assembler, a comparison with ABySS on the human
CD4 dataset was conducted. Oases and ABySS were run for k = 19, . . . , 35 and the
predicted transfrags where mapped against the genome with Blat [78].

Method k transfrags > 100 N25 N50 N75 Total Mapped

Oases 19 56,858 410 912 1,681 30,628,341 56,737
Oases 19-35 44,021 537 1,287 2,313 29,870,496 43,951
ABySS 23 27,714 365 801 1,557 14,637,999 27,667

Table 5.4: Oases and ABySS Results on 30,940,088 paired-end reads from a human
CD4 RNA-Seq data set. The number of transfrags with length > 100 and their
N25, N50, N75, as well as the total sequence output are reported. Mapped gives the
number of transfrags that mapped to the genome using Blat.

In Table 5.4 the statistics for the best k are reported for Oases and ABySS. The first
observation is that Oases reports far more transfrags adding up to about the double
amount of total sequence output (Supplemental Data S8A). This is to be expected,
as ABySS reports only contigs whereas Oases aims at reporting full length transfrags.
For example for the simple fork topology (Fig. 5.6), ABySS would most likely report
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Method k level low med high Full-SE Full-SP

Oases 19 Nucleotide 0.5 27 60.3 15.1 83.7
Oases 19-31 Nucleotide 0.5 27.1 62.1 15 81.8
ABySS 23 Nucleotide 0.3 18.9 53.9 11.5 85.1

Oases 19 Exon 0.2 14.9 38.4 9.3 37
Oases 19-31 Exon 0.3 15.3 41.1 9.5 41.6
ABySS 23 Exon 0.2 10.8 34.2 7.4 44.5

Oases 19 Intron 0.4 26.4 63.4 16.2 82.9
Oases 19-31 Intron 0.4 26.7 65.9 16.1 80.4
ABySS 23 Intron 0.3 19.2 56.8 12.7 84.3

Table 5.5: Sensitivity for nucleotide, exon, and intron level for aligned Oases and ABySS
transfrags for human CD4 data subdivided into categories of low, medium, and high
expression levels as well as the sensitivity (SE) and specificity (SP) for the full set of
Ensembl 57 transcripts (Full).

three transfrags, whereas Oases reports two longer transfrags. The more fragmented
and complicated a locus is, the more fragmented will be the transfrags of ABySS. For
both programs Blat is able to align more than 98% of the transfrags, pointing to rea-
sonable assemblies. The N25, N50, and N75, especially N50, are classical measures
to compare the output of genomic assemblers. A more interesting measure is the
coverage of annotated transcripts in the human genome. The classical measures used
are Sensititvity and specificity for different levels of granularity, see Section 2.1.3.
In Table 5.5 the sensitivity at exon, intron, and nucleotide level is reported addi-
tionally divided into the three expression categories, low, med, and high. Oases has
higher sensitivity in all categories and most notably in the med and high category.
For example in the med category for nucleotide sensitivity Oases has a 43% increase
relative to ABySS. The last column of the table gives the specificity against the com-
plete annotation of Ensembl. Although the specificity of ABySS is 2% higher, this
is caused by the additional output of Oases that lies outside the reference annotation.

In the second row of Table 5.4 the result of a merged assembly of Oases for all tested
k values is reported. The merged assembly is produced at k = 35 to have maximal
repeat resolution (Supplemental Data S8B). It should be noted here that Oases can
in principle also produce a merged assembly of the ABySS transfrags, but this was
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Category Transfrags % of total % of length

Match to known isoform 3,558 8.10 17.41
Contained in known isoform 25,312 57.59 40.15
Novel isoform of known gene 2,225 5.06 11.52
Pre-mRNA junction 3,967 9.03 9.15
Intronic 2,397 5.45 2.14
Polymerase run-on 807 1.84 0.89
Intergenic 1,073 2.44 1.17
Other artifacts 4,612 10.49 17.56

Total 43,951 100.00 100.00

Table 5.6: Analysis of Oases transfrags produced from the merged assembly approach
for human CD4 RNA-Seq data. The overlap with Ensembl 57 annotation was com-
puted with Cuffcompare [152].

not investigated as the direct output of Oases is more sensitive already. The largest
improvement is in the N50 of the transfrags from the merged assembly which is
increased by almost 400 bps, without affecting the total assembly length. Although
fewer sequences are output the sensitivity is not decreased.

In Table 5.6 the overlap with predicted Oases transfrags and Ensembl 57 mouse an-
notations is reported. The program Cuffcompare [152] was used to classify all aligned
transfrags. In total 8% of the transfrags represent approximately 3,600 isoforms with
complete exon-intron borders. The majority (58%) of the transfrags is contained in
known isoforms, which are not reconstructed at full length. 2,225 putative new iso-
forms and 2,397 transfrags residing in introns of known genes are assembled. A further
1,073 transfrags represents putative new intergenic transcripts. The approximately
4,000 transfrags in the category pre-mRNA junction represent unspliced fragments
that extend into the intronic region of an annotated transcript and might stem from
remaining pre-mRNA fragmens in the sample.

5.4.4 Comparison with Cufflinks

In order to explore the difference between a de novo approach and a genomic tran-
scriptome assembler, the recently developed Cufflinks method [152] was benchmarked
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Method k transfrags > 100 N25 N50 N75 Total Mapped

Oases 23 95,220 399 767 1,378 49,466,400 94,984
Oases 21-35 64,674 898 1,736 2,941 63,279,139 64,518
Cufflinks - 72,745 956 2,613 4,522 73,084,627 -

Table 5.7: Oases and Cufflinks Results on reads from a mouse C2C12 cell line RNA-Seq
data set. The number of transfrags with length > 100 and their N50 is reported.
Column Mapped gives the number of Oases transfrags that mapped to the genome
using Blat.

against Oases. Cufflinks expects as input RNA-Seq reads that have been mapped
with a spliced alignment algorithm. From these set of reads Cufflinks assembles a
parsimonious set of transfrags by computing a maximum weighted matching in a
weighted bipartite fragment compatibility graph. The C2C12 timepoint RNA-Seq
dataset was produced for the same study and Cufflinks predictions with this dataset
can be regarded as the possible upper-bound, as Cufflinks parameters were set by the
authors.

Four important advantages for Cufflinks compared to the de novo setup of Oases
should be mentioned: (i) sequencing reads are aligned to the genome such that a
higher rate of sequencing errors can be accounted for, (ii) reads from repetitive se-
quences map to multiple genomic locations and are treated differently, (iii) genomic
signals like splice sites are used to extend the exon boundaries, and finally (iv) aligned
sequence reads are grouped into exons by genomic proximity.

Table 5.7 shows the number of transfrags for Oases and Cufflinks. First note that
the merged assembly of Oases drastically improves upon the single-k assembly, as
seen in Fig. 5.9. The N50 is doubled and the total sequence output increased by
14 megabases. As expected, Cufflinks outperforms Oases in all regards. The N50
of Cufflinks is almost 1,000 bps larger. In Table 5.8 the sensitivity and specificity is
shown for the three expression categories low, med, and high. Compared to the CD4
data, the merged assembly of Oases improves the sensitivity of nucleotide, exon, and
intron level by 3-4% upon the assembly with the best k = 23 (Supplemental Data
S8C-D). Cufflinks has the greatest improvement over Oases for the low nucleotide
sensitivity category, which may be explained by the fact that sequencing errors are
more easily accounted for and that nearby reads can be grouped into exons of length
at least 100 bps. In the high category the difference between Oases and Cufflinks is
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Method k level low med high Full-SE Full-SP

Oases 23 Nucleotide 0.6 45.9 47.4 24.6 88
Oases 21- 35 Nucleotide 0.7 49.4 62.5 27.5 85.6
Cufflinks - Nucleotide 24.1 69.6 71.4 45.3 67.0

Oases 23 Exon 0.1 34.8 28.6 18.5 39.6
Oases 21- 35 Exon 0.2 38.5 46.3 22.4 49
Cufflinks - Exon 12.5 52 52.4 33.5 57.1

Oases 23 Intron 0.2 54.7 47.8 29.7 90.8
Oases 21- 35 Intron 0.4 59.3 71.9 34.7 86.7
Cufflinks - Intron 19.9 75.7 80.6 50.2 94.8

Table 5.8: Sensitivity for nucleotide, exon, and intron level for aligned Oases and
reported Cufflinks transfrags [152] for the mouse C2C12 cell line subdivided into
categories of low, medium, and high expression levels as well as the sensitivity (SE)
and specificity (SP) for the full set of Ensembl 57 transcripts (Full).

generally smaller than in the low and med category.

Table 5.9 further shows the classification of the transfrags with Cuffcompare. Oases
assembles 6,870 isoforms with complete exon-intron borders, which is about 71%
achieved for Cufflinks transfrags. Almost three times more transfrags of Oases are
flagged as contained in known isoforms compared to Cufflinks, which summarizes the
advantage of Cuffllinks that can group nearby fragments into exons. In summary,
the de novo approach of Oases allows the reconstruction of 60-67% of the transcript
fragments - depending on the metric - that are assembled by Cufflinks with the help
of the reference genome.
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Category Transfrags total(%) length(%) Cufflinks

Match to known isoform 6,870 10.65 19.20 9,743
Contained in known isoform 33,889 52.53 37.20 13,066
Novel isoform of known gene 7,727 11.98 23.28 6,217
Pre-mRNA junction 5,507 8.54 7.63 3,708
Intronic 1,811 2.81 0.87 10,851
Polymerase run-on 1,708 2.65 1.28 6,224
Intergenic 1,653 2.56 1.26 20,771
Other artifacts 5,353 8.30 9.27 2,165

Total 64,518 100.00 100.00 72,745

Table 5.9: Analysis of Oases transfrags from the merged assembly approach for mouse
C2C12 data. The last column gives the number of Cufflinks transfrags for comparison.
The overlap with Ensembl 57 annotation was computed with Cuffcompare [152].
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Discussion

Detection of AEEs A similar stategy for the reference based spliced alignment was
used by other authors [113, 33]. Other approaches for spliced alignment without
reference have been published during this work. QPALMA [15] uses quality scores
but is relatively slow, Tophat [151] is much faster. More recently, new algorithms
have been developed that take a seed and extend approach to do spliced alignment
with paired and single end reads [165, 2, 4, 152].

Here, a simple statistic was used to compute the expected number of random matches
on splice junctions. People have extended this simple model for splicing detection
incorporating the relative distance to the exon boundary into the statistic [160] and
using a classifier that learns discriminative signals between true and artificially gen-
erated splice junction sequences [119].

For single genes, it is expected that the length of the variable region between two
isoforms will influence the detection power of methods using read coverage (Simula-
tions). For extreme cases affecting only a few bases of one exon -like NAGNAG sites
[12] - those methods are likely unable to detect these changes. By design, CASI and
DASI have certain biases in detecting splice variants. While CASI requires in most
cases the existence of at least two transcripts for a gene, DASI is able to predict vari-
ations on single transcripts with only one transcript in each condition. In contrast
to DASI, exons with low expression are not taken into account by CASI to avoid,
for instance, the influence of potential annotation errors. Consequently, CASI pre-
dictions are based on a smaller set of expressed internal exons compared with DASI
predictions.
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In their principle, the CASI/DASI strategies could be paralleled with the type of
analysis performed with exon arrays. It was shown that using digital information
derived from only 8 million reads sequenced in each condition, the prediction of
AEEs differentiating HEK from B cells exhibited higher sensitivity and specificity
than estimations derived from exon arrays with 4 replicates. The comparison further
demonstrated that one of the major problems with arrays is that the large variation of
expression levels across exons of a given gene adversely affects the detection of AEEs.
This problem adds up to the well-known array issues related to probe design, cross-
hybridization and detection of specific signals for genes that are poorly expressed.
Here, data showed that only a small fraction of the qPCR-verified AEEs were detected
by the exon array.

Previous array-based predictions of AEEs reported a specificity of 82-85% and a
sensitivity of 4-53% [75, 146]. Here, for the two human datasets, CASI alone reached
a specificity of 89% and a sensitivity of 51%. However, it was shown that the inventory
of AEEs is drastically improved after integration of splice junction reads. Given that
the analysis was conducted with only 4 millions of mapped reads per cell line and
allowed to estimate AEEs with largely improved performances as compared with exon
array-based analysis, there is no doubt that an exhaustive inventory of alternative
transcript isoforms will be made possible via RNA-Seq. It is essential to merge
information from junction reads and predictions from CASI/DASI types of analysis.
While highly expressed genes are associated with a large number of reads directly
identifying the different splice junctions and will therefore identify a larger set of
splice junctions in these genes, moderately abundant transcripts will, in many cases,
show a sufficient number of exonic tags to allow the prediction of AEEs by CASI,
but might not enable the identification of reads at splice junctions. In general, the
complexity of AEEs in a given gene might better be addressed by junction or paired-
end reads, because for exons affected by multiple variations, the read distribution
will be difficult to interpret.

Isoform Quantification Clearly, the model proposed in Chapter 4 can be extended
to include junction reads, which should improve the performance, especially as the
reads are continously getting longer with updates of NGS sequencers. The introduc-
tion of paired-end reads can also be modeled, but this should be done not in the naive
way to keep the size of the indicator matrix small. A possible solution might be to
do transitive reduction for these connections.
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Another estimation algorithm based on the Poisson assumption has been proposed
by Jiang and Wong recently [74]. The authors, however, did not maximize the log-
likelihood but obtained an estimate of the posterior distribution by using importance
sampling. They did not compare their approach with qPCR data but showed that
RNA-Seq estimated transcript expression levels correlate with transcript expression
levels estimated from custom splicing arrays (PCC ∼ 0.6).

As POEM solves the quantification problem for isoforms that share genomic regions,
it is straightforward to apply the algorithm to resolve the assignment of non-unique
read matches simultaneously with the quantification problem. The indicator matrix
just needs to be constructed for all the transcripts that share reads which are mapped
to different genomic locations. In a recent work by Li et al. [92] and Howard et al. [67]
such an approach was shown to improve the accuracy of estimations due to increased
sample size.

In this work the Poisson distribution was assumed and computed estimations showed
good correlation with the qPCR experiments. However, with further understanding
of the biases and effects introduced by the sequencers and the protocols it can be
expected that POEM, CASI, and DASI can be improved by adapting the pe. Two
interesting approaches that learn a background distribution have been proposed [67,
112] recently.

De novo transcriptome assembly

Establishing strand specific sequencing protocols for RNA-Seq [121, 155] is a very im-
portant research direction which will avoid the problem of overlapping or repetitive
genes from the opposite strand of a chromosome, see Fig. 5.8. Notably, for transcrip-
tome assembly of RNA-Seq data from cancer cells this could have practical clinical
relevance for the differentiation between real and false-positive fusion genes.

Strand specific RNA-Seq data allow the prediction of Alternative Exon Events di-
rectly from the de Bruijn graph as shown in Section 5.1.3. If the data is not strand
specific, as was the case for the datasets analyzed in this work, the prediction of
sequence motifs has to be done on the node sequences and their reverse complement
sequences, therefore increasing the risk of false positive predictions. The accurate pre-
diction of splice sites, as assumed in Section 5.1.3, is challenging in practice because
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splice sites are short and degenerative sequence motifs [171, 131, 105]. Prediction
success may depend on the availability of closely related species data. Moreover,
especially alternative splice sites were reported to show deviation from the consensus
description of constitutive splice sites [149, 166] complicating the prediction further.
It would be interesting to investigate prediction of AEEs in de Bruijn graphs for strand
specific data and in combination with efficient splice site predictors, like [131].

One reason why the merged assembly approach works better than the assembly for
a single k, is that highly expressed transcripts accumulate far more reads with se-
quencing errors than lowly expressed transcripts. With higher k more of these errors
are removed by the error correction steps of Velvet and the Sensitivity increases. A
reasonable extension would be a probabilistic coverage cutoff for nodes in the graph
that adapts to the mean expression level of a locus, thus correcting sequencing errors
more appropriately for highly expressed transcripts and smaller k.

An alternative approach to merged assembly is to build the de Bruijn graph not
for a single k but for a set of sizes K = {k1, . . . , kz} and merge the individual
de Bruijn graphs for one k into a common data structure. Such an approach was
recently suggested by Peng and co-workers for genome assembly, who designed an
iterative de Bruijn graph assembler (IDBA) [122]. The IDBA starts with small k,
recording and resolving differences in the de Bruijn graph topology for higher k
using an intermediate data structure. This approach has the advantages that it
is faster than building the graph for each k with subsequent merging and likely
more accurate in resolving sequencing errors as compared to the merged assembly
approach introduced in Section 5.2.5. An interesting direction for further development
would be to design such an intermediate de Bruijn graph data structure tailored for
transcriptome assembly.

Along these lines, an improved error correction procedure for short sequencing reads
from resequencing studies, devoid of a fixed parameter k as in de Bruijn graph ap-
proaches, was proposed by Schroeder et al. [138], who suggested to build a data
structure called the suffix tree of the reads. In their algorithm overlaps of read sub-
sequences of different sizes are used to detect and correct substitution errors more
accurately, which could be extended for RNA-Seq data. Better error correction of
reads creates more exact overlaps in the read sequences, which could prove especially
useful for de novo assembly of lowly expressed transcripts, where most of the per-

94



formance is lost compared to approaches that use a reference sequence (cf. Table
5.8).

As mentioned in Section 5.1.2, the occurrence of alternative transcription start sites
is ambiguous in the de Bruijn graph and the longest of the forms is output by the
algorithm. However, as downstream exons are always shared, the coverage increases
at the border of downstream exons. In the light of the CASI method described
in Chapter 3 a segmentation procedure could be designed that looks for sudden
increases in the read coverage, pointing to a putative exon border, given sufficient
read coverage.

Throughout this thesis the length of the sequencing reads as well as the total out-
put has steadily increased. For example the Illumina GenomeAnalyzer started with
single-end reads of length 25 bps and nowadays 100 bps with paired-end support are
routinely achieved. In addition, the output of the machine has increased by a factor
10 from 4 million reads per lane to 40 million. Finally, NGS technologies are almost
to be replaced by third-generation sequencing approaches already [30, 44] that will
further increase output and read length. With this respect the methods developed
here will have to be adapted to the changing demand of the technologies. Especially
for de novo assembly the longer read length might lead to a "Renaissance" of the
overlap graph based assemblers or possibly to hybrid approaches that combine the
best of both worlds.
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Notation and Definitions

Here I list used abbreviations and definitions for quick reference.

Abbreviations
AEE alternative exon event
APS alternative polyadenylation site
AS alternative splicing
CASI cell type-specific alternative usage index
DASI dfferential alternative usage index
DNA deoxyribonucleic acid
EST expressed sequence tag
FDR fasle discovery rate
HEK human embryonic kidney
mRNA messenger RNA
NGS next-generation sequencing
PAS Polyadenylation site
PCC Pearson’s Correlation Coefficient
POEM proportion estimation method
pre-mRNA precursor mRNA
qRT-PCR quantitative real time polymerase chain reaction
RNA ribonucleic acid
RNA-Seq RNA sequencing with NGS approaches
ROC Receiver Operating Characteristic
RPKM Reads Per Kilobase per Million mapped reads
RT-PCR real time polymerase chain reaction
SG splicing graph
TG transcript de Bruijn graph
TSS transcription start site
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Chapter 3

T theoretical number of reads in a gene
s gene length
Y observed number of reads in a gene
Ye observed number of reads in exon e
p relative proportion of gene in sample
pe relative proportion of exon e in sample
P Poisson distribution
M Multinomial distribution
r read length
j splice junction length
i.i.d. independently identically distributed
J total number of splice junction sequences
R total number of reads from an RNA-Seq experiment
P (r, σ, j) probability of random match for read of length r

to splice junction of length j with ≤ σ substitution errors
Er,σ,j,J ,R expected value of σ-error random matches for R reads of length r

to J splice junctions of length j
le effective exon length
φe set of unique reads in e
ỹe normalized expression of exon e
λ sampling depth and gene length normalizing factor
zCe log ỹe based CASI z-score of exon e
zDe DASI z-score of exon e based on the log-ratio between y1

e and y2
e
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Chapter 4

T theoretical number of reads in the gene
Tj theoretical number of reads in transcript j
tj observed number of reads in transcript j
t̂j estimated number of reads in transcript j
k number of transcripts of a gene
m number of exons of a gene
Ie,j binary indicator matrix such that Ie,j = 1 if isoform j uses exon e
Y j
e number of reads of isoform j in exon e
yje observed number of reads of isoform j in exon e
Ye number of reads in exon e
ye observed number of reads in exon e
qj gene-relative proportion of transcript j
L Likelihood

Chapter 5

k dimension of the de Bruijn graph
R set of reads from an RNA-Seq experiment
Rk read k
T set of expressed transcripts in an RNA-Seq experiment
Ti i-th transcript sequence
wij sum of edge weights that establish a connection between

node i and node j
wijk edge weights contributed by read or read pair k

that establishes a connection between node i and node j
si node weight of node i
f scaling factor for the DP-algorithm
ln length of de Bruijn graph node n
G Gene
ρn read density in de Bruijn graph node n
L locus
nodes(L) number of nodes in a locus L
T G a transcript de Bruijn graph built from data
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Zusammenfassung

Die molekulare biologische Forschung wurde durch die Erfindung der halbautoma-
tisierten Sanger Sequenzierung für DNS in den frühen 1990er Jahren revolutioniert.
Sie legte den Grundstein für die Sequenzierung von mehreren Genomen einschließlich
des menschlichen Genoms. In den letzten Jahren hat es eine zweite Revolution im
Bereich der DNS Sequenzierung gegeben. Die so genannten Next-Generation Se-
quencing (NGS) Verfahren erlauben die Sequenzierung von Millionen von DNS Frag-
menten, in Form von kurzen "Reads", in weniger als einem Tag. Diese NGS Tech-
nologien sind noch nicht voll ausgereift und ihre weitere Entwicklung wird eine neue
Ära in der DNS Sequenzierung einläuten, in der DNS Sequenzierung preiswert und
einfach zu handhaben ist. Diese Entwicklung bedeutet einen entscheidenden Anstieg
des Arbeitsaufwand von Bioinformatikern, die Gigabasen von Sequenzdaten bewälti-
gen müssen, was derzeitig den Flaschenhals für wissenschaftliche Analysen mit NGS
Daten darstellt.

Diese Dissertation beschäftigt sich mit den Herausforderungen, die sich auf Applika-
tionen von NGS Technologien zum Sequenzieren von exprimierten mRNAs (RNA-
Seq) beziehen. Im besonderen wird die Ermittlung von alternativen Exon Ereignissen
(AEEs) betrachtet, was zusammenfassend steht für alternatives Spleißen, alterna-
tive Promotoren und alternative Polyadenylierungsereignisse. Im folgenden die drei
wichtigsten Beiträge.

Zuerst werden Methoden eingeführt, die die Vorhersage von AEEs in einer oder zwis-
chen zwei Konditionen, zum Beispiel krank gegen normal, ermöglichen. Diese Metho-
den basieren auf bestehender Genannotation und bereits genomisch platzierten RNA-
Seq Reads. Alle Methoden basieren auf einem Poisson Modell, welches das zufällige
Platzieren der Reads entlang der mRNA beschreibt. Die Methoden werden auf RNA-
Seq Datensätze von einer humanen-embryonalen Niere (HEK) und einer humanen
B-Zell Zelllinie angewendet. Mehrere Tausend AEEs wurden in diesen Zelllinien
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vorhergesagt. Die Robustheit und Genauigkeit der Vorhersagen wurde durch Sim-
ulationen, Bootstrapping und RT-PCR Validierungsexperimente bestätigt. Darüber
hinaus wurde ein Vergleich von den neuen Methoden für RNA-Seq und bestehenden
Methoden für Exon Arrays durchgeführt, der erhöhte Sensitivität und Genauigkeit
für die RNA-Seq basierten Vorhersagen offenbart.

Zweitens wird eine neue Methode für die Abschätzung von mRNA Expressions Leveln
aus RNA-Seq Daten vorgeschlagen, basierend auf vorhandenen Transkriptannotatio-
nen und bereits genomisch platzierten RNA-Seq Reads. Die Methode basiert auf dem
Expectation-Maximization Optimierungsverfahren. Die Korrektheit und theoretische
Leistung des Ansatzes wird durch Simulationen demonstriert. Anwendung auf HEK
und B-Zell RNA-Seq Daten und Vergleich mit Quantifizierung durch quantitative
RT-PCR Experimente bestätigen die Genauigkeit der Methode.

Schlussendlich wird die erste Methode vorgestellt die es erlaubt ein de novo "Assem-
bly" eines Transkriptoms eines Organismuses ausgehend von RNA-Seq Daten anzufer-
tigen. Dies ist ein wichtiges Problem, welches funktionale Analysen und Genentdeck-
ung für Organismen ermöglicht, von denen das Genom noch nicht sequenziert wurde.
Ein Wechsel vom traditionellen Overlap-Layout-Consensus Paradigma zur Anwen-
dung des Eulerpfad Ansatzes für Transkriptom Assembly wird vorgeschlagen, ver-
gleichbar mit der Entwicklung für de novo Genom Assembly. Die Gemeinsamkeiten
zwischen de Bruijn Graphen und Splicing Graphen wurden erforscht und eine Theorie
für de novo Vorhersagen von AEEs entwickelt. Ausgehend von de Bruijn Graphen
wurden Algorithmen entwickelt, die die Vorhersage von kompletten mRNA Sequen-
zen, unter Berücksichtigung von AEEs, ermöglichen. Die Anwendung auf reellen
RNA-Seq Daten demonstriert die Verbesserung des neuen Ansatzes im Vergleich zur
Anwendung von de novo Genom Assemblierungsprogrammen, die bis dato für RNA-
Seq Datensätze benutzt wurden. Für einen RNA-Seq Datensatz einer Maus Zelllinie
mit ungefähr 67 Mio. Reads wurde ein Assembly von insgesamt 63 Megabasen erstellt
. Dieses Assembly beinhaltet ungefähr 6,900 mRNAs in vollständiger Länge, welches
den Erfolg des Ansatzes untermauert.
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Summary

Research in molecular biology was revolutionized by the invention of semi-automated
Sanger sequencing for DNA in the early 1990’s. It was the foundation for the se-
quencing of several genomes including the human genome. In the last few years a
second revolution in the field of DNA sequencing has occurred that has changed the
field. Next-generation sequencing (NGS) approaches suddenly enable the sequencing
of millions of DNA fragments leading to short sequencing reads in less than a day.
These NGS technologies are still in its infancy and their further development will
herald a new era where DNA sequencing is inexpensive and easily manageable. This
development has shifted the largest proportion of the workload onto the workbench of
the computational biologist that has to cope with gigabases of sequence data, creating
a bottleneck for scientific discovery.

This thesis deals with the challenges related to the application of Next-generation
sequencing (NGS) technologies to the sequencing of expressed mRNAs (RNA-Seq)
and the detection of alternative exon events (AEEs), summarizing alternative splicing,
alternative promoter, and alternative polyadenylation events. There are three main
contributions.

First, methods are introduced that enable the detection of AEEs within or between
conditions, e.g. disease and normal, based on given gene annotation and mapped
RNA-Seq reads. All methods are based on a Poisson model that describes the random
placement of reads along a transcript. The methods are applied to a dataset from
a human embryonic kidney (HEK) and a B cell line. Several thousand AEEs were
predicted in these cell lines. The robustness and correctness of the predictions was
assessed by simulations, bootstrapping, and RT-PCR validation experiments. In
addition, a comparison of splicing prediction by RNA-Seq with prediction from exon
arrays shows higher sensitivity and accuracy for RNA-Seq based predictions.
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Summary

Second, a new method for inferring isoform expression levels from RNA-Seq data
is proposed, given annotated isoform structures and mapped read information. The
method is based on the Expectation-Maximization framework. The theoretical power
of the approach is demonstrated with simulations. Application to HEK and B cell
RNA-Seq data and comparison to isoform expression quantification with quantitative
RT-PCR experiments show the accuracy of the porposed method.

Finally, the first method that allows the de novo assembly of an organism’s transcrip-
tome from short read RNA-Seq data is presented, an important problem that enables
functional analysis and gene discovery when the genome of an organism was not se-
quenced yet. A transition from the traditional Overlap-Layout-Consensus paradigm
to the Eulerian path approach to transcriptome assembly is made, similar to the de-
velopment for de novo genome assembly. The similarities between de Bruijn graphs
and splicing graphs are explored and a theory for de novo prediction of AEEs is
developed. Further, algorithms for the assembly of full length sequences considering
alternative gene isoforms are designed. An application to real data demonstrates the
improvement compared to de novo genome assemblers that have been utilized so far
for RNA-Seq datasets. For a mouse RNA-Seq dataset with approximately 67 Mio.
reads a total output of 63 megabases of transcript sequences is assembled of which
approximately 6,900 are full-length mRNAs, underlining the success of the approach
with few lanes of sequencing.
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Software Availability

The statistical estimators for prediction of alternative exon usage within a condition
(CASI) and between conditions (DASI) as well as the quantification method for tran-
script structures (POEM) together with utility functions are made available in the
open-source R-package Solas at
http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/.

The transcriptome assembler Oases is open source and an addition to the Velvet
assembler, availabe at http://www.ebi.ac.uk/~zerbino/oases/.
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Appendix

Supplemental Table Legends

Supplemental Table S0A: These tables contain all splice junctions with their position

mapping on genes (Ensembl v.46) and ESTs (EMBL NSD, release 89) that were found in

B cells. Columns "Novel" and "Alternative" indicate whether the identified junction is new

and if the junction directly identifies an alternative isoform of the gene, respectively .

Supplemental Table S0B: These tables contain all splice junctions with their position

mapping on genes (Ensembl v.46) and ESTs (EMBL NSD, release 89) that were found in

Hek cells. Columns "Novel" and "Alternative" indicate whether the identified junction is

new and if the junction directly identifies an alternative isoform of the gene, respectively.

Supplemental Table S1A: This table provides all genes with their AEEs for the cell-

internal analysis in B cells. It lists the p-value, CASI value of the exons and additional gene

information. For each exon that is supported by an alternative splice junction in B cells the

unique junction identifier for junctions is associated to it.

Supplemental Table S1B: This table provides all genes with their AEEs for the cell-

internal analysis in Hek cells. It lists the p-value, CASI value of the exons and additional

gene information. For each exon that is supported by an alternative splice junction in Hek

cells the unique junction identifier for junctions is associated to it.

Supplemental Table S2: A listing of the primer sequences and results for the 61 CASI

exons that were tested for exon skipping with RT-PCR. The table describes which events

are validated using the primers S1-R1 and S2-R1.

Supplemental Table S3: This table contains a set of 73,948 reference alternative exons

annotated to Ensembl version 46 genes. The set of exons have either evidence from the

Ensembl database, as indicated by listing the corresponding Ensembl transcript ids. Or the

exons are predicted to be alternatively spliced based on EST data, as indicated by their

Unigene Cluster ID.
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Supplemental Table S4: This table lists the estimated splice form proportions for 1,487

(640 genes) in B cells and 1,920 transcripts (830 genes) in HEK cells. It lists all transcripts for

which proportion estimations were calculated by the means of either the Ensembl transcript

ID or the merged transcript ID (with the prefix ENST-M) that was created after merging one

or more Ensembl transcripts. For each transcript, the level of expression is listed (relative

abundance, estimated splice form proportion) computed with POEM. From this probability

and the absolute normalized expression, measured with RNA-Seq, the normalized expression

was derived for each transcript.

Supplemental Table S5: A listing of the primer sequences and results for the 24 events

that were tested for exon skipping with quantitative RT-PCR for POEM validation. All

experiments were conducted using the S1-R1 and S2-R1 primer pairs and inclusion rates

of the S1 form computed from the qPCR replicates are listed. In addition, S1 inclusion

rates derived from junction read counts and computed from POEM are listed (Junc and

POEM).

Supplemental Table S6: This table provides all genes with their AEEs for the differential

analysis between Hek and B cells. It lists the p-value, DASI value of the exons and additional

gene information. For each exon that is supported by an alternative splice junction in either

B or Hek cells the unique junction identifier for junctions is associated to it.

Supplemental Table S7: A listing of the primer sequences and results for the 16 DASI

exons that were tested for exon skipping with quantitative RT-PCR. All experiments were

conducted using the S1-R1 and S2-R1 primer pairs and inclusion rates computed from the

qPCR replicates are listed. The column "validated" depicts the cases which lie inside the

1.5 ratio-difference interval. The DASI value, the MIDAS detection value, and the Splicing

Index is given for every exon.

Supplemental Data S8A: Single-k(=19) assembly results of Oases applied to Human

CD4 data. The Oases transfrags were aligned with Blat against the reference genome and

the matches where transformed into the provided GTF file.

Supplemental Data S8B: Merged assembly results of Oases applied to Human CD4 data.

The Oases transfrags were aligned with Blat against the reference genome and the matches

where transformed into the provided GTF file.

Supplemental Data S8C: Single-k(=23) assembly results of Oases applied to C2C12

Mouse data. The Oases transfrags were aligned with Blat against the reference genome and

the matches where transformed into the provided GTF file.
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Supplemental Data S8D: Merged assembly results of Oases applied to C2C12 Mouse

data. The Oases transfrags were aligned with Blat against the reference genome and the

matches where transformed into the provided GTF file.
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 Figure 6.1: Alternative acceptor splice site usage in the DUS1L gene. According to the
annotation (Ensembl v.46), the circled exon in DUS1L shows an alternative acceptor
splice site. This exon was predicted as AEE by the CASI method and had further one
junction read identifying this event. The view was zoomed in to see the offset of the
alternative splice junction.
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 Figure 6.2: Evidence of an alternative polyadenylation site in HIP2. The figure shows
the 3’ end of HIP2 as annotated in Ensembl v.46 and the read coverage obtained by
RNA-Seq for HEK (blue) and B (red) cells. In B cells, the drop in read coverage along
the last exon suggests the presence of at least two alternatively polyadenylated forms
specific to this cell line. HIP2 was previously shown to be alternatively polyadenylated
in proliferating T cells by Sandberg and colleagues [135].
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 Figure 6.3: This example shows that DASI enables the identification of alternative
promoter usage events. The gene structure at the top is derived from EST data
(Genenest cluster Hs78881) [55] and includes exon 7 and 8, which were not annotated
in the Ensembl database (v.46). The expression profile in both cell lines suggests an
alternative transcript starting at exon 7, which is highly expressed in B cells and not
in HEK cells. This is supported by CAGE tag evidences nearby exon 7, suggesting
the presence of an alternative transcription start site.
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Figure 6.4: Scatterplots of the gene-wise normalized standard deviation (coefficient of
variation) of exon expression values in B cells (left) and HEK cells (right) computed for
exon arrays (x-axis) and RNA-Seq (y-axis). The coefficient of variation is consistently
larger for exon array values in both cell lines (Wilcoxon, p-value<2.2 e-16).

Table 6.1: List of the top 20 genes with alternatively regulated exons as detected by
the DASI method between HEK and B cells.

Symbol Gene Description

MEF2B Myocyte-specific enhancer factor 2B (Serum response factor-like protein.2)
PTPRCAP Coronin-1B (Coronin-2)
SEPT9 Septin-9

CTNND1 Catenin delta-1
SMARCB1 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1
RPL37 60S ribosomal protein L37 (G1.16)
RPS2 40S ribosomal protein S2 (S4)
NASP Nuclear autoantigenic sperm protein
BBS1 Dipeptidyl-peptidase 3 (EC.3.4.14.4)
P2RX5 P2RX5 Tax1-binding protein 3
HLA-G HLA class I histocompatibility antigen alpha chain G precursor (HLA G antigen)
RPS4X 40S ribosomal protein S4, X isoform
MAZ Myc-associated zinc finger protein (MAZI) (Purine-binding transcription factor

TREX1 ATR-interacting protein
WNK2 Serine/threonine-protein kinase WNK2 (EC.2.7.11.1)
RPS24 40S ribosoma protein S24
LDHA Lactate dehydrogenase A chain (EC.1.1.1.27)
SCD Acyl-CoA desaturase (EC.1.14.19.1) (Stearoyl-CoA desaturase)

CDKN2A Cyclin-dependent kinase inhibitor 2A, isoform 4 (p14ARF)
GNB1 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta 1
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 Figure 6.5: The circled exon in RCC1 is detected as alternatively spliced by the DASI
method and verified by qPCR. However, it was not detected by the MIDAS method
in exon arrays as the expression of this exon was below the background noise in both
cell lines. The whiskers on the "Exon Array Expression Level" tracks denote the
standard deviation as measured between the replicates.
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