
7 Phonon Drag in High Landau Levels

Our study of phonon drag in high Landau levels builds on previous work on
Coulomb drag in this regime [86]. The principal differences are: (i) the linear
response theory for drag has to be extended to large momentum transfers q ∼
2kF , (ii) instead of direct Coulomb interaction, the phonon-mediated interlayer
interaction has to be included. The linear response theory for frictional drag
has already been introduced in Section 6.4. In Section 7.1, we present the
extension of this linear response theory to arbitrary momentum transfers q.
The electron-phonon interaction in bilayer systems is derived in Section 7.2.
Analytical and numerical results for phonon drag are provided in Sections 7.3
and 7.4, respectively.

7.1 Linear Response Theory of Phonon Drag: Triangle

Vertex and Polarization Function

7.1.1 Relevant Momentum Range and Regime of Interest

For Coulomb drag, the interlayer interaction is suppressed at large momentum
transfers q by a factor e−qd. Hence, the Coulomb drag contribution to the
transconductivity is governed by small momentum transfers q < 1/d. Over
length scales small compared to the cyclotron radius Rc, electron transport is
ballistic, while over length scales large compared to Rc, it is diffusive. Thus, if
the interlayer separation d satisfies d � Rc (diffusive regime), only “diffusive”
momenta qRc � 1 contribute to the drag conductivity. On the other hand,
for d � Rc (ballistic regime), both “ballistic” momenta qRc � 1 and “diffu-
sive” momenta contribute [86]. The latter case is relevant for Coulomb drag
in high Landau levels since the condition Rc > d is typically satisfied in drag
measurements.

By contrast, in phonon drag there is no suppression of large momentum trans-
fers by the interaction. The only momentum cutoff stems from temperature.
At temperatures in the vicinity of Tbs, momenta up to q ∼ 2kF contribute
to the drag conductivity. In this situation the contribution of small (diffu-
sive) momenta is negligible with respect to the contribution of large (ballistic)
momenta.1 We therefore omit a discussion of diffusive momenta and restrict
ourselves to the analysis of ballistic momenta

1

qRC
� 1 . (7.1)

1This effect is further enhanced by the specific form of the phonon-mediated electron-electron
interaction, which is peaked at large momentum transfers q ∼ 2kF .
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7 Phonon Drag in High Landau Levels

A realistic estimate for the backscattering temperature is Tbs = 2ckF ' 1K,
where c is the phonon sound velocity. Since ωc ' 10K × B[T] and, in drag
experiments, magnetic fields are of the order B ' 1T, it is reasonable to assume

Tbs � ∆ � ωc , (7.2)

where ∆ is the Landau level broadening. We focus on the regime of well-
separated Landau levels (∆/ωc � 1). We also assume that the Fermi energy
is in a high LL of index N � 1. While limiting ourselves to temperatures T
of the order of Tbs or below in all analytical derivations, we will overcome this
limitation for the numerical treatment presented in Section 7.4.

7.1.2 Triangle Vertex: Dominant Contribution Γ(q/kF )

We now proceed to the calculation of the dominant contribution to the triangle
vertex Γ in the regime of interest specified above. Γ will be treated in SCBA,
since this is a controlled approximation for high Landau levels N � 1. Within
SCBA, there are no vertex corrections to the vector vertex. Since the bare
current vertex couples neighboring LLs only, when performing the trace in Eqs.
(6.9-6.10) two of the three Green functions in the triangle vertex have to be
evaluated in the valence LL of index N , while the third has to be evaluated in
the (N ± 1)st LL.

For the treatment of phonon drag, we need the triangle vertex Γ for large
momenta. Consequently, it is appropriate to neglect contributions to Γ from
the diffusive regime of momenta. In this ballistic limit, it turns out that to
leading order in 1/qRc the longitudinal components (parallel to q) of Γ(a) and
Γ(b) cancel each other. The main contribution to the triangle vertex thus stems
from the transverse component of Γ(b).

The starting point for our calculation is Eq. (6.10). Fixing the x-axis to point
along the direction of q,

q = qex , (7.3)

the transverse part of Γ(b) (parallel to ey = ez × q̂) is given by

Γ
(b)
t (q, ω) =

ω

iπ
eytr

{

vyG−(EF )eiqr[G−(EF )−G+(EF )]e−iqrG+(EF )
}

. (7.4)

When performing the trace, the specific form of the vy matrix element ne-
cessitates that one of the three Green functions of the product in the above
expression be evaluated in a different Landau level than the other two. Since
the Green function matrix element2 G±

N is larger by a factor ωc than the ma-

trix elements G±
N±1, the leading contribution to Γ

(b)
t , which will be denoted by

2For the explicit expression for G±

N , see Appendix D.
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7.1 Linear Response Theory of Phonon Drag

Γ(q/kF ), is given by3

Γ(q/kF )(q, ω) =
ω

iπ
ey

∑

n=N±1
{

〈N |vy|n〉G−
n 〈n|eiqr|N〉[G−

N −G+
N ]〈N |e−iqr|N〉G+

N

+〈n|vy|N〉G−
N 〈n|eiqr|N〉[G−

N −G+
N ]〈N |e−iqr|n〉G+

n

}

. (7.5)

The matrix elements appearing in Eq. (7.5) can be evaluated using the expres-
sions provided in Appendix D. For better readability, we introduce a vertex
overlap function

Lj
σ(q`B) =

(
q`B√
2N

)j

e−q2`2B/2Lj
N−σ

(
(q`B)2

2

)

L0
N

(
(q`B)2

2

)

, (7.6)

where j, σ ∈ {0, 1}. For j = 1, this function simply corresponds to the vertex
overlap 〈N |eiq·r|N〉〈N |e−iq·r|N −σ〉. For later convenience, we also introduced
the case j = 0. In terms of this vertex overlap function, Γ(q/kF ) takes the form

Γ(q/kF )(q, ω) =
ω
√

2N

2πm`B
ey

(
G−

N −G+
N

) {
L1

0(q`B)
[
G−

NG
+
N+1 −G+

NG
−
N+1

]

−L1
1(q`B)

[
G−

NG
+
N−1 −G+

NG
−
N−1

]}
. (7.7)

Expanding the matrix elements G±
N±1 to first order in ∆/ωc and using

(G+
N −G−

N )2 = −16
∆2 − (EN − EF )2

∆4
, (7.8)

this yields for the main contribution to the triangle vertex

Γ(q/kF )(q, ω) = (ez × q̂)
ωRc

π2`2B
(G+

N −G−
N )2

∑

σ∈{0,1}

(−1)σ L1
σ(q`B)

= −16(ez × q̂)
ωRc

π2`2B

∆2 − (EN − EF )2

∆4

×
∑

σ∈{0,1}

(−1)σL1
σ(q`B) . (7.9)

Using the relation for the difference of generalized Laguerre polynomials [76]

L1
N (x) − L1

N−1(x) = L0
N (x) , (7.10)

3We do not detail the k-integration involved in the trace since it turns out that it is trivial.
We also suppress k in the state ket |Nk〉 ≡ |N〉 and the argument EF of the Green function
matrix elements.
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7 Phonon Drag in High Landau Levels

the sum appearing in Eq. (7.9) can be written as

∑

σ∈{0,1}

(−1)σL1
σ(q`B) = L1

0(q`B) − L1
1(q`B)

=
q`B√
2N

e−
q2`2B

2 L0
N

(
q2`2B

2

)

×
[

L1
N

(
q2`2B

2

)

− L1
N−1

(
q2`2B

2

)]

=
q`B√
2N

L0
0(q`B) , (7.11)

so that the dominant contribution to the triangle vertex is finally given by4

Γ(q/kF )(q, ω) = −16ω

π2

∆2 − (EN − EF )2

∆4
L0

0(q`B)(ez × q) . (7.12)

Additional contributions will be discussed in Section 7.1.4.

7.1.3 The Polarization Function in the Ballistic Regime

This section is devoted to the calculation of the polarization function χ(q, ω),
which will be needed for a proper treatment of screening effects in Section 7.3.
In addition, χ(q, ω) is closely related to the triangle vertex, as will be shown
below.

Accounting for the spin degree of freedom and neglecting vertex corrections,
the polarization bubble can be written in Matsubara representation as [92]

χ(q, iωn) = −2T

S

∑

iεn

∑

m,k

∑

m′,k′

Gm(iεn)Gm′(iεn + iωn)

×〈mk|eiq·r|m′k′〉〈m′k′|e−iq·r|mk〉 , (7.13)

where Gm is the (impurity-averaged) Green function matrix element in the mth
Landau level, S is the area of the sample and εn = 2π(n+ 1/2)T are fermionic
Matsubara frequencies. The Green function matrix elements do not depend on
k, k′, so that Eq. (7.13) can be simplified to

χ(q, iωn) = − 2T

π`2B

∑

iεn

∑

m,m′

Gm(iεn)Gm′(iεn + iωn)|fmm′(q)|2 (7.14)

with5

|fmm′(q)|2 = e−
q2`2B

2
min{m,m′}!
max{m,m′}!

(
q2`2B

2

)|m−m′|

×
[

L
|m−m′|
min{m,m′}

(
q2`2B

2

)]2

.

(7.15)

4Note that the term (ez × q) now contains q instead of q̂.
5Note that |fmm′ (q)|2 is closely related to Lj

σ(q`B) from Eq. (7.6).
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7.1 Linear Response Theory of Phonon Drag

The polarization function can then be obtained via analytic continuation (iωn →
ω+ i0+). Writing the sum over the Matsubara frequencies εn in Eq. (7.14) as a
contour integral and deforming the contour in the standard manner, one obtains

χ(q, ω) = − 2

π`2B

∑

nm

e−
q2`2B

2

[

L
|m−n|
min{n,m}

(
q2`2B

2

)]2(
q2`2B

2

)|n−m|
min{n,m}!
max{n,m}!

×
∫ +∞

−∞

dε

π
nF (ε)

1

2

{[
G−

n (ε) −G+
n (ε)

]
G−

m(ε+ ω)

+G+
n (ε− ω)

[
G−

m(ε) −G+
m(ε)

]}
, (7.16)

where nF (ε) is the Fermi distribution function. This expression can be cast into
the form

χ(q, ω) = − 2

π`2B

∑

nm

e−
q2`2B

2

[

L
|m−n|
min{n,m}

(
q2`2B

2

)]2(
q2`2B

2

)|n−m|
min{n,m}!
max{n,m}!

×
∫ +∞

−∞

dε

π
nF (ε) Im

[
G−

n (ε)
] [
G−

m(ε+ ω) +G+
m(ε− ω)

]
. (7.17)

We will now discuss the real and imaginary parts of χ(q, ω) separately.

Real Part of the Polarization Function

The real part of the polarization function

Re[χ(q, ω)] = − 2

π`2B

∑

nm

e−
q2`2B

2

[

L
|m−n|
min{n,m}

(
q2`2B

2

)]2

×
(
q2`2B

2

)|n−m|
min{n,m}!
max{n,m}!

×
∫ +∞

−∞

dε

π
nF (ε)Im[G−

n (ε)]Re[G−
m(ε+ ω) +G+

m(ε− ω)] (7.18)

can be shown to have two qualitatively different contributions, one from the
terms n 6= m and the other from the terms n = m in the sums over n and
m. These will be called nondiagonal (nd) and diagonal (d), respectively. To
leading order in 1/N , we find for the nondiagonal contribution

(

Re[χ(q, ω)]
)

nd
= −m

π
= −2ν0 , (7.19)

which simply is the result for the polarization function at zero magnetic field.6

In the low-temperature limit T, ω � ∆ � ωc, the diagonal contribution to
the real part of the polarization function is given by

(

Re[χ(q, ω)]
)

d
= −8ν(EF )

3
L0

0(q`B)

[

1 − (EN − EF )2

∆2

]

, (7.20)

where ν(ε) is the density of states within SCBA (see Appendix D). The real part
of the polarization function is then given by the sum of the two contributions
from Eqs. (7.19-7.20).

6Here, ν0 is the zero-field density of states per spin (see Appendix D).
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7 Phonon Drag in High Landau Levels

Imaginary Part of the Polarization Function

Next, we discuss the imaginary part of the polarization function

Im[χ(q, ω)] = − 2

π`2B

∑

nm

e−q2`2B/2

[

L
|m−n|
min{n,m}(

q2`2B
2

)

]2

×
(
q2`2B

2

)|n−m|
min{n,m}!
max{n,m}!

×
∫ +∞

−∞

dε

π
[nF (ε) − nF (ε+ ω)] Im[G+

n (ε)] Im[G+
m(ε+ ω)] .(7.21)

For ω � ωc, we obtain to lowest order in ∆/ωc

Im[χ(q, ω)] ' 8

π`2B

1

∆2
L0

0(q`B)

EN+∆∫

EN−∆

dε

π

[

nF

(

ε+
ω

2

)

− nF

(

ε− ω

2

)]

× Re

[

1 − (ε+ ω/2 − EN )2

∆2

]1/2

× Re

[

1 − (ε− ω/2 − EN )2

∆2

]1/2

.

In the low-temperature limit (T, ω � ∆ � ωc), the imaginary part of the
polarization function takes the form

Im[χ(q, ω)] = − 8

π2`2B

ω

∆2
L0

0(q`B)

[

1 − (EN − EF )2

∆2

]

. (7.22)

Connection between Triangle Vertex and Polarization Function

In Section 7.1.2, we calculated the dominant contribution Γ(q/kF )(q, ω) to the
triangle vertex. By comparing it to the imaginary part of the polarization
function χ(q, ω), it turns out that Γ(q/kF )(q, ω) can be expressed as

Γ(q/kF )(q, ω) = −(ez × q)
2σxy

e2ne
Imχ(q, ω) , (7.23)

where ne is the electron density and

σxy =
ene

B
(7.24)

is the classical Hall conductivity. This relation is not a mere coincidence, but
of very general character [93, 94, 95]. It can be shown [86] that the relation

Γ(q, ω) = −(ez × q)
2σxy

e2ne
Imχ(q, ω) (7.25)

also holds for higher-order (in ∆/ωc) expansions of the triangle vertex when
replacing the classical Hall conductivity with the SCBA result

σxy =
ene

B
− e2

π2
N

∆

ωc

[

1 − (EN − EF )2

∆2

]3/2

. (7.26)
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7.1 Linear Response Theory of Phonon Drag

7.1.4 Triangle Vertex: Additional Contributions

In Section 7.1.2, we calculated the dominant contribution Γ(q/kF ) to the triangle
vertex for the case of phonon drag in high, well-separated Landau levels at low
temperatures. In the case of Coulomb drag, where q/kF is small, additional
contributions are of comparable or larger order of magnitude as Γ(q/kF ) and it is
therefore crucial not to omit them. As long as the temperature T is comparable
to Tbs or larger, the corrections arising from additional terms generally are small
for phonon drag. The situation changes, however, when T � Tbs, where the
available momenta satisfy q/kF � 1 so that other contributions may compete
with Γ(q/kF ). These additional terms stem from (i) the inclusion of vertex
corrections, which lead to 1/N -corrections and (ii) the next-to-leading order in
∆/ωc expansion. Up to first order in 1/N and ∆/ωc, the triangle vertex Γ can
be written as the sum of three contributions7

Γ(q, ω) = Γ(1/qRc)(q, ω)
︸ ︷︷ ︸

longitudinal

+Γ(q/kF )(q, ω) + Γ(∆/ωc)(q, ω)
︸ ︷︷ ︸

transverse

. (7.27)

Here, Γ(q/kF ) is the conventional transverse contribution, calculated above, and
Γ(1/qRc) is of first order in 1/N and results from including vertex corrections in
the calculation of the longitudinal contribution to the triangle vertex. Γ(∆/ωc)

is of zeroth order in 1/N (as is Γ(q/kF )), but contains an additional factor of
∆/ωc with respect to Γ(q/kF ). One could thus be led to the (naive) assumption
that Γ(∆/ωc) is negligible with respect to Γ(q/kF ), since it contains an additional
small factor of ∆/ωc. However, this small factor can be compensated by a factor
qRc, which is large in the ballistic limit we are interested in.

The Contribution Γ(1/qRc)

The contribution Γ(1/qRc) is purely longitudinal and stems from the inclusion
of vertex corrections in the calculation of the triangle vertex. After disorder-
averaging the triangle vertex within SCBA, Γ is expressed in terms of the
(disorder-averaged) Green function matrix elements G±

n . While disorder is al-
ready included in these matrix elements, further corrections arise for the scalar
(density) vertices,8 which lead to the replacement of eiqr by the full vertices γµν

(see Appendix D) in the expression for Γ. Here, the indices µ, ν = ± indicate
the type of Green functions involved in the vertex. In the limit of well-separated
Landau levels, the vertices are given by

γµν(q, ω) ' 1

1 − ∆2

4 e
−q2`2B/2[L0

N ((q`B)2/2)]2Gµ
N (EF + ω)Gν

N (EF )
. (7.28)

To leading order in 1/qRc, Eq. (7.28) yields

γµν(q, ω) ' 1 +
∆2

4
e−q2`2B/2[L0

N ((q`B)2/2)]2Gµ
N (EF + ω)Gν

N (EF ) . (7.29)

7The superscripts used to label these contributions have been chosen such that a comparison
to similar contributions for the case of Coulomb drag (see Ref. [86]) is straight-forward.

8For white-noise disorder, it can be shown that there are no vertex corrections of the vector
vertex.
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7 Phonon Drag in High Landau Levels

Note that exp(−q2`2B/2)[L0
N ((q`B)2/2)]2 asymptotically behaves as 1/N . To

first order in 1/N and ∆/ωc, the longitudinal contributions to the triangle
vertex are given by

Γ
(a)
l (q, ω) = − 2

∑

σ∈{0,1}

q̂
ωRc

2π2`2B
L1

σ(q`B)Im[[G+
N ]2 γ++

NNγ
++
NN−σ] (7.30)

Γ
(b)
l (q, ω) =2

∑

σ∈{0,1}

q̂
ωRc

2π2`2B
L1

σ(q`B)Im[[G+
N ]2γ++

NNγ
+−
NN−σ

−G+
NG

−
Nγ

+−
NNγ

++
NN−σ] . (7.31)

The additional factor of two accounts for the spin degree of freedom. Here,
γµν

NM ≡ γµν
NM (q, ω = 0) are the matrix elements of the scalar vertex. To lowest

order in 1/N and ∆/ωc, there are no vertex corrections, i.e. all factors γµν = 1.
Noting that in this case the second term in the imaginary part of Eq. (7.31)

is purely real due to Eq. (D-18), we then see that Γ
(a)
l and Γ

(b)
l exactly cancel

each other, as mentioned above. To compute the next-order correction in 1/N ,
we therefore have to include vertex corrections.

Carrying out the (1/N)-expansion for the vertex factors, stated in Eq. (7.29),

and combining the resulting contributions of Γ
(a)
l and Γ

(b)
l , we obtain

Γ(1/qRc)(q, ω) = 2
∑

σ∈{0,1}

q̂
ωRc

π2`2B
L1

σ(q`B)L0
0(q`B) Im[G+

N ]

×Re

[

G+
N

(
∆2

4 (Σ−)2
− 1

)]

. (7.32)

By using

Re

[

G+
N

(
∆2

4(Σ−)2
− 1

)]

= Re

[
16

∆4
(G−

N )3 − 4

∆2
(G−

N )−1

]

= − 8

∆4
(EF − EN )

[
∆2 − (EF − EN )2

]
,(7.33)

we obtain

Γ(1/qRc)(q, ω) = − 32

∆6
q̂
ωRc

π2`2B
(EF − EN )

[
∆2 − (EF − EN )2

]3/2

×
∑

σ∈{0,1}

L1
σ(q`B)L0

0(q`B) . (7.34)

We stress again that Γ(1/qRc)(q, ω) is a purely longitudinal contribution to the
triangle vertex. It is interesting to note that Γ(1/qRc) is an odd function of
(EF − EN ), while the dominant contribution Γ(q/kF ) is an even function of
(EF − EN ).

The Contribution Γ(∆/ωc)

The contribution Γ(∆/ωc) is purely transverse and is the first order in ∆/ωc cor-
rection to Γ(q/kF ). To lowest order in 1/N , vertex corrections can be neglected.
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n ± 1

n

N

n

n ± 1

N

Figure 7.1: Diagrams contributing corrections of order ∆/ωc to the triangle vertex.
Here, both Green functions adjacent to the vector vertex have to be evaluated in Landau
levels different from N . This figure has been taken from Ref. [86].

To lowest order in ∆/ωc, the transverse contribution Γ
(b)
t yields the contribu-

tion Γ(q/kF ) calculated above. To first order in ∆/ωc, a second contribution to

Γ
(b)
t arises, which is given by (q = qex)

Γ(∆/ωc)(q, ω) = (ez × q̂)
8ωRc

π2ωc∆4`2B
(EF − EN )

[
∆2 − (EF − EN )2

]

×
∑

σ∈{0,1}

L1
σ(q`B) (7.35)

It is easy to see that this contribution differs from Γ(q/kF ) by a factor (EF −
EN )/ωc ∼ ∆/ωc. We nevertheless may have to retain this contribution since it
contains a sum of two vertex overlap functions, L1

0(q`B) + L1
1(q`B), while Eq.

(7.9) contains a difference of two vertex overlap functions, L1
0(q`B) − L1

1(q`B),
which asymptotically behaves very differently: As shown in Appendix F, the
difference L1

0(q`B) − L1
1(q`B) is small compared to the sum L1

0(q`B) + L1
1(q`B)

for q`B � 1. Thus, whenever small momentum transfers play an important
role, we are not allowed to omit this contribution. As for Γ(1/qRc), the contri-
bution Γ(∆/ωc) is an odd function of (EF − EN ), in contrast to the dominant
contribution Γ(q/kF ), which is an even function of (EF − EN ).

7.2 Interaction of 2D Electrons with Bulk Phonons in

the Bilayer System

The interaction between electrons and phonons in polar semiconductors differs
from the electron-phonon interaction in nonpolar materials due to the presence
of piezoelectric electron-phonon interactions, as described in detail in Appendix
E. In this section, we derive the phonon-mediated electron-electron interaction
in a double-layer system as mimicked by a double quantum well.

7.2.1 Model

Following closely Ref. [96], we model the two layers of the bilayer system by
two infinite square wells of width L and center-to-center distance |z1 − z2| = d
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2

L L

d

z z
z

1

Figure 7.2: Double-layer heterostructure modeled by two narrow quantum wells with
infinitely high walls. The layer planes at z1 and z2 are oriented in xy-direction, with
thickness L and center-to-center distance d. The lowest subband wavefunctions of the
two wells, φ1(z) and φ2(z) (indices denoting the well number, not the subband), are
depicted schematically inside the wells.

(see Fig. 7.2). Due to the narrowness of the quantum wells, it is sufficient
to consider only the interaction between the lowest (vertical) subbands. The
lowest subband eigenfunction inside the ith square well can be approximated
by [96]

φi(z) =

√

2

L
sin

[
π

L

(

z − zi +
L

2

)]

. (7.36)

In the z-direction, the electrons are confined to a narrow well of width L. This
can be taken into account when writing down the interaction Hamiltonian by
effectively taking the expectation value in z-direction and then treating only
2D electrons interacting with phonons. To this end, it is necessary to express
the 3D electron density as a function of the 2D layer density. The 3D electron
density can be written as a Fourier series with coefficients

ρq =

∫

d3re−iq·rΨ†(r)Ψ(r) . (7.37)

The field operators are given by

Ψ(r) =
1√
A

∑

p⊥,α

φα(z)eip⊥ ·rcp⊥,α , (7.38)

Ψ†(r) =
1√
A

∑

k⊥,β

φ∗β(z)e−ik⊥·rc†k⊥,β . (7.39)

where A is the area of the 2D layer and φα(z) is the (normalized) wavefunction
of the αth vertical subband. The vectors p⊥ and k⊥ are the projections of p
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7.2 Interaction in the Bilayer System

and k onto the (x, y)-plane and thus are three-dimensional vectors with zero
z-component. The electron density can then be written as

ρq =
1

A

∫

d3re−iq·r
∑

α,β

φ∗β(z)φα(z)
∑

k⊥,p⊥

ei(p⊥−k⊥)·r⊥c†
k⊥,βcp⊥,α . (7.40)

For a narrow quantum well, only the lowest (α, β = 1) subbands are occupied.
Using q · r = q⊥ · r⊥ + qzz, one finds

ρq =
1

A

∫

dz |φ1(z)|2 e−iqzz

∫

dr⊥
∑

k⊥,p⊥

ei(p⊥−k⊥−q⊥)·r⊥c†k⊥
cp⊥

. (7.41)

Next, we define the form factor F (qz) as

F (qz) =

∫

dz |φ1(z)|2 e−iqzz (7.42)

and carry out the integral over r⊥, which, neglecting Umklapp processes yields

ρq =
1

A
F (qz) ·A

∑

k⊥,p⊥

δk⊥+q⊥,p⊥
c†k⊥

cp⊥
. (7.43)

After carrying out the sum over k⊥, we obtain

ρq = F (qz)
∑

p⊥

c†p⊥−q⊥
cp⊥

= F (qz)ρ
2D
−q⊥

, (7.44)

where ρ2D
q⊥

are the Fourier coefficients of the 2D layer density. The electron-
phonon interaction Hamiltonian is (see Appendix E)

Hep =
∑

q

Vqρ−q . (7.45)

Writing the interaction potential in the form of Eq. (7.46),

Vq =
∑

λ

Mλ(q)
[

a†λ(−q) + aλ(q)
]

, (7.46)

where Mλ is the so-called electron-phonon matrix element, the electron-phonon
interaction Hamiltonian takes the form

Hep =
∑

qλ

Mλ(q⊥, qz)F (qz)ρ
2D
q⊥

[

a†λ(−q⊥,−qz) + aλ(q⊥, qz)
]

, (7.47)

where a†λ and aλ are phonon creation and annihilation operators for phonons
of wave vector q = (q⊥, qz) and mode λ, respectively.

119



7 Phonon Drag in High Landau Levels

7.2.2 Phonon-Mediated Electron-Electron Interaction

We now adopt the following notation: We use capital letters for 3D vectors
and small letters for 2D vectors, writing Q = (q, Qz), where q is the 2D vector
that lies inside the (x, y)-plane. Thus, the 3D vector Q can be viewed as
being composed by a 2D vector q inside the layer plane and a component Qz

perpendicular to it. Compared to the notation used in Eq. (7.47), we thus
identify (left: new notation, right: notation from Section 7.2.1)

Q = q Qz = qz q = q⊥ . (7.48)

In this notation, the phonon Matsubara Green function is given by

Dλ (Q, iωn) = − 2ωλ,Q
[

ωn + cλ
2`ph

sgn (ωn)
]2

+ ω2
λ,Q

(7.49)

where `ph is a phenomenological phonon mean free path,9 cλ is the sound
velocity of mode λ (longitudinal (l) or transverse (t)) and ωλ,Q = cλ|Q| =

cλ
√

q2 +Q2
z. The phonon-mediated interaction is given by

Dij(q, iωn) =

∫
dQz

2π~

∑

λ

|Mλ(Q)|2Fi(Qz)Fj(−Qz)Dλ(Q, iωn) (7.50)

where i, j label the layers and |Mλ(Q)|2 is the square of the electron-phonon
matrix element for phonons of mode λ. The form factor Fi(Qz) of the ith well
is given by

Fi(Qz) =

∫ ∞

−∞
dz|φi(z)|2e−iQzz =

sin
(

LQz

2

)

LQz

2

1

1 −
(

LQz

2π

)2Pi(Qz) , (7.51)

where Pi(Qz) = exp[−iQzzi] is a phase factor with |Pi| = 1.
As discussed in Appendix E, for low-energy excitations there are only acoustic

phonons (in the long-wavelength limit). In a polar semiconductor such as GaAs,
not only deformation potential (DP) electron-phonon scattering occurs, but also
piezoelectric (PE) electron-phonon scattering. The electron-phonon interaction
matrix elements for coupling to longitudinal acoustic (LA) and transverse acous-
tic (TA) phonons via these two scattering mechanisms appear squared in the
effective electron-electron interaction and can be expressed as [91, 96, 98]

|Ml(Q)|2 =
~Q

2ρcl

[

D2 +
e214
Q2

Al(Q)

]

, (7.52)

|Mt(Q)|2 =
~e214

2ρctQ
At(Q) , (7.53)

9This phonon mean-free-path is dominated by boundary scattering at low temperatures
(T . 5K) , while at higher temperatures, it is mainly due to impurity scattering and
anharmonic effects like e.g. three-phonon processes [97].
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7.2 Interaction in the Bilayer System

where ρ is the (ionic) mass density, D the deformation potential constant and
e14 the only nonzero entry of the piezoelectric tensor (see Appendix E). The
factors Al(Q) and At(Q) are called anisotropy factors. They usually involve
an additional approximation, i.e. an averaging over the in-plane direction of q
followed – in the case of transverse polarization – by an averaging over the two
possible transverse modes. This averaging will be explained in the following
section.

7.2.3 Anisotropy Factors

A suitable (orthonormalized) choice for the polarization vectors eλ is (in spher-
ical crystal coordinates)

e1 =
Q

Q
= (sinϑ cosϕ, sinϑ sinϕ, cos ϑ) , (7.54)

e2 = (− sinϕ, cosϕ, 0) , (7.55)

e3 = (cos ϑ cosϕ, cos ϑ sinϕ,− sin ϑ) . (7.56)

The PE electron-phonon matrix elements in the zincblende structure are given
by Eq. (E-56)

MPE
λ =

2e14
ε0

√

~

2ρcλQ

qxqyeλ,z + qyQzeλ,x + qxQzeλ,y

Q2
, (7.57)

where eλ,i is the ith cartesian component of the λth polarization vector (note
that the factor of two accounts for the fact that e14 = e123 in our notation,
while e14 is frequently defined as 2e123 in the crystallographic literature). In
the LA phonon case (λ = 1), the electron-phonon matrix element simplifies to

MPE
LA = 2e14

√

~

2ρclQ

qxqyQz

Q3
(7.58)

Using now q =
(
q2x + q2y

)1/2
= Q sinϑ, MPE

LA can be written as

MPE
LA = 2e14

√

~

2ρclQ

3q2Qz

Q3
cosϕ sinϕ (7.59)

such that

|MPE
LA |2 = 4e214

~

2ρclQ

9q4Q2
z

Q6
cos2 ϕ sin2 ϕ . (7.60)

As an approximation, one can average over the in-plane angle ϕ. This yields

|MPE
LA |2 =

~e214
2ρclQ

9q4Q2
z

2Q6
. (7.61)

The combined (DP and PE) matrix element squared for interaction of electrons
with LA phonons can thus be written as

|Ml|2 =
~Q

2ρcl

(

D2 +
e214
Q2

Al

)

(7.62)
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where

Al =
9q4Q2

z

2Q6
. (7.63)

Next, we turn to the calculation of |Mt|2, i.e. to the cases λ = 2 and λ = 3.
We have

Mt1 = 2e14

√

~

2ρctQ

qxqye2,z + qyQze2,x + qxQze2,y

Q2
(7.64)

Mt2 = 2e14

√

~

2ρctQ

qxqye3,z + qyQze3,x + qxQze3,y

Q2
(7.65)

Using Eqs. (7.55) and (7.56), this yields

Mt1 = 2e14

√

~

2ρctQ

qQz

Q2

(
cos2 ϕ− sin2 ϕ

)
(7.66)

Mt2 = 2e14

√

~

2ρctQ

2qQ3
z − q3

Q3
cosϕ sinϕ (7.67)

We are interested in the matrix element of a particular phonon emitted and
reabsorbed by two electrons in two different layers. Averaging over t1- and t2-
phonon modes, we define a common matrix element for TA phonons, Mt(Q),
whose square is given by

|Mt|2 =
1

2

[
|Mt1|2 + |Mt2|2

]
(7.68)

= 2e214
~

2ρctQ

[
q2Q2

z

Q4

(
cos2 ϕ− sin2 ϕ

)2

+

(
2qQ2

z − q3
)2

Q6
cos2 ϕ sin2 ϕ

]

(7.69)

which, upon averaging, leads to

|Mt|2 = e214
~

2ρctQ

8q2Q4
z + q6

4Q6
. (7.70)

The square of the matrix element for interaction between electrons and TA
phonons can then be written as

|Mt|2 = e214
~

2ρctQ
At , (7.71)

where

At =
8q2Q4

z + q6

4Q6
. (7.72)
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7.2.4 Phonon-Mediated Interlayer Interaction

The integral in Eq. (7.50) runs over all Qz. By inspection of the integrand,
it can be argued that the main contribution to the integral stems from small
Qz. As an approximation [91], it is reasonable to set Qz = 0 in the anisotropy
factors Al and At from Eqs. (7.63) and (7.72), which are then simply

Al = 0 , At =
1

4
, (7.73)

so that the coupling constants reduce to

|Ml(Q)|2 =
~QD2

2ρcl
, |Mt(Q)|2 =

~e214
8ρctQ

. (7.74)

In this limit, electrons scatter with LA phonons only via DP scattering and with
TA phonons only via PE scattering. The interaction of LA phonons with elec-
trons via PE scattering is completely ignored. The phonon-mediated interlayer
interaction (Eq. (7.50)) can then be written as a sum of the two – longitudinal
and transverse – contributions:

Dij(q, iωn) = − D2

2πρc2l

∫

dQzFi(Qz)Fj(−Qz)
Q2

[
ωn
cl

+
sgn(ωn)

2`ph

]2
+Q2

− e214
8πρc2t

∫

dQzFi(Qz)Fj(−Qz)
1

[
ωn
ct

+
sgn(ωn)

2`ph

]2
+Q2

(7.75)

Remembering that Q2 = Q2
z + q2, we can write Dij as

Dij(q, iωn) = − D2

2πρc2l

[
I1
ij;l(q, iωn) + q2I0

ij;l(q, iωn)
]

− e214
8πρc2t

I0
ij;t(q, iωn) (7.76)

where Iα
ij;λ is given by

Iα
ij;λ(q, iωn) =

∫

dQzFi(Qz)Fj(−Qz)
Q2α

z
[

ωn
cλ

+ sgn(ωn)
2`ph

]2
+Q2

(7.77)

It follows from Eq. (7.36) and Eq. (7.51) that the product of the form factors is

Fi(Qz)Fj(−Qz) =
sin2

(
QzL

2

)

(
QzL

2

)2

1
[

1 −
(

QzL
2π

)2
]2 e

−iQz(zi−zj) (7.78)

Writing
1

[
ωn
cλ

+
sgn(ωn)

2`ph

]2
+Q2

=
1

(Qz + iηλ) (Qz − iηλ)
(7.79)
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with

ηλ =

√

q2 +

[
ωn

cλ
+

sgn(ωn)

2`ph

]2

(7.80)

we find

Iα
ij;λ(q, iωn) = −1

4

∫

dQz

(
eiLQz + e−iLQz − 2

)
e−iQz(zi−zj)

(
L
2

)2
Q2−2α

z

(

1 − LQz

2π

)2 (

1 + LQz

2π

)2
(Qz + iηλ) (Qz − iηλ)

Evaluation of these integrals for the case i = j ((zi − zj) = 0) and i 6= j
((zi − zj) = ±d) and substitution in Eq. (7.76) leads to

ν0Dij(q, iωn) = −3CDP

kFL
δij − CDP

q2 − η2
l

kF ηl
Bij(ηld, ηlL/2)

−CPE
kF

ηt
Bij(ηtd, ηtL/2) (7.81)

with

Bij(x, y) =







π2

y2+π2

[
3y
2π2 + 1

y + 1
2y2

π2

y2+π2

(
e−2y − 1

)]

i = j

e−x
(

π2

y2+π2

)2 sinh2(y)
y2 i 6= j

(7.82)

and

CPE =
e214m

∗

8π~2c2t ρkF
, (7.83)

CDP =
D2m∗kF

2π~2c2l ρ
. (7.84)

7.3 Analytical Results

In this section, we present analytical results for the phonon drag conductivity in
the low temperature limit T � ωc, restricting ourselves to the main contribution
originating from the contribution Γ(q/kF ) to the triangle vertex. Throughout,
we will assume infinitely thin electron layers (L → 0). In addition, we limit
the discussion to the case of an infinite phonon mean free path `ph. Due to the
specific form of the phonon-mediated interlayer interaction, it will turn out that
in this limit, piezoelectric phonon modes are most relevant. We first present
an approximate analytical expression for the unscreened interlayer interaction.
Since in the limit `ph → ∞ the unscreened interlayer interaction gets formally
divergent, we discuss the inclusion of screening into our model. For a system
with long phonon mean free paths, the screened phonon-mediated interaction
is dominated by a coupled electron-phonon plasma mode. Finally, we present
the analytical expression for the phonon drag conductivity in the regime of
interest under study. Numerical results for a broader range of parameters will
be provided in Section 7.4.
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7.3.1 Unscreened Interlayer Interaction

In the limit of vanishing quantum well width (L→ 0) and infinite phonon mean
free path (`ph → ∞), the unscreened phonon-mediated interlayer interaction
D21 (see Eq. (7.81)), after analytical continuation (iωn → ω + i0+), is given
by10

ν0D21(q, ω) ' −CDP

q ( ω
clq

)2

kF

√

1 − ω2

(qcl)2

− CPE
kF

q
√

1 − ω2

(qct)2

(7.85)

' −CDP
q

kF

√

1 − ω2

(qcl)2

− CPE
kF

q
√

1 − ω2

(qct)2

. (7.86)

Here, we restricted ourselves to systems with kF d � 1 and d � dB where
dB is an upper bound for the distance between the two layers, which can be
determined from the condition D11 ' D12, as will be explained below.

As expected, both the DP and PE parts of the interaction have poles at
energies corresponding to the excitation of the respective phonons. This would
lead to an infinite transconductivity, since substituting this bare interaction into
our expression for the transconductivity, Eq. (6.5), would yield a |cλq − ω|−1

divergence in the energy transfer integral for every q. As discussed in Section
7.4, this divergence can be removed by including a finite phonon mean free
path. Alternatively, the inclusion of screening has the same effect, as will be
shown below.

The contributions by DP and PE interactions to the phonon-mediated inter-
layer interaction, Eq. (7.86), show a markedly different behavior with respect
to the ratio q/kF . While the DP-term is proportional to q/kF , the PE-term
is proportional to (q/kF )−1. This indicates that, depending on the momentum
transfer q involved, one of them may dominate over the other, depending on
the ratio q/kF . It should also be noted that the phonon drag conductivity in
principle is strongly dependent on the quantum well width L, so that no real-
istic conclusions about the absolute strength of the phonon drag conductivity
should be drawn from our analytical study, which assumes L→ 0.

7.3.2 Screened Interlayer Interaction

Phonon mediated contributions to the dynamical screening function ε(q, ω) are
negligible for short phonon mean free paths, but become important for long
phonon mean free paths [91]. In the limit `ph → ∞, we therefore cannot neglect
the phonon-mediated interaction when calculating ε(q, ω). The total screened
interlayer interaction – comprising both the Coulomb and the phonon-mediated
interactions – is given by

W tot.
21 =

D21(q, ω) + U21(q, ω)

ε(q, ω)
, (7.87)

10In principle, each term in Eq. 7.86 carries an additional factor exp(−qd
`

1 − ω2/(cλq)2
´

).
These factors can be omitted when we restrict ourselves to interlayer separations d � dB

as described in the main text (see Eq. (7.105)).
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where, for infinitely thin electron layers, the unscreened Coulomb interlayer
interaction has the form

ν0U21(q, ω) = ν0U21(q) ∝
e−qd

q
. (7.88)

The dynamical screening function ε(q, ω) is given by

ε(q, ω) = [1 − (D11(q, ω) + U11(q))χ1(q, ω)] [1 − (D22(q, ω) + U22(q))χ2(q, ω)]

− [D21(q, ω) + U21(q)]χ1(q, ω)χ2(q, ω) , (7.89)

where χi(q, ω) is the polarization function of layer i and Dij(q, ω) and Uij(q, ω)
are the unscreened intralayer (i = j) or interlayer (i 6= j) phonon and electron
interactions, respectively. Since we are only interested in the phonon contribu-
tion to the interlayer interaction, which is strongest at momenta q near 2kF ,
and systems with kF d � 1, we can neglect the interlayer Coulomb interaction
U21(q) ∝ exp(−2kF d). Assuming identical electron layers (χ1 = χ2) of matched
electron densities (n1 = n2) and equal filling factor (ν1 = ν2), we can safely
assume

D11(q, ω) = D22(q, ω) ≡ D(q, ω) (7.90)

as well as
U11(q) = U22(q) ≡ U(q) . (7.91)

In addition, we assume small layer separation d � dB , where dB is an upper
bound for d that will be calculated self-consistently below. This enables us to
equate

D21(q, ω) ' D(q, ω) . (7.92)

Dropping the arguments of the interaction vertices and the polarization function
for a moment, we thus find

ε(q, ω) = [1 − (D + U)χ][1 − (D + U)χ] −D2χ2

= 1 − 2Dχ− 2Uχ+ U2χ2 + 2DUχ2

= (1 − Uχ)(1 − Uχ− 2Dχ) (7.93)

We now define the dynamical electronic screening constant ε and the static
electronic screening constant ε0 via

ε = 1 + (δr + iδi) ν0
2πe2

q
(7.94)

and

ε0 = 1 + δrν0
2πe2

q
, (7.95)

with

δr = −Re[χ(q, ω)]

ν0
(7.96)

and

δi = − Im[χ(q, ω)]

ν0
. (7.97)
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We restrict the following discussion to the DP part of the phonon-mediated
interaction, since all calculations for the PE part are strictly analogous. Using
Eq. (7.93), the screened interaction vertex for the longitudinal DP coupling is
approximately given by

ν0W
l
21(q, ω) ' −CDP

ε
(

kF
q (ε0 + iδie2

2π
q )
√

1 − ω2

c2l q2 − 2CDP(δr + iδi)
) . (7.98)

Screening thus leads to a coupled electron-phonon mode which occurs where
the real part of the denominator in the above expression vanishes, i.e. at

ωl
0 = clq

√

1 − δ2rC
2
DP

(
2 q

ε0 kF

)2

. (7.99)

The frequency ωl
0 of the coupled mode is very close to clq. Using the value

CDP ' 1.8 ·10−3 appropriate for an electron gas of electron density ne ' 2 ·1011

cm−2, the absolute value of the deviation of the above square root from unity
is given by 2( q CDP δr/kF ε0)

2 . 8(CDP δr/[1 − ν0δr2πe
2/q])2 ' 10−5 � 1.

Expanding the denominator of the screened interaction vertex around its pole
ω = ωl

0, we find

ν0W
l
21(q, ω) ' −CDP ×

[

ε

(

kF

q
(ε0 + iδie

2 2π

q
)

√

1 − (ωl
0)

2

c2l q
2

− 2CDP(δr + iδi)

−kF

2q
ε0

(ω − ωl
0)2ω

l
0

c2l q
2

√

1 − (ωl
0)2

c2l q2













−1

(7.100)

'
(

2(clq)q
2

ε20k
2
F

)
δrC

2
DP

ε
[

(ω − ωl
0) + iδiδrC2

DP

(
4(clq)q2

ε20εk2
F

)] . (7.101)

Defining the broadening of the phonon mode by

Λl = δrδiC
2
DP

4(clq)q
2

ε30k
2
F

, (7.102)

we obtain for the absolute value squared of the interaction

|ν0W
l
21(q, ω)|2 ' δr

δi
C2

DP
(clq)q

2

|ε|2ε0k2
F

Λl

(ω − ωl
0)

2 + Λ2
l

' δr
δi
C2

DP

(clq)q
2

|ε|2ε0k2
F

π δ(ω − ωl
0) , (7.103)

where the second approximation is valid when

|Λl| �
∣
∣
∣ωl

0 − clq
∣
∣
∣ ,

or, equivalently,
δi/ε0 � δr ,

127



7 Phonon Drag in High Landau Levels

which, in general, is fulfilled for e2/kF ' 1.
We now turn to the calculation of the upper bound dB for the interlayer

separation, for which the above calculation is valid. In all of the above, we
assumed D21 ' D11. Since

D2
21(q, ω0)

D2
11(q, ω0)

' exp



−2qd

√

1 −
(
ω0

clq

)2


 , (7.104)

this assumption can now be quantified and dB can be calculated. For the
approximation D2

21(q, ω0) ' D2
11(q, ω0) to hold, we need

2qd

√

1 − ω2
0

c2l q
2
� 1 . (7.105)

This results in

dB ' kF ε0
2q2CDPδr

. 102/kF . (7.106)

It is now easy to generalize the above calculations to include also the PE
phonon contributions for the screened phonon vertex. Combining the results
for the DP and the PE modes, we find for the screened phonon vertex the
general result

|ν0W21(q, ω)|2 ' π
δr
δi

[

C2
DP

(clq)q
2

|ε|2ε0 k2
F

δ(ω − ωl
0)

+C2
PE

(ctq)k
2
F

|ε|2ε0 q2
δ(ω − ωt

0)

]

(7.107)

with

ωl
0 = clq

√

1 − δ2rC
2
DP

(
2 q

ε0 kF

)2

(7.108)

and

ωt
0 = ctq

√

1 − δ2rC
2
PE

(
2 kF

ε0 q

)2

. (7.109)

7.3.3 Phonon Drag Conductivity

Due to its momentum dependence, it is obvious that the PE term in the screened
phonon interaction, Eq. (7.107), dominates over the DP term in the low tem-
perature region of the q-integration. It should be noted that in the high tem-
perature region, the PE and DP terms in |ν0W21(q, ω)|2 become comparable.
Thus, when calculating the phonon drag conductivity in the low temperature
limit, it is sufficient to retain only the PE contribution to the phonon-mediated
interaction and the dominant contribution Γ(q/kF ) to the triangle vertex. In
principle, when performing the q-integration involved in the calculation of the
phonon drag conductivity for different regimes, the contributions Γ(1/qRc) and
Γ(∆/ωc) have to be calculated in the low temperature region whereas the con-
tribution Γ(q/kF ) has to be calculated in both the low temperature as well as
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the high temperature region (at least for the case (T`B/ct � 1)). This will be
performed numerically in Section 7.4.

Here, we limit ourselves to the low-temperature limit. Using Eq. (6.5), the
phonon drag conductivity can be expressed as

σD
ij =

e2

16πTS

∑

q

∫ ∞

−∞

dω

sinh2
(

ω
2T

)Γ
(1)
i (q, ω)Γ

(2)
j (q, ω)|W (q, ω)|2 .(7.110)

Here, Γ
(j)
i is the ith component of the triangle vertex of layer j. In the low-

temperature limit, we replace the full triangle vertex by the dominant contri-
bution Γ(q/kF )(q, ω) from Eq. (7.12),

Γ(q/kF )(q, ω) = −16ω

π2

∆2 − (EN − EF )2

∆4
L0

0(q`B)(ez × q) . (7.111)

The absolute value squared of the screened interlayer interaction is given by the
PE part of Eq. (7.107),

|W21(q, ω)|2 ' π

ν2
0

δr
δi
C2

PE

(ctq)k
2
F

|ε|2ε0 q2
δ(ω − ωt

0) (7.112)

with ωt
0 ' ctq (see Eq. (7.109)). Using results from Section 7.1.3, δr and δi can

be expressed as

δr = 1 +
16ωc

3π∆
L0

0(q`B)

[
∆2 − (EN − EF )2

∆2

]3/2

, (7.113)

δi =
16ωωc

π∆2
L0

0(q`B)

[
∆2 − (EN −EF )2

∆2

]

. (7.114)

The interlayer interaction also contains the static and dynamic electronic screen-
ing constants ε0 = 1+δrν0(2πe

2)/q and ε = ε0+iδiν0(2πe
2)/q. Since e2m/εkF '

1 under realistic experimental conditions (see e.g. Fig. 7.3 in the following sec-
tion), the static dielectric constant can be approximated by ε0 ' δrν0(2πe

2)/q.
From the above expressions, it is then easy to see that

δr
δi

∝ ∆

ω
. (7.115)

In the regime T � ctkF ,∆, the relation ω ' T � ∆ holds. In the regime
ctkF � T � ∆, the relation ω ' ctkF � ∆ holds. In both regimes, we find
δr � δi and we can approximate the dynamic by the static screening constant,
ε ' ε0.

The ω-integration in Eq. (7.110) is trivial due to the delta-function in the
phonon-mediated interaction, Eq. (7.112). Replacing the sum over q by an
integral and integrating out the angular dependence in polar coordinates, we
obtain (up to numerical factors)

σD
12 ∝ C2

PE(ctkF )2

e4m5T∆2ωc

∆2 − (EN − EF )2

∆2
J , (7.116)
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where J is a shorthand notation for the integral

J =

∫ ∞

0
dq

q6

sinh2
( ctq

2T

)
L0

0(q`B)

δ2r
. (7.117)

Note that δr is q-dependent (see Eq. (7.113)). The remaining task is the eval-
uation of J .

This integration is performed by a scale separation between the fast oscil-
lations in L0

0(q`B)/δ2r and the slow variation of the remainder of the integral.
Using the asymptotic expansions for the Laguerre polynomials provided in Ap-
pendix F, we find

L0
0(q`B) −→ J2

0 (qRc) −→
2

πqRc
cos
(

qRc −
π

4

)

. (7.118)

The integral J can thus be written asymptotically as

J '
∫ ∞

0
dq

q6

sinh2
( ctq

2T

)
2

πqRc

∫ 2π

0

dα

2π

cos2(α)

[1 + a cos2(α)]2
, (7.119)

where α = qRc − π/4 and

a =
16

3

1

πqRc

ωc

∆

[
∆2 − (EN − EF )2

∆2

]3/2

=
16

3

1

πqRc
χ̃ (7.120)

with the dimensionless broadening parameter

χ̃ =
ωc

∆

[
∆2 − (EN − EF )2

∆2

]3/2

. (7.121)

Depending on the value of a, the integral in Eq. (7.119) takes the values

∫ 2π

0

dα

2π

cos2(α)

[1 + a cos2(α)]2
=

1

2(1 + a3/2)
'







1
2 a� 1

1
2a

−3/2 a� 1

(7.122)

In the low-temperature regime T � Tbs = 2ctkF , the remaining q-integral is
cut off by the sinh2-term and, at the upper integration boundary, a takes the
value a ' ctχ̃/(RcT ). This leads to

J =

∫ 2T/ct

0
dqq6

2

πqRc
×







1
2 ctχ̃� RcT

1
2(ctχ̃/(RcT ))−3/2 ctχ̃� RcT

(7.123)

For larger T in turn, more precisely in the regime Tbs � T � T∆ = ∆, the
remaining q-integral is cut off at q = 2kF instead of the temperature cutoff,
leading to a ' χ̃/N at the upper integration boundary. In addition, the sinh2-
term can then be expanded in its small argument, yielding

1

sinh2
( ctq

2T

) '
(

2T

ctq

)2

(7.124)
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This leads to
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∫ 2kF
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dqq6
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)2 2
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(7.125)

Finally, we arrive at

σD
12 ∝ C2

PE(ctkF )2
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N3/2k4
F
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(7.126)

For our regime of interest, T � Tbs, T∆, only the first two cases are relevant.
The latter two cases are valid for Tbs � T � T∆, i.e. at temperatures exceeding
Tbs but still below the temperature associated with the Landau level broadening.
The different temperature dependence can be explained by the fact that at very
low T , the available phase space for phonons is limited through temperature,
while at higher T , all phonon momenta q ≤ 2kF can contribute to the phonon
drag conductivity. For very low T , σD

12 shows a steep increase with T which
turns linear at higher T & Tbs. As our numerical studies will reveal in Section
7.4, for even higher T & ∆ ≡ T∆, σD

12 decreases again, leading to a peak in
the temperature dependence of σD

12 near T = T∆. If one were to plot the T -
dependence of the drag conductivity scaled by T−2 as in Fig. 6.5, σD

12(T )/T 2

increases for T < Tbs, gets peaked in the vicinity of T = Tbs and decreases for
T > Tbs. The temperature dependence of phonon drag in high Landau levels
thus is comparable to the temperature dependence at B = 0.

The most important result is that the temperature dependence of the dom-
inant contribution to the phonon drag conductivity deviates significantly from
the T 2-dependence of Coulomb drag. This deviation can be used in experiment
to isolate the phonon contribution from the Coulomb contribution to frictional
drag.

All expressions are valid for infinite phonon mean free path and vanishing
layer thickness. Numerical results for finite layer thickness, finite phonon mean
free path, higher temperatures and varying interlayer separation will be pre-
sented in the following section.

7.4 Numerical Results

In principle, results similar to Eq. (7.126) can be derived analytically for all
other parameter regions, utilizing the machinery introduced in the previous
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CPE kF = 1.64 × 103/cm , CPE ' 0.6 × 10−3

CDP/kF = 2.7 × 10−9cm , CDP ' 1.8 × 10−3

L ' 2 × 10−6cm , LkF ' 2.7
d ' 5 × 10−6cm , dkF ' 6.8
cl = 5.14 × 105cm/s , kF /mcl ' 64
ct = 3.04 × 106cm/s , kF /mct ' 108
e2m/ε = 2 × 106/cm , e2m/εkF ' 1.4
`ph ' 14 × 10−4cm , kF `ph ' 1.37 × 102

Figure 7.3: Typical experimental parameters for an electron density ne ' 2 × 1011

cm−2.

sections, thus extending our study to regimes other than the regime of interest
stated in Section 7.1.1. Due to the technicality of this effort, we opt to restrict
ourselves to numerical calculations. In this section, we detail the necessary
extensions and generalizations to the treatment of higher temperatures, finite
phonon mean free path, varying interlayer distance and Landau level broaden-
ing, mismatched layer fillings and finite layer thickness and present numerical
results for realistic values of the experimental parameters, as given in the ta-
ble in Fig. 7.3. Specifically, in agreement with experimental estimates, we use
a finite well width of L = 2 × 10−6 cm. All numerical integrations involved
in the calculation of the phonon drag resistivity have been performed using
Monte Carlo integration, relying on routines from the GNU Scientific library
gsl. Note that all numerical calculations include the full expressions for the
triangle vertex and the interlayer interaction (taking into account both the DP
and the PE interaction, as opposed to our analytical study in Section 7.3), thus
extending our analysis beyond the regime of interest stated in Section 7.1.1.

All numerical results display the drag resistivity instead of the drag conduc-
tivity, since this is the quantity usually measured in experiment. The drag
conductivity σD

12 and the drag resistivity ρD
12 are closely related via matrix in-

version

ρD
21 =

−σ21

σ11σ22 − σ12σ21
. (7.127)

Assuming that the intralayer conductivities σ11,σ22 are much larger than the
drag conductivity (σ21, σ12 � σ11, σ22), this expression is simplified to

ρD
21 ' −σ21

σ11σ22
, (7.128)

where the Drude expression σii = e2niτtri/m can be used for the intralayer
conductivities (τtri is the transport time in the ith layer). The electronic den-
sities ni of the two layers are assumed to be equal, n1 = n2 = ne. Note that
in all numerical calculations, we fixed the chemical potential to EF = EN , i.e.
we assumed that the Fermi level lies exactly at the center of the valence LL of
index N .
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Figure 7.4: Phonon contribution to the drag resistivity ρ as a function of the phonon

mean free path `ph for N = 5, T = 3 K and interlayer separation d = 500 Å . Results
are shown for four different values of the Landau level broadening parameter ∆/ωc.

7.4.1 Finite Phonon Mean Free Path

The assumption of an infinite phonon mean free path `ph is rather unrealistic:
Lattice imperfections, scattering off the boundaries of the sample and anhar-
monic effects lead to a finite `ph. Since the phonon drag resistivity depends quite
sensitively on the value used for `ph, we have to include a realistic estimate for
this quantity. We therefore follow an approach similar to Ref. [91] where it
has been shown that it is reasonable to split the discussion of the phonon drag
resistivity to systems with either a short or a long phonon mean free path `ph.
A system with long phonon mean free path qualitatively behaves as in the case
of infinite phonon mean free path, where we have demonstrated above that the
screened phonon interaction is dominated by a coupled electron-phonon plasma
mode. In a system with short phonon mean free path, the phonon-mediated
contributions to the polarization function χ(q, ω) can be neglected and the
electron-phonon interaction is separately screened in the two layers.

Fig. 7.4 is a logarithmic plot of the phonon contribution to the drag resistiv-
ity as a function of the phonon mean free path for four different values of the
Landau level broadening parameter ∆/ωc. For `ph . 105Å, the phonon drag re-
sistivity ρ roughly scales logarithmically with `ph. This range of `ph corresponds
to the short phonon mean free path regime. At values `ph & 105Å, the phonon
drag resistivity increases more rapidly until it saturates at very long phonon
mean free paths. The faster increase can be attributed to the emergence of
the coupled electron-phonon mode. The saturation occurs when ρ approaches
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Figure 7.5: Comparison between the temperature-dependence of the different contri-
butions ρq/kF

, ρ∆/ωc
and −ρ1/qRc

to the phonon drag resistivity at low temperatures
T . Already at very moderate temperatures, ρq/kF

exceeds the other two contributions.

In this figure, N = 5, ∆/ωc = 0.5, d = 500 Å and `ph = 15 µm. Dotted curves denote
a temperature-fitting of the numerical results.

its value for infinite phonon mean free path (see Eq. (7.126)), where coupling
between the layers is almost exclusively mediated by the collective mode.

From here on, we choose to use the value `ph = 15 µm, extracted from ex-
perimental data taken at zero field [99]. Fortunately, `ph hardly will be affected
to any extent by the presence of the magnetic field. It is clear from the above
considerations that the value `ph = 15 µm lies more or less at the transition
between the short phonon mean free path regime and the long phonon mean
free path regime. It would thus be inappropriate to employ the analytical ex-
pressions derived previously for the infinite phonon mean free path regime.

7.4.2 Temperature Dependence

In experiments without magnetic field, the phonon contribution to the total
drag resistivity has been determined by comparing its temperature dependence
to the expected T 2-behavior of Coulomb drag (see Chapter 6). The same can
in principle be done for drag in high Landau levels, although no experiments
have been conducted so far.

From the general arguments concerning the momentum dependence of the
different contributions to the phonon drag conductivity in Section 7.3, we ex-
pect the contribution ρq/kF

to dominate for sufficiently high temperatures. This
may be different for lower temperatures, where the other contributions – ρω/ωc

and ρ1/qRc
– can be of comparable magnitude as ρq/kF

. We recall that, in the
case of Coulomb drag, where the interlayer interaction is strongly suppressed at
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Figure 7.6: Phonon contribution to the drag resistivity ρ as a function of temperature
T for different Landau level broadening parameters ∆/ωc. The figure’s temperature
range extends well beyond the maximal temperatures treated in our analytical analysis
of phonon drag in Section 7.3. In this figure, N = 5, d = 500 Å and `ph = 15 µm.

large momentum transfers, the contribution ρ1/qRc
turns out to dominate over

ρq/kF
. In Fig. 7.5, we display results for the three leading-order contributions

ρq/kF
, ρω/ωc

and −ρ1/qRc
within the low temperature regime, for the specific

set of parameters N = 5, ∆/ωc = 0.5 and d = 500 Å . As expected, we obtain
that ρq/kF

� ρω/ωc
, ρ1/qRc

, for larger temperatures. In fact, already at quite
moderate temperatures T & 0.5 K, the contribution ρq/kF

greatly exceeds the
other two contributions. Only for very low temperatures, where all three con-
tributions become very small, the additional contributions are of comparable
magnitude, so that all three have to be retained in the calculation of the drag
resistivity. In addition, our numerical results suggest different temperature scal-
ing of the additional contributions with respect to the temperature dependence
of ρq/kF

, as expected from our general arguments in Section 7.3.

In Fig. 7.6, the phonon drag resistivity ρ is plotted as a function of tempera-
ture T . At very low temperatures (T . 1 K), we observe that ρ(T ) scales with
a high power of T . At higher temperatures (1 K . T . 5 K), the temperature
dependence is observed to get roughly linear. This is in good agreement with
expectations based on our previous analytical studies (see Eq. (7.126)). Fig. 7.6,
however, extends the temperature range well beyond the analytically-studied
temperature range T � Tbs. For higher temperatures (T & 5 K), ρ(T ) reaches
a peak and then decreases slowly with T . In addition, we find a strong depen-
dence on the value of the Landau level broadening parameter ∆/ωc, although
the qualitative behavior of ρ(T ) is the same for all four values of ∆/ωc. The
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dependence on the Landau level broadening parameter will be studied in the
following section.

Combining our insights from the analytical study in Section 7.3 and the
present numerical results, we can conclude on the following scenario for the
temperature dependence of the drag resistivity: There are two characteristic
temperatures, one associated with the Landau level broadening

T∆ := ∆ ' ∆

ωc

1

N
× 125 K , (7.129)

and one associated with the maximal momentum exchange,

Tbs := 2ckF ' 6 K . (7.130)

The numerical values in the above expressions have been calculated for an
electronic density of ne ' 2 × 1011cm−2. As long as T < min[T∆, Tbs], the
phonon drag resistivity increases strongly with T . Let us assume Tbs < T∆, in
accordance with our numerical parameters. For Tbs � T � T∆, the increase
becomes roughly linear. For temperatures T � T∆, the phonon drag resistivity
decreases as a function of T . This leads to a peak in the phonon drag resistivity
at about T = T∆. Fig. 7.6 shows qualitative agreement with this scenario.

7.4.3 Dependence on Landau Level Broadening

As already indicated by the numerical study of the temperature dependence of
the phonon drag resistivity ρ, there also is a pronounced dependence on the
specific value of the Landau level broadening parameter ∆/ωc (see Fig. 7.6).
In Fig. 7.7, we display results for the dependence ρ(∆/ωc) at five different
temperatures. It turns out that ρ depends nonmonotonically on ∆/ωc. It first
increases as a function of ∆/ωc for small ∆/ωc and then decreases again for
large values of ∆/ωc, reaching its maximum at ∆/ωc ' 1/3. In addition, we
observe a very strong suppression of ρ at low values of ∆/ωc as opposed to a
rather slow decrease at high values of ∆/ωc.

This can be explained through inspection of the momentum cutoffs involved
in the integrals for the phonon drag resistivity. Denote by ∆∗ the broadening
where T∆ = Tbs. This broadening is approximately given by

∆∗

ωc
= 4

Ncm

kF
' N

20
. (7.131)

We find that for ∆ � ∆∗ the momentum cutoff of the integrals involved in the
calculation of the drag conductivity is determined by ∆/c. The drag resistivity
then scales with a very high power of ∆ for T � ∆, explaining the strong
suppression observed for ∆ � ∆∗ in Fig. 7.7. For ∆ � ∆∗, as suggested by Eq.
(7.126), we obtain a slower decrease of the phonon drag resistivity with ∆/ωc.

11

11Note that, in Eq. (7.126), the dimensionless broadening parameter χ̃ is proportional to
∆/ωc.
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Figure 7.7: Phonon contribution to the drag resistivity ρ as a function of the Lan-
dau level broadening ∆/ωc for different temperatures T . In this figure, the system
parameters are N = 5, `ph = 15 µm and d = 500 Å.

7.4.4 Dependence on Interlayer Separation

In principle, it is possible to manufacture a series of nearly-identical double-
quantum-well systems with different interlayer separations [90, 100, 99]. Drag
measurements on such a series would yield further valuable insight into the
specific nature of the phonon-mediated interaction.

Fig. 7.8 constitutes a logarithmic plot of the drag resistivity as a function
of the interlayer separation d for different Landau level broadening parameters
∆/ωc. Our numerical study reveals an interesting nearly-logarithmic depen-
dence

ρ ∼ − log(d) (7.132)

of the phonon drag resistivity ρ on the interlayer separation. This logarithmic
dependence persists over a fairly wide range of interlayer separations 100 Å �
d� 5000 Å. This is in qualitative agreement with experimental results [99] and
theoretical predictions [91] at zero magnetic field.12 Again, we observe a non-
monotonic dependence of the drag resistivity on the Landau level broadening
over the whole range of interlayer separations.

12In the experiment of Ref. [99], the values for the phonon mean free path were determined
by fitting the measured drag conductivity to the theoretical predictions for the short mean
free path regime from Ref. [91].
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Figure 7.8: Logarithmic plot of the drag resistivity ρ as a function of the interlayer
separation d for a number of values of the Landau level broadening parameter ∆/ωc.
All results have been obtained at temperature T = 3 K and for Landau level index
N = 5. The phonon mean free path has been chosen `ph = 15 µm.

7.4.5 Filling Factor Dependence: Equal Filling Factors

Experiment allows for a separate variation of the filling factors of the 2DEG
electron layers in a bilayer system. In the case of Coulomb drag, interesting
effects have been observed for different filling factors in the regime of weak
interlayer coupling, the most notable of which is the emergence of negative
drag [82, 83], contradicting earlier theoretical predictions of strictly positive
drag [101, 92]. In this section, we present numerical results for the dependence
of the phonon drag resistivity on the filling factor at equal filling N1 = N2 = N
of the two layers of the bilayer system. The subsequent section studies the
behavior at different filling.

Fig. 7.9 shows the rescaled drag resistivity N2ρ as a function of the common
filling factor N for different values of the Landau level broadening at tem-
perature T = 3 K for matched densities n1 = n2. In close analogy to previous
considerations, we define the Landau level filling N∗ by the condition T∆ = Tbs.
It is given by

N∗ =
kF

4mc

∆

ωc
' 20

∆

ωc
. (7.133)

Due to the scaling of the phonon contribution to the drag resistivity (see Eq.
(7.126)), we expect a turning point in N2ρ in the vicinity of N∗, where the
behavior changes from an increasing curve for N � N∗ to a decreasing curve
for N � N∗. This is in agreement with Fig. 7.9. Note that the actual value of
the Landau level index at which this transition happens is approximately N∗/3
larger than the value of N∗ predicted by Eq. (7.133). This can be readily ex-
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Figure 7.9: Rescaled drag resistivity N2ρ as a function of the Landau level index for
different broadening parameters ∆/ωc. The results shown have been calculated for the
parameters T = 3 K, d = 500 Å and `ph = 15 µm

plained by the uncertainty in the determination of the effective phonon velocity
c from cl and ct.

7.4.6 Filling Factor Dependence: Different Filling Factors

Up to this point, we assumed identical 2DEG layers with equal filling. As
mentioned above, experiment allows for different filling factors in the two layers.
We expect a strong dependence of the phonon drag resistivity on the ratio of
the filling factors in both layers. We calculated the phonon contribution to
the rescaled drag resistivity N1N2ρ numerically for general fillings N1 and N2,
which are close to each other (N1 ' N2). Fig. 7.10 shows numerical results
for the phonon drag resistivity at fixed N1 = 5 as a function of N2 for four
different values of the Landau level broadening. As expected, the drag resistivity
decreases away from equal fillings. Unlike in the case of Coulomb drag, however,
no sign change is observed in the phonon drag resistivity away from equal
fillings.

7.5 Discussion

In this chapter, we developed the linear response theory for phonon drag in high
Landau levels, extending the well-established approach for Coulomb drag of
Ref. [86]. The phonon-mediated interlayer interaction differs from the Coulomb
interaction by allowing for arbitrary momentum transfers 0 < q < 2kF in-
stead of only small momentum transfers. We were able to demonstrate analyti-
cally that this momentum dependence entails a temperature dependence of the
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Figure 7.10: Rescaled drag resistivity N1N2ρ for matched densities and different
filling factors N1 and N2. Here, we fixed N1 = 5 and calculated the rescaled drag
resistivity as a function of N2 for different broadening parameters ∆/ωc. The system
parameters are given by T = 3 K, d = 500 Å and `ph = 15 µm.

phonon-mediated contribution to the drag conductivity which differs strongly
from the T 2-dependence of the Coulomb contribution. The behavior of the
phonon drag conductivity is governed by two characteristic temperatures. As
long as temperatures are small compared to Tbs, i.e. to the temperature at which
momenta of the order of 2kF can be transferred from one layer to the other via
the phonon-mediated interaction, the phonon drag conductivity grows with a
large power of T . The T -dependence gets linear for temperatures in between
Tbs and T∆, where the latter is a measure of the disorder broadening of the
Landau band. From our numerical studies, we find a decrease for temperatures
exceeding T∆. This temperature dependence can be explained by the fact that
at very low T , the available phase space for phonons is limited through temper-
ature, while at higher T , all phonon momenta q ≤ 2kF can contribute to the
phonon drag conductivity. As was done for zero magnetic field, the differences
in the temperature dependence of phonon vs. Coulomb drag can be used to
separate these effects in experimental studies, which remain to be carried out.

Furthermore, our numerical studies revealed interesting behavior of the pho-
non drag resistivity with respect to the phonon mean free path, the Landau
level broadening, the interlayer separation and the filling factor of the layers
of the bilayer system. Very interestingly, for different filling of the layers, no
sign change of the phonon drag conductivity is found, in contrast to the case
of Coulomb drag. This can be attributed to the fact that the dominant con-
tribution to the triangle vertex, Γ(q/kF ), is even with respect to the chemical
potential (EF − EN ) (see Eq. (7.12)), while, for Coulomb drag, the dominant
contributions are odd (see Eqs. (7.34-7.35)).
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