
4 Microwave Photoconductivity due to
Intra-Landau-Level Transitions

Until recently, the study of two-dimensional electron systems under microwave
irradiation was limited mostly to the magnetic field range where the microwave
frequency ω exceeds the cyclotron frequency ωc and microwave-induced inter-
Landau level transitions are the relevant process. Very recently, a closely related
effect was discovered by Dorozhkin et al. [39] and Mani [40] in ultra-high
mobility systems for the case when the microwave frequency ω is smaller than
the cyclotron frequency ωc. The microwave irradiation is then unable to induce
inter-LL transitions (since the absorption of a microwave photon is unable to
promote an electron to a higher Landau level) and can only give rise to intra-LL
transitions. According to Dorozhkin and co-workers, a considerable reduction
of the diagonal conductivity is observed upon irradiation with microwaves of
frequency ω � ωc. To date, there is, however, no evidence for zero resistance
states in this regime.

In this chapter, we first review the above experiments on the photoconduc-
tivity in the intra-LL-regime (Section 4.1). Motivated by these experiments, we
study the microwave-induced photoconductivity of a two-dimensional electron
gas arising from intra-Landau-level transitions within a model where the elec-
trons are subject to a unidirectional periodic potential in addition to a weaker
impurity potential. This model is presented in Section 4.2. Section 4.3 is de-
voted to the microscopic mechanisms leading to the photocurrent. In Section
4.4, we calculate the dark conductivity for the case where the dc current is
applied parallel to the direction of the additional modulation and for the case
where its direction is perpendicular to that of the modulation. In Section 4.5,
we calculate the photoconductivities for both orientations. As in the inter-LL
regime, there are contributions by the displacement mechanism as well as by the
distribution function mechanism. We discuss their relative magnitude and gen-
eralize to disorder types other than smooth disorder. Section 4.6 is devoted to a
comparison of our results with experiment. We argue that our model is able to
explain the key experimental features even though these experiments were car-
ried out without additional modulation potential. The reason for this lies in the
fact that the realistic disorder potential can be modeled by the periodic mod-
ulation if one identifies the modulation broadening of the Landau levels within
our model with the actual disorder broadening. This allows us to explain the
sign of the photocurrent, its dependence on magnetic field and microwave fre-
quency as well as the microwave-induced suppression of the Shubnikov-deHaas
oscillations. In Section 4.7, we briefly comment on the polarization dependence
of the photoconductivity. Section 4.8 serves as a summary of our results for the
intra-LL regime. This chapter is based on Joas et al. [66].
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4 Intra-LL-Transition Photoconductivity

Figure 4.1: Magnetoresistivity ρxx as a function of magnetic field B in the absence
of microwave irradiation (dotted curve) and under 17 GHz radiation (solid line) at a
temperature of 4 K and an electronic density n = 2.92×1011 cm−2. A microwave power
of P = 0.3 mW was measured at the oscillator output. The shaded region indicates
the regime ω > ωc, whereas the unshaded region indicates the regime ω < ωc where
intra-LL-transitions become important. This figure has been taken from Ref. [39].

4.1 Experiment

Typical experimental results for the diagonal resistivity are shown in Fig. 4.1
[39]. The dotted curve is the dark diagonal resistivity (i.e., the resistivity with-
out microwave irradiation). As expected, ρxx exhibits the usual Shubnikov-
deHaas oscillations, which are a signature of the variation of the Fermi level
EF through the Landau levels as a function of magnetic field B. The solid
line, in turn, shows the result for the diagonal resistivity under irradiation with
microwaves of low frequency. The average magnetoresistivity is greatly sup-
pressed within a wide range of magnetic fields. In addition, a suppression of
Shubnikov-deHaas oscillations is observed, which is most pronounced for weak
magnetic fields. This result was rather unexpected since the theoretical ex-
planations of MIRO and ZRS focus on inter-LL transitions (see Chapter 2).
Inter-LL transitions cannot play a role in the present situation because the
energy difference between the LLs greatly exceeds the energy provided by the
microwave radiation, ωc � ω.

The evolution of the suppression of ρxx with increasing microwave frequency
is depicted in Fig. 4.2. With increasing microwave frequency, the suppression
weakens and, in the inter-LL regime ω > ωc, the expected ZRS shows up, which
can be readily explained on the footing of inter-LL transitions.

In summary, the main experimental findings in the regime ω � ωc are:

• As in the regime ω � ωc, the total diagonal resistivity is suppressed under
microwave irradiation with respect to its dark value. The photoconductiv-
ity, defined as the irradiation-induced change in the total conductivity, is
therefore negative and its amplitude increases with microwave frequency.
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4.2 Model

Figure 4.2: Evolution of the irradiation-induced suppression of the magnetoresistivity
ρxx with increasing microwave frequency (from top to bottom) at temperature T =
0.4 K, density ns = 2.8 × 1011 cm−2 and microwave output power of P = 2 mW.
Again, the dotted curve indicates the dark magnetoresistivity, while the solid line is
the magnetoresistivity under microwave irradiation. The position of the cyclotron
resonance ω = ωc is marked by arrows. The Shubnikov-deHaas oscillations are most
effectively suppressed at low frequencies. Note that the displayed range of magnetic
fields is smaller than in Fig. 4.1. This figure has been taken from Ref. [39].

• Contrary to the behavior in the regime ω � ωc, no ZRS are observed.

• The suppression of the diagonal conductivity is strongest for small mag-
netic fields. In particular, a significant suppression of Shubnikov-deHaas
oscillations is observed.

4.2 Model

In order to explain these key experimental observations, a model that mimics
the effect of a smooth random disorder potential via introduction of an ad-
ditional periodic modulation potential turns out to be valuable. It is more
accessible to analytical investigation than the full microscopic theory due to
the unidirectionality of the modulation potential and its simple analytical form
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4 Intra-LL-Transition Photoconductivity

(as opposed to a random potential in a realistic disorder model). A second mo-
tivation for the study of our model lies in the fact that the behavior of a 2DEG
under the influence of a unidirectional periodic modulation potential (or, alter-
natively, more complicated modulation potentials like, e.g., a 2D modulation
potential, antidot or magnetic superlattices) is interesting in itself. Its study
led to the discovery of transport anisotropies [67, 68, 69, 70] and interesting
commensurability oscillations known as Weiss oscillations [71, 72, 73].

4.2.1 Two-Dimensional Electron Gas in a Modulation Potential

We consider a two-dimensional electron gas (2DEG) subjected to a perpendic-
ular magnetic field B and a unidirectional (i.e., one-dimensional), static mod-
ulation potential

V (r) = V cos (Qx) (4.1)

of period a = 2π/Q, as sketched in Fig. 4.3. We further assume that the
modulation potential V (r) exceeds the residual disorder potential U(r), whose
correlator

W (r− r′) = 〈U(r)U(r′)〉 (4.2)

falls off isotropically on the scale of the correlation length ξ. As appropriate for
a high-mobility 2DEG, we assume a smooth disorder potential with correlation
length

ξ � λF , (4.3)

where λF denotes the zero-field Fermi wavelength. The extension of our con-
siderations to δ-correlated disorder is straightforward (see Ref. [57]). The in-
troduction of the additional modulation potential lifts the LL degeneracy, so
that a momentum transfer can be identified with a jump in real space. The
photocurrent can be calculated within Fermi’s golden rule, as will be shown
below.

The 2DEG is irradiated by microwaves described by the electric potential

φ(r, t) = −e
2
r(E∗eiωt + Ee−iωt) = φ+e

−iωt + φ−e
iωt , (4.4)

where

φ+ = [φ−]∗ = −e
2

E · r (4.5)

and E is the (in-plane) electric field. We consider linearly polarized microwaves
whose polarization vector E = Ex̂ points along the x-direction, i.e. parallel to
the direction of modulation. A generalization to other polarizations is easily
feasible (see Section 4.7). Without loss of generality, we assume the microwave
frequency ω to be positive,

ω > 0 . (4.6)
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2DEG

B

ω

Edc

Figure 4.3: Sketch of our model of a unidirectionally modulated two-dimensional
electron gas (2DEG) in a perpendicular magnetic field B under irradiation with mi-
crowaves of frequency ω. Shown is the so-called longitudinal case where the dc electric
field Edc points along the direction of modulation.

4.2.2 Electrons in High Landau Levels

At weak magnetic fields, the electrons of the 2DEG populate a large number of
Landau levels, up to high LL indices n. The electronic wavefunctions in high
Landau levels can be approximated by simple, asymptotic expressions as will
be shown below. Before discussing the electronic states, we briefly discuss some
useful relations valid in the limit of high Landau levels.

The energy of the band center of the nth LL is given by

En = ~ωc

(

n+
1

2

)

, (4.7)

where ωc is the cyclotron frequency, Eq. (3.5). The cyclotron radius of the nth

LL, R
(n)
c , can be expressed as a function of the magnetic length `B = (~/eB)1/2

as

R(n)
c =

√
2n+ 1`B '

√
2n`B , (4.8)

where the second equality is valid for large n. The ladder of Landau levels is
filled up to the Fermi energy EF . For sufficiently low temperatures T � ωc and
in the absence of LL mixing by disorder or modulation potential, at most one
LL is partially filled. The LL index of this so-called valence Landau band will
be denoted by N � 1. All LLs below the Nth LL are completely filled and all
above are empty. In the limit of high Landau levels (N � 1), the Fermi energy
can then be approximated by

EF ' EN =

(

N +
1

2

)

~ωc ' N~ωc . (4.9)

The Fermi momentum ~kF = mvF is related to the Fermi energy via

EF =
~

2k2
F

2m
, (4.10)
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so that

kF =

√
2N

`B
. (4.11)

Thus, the cyclotron radius at the Fermi level is

Rc = kF `
2
B . (4.12)

The above relations will be used frequently throughout this chapter.

4.2.3 Electronic States in the Absence of a Modulation Potential

We start by discussing the electronic eigenstates in the absence of disorder
(U = 0) and microwaves (φ = 0), i.e. in the unperturbed system, but at finite
magnetic field B and finite driving dc electric field Edc. In contrast to the
case without dc electric field, angular momentum is not conserved so that the
commonly used symmetric gauge A = B(−y/2, x/2) is inappropriate. Without
modulation potential, the Landau level states |nk〉 (k denotes the momentum
in y-direction) can be calculated in the Landau gauge

A = B(0, x, 0) . (4.13)

In this gauge, the Hamiltonian for our system is

H =
1

2m

[
p2

x + (py − eBx)2
]
− eEdcx , (4.14)

where px, py are the momentum components, e is the electronic charge and m
the electronic mass. By using a separation ansatz for the x- and y-components
of the wavefunction, one finds that in the y-direction, the eigenstates are plane

waves exp(iky)/L
1/2
y and can be labeled by the momentum k in the y-direction.

Using periodic boundary conditions in the y-direction, the allowed k values are
integer multiples of ±2π/Ly, where Ly is the width of our system. Introducing
a guiding center coordinate

X = k`2B +
eEdcm`

4
B

~2
, (4.15)

the Schrödinger equation for the x-component of the wavefunction reads

[
p2

x

2m
+
mω2

c

2
(x−X)2

]

ψ(x) =

[

E + eEdcX − m

2

(
Edc

B

)2
]

ψ(x) , (4.16)

which is simply the equation of a harmonic oscillator whose potential is centered
at x = X. The x-component of the eigenfunctions in position representation is
then given by

ψnk(x) =

(
1

π

)1
4
(

1

2nn!`B

) 1
2

e
− (x−X)2

2`2
B Hn

(
x−X

`B

)

, (4.17)

where Hn(x) are Hermite polynomials. This wavefunction is extended along an
equipotential line perpendicular to the electric field and localized at x = k`2B .
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The width of the wavefunction is of the order of
√

2n+ 1`B '
√

2n`B . Note
that the momentum in y-direction, k, enters through the linear k-dependence
of the guiding center, see Eq. (4.15).

The eigenenergies of the above states are given by

Enk =

(

n+
1

2

)

~ωc − eEdcX +
m

2

(
Edc

B

)2

. (4.18)

The first term is the energy of the cyclotron motion, the second is the potential
energy in the dc electric field and the third is the kinetic energy of the drift
in y-direction with velocity Edc/B. Since we are interested only in the linear
response properties of our system, this drift term, which is quadratic in Edc,
can be safely neglected. At zero dc electric field, the eigenenergies of the states
|nk〉 are degenerate with respect to k.

4.2.4 Spectrum and Matrix Elements in the Presence of the
Modulation Potential

For a weak modulation potential, the Landau level states |nk〉 in the Landau
gauge remain good eigenstates if the amplitude V of the periodic modulation is
small compared to the LL spacing ~ωc. We restrict our considerations to this
limit. Before proceeding to a calculation of the eigenenergy with the modulation
potential, we quickly discuss important matrix elements of the LL states |nk〉
for later use.

Of general use are the matrix elements of eiq·r since they appear whenever a
quantity is expressed in terms of a Fourier series. They are given by (n′ ≥ n)

〈n′k′
∣
∣eiq·r

∣
∣nk〉 = δk′,k+qy

√

2n−n′
n!

n′!
exp

[

−1

4
q2`2B − i

2
qx(k + k′)`2B

]

× [(qy + iqx)`B ]n
′−n Ln′−n

n

(
q2`2B

2

)

. (4.19)

Here, Lm
n (z) are associated Laguerre polynomials. In the limit of high Landau

levels and for n = n′, Eq. (4.19) reduces to

〈nk′
∣
∣eiq·r

∣
∣nk〉 = δk′,k+qye

−
iqx(k+k′)`2B

2 J0(qR
(n)
c ) , (4.20)

where R
(n)
c is the cyclotron radius of the nth LL and J0(z) the zeroth order

Bessel function.

We also need the matrix elements of the microwave and disorder potentials,
φ± and U , respectively. In what follows, we refer to φ+ as microwave absorption
and to φ− as microwave emission. For microwaves linearly polarized in the x-
direction, the matrix elements for microwave absorption and emission are the
same and are given by

〈n′k′|φ±|nk〉 = −eE
2
k`2Bδn,n′δk,k′ +

eERc

4

(
δn,n′−1 + δn,n′+1

)
δk,k′ . (4.21)

55



4 Intra-LL-Transition Photoconductivity

Thus, absorption or emission of microwaves either leaves the LL index un-
changed or couples neighboring LLs. If n and n′ differ by more than one, the
matrix element evaluates to zero,

〈n′k′|φ±|nk〉 = 0 for |n− n′| > 1. (4.22)

By contrast, the disorder potential has nonzero matrix elements between arbi-
trary LLs. The disorder-averaged matrix element involves the Fourier transform
W̃ (q) of the correlator, Eq. (4.2), and is given by

|〈n′k′|U |nk〉|2 =

∫
d2q

(2π)2
δqy ,k′−k

m!

M !

(
q2`2B

2

)|n′−n|

×
[

e−
q2`2B

4 L|n′−n|
m

(
q2`2B

2

)]2

W̃ (q) , (4.23)

where m and M are the minimum and maximum of n and n′, respectively. In
the limit of high Landau levels (n, n′ � 1), Eq. (4.23) can be approximated by

|〈n′k′|U |nk〉|2 '
∫

d2q

(2π)2
δqy ,k′−k

[
J|n′−n|(qRc)

]2
W̃ (q) , (4.24)

where Jn(z) is a Bessel function.
The energy of an electron in state |nk〉 in the presence of the periodic mod-

ulation potential can be determined perturbatively.1 Starting from the unper-
turbed Landau states |nk〉 with unperturbed energies ~ωc(n+ 1/2), the energy
correction to first order in the modulation potential is given by

〈nk |V |nk〉 =
V

2
〈nk

∣
∣eiQx + e−iQx

∣
∣nk〉 . (4.25)

Using the matrix elements from Eq. (4.19), this reduces to

〈nk |V |nk〉 = Vn cos
(
Qk`2B

)
, (4.26)

where the modulation amplitude Vn is given by

Vn = V e−Q2`2B/4Ln(Q2`2B/2) . (4.27)

The energy in the modulation potential is thus given to first order by (the
superscript 0 denotes the absence of a dc electric field)

ε0nk ' ~ωc(n +
1

2
) + Vn cos(Qk`2B) , (4.28)

The additional term Vn cos(Qk`2B), which stems from the presence of the modu-
lation potential, lifts the degeneracy with respect to k present in the modulation-
free case. For large LL index n, we find that, asymptotically, Eq. (4.27) assumes
the form

Vn ' V J0(QRc) . (4.29)

If an additional electric field is present, the energy shifts to

εnk = ε0nk − eEdck`
2
B . (4.30)

1Since the electric field leads only to additive potential and drift terms in the electronic
energy, we restrict the perturbative calculation of the electronic energies to the case Edc = 0
and generalize to finite dc field in the end.
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4.2.5 Density of States in the Modulation Potential

At zero magnetic field, the density of states in a 2D electron system is constant
and (for a spin-polarized system) is given by

νDOS =
m

2π~2
. (4.31)

The situation changes at finite magnetic fields. In the following, we calculate
the density of states at finite B in the presence of a modulation potential. The
density of states (per unit area) is defined as

ν(ε) = lim
Lx → ∞
Ly → ∞

1

LxLy

∑

n

∑

k

δ
(
ε− ε0nk

)
, (4.32)

where LxLy is the area of the system and ε0nk the energy in the periodic modu-
lation potential from Eq. (4.28). Taking the limit Ly → ∞, the sum over k (k
is the momentum in y direction) is converted into an integral, so that

ν(ε) = lim
Lx→∞

1

Lx

∑

n

∫
dk

2π
δ
(
ε− ε0nk

)
. (4.33)

Writing the energy
ε0nk = En + Vn cos(Qk`2B) (4.34)

with En = ~ωc(n + 1/2) and noting that for a given energy ε the sum over n
only contributes if |ε − En| ≤ Vn, which, in the limit Vn � ~ωc, reduces to a
single term n = N , N being the index of the LL energy EN which lies closest
in energy to ε, we get

ν(ε) = lim
Lx→∞

1

Lx

∫
dk

2π
δ

(

ε− EN − VN cos

(
2π`2B
a

k

))

, (4.35)

where it has been used that Q = 2π/a.
Due to the finite extension of our system, we regularize the counting of states

by integrating only over states localized at −Lx/2 ≤ k`2B ≤ Lx/2 (note that
k`2B simply is the x-component of the guiding center position X). Then, the
length Lx drops out of the expression for the density of states and we obtain

ν(ε) =
1

2π`2B

∫ π

−π

dk

2π
δ (ε− EN − VN cos(k)) . (4.36)

Taking the prefactor of the cosine out of the delta function, this reduces to

ν(ε) =
1

2π`2B

1

2π|VN |

∫ π

−π
dk δ

(
ε− EN

VN
− cos(k)

)

. (4.37)

Using the well-known property [74]

δ(g(x)) =
∑

j

δ(x− xj)

|g′(xj)|
(g(xj) = 0; g′(xj) 6= 0) (4.38)
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EnEn − Vn En + Vn

ν̃(ε)

ε

Figure 4.4: Qualitative behavior of the normalized density of states ν̃(ε) for an energy
ε satisfying |ε − En| ≤ Vn. The divergence at the edges of the modulation-broadened
Landau band will lead to effects characteristic of the presence of a periodic modulation
potential, as discussed in the main text.

of the δ function, we find

ν(ε) =
1

2π`2B

1

2π|VN |
∑

j

∫ π

−π
dk

δ(k − kj)

| − sin(kj)|
, (4.39)

where the kj are the zeros of

g(k) =
ε− EN

VN
− cos(k) , (4.40)

which are implicitly defined by

cos(kj) =
ε−EN

VN
. (4.41)

This leads to

sin(kj) = ±
√

1 − cos2(kj) = ±

√

1 −
(
ε− EN

VN

)2

. (4.42)

There are thus only two zeros of g(k) in the range −π ≤ k ≤ π, whose sines are
given by the above expression with positive or negative sign. Their contribution
to the sum over j is the same, so that

ν(ε) =
1

2π`2B

1

2π|VN |
2

√

1 −
(

ε−EN
VN

)2
. (4.43)
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Defining the density of states at the band center ε = EN by2

ν∗ = ν(EN ) =
1

2π`2B

1

π|VN | (4.44)

and the normalized density of states by

ν̃∗(ε) =
1

√

1 −
(

ε−EN
VN

)2
, (4.45)

the density of states in the periodic modulation potential takes the form

ν(ε) = ν∗ν̃∗(ε) . (4.46)

As can be seen from Fig. 4.4, the density of states of a modulation-broadened
LL diverges at the LL edges, which leads to anomalous behavior characteristic
of modulation broadening as opposed to disorder broadening. This divergence
is due to the flat dispersion (vanHove-type singularities) at the low- and high-
energy edges of the modulation-broadened Landau bands.

4.2.6 Regimes

We are interested in the regime of intra-Landau-level transitions where

ω � ωc , (4.47)

i.e. the microwave frequency lies well below the center-to-center energy differ-
ence of the Landau bands. In addition, we concentrate on the regime

ωc � T � VN . (4.48)

Thus, the temperature smearing of the LLs is over an energy range that is
large compared to their modulation broadening, but small compared to their
separation. We refer to this regime as the limit of well-separated LLs.

In the limit of weak magnetic fields, i.e. of high Landau levels, we have

λF � `B � Rc , (4.49)

where λF is the Fermi wavelength. We furthermore assume that the period a
of the modulation potential satisfies the relation

λF � a� `2B
ξ

, (4.50)

where `2B/ξ is the real-space jump associated with a scattering event in the
smooth disorder potential of correlation length ξ. The second inequality in

2This expression has the following simple physical interpretation: The area occupied by a
LL state is 2π`2B. Due to the presence of the modulation, there are only two states per
period 2π|VN | (in x-direction) of the modulation potential whose energies coincide with
EN , namely at the points where the cosine in the dispersion is zero.
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relation (4.50) thus ensures that the disorder-induced jump during a scattering
event is large compared to the characteristic length scale of the modulation
potential.

We only provide results for spin-split LLs, assuming that the spin-splitting
Zeeman energy exceeds the modulation broadening V of the LLs. This results
in spin polarization of the valence LL while its counterpart (of same index
but opposite spin) is either completely full or completely empty. In this way,
corrections to the conductivity arise due to processes involving only one sort of
spin. For spin-degenerate LLs, an additional prefactor of two has to be included
in all results since twice as many electrons contribute to the current.

4.3 Mechanisms

4.3.1 General Expression for the Current

The electronic states |nk〉 are localized in x-direction at k`2B . The microwave
field φ and the disorder potential U are able to induce transitions between
these states. The probability amplitude of such transitions is given by the
matrix elements of the corresponding T -matrix. The current in the x-direction
can be expressed in terms of this T -matrix, generalizing an approach of Titeica
[75].

The basic idea of the calculation of the current is sketched in Fig. 4.5. We
limit our considerations to the longitudinal current jx for a dc electric field
applied parallel to the direction of modulation and will explain the necessary
modifications for the transverse case when needed. The computational scheme
goes as follows: We first fix an arbitrary line x0 perpendicular to the modula-
tion, i.e. in y-direction. Then, we count the number of scattering events which
take an electron from a state k, localized at k`2B to the left of our fictitious
line x0, to a state k′, localized at k′`2B to the right of this line, and vice versa.
Due to current conservation, the results do not depend on the particular choice
for x0. We therefore average over all possible x0. The current jx (parallel to
the direction of modulation) can then be expressed in terms of the T -matrix
elements and of the electron distribution function fnk,

jx =
2πe

Ly

∫ Lx
2

−Lx
2

dx0

Lx

∑

n,n′

∑

k<
x0
`2
B

∑

k′>
x0
`2
B

∣
∣〈n′k′ |T |nk〉

∣
∣2

× [fnk − fn′k′ ] δ (εnk − εn′k′) , (4.51)

where LxLy is the area of the system. The integral over x0 is performed by
noting that

∑

k<x0/`2B

∑

k′>x0/`2B

=
∑

k

∑

k′

θ(x0 − k`2B)θ(k′`2B − x0) , (4.52)

so that
∫ Lx

2

−Lx
2

dx0θ(k
′`2B − x0)θ(x0 − k`2B) −→ (k′ − k)`2B (4.53)
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x0

x

y

k`2B k′`2B

Figure 4.5: Scheme for the calculation of the current jx as a generalization of Titeica’s
approach. One first defines an imaginary line at x0, perpendicular to the modulation,
and then counts the number of scattering events which take an electron from the left
to the right and subtracts the number of scattering events which occur in the opposite
direction. Due to current conservation, the location of the imaginary lime is irrelevant
to the calculation of the current. One therefore averages over all possible x0.

and, thereby,

jx =
2πe

LxLy

∑

nn′

∑

kk′

(k′ − k)`2B
∣
∣〈n′k′ |T |nk〉

∣
∣2 [fnk − fn′k′ ] δ (εnk − εn′k′) . (4.54)

This is the general expression for the current which will be used below to com-
pute the dark current in the absence of microwaves, and the photocurrent in
the presence of microwaves.

4.3.2 Kinetic Equation

The distribution function fnk, which describes the occupation of the LL eigen-
states |nk〉, changes from its equilibrium value f0

nk due to the presence of mi-
crowaves and disorder scattering. In addition, a realistic model has to take into
account inelastic relaxation. The change in distribution function can be calcu-
lated using a kinetic approach and inelastic relaxation can be accounted for by a
phenomenological relaxation time τin within the relaxation time approximation.
Throughout this chapter, we assume that the distribution function is uniform
with respect to the spatial y-coordinate. As for the current, our considerations
are valid for the longitudinal case only and will be extended to the transverse
case when needed.

The distribution function fnk can be obtained from the kinetic equation

∂fnk

∂t
=

(
∂fnk

∂t

)

dis

+

(
∂fnk

∂t

)

mw

− fnk − f0
nk

τin
. (4.55)

This kinetic equation includes collision integrals for disorder scattering,
(
∂fnk

∂t

)

dis

=
∑

n′k′

2π|〈n′k′|U |nk〉|2[fn′k′ − fnk]δ(εnk − εn′k′) , (4.56)
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and for disorder-assisted microwave absorption and emission,

(
∂fnk

∂t

)

mw

=
∑

n′k′

∑

σ=±

2π|〈n′k′|Tσ |nk〉|2[fn′k′−fnk]δ(εnk−εn′k′ +σω) , (4.57)

where Tσ is the contribution to the T -matrix which describes disorder-assisted
microwave absorption and emission processes as will be discussed momentarily.
Note that the above collision integrals involve the electron energies including
the effects of the dc electric field

εnk = ε0nk − eEdck`
2
B . (4.58)

4.3.3 T -Matrix

The full T -matrix of our system can be written as a perturbation series,

T = U + φ+ (U + φ)G0(U + φ) + ... , (4.59)

where U is the disorder potential, φ the microwave potential and G0 denotes
the retarded Green’s function of the unperturbed system (U = φ = 0). To
first order in the microwave field φ, there are three dominant processes: direct
microwave absorption (emission) φ+ (φ−) and

T± = UG0φ± + φ±G0U , (4.60)

where T+ (T−) are referred to as disorder-assisted microwave absorption (emis-
sion). Direct microwave absorption or emission does not alter the electron mo-
mentum; it therefore does not contribute to the current. T+ and T−, however,
do contribute to the current. These processes can be considered separately,
since they contribute incoherently. The matrix elements of T− can be shown to
equal those of T+ up to a phase.

In addition, the microwaves affect the electron distribution. The distribution
function can also be expressed in terms of the T -matrix. To linear order in the
microwave field, the distribution function can be written as

fnk = f0
nk + δfnk , (4.61)

where the first-order correction δfnk can be determined using the kinetic equa-
tion, Eq. (4.55). This yields

δfnk = fnk − f0
nk

= 2πτin
∑

n′k′

∑

σ=±

∣
∣〈n′k′ |Tσ|nk〉

∣
∣2
[
f0

n′k′ − f0
nk

]

× δ
(
ε0nk − ε0n′k′ + σω

)
. (4.62)

The general expression for the current, Eq. (4.51), can now be examined in more
detail. The T -matrix enters it directly through the T -matrix elements but also
indirectly via the distribution function. In what follows, we will discuss all
contributions to the current up to linear order in the microwave field.
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Figure 4.6: Relevant processes in the regime ω � ωc. Full lines represent microwave
absorption (φ+) or emission (φ−) and dashed lines disorder scattering (U). In processes
(a) and (b), the intermediate states are in the same LL as the initial and final states.
The amplitude of these processes is denoted by M0. As shown in the main text,
these processes dominate the photocurrent. For processes (c)-(f), the LL index of the
intermediate states differs by one from the LL index of initial and final states. The
amplitude of these processes is denoted by M1. Their contribution can be shown to be
smaller by a factor ω/ωc than the contribution from processes (a) and (b).

4.3.4 Intra-LL-Transition Matrix Elements

In what follows, we identify the relevant microwave-induced processes by dis-
cussing the matrix elements of the corresponding contributions to the T -matrix.
As mentioned above, we are interested in the case of well-separated Landau lev-
els. In the regime ω � ωc, relevant for the treatment of intra-LL transitions,
only scattering processes with initial and final state in the same LL are relevant.
Regardless of ω, microwaves are only able to induce transitions inside a LL or
between neighboring LLs (see Eq. (4.21)). Disorder-assisted microwave absorp-
tion and emission thus proceeds via intermediate states either in the same LL
(with amplitude M0) or in neighboring LLs (with amplitude M1), so that

〈nk′ |T+|nk〉 = M0 +M1 . (4.63)

These processes are depicted in Fig. 4.6 (a),(b) and (c)-(f), respectively. We
find that the amplitude M1 is smaller than M0 by the parameter ω/ωc. In
order to demonstrate this, we first turn to the contribution M0, which, using
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Eq. (4.21), can be written as

M0 = 〈nk′ |U |nk〉G0,nk(εnk + ω)〈nk |φ+|nk〉
+〈nk′ |φ+|nk′〉G0,nk′(εnk)〈nk′ |U |nk〉

=
eE

2ω
(k′ − k)`2B〈nk′ |U |nk〉 . (4.64)

Here we used the Green function matrix elements

G0,nk(ε) =
1

ε− εnk
, (4.65)

so that

G0,nk(εnk + ω) =
1

εnk + ω − εnk
=

1

ω
(4.66)

and

G0,nk′(εnk) =
1

εnk − εnk′

= − 1

ω
. (4.67)

Using Eq. (4.23), we obtain the following expression for the absolute square of
the matrix element

|M0|2 '
(
eE

2ω

)2 ∫ d2q

(2π)2
δqy,k′−k

[
qy`

2
BJ0(qRc)

]2
W̃ (q) , (4.68)

which is valid in the limit of high Landau levels.

We now estimate the contribution M1. The processes depicted in Fig. 4.6
(c)-(f) lead to the amplitude

M1 = 〈nk′ |U |n+ 1k〉G0,n+1k(εnk + ω)〈n+ 1k |φ+|nk〉
+〈nk′ |U |n− 1k〉G0,n−1k(εnk + ω)〈n − 1k |φ+|nk〉
+〈nk′ |φ+|n− 1k′〉G0,n−1k′(εnk)〈n − 1k′ |U |nk〉
+〈nk′ |φ+|n+ 1k′〉G0,n+1k′(εnk)〈n + 1k′ |U |nk〉

=
eERc

4

[〈nk′ |U |n+ 1k〉
ω − ωc

+
〈nk′ |U |n− 1k〉

ω + ωc

−〈n− 1k′ |U |nk〉
ω − ωc

− 〈n+ 1k′ |U |nk〉
ω + ωc

]

. (4.69)

At first sight, the ratio M1/M0 seems to be of order (Rc/q`
2
B)(ω/ωc). For

smooth disorder,

q ∼ 1/ξ , (4.70)

so that M1/M0 ∼ (kF ξ)(ω/ωc), where kF ξ � 1. This would imply that M1

could actually dominate over M0. However, this estimate turns out to be too
simplistic. The reason is that for ω � ωc, we can write Eq. (4.69) as

M1 =
eERc

4ωc

{
[〈n − 1k′ |U |nk〉 − 〈nk′ |U |n+ 1k〉]

+ [〈nk′ |U |n− 1k〉 − 〈n+ 1k′ |U |nk〉]
}

. (4.71)
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We observe that the square brackets involve differences of matrix elements which
differ by a uniform shift by one Landau level. It turns out that this leads to
a partial cancellation which reduces our previous estimate of M1 by q/kF ∼
1/kF ξ. As a result, we find that

M1

M0
∼ ω

ωc
, (4.72)

as claimed above. The contribution of processes involving intermediate states
outside of the valence Landau level (i.e., the topmost partially filled LL) there-
fore is negligible to lowest order and we may keep only the dominant contribu-
tion M0.

4.3.5 Transport and Single-Particle Time

We now introduce two natural parameters in terms of which our results can
be expressed very conveniently: transport and single-particle time. They turn
out to be especially useful for the comparison of our results with results for
disorder-broadened LLs.

In the presence of smooth disorder, as opposed to white-noise disorder, there
are two characteristic scattering times. The first is the single-particle (or col-
lision) time, τs, which is the average time between two scattering events. The
second is the transport (or momentum relaxation) time, τtr, which encompasses
a measure for the collision’s effectiveness in altering the momentum of the scat-
tered electron. If, e.g., small-angle scattering prevails, only a small fraction of
momentum is lost in each individual collision. The transport time then is much
larger than the single-particle time. In a 2DEG, τs is much shorter than the
transport time τtr due to the smooth character of the disorder potential caused
by the remote donors (typically, τtr/τs ∼ 10 − 102). On the other hand, in the
case of delta-correlated (white noise) disorder, the scattering times coincide,
τs = τtr. The capability of a system to prevent a current from flowing, i.e. its
resistivity, depends on the transport time.

If one defines the mean free path `tr as the distance an electron travels before
its initial momentum is destroyed, the mean free path is simply the product of
the electron velocity (typically the Fermi velocity) and the transport time,

`tr = vF τtr . (4.73)

More quantitatively, in the case of zero magnetic field, the single particle time
can be expressed in terms of the correlator of the disorder potential via (〈·〉FS

denotes an average over the Fermi surface)

1

τs
= 2π

∑

q

W̃ (q)〈δ(εk − εk+q)〉FS =
1

πvF

∫ ∞

0
dq W̃ (q) , (4.74)

where εk is the zero-field dispersion. The transport time, in turn, is given by

1

τtr
= 2π

∑

q

(1 − cos θq)W̃ (q)〈δ(εk − εk+q)〉FS

=
1

πvF

∫ ∞

0
dq

q2

2k2
F

W̃ (q) , (4.75)
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where θq denotes the scattering angle. These relations yield immediately that

τtr
τs

∼ (kF ξ)
2 . (4.76)

It is obvious from classical considerations that both, collision and single-particle
times, change in the presence of a magnetic field that forces the electrons on
cyclotron orbits. In the presence of a magnetic field, the transport and single-
particle times become energy-dependent and will be denoted by τ∗tr(ε) and τ∗s (ε),
respectively. The relation of the finite-B-field transport time to the transport
time in the absence of a magnetic field is

τ∗tr(ε) = τtr
ν

ν∗(ε)
, (4.77)

whereas for the single-particle times the relation reads

τ∗s (ε) = τs
ν

ν∗(ε)
. (4.78)

Here, ν is the (constant) density of states in the absence of a magnetic field and
ν∗(ε) the energy-dependent density of states in the presence of a magnetic field
from Eq. (4.46). The ratio of the two scattering times, Eq. (4.76), however,
stays the same regardless of the presence of a magnetic field. This follows
immediately from Eqs. (4.77-4.78) due to the common factor ν/ν∗(ε).

In this chapter, we assume the presence of a smooth disorder potential as
suggested by the experimental scenario. There is, however, no need to re-
strict ourselves to this particular realization of disorder. A generalization to,
e.g., white noise (delta-correlated) disorder is straightforward. Up to numerical
prefactors, the results for white-noise disorder can be obtained from our results
for smooth disorder by setting

τtr = τs . (4.79)

4.4 Dark Current

4.4.1 Longitudinal Dark Current

The dark current, i.e. the current in the absence of microwaves, can be obtained
from Eq. (4.51) by inserting T = U . We assume that the dc electric field is
sufficiently weak, so that heating effects can be ignored. Then, the electron
distribution function remains in equilibrium and we can set fnk = f0

nk in Eq.
(4.51). We start by computing the longitudinal dark current, i.e. the current
parallel to the direction of the static periodic modulation. Using the general
expression for the current, Eq. (4.54), the longitudinal dark current is given by

jx =
2πe

LxLy

∑

nn′

∑

kk′

(k′−k)`2B
∣
∣〈n′k′ |U |nk〉

∣
∣2
[
f0

nk − f0
n′k′

]
δ (εnk − εn′k′) . (4.80)
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Inserting the disorder matrix elements from Eq. (4.23) and performing the sum
over k′ leads to

jx =
πe

LxLy

∑

nk

∫
d2q

(2π)2

{

qy`
2
Be

−
q2`2B

2

[

Ln

(
q2`2B

2

)]2

× W̃ (q)
[
f0

nk − f0
n′k′

]
δ
(

ε0nk − ε0n′k+qy
+ eEdcqy`

2
B

)}

. (4.81)

Expanding to linear order in the dc electric field, this yields for the conductivity

σxx =
πe2

LxLy

∑

nk

(

−∂f
0
nk

∂ε0nk

)∫
d2q

(2π)2

{
(
qy`

2
B

)2

× e−
q2`2B

2

[

Ln

(
q2`2B

2

)]2

W̃ (q)δ
(

ε0nk − ε0n′k+qy

)}

. (4.82)

The remaining integral can be computed by noting that it factorizes into two
parts. The first is a separate averaging over the delta function while the second
is the remainder of the integral which is cut off at large q due to the correlator
of the smooth disorder. Since we are only interested in weak magnetic fields,
i.e. high LLs, we can employ the semiclassical asymptotics of the Laguerre
polynomials

e−
q2`2B

4 Ln

(
q2`2B

2

)

'
√

2

πqRc
cos
(

qRc −
π

4

)

. (4.83)

In total, the dark longitudinal conductivity can be expressed in terms of an
integral over energy involving the density of states

σxx = e2
∫

dε

(

−∂f
(0)(ε)

∂ε

)

ν∗(ε)
R2

c

2τ∗tr(ε)
. (4.84)

This result can be interpreted as follows: The bare rate for disorder scattering is
1/τ∗s . Each scattering event is associated with a momentum transfer 1/ξ. This
momentum transfer is associated with a jump of magnitude `2B/ξ in real space.
The electron therefore diffuses in x-direction with a diffusion constant Dxx ∼
(
`2B/ξ

)2
/τ∗s . Alternatively, this diffusion constant can be expressed in terms of

the transport time as Dxx = R2
c/2τ

∗
tr, where the relation τ∗tr/τ

∗
s ∼ (kF ξ)

2 has
been used. By the Einstein relation, this diffusion constant translates into the
conductivity given in the integrand of Eq. (4.84). Note that, due to the singular
density of states ν∗(ε), the integral in Eq. (4.84) is formally logarithmically
divergent. The divergence is cut off by smearing of the band edge due to
disorder or (if the dc electric field is treated beyond linear order) by the applied
dc electric field.

4.4.2 Transverse Dark Current

An applied dc field in y-direction leads to a nonequilibrium distribution function
fnk due to a drift term in y-direction that enters the kinetic equation (see also
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Section 4.5.2) [57]. The drift term

−eEdc
∂fnk

∂k
(4.85)

enters the right-hand side of the kinetic equation, Eq. (4.55), which then reads

∂fnk

∂t
=

(
∂fnk

∂t

)

dis

+

(
∂fnk

∂t

)

mw

− fnk − f0
nk

τin
− eEdc

∂fnk

∂k
. (4.86)

The deviation from the equilibrium distribution function δfnk = fnk − f
(0)
nk can

then be calculated by linearizing the stationary kinetic equation in the applied
dc electric field and neglecting inelastic processes relative to elastic disorder
scattering. Then, the kinetic equation is given by

eEdc
∂f

(0)
nk

∂k
= 2π

∫
d2q

(2π)2
e−q2`2B/2

[

Ln

(
q2`2B

2

)]2

× W̃ (q)
[
δfnk+qy − δfnk

]
δ(ε

(0)
nk − ε

(0)
nk+qy

) . (4.87)

As in the case of the longitudinal dark current, the transverse dark conductivity
can be expressed in terms of an integral over energy involving the density of
states

σyy = e2
∫

dε

(

−∂f
(0)(ε)

∂ε

)

ν∗(ε) [vy(ε)]
2 τ∗s (ε) , (4.88)

where the drift velocity vy is given by

|vy(ε)| =

∣
∣
∣
∣
∣

∂ε
(0)
nk

∂k

∣
∣
∣
∣
∣
=

1

πaν∗(ε)
. (4.89)

The interpretation of this result is based on the idea that, with respect to
electron motion in the y-direction, a partially filled LL consists of a set of two
“internal edge channels” per period a, which are parallel to the y-direction. In
neighboring channels, the electrons flow in opposite directions, so that after a
time τ∗s , the direction of motion is randomized due to disorder scattering. The
factor Dyy = [vy(ε)]

2τ∗s can thus be interpreted as the corresponding diffusion
constant and, by the Einstein relation, directly translates into the conductivity,
Eq. (4.88).

4.5 Photocurrent

We now move on to the calculation of the photocurrent for the regime of intra-
LL transitions. To lowest order, there is no current due to the microwaves
(φ) alone since they conserve momentum as can be seen from the relevant
matrix element (see Section 4.2.4). Only in second order, where terms Uφ or
φU appear in the T -matrix, the microwaves are able to induce a current via
disorder-assisted photoabsorption and -emission. In the limit of high Landau
levels and for well-separated LLs, the main contributions to the photocurrent
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arise from disorder-assisted microwave absorption or emission processes with
intermediate states inside the valence LL of index N , corresponding to the
contributions

T± = UG0φ± + φ±G0U (4.90)

to the T -matrix.
In perturbation theory, disorder-assisted microwave absorption or emission

leads to two separate contributions to the photocurrent. The first contribution
is due to the displacement mechanism (DP) and the second to the distribution
function mechanism (DF), both discussed briefly in Section 2.2.2.

First, disorder-assisted microwave absorption or emission changes the electron
momentum from k to k′, which effectively corresponds to real-space jumps in
the x-direction of length (k′ − k)`2B . Due to the applied dc electric field, these
jumps occur preferentially in a fixed direction. Within the generalized approach
of Titeica [75], this displacement contribution to the longitudinal photocurrent
can be expressed as

jDP
x =

πe

LxLy

∑

σ=±

∑

n

∑

k,k′

(k′ − k)`2B
∣
∣〈nk′ |Tσ|nk〉

∣
∣2

×
[
f0

nk − f0
nk′

]
δ(εnk − εnk′ + σω) .

(4.91)

Here f0
nk is the equilibrium electron distribution function and

εnk = ε0nk − eEdck`
2
B (4.92)

is the Landau level energy including the effect of the dc electric field. If one
were to include a nonequilibrium distribution function in the above expression
for the photocurrent, this current would be of second order in the microwave
fields, which lies beyond the scope of this work.

Secondly, the microwaves change the electronic distribution function away
from equilibrium. The resulting distribution function contribution to the lon-
gitudinal photocurrent is

jDF
x =

πe

LxLy

∑

n

∑

k,k′

(k′ − k)`2B
∣
∣〈nk′ |U |nk〉

∣
∣2

× [δfnk − δfnk′ ] δ(εnk − εnk′) ,

(4.93)

where
δfnk = fnk − f0

nk (4.94)

is the deviation of the nonequilibrium electron distribution function fnk from
the equilibrium distribution f0

nk which can be obtained from the kinetic equation
(see Section 4.3.2).

In what follows, we will first calculate these contributions for the longitudinal
photocurrent, making use of the machinery developed in the above calculation
of the dark current. Since it turns out that, in the – experimentally relevant
– limit of slow inelastic relaxation,3 the DF contribution to the longitudinal
photocurrent dominates parametrically over the DP contribution to the lon-
gitudinal photocurrent, we will start by discussing the distribution function
contribution.

3For this case, it is reasonable to expect that our results for the magnitude of the photocurrent
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4.5.1 Longitudinal Photocurrent

In this section, we compute the photocurrent for dc electric fields applied along
the modulation direction.

Distribution Function Mechanism

The microwave-induced change in the distribution function, as obtained from
the kinetic equation (4.55), equals

δfNk = τin
∑

k′

∑

σ

2π|〈Nk′|Tσ|Nk〉|2

×
[
f0

Nk′ − f0
Nk

]
δ(ε0Nk − ε0Nk′ + σω) , (4.95)

whereN denotes the valence Landau level in which the Fermi energy is situated.
This valence LL is the only partially filled LL, all others are either completely
filled or empty. Since there is no change in the distribution function for other
Landau levels than the valence LL, δfnk vanishes for all other Landau levels n 6=
N . In the considered limit ωc � T � V , the distribution function changes only
weakly within the Landau level. The difference of the equilibrium distribution
functions can then be approximated as

f0
nk − f0

nk′ = nF (εnk) − nF (εnk′)

= nF (εnk) − nF (εnk − σω)

' − ω
∂nF (εnk + σω)

∂ω

∣
∣
∣
∣
ω=0

, (4.96)

where nF (ε) denotes the Fermi-Dirac distribution. Now (β = 1/kBT ),

∂nF (εnk + σω)

∂ω

∣
∣
∣
∣
ω=0

=

[
∂

∂ω

(
1

1 + exp (β (εnk + σω))

)]∣
∣
∣
∣
ω=0

= −σβ 1

1 + exp(βεnk)

[

1 − 1

1 + exp(βεnk)

]

= −σβnF (εnk) [1 − nF (εnk)] , (4.97)

so that

f0
nk − f0

nk′ = σβωnF (εnk) [1 − nF (εnk)] . (4.98)

We assumed that T � V , so that the temperature smearing occurs over an
energy range large compared to the LL width. Then, nF (εnk) does not depend
on k. If now n 6= N , either nF (εnk) or [1 − nF (εnk)] is zero, so that , for n 6= N ,

f0
nk − f0

nk′ = 0 (n 6= N) , (4.99)

will be parametrically identical to those obtained by calculations for disorder-broadened
Landau levels, provided we identify the Landau-level broadenings due to periodic potential
and disorder. Indeed, this was found to be true in earlier work on the photoconductivity
due to inter-LL transitions [57]. At the same time, it is expected that the frequency
dependence of the photoconductivity will be sensitive to the specific density of states of
our model.
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as stated above. For n = N , in turn, we find

f0
Nk′ − f0

Nk ' −σβωnF (ε0Nk)[1 − nF (ε0Nk)] . (4.100)

Noting that, in the limit ωc � T , to leading order nF (ε0Nk) is just the partial
filling factor ν∗N of the valence Landau level, we obtain the relation

f0
Nk′ − f0

Nk ' −σβων∗N (1 − ν∗N ) . (4.101)

Thus, the change in the distribution function is maximal for half-filled (valence)
Landau levels and falls off to zero for empty and completely occupied Landau
levels.

Inserting the expression (4.68) for the matrix element and performing the
sum over k′, we obtain

δfNk = −2πτinβων
∗
N (1 − ν∗N )

(
eE

2ω

)2∑

σ

σ

∫
dq

(2π)2
[qy`

2
BJ0(qRc)]

2

× W̃ (q)δ(ε0Nk − ε0Nk+qy
+ σω) . (4.102)

The q-integration is simplified significantly in the limit λF � a� `2B/ξ, where
it factorizes into an average over the δ-function which oscillates on a q-scale
of a/`2B and an integral over the remaining integrand. The average over the
δ-function can be expressed through the Landau-level density of states, Eq.
(4.46),

〈δ(ε0Nk − ε0Nk+qy
+ σω)〉qy = 2π`2Bν

∗(ε0Nk + σω)θ(V − |ε0Nk + σω|) . (4.103)

The remaining integrand consists of the correlator W̃ (q), which falls of on
the scale 1/ξ and the Laguerre polynomial which oscillates as a function of q`2B
on the scale λF and decays within a scale of the order of the cyclotron radius
Rc. Exploiting the fact that the integrand of the remaining q-integration is cut
off by the correlator W̃ (q) at large q, we can replace the Bessel function by its
asymptotic expression for large argument from Eq. (4.83)

e−
q2`2B

4 Ln

(
q2`2B

2

)

'
√

2

πqRc
cos
(

qRc −
π

4

)

(4.104)

In this way, we can relate the remaining integral

∫ ∞

0
dqq2W̃ (q) (4.105)

to the zero-field transport time, defined by Eq. (4.75)

1

τtr
=

1

πvF

∫ ∞

0
dq

(
q2

2k2
F

)

W̃ (q) (4.106)

as ∫ ∞

0
dqq2W̃ (q) =

2πvF k
2
F

τtr
. (4.107)
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From Eq. (4.77), we know that

1

τ∗tr(ε
0
Nk + σω)

=
1

τtr

ν∗(ε0Nk + σω)

ν
, (4.108)

where ν = m/(2π~
2) is the constant density of states in the absence of a mag-

netic field. Rewriting the transport time without magnetic field in terms of the
transport time with magnetic field and using Eqs. (4.102-4.103), the change in
the distribution function can be expressed as

δfNk = −βων∗N (1 − ν∗N )

(
eERc

2ω

)2

×
∑

σ

σ
τin

τ∗tr(ε
0
Nk + σω)

θ(V − |ε0Nk + σω|) . (4.109)

This expression is to be inserted into Eq. (4.93).
The change in distribution function δfNk calculated above enables us to cal-

culate the longitudinal DF photocurrent. This involves a number of arguments
encountered already in the previous calculation. Expanding the average over
the delta function in Eq. (4.93) to linear order in Edc, the longitudinal distri-
bution photoconductivity can be written as

σDF
xx =

πe2

LxLy

∑

nk

(

−∂δfnk

∂ε0nk

)∫
d2q

(2π)2

×
[
qy`

2
BJ0(qRc)

]2
W̃ (q)2π`2Bν

∗(ε0nk) . (4.110)

Again, the asymptotic form of the Bessel function can be used, since we are
interested in high LLs. In addition, we are again able to relate the remaining
integral to the transport time using Eq. (4.107). Performing these steps yields

σDF
xx =

(

e2
R2

c

2τ∗tr
ν∗
)

2π`2B
LxLy

2πV
∑

k

(

−∂δfNk

∂ε0Nk

)

ν̃∗(ε0Nk) . (4.111)

The remaining task consists of the evaluation of the sum over k. This is done
in close analogy to the dark current, where we expressed the sum over k as an
integral over energy involving the density of states. We finally obtain the result

σDF
xx = −2βω ν∗N (1 − ν∗N )

(

e2
R2

c

2τ∗tr
ν∗
)(

eERc

2ω

)2 τin
τ∗tr

× B1

(
ω

2VN

)

, (4.112)

where

B1

(
ω

2VN

)

= − ∂

∂ω

∫ V −ω

−V
dε[ν̃∗(ε)]2ν̃∗(ε+ ω) . (4.113)

This integral is formally logarithmically divergent. However, both the presence
of disorder and the dc electric field introduce an energy broadening of the LL
edge, so that the divergence is cut off. The result is

B1(x) =
1

16

1 − 2x

(x− x2)3/2
ln

(
VN

∆

)

, (4.114)
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Figure 4.7: Sign and frequency dependence of the photocurrent. Left panel: func-
tions −xA1(x)(full line) and −xB1(x)/ ln(VN/∆)(dashed) determining the sign and
frequency dependence of the displacement and distribution-function contributions to
the longitudinal photoconductivity, respectively (with x = ω/2VN). Right panel: the
corresponding functions −xA2(x)(full line) and −xB2(x)(dashed) for the transverse
photocurrent.

where ∆ denotes the effective broadening of the LL edge that cuts off the
logarithmic divergence of the integral.

The sign and frequency dependence of the longitudinal distribution function
contribution are determined by the function −xB1(x). This function is plotted
in Fig. 4.7. We find negative photoconductivity in the frequency range ω <
VN . For larger frequencies VN < ω < 2VN , the sign of the photoconductivity
changes. This sign change is a specific feature of our model, arising from the
singular density of states at the band edge for the static periodic modulation
potential. While this sign change is an interesting feature of our model and
may be helpful in distinguishing between the displacement and the distribution
function mechanism in an appropriate experiment, it is not expected to occur in
a more generic situation, e.g. for disorder-broadened LLs, without a singularity
at the Landau level edge. Specifically, for the case of disorder-broadened Landau
levels relevant to current experiments, one expects a negative photoconductivity
for all

ω < 2VN . (4.115)
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Up to numerical factors, the result for the longitudinal distribution function
photoconductivity, Eq. (4.112), differs from the corresponding result for inter-
LL transitions [57] in two ways: the detuning ∆ω = ωc − ω is replaced by
−ω, and there is an additional prefactor βωνN (1 − νN ). The first difference
directly reflects the fact that initial, final, and intermediate states are all in
the same Landau level. The additional prefactor stems from the difference in
the thermal populations of initial and final state (which was equal to unity
for inter-LL transitions). This provides a universal prescription to relate our
results for the intra-LL photoconductivity to previous inter-LL results.

Displacement Mechanism

The DP contribution to the longitudinal photocurrent can be calculated from
Eq. (4.51) using the equilibrium distribution function f0

nk and the T -matrix
contributions T±.

In the limit ω � ωc, only processes within the valence LL contribute to the
photocurrent. Using Eq. (4.101) to express the difference between distribution
functions in initial and final state, the longitudinal displacement photocurrent
takes the form (σ = ±)

jDP
x =

πe

LxLy
βων∗N (1 − ν∗N )

∑

σ

∑

kk′

(k′ − k)`2B

×
∣
∣〈Nk′ |Tσ|Nk〉

∣
∣2 δ(εNk − εNk′ + σω) . (4.116)

The real-space displacement between final and initial state due to disorder scat-
tering is represented by (k′ − k)`2B in the above formula. Including the square
of the transition matrix element given by Eq. (4.68) and performing the sum
over k′, we arrive at

jDP
x =

πe

LxLy
βων∗N (1 − ν∗N )

(
eE

2ω

)2

×
∑

σ

∫
d2q

(2π)2
qy`

2
B

[
qy`

2
BJ0(qRc)

]2
W̃ (q)

×
∑

k

δ(εNk − εNk+qy + σω) . (4.117)

Using Eq. (4.38), the sum over k evaluates to

∑

k

δ(εNk − εNk+qy + σω) =
LxLy

2πVN2π`2B

× 1
√

sin2
(

Qqy`2B
2

)

−
(
ω − eEdcqy`

2
B

)
(4.118)
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so that the photocurrent assumes the form

jDP
x =

πeβων∗N (1 − ν∗N )

2π`2B2πVN

(
eE

2ω

)2

×
∑

σ

σ

∫
d2q

(2π)2
(
qy`

2
B

)3
[J0(qRc)]

2 W̃ (q)

× 1
√

sin2
(

Qqy`2B
2

)

−
(
ω − eEdcqy`

2
B

)
. (4.119)

The above expression contains a product of terms whose variations occur on
different scales. While the Bessel function oscillates rapidly with q, the cor-
relator W̃ (q) falls off at q ∼ ξ−1 � Rc/`

2
B = kF and the square root term

which stems from the k summation varies on the scale q ∼ a/`2B . In the regime

studied, λF � a � `2B
ξ , it is thus reasonable to separately average the latter

and to factorize the q-integration in the following way

jDP
x =

πeβων∗N (1 − ν∗N )

2π`2B2πVN

(
eE

2ω

)2

×
∑

σ

σ

∫
d2q

(2π)2
(
qy`

2
B

)3
[J0(qRc)]

2 W̃ (q)

×
〈[

sin2

(
Qqy`

2
B

2

)

−
(
ω − eEdcqy`

2
B

)
]−1/2

〉

qy

, (4.120)

where 〈·〉qy indicates a separate averaging of the square root term over qy.
Keeping this term only to linear order in Edc and introducing

x =
ω

2VN
, (4.121)

we find
〈[

sin2

(
Qqy`

2
B

2

)

−
(
ω − eEdcqy`

2
B

)
]−1/2

〉

qy

= −σeEdcqy`
2
B

2VN

×
〈[

sin2

(
Qqy`

2
B

2

)

− x2

]−1/2
〉

qy

. (4.122)

Finally performing the remaining q-integration and expressing our result in
terms of scattering times, we obtain

σDP
xx ∝ −βων∗N (1 − ν∗N )

(

e2
R2

c

2τ∗tr
ν∗
)(

eERc

2ω

)2 τs
τ∗tr
A1

(
ω

2VN

)

(4.123)

for the longitudinal displacement photoconductivity. The above relation con-
tains a nonuniversal proportionality factor which depends on details of the
smooth-disorder model.
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4 Intra-LL-Transition Photoconductivity

One observes that this result is parametrically smaller than the distribution-
function mechanism by a factor τ∗s /τin, where τ∗s denotes the single-particle
scattering time in the presence of the magnetic field. The function A1 appearing
in Eq. (4.123) is given by

A1(x) = − 3

2π

∂

∂x

`2B
a

∫ a/2`2B

−a/2`2B

dqy
1

√

sin2(Qqy`2B/2) − x2

= − 3

π2

∂

∂x
K
(√

1 − x2
)

(4.124)

and is plotted in Fig. 4.7. Here, K(x) denotes a complete elliptic function [76].

4.5.2 Transverse Photocurrent

We now turn to the calculation of the contributions to the transverse photocur-
rent. It was shown in Ref. [57] that within our model, the contributions of the
displacement and the distribution-function mechanisms to the transverse pho-
tocurrent can be of the same order of magnitude for inter-LL transitions. We
find the same conclusion to hold for intra-LL transitions, as will be shown below.
We start by calculating the DF contribution to the transverse photocurrent.

Distribution Function Mechanism

The methods used in Ref. [57] can be readily extended to intra-LL transitions.
As already discussed in Section 4.4.2, the essential new ingredient in comput-
ing the distribution-function contribution is a drift term −eEdc∂fnk/∂k which
enters the right-hand side of the kinetic equation Eq. (4.55), so that it takes
the form given in Eq. (4.86). The transverse DF photoconductivity can be ex-
pressed as a function of the single-particle time in the presence of a magnetic
field via

σyy = − e2

LxLy

∑

k

(
∂ε0Nk

∂k

)2

τ∗s (ε0Nk)
∂δf0

Nk

∂ε0Nk

. (4.125)

The change in the distribution function is calculated from the kinetic equation.
Finally, we arrive at the following result for the transverse distribution-function
photoconductivity

σDF
yy = −4βω ν∗N (1 − ν∗N )

[
e2(v2

yτ
∗
s )ν̃∗

]
(
eERc

2ω

)2 τin
τ∗tr

× B2

(
ω

2VN

)

, (4.126)

where B2 is given by

B2

(
ω

2VN

)

= − ∂

∂ω

∫ V −ω

−V
dε

1

[ν̃∗(ε)]2
ν̃∗(ε+ ω) . (4.127)

We obtain for this integral

B2(x) =
{

4x
[

arcsin(1 − 2x) +
π

2

]

− 4
√

x− x2
}

. (4.128)
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The frequency dependence of the distribution function contribution is governed
by the function −xB2(x). A plot of the implied frequency dependence is pro-
vided in Fig. 4.7.

Displacement Mechanism

Computing the displacement contribution to the transverse photoconductivity
requires us to evaluate transition rates between quantum states corresponding
to the “meander” equipotential lines in the presence of both static periodic
modulation and dc electric field. Following the formalism developed in Ref.
[57], we obtain

σDP
yy = −2βω ν∗N (1 − ν∗N )

[
e2(v2

yτ
∗
s )ν̃∗

]
(
eERc

2ω

)2 τin
τ∗tr

× A2

(
ω

2VN

)(
E∗

dc

Edc

)2

. (4.129)

The frequency dependence of the photocurrent is described by the function

A2(x) =
π`2B
a

∫ a/2`2B

−a/2`2B

dqy
x

√

sin2(Qqy`2B/2) − x2

= 2xK(
√

1 − x2) . (4.130)

A plot of the frequency dependence implied by the function A2 is provided in
Fig. 4.7.

The transverse photoconductivity depends on the dc electric field Edc in a
singular way. This singularity is cut off for small dc electric fields by inelastic
processes when

Edc ∼ E∗
dc , (4.131)

where [57]

E∗
dc = Ba/2π

√

τinτ∗s . (4.132)

For

Edc � E∗
dc , (4.133)

the photoconductivity crosses over to Ohmic behavior, matching with Eq. (4.129)
for

Edc ∼ E∗
dc . (4.134)

This implies that the contributions by displacement and distribution mecha-
nisms are of the same order of magnitude in the transverse case.

4.6 Comparison with Experiment

Strictly speaking, our model deviates from the experimental system, due to the
assumption of a static periodic modulation potential and the neglect of disor-
der broadening of the Landau bands. However, previous work [57] shows that
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4 Intra-LL-Transition Photoconductivity

the magnitude of the longitudinal photocurrent obtained within our model is
parametrically identical to that for disorder-broadened Landau levels when one
identifies modulation broadening with disorder broadening. Specific features
arise within our model due to its anomalous density of states at the LL edge
(see Fig. 4.4), leading to additional sign changes of the photocurrent. These
artefacts would not be present in a thorough microscopical treatment of dis-
order. Their advantage, in turn, is that the differences in the behavior of DP
and DF contributions within our model might help to discern between the two
mechanisms in experiment.

Keeping these caveats in mind, the results obtained within our model can be
compared to the experiment of Ref. [39]. It turns out that our model is indeed
capable of describing the key experimental observations. Our main results
relevant to experiment are:

(i) When ignoring effects of the singular density of states at the LL edge –
which are due to our specific model – the sign of the photocurrent due to
intra-LL transitions is negative, leading to a reduction of the experimen-
tally observed resistivity.

(ii) Comparing the longitudinal photoconductivity in Eq. (4.112) to the dark
conductivity σdark

xx = e2(R2
c/2τ

∗
tr)ν

∗(Γ/T ), we find that their ratio depends
on magnetic field as σDF

xx /σ
dark
xx ∼ R2

c/Γτ
∗
tr ∼ 1/B2 at fixed ω. This

magnetic-field dependence actually also holds for inter-LL processes [57].
Here, we used that for both disorder-broadened LLs as well as modulation-
broadened LLs, the LL broadening Γ scales with magnetic field as Γ ∼√
B.

(iii) The amplitude of the photoconductivity due to intra-LL transitions scales
as 1/ω with the microwave frequency, see Eq. (4.112).

(iv) Due to the factor ν∗N (1− ν∗N ), the magnitude of the effect is strongest for
half-filled LLs and falls off to zero when the valence LL is either empty
or completely occupied. We note that this filling-factor dependence is
specific to intra-LL transitions and does not occur for inter-LL transitions
near the cyclotron resonance or its harmonics [57].

These results are in good agreement with the key experimental observations:
(i) explains the sign of the effect. In experiment, there is indeed a consider-
able reduction of the resistivity in the regime ω � ωc due to irradiation with
microwaves. (ii) is in agreement with the observation that over the magnetic-
field range where intra-LL processes dominate, the relative microwave-induced
suppression of the conductivity decreases as the magnetic field increases (see
Fig. 1 of Ref. [39]). In addition, this magnetic-field scaling explains why, ex-
perimentally, it is apparently harder to reach zero-resistance in the regime of
intra-LL transitions which occur at higher magnetic fields compared to the cy-
clotron resonance or its harmonics. (iii) is in accordance with the observation
that the microwave-induced reduction of the diagonal resistivity decreases with
increasing microwave frequency (see Fig. 2 of Ref. [39]). Finally, (iv) implies
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that the photoconductivity suppresses the Shubnikov-deHaas oscillations, an
effect which was very pronounced experimentally.

4.7 Polarization Dependence

The results presented so far are only valid for microwaves polarized linearly in
the x-direction. In this section, we expand our considerations to microwaves
polarized linearly in the y-direction or polarized linearly in an arbitrary direc-
tion and to microwaves of circular polarization. We recall that in the inter-LL
case, there was no polarization dependence in the former, but a strong polariza-
tion dependence in the latter case, where, depending on the sign of the circular
polarization, either no photoconductivity or double the photoconductivity of
the linearly polarized case was recorded [57].

In the intra-LL case, it turns out that for microwaves polarized linearly in
the y-direction or any other direction, only the subdominant displacement con-
tribution to the longitudinal photoconductivity exhibits a polarization depen-
dence, while all other contributions are polarization-independent. For circularly
polarized microwaves, the magnitude of the displacement contribution to the
longitudinal photoconductivity changes with respect to linearly polarized mi-
crowaves, but there is no dependence on the type of circular polarization. Both
displacement and distribution-function contribution to the intra-LL transverse
photocurrent are independent of the type of polarization.

These results for the polarization dependence will now be derived. If the
microwaves are polarized linearly in y-direction, they can be described by the
potential

φ̃(r, t) = −eEy cos(ωt) = φ̃+e
−iωt + φ̃−e

iωt . (4.135)

The corresponding matrix elements between the LL states in the Landau gauge
for intra-LL-processes are then given by

〈nk′|φ̃±|nk〉 = −eE
2

[
1

i

∂

∂k
δ(k′ − k)

]

e−(k−k′)2`2B/4L0
n

(
(k′ − k2)`2B

2

)

.

(4.136)
Using these microwave matrix elements and again neglecting subdominant con-
tributions from processes with intermediate states outside of the valence LL, a
calculation analogous to that presented in Section 4.5.1 yields for the displace-
ment photoconductivity in the direction of modulation

σ̃DP
xx =

1

3
σDP

xx , (4.137)

expressed as a function of the result for microwaves polarized in x-direction,
σDP

xx . For microwaves polarized linearly in y-direction, the displacement contri-
bution to the longitudinal photoconductivity thus is only one third of the prior
result for microwaves polarized linearly in x-direction.

The other photoconductivities for microwaves polarized in y-direction are
calculated in a similar way and turn out to be unaltered from the prior results
for microwaves polarized linearly in x-direction, i.e.

σ̃DF
xx = σDF

xx , σ̃DF
yy = σDF

yy , σ̃DP
yy = σDP

yy . (4.138)
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The photoconductivity along the direction of modulation thus depends on the
specific type of linear polarization. This dependence, however, is weak since
the dominant contribution from the distribution function mechanism turns out
to be polarization-independent. For the photoconductivity in the y-direction,
where in principle the contributions of displacement and distribution function
mechanisms are of the same order, there is no polarization dependence.

For a general, linearly polarized microwave field, we thus expect a weak po-
larization dependence of the longitudinal photoconductivity. Using

φlin =
e

2
(xEx + yEy) cos(ωt) , (4.139)

one finds

σDP
xx,lin =

(

E2
x

E2
x + E2

y

+
1

3

E2
y

E2
x + E2

y

)

σDP
xx , (4.140)

while all other contributions are polarization-independent.
Finally, we address the case of circular polarization. As was noted in passing

above, prior work for inter-LL transitions [57] demonstrated a strong depen-
dence on the sign of the circular polarization in the vicinity of ω = ωc. The
physical reason for this consists of a strong rectification of the cyclotron ra-
diation in the co- and contragredient cases, leading to an extinction of the
photoconductivity or to an increase by a factor of two. Here, we are interested
in the case ω � ωc, with a microwave frequency ω far from resonance. We
therefore do not expect such drastic effects on the photoconductivity. Using

φ̂σ± = − eE√
2

[x cos(ωt) ± y sin(ωt)] , (4.141)

where σ± denotes the sign of the circular polarization, we find (σDP
xx is the

displacement contribution to the longitudinal photoconductivity for microwaves
polarized linearly in x-direction)

σ̂DP
xx,σ+ = σ̂DP

xx,σ− =
2

3
σDP

xx (4.142)

and no change (with respect to linearly polarized microwaves) for all other
contributions. It is interesting to note that in the case studied, there is no
dependence on the sign of the circular polarization. This is markedly different
from the inter-LL case.

4.8 Discussion

In this chapter, we studied the microwave photoconductivity of a 2DEG in
a perpendicular magnetic field with an additional unidirectional static peri-
odic modulation in the regime of intra-LL transitions. We identified the domi-
nant disorder-assisted microwave absorption and emission processes within this
regime and computed both the longitudinal and transverse photocurrents.

We find that the distribution-function mechanism dominates for the longitu-
dinal photocurrent while both distribution-function and displacement mecha-
nism contribute to the same order to the transverse photocurrent. Except for
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subdominant contributions, we find that the photoconductivity due to intra-
LL processes is polarization-independent. The singular density of states of
our model near the LL edges leads to interesting sign changes, rendering the
photoconductivity positive within certain frequency ranges. With the excep-
tion of these model-specific predictions, our results are in excellent qualitative
agreement with experiment. Specifically, we are able to explain the microwave-
induced suppression of the Shubnikov-deHaas oscillations in the regime of intra-
LL transitions.
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