2 Microwave-Induced Zero Resistance
States

When the magnetic field applied to a quantum Hall system is switched on,!
one first passes through a regime at weak magnetic fields (B < 0.1 T) where
the transport properties follow the classical Drude behavior. Upon increasing
B, Shubnikov-deHaas oscillations appear. At higher magnetic fields, IQHE
states and, at even higher magnetic fields, also FQHE states are realized. If
the system’s mobility is extremely high, very recent experiments [36, 37] show
that irradiation of the system by microwaves has surprising consequences on its
behavior at weak magnetic fields (typically below the onset of the IQHE, inside
or below the Shubnikov-deHaas regime): These systems can show unexpected
zeros in their macroscopic resistance — the so-called zero resistance states (ZRS)
— which are only present when the sample is irradiated by microwaves. This
chapter is devoted to an exposition of such experiments on microwave-irradiated
2D electron systems of very high purity and to a brief introduction to the
theoretical scenario liable to explain the phenomenon of ZRS.

2.1 Zero Resistance States and Microwave-Induced
Resistance Oscillations

When irradiating ultrahigh-mobility 2DEG samples with microwaves [36, 37],
for suitably chosen microwave power and frequency (usually in the GHz range)
and sufficiently high mobility of the sample, there are regions in magnetic field
where the diagonal resistance R, vanishes within experimental accuracy. Un-
like in the QHE, the observed zeros in the diagonal resistance are not accom-
panied by plateaus in the Hall resistance I;,; instead, the Hall resistance stays
practically unaffected by the microwaves and approximately follows the classical
Drude behavior.

These so-called zero resistance states (ZRS) are observed at weak magnetic
fields, far below the typical magnetic fields needed for an observation of the
QHE? and, often, also below the magnetic fields where the Shubnikov- deHaas
oscillations set in. The regions of magnetic field, where the ZRS are observed
lie in the vicinity of the cyclotron resonance w = w. and its lowest harmonics
w = kw. (k integer), where w is the microwave frequency. The microwave
frequency thus has to be chosen to be of the order of the cyclotron frequency

for ZRS to be observed.

1

see, for example, Fig. 1.4
27ZRS are typically observed at magnetic fields B ~ 0.1 T, about one to two orders of
magnitude smaller than the fields where the QHE is normally realized
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Figure 2.1: Measurement by Zudov et al. exhibiting regions (in magnetic field B) of
zero diagonal resistance R,,. This experiment has been performed at a temperature
of approximately 1 K and with microwaves of frequency 57 GHz. Shown are the
diagonal resistance in the absence (“dark”) and in the presence of microwaves and the
Hall resistance R, in the presence of microwaves, which turns out to be practically
unaffected by the irradiation. In certain regions of magnetic field, below the regime
of Shubnikov-deHaas oscillations, the diagonal resistance under irradiation drops to
zero within experimental accuracy. The periodicity of these zero resistance states is
determined by the ratio ¢ = w/w.. Maxima are found at integer, minima at half-integer
values of . The Shubnikov-deHaas oscillations (marked by “SdH” in the dark diagonal
resistance) are still present, but are strongly suppressed under irradiation. This figure
is a modified version of a picture taken from Ref. [37].

A typical experiment [37] revealing ZRS is depicted in Fig. 2.1. Shown are the
longitudinal magnetoresistance in the absence of microwaves (indicated by the
label “dark”), the longitudinal magnetoresistance in the presence of microwaves,
exhibiting zones where its value drops to zero, and the transverse (or Hall)
magnetoresistance which is virtually unaffected by the microwaves and does
not show the characteristic plateaus present in the case of the quantum Hall
effect. The Shubnikov-deHaas oscillations in the absence of microwaves are
indicated by “SdH” and can also be found in the longitudinal resistance in the
presence of microwaves, where they are suppressed below their dark values.
The fact that, unlike in the QHE, these resistance minima do not coincide
with quantized plateaus in the Hall resistivity, calls for a separate theoretical
explanation.?

3There are other well-studied types of magnetooscillations than those appearing in the QHE
(e.g. commensurability oscillations in the presence of a periodic modulation, known as
Weiss oscillations, or oscillations due to the presence of interfacial acoustic phonons or
surface acoustic waves) which also fail to provide a picture for understanding the ZRS.
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2.2 Theoretical Explanation of ZRS

The ZRS are periodic as a function of inverse magnetic field (or, equiva-
lently, inverse cyclotron frequency).* In general, ZRS may occur whenever the
microwave frequency w is related to the cyclotron frequency w, as

w=(k+ a)w,, k=1,2,3,.. (2.1)

where « is a constant (usually positive) phase shift which has been found to
take different values in different experiments and thus seems to be nonuniversal.
In the particular example shown in Fig. 2.1, three ZRS are observed at w ~ kw,
with £ = 1,2,3 and no ZRS are observed for integers k > 3, i.e. for lower
magnetic fields. Instead, oscillations in the longitudinal resistance appear at
lower magnetic fields. We will comment on these oscillations shortly.

The ZRS strengthen with decreasing temperature 7" and the resistance shows
seemingly activated behavior o< exp(—F4/kpT). Surprisingly, the activation
energy E4 turns out to be very high [42, 36], E4 ~ 10 — 20 K, almost an order
of magnitude larger than the Landau-level spacing or the microwave photon
energy. The reason for this unusually high activation energy remains unclear.

As the magnetic field weakens, the zero resistance states turn into oscillations
in the longitudinal magnetoresistance known as MIRO (microwave-induced re-
sistance oscillations). For samples of lesser quality (lower mobility), only MIRO
and no ZRS are observed. The MIRO can thus be interpreted as precursors of
the ZRS. The ZRS develop gradually out of the MIRO as the oscillation ampli-
tude of the MIRO increases due to e.g. higher carrier mobility [36, 37, 43, 44, 45].
The conductivity oscillations leading to the ZRS (see Fig. 2.1) indeed appear to
be truncated at zero where they would have swung over to negative values. Due
to the close relationship between ZRS and MIRO, the periodicity of the MIRO
is the same as for the ZRS and given by Eq. (2.1). Historically, MIRO have
been observed [42, 36] before the discovery of ZRS (and predicted by Ryzhii
[46] more than thirty years before their first observation).

It turns out that the MIRO and ZRS are very sensitive to sample mobility:
While unresolved® at mobilities ~ 1.0 x 108 cm?/Vs, they are of considerable
magnitude in samples of mobility ~ 3.0 x 106 cm?/Vs (at electron densities of
the order of 2 x 10* cm~2) and evolve into ZRS at mobilities higher by about
one order of magnitude.

2.2 Theoretical Explanation of ZRS

The theoretical explanation of ZRS rests on two pillars. First, the microscopic
mechanism by which the microwaves interact with the 2DEG has to be iden-
tified. It turns out that the local diagonal conductivity o4 of a 2DEG can be
reduced considerably from its dark value agark by microwave irradiation, and
that it may even assume negative values, 04 < 0. The microwave irradiation
can affect transport in essentially two possible ways:

“In contrast to the behavior of the ZRS, the periodicity of the Shubnikov - deHaas oscillations
is governed by the ratio Fr/(hw.), where EF is the Fermi energy of the 2D electron system.

5In samples of low mobility, only a single cyclotron resonance peak of comparatively low
magnitude is observed upon irradiation with microwaves (see, e.g., Ref. [47]).

17



2 Zero Resistance States

e via opening of new scattering channels,
e via a redistribution of electrons.

Indeed, both ways may lead to an oscillatory photoconductivity and negative
diagonal conductivity, defining two relevant microscopic mechanisms, the dis-
placement (DP) mechanism and the distribution function (DF) mechanism.
The DP mechanism, suggested by Durst et al. [48], is a scattering mecha-
nism involving simultaneous photoexcitation and disorder scattering of elec-
trons, while the DF mechanism, identified by Dmitriev and co-workers [49, 50]
to likely be the dominant mechanism in the experimental systems studied, relies
on the fact that the distribution function is altered by the microwave irradia-
tion.

Second, the emergence of zero resistance observed in macroscopic transport
measurements has to be explained. The main ingredient here has been provided
by Andreev et al. [51] who pointed out that absolute negative conductivity
leads to an instability of the zero-current state with respect to formation of an
inhomogeneous state of nonvanishing current. Within the parameter regions
of negative conductivity, this inhomogeneous state triggers the formation of
the zero resistance states observed in macroscopic current measurements. In
Section 2.2.1, we first discuss this instability before proceeding to a discussion of
the microscopic mechanisms leading to absolute negative diagonal conductivity
in Section 2.2.2.

2.2.1 Instability of the Zero-Current State

We now present a somewhat simplified version of the argument in Ref. [51]
for the instability due to negative local conductivity. The main idea behind
this argument is to study charge density fluctuations in the regime of negative
local conductivity and to show that they grow exponentially with time, thus
inevitably leading to an instability. To do so, we start from the continuity
equation, which relates the change in electron charge density n to the local
current j via

on
V.j= 2.2
ot 1=0 (2:2)

or, equivalently, in Fourier space,
wn—q-j=0 . (2.3)
The current is related to the electric field E via Ohm’s law

j(a) =o(q)E(q) , (2.4)

where 6(q) is the conductivity tensor and E(q) can be expressed through the
potential ¢(q) as

E(q) = —iq¢(q) . (2.5)

The Coulomb potential ¢(q) arising from the charge density n(q) takes the
form

o(q) = v(g)n(a) , (2.6)
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2.2 Theoretical Explanation of ZRS
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Figure 2.2: Conjectured current-voltage characteristic based on the assumption of
a continuous dependence of the dissipative resistivity on the current. In addition to
the trivial zero of E, at j, = 0, the assumption of a region of negative conductivity
necessitates a second zero at a critical current jo. It turns out that homogeneous,
time-independent states of current density |j| < jo are unstable with respect to inho-
mogeneous current fluctuations.

where, in two dimensions,

27
v(q) = — (2.7)
q
Inserting Eqgs. (2.4-2.5) into the continuity equation, Eq. (2.3), leads to
[w+ iqzadv(q)] n=0 , (2.8)

where use was made of the fact that, due to spatial isotropy, the components
of the conductivity tensor fulfill the following symmetries: 0., = oy = 04 and
Oyz = —0gy. For finite charge density n, one thus finds

w = —ig*v(q)og (2.9)
so that a charge density fluctuation evolves in time as
i g2
An ~ 7t et v(@oat (2.10)

For positive diagonal conductivity, o4 > 0, charge density fluctuations decay as
expected. For negative diagonal conductivity o4 < 0, however, a charge density
fluctuation grows exponentially. Thus, the zero-current state is unstable with
respect to small fluctuations in the charge density. It is this instability which
will be ultimately responsible for the formation of the zero resistance state.
Assuming that the diagonal conductivity is a continuous function of the cur-
rent and that there is indeed a region of magnetic fields where this diagonal
conductivity assumes absolute negative values, the current-voltage characteris-
tics of our systems must assume the qualitative form depicted in Fig. 2.2, which
shows the dissipative component of the local electric field E, as a function of
the dc current j,. At sufficiently large values of the dc current, the microwave
field has to be considered as a weak perturbation, so that the electric field
reverts to its dark value. The assumed continuity of the diagonal conductiv-
ity then implies the generic shape of the current-voltage characteristics shown
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(a) (b)

Figure 2.3: The simplest possible pattern of the current distribution is a linear domain
wall (dashed line) separating a domain of local current density of magnitude jo pointing
to the right (top) from a domain of local current density of magnitude jo pointing to
the left (bottom). The total macroscopic current measured is zero in (a) since the
domains have the same spatial extension. The magnitude of the current density is thus
the same everywhere except at isolated points or lines, implying vanishing dissipation,
j-E. In (b), the domain wall is shifted down by a certain amount, accommodating for
a finite macroscopic current pointing to the right.

in Fig. 2.2. Besides the trivial zero of the electric field at zero current, there
must be an additional value jy of the current at which the dissipative electric
field vanishes. A homogeneous, time-independent state with current density of
magnitude |j| < jo then turns out to be unstable, since it lies in the negative
conductivity regime. The only possible time-independent (stationary) state is
one in which the magnitude |j| of the current density is jo everywhere except
at isolated points (vortices) or lines (domain walls) in the sample. The simplest
such configuration is depicted in Fig. 2.3.

An immediate consequence of this instability is that any net dc current (less
than some threshold value [51]) can be sustained at vanishing dissipative elec-
tric field by adjusting the details of the current-domain pattern, so that any
microscopic mechanism leading to negative local conductivity results in zero
dissipative macroscopic resistance. To accommodate for the observed zero resis-
tance states, it is thus sufficient to show that there are microscopic mechanisms
leading to a locally negative diagonal conductivity.

2.2.2 Microscopic Mechanisms leading to Absolute Negative
Conductivity

The well-established conventional cyclotron resonance consists of microwave ab-
sorption by electrons at a microwave frequency w matching closely the cyclotron
frequency w,, via a direct transition between neighboring Landau levels. This
process, which is of first order in the scattering matrix, does not contribute
any additional current. Instead, it might lead to a resonance peak in the lon-
gitudinal resistivity due to resonant heating of the electron gas. A microscopic
mechanism liable to explain the observed ZRS, however, must be able to re-
duce or even reverse the current in the system through the emergence of an
additional irradiation-induced photocurrent.

Essentially two microscopic mechanisms have been identified to produce such
an additional current, the displacement (DP) mechanism and the distribution
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Figure 2.4: Intuitive classical picture for the relation between momentum transfer
and real space displacement. An electron, initially gyrating on a circular trajectory
of cyclotron radius R, centered at R; is scattered (due to disorder) at a point P.
The change in momentum takes the electron to a new cyclotron trajectory, centered
at Ro. The average real space position of the electron is thus shifted by a distance
d = |R2 — R4|, which can be interpreted as a real space jump.

function (DF) mechanism. The latter seems to prevail in the experimental
systems studied, while under certain conditions, also the DP mechanism may
become important.

Displacement Mechanism (DP)

Disorder-assisted microwave absorption and emission are able to alter the mo-
mentum of the electrons via a mechanism known as displacement mechanism
[48, 52, 53, 54] and thus may lead to an additional current in the system.
Under specific circumstances, this photocurrent can become negative and may
even exceed the dark current, leading to negative diagonal conductivity.

A sketch of the basic idea behind the DP mechanism is given in Figs. 2.5 and
2.6. If the electric field is applied in the z-direction, the LL energy has a spatial
gradient

€n = nw. +eFy.x . (2.11)

Imagine now that the microwave frequency w is tuned above an integer multiple
of w, (see Fig. 2.5). Then, direct microwave absorption is impossible since there
are no available final states which obey energy conservation. If, however, the
electron was simultaneously displaced a distance Az against the electric field,
final states would be available. By contrast, there would be no corresponding
process with displacement along the field direction, leading to an effective pho-
tocurrent against the field direction. Negative conductivity would ensue when
this photocurrent exceeds the dark current.

SAn idea closely related to the displacement mechanism was formulated long time ago by
Ryzhii et al. [46, 55] in the context of a strong dc electric field.
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2 Zero Resistance States

Figure 2.5: Sketch of disorder-assisted microwave absorption, which lies at the heart
of the displacement (DP) mechanism. The Landau levels, separated in energy by we,
are tilted due to a dc bias and, for simplicity, the disorder-broadening of the LLs
is neglected. By absorption of a microwave photon of frequency w, slightly above a
multiple of w., an electron in the nth LL is excited and, subsequently, scattered to
the left or right by a distance £Ax. If the final density of states to the left surpasses
that on the right, the dc current is enhanced, while in the opposite case, it is reduced.
In the case depicted here, the electron is disorder-scattered “uphill” into an available
state in the (n + 2)nd LL to the right, which effectively leads to to a reduction of the
dc current. See also Fig. 2.6.

To complete this picture, we need to identify a mechanism which leads to a
real-space displacement of the electrons. Indeed, in high magnetic fields, any
scattering mechanism with finite momentum transfer is accompanied by such a
displacement.” The underlying reason for this is the close association of position
and momentum in the presence of a magnetic field. An intuitive classical picture
for this is presented in Fig. 2.4, which shows that any scattering of an electron
gyrating on a cyclotron orbit results in a displacement of the guiding center
(i.e., of the center of the cyclotron orbit).

The dominant scattering mechanism at low temperatures is disorder scatter-
ing. The displacement mechanism arises from a second-order scattering event,
involving simultaneous microwave absorption and disorder scattering.

So far, we considered the situation when the microwaves are detuned just
above an integer multiple of w.. In the opposite situation of detuning below
an integer multiple of w., we find an enhanced density of final states along the
electric field direction. In this case, the photoconductivity has the same sign
as the dark conductivity. This shows that the displacement mechanism indeed
yields a photoconductivity that oscillates as a function of the ratio w/w., as
observed in experiment.

Durst et al. [48], who first advanced the DP mechanism as a possible sce-
nario for the explanation of ZRS, performed a diagrammatic calculation and
found radiation-induced resistivity oscillations of the correct period which they

"Note that the momentum transfer involved in the microwave absorption process is essentially
zero due to the largeness of the speed of light (since k = w/c).
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Figure 2.6: Corresponding sketch for w < 2w,. In this case, the electron is photoex-
cited below the (n 4+ 2)nd LL and subsequently disorder-scattered to the left, thereby
increasing the net total current. See also Fig. 2.5.

interpreted within the above picture. They found that the displacement mecha-
nism may indeed lead to a locally negative conductivity, since there are regions
in magnetic field where, for suitably chosen microwave power and frequency,
the longitudinal linear response conductivity assumes absolute negative values,
o4 < 0. The conductivity oscillations leading to ZRS (see Fig. 2.1) indeed ap-
pear to be truncated at zero where they would have swung over to negative
values.

Distribution Function Mechanism (DF)

The distribution function mechanism, later advanced by Dorozhkin [44] and
Dmitriev et al. [56, 49, 50], however, seems to play the dominant role in the
systems studied experimentally. The microwave irradiation drives the electronic
distribution function away from equilibrium and may lead to a population in-
version, which is able to produce a locally negative conductivity through the
emergence of a negative photocurrent. The simplest example is sketched in Fig.
2.7. Shown on the left-hand side is a completely filled, disorder-broadened Lan-
dau band. This situation corresponds to the case without irradiation. Under
irradiation with microwaves, some electrons are promoted to the upper Landau
band. Inelastic relaxation then leads to the dynamically equilibrated electron
distribution shown on the right of Fig. 2.7. If the microwave frequency w slightly
exceeds the LL center-to-center distance w., this redistribution may lead to a
population inversion in both the higher and lower Landau band, as it is shown in
the top right of Fig. 2.7. This population inversion is then able to trigger nega-
tive conductivity as described in the next paragraph. For microwave frequencies
below the cyclotron frequency (bottom right in Fig. 2.7), the partial filling of
the higher Landau band is conventional, leading to a positive contribution to
the photoconductivity.

The remainder of this section is devoted to the connection between population
inversion of the topmost Landau band and absolute negative conductivity. The
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Figure 2.7: Simplest example of the change in electronic distribution in the presence
of a driving microwave field. The total occupation is normalized to unity. Dark gray
indicates complete filling of the corresponding states, while light gray indicates a small
occupation €. Intermediate gray then represents an occupation (1 —&). To the left,
corresponding to the equilibrium situation without microwave irradiation, a completely
filled and a totally empty (disorder-broadened) Landau band are shown. To the right,
the occupation of these bands is sketched for w > w, (top) and w < w. (bottom).
For w > w,, the Landau bands show a population inversion, which may trigger the
formation of a ZRS as described in the main text.

total conductivity of the system can be written as

o= /de G%(;)) ole) (2.12)

where f(€) is the (nonequilibrium) electron distribution function, which de-
scribes the occupation of the LL states under irradiation, and o(€) determines
the contribution of electrons with energy e to the dissipative transport. Under
microwave irradiation, the change in the electron distribution function can be
computed using a kinetic approach. The corresponding kinetic equation con-
tains collision integrals for disorder scattering, microwave absorption and emis-
sion, and a phenomenological term accounting for inelastic relaxation. Assum-
ing an oscillatory density of states to model the ladder of disorder-broadened
Landau levels, Dmitriev et al. [50] were able to show that the oscillatory density
of states directly translates into a small oscillatory contribution to the electron
distribution function. The period of this oscillatory contribution depends on the
ratio w/w.. This contribution oscillates rapidly in energy, so that the derivative
in Eq. (2.12) might be large. As a consequence, the small oscillatory compo-
nent of the nonequilibrium distribution function can indeed strongly affect the
conductivity of the system, Eq. (2.12). In particular, it can be demonstrated
[50] that a coincidence of regions of inverted population in the electron distri-
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bution function with maxima of the density of states can entail a negative local
conductivity.

The irradiation-induced change in the distribution function thus affects the
current in a nontrivial way, opening the way for possible ZRS. Under typical
experimental conditions, the DF mechanism tends to dominate over the DP
mechanism [49] although it has been shown that there are exceptions to this
[57]. For the experiments on ZRS mentioned in Section 2.1, the DF contribution
usually is larger by a factor 7;, /7, where 77 is the single particle (or quantum)
time in the presence of magnetic field, which, for the experiments under study,
is shorter than the inelastic relaxation time 7y, by several orders of magnitude.
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