1 Introduction

1.1 The Integer Quantum Hall Effect

In 1980 — about a century after the discovery of the classical Hall effect by
Edwin Hall in 1879 [1] — K. von Klitzing, G. Dorda, and M. Pepper announced
the discovery of surprising transport properties of a two-dimensional electron
gas in a Si metal-oxide field effect transistor (MOSFET) [2]. In these systems,
the electrons are confined to a narrow layer near the metal-oxide interface such
that they only populate the lowest quantum state perpendicular to the interface
and effectively move only within the plane parallel to the interface.

Von Klitzing and co-workers measured both longitudinal and Hall (trans-
verse) resistance as a function of carrier density n in strong magnetic fields B
and at low temperatures T'. Their original data is shown in Fig. 1.1. Remarkably,
the Hall resistance exhibited plateau regions as a function of carrier density
where it assumed values very close to h/je?. Here, h denotes Planck’s constant,
e is the electron charge, and 7 = 1,2,... an integer number. The precision of
this quantization of the Hall resistance improves with decreasing temperature.
Whenever the Hall resistance exhibits a plateau, the longitudinal resistance
was found to drop to near zero with activated temperature dependence. This
behavior was in stark contrast to the predictions of a simple Drude model [3]
where, in the strong-field limit w.7 > 1, the Hall resistivity py = B/en and the
longitudinal resistivity p;, = m*/e?nt depend smoothly on the carrier density
n (w. = eB/m* is the cyclotron frequency, m* the effective mass of the elec-
trons, and 7 the carrier mean free path). In the meantime, the extraordinary
precision of the quantization of the Hall resistance is exploited for the definition
of a resistance standard [4].

Soon after the experimental discovery, this integer quantum Hall effect (IQHE)
was understood as a consequence of the Landau quantization of the electronic
eigenstates in high magnetic fields combined with electron localization by disor-
der. It is generally believed that in non-quantizing magnetic fields, all electronic
eigenstates of two-dimensional systems are Anderson localized irrespective of
the strength of the disorder potential [5]. By contrast, in quantizing mag-
netic fields one finds that the eigenstates remain extended at one energy within
the Landau level with all other eigenstates being localized. This behavior is
sketched in Fig. 1.2. Plateaus of the Hall resistance and zeros of the longitudi-
nal resistance are observed whenever the chemical potential resides in the region
of localized states. Transitions between plateaus occur when the chemical po-
tential crosses the energy of the extended state. Relying on gauge invariance,
Laughlin [7] gave a very general argument for the integer quantization of the
Hall resistance when the chemical potential lies in a mobility gap. A sketch of
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Figure 1.1: Experimental results for the Hall voltage Uy and the longitudinal voltage
Upp at T = 1.5 K and B = 18 T as a function of the gate voltage V; which is
directly related to the carrier density n. The inset shows a top view of the device with
dimensions 400 x 50 pm. This figure has been taken from Ref. [2].

Laughlin’s gedankenexperiment is given in Fig. 1.3.!

1.2 The Fractional Quantum Hall Effect

A couple of years after the discovery of the IQHE, D. C. Tsui, H. L. Stormer,
and A. C. Gossard [9] discovered quantization of the Hall resistance at fractional
values of j, namely j = 1/3 and 2/3. These experiments were performed on two-
dimensional electron systems at the interface of GaAs/AlGaAs heterostructures
at even lower temperatures and higher magnetic fields. These systems allow for
higher electron mobilities due to modulation doping which removes the defects
from the plane of the two-dimensional electron system. Unlike the IQHE, which
occurs whenever the electrons approximately fill an integer number of Landau
levels (LL), this fractional quantum Hall effect (FQHE) is observed when all
electrons are in the lowest Landau level (LLL) and 1/3 or 2/3 of all states of

! A particularly lucid version of this argument was later given by Halperin [8].
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Figure 1.2: Sketch of the density of states of a 2DEG in a perpendicular magnetic
field showing regions of extended states (in white) near the center of the impurity-
broadened Landau levels, i.e. at E ~ (n + 1/2)hw,., and regions of localized states (in
gray). This figure has been taken from Ref. [6].

the Landau level are occupied (Landau level filling factor? 1/3 and 2/3).

Despite the great similarities in the phenomenology of the integer and frac-
tional effects, there are significant differences in their theoretical explanations.
When all electrons are residing in the lowest Landau level, their kinetic energy
is effectively frozen out by the Landau quantization and the dominant term in
the Hamiltonian is given by the Coulomb interaction between the electrons. If
the electrons could be treated as classical, this would imply a Wigner-crystal
ground state, in which the electrons order in a triangular lattice. However, due
to the magnetic field, the X- and Y-coordinates of the guiding centers (i.e.,
the centers of the cyclotron orbits) are canonically conjugate variables with a
nonvanishing commutator. This implies, via the uncertainty relation, that the
guiding centers are no longer sharply defined and quantum fluctuations effec-
tively grow with increasing electron density. Laughlin argued that these quan-
tum fluctuations melt the Wigner crystal in the range of filling factors where
the fractional quantum Hall effect occurs, resulting in a correlated electron lig-
uid (Laughlin states). He further argued, by constructing explicit many-body
trial wavefunctions, that this correlated electron liquid becomes incompressible
at filling factors equal to v = 1/q with ¢ = 3,5, ... an odd integer. These states
are characterized by a finite energy gap for the creation of quasiparticle (and
quasihole) excitations. Roughly, it is this energy gap which is analogous to the
cyclotron gap for completely filled Landau levels in the integer quantum Hall
effect.

Laughlin derived his trial wavefunction for the many-particle state by the fol-
lowing reasoning [11]. For high magnetic fields, the single-electron eigenstates

2Each Landau level is macroscopically degenerate with a degeneracy D equal to the number
of flux quanta through the sample, i.e., D = BA/¢o. Here, B denotes the magnetic field,
A the area of the sample, and ¢o = h/e the flux quantum. The Landau level filling factor
v is a measure of the number of filled Landau levels, v = N/D = n¢o/B, where N denotes
the number of electrons and n = N/A the electron density.
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Figure 1.3: Simple picture of Laughlin’s gauge argument in terms of transport of
extended wavefunctions along a cylinder as the flux through an embedded solenoid is
changed. Shown is a 2DEG bent on a cylindrical surface of radius R. The magnetic
field is assumed to be perpendicular to the surface of this cylinder and constant. An
additional solenoid is placed on the axis of the cylinder, generating a magnetic flux ®
through the cylinder, parallel to its axis. Within this gedankenexperiment, Laughlin
was able to demonstrate that a change in the magnetic lux ® — ® + A® has a
different effect on localized and extended states of electrons on the cylinder. Extended
states — which surround the cylinder laterally in y-direction — must satisfy a periodicity
condition of the form ¥(z,y + 2w R) = ¥(z,y), while localized states — which are not
connected in y-direction — do not have to fulfill such a condition. The gauge argument
then shows that the change in flux A® must satisfy A® = h/e x (integer) for extended
states. The effect of a change in flux is then equivalent to a translation in z-direction for
the extended states, while for the localized states, the effect is a mere change in phase.
The extended states can thus carry a current through the system when a potential bias
is applied at the ends of the cylinder. When all extended states below the Fermi level
are occupied, this current does not change until the Fermi level crosses the next-higher
lying extended state (typically lying at the center of the next-higher LL). Thus, the
conductivity is quantized and of exactly that form observed in the QHE. This figure
has been taken from Ref. [6].

are restricted to the lowest Landau level (LLL) N = 0 and, within the sym-
metric gauge, the states [N = 0,m) can be distinguished by their eigenvalue m
with respect to the z-component L, of angular momentum. The single-electron
wavefunctions in position space are then given by

1 m—|z|? /462
) = — 7z "e B s 1.1

o) = sty (1)

where
z=(x—1y)/lp

denotes the position of the 2D electron as a complex number and {5 = /h/eB
is the magnetic length. This wavefunction represents an electron localized cir-
cularly as shown in Fig. 1.5.

In view of the single-electron wavefunctions, Eq. (1.1), any many-electron
wavefunction must assume the form

U(ry,ro,...,rn) = p(21, ..., 2N)E Silzil? /46, (1.2)
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Figure 1.4: Experimental results by Willett and co-workers. Plotted are the Hall
resistivity p., and the longitudinal resistivity p., of a 2D electron sample of electronic
density n = 3 x 10! ecm™2 and mobility 1.3 x 10% cm?/Vs at a temperature T' = 150
mK versus magnetic field. The numbered arrows identify the filling factor v which
indicates the degree to which the Landau levels (labeled by N) are filled with electrons.
In contrast to the expected linear behavior of R;,(B), the Hall resistance exhibits
plateaus at quantized values of the resistance, Ry, = h/(ve?) coinciding with minima
of R,,. The figure is composed of four different traces, joined at a magnetic field ~ 12.5
T. The high-field values of the resistance are scaled down by a factor of 2.5 and, for
a technical reason, have been measured at a temperature 7' = 85 mK. This figure has
been taken from Ref. [10].

where p(z1, ..., 2y) is a polynomial in z1,..., 2y which is antisymmetric under
particle interchange. Laughlin showed that the Jastrow-type wavefunctions

Ugs(z1, oy 2n) = [ (21 — 2) e 2l /40 (1.3)

1<j

have large overlaps with numerically exact ground-state wavefunctions? at filling
factors 1/q. Due to the antisymmetry requirement, these Laughlin states are
restricted to odd-denominator filling fractions. Laughlin also argued that the

3Haldane formulated a short-range interaction model for which the Laughlin wavefunction
can be proven to be the exact and unique ground state [12].
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Figure 1.5: Lowest Landau level single electron wavefunction (a) and classical orbit
corresponding to this wavefunction (b). The maximum of the existence probability
l00.m (2)|? lies on a circle of radius v2mfp and the spread towards each side of the
circle is of the order of /5. The circle must not be identified with the classical cyclotron
motion orbit, since the radius of the classical cyclotron motion is £5. As shown in (b),
the state |0, m) can be interpreted as a classical superposition of many cyclotron orbits
with radius £5 and centers on a circle of radius v2mfg. This figure has been taken
from Ref. [6].

wavefunction

N
U, (21,22, ..., 2N) = H(ZZ —20)Vyqs(21, 22, ..., 2N) (1.4)

i=1

describes a localized (hole) excitation, located at zy. These quasiholes as well
as similar quasiparticle excitations are indeed gapped and the system is incom-
pressible.

The quasiparticles of fractional quantum Hall states carry fractional charge
and obey fractional quantum statistics. A heuristic way of understanding the
fractional charge of the quasiparticles exploits gauge invariance via the Byers-
Yang theorem (all spectral properties of multiply-connected electronic systems
are periodic in the magnetic flux threading the system, with the period given
by the flux quantum ¢g) [13, 7]. We imagine that we introduce an infinitesimal
hole into the two-dimensional electron system, pierced by a solenoid threaded
by magnetic flux which slowly increases from zero to one flux quantum. Due
to the energy gap, the adiabatic theorem guarantees that the final state is an
eigenstate of the system. On the other hand, the time-varying flux induces a
circular electric field which in turn, by virtue of the Hall conductance, drives a
current away from (or towards) the flux line. In view of the quantized value of
the Hall conductance, it is then easy to compute the charge effectively removed
from (or accumulated near) the flux line in the process, which turns out to
equal e* = e/m for the Laughlin states at filling factor v = 1/m. Due to
the magnetic flux, these quasiparticles are vortex-like and following Arovas,
Schrieffer, and Wilczek [14], the fractional statistics of quasiparticles can be
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Figure 1.6: Kwon Park’s humorous view of composite fermions. Strongly interacting
electrons in a strong magnetic field (middle) can be mapped to weakly interacting
electrons in a reduced effective magnetic field (bottom) by picking up two flux quanta
each. This figure has been taken from Ref. [15].

understood as arising from the Berry (or Aharonov-Casher) phase accumulated
by a quasiparticle/vortex when moving around another quasiparticle/vortex
with fractional charge.?

As shown in Fig. 1.4, the FQHE is observed also at filling fractions other than
v =1/(2p 4+ 1). Initially, this was interpreted in terms of a hierarchy scheme
[12] which postulates that the fractionally charged quasiparticle excitations of
a given FQHE state are able to form a ”daughter” Laughlin-type FQHE state.
This scenario rests on the observation that there is a correspondence between
the original electron system and the system of quasiparticles, since the latter
are also charged particles repelling each other via the Coulomb interaction.
In this way, one can construct fractional quantum Hall states at all possible
odd-denominator filling fractions.

On the other hand, the sequence of quantized Hall states at filling factors
v =p/(2p+1) (with p integer) is particularly prominent experimentally. While
this stability is not easily understood within the hierarchy scheme, it is rather
natural in an alternative approach, based on the concept of composite fermions.
Within this mean field approximation, the strongly interacting liquid of elec-
trons in the LLL is mapped to a weakly interacting system of composite fermions
(CF). Composite fermions (CF) can be viewed as electrons carrying two flux

4The Aharonov-Casher phase of a vortex encircling a fluid region equals 27 times the number
of fluid particles (here: electrons) enclosed. This phase is fractional due to the fractional
charge associated with the enclosed quasiparticle.
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quanta.® A humorous view of CFs is depicted in Fig. 1.6. Originally, the

concept was introduced by Jain in the context of trial wavefunctions [16, 17].
Alternatively, composite fermions can be obtained by means of a Chern-Simons
transformation. Writing the electron wavefunction as W.(rq,re,...,ry), where
r; is the position of the j-th electron, one defines a new wavefunction

®(ry,ro,...,ry) = He*%e(”*ri) U(ry,ro,....,ry) (1.5)
1<j

where 0(r; — rj) is the angle formed by r; — r; and the x-axis. The product
prefactor of ¥, in the above equation effectively introduces two flux quanta at
the position r; of each electron. This can be easily seen if one considers the
motion of one electron around another on a closed loop which encloses only
this specific electron. The resulting change in ® is a phase factor exp(—4mi)
corresponding exactly to the Aharonov-Bohm phase which appears when the

trajectory of the electron encloses two flux quanta.
The wavefunction in Eq. (1.5) is also fermionic, since it remains antisym-
metric under exchange of two particles. If ¥, is a solution to the Schrédinger

equation H. WV, = EV,., then ® must be a solution of the Schréodinger equation
H® = E® with the Hamiltonian

1
H= oo S (o +eAl) —eal)* + Y vt —x) . (1)
J i<j
where m is the bare electron band mass, v the two-body (Coulomb) interaction

potential, A the vector potential and a the Chern-Simons vector potential given
by

N .
az%zm . (1.7)

The factor ¢o/m stems from the requirement that the magnetic flux enclosed
by a circular trajectory of radius R of one electron around another has to be

Q(bo, ie.

bdA= ¢ a-dr=2p . (1.8)
Jria-g

The Hamiltonian H can be thought of as being the Hamiltonian for N inter-

acting transformed fermions. The transformed fermions can be interpreted as

electrons with two attached flux quanta and are thus called composite fermions.
Due to the resulting Chern-Simons field®

b=V xa=2¢yn(r) |, (1.9)

the CFs experience an effective magnetic field B* = B —b which is much weaker
than the true magnetic field B,

B* = B — 2¢gn (1.10)

In general, any even number 2p (with p integer) of flux quanta can be attached to each
electron, since any even number of attached flux quanta retains the fermionic nature of
the composite particles.

®Here, n(r) = >_;0(r —rj) is the local particle density.
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where ¢g is the flux quantum and n the density of electrons (or, equivalently,”
CFs).® Just as the electrons in the original problem, the CFs form LLs in this
reduced field B*, called CF-LLs. Due to the reduced effective magnetic field,
the filling factor of CF's in the CF-LLs,

« _ %o
| B|

(1.11)

is not the same as that of the original electrons in the electron LLs (v = n¢o/B).
Instead, the filling factors are related via

I/*

(1.12)

where the minus sign is for an effective magnetic field B* antiparallel to B.
It is now evident that the principal series of fractional quantum Hall states
v = p/(2p£1) can be interpreted as the integer quantum Hall effect of composite
fermions at filling factor v* = p.

At v = 1/2, the Chern-Simons transformation maps the electrons into CFs
at vanishing effective magnetic field B* = 0. Naively, the mapping therefore
predicts a Fermi-liquid state at this filling factor. Remarkably, there is much
experimental and theoretical support for this view, despite the absence of an
energy gap. We note for completeness that in addition to the effective magnetic
field, composite fermions are also subject to an effective electric field

. 2h ,
E:E—g.]xz , (1.13)
where E is the physical electric field, j is the current density and z is the unit

vector perpendicular to the plane of the 2DEG.

1.3 High Landau Levels

As the magnetic field becomes smaller and the Fermi energy moves into higher
Landau levels, the number of fractional quantum Hall states rapidly decreases.
In very-high quality samples, a number of fractional quantum Hall states are
observed in the second Landau level (filling factors 2 < v < 4 due to the spin
degree of freedom), while no fractional quantum Hall states are observed in
higher Landau levels.

The fractional quantum Hall states observed in the second LL include the
plateau at filling factor v = 5/2 (and the particle-hole-symmetry related state
at v = 7/2) which are the only known even-denominator states. Fig. 1.7 shows
results of a corresponding experiment by Pan et al. [18]. A likely scenario for
these states is most easily thought of in the context of the composite-fermion

"Note that the magnitude of the wavefunction is not altered by the Chern-Simons transfor-
mation, Eq. (1.5).

8The effective magnetic field is given here for the special case of two flux quanta attached to
an electron. In general, as mentioned above, any even number 2p (with p integer) of flux
quanta could be attached to an electron so that B* = B — 2p¢on.
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Figure 1.7: The even-denominator state at v = 5/2 along with the FQHE states
at v = 8/3 and v = 7/3. Shown are the longitudinal resistance R, and the Hall
resistance R, at low temperature 7" ~ 4 mK. The inset shows a schematic sketch of
the experimental device. This figure has been taken from Ref. [18].

approach. The Chern-Simons transformation again leads to composite fermions
in zero effective magnetic field due to the half-filled valence LL. The composite
fermions can then condense into a paired state as in the BCS theory of su-
perconductivity. Due to the flux-charge attachment, the Meissner effect of the
resulting superconducting state implies that the state is incompressible and con-
sequently exhibits a Hall plateau. The different nature of the ground states at
filling factors v = 1/2 and v = 5/2 can be traced back to the different effective
interactions in the two cases, originating from the different LL wavefunctions.

The magnetic-field-induced spin polarization of the electron system implies
that the pairing occurs in an odd-angular-momentum channel, with p-wave
pairing being most favorable [19, 20, 21, 22, 23]. It turns out that the physics of
two-dimensional p-wave superconductors is quite rich, with the most important
consequence that the excitations of the paired state at filling factor v = 5/2
are likely to exhibit nonabelian quantum statistics. It has been suggested that
other fractional quantum Hall states in the second LL are in fact so-called
parafermion states, rather than ordinary Laughlin states [24].

As the Fermi energy moves into even higher LLs, the valence LL wave func-

10
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tions become more and more extended and consequently, the effective interac-
tion more mean-field like. In a seminal paper, Aleiner and Glazman showed [25]
that the effective interaction is weak in the sense that the problem of interacting
electrons at high Landau level filling factors can still be projected onto a single
(valence) Landau level. The weakness of the effective interaction arises due to
screening by electrons in the filled Landau levels. Using this effective interac-
tion, Fogler and co-workers [26, 27, 28] as well as Moessner and Chalker [29]
showed that the Hartree-Fock (or mean-field) ground states are charge-density-
wave (CDW) states whose nature depends on the filling of the valence Landau
level. These predictions have later been supported by numerical exact diagonal-
ization studies [30]. It is interesting to note that a charge-density-wave ground
state was suggested for the (partially filled) lowest Landau level by Fukuyama,
Platzman and Anderson [31] before the discovery of the quantum Hall effect.
In the LLL, however, these states are preempted by the Laughlin states due to
their lower energies.

In clean 2D electron systems, the instability of the uniform liquid state with
respect to the formation of charge density waves occurs for Landau levels N > 2.
Near half filling of the topmost LL, a compressible, unidirectional stripe phase
emerges. In this stripe phase, the electron density in the topmost LL alternates
between completely empty (filling factor v = N) and completely filled (filling
factor v = N + 1) valence LL? and one-dimensional stripes of these two kinds
arrange with a period of the order of the cyclotron radius R.. Soon after this
theoretical prediction, Eisenstein and collaborators [32] as well as Pan et al.
[33] observed a striking anisotropy of the resistivity near half filling of higher
Landau levels, characteristic of the striped states.

Farther away from half filling of the topmost LL, a bubble phase is predicted
theoretically within Hartree-Fock calculations for clean 2D electron systems
[27]. In this bubble phase, clusters of minority filling factor with size ~ R,
order regularly on a triangular lattice, submerged in a background of majority
filling factor.

To understand the striped phase at finite 7" and in the presence of disorder,
one can rely on an instructive analogy with liquid crystals. Indeed, the striped
state shares the symmetries of a smectic liquid crystal [34]. Thus, apart from
quantum dynamics at zero T', both systems share the same elastic theory. This
implies that the smectic order is lost at any finite temperature in favor of quasi-
long-range orientational (nematic) order of stripe segments. Orientational order
persists up to a critical temperature, where there is presumably a Kosterlitz-
Thouless transition to an isotropic state with only short-range stripe ordering.
Similar conclusions can be drawn in the presence of disorder [35].

1.4 This Thesis

In recent years, there have been a number of puzzling experimental discoveries
at even higher Landau level filling factors which are the main concern of this

9As an example, consider the filling factor v = 9/2. In this case, there are stripes of the
incompressible QHE states v = 4 and v = 5 present in the system.
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thesis.

Very recently, interesting and unexpected effects have been observed in high-
purity samples at low magnetic fields irradiated with microwaves [36, 37]. When
an extremely high-purity sample is irradiated with microwaves in the GHz
range, its longitudinal resistance develops steep oscillations at very low magnetic
fields (B ~ 0.1 T), i.e. high filling factors (of the order of v ~ 50 and above).
For sufficiently high microwave power, the amplitude of these oscillations can
grow so large that for certain regions in B, the longitudinal resistance drops
to zero within experimental accuracy. The Hall resistance, in contrast, seems
to be unaffected by the microwave irradiation and does not exhibit plateaus
in the regions of zero longitudinal resistance, which would be characteristic of
a quantum Hall state. These so-called zero resistance states (ZRS) therefore
call for a different theoretical explanation. The microwave-induced oscillations
of the resistance and the regions of appearance of ZRS are periodic in 1/B
reminiscent of the Shubnikov-deHaas oscillations which arise due to the 1/B-
periodic density of states. The period of the new effect in 1/B, however, is
determined by the microwave frequency rather than the Fermi energy.

The first part of this thesis is devoted to the study of microwave-irradiated
quantum Hall systems in high Landau levels. In Chapter 2, we give a brief in-
troduction to the experiments on ZRS and their current theoretical description.
The central ingredient in their description is a classical instability which devel-
ops when the microscopic conductivity becomes negative. Very interestingly,
a purely classical Drude model with a weakly nonparabolic electron dispersion
driven by a microwave field can be shown to yield such zero resistance states.
We devote Chapter 3 to this model and, in particular, to the special case of
bichromatic irradiation, i.e. irradiation of the 2D electron system with two dis-
tinct microwave frequencies. When the detuning between the two frequencies
is small, we show that the effect of the weak nonparabolicity of the electron
spectrum on the diagonal conductivity of the system is qualitatively the same
for monochromatic and bichromatic irradiation. In particular, we demonstrate
the emergence of zero resistance states for both cases within our classical model.
At strong detuning of the two frequencies, we are able to predict a qualitatively
different behavior between monochromatic and bichromatic irradiation. Among
other results, we demonstrate a way to parametrically excite the cyclotron mode
by bichromatic irradiation. This parametric resonance creates a dc current in
the ac-driven system, which should be detectable in experiment. In addition,
we find multistable behavior of the diagonal conductivity with respect to the
magnetic field, which leads to interesting effects in the transport properties of
the system. Finally, we explain how bichromatic irradiation can be used as
a tool to demonstrate the physical reality of absolute negative local conduc-
tivity which lies at the center of the theoretical explanation of zero resistance
states within a microscopic quantum mechanical model. Such an experiment
has recently been reported in Ref. [38].

Chapter 4 presents a theory for the recently discovered [39, 40] magnetooscil-
lations and the suppression of the Shubnikov-deHaas oscillations in the intra-
Landau-level regime, i.e. for microwave frequencies w smaller than the cyclotron
frequency w.. We formulate a microscopic model which mimics the effect of a

12
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smooth random disorder potential by the introduction of a periodic modulation
potential and calculate the conductivity of the system under microwave irradi-
ation. Previous work shows that the results obtained in this way are parametri-
cally identical to those for models taking into account disorder on a microscopic
level when one identifies the broadening of the Landau levels by the additional
modulation potential with disorder broadening. We are able to explain why no
ZRS are observed in the intra-LL-regime. In addition, we reproduce the sign of
the photoconductvity, its magnetic field and frequency dependence as well as
its filling factor dependence in excellent qualitative agreement with experiment
and discuss the polarization dependence of our results.

The application of an in-plane magnetic field to a high-mobility 2DEG un-
der microwave irradiation showing ZRS in a perpendicular magnetic field has
been demonstrated experimentally [41] to induce a pronounced suppression or
even destruction of the ZRS for sufficiently strong parallel components of the
magnetic field. This experimental result will be considered in Chapter 5. We
calculate the effect of a tilted magnetic field within a kinetic approach for spin-
split Landau bands and estimate the relevance of the Zeeman splitting for the
suppression of ZRS.

The second part of this thesis is devoted to the physics of drag phenomena
in bilayer quantum Hall systems. When a current flows in one layer of a bilayer
system, electron-electron interactions between the layers can lead to a momen-
tum transfer to the other layer, and thus to the emergence of a current. If the
layers are in close proximity, Coulomb electron-electron interactions constitute
the dominant channel for momentum exchange between the layers. At larger
interlayer separations, however, other mechanisms of momentum transfer, like,
e.g., phonon-mediated electron-electron interactions, might become relevant.
In contrast to Coulomb drag, which has been studied extensively, the effect of
phonon drag in a finite magnetic field remains to be understood. In this thesis,
we present a theory for phonon drag in bilayer systems at weak magnetic fields,
i.e. in high Landau levels.

Chapter 6 provides an introduction to the physics of drag phenomena by
reviewing the current state of experiment and theory. The chapter also gives
a brief introduction to the linear response formalism for the calculation of the
drag conductivity.

Chapter 7 is devoted to our microscopic theory of phonon drag in high Landau
levels. For Coulomb drag, the interlayer interaction is suppressed at large mo-
mentum transfers by a factor exp (—qd), so that the Coulomb drag contribution
to the drag conductivity is governed by small momenta ¢ < 1/d. This intro-
duces a natural cutoff on the momentum exchange between the layers. Such a
cutoff is absent in the case of phonon drag. We therefore need to extend the
linear response formalism to finite momentum transfers. This is done in detail
in Chapter 7. We also derive the phonon-mediated interlayer interaction in this
chapter. We then present analytical results for the phonon drag conductivity
in the low temperature regime. To further illustrate the behavior of phonon
drag, we also present numerical calculations of the phonon drag resistivity for
realistic parameter sets. Finally, we close in Chapter 8 by summarizing our
main results and giving an outlook to promising avenues for future research.
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