
Chapter 6

Spectral Simulations

In the following sections, the theoretical background and the numerical tech-

niques will be discussed that were employed in the simulation and fitting

routines to analyze the spectra presented in chapter 7.

6.1 Hamiltonian

The spin Hamiltonian used to describe a paramagnetic radical with an elec-

tron spin S = 1
2
, coupled to a nucleus with spin I includes the Zeeman

interaction and the hyperfine coupling term:

H = HZee +HHFI = µBB · g · S+ S ·A · I (6.1)

In the Zeeman term µB is electronic Bohr magneton, B is the external mag-

netic field vector, g is the electron g–tensor, S is the electron spin operator.

In the hyperfine term, A is the hyperfine tensor and I is the nuclear spin

operator.

Further interactions that are often non–negligible are the nuclear Zeeman

and nuclear quadrupole interaction. For the systems and experimental con-

ditions that will be considered below, they can be neglected and therefore

are not considered in the current state of the simulation programs.
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While they could easily be included without significantly increasing com-

putation time for a single spectrum, they would greatly increase the number

of free parameters. When attempting to fit experimental data to a model

with an optimization routine this reduces the significance of the other pa-

rameters and therefore should be avoided whenever possible.

In all simulation routines, the principal axis system of the g–tensor has

been chosen as the reference coordinate system. This means that the mag-

netic field vector B and the hyperfine tensor A have to be transformed into

the g–tensor main axis system.

The Zeeman term HZee then takes the form

HZee = BµB(gxx cosφ sin θSx + gyy sin φ sin θSy + gzz cos θSz) (6.2)

with θ and φ the angles that determine the orientation of B as depicted in

Figure 6.1. The hyperfine term HHFI becomes

HHFI = S ·Ag · I = S · R(φAθAψA)−1AR(φAθAψA) · I (6.3)

where Ag is the hyperfine tensor in the g–tensor main axis system and

R(φAθAψA) is the Euler rotation matrix as defined in (H. Goldstein 1951),

which rotates the hyperfine tensor main axis system into the g–tensor main

axis system.

6.2 Calculating Transitions

To calculate the spectral transitions, two different routes can be taken. One

is to set up the Hamiltonian, perform a numerical diagonalization and then

determine the transition probabilities between the states. The second is to

analytically calculate the resonance positions via perturbation theory. Both

approaches have been employed here.

While the perturbation solution has the advantage of being faster, the

diagonalization approach has the advantage of being inherently exact and
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to lend itself easily to an extension to include further interactions in the

Hamiltonian. Since the time–consuming step in the diagonalization routine is

the actual diagonalization of the Hamiltonian matrix itself, including further

Hamiltonian terms will not increase computation times as long as the matrix

dimensions remain the same.

6.2.1 Numerical Diagonalization

To obtain the field values for the allowed transitions, the Hamiltonian matrix

was constructed from the basic spin matrices. The dimension of the Hamil-

tonian matrix is then (2S+1)(2I+1) with S = 1
2
and I = 0, 1

2
, 1 the electron

and nuclear spin quantum numbers considered.

Subsequently, eigenvalues and eigenstates were obtained via direct nu-

merical diagonalization (The Mathworks, Inc. 1999).

6.2.2 Transition Probability

To derive an expression for the transition probability Pij between two energy

levels Ei and Ej , I want to follow the treatment of (G. van Veen 1978).

Microwave absorption is possible when the energy separation of two levels

becomes approximately equal to the energy quantum of the radiation:

∆ij = |Ei(B)− Ej(B)| ≈ h̄ω (6.4)

In an excitation microwave field of the form B1 exp(iωt), where B1 is the

magnetic field amplitude of the radiation, the transition probability can be

written as:

Pij(B,B1) =Mij(B,B1)f(∆ij(B)− h̄ω) (6.5)

with

Mij(B,B1) = |〈i| H1(B1) |j〉|2 (6.6)
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Here H1 exp(iωt) is the time–dependent Hamiltonian perturbing the sys-

tem and f(∆ij(B)− h̄ω) is the lineshape function.

Only the usual experimental setup with B1 perpendicular to B will be

considered. The main reference coordinate system is the main axis system of

the g tensor, the direction of the external field B can then be described by

the two Euler angles θ and φ. The third angle χ describes the orientation of

B1 as shown in Figure 6.1:
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Figure 6.1: Euler angles used to describe
the orientation of the external magnetic
field B and the excitation microwave field
B1 with respect to the g tensor main axis
system. Right angles are marked with a
square between the respective vectors.

For a particular orientation of the external magnetic field the transition

probability still depends on the orientation of B1. To calculate a powder

spectrum only the average over all angles χ is needed:

〈Mij〉 =
π∫

0

dχ |〈i|H1(B1) |j〉|2 (6.7)

Writing B and B1 in terms of the Euler angles θ, φ and χ as in Figure 6.1

B = B(sin θ cos φ; sin θ sin φ; cos θ)

B1 = B(cos θ cosφ cosχ− sin φ sinχ; cos θ sin φ cosχ+ cos φ sinχ;− sin θ cosχ)
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and using

π∫
0

cos2 χdχ =

π∫
0

sin2 χdχ =
π

2

π∫
0

cosχ sinχdχ = 0

one obtains for the transition probability 〈Mij〉:

〈Mij〉 = (1− sin2 θ cos2 φ)S∗
xij
Sxij

− sin2 θ sinφ cosφ[S∗
xij
Syij

+ S∗
yij
Sxij

]

− cos θ sin θ cosφ[S∗
xij
Szij

+ S∗
zij
Sxij

]

+(1− sin2 θ sin2 φ)S∗
yij
Syij

− cos θ sin θ sinφ[S∗
yij
Szij

+ S∗
zij
Syij

]

+ sin2 θS∗
zij
Szij

(6.8)

Here Skij
= 〈Vi|Sk |Vj〉, where Vi and Vj are the Eigenvectors correspond-

ing to energy levels i and j and k = x, y, z.

Since the Matlab routine used for diagonalization of the Hamiltonian

readily computes all Eigenvectors together with the diagonalized matrix, the

above expression can directly be evaluated.

6.2.3 Perturbation Solution

The expressions for the resonance field values for a Hamiltonian as in equation

6.1 can be obtained from the literature. Following (N. M. Atherton 1993),

under neglect of the nuclear Zeeman interaction and treating the hyperfine

interaction to first order, for the ∆MS = 1, ∆MI = 0 transitions one obtains

an energy difference of

∆E = geffµBB +MI
1

geff

√
l · g ·A ·A · g · l (6.9)
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with the orientation–dependent effective g–value geff(θ, φ)

geff =
√
l · g · g · l

=
√
g2
xx cos

2 φ sin2 θ + g2
yy sin

2 φ sin2 θ + g2
zz cos

2 θ (6.10)

and the unit vector in direction of the magnetic field:

l = (cosφ sin θ; sinφ sin θ; cos θ) (6.11)

Solving equation 6.9 for B, the resonance fields for each value of MI can

be calculated.

Both approximations, the neglect of the nuclear Zeeman interaction and

developing the Hamiltonian to first order only are usually good approxima-

tions in the limit of high external magnetic fields B0.

6.3 Powder Averages

In order to simulate EPR spectra of radicals in frozen solution or in pow-

ders, one has to take into account all possible molecular orientations. In

principle it is possible that certain orientations are favored to others to yield

an anisotropic orientation distribution. This is often the case for thin films

adsorbed onto plane surfaces or samples using liquid crystals as solvent. The

samples investigated in the present work however could all be successfully

simulated assuming a completely isotropic orientation distribution.

The most straightforward way to generate the powder orientations is to

loop over the polar and azimuthal angles θ and φ in equal step sizes and

then correct for the uneven distribution of evaluated orientations per solid

angle with a correction factor of sin θ. Using this approach, to generate

a sufficiently high density of orientations on the unit sphere for a certain

precision one has to sample excessive points in the polar region around the

z–axis.
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Figure 6.2: Comparison of the orientations evaluated by the “standard” powder
generation algorithm (left) and by the “igloo”–algorithm (right).

To avoid this, in this work a different orientation selection scheme has

been chosen. In this scheme, commonly dubbed the “igloo–method” (M. J.

Nilges 1979), the unit sphere is divided into regions of equal solid angles (the

“bricks”) and the sample point chosen exactly in the center of each region.

Thus the distribution of sample orientations is completely uniform and no

excess orientations have to be evaluated.

The difference between the two approaches becomes obvious in the ren-

derings in figure 6.2. Both sets of points were generated with 20 θ–steps in

the first octant. While both sets provide the same minimum precision, the

standard algorithm has to evaluate 400 orientations and the igloo method

only 264. Depending on the relative orientation of the involved tensors, an

integration over more than one octant may have to be performed.

In the simple version of the igloo–method, a step width for the polar angle

θ is chosen first, then for each value of θ a step width for the azimuthal angle

φ is calculated to yield the same arc on a parallel of latitude. This approach

leads to a round–off error, since the igloo bricks usually do not exactly close
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off the unit sphere at the edges. This roundoff–error approaches zero for

small step widths, of course.

In the powder–scheme used here, the roundoff–error is avoided. In a first

loop, the number of bricks which would be used by the conventional igloo–

method is calculated. Then the area occupied by one brick on the surface

of the unit sphere is calculated. In a second loop, the step widths for θ and

φ are then adjusted such that each layer exactly closes off at the edge. The

orientations where the Hamiltonian is evaluated are chosen at the center of

each brick.

Compared to the conventional igloo–method, which basically is an “equal

step size method”, the approach used here could be called “equal solid angle

method”.

A further significant improvement in the calculation time of powder spec-

tra can be achieved by employing schemes that allow for interpolation. Here,

the points where the function is evaluated lie on an easy to parameterize line

and additional function values can be obtained by interpolating between the

actually evaluated ones. Two examples employing this technique are the so–

called SOPHE method (Wang & Hanson 1995) and the interpolation scheme

by Alderman et al. (Alderman et al. 1986)

Since there is no way to easily parameterize the positions of the evaluation

points of the igloo–methods, an interpolation scheme cannot be introduced

here. To further speed up calculations, the implementation of the Alderman–

algorithm is planned for a coming version of the simulation routines.

6.4 Orientation–dependent Linewidths

An effect that becomes more pronounced at higher magnetic fields is a depen-

dency of the linewidth Γ of the spectral transitions on the orientation of the

molecules with respect to the magnetic field. The actual effects underlying
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this behavior are discussed in subsection 7.2.1.

To account for this in the simulations, orientation–dependent linewidths

Γk(k = x, y, z) were introduced into the formalism. This of course is a purely

empirical approach. For the case of the anisotropic broadening of the lines

being due to a distribution of environment effects such as solvent polarity,

an empirical approach can be justified. Under certain conditions for the dis-

tribution function, it enables one to use a least squares minimization routine

to extract the remaining parameters of the Hamiltonian such as (average)

g–values and hyperfine constants.

The linewidths were taken to lie on an ellipsoid fixed to the molecular

frame, colinear with the g–tensor. The main values of the ellipsoid then are

the linewidths in x, y and z–direction, respectively. To obtain the linewidth

for an arbitrary orientation with polar angle θ and azimuthal angle φ we need

the equation for the ellipsoid:

x2

Γ2
x

+
y2

Γ2
y

+
z2

Γ2
z

= 1

and x, y and z in spherical coordinates:

x = R sin θ cosφy = R sin θ sinφz = R cos θ

Taking the effective linewidth Γeff for the distance to the ellipsoid surface R

for a given orientation with polar angles θ and φ we can solve for Γeff :

Γeff =

[
sin2 θ cos2 φ

Γ2
x

+
sin2 θ sin2 φ

Γ2
y

+
cos2 θ

Γ2
z

]− 1
2

(6.12)

The inclusion of orientation–dependent linewidths unfortunately prevents

the use of some time–saving routines when convoluting the stick pattern with

a lineshape. In particular it is not possible to perform a convolution via a

multiplication in Fourier space or to evaluate the line shape once and then

perform a look–up. In the present routine, immediately after evaluating the

transition field positions for a certain orientation, a single line is added to
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the sum spectrum. Currently this step is the most time–consuming part of

the algorithm.
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