
Chapter 4

Gaussian Optics

In the following chapter, an overview of the theory of Gaussian optics will be

given to the extent needed to describe the resonator and transmission line

of the spectrometer. To a great extent, this treatment will follow those of

(P. F. Goldsmith 1998) and (Kogelnik & Li 1966).

4.1 Gaussian Beams

To derive a formula that describes the propagation of a beam of microwave

radiation along the z–axis, we begin with the Helmholtz wave equation for a

uniform medium:

(∇2 + k2
)
ψ = 0 (4.1)

Here, ψ represents any component E or B of the radiation field and k = 2π/λ

is the propagation constant in the medium.

Since we want to describe a beam traveling in z–direction, we assume a

functional form of the field components of

ψ(x, y, z) = u(x, y, z) exp(−ikz) (4.2)



20 Gaussian Optics

where the non–plane–wave behavior is described by u. Inserting this into

equation 4.1 we arrive at the reduced wave equation:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0 (4.3)

The third term can be dropped under the paraxial approximation, which

states that the variation of u along the z–direction is small compared to the

variation in x and y and in particular that it will be small over a distance of

the order of one wavelength. This then leads to the paraxial wave equation

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0 (4.4)

In cylindrical coordinates with r2 = x2 + y2, the reduced wave equation

becomes

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r

∂2u

∂ϕ2
− 2ik

∂u

∂z
= 0 (4.5)

where the angular dependency on ϕ can be dropped under the assumption of

cylindrical symmetry to yield the axially symmetric paraxial wave equation:

∂2u

∂r2
+

1

r

∂u

∂r
− 2ik

∂u

∂z
= 0 (4.6)

This equation has solutions of the form:

u(r, z) =
ω0

ω
exp

[−r2
ω2

− iπr
2

λR
+ iφ0

]
(4.7)

where

ω = ω0

√
1 +

(
λz

πω2
0

)2

(4.8)

R = z +
1

z

(
πω2

0

λ

)2

(4.9)

tanφ0 =
λz

πω2
0

(4.10)

Equation 4.7 describes a diverging beam with a minimum diameter at z = 0.

ω is the distance from the beam axis where the amplitude has reached 1/e
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times that on the axis. The quantity ω0 is the so–called beam waist — the

ω–radius of the beam at its minimum diameter. R can be identified as the

radius of curvature of the phase front where it intersects the z–axis.

This can also be seen from the exponent in equation 4.7 where the first

term leads to the Gaussian beam profile perpendicular to the axis and the

second resembles an outgoing spherical wave.

From equation 4.2 follows the expression for the complex field:

ψ(r, z) =
ω0

ω
exp

[−r2
ω2

− ikz − iπr
2

λR
+ iφ0

]
(4.11)

For calculations of coupling of Gaussian beams it is helpful to normalize

the beams to unit power flow, by requiring the integral over the beam area

to be unity:

∞∫
0

|ψ|2 2πr dr = 1 (4.12)

This leads to a different prefactor in equation 4.11, so that the normalized

fundamental Gaussian beam mode becomes

ψ(r, z) =

√
2

πω2
exp

[−r2
ω2

− ikz − iπr
2

λR
+ iφ0

]
(4.13)

The analogous result for a Gaussian beam with uniform distribution in y–

direction will be needed in the calculation of beam overlap in section 4.3 and

can be derived in a corresponding treatment to the one above:

ψ(x, z) = 4

√
2

πω2
x

exp

[−x2

ω2
x

− ikz − iπx
2

λRx
+
iφ0x

2

]
(4.14)

It is helpful to introduce a further parameter, the confocal distance zc:

zc =
πω2

0

λ
(4.15)

It can be seen as the distance separating the “near field” and “far field”

regions of the Gaussian beam. The radius of curvature of the Gaussian
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Figure 4.1: Amplitude profile of a Gaussian beam. Note the Gaussian intensity
profile in r–direction and the (nearly) spherical phase fronts.

beam R has a minimum at a distance z = zc away from the beam waist at

z = 0.

The parameters describing the Gaussian beam can then be rewritten in

a more compact form as:

ω = ω0

√
1 +

(
z

zc

)2

(4.16)

φ0 = arctan

(
z

zc

)
(4.17)

R = z

(
1 +

(zc
z

)2
)

(4.18)

In the far field, equation 4.16 can be used to derive an expression for the

asymptotic beam growth angle θ0:

θ0 = lim
z>>zc

[
arctan

(ω
z

)]
= arctan

(
λ

πω0

)
(4.19)
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where usually the small angle approximation can be applied, so θ0 ∼= λ/πω0.

So the beam in the far field grows linearly with the distance from the beam

waist.

The general solution of the wave equation 4.1 in cylindrical coordinates

includes higher order modes that allow for variation in the angular coordinate

ϕ and deviate from the Gaussian intensity profile of the fundamental mode.

The complete result for the normalized Gaussian beammode in cylindrical

coordinates shall just be quoted here:

ψpm(r, ϕ, z) =

√
2p!

π(p+m)!

1

ω(z)

[√
2r

ω(z)

]m
Lpm

(
2r2

ω2(z)

)

· exp
[ −r2
ω2(z)

− ikz − iπr2

λR(z)
− i(2p+m+ 1)φ0(z)

]
· exp(imϕ) (4.20)

Lpm is the generalized Laguerre polynomial with the radial index p and the

angular index m. The modes are normalized in terms of the normalization

condition of equation 4.12

4.2 Modes in the Fabry–Perot Resonator
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Figure 4.2: Fabry–Perot resonator:
general non–symmetric configura-
tion. Beam waist ω0, waist to mir-
ror distances d1, d2, radii of curvature
R1, R2, mirror to mirror distance L
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To obtain the mode pattern in a Fabry–Perot resonator, the resonator

can be unfolded into an equivalent infinite sequence of lenses. The resonance

condition then becomes the requirement that all parameters of the Gaussian

beam become the same after passing one full period of the lens sequence, or

after one complete round trip between the two mirrors, respectively.

From the transformation laws for the lenses then follows a condition that

allows one to determine the resonant beam waist ω0 in dependence of the

resonator parameters f1, f2 and L as depicted in figure 4.2. The focal lengths

fi of the mirrors can be obtained from the radius of curvature of the mirrors,

where fi = Ri/2.

For a symmetric resonator with f1 = f2 = f and d1 = d2 = d, this leads

to an expression for the confocal distance:

zc =
L

2

√
4f

L
− 1

= d

√
R

d
− 1 (4.21)

from which the beam waist in the resonator can be calculated:

ω2
0 =

λd

π

√
R

d
− 1 (4.22)

In our case we have a half–symmetric resonator with a plane mirror at the

position of the symmetry plane of the symmetric mirror, so L = 2d has to

be replaced by L = d. The beam waist in this configuration obviously lies

on the plane mirror.

We now want to determine the mirror distances d at which we can ob-

serve resonant behavior. This can be translated into the condition that the

phase of the Gaussian beam of equation 4.7 must be a multiple of 2π after

one complete round trip through the resonator. The phase shift of an axi-

ally symmetric Gaussian–Laguerre beam (equation 4.20) relative to its beam

waist is

φpm(z) = −i (kz − (2p+m+ 1)φ0) (4.23)
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with φ0 given by equation 4.17. The resonance condition for the general

resonator

∆φ = 2

[
2πL

λ
−
(
arctan

(
d1

zc

)
+ arctan

(
d2

zc

))]
= 2πq (4.24)

becomes for the case of a symmetric mirror (d1 = d2 = d):

2kd− 2 (2p+m+ 1) arctan

(
d

zc

)
− qπ = 0 (4.25)

with q the number of half-wavelengths and p = m = 0 for the fundamental

mode. This can then be solved numerically for the resonant mirror separation

d.

This result implies that the higher modes have different resonance fre-

quencies from the fundamental mode, with the exception of the case of the

exactly confocal configuration with d = zc. The resonator should therefore

be operated in a near confocal mode, while avoiding the exact confocal con-

figuration.
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Figure 4.3: Contour plots of a TEM006 mode in a symmetric Fabry–Perot res-
onator. The left picture shows the electric, the right picture the magnetic field
amplitude. The resonator dimensions are: R = 8.06 mm, d = 1.3 mm.



26 Gaussian Optics

0 1 2

−3

−2

−1

0

1

2

3 E

z / mm

r /
 m

m

0 1 2

−3

−2

−1

0

1

2

3 H

z / mm

r /
 m

m

Figure 4.4: Contour plots of a TEM006 mode in a half-symmetric Fabry–Perot
resonator. The left picture shows the electric, the right picture the magnetic field
amplitude. The dimensions are identical to the actual resonator in the spectrome-
ter: R = 8.06 mm, d = 2.6 mm.

It is important to note here that the Gaussian beam that is determined by

the above parameters (ω0, zc) is only an approximation to the actual modes

in the resonator, since the curvature of the phase fronts deviates considerably

from the spherical shape of the mirrors for larger values of r, as can be clearly

seen in the contour plots in figure 4.4. Since for our EPR experiment we are

mainly interested in the size of the area of maximum field, the approximation

of the modes with a Gaussian beam is sufficiently accurate, however.

4.3 Coupling of Gaussian Beams

An central issue in designing and setting up a Gaussian beam transfer line

is the sensitivity of the system to misalignment. Since in our case, the mi-

crowave setup does not consist of one single piece, it has to be realigned

frequently. It is therefore of importance to know which kind of misalignment
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results in the most serious insertion loss and how critical it is.

In the following, coupling efficiencies for various types of misalignment

will be derived (P. F. Goldsmith 1998).

The general problem is that of two Gaussian beams that shall be made to

overlap perfectly (couple). An example would be a beam being focussed by

a mirror onto a detector antenna. The second beam in this example is the

characteristic component beam of the antenna, the beam that would emanate

from it were it a source– instead of a detector–antenna.

In principle there are three different kinds of misalignment:

• If both beams share the same optical axis, but their beam radii ω or

radii of curvature R are mismatched, they are the so–called axially

aligned beams. Here, only the special case of two beams with equal

but longitudinally displaced beam waist ω0 will be considered, since this

corresponds to the situation encountered in the spectrometer microwave

bridge.

• The optical axis of both beams can be laterally displaced.

• The optical axes of both beams can be tilted with respect to each other.

To obtain an expression that allows us to calculate power losses due to im-

perfect coupling, we start with the field coupling coefficient of two Gaussian

beams:

cab =

∫ ∫
ψ∗
aψb dS (4.26)

This is often written in “bra–ket” notation as:

cab = 〈ψa| ψb〉 (4.27)

The integral usually is taken over a plane perpendicular to the optical axis,

the so–called reference plane. In case of coinciding beam waists, the reference

plane will be placed there.
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Figure 4.5: Gaussian beam coupling
for misaligned beams: Longitudinally dis-
placed beams (top), laterally displaced
beams (middle), tilted beams (bottom)

Since we are interested only in power transmission, the overall phase terms

can be ignored, so using equation 4.2, equation 4.26 becomes:

cab =

∫ ∫
u∗aub dS (4.28)

If evaluated in the x coordinate only, it is denoted

c1xab =

∫ ∫
u∗a(x)ub(x) dx (4.29)

and the two dimensional field coupling coefficient c2ab is then obtained by:

c2ab = c
1x
ab c

1y
ab (4.30)

Separating the Cartesian coordinates will prove useful when considering the

different kinds of misalignment.
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The fraction of the power actually being coupled from beam a into beam b

is given by the power coupling coefficient Kab, the square of the field coupling

coefficient

Kab =
∣∣c2ab∣∣2 (4.31)

This expression can now be evaluated for the different situations depicted

in figure 4.5:

Assuming that the two beams to be coupled are axially aligned, have

cylindrical symmetry around the optical axis and have the same beam waist,

one can obtain the field coupling coefficient for longitudinal displacement

c2long by inserting equation 4.14 into equation 4.28 and squaring:

c2long =
exp (−ik∆z)

1− iλ∆z/2πω2
0

(4.32)

and, by squaring the absolute value, the power coupling coefficient:

Klong =
∣∣c2long

∣∣2 =
4

4 + (λ∆z/πω2
0)

2 (4.33)

∆z is the distance between the beam waists ω0 along the axis as shown in

figure 4.5 (top).

A similar procedure, considering a lateral offset in x direction by ∆r yields

the lateral power coupling coefficient

Klat = exp

(
−∆r2

ω2
0

)
(4.34)

This simple expression only holds for equal and coinciding beam waists, how-

ever.

In the case of angular misalignment (assuming a tilt angle θ in x–direction),

the phase of beam b is shifted with respect to beam a by ∆φ = −kx sin θ
when moving a distance x along the x–axis. Assuming no longitudinal or

lateral displacements, the angular power coupling coefficient can be obtained
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as:

Kang = exp

(
−
[
πθω0

λ

]2
)

(4.35)

The approximation for small angles θ was used in the derivation.

Estimation of coupling efficiency
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Figure 4.6: Quasi optical setup on the optical board and degrees of freedom for
alignment of the board with respect to the corrugated waveguide in the magnet
bore.

The expressions derived above allow one to estimate how critical each

alignment parameter (∆z,∆r, θ) is at various places in the quasi optical

transfer line. Of particular importance for the alignment process are the

beam waists at the transmitter antenna and at the upper end of the corru-

gated waveguide at the top of the magnet (see figure 4.6). Since the transfer

line components on the optical board are mounted completely independently
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from the corrugated waveguide in the magnet bore, especially the alignment

at the waveguide entrance is of interest.

The maximum deviations for each parameter that correspond to power

losses of 1% and 10% respectively are listed in table 4.1, table 4.2 and table

4.3.

Maximum ∆z Tx WG

Klong > 0.9 16.5 mm 131.8 mm

Klong > 0.99 5.5 mm 39.5 mm

Table 4.1: Maximum longitudinal displacement ∆z for coupling losses under 10%
and 1% at the transmitter antenna (Tx, ω0 = 1.48 mm) and the corrugated wave-
guide entrance (WG, ω0 = 7.24 mm).

Maximum ∆r Tx WG

Klat > 0.9 0.48 mm 2.35 mm

Klat > 0.99 0.15 mm 0.73 mm

Table 4.2: Maximum lateral displacement ∆r (all other conditions are identical
to table 4.1).

Maximum θ Tx WG

Kang > 0.9 3.33 ◦ 0.68 ◦

Kang > 0.99 1.03 ◦ 0.21 ◦

Table 4.3: Maximum angular misalignment θ (all other conditions are identical
to table 4.1).

It becomes clear that longitudinal deviations are uncritical; also lateral

offsets should readily be met. Angular deviations, on the other hand, prove
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to be extremely critical if insertion losses at the transmitter antenna and

especially at the waveguide entrance are to be minimized. This is of even

greater importance since alignment at the waveguide involves the adjustment

of the complete optical board.

The result that a small beam waist is less sensitive to angular misalign-

ments at first seems counterintuitive, but can be related to the inverse de-

pendence of the beam growth angle on the beam waist (equation 4.19). Less

divergent beams are more sensitive to angular deviations of the optical axis.
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