Dynamik von CO und D_2O auf Cu(111): Laserinduzierte und thermisch induzierte Prozesse

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

Michael Mehlhorn

Juli 2005

Titelbild: RTM-Bild eines facettierten Eisclusters mit pyramidalen Inseln auf Cu(111) in 3D-Ansicht (30 nm×40 nm, 1.7 V, 1.4 pA)

Erstgutachter: Zweitgutachter: Datum der Disputation: Prof. Dr. K.-H. Rieder Prof. Dr. M. Wolf 26. Oktober 2005

Abstract

In this thesis the concept and the experimental realisation of a combined **fs-laser low temperature scanning tunneling microscope** for investigations of dynamics in molecule-metal-systems on atomic scale is presented. With the highly reproducible focusing of the laserspot under the tunneling tip it is possible to analyse reaction rates and therefore to understand the underlying reaction paths.

The capability of this combination is demonstrated on the system CO/Cu(111). Diffusion, dimer formation, and desorption are induced with fs-laser pulses. The diffusion is mediated through non-thermalized and thermalized electrons. In the electronic friction model this results in a diffusion barrier of (96 ± 3) meV. The formation of dimers is also electron mediated and represents a basic step of a chemical reaction on surfaces, namely the adsorption of reactants on adjacent lattice sites. With the desorption of molecules from the edge of close packed CO-islands a dependence on the local environment could be directly identified for the first time.

Due to the high stability of the scanning tunneling microscope with tunneling currents in the low pA range the study of extremely sensitive molecule-metal-systems such as D_2O on Cu(111) is possible. In particular, different metastable structures occurring during thermally activated transition from amorphous to crystalline ice are investigated. The starting point are amorphous three dimensional ice clusters. Heating removes the pores from the clusters before the molecules are then rearranged in a hexagonal lattice. The amorphous solid water (ASW) as well as the resulting buckled hexagonal ice bilayers are imaged in real space for the first time. A further annealing of the bilayers results in a faceted crystalline surface, on which pyramidal islands are stabilized at higher temperatures. The thermodynamically most stable structures are nano-crystallites, which appear at the beginning of desorption.

The dissociation of D_2O molecules in crystalline ice clusters on Cu(111) is investigated as an example for a surfaces reaction induced by electrons from the tunneling tip. Two processes could be separated. The first is the dissociation of single water molecules in the cluster surface by electron attachment. The second process is the dissociation at the interface between dissociated and crystalline regions. This process is also mediated by electron injection into the conduction band.

Kurzfassung

In dieser Arbeit wird das Konzept und die experimentelle Umsetzung einer neuartigen **Kombination aus Tieftemperatur-Rastertunnelmikroskop und fs-Lasersystem** zur quantitativen Untersuchung der Dynamik an Molekül-Metall-Systemen auf atomarer Skala vorgestellt. Die sehr gut reproduzierbare Einkoppelung des fs-Lasers unter die Tunnelspitze erlaubt über die Auswertung von Reaktionsraten die Bestimmung von Anregungspfaden der durch fs-Laserpulse induzierten Oberflächenprozesse.

Am System CO/Cu(111) wird das Potential der aufgebauten Anlage demonstriert. Die Anregung mit fs-Laserpulsen führt zur Diffusion, Dimerbildung und Desorption der CO-Moleküle. Für die Diffusion werden zwei rein elektronische Anregungspfade gefunden: zum einen die Anregung über nicht-thermalisierte, direkt erzeugte Elektronen und zum anderen die Anregung über thermalisierte Elektronen. Die Modellierung der Anregung mittels Elektronischer Reibung ergibt eine Diffusionsbarriere von (96±3)meV. Die Bildung thermisch instabiler Dimere wird ebenfalls über eine elektronische Anregung vermittelt und stellt einen essentiellen Schritt einer chemischen Oberflächenreaktion dar, nämlich die Adsorption der Reaktanden auf direkt benachbarte Gitterplätze. Mit der Desorption von den Rändern dichtgepackter CO-Inseln wird erstmals direkt eine Adsorbatplatzabhängigkeit eines fs-laserangeregten Oberflächenprozesses beobachtet.

Die hohe Stabilität des RTM bis zu Tunnelströmen im sub-pA-Bereich erlaubt die Untersuchung von extrem empfindlichen Systemen, wie $D_2O/Cu(111)$. Untersucht wurden thermisch erzeugte Strukturen wie sie beim Übergang von amorphem zu kristallinem Eis entstehen. Ausgangspunkt sind poröse dreidimensionale amorphe Eiscluster. Das Heizen führt zum Schließen der Poren und zur Ordnung der Moleküle in ein hexagonales Gitter. Dabei werden die Phase ASW (Amorphous Solid Water) und die vertikal relaxierte Eisdoppellage erstmalig im Realraum abgebildet. Das Ausheilen der Kristallisierungsprozesse führt zu einer facettierten Oberfläche der Cluster auf denen sich bei höheren Temperaturen dreiseitige pyramidale Inseln stabilisieren. Die thermodynamisch stabilste Form sind 2.5 nm hohe Eiskristallite, die sich am Beginn der Desorption bilden.

Als Beispiel einer durch Tunnelelektronen induzierten Oberflächenreaktion wurde die **Dissoziation von D**₂**O-Molekülen in kristallinen Eisclustern auf Cu(111)** untersucht. Dabei werden zwei Prozesse separiert: Die Dissoziation einzelner Wassermoleküle an der Clusteroberfläche durch Elektronenanlagerung und die Dissoziation an der Grenzfläche zwischen dissoziierten und kristallinen Bereichen, die ebenfalls durch Injektion von Elektronen ins Leitungsband vermittelt wird.

Inhaltsverzeichnis

Abstract						
Kurzfassung						
1	Ein	leitung	r S	1		
2	Gru	indlage	en	3		
	2.1	Raster	rtunnelmikroskopie	3		
		2.1.1	RTM-Theorie \ldots	4		
		2.1.2	Spektroskopie	7		
		2.1.3	Elektroneninduzierte Manipulation	9		
	2.2	Photo	chemie mit fs-Laserpulsen	10		
		2.2.1	Anregung des Substrates	10		
		2.2.2	Adsorbatankopplung	17		
		2.2.3	Adsorbatan regung durch nicht-thermalisierte Elektronen $\ .\ .\ .$.	20		
	2.3	Elektr	oneninduzierte Prozesse mit Ortsauflösung	20		
3	Auf	bau de	er Meßapparatur	25		
	3.1	UHV-	System	25		
		3.1.1	Heliumbadkryostat	30		
		3.1.2	RTM-Kopf	32		
		3.1.3	Meßelektronik	35		
		3.1.4	Entkopplung von äußeren Störquellen	36		
		3.1.5	Schwingungsverhalten des RTM	37		
	3.2	Optise	cher Aufbau	40		
	3.3	Lasere	einkopplung in das RTM	43		
		3.3.1	Verbindung der Systeme und Einkopplung des Lasers ins Vakuum .	43		
		3.3.2	Optikringkonzept	44		
		3.3.3	Bestimmung der Fokuslage	47		
		3.3.4	Bestimmung der Fokusgröße	49		
	3.4	Leistu	ngsmerkmale der Anlage	51		

4	Eige 4.1 4.2 4.3 4.4	enschaften und Präparation der untersuchten SystemeDas $Cu(111)$ -SubstratWasser und Eis auf Metalloberflächen4.2.1Das Wassermolekül4.2.2Die Struktur von Eis4.2.3Wasserdoppellagen auf hexagonalen Metalloberflächen4.2.4Unterschiede zwischen H2O und D2OKohlenmonoxid auf Cu(111)Probenpräparation	55 56 56 57 60 62 63 63
5	Der 5.1 5.2	Übergang von amorphem zu kristallinem Eis auf Cu(111)Amorphes EisKristallisierung durch Heizen5.2.1Heizen bis zur Desorption - Überblick5.2.2Heizen auf 118 K - Amorphous Solid Water5.2.3Beginn der Kristallisierung5.2.4Facettierung der Eisoberfläche5.2.5Pyramidale Inseln5.2.6Bildung von EiskristallitenZusammenfassung	67 68 71 72 74 76 79 84 87 91
6	Elek Eisc 6.1 6.2 6.3 6.4	Anregung durch direkte Injektion ins Leitungsband Dissoziierte und kristalline Bereiche Modell der elektroneninduzierten Dissoziation	93 94 97 100 102
7	Lase 7.1 7.2 7.3 7.4	erinduzierte Oberflächenprozesse von CO auf Cu(111) 1 Überblick	104 108 108 112 115 115 117 118
Zu	ısamı	menfassung und Ausblick 1	119
Α	Erg A.1 A.2	änzungen Erzeugung kurzer Pulse und Frequenzvervielfachung	1 21 121 123

Literaturverzeichnis	
Abkürzungen	135
Akademischer Lebenslauf	137
Publikationen	139
Danksagung	141