Kapitel 6

6.1 Tc-Komplexe

$\textbf{6.1.1} \quad [\textbf{TcO(9aneN_3)(OCH_2CH_2O)}] \textbf{Br} \, \cdot \, \textbf{H}_2\textbf{O}$

Tabelle 6.1: Kristallographische Daten und Parameter der Strukturrechnung von $[TcO(9aneN_3)(OCH_2CH_2O)]Br \cdot H_2O.$

Summenformel	$\mathrm{C_8H_{19}BrN_3O_4Tc}$	
M (g/mol)	399.17	
Messtemperatur	153(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1$	
Elementarzelle	$a=7.207(5)~{ m \AA}$	$lpha=90^\circ$
	b = 13.442(5) Å	$\beta = 113.74(1)^{\circ}$
	$c=7.319(5)~{ m \AA}$	$\gamma = 90^{\circ}$
Volumen	$649.0(7) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$2.043~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	4.195 mm^{-1}	
F(000)	396	
Kristallgröße	$0.19 \ge 0.13 \ge 0.08 \ \mathrm{mm}^3$	
Theta-Bereich	$3.03-30.53^\circ$	
Indizes	-10≤h≤10, -18≤k≤19, -10≤	$l \leq 10$
Zahl der gemessenen Reflexe	8101	
Zahl der unabhängigen Reflexe	$3766 \; [R(int) = 0.0198]$	
Absorptionskorrektur	semiempirisch (SADABS)	
T_{min}, T_{max}	0.774866, 1	
Zahl der verfeinerten Parameter	154	
Goof	0.997	
$R_1 / wR_2 [I > 2 sigma(I)]$	R1 = 0.0211, wR2 = 0.0550	
R_1 / wR_2 (alle Reflexe)	R1= 0.0216, wR2= 0.0552	
Flack-Parameter	0.002(5)	
Restelektronendichte	0.649 und -0.585 e \cdot Å^{-3}	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SIR 97 [140]	

	(11201120)]DI (1120)	0.			
	х	У	Z	E(eq)	
Tc(1)	8442(1)	2508(1)	1291(1)	13(1)	
O(1)	9479(3)	1713(2)	221(3)	23(1)	
N(1)	6469(3)	3103(2)	2784(3)	18(1)	
C(1)	4309(4)	2944(2)	1403(5)	25(1)	
C(2)	4055(4)	1874(2)	754(4)	25(1)	
N(2)	5787(3)	1550(2)	288(3)	18(1)	
C(3)	6612(4)	553(2)	1214(4)	25(1)	
C(4)	7892(4)	667(2)	3417(4)	25(1)	
N(3)	9185(3)	1580(2)	3907(3)	19(1)	
C(5)	8993(5)	2175(3)	5544(4)	29(1)	
C(6)	6951(5)	2677(2)	4800(4)	27(1)	
O(21)	10330(3)	3524(2)	2786(3)	19(1)	
C(22)	10036(4)	4474(2)	1821(4)	22(1)	
C(23)	8851(4)	4304(2)	-395(4)	21(1)	
O(24)	7302(3)	3587(2)	-587(3)	19(1)	
Br(1)	3799(1)	479(1)	5719(1)	21(1)	
O(30)	3291(5)	3276(3)	-3247(5)	54(1)	

Tabelle 6.2: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[TcO(9aneN_3)(OCH_2CH_2O)]Br \cdot H_2O$.

Abbildung 6.1: Ellipsoiddarstellung des $[TcO(9aneN_3)(OCH_2CH_2O)]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.1.2 \quad [TcO_3(9aneN_3)]Br$

Tabelle 6.3: Kristallographische Daten und Parameter	der Strukturrechnung von	$[TcO_3(9aneN_3)]Br.$
--	--------------------------	-----------------------

Summenformel	$C_6H_{15}BrN_3O_3Tc$	
M (g/mol)	355.12	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Hexagonal, $P6_3$	
Elementarzelle	a = 8.057(5) Å	$lpha=90^{\circ}$
	b = 8.057(5) Å	$eta = 90^\circ$
	$ m c=10.805(5)~{ m \AA}$	$\gamma = 120^\circ$
Volumen	$607.4(6) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.942 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	4.463 mm^{-1}	
F(000)	348	
Kristallgröße	$0.34 \ge 0.30 \ge 0.21 \text{ mm}^3$	
Theta-Bereich	$3.48-26.99^\circ$	
Indizes	$-9 \le h \le 9, -9 \le k \le 9, -13 \le l \le 13$	3
Zahl der gemessenen Reflexe	1760	
Zahl der unabhängigen Reflexe	896 [R(int)= 0.0194]	
Absorptionskorrektur	empirisch (DIFABS)	
T_{min}, T_{max}	0.325, 0.755	
Zahl der verfeinerten Parameter	48	
Goof	0.700	
$R_1 / wR_2 $ [I>2sigma(I)]	R1= 0.0253, wR2= 0.0751	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0381, wR2 = 0.0877	
Flack-Parameter	0.02(1)	
Restelektronendichte	0.575 und -0.610 e \cdot Å $^{-3}$	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SHELXS 97 [141]	

[1003(5411013)	/]D1.				
	х	У	Z	E(eq)	
Tc(1)	6667	3333	9993(1)	43(1)	
N(1)	5980(7)	1156(7)	11486(4)	46(1)	
C(1)	4593(9)	1049(8)	12437(5)	54(1)	
C(2)	7772(9)	1451(9)	12027(7)	58(1)	
O(1)	4443(5)	1885(5)	9394(5)	57(1)	
Br(1)	3333	-3333	10606(1)	50(1)	

Tabelle 6.4: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Ųx10³) von [TcO₃(9aneN₃)]Br.

Abbildung 6.2: Ellipsoiddarstellung des $[TcO_3(9aneN_3)]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.1.3 \quad [TcCl_2(OH_2)(9aneN_3)]Cl$

Tabelle 6.5: Kristallographische	Daten und Parameter	der Strukturrechnung von
$[TcCl_2(OH_2)(9aneN_3)]Cl.$		

Summenformel	$C_6H_{17}Cl_3N_3OTc$	
M (g/mol)	351.58	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/n$	
Elementarzelle	a=12.841(3) Å	$lpha=90^\circ$
	b=12.973(3) Å	$eta = 90.16(1)^\circ$
	$ m c= 7.801(1)~{ m \AA}$	$\gamma = 90^{\circ}$
Volumen	$1299.6(4) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.797~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	1.701 mm^{-1}	
F(000)	704	
Kristallgröße	$0.08 \ge 0.08 \ge 0.03 \ \mathrm{mm^3}$	
Theta-Bereich	$3.05-27.00^\circ$	
Indizes	$0 \le h \le 16, -16 \le k \le 16, -5 \le l \le$	1
Zahl der gemessenen Reflexe	2544	
Zahl der unabhängigen Reflexe	$1284 \; [R(int) = 0.1150]$	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	106	
Goof	0.9	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0637, wR2 = 0.1560	
$ m R_1 \ / \ wR_2$ (alle Reflexe)	R1 = 0.1637, wR2 = 0.2030	
Restelektronendichte	1.396 und -0.580 e \cdot Å $^{-3}$	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SIR 97 [140]	

[10012(0112)(9anen3)]01.				
	Х	У	Z	E(eq)
Tc(1)	2989(1)	2158(1)	-6(3)	47(1)
$\operatorname{Cl}(1)$	4108(4)	3559(4)	-16(10)	63(3)
$\operatorname{Cl}(2)$	3789(6)	1261(6)	-2124(15)	156(6)
O(1)	3773(9)	1277(8)	2190(20)	43(3)
N(1)	1714(14)	1113(10)	70(30)	44(8)
$\mathrm{C}(1)$	1120(20)	1270(20)	-1430(50)	79(8)
$C(2A)^*$	1480(40)	1960(30)	-2770(70)	52(14)
$C(2B)^*$	970(40)	2380(30)	-2170(90)	65(15)
N(2)	1984(14)	2932(16)	-1700(30)	61(8)
C(3)	1470(30)	3770(30)	-1000(70)	113(12)
$C(4A)^*$	1310(30)	3710(30)	920(70)	37(11)
$C(4B)^*$	1630(30)	3970(20)	240(80)	29(9)
N(3)	1960(14)	2920(14)	1720(30)	75(10)
$C(5A)^*$	980(30)	2320(30)	2070(70)	46(12)
$C(5B)^*$	1580(40)	1840(40)	2650(80)	65(15)
$\mathrm{C}(6)$	1029(18)	1289(16)	1460(40)	52(5)
Cl(10)	3132(5)	3778(4)	5033(11)	64(3)

Tabelle 6.6: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å 2 x10³) von [TcCl₂(OH₂)(9aneN₃)]Cl.

* Diese Atome des 1,4,7-Trithiacyclononans befinden sich zu 50% auf fehlgeordneten Positionen. Aufgrund dieser Fehlordnung ist eine anisotrope Verfeinerung aller Kohlenstoffatome nicht möglich.

Abbildung 6.3: Ellipsoiddarstellung des $[TcCl_2(OH_2)(9aneN_3)]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

6.1.4 $[TcO_2(L^{i-Pr})_4][TcO_4] \cdot 1.5 THF$

Summenformel	$C_{50}H_{92}N_8O_{7.5}Tc_2$	
M (g/mol)	1121.32	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=12.302(5) Å	$lpha=100.13(1)^\circ$
	b = 16.386(5) Å	$eta{=}98.19(1)^{\circ}$
	c=16.688(5) Å	$\gamma = 106.09(1)^{\circ}$
Volumen	$3116(2) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.195 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.492 mm^{-1}	
F(000)	1188	
Kristallgröße	$0.4 \ge 0.2 \ge 0.2 \text{ mm}^3$	
Theta-Bereich	$1.85 - 25.00^{\circ}$	
Indizes	-14≤h≤14, -19≤k≤19, -17≤	l≤19
Zahl der gemessenen Reflexe	25226	
Zahl der unabhängigen Reflexe	10913 [R(int)= 0.0304]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	678	
Goof	0.913	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0540, wR2 = 0.1467	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0722, wR2 = 0.1613	
Restelektronendichte	1.680 und -1.516 e \cdot Å $^{-3}$	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SIR 97 [140]	

Tabelle 6.7: Kristallographische Daten und Parameter der Strukturrechnung von $[TcO_2(L^{i-Pr})_4][TcO_4] \cdot 1.5$ THF.

[1002(L	/4][1004] * 1.9 1111.				
	Х	У	Z	E(eq)	
Tc(1)	7689(1)	1854(1)	7496(1)	17(1)	
O(1)	6470(2)	1426(2)	6676(2)	20(1)	
O(2)	8906(2)	2280(2)	8318(2)	25(1)	
C(1)	6938(3)	823(3)	8149(3)	23(1)	
N(2)	5796(3)	460(2)	8165(2)	23(1)	
C(3)	5667(4)	-150(3)	8662(3)	32(1)	
C(4)	6733(4)	-162(3)	8968(3)	35(1)	
N(5)	7504(3)	429(2)	8642(2)	27(1)	
C(6)	4848(3)	704(3)	7717(3)	26(1)	
$\mathrm{C}(7)$	4107(4)	-19(3)	6991(3)	40(1)	
C(8)	4139(4)	1040(4)	8298(3)	40(1)	
C(9)	8776(4)	595(3)	8789(3)	32(1)	
C(10)	9109(5)	-204(4)	8442(4)	46(1)	
C(11)	9347(5)	1009(4)	9698(3)	50(1)	
C(12)	4525(5)	-673(4)	8806(4)	52(1)	
C(13)	7066(6)	-663(4)	9579(4)	59(2)	
C(21)	6810(3)	2721(2)	8152(3)	22(1)	
N(22)	6072(3)	3109(2)	7800(2)	26(1)	
C(23)	5694(4)	3593(3)	8419(3)	37(1)	
C(24)	6208(4)	3515(3)	9155(3)	37(1)	
N(25)	6884(3)	2968(2)	8982(2)	26(1)	
C(26)	5753(4)	3032(3)	6898(3)	31(1)	
C(27)	4483(5)	2550(4)	6557(4)	50(1)	
C(28)	6154(5)	3901(3)	6660(3)	46(1)	
C(29)	7595(4)	2687(3)	9614(3)	27(1)	
C(30)	6864(4)	2145(3)	10107(3)	38(1)	
C(31)	8590(5)	3455(3)	10161(3)	45(1)	
C(32)	4846(6)	4083(4)	8261(4)	60(2)	
C(33)	6108(6)	3938(4)	10011(4)	56(2)	

Tabelle 6.8: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[TcO_2(L^{i-Pr})_4][TcO_4] \cdot 1.5$ THF.

Kristallographischer Anhang

	Х	У	Z	E(eq)
C(41)	8468(3)	2896(3)	6863(3)	22(1)
N(42)	8387(3)	2846(2)	6033(2)	24(1)
C(43)	9032(4)	3627(3)	5878(3)	32(1)
C(44)	9528(4)	4174(3)	6623(3)	36(1)
N(45)	9173(3)	3724(2)	7225(2)	26(1)
C(46)	7707(4)	2049(3)	5385(3)	25(1)
C(47)	6774(4)	2219(3)	4794(3)	38(1)
C(48)	8480(4)	1631(3)	4929(3)	36(1)
C(49)	9477(4)	4090(3)	8133(3)	33(1)
C(50)	9043(5)	4860(3)	8388(3)	44(1)
C(51)	10766(5)	4293(3)	8476(3)	45(1)
C(52)	9110(5)	3802(3)	5033(3)	47(1)
C(53)	10335(6)	5092(3)	6793(4)	58(2)
C(61)	8574(3)	991(3)	6858(2)	21(1)
N(62)	8093(3)	159(2)	6392(2)	24(1)
C(63)	9964(4)	445(3)	6441(3)	34(1)
C(64)	8945(4)	-177(3)	6130(3)	32(1)
N(65)	9728(3)	1163(2)	6886(2)	25(1)
C(66)	6834(4)	-309(3)	6192(3)	26(1)
C(67)	6532(4)	-1145(3)	6498(3)	40(1)
C(68)	6339(4)	-436(3)	5266(3)	39(1)
C(69)	10599(4)	2012(3)	7297(3)	31(1)
C(70)	11441(4)	1944(4)	8021(3)	48(1)
C(71)	11191(4)	2469(4)	6679(3)	45(1)
C(72)	8741(5)	-1089(3)	5634(3)	45(1)
C(73)	11143(5)	361(4)	6408(4)	50(1)
Tc(2)	9062(1)	1969(1)	12393(1)	60(1)
O(3)	8402(5)	1009(4)	11725(4)	107(2)
O(4)	9296(6)	2768(4)	11883(4)	105(2)
O(5)	10310(8)	1945(6)	12898(7)	206(6)
O(6)	8118(10)	2113(5)	13018(5)	168(4)

	Х	У	Z	E(eq)
O(81)*	3540(13)	3616(10)	4722(9)	122(5)
$C(82)^{*}$	2810(20)	3591(16)	5252(12)	122(8)
$C(83)^{*}$	2028(15)	4000(30)	5035(12)	202(19)
$C(84)^{*}$	2057(15)	4169(14)	4297(19)	132(10)
$C(85)^{*}$	2922(13)	3734(11)	3932(9)	77(4)
$O(91)^{*}$	6366(11)	4255(8)	12373(10)	108(4)
$C(92)^{*}$	6427(16)	3406(10)	12195(9)	80(5)
C(93)*	5759(18)	2892(12)	12747(12)	104(7)
$C(94)^{*}$	5710(30)	3533(19)	13335(13)	200(18)
C(95)*	5781(16)	4315(10)	13013(7)	77(5)
O(101)*	3026(10)	3288(15)	163(8)	178(9)
$C(102)^{*}$	3607(11)	3217(17)	888(10)	118(8)
$C(103)^{*}$	2850(20)	3180(30)	1489(16)	220(20)
$C(104)^{*}$	1799(15)	3025(14)	1143(11)	95(6)
$C(105)^{*}$	1940(18)	3389(18)	376(10)	130(10)

 \ast Die Positionen der Atome der Lösungsmittelmoleküle sind nur zu 50% besetzt.

Abbildung 6.4: Ellipsoiddarstellung des $[TcO_2(L^{i-Pr})_4]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C61 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

6.1.5 $[TcO(OH)(L^{Et})_4][TcO_4](PF_6)$

Summenformel	$\mathrm{C}_{36}\mathrm{H}_{65}\mathrm{F}_{6}\mathrm{N}_{8}\mathrm{O}_{6}\mathrm{PTc}_{2}$	
M (g/mol)	1046.93	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=12.778(5) Å	$lpha=93.557(5)^\circ$
	b= $12.758(5)$ Å	$eta=94.049(5)^\circ$
	c = 16.385(5) Å	$\gamma = 117.975(5)^{\circ}$
Volumen	2339(2) Å ³	
Z	2	
Berechnete Dichte	1.486 g/cm^3	
Linearer Absorptionskoeffizient	0.698 mm^{-1}	
F(000)	1080	
Kristallgröße	$0.2 \ge 0.15 \ge 0.1 \text{ mm}^3$	
Theta-Bereich	$3.13 - 25.00^{\circ}$	
Indizes	-15≤h≤15, -15≤k≤15, -18≤	l≤19
Zahl der gemessenen Reflexe	13783	
Zahl der unabhängigen Reflexe	7701 [R(int)= 0.1438]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	535	
Goof	0.714	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0708, wR2 = 0.1431	
R_1 / wR_2 (alle Reflexe)	R1 = 0.2166, wR2 = 0.1805	
Restelektronendichte	0.518 und -0.535 e \cdot $\mathrm{\AA^{-3}}$	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.9: Kristallographische Daten und Parameter der Strukturrechnung von $[TcO(OH)(L^{Et})_4][TcO_4](PF_6).$

	/4][1004](116/)			
	X	У	Z	E(eq)
Tc(1)	7239(1)	2761(1)	7499(1)	57(1)
O(1)	6512(6)	2035(5)	6485(3)	42(2)
O(2)	7969(6)	3483(5)	8514(3)	40(2)
C(1)	7563(9)	4494(9)	7102(6)	46(3)
N(2)	6863(7)	4727(7)	6583(5)	42(2)
$\mathrm{C}(3)$	7388(11)	5885(9)	6395(6)	47(3)
C(4)	8488(11)	6396(9)	6814(6)	47(3)
N(5)	8584(7)	5544(7)	7249(5)	42(2)
C(6)	5542(14)	3560(20)	5710(30)	290(20)
$\mathrm{C}(7)$	5280(40)	3877(19)	6343(9)	310(30)
$\mathrm{C}(8)$	9625(11)	5786(10)	7784(7)	62(3)
C(9)	9692(13)	6419(12)	8618(8)	94(4)
C(10)	6867(11)	6402(10)	5837(7)	73(4)
C(11)	9478(10)	7639(9)	6858(7)	68(3)
C(21)	8899(10)	3046(8)	7084(6)	48(3)
N(22)	9355(7)	3353(6)	6363(5)	42(2)
C(23)	10391(10)	3359(9)	6296(6)	52(3)
C(24)	10690(9)	3054(10)	7021(7)	56(3)
N(25)	9768(7)	2834(7)	7492(5)	51(2)
C(26)	8768(10)	3645(9)	5663(6)	52(3)
C(27)	8138(13)	2622(12)	4991(7)	80(4)
C(28)	9827(11)	2578(12)	8361(7)	65(3)
C(29)	10569(13)	3557(13)	8970(7)	83(4)
C(30)	11116(12)	3709(14)	5598(7)	94(5)
C(31)	11754(11)	2870(13)	7266(8)	85(4)
C(41)	6983(9)	1069(9)	7904(6)	47(3)
N(42)	7162(8)	220(7)	7504(5)	49(2)
C(43)	6947(11)	-709(9)	7992(7)	57(3)
C(44)	6615(10)	-424(9)	8698(6)	50(3)

Tabelle 6.10: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[TcO(OH)(L^{Et})_4][TcO_4](PF_6).$

Kristallographischer Anhang

	Х	У	Z	E(eq)
N(45)	6630(7)	653(7)	8641(5)	45(2)
C(46)	7452(13)	168(11)	6649(7)	72(4)
C(47)	6449(14)	-584(11)	6040(7)	82(4)
C(48)	6375(10)	1242(10)	9336(6)	56(3)
C(49)	7346(14)	1841(13)	10002(7)	83(4)
C(50)	7160(15)	-1756(12)	7711(8)	96(5)
C(51)	6286(13)	-1119(12)	9431(7)	90(4)
C(61)	5487(10)	2444(9)	7902(6)	45(3)
N(62)	4456(7)	1412(7)	7758(5)	45(2)
C(63)	3598(9)	1510(10)	8177(6)	47(3)
C(64)	4120(9)	2618(9)	8605(6)	45(3)
N(65)	5265(8)	3138(7)	8401(5)	40(2)
C(66)	4246(11)	364(9)	7208(7)	65(3)
C(67)	3632(14)	324(11)	6369(8)	90(4)
C(68)	6444(19)	4435(12)	9320(20)	241(17)
C(99)	6050(20)	4530(40)	8669(9)	310(30)
C(70)	2314(11)	495(11)	8132(8)	84(4)
C(71)	3641(11)	3169(11)	9171(7)	74(4)
P(1)	0	0	0	69(2)
F(1)	-1046(13)	-1228(13)	-14(9)	241(8)
F(2)	799(12)	-604(13)	-46(8)	206(6)
F(3)	-215(13)	-96(18)	-871(10)	357(17)
P(2)	0	0	5000	75(3)
F(4)	1315(16)	1124(15)	5014(12)	235(6)
F(5)	-592(14)	837(12)	4936(9)	208(6)
F(6)	-140(30)	-208(16)	4440(20)	340(20)
Tc(2)	6561(2)	3436(2)	2497(2)	165(1)
O(3)	7958(14)	3916(19)	2986(15)	247(9)
O(4)	6210(20)	2154(16)	2007(13)	269(11)
O(5)	6260(30)	4111(18)	1777(14)	360(20)
O(6)	5906(19)	3850(30)	3187(14)	291(12)

Abbildung 6.5: Ellipsoiddarstellung des $[TcO(OH)(L^{Et})_4]^{2+}$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C21 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

6.1.6 $[TcN(L^{Et})_4]Cl_2$

Summenformel	$C_{36}H_{64}Cl_2N_9Tc$	
M (g/mol)	791.87	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/n$	
Elementarzelle	a = 11.498(2) Å	$lpha=90^\circ$
	b=28.649(5) Å	$\beta = 94.87(2)^{\circ}$
	c= 14.131(2) Å	$\gamma = 90^{\circ}$
Volumen	$4638(1) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.134 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.458 mm^{-1}	
F(000)	1680	
Kristallgröße	$0.2 \ge 0.1 \ge 0.1 \text{ mm}^3$	
Theta-Bereich	$3.06-26.00^\circ$	
Indizes	-1≤h≤14, 0≤k≤35, -17≤l≤	17
Zahl der gemessenen Reflexe	10557	
Zahl der unabhängigen Reflexe	9012 [R(int)= 0.0335]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	469	
Goof	0.933	
$R_1 / wR_2 [I > 2sigma(I)]$	R1 = 0.0588, wR2 = 0.1611	
R_1 / wR_2 (alle Reflexe)	R1 = 0.1059, wR2 = 0.1984	
Restelektronendichte	1.093 und -0.415 e $\cdot~{\rm \AA}^{-3}$	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SHELXS 97 [141]	

				$\mathbf{F}(\mathbf{a},\mathbf{r})$	
	X	<u> </u>	Z	E(eq)	
Tc	2289(1)	1564(1)	2562(1)	32(1)	
N(10)	2363(4)	1957(1)	3374(3)	41(1)	
$\mathrm{C}(1)$	3551(4)	1846(2)	1633(3)	38(1)	
N(2)	3790(4)	2304(1)	1511(3)	41(1)	
$\mathrm{C}(3)$	4697(5)	2355(2)	898(4)	50(1)	
C(4)	4987(5)	1929(2)	641(4)	53(1)	
N(5)	4292(4)	1622(1)	1088(3)	42(1)	
C(6)	3165(5)	2702(2)	1854(4)	48(1)	
$\mathrm{C}(7)$	2321(6)	2914(2)	1087(5)	62(2)	
$\mathrm{C}(8)$	4351(5)	1109(2)	953(4)	51(1)	
C(9)	5439(6)	893(2)	1402(5)	69(2)	
C(10)	5199(6)	2823(2)	691(5)	67(2)	
C(11)	5830(7)	1784(3)	-55(6)	80(2)	
C(21)	3621(4)	1087(2)	3153(3)	34(1)	
N(22)	4573(4)	1193(1)	3769(3)	43(1)	
C(23)	5241(5)	800(2)	4013(4)	51(1)	
C(24)	4716(5)	442(2)	3548(4)	50(1)	
N(25)	3726(4)	619(1)	3033(3)	40(1)	
C(26)	4930(5)	1658(2)	4105(5)	56(2)	
C(27)	5838(6)	1871(2)	3554(6)	74(2)	
C(28)	2885(5)	329(2)	2444(4)	48(1)	
C(29)	2186(6)	12(2)	3030(5)	64(2)	
C(30)	6290(6)	810(3)	4687(5)	76(2)	
C(31)	5098(6)	-61(2)	3488(6)	74(2)	
C(41)	1001(4)	1105(2)	3141(3)	37(1)	
N(42)	870(4)	1039(2)	4080(3)	42(1)	
C(43)	-87(5)	746(2)	4202(4)	54(1)	
C(44)	-533(5)	620(2)	3326(4)	55(1)	
N(45)	135(4)	848(2)	2683(3)	44(1)	
C(46)	1643(5)	1196(2)	4895(4)	49(1)	
C(47)	2490(6)	837(2)	5272(4)	60(2)	

Tabelle 6.12: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[TcN(L^{Et})_4]Cl_2$.

	x	У	\mathbf{Z}	E(eq)
C(48)	-62(5)	782(2)	1656(4)	55(1)
C(49)	-1177(6)	1018(3)	1241(6)	80(2)
C(50)	-495(6)	619(3)	5147(5)	74(2)
C(51)	-1491(6)	284(3)	3031(6)	87(2)
C(61)	921(4)	1863(2)	1586(3)	38(1)
N(62)	94(4)	2173(2)	1777(3)	43(1)
C(63)	-612(5)	2291(2)	965(4)	50(1)
C(64)	-233(5)	2048(2)	252(4)	48(1)
N(65)	723(4)	1792(2)	628(3)	40(1)
C(66)	-101(6)	2371(2)	2707(4)	62(2)
C(67)	-1048(7)	2113(3)	3170(5)	92(3)
C(68)	1430(5)	1494(2)	50(4)	51(1)
C(69)	2152(6)	1774(2)	-596(4)	63(2)
C(70)	-1582(6)	2635(3)	970(5)	71(2)
C(71)	-736(6)	2001(3)	-759(4)	66(2)
$Cl(1)^*$	50(7)	1174(2)	7392(3)	135(2)
$Cl(2)^*$	4946(6)	1343(2)	6946(6)	147(3)
$Cl(3)^{**}$	7265(13)	1177(5)	8024(14)	163(5)
$Cl(4)^{**}$	-227(15)	502(5)	8944(11)	170(6)
$Cl(5)^{**}$	6310(20)	533(5)	9216(10)	238(12)
$Cl(6)^{**}$	2020(20)	255(5)	9991(12)	214(10)

 \ast Die Positionen dieser Atome sind nur zu 50% besetzt.

** Die Positionen dieser Atome sind nur zu 25% besetzt.

Abbildung 6.6: Ellipsoiddarstellung des $[TcN(L^{Et})_4]^{2+}$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C41 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

$6.1.7 \quad [\mathrm{TcCl}_2(\mathrm{L^{Et}})_4]\mathrm{Cl}$

Tabelle 6.13: Kristallographische Daten	und Parameter der Strukturrechn	ung von $[TcCl_2(L^{Et})_4]Cl.$
Summenformel	$\mathrm{C}_{36}\mathrm{H}_{64}\mathrm{Cl}_3\mathrm{N}_8\mathrm{Tc}$	
M (g/mol)	813.30	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Tetragonal, $I\overline{4}2d$	
Elementarzelle	${ m a}{=}\;19.965(1)~{ m \AA}$	$lpha=90^{\circ}$
	${ m b}{=}\;19.965(1)~{ m \AA}$	$eta = 90^\circ$
	c=22.368(1) Å	$\gamma = 90^{\circ}$
Volumen	$8915.8(7) \text{ Å}^3$	
Z	8	
Berechnete Dichte	$1.212 \mathrm{g/cm^3}$	
Linearer Absorptionskoeffizient	0.535 mm^{-1}	
F(000)	3440	
Kristallgröße	$0.71 \ge 0.55 \ge 0.35 \text{ mm}^3$	
Theta-Bereich	$1.37-26.73^\circ$	
Indizes	$-25 \le h \le 25, -25 \le k \le 19, -28 \le$	$l \leq 28$
Zahl der gemessenen Reflexe	34576	
Zahl der unabhängigen Reflexe	4735 [R(int)= 0.1118]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	219	
Goof	0.979	
$R_1 / wR_2 [I > 2 sigma(I)]$	R1 = 0.0419, wR2 = 0.1194	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0488, wR2 = 0.1288	
Restelektronendichte	1.804 und -0.957 e \cdot Å $^{-3}$	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 86 [141]	

	Х	У	Z	E(eq)
Tc(1)	2402(1)	2500	1250	20(1)
$\operatorname{Cl}(1)$	2385(1)	1462(1)	1750(1)	29(1)
C(1)	1626(2)	2888(2)	1867(2)	23(1)
N(2)	1617(2)	2855(2)	2482(1)	26(1)
C(3)	1058(2)	3170(2)	2720(2)	32(1)
C(4)	687(2)	3396(2)	2250(2)	29(1)
N(5)	1047(2)	3222(2)	1736(2)	25(1)
C(6)	2104(2)	2507(3)	2869(2)	33(1)
$\mathrm{C}(7)$	1811(3)	1870(3)	3132(2)	51(1)
C(8)	796(2)	3383(2)	1140(2)	27(1)
C(9)	807(3)	4136(2)	1017(2)	39(1)
C(10)	955(2)	3278(3)	3374(2)	43(1)
C(11)	25(2)	3735(2)	2244(2)	38(1)
C(21)	3212(2)	2860(2)	1848(2)	25(1)
N(22)	3793(2)	2542(2)	2004(1)	28(1)
C(23)	4209(2)	2947(2)	2347(2)	34(1)
C(24)	3893(2)	3541(2)	2410(2)	29(1)
N(25)	3285(2)	3477(2)	2108(2)	26(1)
C(26)	3976(2)	1844(2)	1877(2)	37(1)
C(27)	3907(4)	1404(3)	2435(3)	63(2)
C(28)	2791(2)	4028(2)	2105(2)	31(1)
C(29)	3025(3)	4639(2)	1757(3)	45(1)
C(30)	4896(2)	2742(3)	2548(3)	51(1)
C(31)	4097(3)	4143(2)	2748(2)	39(1)
$\operatorname{Cl}(2)$	2500	4143(1)	-6250	33(1)

Tabelle 6.14: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von [TcCl₂(L^{Et})₄]Cl.

Abbildung 6.7: Ellipsoiddarstellung des $[TcCl_2(L^{Et})_4]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C21 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

$6.1.8 \quad [\mathrm{TcN}(\mathrm{L^{Et}})_2(\mathrm{OSiMe_2OSiMe_2O})]$

'	Tabelle 6.15:	Kristallographische	Daten und	Parameter	der S	Strukturrechnung	von
	$[TcN(L^{Et})_2($	$OSiMe_2OSiMe_2O$].					

Summenformel	$\mathrm{C}_{22}\mathrm{H}_{44}\mathrm{N}_{5}\mathrm{O}_{3}\mathrm{Si}_{2}\mathrm{Tc}$	
M (g/mol)	580.80	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/n$	
Elementarzelle	$a = 10.057(2) \text{ \AA}$	$lpha=90^\circ$
	b = 18.112(3) Å	$\beta = 95.44(1)^{\circ}$
	$ m c=15.597(3)~{ m \AA}$	$\gamma = 90^{\circ}$
Volumen	$2828.2(9) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.364 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.625 mm^{-1}	
F(000)	1224	
Kristallgröße	$0.58 \ge 0.43 \ge 0.43 \ \mathrm{mm^3}$	
Theta-Bereich	$2.25-30.55^\circ$	
Indizes	-14≤h≤14, -25≤k≤25, -19≤	$\leq l \leq 22$
Zahl der gemessenen Reflexe	34332	
Zahl der unabhängigen Reflexe	8631 [R(int)= 0.0228]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	298	
Goof	1.071	
$R_1 / wR_2 [I > 2sigma(I)]$	R1 = 0.0296, wR2 = 0.0790	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0360, wR2 = 0.0842	
Restelektronendichte	0.741 und -0.768 e \cdot $\mathrm{\AA^{-3}}$	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SHELXS 97 [141]	

[ICIN(L	$)_2(OSIMe_2OSIMe_2O)].$			
	Х	У	Z	E(eq)
Tc	4848(1)	670(1)	7003(1)	13(1)
N(10)	3520(2)	333(1)	6476(1)	19(1)
C(1)	5031(2)	-101(1)	8035(1)	15(1)
N(2)	4243(2)	-679(1)	8224(1)	16(1)
C(3)	4702(2)	-1008(1)	9013(1)	18(1)
C(4)	5799(2)	-628(1)	9322(1)	18(1)
N(5)	5988(2)	-76(1)	8716(1)	16(1)
C(6)	2975(2)	-893(1)	7755(1)	20(1)
C(7)	1791(2)	-529(1)	8126(1)	26(1)
C(8)	7079(2)	459(1)	8811(1)	21(1)
C(9)	8422(2)	123(1)	8658(2)	31(1)
C(10)	4059(2)	-1671(1)	9364(1)	25(1)
C(11)	6671(2)	-722(1)	10144(1)	25(1)
C(21)	6376(2)	130(1)	6377(1)	16(1)
N(22)	6351(2)	-516(1)	5927(1)	17(1)
C(23)	7626(2)	-707(1)	5711(1)	19(1)
C(24)	8468(2)	-172(1)	6034(1)	20(1)
N(25)	7684(2)	345(1)	6425(1)	18(1)
C(26)	5177(2)	-986(1)	5716(1)	20(1)
C(27)	5147(2)	-1634(1)	6337(1)	25(1)
C(28)	8213(2)	1062(1)	6727(1)	22(1)
C(29)	8416(2)	1575(1)	5980(2)	29(1)
C(30)	7886(2)	-1385(1)	5207(1)	24(1)
C(31)	9956(2)	-111(1)	6067(1)	27(1)
O(1)	5387(1)	1606(1)	6368(1)	19(1)
$\operatorname{Si}(1)$	5121(1)	2465(1)	6535(1)	18(1)
O(3)	3738(1)	2584(1)	7013(1)	21(1)

Tabelle 6.16: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von $[TcN(L^{Et})_2(OSiMe_2OSiMe_2O)].$

	х	У	\mathbf{Z}	E(eq)	
Si(2)	3408(1)	2075(1)	7847(1)	16(1)	
O(2)	4429(1)	1391(1)	7966(1)	18(1)	
C(46)	6518(2)	2900(1)	7239(2)	34(1)	
C(47)	4913(2)	2982(1)	5491(1)	27(1)	
C(48)	3616(2)	2678(1)	8822(1)	23(1)	
C(49)	1633(2)	1767(1)	7641(1)	26(1)	

Abbildung 6.8: Ellipsoid darstellung von $[\rm TcN(L^{Et})_2(\rm OSiMe_2OSiMe_2O)].$ Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.1.9 \quad [TcN(L^{Et})(PMe_2Ph)(OSiMe_2OSiMe_2O)]$

Summenformel	$C_{21}H_{39}N_3O_3PSi_2Tc$	
M (g/mol)	566.70	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/n$	
Elementarzelle	a=9.294(2) Å	$lpha=90^{\circ}$
	b=35.556(7) Å	$\beta = 115.40(1)^{\circ}$
	c=9.554(1) Å	$\gamma = 90^{\circ}$
Volumen	2852.0(9) Å ³	
Ζ	4	
Berechnete Dichte	$1.320~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.669 mm^{-1}	
F(000)	1184	
Kristallgröße	$0.5 \ge 0.45 \ge 0.4 \ \mathrm{mm}^3$	
Theta-Bereich	$3.34-24.99^\circ$	
Indizes	$-1 \le h \le 11, 0 \le k \le 42, -11 \le l \le 2$	10
Zahl der gemessenen Reflexe	5670	
Zahl der unabhängigen Reflexe	4794 [R(int)= 0.1107]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	280	
Goof	0.863	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0602, wR2 = 0.1325	
R_1 / wR_2 (alle Reflexe)	R1 = 0.1452, wR2 = 0.1997	
Restelektronendichte	0.665 und -0.719 e \cdot Å^{-3}	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.17: Kristallographische Daten und Parameter der Strukturrechnung von $[TcN(L^{Et})(PMe_2Ph)(OSiMe_2OSiMe_2O)].$

		20)j.			
	X	У	Z	E(eq)	
Tc	3799(1)	1199(1)	5578(1)	47(1)	
N(10)	4960(11)	1217(3)	4764(10)	76(3)	
Р	5424(3)	754(1)	7454(3)	61(1)	
C(21)	4814(12)	712(3)	9014(11)	59(3)	
C(22)	5622(13)	892(3)	10414(13)	72(3)	
C(23)	5050(15)	888(4)	11537(14)	83(4)	
C(24)	3652(17)	706(4)	11259(16)	88(4)	
C(25)	2812(18)	528(4)	9848(17)	94(4)	
C(26)	3358(14)	531(3)	8738(14)	79(3)	
C(27)	5349(17)	279(3)	6711(14)	97(4)	
C(28)	7536(12)	862(4)	8371(14)	93(4)	
C(1)	4633(10)	1639(2)	7142(10)	45(2)	
N(2)	5855(8)	1891(2)	7470(9)	53(2)	
$\mathrm{C}(3)$	5957(12)	2129(3)	8648(12)	60(3)	
C(4)	4822(11)	2041(3)	9067(11)	56(2)	
N(5)	4018(8)	1737(2)	8143(9)	47(2)	
C(6)	6838(12)	1905(3)	6630(15)	74(3)	
$\mathrm{C}(7)$	6072(15)	2130(4)	5161(16)	92(4)	
$\mathrm{C}(8)$	2645(10)	1552(3)	8198(11)	53(2)	
C(9)	1143(12)	1781(3)	7428(13)	70(3)	
C(10)	7222(13)	2439(3)	9275(16)	88(4)	
C(11)	4490(15)	2191(4)	10367(14)	85(4)	
O(2)	1835(7)	1536(2)	4498(7)	56(2)	
Si(2)	379(3)	1495(1)	2848(3)	50(1)	
O(3)	-249(8)	1057(2)	2524(7)	68(2)	
Si(1)	404(4)	714(1)	3770(4)	70(1)	
O(1)	2221(8)	765(2)	4907(8)	75(2)	
C(46)	-1296(13)	1790(4)	2781(14)	82(4)	
C(47)	872(15)	1623(3)	1223(13)	79(3)	
C(48)	-756(19)	703(6)	4940(20)	145(8)	
C(49)	86(18)	285(4)	2607(18)	125(6)	

Tabelle 6.18: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von $[TcN(L^{Et})(PMe_2Ph)(OSiMe_2OSiMe_2O)].$

Abbildung 6.9: Ellipsoiddarstellung von $[TcN(L^{Et})(PMe_2Ph)(OSiMe_2OSiMe_2O)]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

6.2 Re-Komplexe

6.2.1 $[{ m ReO}_2({ m L}^{ m i-Pr})_4][{ m ReO}_4] \cdot 1.5 ~{ m THF}$

Tabelle 6.19: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReO_2(L^{i-Pr})_4}][{\rm ReO_4}]$ · 1.5 THF.

Summenformel	$C_{50}H_{92}N_8O_{7.5}Re_2$	
M (g/mol)	1297.72	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=12.311(5) Å	$\alpha = 100.403(5)^{\circ}$
	$b = 16.525(5) \text{ \AA}$	$\beta = 97.834(5)^{\circ}$
	c= 16.743(5) Å	$\gamma = 106.272(5)^\circ$
Volumen	$3152(2) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.367~\mathrm{g/cm^3}$	
Linearer Absorptionskoeffizient	3.885 mm^{-1}	
F(000)	1316	
Kristallgröße	$0.17 \ge 0.25 \ge 0.42 \text{ mm}^3$	
Theta-Bereich	$1.26-30.56^\circ$	
Indizes	$-16 \le h \le 17, -23 \le k \le 23, -23 \le$	$l \leq 23$
Zahl der gemessenen Reflexe	39568	
Zahl der unabhängigen Reflexe	18931 [R(int)= 0.0213]	
Absorptionskorrektur	semiempirisch (SADABS)	
T_{min}, T_{max}	0.798197, 1	
Zahl der verfeinerten Parameter	686	
Goof	1.095	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0370, wR2 = 0.1117	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0483, wR2 = 0.1187	
Restelektronendichte	2.888 und -0.719 e \cdot Å^{-3}	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SIR 97 [140]	

$[\text{ReO}_2(\text{L}^{})_4]$	$[[\text{ReO}_4] \cdot 1.5 \text{ I HF}.$			
	Х	У	Z	E(eq)
$\operatorname{Re}(1)$	7700(1)	$186\overline{1(1)}$	$750\overline{1(1)}$	20(1)
O(1)	6462(2)	1422(2)	6667(2)	29(1)
O(2)	8925(2)	2295(2)	8328(2)	31(1)
$\mathrm{C}(1)$	8475(3)	2889(2)	6868(2)	25(1)
N(2)	8389(3)	2838(2)	6035(2)	26(1)
$\mathrm{C}(3)$	9014(4)	3620(3)	5874(3)	35(1)
C(4)	9513(4)	4175(3)	6624(3)	40(1)
N(5)	9160(3)	3723(2)	7225(2)	30(1)
C(6)	9102(5)	3804(3)	5040(3)	54(1)
$\mathrm{C}(7)$	10304(6)	5095(3)	6790(4)	66(2)
C(8)	7734(3)	2049(2)	5387(2)	29(1)
C(9)	8513(4)	1645(3)	4929(3)	41(1)
C(10)	6790(4)	2198(3)	4805(3)	44(1)
C(11)	9478(4)	4092(3)	8133(3)	37(1)
C(12)	10769(5)	4301(3)	8460(3)	51(1)
C(13)	9036(5)	4856(3)	8388(3)	51(1)
C(21)	6823(3)	2713(2)	8153(2)	24(1)
N(22)	6084(3)	3101(2)	7805(2)	31(1)
C(23)	5703(4)	3580(3)	8418(3)	40(1)
C(24)	6210(4)	3499(3)	9154(3)	39(1)
N(25)	6891(3)	2962(2)	8988(2)	29(1)
C(26)	4846(6)	4067(4)	8255(4)	65(2)
C(27)	6112(6)	3919(4)	10008(3)	63(2)
C(28)	5759(4)	3027(3)	6899(3)	35(1)
C(29)	4488(4)	2534(4)	6554(4)	55(1)
C(30)	6163(5)	3900(3)	6666(3)	51(1)
C(31)	7584(3)	2683(3)	9613(2)	31(1)
C(32)	6853(4)	2141(3)	10111(3)	43(1)
C(33)	8580(5)	3449(3)	10162(3)	50(1)
C(41)	6948(3)	835(2)	8150(2)	24(1)

Tabelle 6.20: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[\text{ReO}_2(L^{i-Pr})_4][\text{ReO}_4] \cdot 1.5$ THF.

	X	У	Z	E(eq)
N(42)	5816(3)	474(2)	8167(2)	27(1)
C(43)	5682(4)	-139(3)	8656(3)	36(1)
C(44)	6752(4)	-140(3)	8967(3)	38(1)
N(45)	7515(3)	444(2)	8639(2)	30(1)
C(46)	4534(5)	-671(4)	8802(4)	57(1)
C(47)	7080(6)	-639(4)	9576(4)	62(2)
C(48)	4858(3)	714(3)	7732(2)	32(1)
C(49)	4138(4)	1043(4)	8310(3)	47(1)
C(50)	4107(4)	-27(3)	6998(3)	48(1)
C(51)	8791(4)	609(3)	8785(3)	37(1)
C(52)	9122(5)	-187(4)	8449(3)	50(1)
C(53)	9362(5)	1021(4)	9700(3)	54(1)
C(61)	8585(3)	1010(2)	6866(2)	25(1)
N(62)	8106(3)	176(2)	6405(2)	27(1)
C(63)	8967(4)	-158(3)	6141(3)	36(1)
C(64)	9983(4)	474(3)	6449(3)	36(1)
N(65)	9745(3)	1187(2)	6884(2)	29(1)
C(66)	8764(5)	-1065(3)	5652(4)	53(1)
C(67)	11161(4)	390(4)	6415(4)	54(1)
C(68)	6850(3)	-296(2)	6204(2)	30(1)
C(69)	6361(4)	-427(3)	5279(3)	46(1)
C(70)	6548(4)	-1130(3)	6513(3)	45(1)
C(71)	10617(3)	2040(3)	7286(3)	35(1)
C(72)	11207(4)	2494(4)	6676(4)	53(1)
C(73)	11476(5)	1977(4)	8009(4)	55(1)
$Re(2A)^*$	8989(2)	1938(1)	12407(1)	55(1)
$Re(2B)^*$	9236(9)	2030(3)	12371(2)	57(1)
O(3)	8399(6)	1001(5)	11727(5)	127(3)
O(4)	10302(9)	1943(6)	12926(7)	216(6)
O(5)	9314(7)	2760(5)	11856(5)	131(3)
O(6)	8142(11)	2116(6)	13033(5)	190(5)
O(81)**	3377(18)	3553(10)	4777(14)	169(9)

Kristallographischer Anhang

	v	V	7	E(eq)
<u>C(89)**</u>	2200(20)	$\frac{y}{3647(17)}$	5068(15)	176(15)
C(02) C(02)**	2290(30)	5047(17)	4084(17)	170(10) 140(10)
$C(03)^{**}$	2190(20)	4409(10)	4904(17)	140(10)
C(84)**	2096(16)	4113(12)	4252(15)	102(6)
$C(85)^{**}$	2946(16)	3766(13)	3980(11)	93(5)
$O(86)^{**}$	3101(13)	3494(12)	203(10)	126(5)
$C(87)^{**}$	3290(20)	2926(13)	540(20)	153(13)
$C(88)^{**}$	2670(30)	2890(17)	1239(17)	167(13)
$C(89)^{**}$	2230(30)	3420(20)	1300(17)	204(19)
$C(90)^{**}$	2200(20)	3580(20)	484(13)	139(10)
$O(91)^{**}$	6417(16)	3409(11)	12189(9)	142(6)
$C(92)^{**}$	5830(19)	2926(13)	12775(13)	112(7)
$C(93)^{**}$	5920(30)	3650(20)	13379(14)	183(16)
$C(94)^{**}$	5843(19)	4307(13)	13017(10)	100(6)
$C(95)^{**}$	6303(14)	4192(9)	12350(10)	76(4)

* Diese Atome befinden sich zu 50% auf fehlgeordneten Positionen.

 $\ast\ast$ Die Positionen dieser Atome sind nur zu 50% besetzt.

Abbildung 6.10: Ellipsoiddarstellung des $[\text{ReO}_2(L^{i-Pr})_4]^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C21 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

$\textbf{6.2.2} \quad [\textbf{ReNCl}(\textbf{L^{Et}})_4]\textbf{Cl} \cdot \textbf{C}_6\textbf{H}_6$

$\operatorname{RenCl}(L^{-2})_4] Cl \cdot C_6 \Pi_6.$			
Summenformel	$\mathrm{C}_{42}\mathrm{H}_{70}\mathrm{Cl}_{2}\mathrm{N}_{9}\mathrm{Re}$		
M (g/mol)	958.17		
Messtemperatur	173(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	Tetragonal, $I\overline{4}2d^*$		
Elementarzelle	${ m a}{=}~20.012(1)~{ m \AA}$	$lpha=90^\circ$	
	${ m b}{=}~20.012(1)~{ m \AA}$	$eta = 90^\circ$	
	c=22.580(1) Å	$\gamma = 90^\circ$	
Volumen	9042.3(4) Å ³		
Z	8		
Berechnete Dichte	$1.408 \mathrm{~g/cm^3}$		
Linearer Absorptionskoeffizient	2.845 mm^{-1}		
F(000)	3952		
Kristallgröße	$0.08 \ge 0.06 \ge 0.05 \ \mathrm{mm^3}$		
Theta-Bereich	$3.54-29.27^\circ$		
Indizes	-27≤h≤27, -27≤k≤22, -30≤	$l \leq 30$	
Zahl der gemessenen Reflexe	43246		
Zahl der unabhängigen Reflexe	$6049 \; [R(int) = 0.0871]$		
Absorptionskorrektur	numerisch (Integration)		
T_{min}, T_{max}	0.6309, 0.7647		
Zahl der verfeinerten Parameter	276		
Goof	1.034		
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0300, wR2 = 0.0610		
$ m R_1 \ / \ wR_2$ (alle Reflexe)	R1 = 0.0361, wR2 = 0.0625		
Flack-Parameter	0.013(8)		
Restelektronendichte	0.584 und -1.078 e $\cdot \mbox{\AA}^{-3}$		
Diffraktometer	IPDS, STOE		
Programm zur Strukturlösung	SIR 97 [140]		

Tabelle 6.21: Kristallographische Daten und Parameter der Strukturrechnung von $[ReNCl(L^{Et})_4]Cl \cdot C_6H_6.$

* Das es sich hier bei um die richtige Raumgruppe handelt wurde durch Strukturlösung und -verfeinerung in der nicht-isomorphen Raumgruppe $I\overline{4}$ überprüft.

[nenci(L)	$_{4}$ $OI \cdot O_{6}$ OI_{6} .			
	x	У	Z	E(eq)
$\operatorname{Re}(1)$	2500	7641(1)	8750	23(1)
$N(10)^{*}$	1747(2)	7658(2)	8389(2)	9(1)
$Cl(1)^*$	1404(1)	7655(1)	8232(1)	56(1)
C(1)	2855(2)	6851(2)	8154(2)	24(1)
N(2)	3464(2)	6780(2)	7892(1)	25(1)
C(3)	3504(2)	6194(2)	7564(2)	30(1)
C(4)	2917(2)	5881(2)	7620(2)	35(1)
N(5)	2520(2)	6287(1)	7976(1)	29(1)
C(6)	4024(2)	7252(2)	7930(2)	31(1)
$\mathrm{C}(7)$	4571(2)	6997(3)	8338(3)	58(2)
$\mathrm{C}(8)$	1811(2)	6129(2)	8104(2)	37(1)
C(9)	1362(3)	6305(5)	7587(3)	71(2)
C(10)	4104(2)	6006(2)	7207(2)	40(1)
C(11)	2684(3)	5220(2)	7384(2)	53(1)
C(21)	2868(2)	8411(2)	8139(2)	24(1)
N(22)	3224(2)	8975(1)	8266(2)	24(1)
C(23)	3392(2)	9323(2)	7755(2)	27(1)
C(24)	3153(2)	8967(2)	7297(2)	29(1)
N(25)	2834(2)	8413(1)	7536(1)	26(1)
C(26)	3409(2)	9207(2)	8855(2)	28(1)
C(27)	4144(2)	9116(3)	8981(2)	49(1)
C(28)	2470(2)	7938(2)	7159(2)	34(1)
C(29)	1798(3)	8216(3)	6965(3)	56(1)
C(30)	3739(2)	9988(2)	7760(2)	38(1)
C(31)	3249(2)	9058(2)	6646(2)	39(1)
$C(41)^{*}$	4844(12)	-458(11)	867(10)	93(9)
$C(42)^{*}$	4611(16)	-810(20)	1324(12)	430(50)
$C(43)^{*}$	4777(12)	-276(15)	1655(14)	124(14)

Tabelle 6.22: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[\text{ReNCl}(L^{\text{Et}})_{4}]\text{Cl} \cdot C_{6}H_{6}$.
				Re-Komplexe
	х	У	Z	E(eq)
$C(46)^*$	5110(20)	114(13)	665(8)	107(13)
$C(44)^{*}$	5090(20)	316(19)	1635(15)	180(20)
$C(45)^{*}$	5191(17)	580(11)	1094(10)	131(14)
$\operatorname{Cl}(21)$	2500	10890(1)	8750	33(1)

* Die Positionen dieser Atome sind nur zu 50% besetzt. N10 konnte aufgrund der Fehlordnung nicht anisotrop verfeinert werden. Das es sich dabei um eine reale Fehlordnung und kein Raumgruppenproblem handelt, wurde durch Strukturlösung und -verfeinerung in der nicht-isomorphen Raumgruppe I $\overline{4}$ überprüft.

Abbildung 6.11: Ellipsoid darstellung des $[{\rm ReNCl}({\rm L}^{\rm Et})_4]^+$ -Kations. Die Schwingung sellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.3 \quad [\{\mathrm{ReN}(\mathrm{PMe_2Ph})_3\}\{\mathrm{ReO_3N}\}]_2 \cdot 4\mathrm{MeOH}$

Summenformel	$\rm C_{52}H_{82}N_4O_{10}P_6Re_4$	
${ m M}~{ m (g/mol)}$	1853.84	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/c$	
Elementarzelle	a=13.220(1) Å	$lpha=90^{\circ}$
	b=21.641(1) Å	$eta = 95.86(1)^\circ$
	c=11.394(1) Å	$\gamma = 90^\circ$
Volumen	$3242.7(4) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.899 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	7.643 mm^{-1}	
F(000)	1784	
Kristallgröße	$0.2 \ge 0.1 \ge 0.1 \ \mathrm{mm^3}$	
Theta-Bereich	$3.12-29.22^\circ$	
Indizes	-18≤h≤17, -29≤k≤29, -14≤	$\leq l \leq 15$
Zahl der gemessenen Reflexe	64400	
Zahl der unabhängigen Reflexe	8745 [R(int)= 0.0613]	
Absorptionskorrektur	numerisch (Integration)	
T_{min}, T_{max}	0.701, 1.000	
Zahl der verfeinerten Parameter	351	
Goof	1.039	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0260, wR2 = 0.0644	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0304, wR2 = 0.0665	
Restelektronendichte	1.178 und -2.064 e \cdot Å^{-3}	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.23: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReN(PMe_2Ph)_3} \{ {\rm ReO_3N} \}]_2$ · 4MeOH.

	X	у	Z	E(eq)	
$\operatorname{Re}(1)$	-8966(1)	147(1)	-2498(1)	15(1)	
$\operatorname{Re}(2)$	-8481(1)	-408(1)	-5704(1)	16(1)	
P(1)	-9610(1)	-896(1)	-2159(1)	18(1)	
P(2)	-8525(1)	1201(1)	-3073(1)	19(1)	
P(3)	-7187(1)	-114(1)	-1898(1)	22(1)	
O(1)	-8453(2)	-179(1)	-4193(2)	22(1)	
O(3)	-7566(2)	9(1)	-6386(2)	28(1)	
O(4)	-8205(2)	-1196(1)	-5768(2)	26(1)	
N(2)	-9660(2)	-275(1)	-6463(3)	20(1)	
N(10)	-9164(2)	373(1)	-1139(3)	24(1)	
C(1)	-9019(2)	-1324(2)	-901(3)	21(1)	
C(2)	-8834(3)	-1017(2)	174(3)	27(1)	
C(3)	-8436(3)	-1334(2)	1179(4)	34(1)	
C(4)	-8221(3)	-1963(2)	1111(4)	35(1)	
C(5)	-8398(3)	-2269(2)	54(4)	33(1)	
C(6)	-8800(3)	-1954(2)	-956(4)	26(1)	
$\mathrm{C}(7)$	-9609(3)	-1408(2)	-3412(3)	29(1)	
C(8)	-10928(3)	-879(2)	-1837(3)	26(1)	
C(11)	-7672(3)	1618(2)	-1983(3)	22(1)	
C(12)	-6748(3)	1868(2)	-2244(4)	28(1)	
C(13)	-6151(3)	2198(2)	-1377(4)	37(1)	
C(14)	-6462(3)	2277(2)	-261(4)	38(1)	
C(15)	-7377(3)	2024(2)	-5(4)	32(1)	
C(16)	-7982(3)	1697(2)	-854(3)	26(1)	
C(17)	-9606(3)	1726(2)	-3220(4)	29(1)	
C(18)	-7975(3)	1277(2)	-4461(3)	28(1)	
C(21)	-6792(2)	-922(2)	-1865(3)	24(1)	
C(22)	-6448(3)	-1227(2)	-815(4)	32(1)	
C(23)	-6117(3)	-1838(2)	-847(5)	42(1)	
C(24)	-6114(3)	-2146(2)	-1911(5)	43(1)	

Tabelle 6.24: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[{ReN(PMe_2Ph)_3}]$ ReO₃N}]₂ · 4MeOH.

Kristallographischer Anhang

	Х	У	\mathbf{Z}	E(eq)	
C(25)	-6454(3)	-1845(2)	-2945(5)	39(1)	
C(26)	-6788(3)	-1240(2)	-2925(4)	31(1)	
C(27)	-6750(3)	176(2)	-438(4)	37(1)	
C(28)	-6261(3)	204(2)	-2810(4)	34(1)	
O(30)	-4802(3)	-1436(2)	-5630(4)	51(1)	
C(31)	-5677(4)	-1125(3)	-6108(6)	57(2)	
O(40)	-4078(3)	-768(2)	-3618(4)	58(1)	
C(41)	-3877(4)	-1075(3)	-2526(5)	57(1)	

Abbildung 6.12: Ellipsoiddarstellung von $[{ReN(PMe_2Ph)_3}{ReO_3N}]_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

Tabelle 6.25: Kristallographische Daten	und Parameter der Strukturrechnung von
$[{ReN(PMe_2Ph)_3}]{ReO_3N}]_2 \cdot 4MeOH.$	

$[\{\operatorname{ReN}(\operatorname{PMe}_2\operatorname{PII})_3\}\{\operatorname{ReO}_3\operatorname{N}\}]_2 \cdot 4\operatorname{MeOH}.$		
Summenformel	$C_{52}H_{82}N_4O_{10}P_6Re_4$	
M (g/mol)	1853.88	
Messtemperatur	193(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/c$	
Elementarzelle	a = 16.171(2) Å	$lpha=90^\circ$
	b=14.141(2) Å	$eta = 118.83(1)^\circ$
	c=15.816(2) Å	$\gamma = 90^{\circ}$
Volumen	$3168.4(7) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.943~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	7.822 mm^{-1}	
F(000)	1783	
Kristallgröße	$0.1 \ge 0.1 \ge 0.1 \ge 0.1 \ \mathrm{mm^3}$	
Theta-Bereich	$3.22-24.62^\circ$	
Indizes	-18≤h≤18, -16≤k≤16, -14≤	$l \leq 18$
Zahl der gemessenen Reflexe	12602	
Zahl der unabhängigen Reflexe	5216 [R(int)= 0.0910]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	351	
Goof	1.115	
$R_1 / wR_2 [I > 2 sigma(I)]$	R1 = 0.0439, wR2 = 0.1184	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0460, wR2 = 0.1204	
Restelektronendichte	4.866* und -2.233 e · Å^{-3}	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 97 [141]	

 \ast 1.025 Å vom Rheniumatom entfernt.

	$1)_3 \{ \{ \{ \{ \{ \{ \} \} \} \} \} \} \}$	leon.		
	x	У	Z	E(eq)
$\operatorname{Re}(1)$	2926(1)	206(1)	4507(1)	13(1)
$\operatorname{Re}(2)$	5329(1)	-1086(1)	6288(1)	14(1)
P(1)	2724(1)	-1076(1)	3378(1)	18(1)
P(2)	3314(1)	1600(1)	5575(1)	18(1)
P(3)	2283(1)	-663(1)	5392(1)	19(1)
O(1)	4197(3)	-538(3)	5635(3)	21(1)
O(2)	5810(4)	-838(4)	7521(3)	27(1)
O(3)	5204(4)	-2296(3)	6141(4)	27(1)
N(1)	3901(4)	698(4)	4107(4)	16(1)
N(10)	1882(4)	651(4)	3698(4)	22(1)
C(1)	1752(5)	-1911(5)	3023(5)	19(1)
C(2)	846(5)	-1533(5)	2690(5)	25(2)
C(3)	78(5)	-2124(6)	2404(5)	31(2)
C(4)	216(6)	-3088(6)	2489(6)	33(2)
C(5)	1105(6)	-3469(5)	2804(6)	31(2)
C(6)	1867(5)	-2868(5)	3067(5)	26(2)
$\mathrm{C}(7)$	2447(6)	-573(5)	2213(5)	29(2)
C(8)	3763(5)	-1807(5)	3730(6)	28(2)
C(11)	2367(5)	2082(5)	5774(5)	20(1)
C(12)	2545(6)	2468(5)	6637(6)	29(2)
C(13)	1806(7)	2855(6)	6755(6)	37(2)
C(14)	902(6)	2839(6)	6000(6)	40(2)
C(15)	713(6)	2480(6)	5115(6)	36(2)
C(16)	1448(5)	2093(5)	4995(6)	28(2)
C(17)	4302(5)	1461(5)	6778(5)	26(2)
C(18)	3601(6)	2626(5)	5062(6)	29(2)

Tabelle 6.26: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[{ReN(PMe_2Ph)_3}{ReO_3N}]_2 \cdot 4MeOH.$

	Х	У	Z	E(eq)
C(21)	2779(5)	-386(5)	6673(5)	23(2)
C(22)	3632(5)	-766(6)	7345(5)	28(2)
C(23)	4017(7)	-533(7)	8312(6)	40(2)
C(24)	3567(8)	80(7)	8611(7)	45(2)
C(25)	2704(8)	458(6)	7960(6)	41(2)
C(26)	2294(6)	227(5)	6986(6)	33(2)
C(27)	1018(5)	-507(7)	4890(6)	35(2)
C(28)	2441(7)	-1952(5)	5430(6)	39(2)
O(30)	1553(5)	-5473(5)	4220(5)	53(2)
C(31)	972(8)	-5070(8)	4540(8)	57(3)
O(40)	3401(5)	86(4)	676(4)	38(1)
C(41)	3748(7)	-867(5)	765(6)	40(2)

Abbildung 6.13: Ellipsoiddarstellung des [{ $ReN(PMe_2Ph)_3$ }{ ReO_3N }]₂ (2. Modifikation). Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.5 \quad [\{\mathrm{ReN}(\mathrm{PMe_2Ph})_3\}\{\mathrm{ReO_3N}\}]_2 \cdot 3\mathrm{MeOH} \cdot \mathrm{H_2O}$

	2	
Summenformel	$\rm C_{51}H_{78}N_4O_{10}P_6Re_4$	
M (g/mol)	1837.21	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Orthorhombisch, Pbca	
Elementarzelle	a=23.767(2) Å	$lpha=90^\circ$
	b= 21.458(2) Å	$eta = 90^\circ$
	c= 13.019(1) Å	$\gamma = 90^\circ$
Volumen	$6640(1) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.838 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	7.464 mm^{-1}	
F(000)	3527	
Kristallgröße	$0.2 \ge 0.2 \ge 0.2 \text{ mm}^3$	
Theta-Bereich	$3.24-29.34^\circ$	
Indizes	$0 \le h \le 32, -29 \le k \le 29, -17 \le l \le 10$	17
Zahl der gemessenen Reflexe	34207	
Zahl der unabhängigen Reflexe	$8982 \; [R(int) = 0.0381]$	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	362	
Goof	1.109	
$R_1 / wR_2 $ [I>2sigma(I)]	$R1{=}\;0.0381,wR2{=}\;0.0933$	
$ m R_1 \ / \ wR_2$ (alle Reflexe)	R1 = 0.0494, wR2 = 0.0969	
Restelektronendichte	1.616 und -2.151 e \cdot Å^{-3}	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.27: Kristallographische Daten und Parameter der Strukturrechnung von $[{ReN(PMe_2Ph)_3}{ReO_3N}]_2 \cdot 3MeOH \cdot H_2O.$

	m/3/{100/314/]2 · 014	1120.			
	Х	У	Z	E(eq)	
$\operatorname{Re}(1)$	1146(1)	650(1)	-5145(1)	20(1)	
$\operatorname{Re}(2)$	231(1)	-212(1)	-3231(1)	22(1)	
P(1)	655(1)	1585(1)	-4530(1)	25(1)	
P(2)	1589(1)	-363(1)	-5541(1)	25(1)	
P(3)	1371(1)	1117(1)	-6811(1)	23(1)	
N(2)	670(2)	172(2)	-4069(4)	23(1)	
O(2)	420(2)	386(2)	-6161(4)	30(1)	
O(3)	560(2)	-902(2)	-2834(4)	34(1)	
O(4)	121(2)	265(3)	-2158(4)	37(1)	
N(10)	1728(2)	890(3)	-4552(4)	28(1)	
C(11)	1016(3)	2314(3)	-4784(5)	28(1)	
C(12)	1576(3)	2370(3)	-4435(5)	33(1)	
C(13)	1868(3)	2919(4)	-4587(6)	38(2)	
C(14)	1619(4)	3413(3)	-5116(6)	40(2)	
C(15)	1080(4)	3365(3)	-5445(6)	40(2)	
C(16)	767(3)	2820(3)	-5273(6)	35(2)	
C(17)	602(4)	1591(3)	-3136(5)	38(2)	
C(18)	-59(3)	1691(4)	-4956(7)	41(2)	
C(21)	2328(3)	-292(3)	-5904(5)	28(1)	
C(22)	2541(3)	-510(3)	-6839(5)	33(1)	
C(23)	3118(3)	-410(4)	-7066(6)	40(2)	
C(24)	3463(3)	-116(4)	-6380(7)	45(2)	
C(25)	3252(3)	85(4)	-5453(6)	37(2)	
C(26)	2691(3)	4(3)	-5214(6)	31(1)	
C(27)	1259(3)	-860(4)	-6495(7)	43(2)	
C(28)	1644(3)	-858(3)	-4431(6)	38(2)	
C(31)	2012(3)	1577(3)	-6883(5)	27(1)	
C(32)	2527(3)	1282(4)	-6952(7)	40(2)	
C(33)	3029(3)	1623(4)	-7004(8)	48(2)	
C(34)	3005(4)	2269(4)	-7019(7)	47(2)	

Tabelle 6.28: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[{ReN(PMe_2Ph)_3}]$ ReO₃N}]₂ · 3MeOH · H₂O.

Kristallographischer Anhang

	х	У	Z	E(eq)
C(35)	2491(4)	2565(4)	-6975(7)	47(2)
C(36)	1992(3)	2228(3)	-6900(6)	35(2)
C(37)	1440(3)	567(3)	-7871(5)	36(2)
C(38)	831(3)	1629(3)	-7330(5)	32(1)
O(41)	4493(5)	918(5)	-4198(6)	110(4)
C(41)	4674(6)	856(7)	-5183(8)	74(3)
$O(61)^{*}$	4032(8)	2000(6)	-3605(11)	73(5)
$C(61)^{*}$	3643(10)	2121(11)	-4398(16)	69(6)
$O(51)^{*}$	4508(4)	2802(4)	-2115(8)	30(2)

 \ast Die Positionen dieser Atome sind nur zu 50% besetzt.

Abbildung 6.14: Ellipsoiddarstellung des Komplexmoleküls in [{ReN(PMe₂Ph)₃}{ReO₃N}]₂ \cdot 3MeOH \cdot H₂O. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

6.2.6 [{ReN(OH₂)(L^{Et})₂}₂O][ReO₃N]

Tabelle 6.29: Kristallographische Daten und Parameter der Strukturrechnung von $[\{{\rm ReN}({\rm OH}_2)(L^{\rm Et})_2\}_2{\rm O}][{\rm ReO}_3{\rm N}].$

Summenformel	$\mathrm{C}_{36}\mathrm{H}_{64}\mathrm{N}_{11}\mathrm{O}_{6}\mathrm{Re}_{3}$	
M (g/mol)	1305.58	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=9.729(1) Å	$lpha=76.61(1)^\circ$
	b= 10.278(2) Å	$eta = 73.21(1)^\circ$
	c=15.266(2) Å	$\gamma = 79.09(1)^{\circ}$
Volumen	$1409.5(3) \text{ Å}^3$	
Z	1	
Berechnete Dichte	$1.538~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	6.468 mm^{-1}	
F(000)	630	
Kristallgröße	$0.10 \ \mathrm{x} \ 0.04 \ \mathrm{x} \ 0.01 \ \mathrm{mm}^3$	
Theta-Bereich	$2.30-25.00^\circ$	
Indizes	$-11 \le h \le 10, -12 \le k \le 12, -16 \le$	$l \leq 18$
Zahl der gemessenen Reflexe	9382	
Zahl der unabhängigen Reflexe	4768 [R(int)= 0.1165]	
Absorptionskorrektur	numerisch (Integration)	
T_{min}, T_{max}	0.7029, 0.8239	
Zahl der verfeinerten Parameter	267	
Goof	1.136	
$R_1 / wR_2 $ [I>2sigma(I)]	R1= 0.0999, wR2= 0.2474	
R_1 / wR_2 (alle Reflexe)	R1 = 0.1415, wR2 = 0.2786	
Restelektronendichte	3.780* und -1.851 e \cdot Å^{-3}	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SIR 97 [140]	

 \ast 1.023 Å vom Rheniumatom entfernt.

$[\{\text{Ren}(OH_2)(L^2)\}]$	$^{-1})_{2}_{2}_{2}O_{1}[ReO_{3}N].$				
	х	У	Z	E(eq)	
$\operatorname{Re}(1)$	3606(1)	1389(1)	4753(1)	65(1)	
N(10)	1972(16)	894(19)	5321(10)	65(4)	
$O(1)^{*}$	5000	0	5000	78(6)	
O(2)	2863(13)	3466(11)	3979(10)	60(3)	
C(1)	3711(19)	761(19)	3434(12)	54(4)	
N(2)	2677(17)	471(18)	3157(11)	64(4)	
C(3)	3200(20)	100(30)	2298(15)	80(6)	
C(4)	4580(20)	210(30)	2037(13)	75(6)	
N(5)	4930(16)	630(17)	2729(9)	57(4)	
C(6)	1160(20)	450(30)	3644(17)	83(7)	
$\mathrm{C}(7)$	250(30)	1790(40)	3470(30)	135(14)	
C(8)	6300(20)	970(20)	2708(14)	61(5)	
C(9)	6570(30)	2400(30)	2160(20)	97(9)	
C(10)	2360(30)	-410(40)	1810(20)	111(10)	
C(11)	5660(30)	-90(40)	1172(17)	107(10)	
C(21)	3690(20)	2315(17)	5894(14)	58(5)	
N(22)	4854(19)	2654(16)	6010(13)	67(4)	
C(23)	4520(20)	3200(20)	6820(19)	77(6)	
C(24)	3110(30)	3240(20)	7190(16)	72(6)	
N(25)	2614(18)	2639(15)	6622(11)	57(4)	
C(26)	6310(20)	2540(20)	5390(20)	92(9)	
C(27)	6650(30)	3870(30)	4690(30)	137(16)	
C(28)	1070(20)	2510(20)	6796(15)	66(5)	
C(29)	250(30)	3670(30)	6310(20)	95(8)	
C(30)	5570(40)	3650(30)	7160(40)	133(14)	
C(31)	2110(40)	3700(30)	8058(18)	108(10)	
$Re(2)^{**}$	9832(3)	448(2)	9974(2)	81(1)	

Tabelle 6.30: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[{ReN(OH_2)(L^{Et})_2}_2O][ReO_3N].$

	х	У	\mathbf{Z}	E(eq)	
N(30)**	9460(80)	-720(60)	11080(50)	110(20)	
$O(31)^{**}$	11010(50)	1400(60)	10000(30)	135(19)	
$O(32)^{**}$	8440(60)	1580(70)	9640(50)	170(30)	
$O(33)^{**}$	10650(40)	-220(100)	9040(20)	170(40)	

* O1 konnte nicht anisotrop verfeinert werden.

 $\ast\ast$ Die Positionen dieser Atome sind nur zu 50% besetzt. N
30 konnte nicht anisotrop verfeinert werden.

Abbildung 6.15: Ellipsoiddarstellung des Komplex-Kations in $[{ReN(OH_2)(L^{Et})_2}_2O]$ - [ReO₃N]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

6.2.7 $[Re(NPh)Cl(L^{Et})_4](PF_6)_2$

() [] ()]		
Summenformel	$\mathrm{C}_{42}\mathrm{H}_{69}\mathrm{ClF}_{12}\mathrm{N}_{9}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	1211.65	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=13.414(5) Å	$lpha=80.206(5)^{\circ}$
	${ m b}{=}\;13.776(5)~{ m \AA}$	$eta{=}79.967(5)^\circ$
	c=16.066(5) Å	$\gamma = 66.879(5)^{\circ}$
Volumen	$2672(2) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.506~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	2.464 mm^{-1}	
F(000)	1228	
Kristallgröße	$0.44 \ge 0.22 \ge 0.18 \text{ mm}^3$	
Theta-Bereich	$3.034 - 27.619^{\circ}$	
Indizes	-19≤h≤15, -19≤k≤19, -23≤	$l \leq 21$
Zahl der gemessenen Reflexe	33120	
Zahl der unabhängigen Reflexe	16097 [R(int)= 0.0248]	
Absorptionskorrektur	semiempirisch (SADABS)	
T_{min}, T_{max}	0.745244, 1	
Zahl der verfeinerten Parameter	604	
Goof	0.935	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0343, wR2 = 0.0889	
R_1 / wR_2 (alle Reflexe)	R1= 0.0505, wR2= 0.0996	
Restelektronendichte	1.241 und -0.854 e \cdot Å $^{-3}$	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SIR 97 [140]	

Tabelle 6.31: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm Re}({\rm NPh}){\rm Cl}({\rm L}^{\rm Et})_4]({\rm PF}_6)_2.$

	/4](1 1 6/2.				
<u> </u>	X	У	Z	E(eq)	
$\operatorname{Re}(1)$	8116(1)	3174(1)	7524(1)	31(1)	
$\operatorname{Cl}(1)$	9052(1)	3710(1)	6223(1)	42(1)	
C(1)	6725(3)	3532(2)	6806(2)	37(1)	
N(2)	6707(3)	3201(2)	6066(2)	47(1)	
C(3)	5623(4)	3435(4)	5935(3)	65(1)	
C(4)	4962(4)	3924(4)	6590(3)	62(1)	
N(5)	5638(2)	3998(2)	7108(2)	45(1)	
C(6)	7645(4)	2697(3)	5454(2)	56(1)	
$\mathrm{C}(7)$	7739(5)	3444(4)	4659(3)	79(2)	
C(8)	5171(3)	4551(3)	7855(3)	57(1)	
C(9)	4609(4)	5749(4)	7662(4)	77(1)	
C(10)	5352(6)	3078(7)	5192(4)	117(3)	
C(11)	3748(4)	4242(5)	6797(4)	91(2)	
C(21)	7518(2)	4868(2)	7694(2)	35(1)	
N(22)	7210(2)	5756(2)	7117(2)	42(1)	
C(23)	7063(3)	6666(3)	7460(3)	53(1)	
C(24)	7262(3)	6364(3)	8270(3)	50(1)	
N(25)	7532(2)	5271(2)	8409(2)	40(1)	
C(26)	6971(3)	5820(3)	6243(2)	50(1)	
C(27)	7738(5)	6176(4)	5562(3)	71(1)	
C(28)	7690(3)	4687(3)	9248(2)	51(1)	
C(29)	6587(4)	4907(4)	9809(3)	73(1)	
C(30)	6675(6)	7767(4)	6998(4)	88(2)	
C(31)	7323(5)	7003(4)	8903(3)	73(1)	
C(41)	9584(2)	2880(2)	8124(2)	33(1)	
N(42)	10147(2)	3511(2)	8121(2)	40(1)	
C(43)	10924(3)	3074(3)	8688(3)	49(1)	
C(44)	10858(3)	2149(3)	9053(2)	47(1)	
N(45)	10046(2)	2028(2)	8703(2)	37(1)	
C(46)	10042(3)	4504(3)	7574(2)	46(1)	

Tabelle 6.32: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[\text{Re}(\text{NPh})\text{Cl}(\text{L}^{\text{Et}})_{4}](\text{PF}_{6})_{2}$.

	х	У	Z	E(eq)
C(47)	11007(4)	4357(4)	6871(3)	64(1)
C(48)	9765(3)	1092(3)	8944(2)	45(1)
C(49)	10680(4)	79(3)	8654(3)	62(1)
C(50)	11645(5)	3599(4)	8851(4)	78(2)
C(51)	11482(4)	1396(4)	9730(3)	67(1)
C(61)	8996(3)	1589(2)	7063(2)	36(1)
N(62)	10057(2)	1130(2)	6698(2)	42(1)
C(63)	10238(4)	166(3)	6430(2)	57(1)
C(64)	9303(4)	15(3)	6612(3)	57(1)
N(65)	8539(3)	877(2)	7017(2)	44(1)
C(66)	10965(3)	1502(3)	6620(2)	50(1)
C(67)	11408(4)	1766(4)	5707(3)	70(1)
C(68)	7450(3)	915(3)	7386(3)	54(1)
C(69)	7508(4)	139(4)	8180(3)	69(1)
C(70)	11369(5)	-588(4)	6090(4)	91(2)
C(71)	9034(6)	-882(4)	6433(3)	84(2)
N(1)	7417(2)	2784(2)	8435(2)	36(1)
C(81)	6831(3)	2438(3)	9146(2)	48(1)
C(82)	5910(3)	2240(4)	9058(3)	62(1)
C(83)	5391(5)	1845(5)	9780(4)	86(2)
C(84)	5735(5)	1653(5)	10541(4)	97(2)
C(85)	6631(5)	1881(4)	10629(3)	81(2)
C(86)	7193(4)	2277(3)	9934(2)	57(1)
P(1)	9013(1)	3049(1)	11664(1)	66(1)
F(1)	7994(4)	4114(3)	11564(4)	140(2)
F(2)	8946(4)	2763(4)	10781(3)	142(2)
F(3)	10020(4)	1970(3)	11741(3)	134(2)
F(4)	9167(7)	3351(5)	12502(4)	193(3)
F(5)	9761(4)	3631(4)	11198(4)	147(2)
F(6)	8278(5)	2471(4)	12126(5)	206(3)
P(2)	5779(1)	9049(1)	2639(2)	94(1)
F(7)	6619(9)	8166(6)	3107(10)	324(7)
F(8)	4935(6)	9980(6)	2101(7)	247(5)

IIC-IIOIIIDICAC

	х	У	\mathbf{Z}	E(eq)	
F(9)	6097(9)	9889(8)	2909(12)	374(10)	
F(10)	5356(7)	8296(5)	2380(7)	237(4)	
F(11)	4950(14)	9232(12)	3364(6)	349(7)	
F(12)	6588(11)	8970(17)	1934(11)	556(16)	

Abbildung 6.16: Ellipsoiddarstellung des $[\text{Re}(\text{NPh})\text{Cl}(\text{L}^{\text{Et}})_4]^{2+}$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C1 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

$\textbf{6.2.8} \quad [\text{Re}(\text{NPh})\text{Br}(\text{L}^{\text{Et}})_4](\text{PF}_6)_2 \cdot \textbf{0.5} \,\, \text{MeOH}$

Summenformel	$\rm C_{42.5}H_{71}BrF_{12}N_9O_{0.5}P_2Re$	
M (g/mol)	1272.13	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=13.444(5) Å	$lpha=80.199(5)^\circ$
	b=13.674(5) Å	$eta = 80.098(5)^\circ$
	c=16.141(5) Å	$\gamma = 66.365(5)^{\circ}$
Volumen	$2661(2) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.588 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	3.177 mm^{-1}	
F(000)	1282	
Kristallgröße	$0.27 \ge 0.16 \ge 0.08 \text{ mm}^3$	
Theta-Bereich	$2.74-24.00^\circ$	
Indizes	-15≤h≤15, -15≤k≤15, -18≤l	≤ 17
Zahl der gemessenen Reflexe	15598	
Zahl der unabhängigen Reflexe	$8054 \; [R(int) = 0.0442]$	
Absorptionskorrektur	numerisch (Integration)	
T_{min}, T_{max}	0.5331, 0.7561	
Zahl der verfeinerten Parameter	618	
Goof	1.128	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0797, wR2 = 0.1893	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0883, wR2 = 0.01947	
Restelektronendichte	2.634 und -2.601 e \cdot Å^{-3}	
Diffraktometer	IPDS, STOE	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.33: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm Re}({\rm NPh}){\rm Br}({\rm L}^{\rm Et})_4]({\rm PF}_6)_2\cdot 0.5$ MeOH.

	/4](110/2)			
	Х	У	Z	E(eq)
Re	6933(1)	6792(1)	7484(1)	32(1)
Br	6017(2)	6175(2)	8919(1)	83(1)
N(10)	7603(8)	7218(7)	6555(7)	36(2)
C(81)	8208(10)	7577(12)	5841(9)	48(3)
C(82)	7842(11)	7722(10)	5104(11)	54(4)
C(83)	8408(12)	8110(12)	4383(9)	57(4)
C(84)	9281(14)	8298(13)	4471(11)	68(5)
C(85)	9657(12)	8123(12)	5252(12)	62(4)
C(86)	9111(11)	7735(11)	5949(9)	50(3)
C(1)	5488(9)	7087(8)	6890(7)	30(2)
N(2)	5016(8)	7938(8)	6300(6)	36(2)
C(3)	4217(10)	7799(10)	5940(8)	43(3)
C(4)	4161(11)	6860(11)	6307(8)	45(3)
N(5)	4920(8)	6433(8)	6882(6)	36(2)
C(6)	5255(11)	8912(10)	6071(8)	42(3)
$\mathrm{C}(7)$	4339(12)	9917(10)	6366(9)	48(3)
C(8)	5006(11)	5450(10)	7455(9)	42(3)
C(9)	4088(13)	5608(13)	8155(10)	60(4)
C(10)	3579(12)	8565(12)	5249(9)	52(3)
C(11)	3468(14)	6321(13)	6140(11)	62(4)
C(21)	7535(9)	5075(9)	7294(7)	33(2)
N(22)	7478(8)	4687(8)	6585(6)	39(2)
C(23)	7729(10)	3606(10)	6707(8)	41(3)
C(24)	7958(10)	3273(10)	7520(9)	44(3)
N(25)	7840(9)	4173(8)	7863(7)	41(2)
C(26)	7313(11)	5292(10)	5732(8)	46(3)
C(27)	8386(12)	5110(12)	5178(9)	56(4)
C(28)	8103(13)	4083(13)	8736(8)	53(3)
C(29)	7280(30)	3770(20)	9435(12)	126(11)

Tabelle 6.34: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[\text{Re}(\text{NPh})\text{Br}(\text{L}^{\text{Et}})_4](\text{PF}_6)_2$.

Kristallographischer Anhang

	X	У	Z	E(eq)
C(30)	7655(13)	2956(12)	6070(10)	53(4)
C(31)	8330(16)	2135(12)	7981(11)	67(4)
C(41)	8337(9)	6416(10)	8179(8)	36(3)
N(42)	9425(8)	5930(9)	7848(7)	42(2)
C(43)	10133(12)	5955(12)	8365(10)	52(3)
C(44)	9510(13)	6445(12)	9036(10)	55(4)
N(45)	8422(9)	6718(8)	8911(7)	42(2)
C(46)	9839(11)	5369(11)	7072(9)	47(3)
C(47)	10377(12)	4172(12)	7256(11)	61(4)
C(48)	7498(12)	7233(11)	9539(9)	51(3)
C(49)	7454(18)	6466(14)	10352(10)	80(6)
C(50)	11317(13)	5667(14)	8127(13)	71(5)
C(51)	9850(18)	6712(19)	9761(13)	89(6)
C(61)	6070(11)	8375(10)	7967(7)	40(3)
N(62)	6501(9)	9128(8)	7995(7)	42(2)
C(63)	5766(12)	9984(10)	8413(9)	50(3)
C(64)	4821(12)	9823(11)	8601(9)	51(3)
N(65)	5012(8)	8846(8)	8327(6)	38(2)
C(66)	7589(11)	9088(11)	7608(10)	50(3)
C(67)	7538(13)	9856(11)	6811(10)	58(4)
C(68)	4123(11)	8462(10)	8399(8)	44(3)
C(69)	3659(16)	8222(15)	9317(11)	74(5)
C(70)	6016(16)	10904(13)	8561(10)	66(4)
C(71)	3735(16)	10562(13)	8976(12)	82(6)
P(1)	5998(3)	6985(3)	3323(3)	52(1)
F(1)	7014(8)	5882(7)	3454(7)	80(3)
F(2)	6058(9)	7288(9)	4216(7)	88(3)
F(3)	4970(9)	8092(8)	3244(7)	84(3)
F(4)	5889(12)	6675(11)	2461(9)	116(5)
F(5)	6773(11)	7586(9)	2901(10)	119(5)
F(6)	5211(8)	6393(9)	3800(9)	97(4)
P(2)	929(3)	8938(3)	7518(3)	60(1)

	х	У	\mathbf{Z}	E(eq)	
F(7)	-7(14)	9913(12)	6914(16)	175(9)	
F(8)	1839(16)	8056(14)	7937(18)	190(10)	
F(9)	1733(15)	9520(20)	7131(16)	187(10)	
F(10)	1340(20)	8420(30)	6680(20)	281(18)	
F(11)	520(40)	9540(30)	8230(20)	400(30)	
F(12)	249(18)	8246(14)	7560(20)	222(14)	
$O(99)^{*}$	-1410(30)	9660(30)	9460(20)	111(11)	
C(99)*	-940(70)	10040(120)	9980(50)	290(80)	

 \ast Die Positionen dieser Atome sind nur zu 50% besetzt.

Abbildung 6.17: Ellipsoiddarstellung des $[\text{Re}(\text{NPh})\text{Br}(\text{L}^{\text{Et}})_4]^{2+}$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C1 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

6.2.9 $[Re(NPh)(OH)(L^{Et})_4](PF_6)_2 \cdot 0.25 MeOH$

$110(111)(011)(11)(116)2 \cdot 0.25$ MeC)11.	
Summenformel	$\mathrm{C}_{42.25}\mathrm{H}_{71}\mathrm{F}_{12}\mathrm{N}_{9}\mathrm{O}_{1.25}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	1201.22	
Messtemperatur	293(2) K	
Wellenlänge	0.71069 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	a=13.096(3) Å	$lpha = 80.90(1)^\circ$
	b=13.812(4) Å	$eta = 80.50(2)^\circ$
	c=16.166(2) Å	$\gamma = 68.03(2)^{\circ}$
Volumen	$2660(1) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.500~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	2.428 mm^{-1}	
F(000)	1221	
Kristallgröße	$0.5 \ge 0.2 \ge 0.1 \text{ mm}^3$	
Theta-Bereich	$3.04-24.00^\circ$	
Indizes	$0 \le h \le 14, -14 \le k \le 15, -18 \le l \le 15$	<u>≤</u> 18
Zahl der gemessenen Reflexe	8709	
Zahl der unabhängigen Reflexe	$8087 \; [R(int) = 0.1853]$	
Absorptionskorrektur	semiempirisch (PSI-Scans)	
T_{min}, T_{max}	0.38931, 0.79231	
Zahl der verfeinerten Parameter	623	
Goof	1.077	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0610, wR2 = 0.1497	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0811, wR2 = 0.1609	
Restelektronendichte	3.527* und -2.483 e \cdot Å^{-3}	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SIR 97 [140]	

Tabelle 6.35: Kristallographische Daten und Parameter der Strukturrechnung von $[Re(NPh)(OH)(L^{Et})_4](PF_6)_2 \cdot 0.25$ MeOH.

 \ast 0.944 Å vom Rheniumatom entfernt.

	X	у	Z	E(eq)
Re	8139(1)	3118(1)	2547(1)	37(1)
C(1)	7574(7)	4770(7)	2728(5)	41(2)
N(2)	7548(6)	5204(6)	3452(4)	48(2)
C(3)	7335(9)	6284(8)	3301(7)	62(3)
C(4)	7188(10)	6557(8)	2474(7)	64(3)
N(5)	7322(6)	5636(6)	2139(5)	48(2)
C(6)	7667(9)	4654(8)	4283(6)	63(3)
$\mathrm{C}(7)$	6565(11)	4852(10)	4817(7)	81(4)
C(8)	7226(10)	5651(9)	1241(6)	65(3)
C(9)	8151(13)	5861(10)	653(7)	88(4)
C(10)	7370(12)	6943(11)	3913(9)	91(4)
C(11)	6876(15)	7623(10)	1989(10)	102(5)
C(21)	9611(7)	2838(6)	3170(5)	41(2)
N(22)	10066(6)	2002(6)	3749(4)	46(2)
C(23)	10931(8)	2126(8)	4065(6)	55(2)
C(24)	11027(8)	3031(8)	3693(6)	53(2)
N(25)	10209(6)	3442(6)	3154(4)	43(2)
C(26)	9774(8)	1068(8)	3979(6)	55(2)
C(27)	10660(10)	89(8)	3653(7)	67(3)
C(28)	10114(9)	4414(7)	2610(6)	54(2)
C(29)	11011(9)	4287(10)	1863(7)	71(3)
C(30)	11561(10)	1377(10)	4733(7)	73(3)
C(31)	11811(11)	3543(10)	3812(8)	82(4)
C(41)	8980(8)	1551(7)	2089(5)	48(2)
N(42)	8526(7)	832(6)	2031(5)	49(2)
C(43)	9278(10)	0(8)	1612(6)	61(3)
C(44)	10201(9)	191(8)	1406(6)	61(3)
N(45)	10026(6)	1136(6)	1702(4)	49(2)
C(46)	7400(8)	867(8)	2404(7)	60(3)
C(47)	7478(10)	102(10)	3206(8)	82(4)

Tabelle 6.36: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[\text{Re}(\text{NPh})(\text{OH})(\text{L}^{\text{Et}})_{4}](\text{PF}_{6})_{2} \cdot 0.25 \text{ MeOH}.$

Kristallographischer Anhang

	X	У	Z	E(eq)
C(48)	10913(8)	1553(7)	1596(6)	52(2)
C(49)	11207(11)	1953(10)	694(7)	76(3)
C(50)	8998(13)	-894(10)	1439(9)	85(4)
C(51)	11318(13)	-513(11)	1038(9)	99(5)
C(61)	6762(8)	3458(7)	1791(6)	50(2)
N(62)	5657(7)	3931(7)	2048(5)	60(2)
C(63)	5028(10)	3898(11)	1468(9)	80(4)
C(64)	5734(12)	3441(11)	825(9)	82(4)
N(65)	6785(8)	3170(7)	1027(5)	60(2)
C(66)	5174(8)	4466(9)	2803(7)	71(3)
C(67)	4687(11)	5672(10)	2630(9)	91(4)
C(68)	7799(12)	2659(9)	456(6)	75(3)
C(69)	8004(14)	3400(11)	-284(8)	100(5)
C(70)	3787(12)	4247(14)	1603(12)	119(6)
C(71)	5491(18)	3136(17)	26(12)	149(8)
N(10)	7414(6)	2723(6)	3446(5)	51(2)
C(81)	6815(8)	2392(8)	4150(6)	55(2)
C(82)	5859(8)	2198(8)	4067(7)	65(3)
C(83)	5295(10)	1836(11)	4753(10)	95(4)
C(84)	5687(13)	1651(13)	5527(9)	102(5)
C(85)	6573(11)	1862(10)	5627(8)	83(4)
C(86)	7159(9)	2221(9)	4938(6)	66(3)
O(1)	8938(5)	3573(5)	1499(3)	46(1)
P(1)	983(3)	6945(3)	3284(2)	82(1)
$\mathrm{F}(1)$	1127(15)	7249(11)	4131(9)	197(7)
F(2)	291(10)	6287(9)	3811(9)	162(5)
$\mathrm{F}(3)$	750(20)	6649(13)	2489(10)	247(10)
F(4)	1694(16)	7535(12)	2815(15)	262(10)
F(5)	2018(10)	5916(10)	3351(11)	194(7)
F(6)	-28(11)	7982(8)	3258(8)	161(5)
P(2)	4174(3)	905(3)	2267(4)	98(1)
F(7)	5104(13)	-34(14)	2631(16)	228(8)

	х	У	Z	E(eq)
F(8)	3185(13)	1838(15)	2032(17)	257(10)
F(9)	4665(17)	1618(11)	2461(19)	303(14)
F(10)	3440(20)	600(20)	2943(18)	380(20)
F(11)	4900(40)	820(30)	1548(19)	420(30)
F(12)	3933(19)	240(20)	1700(20)	302(14)
$O(2)^*$	6050(100)	-920(170)	200(70)	530(180)
C(99)*	6460(60)	210(70)	300(70)	150(40)

 \ast Die Positionen dieser Atome sind nur zu 25% besetzt.

Abbildung 6.18: Ellipsoiddarstellung des $[\text{Re}(\text{NPh})(\text{OH})(\text{L}^{\text{Et}})_4]^{2+}$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit sind nur die Kohlenstoffatome des Imidazolringes mit C21 vollständig benannt. Das in diesem Ring verwendete Schema gilt in gleicher Weise auch für die anderen Liganden.

$6.2.10 \quad [\mathrm{ReNCl}_2(\mathrm{PMe}_2\mathrm{Ph})_2(\mathrm{HL}^{\mathrm{Ph}})]$

$\operatorname{ReNCl}_2(\operatorname{PMe}_2\operatorname{Ph})_2(\operatorname{HL}^{-1})].$		
Summenformel	$\mathrm{C}_{36}\mathrm{H}_{37}\mathrm{Cl}_{2}\mathrm{N}_{4}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	844.74	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/c$	
Elementarzelle	a = 10.825(2) Å	$lpha=90^\circ$
	${ m b}{=}\;31.595(3)~{ m \AA}$	$\beta = 113.48(1)^{\circ}$
	c= 11.319(3) Å	$\gamma = 90^\circ$
Volumen	$3551(1) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.580~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	3.694 mm^{-1}	
F(000)	1680	
Kristallgröße	$0.22 \ \mathrm{x} \ 0.20 \ \mathrm{x} \ 0.18 \ \mathrm{mm}^3$	
Theta-Bereich	$3.24-24^\circ$	
Indizes	-12≤h≤11, -36≤k≤0, -1≤l≤	[12]
Zahl der gemessenen Reflexe	6427	
Zahl der unabhängigen Reflexe	5500 [R(int)= 0.0761]	
Absorptionskorrektur	empirisch (DIFABS)	
T_{min}, T_{max}	0.8321, 0.9772	
Zahl der verfeinerten Parameter	406	
Goof	0.957	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0574, wR2 = 0.1053	
R_1 / wR_2 (alle Reflexe)	R1 = 0.1725, wR2 = 0.1414	
Restelektronendichte	0.738 und -0.917 e \cdot Å $^{-3}$	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SIR 97 [140]	

Tabelle 6.37: Kristallographische Daten und Parameter der Strukturrechnung von $[ReNCl_2(PMe_2Ph)_2(HL^{Ph})].$

	$2^{1} 11/2(1112)$].			
	х	У	Z	E(eq)
$\operatorname{Re}(1)$	6604(1)	1178(1)	3649(1)	48(1)
N(10)	7529(9)	1596(3)	4773(13)	76(4)
$\operatorname{Cl}(1)$	7758(4)	1060(2)	2207(4)	94(2)
$\operatorname{Cl}(2)$	5217(4)	511(1)	2823(4)	79(1)
C(1)	5331(13)	1567(4)	2053(13)	45(3)
C(2)	3795(13)	1851(4)	211(13)	48(3)
N(1)	4346(10)	1472(3)	835(10)	48(3)
N(2)	5295(10)	1996(4)	2041(11)	53(3)
N(3)	4333(10)	2178(3)	924(11)	53(3)
C(11)	3938(13)	1058(4)	177(13)	50(4)
C(12)	2718(14)	925(5)	-16(15)	67(4)
C(13)	2322(19)	561(6)	-707(17)	85(6)
C(14)	3050(30)	332(6)	-1179(18)	112(9)
C(15)	4250(20)	475(7)	-951(18)	104(7)
C(16)	4759(16)	859(5)	-239(15)	66(4)
C(21)	6176(14)	2295(5)	2953(13)	53(4)
C(22)	7420(15)	2314(5)	3056(15)	70(4)
C(23)	8219(15)	2629(6)	3951(17)	78(5)
C(24)	7730(20)	2907(5)	4563(18)	90(6)
C(25)	6488(18)	2896(5)	4419(18)	87(6)
C(26)	5703(15)	2582(5)	3563(14)	62(4)
C(31)	2745(14)	1860(4)	-1155(15)	56(4)
C(32)	1569(18)	2026(5)	-1359(17)	79(5)
C(33)	566(17)	2058(6)	-2680(20)	97(6)
C(34)	850(20)	1918(6)	-3720(20)	98(6)
C(35)	1999(17)	1747(6)	-3555(17)	88(6)
C(36)	2947(15)	1732(5)	-2260(15)	75(5)
P(1)	8207(4)	685(1)	5183(4)	58(1)
C(41)	8298(14)	623(5)	6867(15)	58(4)
C(42)	8648(16)	955(5)	7762(17)	84(6)

Tabelle 6.38: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von [ReNCl₂(PMe₂Ph)₂(HL^{Ph})].

Kristallographischer Anhang

	Х	У	Z	E(eq)
C(43)	8646(19)	886(8)	9062(19)	107(7)
C(44)	8250(30)	509(9)	9370(20)	127(9)
C(45)	7910(30)	206(9)	8460(30)	169(12)
C(46)	7920(20)	261(7)	7250(20)	109(7)
C(47)	9831(14)	852(5)	5482(17)	98(6)
C(48)	8173(16)	157(4)	4575(16)	90(6)
P(2)	5185(4)	1214(2)	4818(4)	61(1)
C(51)	3492(13)	1318(4)	3775(13)	52(4)
C(52)	3108(15)	1742(5)	3438(17)	80(5)
C(53)	1790(20)	1826(7)	2690(20)	114(8)
C(54)	940(20)	1499(10)	2370(20)	124(10)
C(55)	1340(20)	1113(9)	2640(20)	137(10)
C(56)	2598(16)	1015(5)	3366(17)	79(5)
C(57)	5089(16)	781(6)	5836(17)	110(7)
C(58)	5617(15)	1653(6)	6015(17)	117(8)

Abbildung 6.19: Ellipsoiddarstellung von [ReNCl₂(PMe₂Ph)₂(HL^{Ph})]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.11 \quad [ReNCl(HL^{Ph})(L^{Ph})]$

$\operatorname{ReNCl}(\operatorname{HL}^{\operatorname{PII}})(\operatorname{L}^{\operatorname{PII}})].$		
Summenformel	$\mathrm{C}_{40}\mathrm{H}_{29}\mathrm{ClN}_{7}\mathrm{Re}$	
M (g/mol)	829.35	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$	
Elementarzelle	$a=10.524(2) \text{ \AA}$	$lpha=109.08(2)^\circ$
	b=12.225(2) Å	$eta = 100.20(2)^\circ$
	c= 14.538(3) Å	$\gamma = 96.85(1)^{\circ}$
Volumen	$1708.0(5) \text{ Å}^3$	
Z	2	
Berechnete Dichte	$1.613~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	3.676 mm^{-1}	
F(000)	820	
Kristallgröße	$0.2 \ge 0.1 \ge 0.05 \ {\rm mm}^3$	
Theta-Bereich	$3.34-28.04^\circ$	
Indizes	$-1 \le h \le 13, -16 \le k \le 16, -19 \le 1$	≤ 19
Zahl der gemessenen Reflexe	9401	
Zahl der unabhängigen Reflexe	8133 [R(int)= 0.0269]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	442	
Goof	1.033	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0563, wR2 = 0.1346	
R_1 / wR_2 (alle Reflexe)	R1= 0.0834, wR2= 0.1475	
Restelektronendichte	2.195 und -3.462* e · Å^{-3}	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SHELXS 97 [141]	

Tabelle 6.39: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReNCl}({\rm HL}^{\rm Ph})({\rm L}^{\rm Ph})].$

 \ast 0.819 Å vom Rheniumatom entfernt.

	J(L J].				
	х	У	Z	E(eq)	
$\operatorname{Re}(1)$	5291(1)	6058(1)	7500(1)	47(1)	
N(10)	4908(7)	6596(6)	6616(6)	70(2)	
$\operatorname{Cl}(1)$	4575(2)	7378(2)	8953(1)	58(1)	
C(1)	7223(6)	6908(5)	8175(5)	45(1)	
N(1)	7949(6)	7909(4)	8140(4)	47(1)	
C(11)	7397(7)	8646(5)	7655(5)	51(2)	
C(12)	6597(9)	9356(7)	8097(8)	71(2)	
C(13)	6127(11)	10088(8)	7656(11)	99(4)	
C(14)	6403(13)	10124(11)	6775(11)	108(4)	
C(15)	7195(16)	9433(11)	6370(9)	112(5)	
C(16)	7737(11)	8651(8)	6775(7)	80(3)	
N(2)	8143(5)	6535(5)	8713(4)	45(1)	
C(21)	7902(7)	5492(6)	8952(5)	50(1)	
C(22)	8829(8)	4808(7)	8925(6)	64(2)	
C(23)	8544(11)	3755(8)	9107(8)	80(3)	
C(24)	7397(12)	3457(8)	9329(8)	80(3)	
C(25)	6482(10)	4163(9)	9364(7)	78(2)	
C(26)	6732(8)	5201(7)	9191(6)	64(2)	
C(2)	9239(7)	8028(6)	8615(5)	49(1)	
C(31)	10333(8)	8955(6)	8740(5)	56(2)	
C(32)	10159(9)	10105(7)	8824(6)	66(2)	
C(33)	11266(11)	10967(7)	8992(6)	76(3)	
C(34)	12503(10)	10715(9)	9095(7)	81(3)	
C(35)	12675(9)	9599(10)	9003(8)	82(3)	
C(36)	11598(8)	8706(8)	8823(6)	67(2)	
N(3)	9387(6)	7188(5)	8973(4)	51(1)	
C(3)	5834(6)	4523(5)	6687(5)	46(1)	
N(4)	6806(5)	4171(4)	6185(4)	46(1)	
C(41)	7814(7)	4929(5)	6014(5)	48(1)	
C(42)	7514(9)	5388(7)	5269(6)	61(2)	
C(43)	8525(11)	6107(8)	5128(6)	73(2)	

Tabelle 6.40: Atomkoordinaten (x 10^4) und isotrope Temperaturparameter (Å²x 10^3) von [ReNCl(HL^{Ph})(L^{Ph})].

	Х	У	Z	E(eq)
C(44)	9770(10)	6340(7)	5696(7)	70(2)
C(45)	10039(9)	5894(7)	6425(7)	69(2)
C(46)	9061(8)	5163(7)	6581(6)	59(2)
N(5)	5140(6)	3510(5)	6606(5)	53(1)
C(51)	4014(7)	3524(6)	7012(6)	55(2)
C(52)	3254(8)	2495(7)	6962(6)	62(2)
C(53)	2174(9)	2596(8)	7380(7)	72(2)
C(54)	1876(9)	3680(8)	7803(7)	74(2)
C(55)	2659(8)	4703(7)	7837(7)	64(2)
C(56)	3770(6)	4660(6)	7445(6)	52(2)
C(4)	6592(7)	2947(5)	5840(5)	51(2)
C(61)	7373(7)	2224(6)	5250(6)	53(2)
C(62)	6938(10)	1692(8)	4226(7)	75(2)
C(63)	7660(12)	966(9)	3696(7)	84(3)
C(64)	8817(11)	793(7)	4138(8)	80(3)
C(65)	9277(11)	1336(8)	5142(8)	85(3)
C(66)	8581(9)	2061(8)	5701(7)	70(2)
N(6)	5572(6)	2530(5)	6099(5)	57(1)

Abbildung 6.20: Ellipsoiddarstellung von [ReNCl(HL^{Ph})(L^{Ph})]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.12 \quad [\mathrm{ReN}(\mathrm{NCS})(\mathrm{HL}^{\mathrm{Ph}})(\mathrm{L}^{\mathrm{Ph}})]$

Tabelle 6.41: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReN}({\rm NCS})({\rm HL}^{\rm Ph})({\rm L}^{\rm Ph})].$

Summenformel	$\mathrm{C}_{41}\mathrm{H}_{29}\mathrm{N}_8\mathrm{SRe}$	
M (g/mol)	851.98	
Messtemperatur	293(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/c$	
Elementarzelle	$a=15.229(3) \text{ \AA}$	$lpha=90^\circ$
	b=12.320(1) Å	$\beta = 103.11(1)^{\circ}$
	c=19.344(2) Å	$\gamma = 90^\circ$
Volumen	$3535.0(8) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.601~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	3.539 mm^{-1}	
F(000)	1688	
Kristallgröße	$0.6 \ge 0.4 \ge 0.2 \text{ mm}^3$	
Theta-Bereich	$3.09-26.97^\circ$	
Indizes	$-1 \le h \le 19, 0 \le k \le 15, -24 \le l \le 15$	24
Zahl der gemessenen Reflexe	8692	
Zahl der unabhängigen Reflexe	7645 [R(int)= 0.0535]	
Absorptionskorrektur	empirisch (DIFABS)	
T_{min}, T_{max}	0.169, 0.642	
Zahl der verfeinerten Parameter	460	
Goof	0.790	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0521, wR2 = 0.1362	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0909, wR2 = 0.1677	
Restelektronendichte	1.201 und -2.774 e \cdot Å^{-3}	
Diffraktometer	CAD4, Enraf-Nonius	
Programm zur Strukturlösung	SIR 97 [140]	

[ReN(NCS)(H	L^{2} $(L^{2}$ $(L$				
	Х	У	Z	E(eq)	
$\operatorname{Re}(1)$	2824(1)	368(1)	2206(1)	46(1)	
N(10)	3882(5)	512(7)	2209(5)	68(2)	
C(1)	2628(5)	1474(6)	2980(4)	45(2)	
N(1)	3251(4)	1938(5)	3511(3)	48(1)	
C(11)	4203(5)	1706(7)	3682(4)	50(2)	
C(12)	4799(6)	2496(8)	3593(5)	64(2)	
C(13)	5697(7)	2286(10)	3791(6)	80(3)	
C(14)	6009(7)	1323(12)	4079(6)	88(4)	
C(15)	5418(8)	537(9)	4176(6)	79(3)	
C(16)	4490(7)	721(8)	3979(5)	62(2)	
N(2)	1847(4)	1940(6)	3051(3)	51(2)	
C(21)	979(5)	1735(7)	2645(4)	53(2)	
C(22)	326(6)	2517(8)	2579(6)	70(3)	
C(23)	-525(7)	2314(10)	2168(6)	81(3)	
C(24)	-719(7)	1375(10)	1812(6)	80(3)	
C(25)	-80(7)	577(9)	1876(6)	70(3)	
C(26)	775(6)	754(8)	2308(5)	56(2)	
N(3)	1967(5)	2711(6)	3582(4)	53(2)	
C(2)	2825(5)	2697(6)	3863(4)	50(2)	
C(31)	3278(5)	3388(7)	4441(4)	51(2)	
C(32)	3041(7)	4475(8)	4445(5)	67(2)	
C(33)	3473(9)	5146(9)	5001(6)	77(3)	
C(34)	4114(8)	4743(10)	5537(6)	77(3)	
C(35)	4366(7)	3667(9)	5540(5)	69(3)	
C(36)	3945(7)	3000(8)	4994(4)	64(2)	
C(3)	2255(5)	1389(6)	1358(4)	45(2)	
N(4)	2215(4)	2439(5)	1158(3)	47(1)	
C(41)	2615(6)	3332(7)	1603(4)	56(2)	
C(42)	3527(8)	3420(9)	1798(5)	74(3)	
C(43)	3902(12)	4295(12)	2209(7)	103(5)	

Tabelle 6.42: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[ReN(NCS)(HL^{Ph})(L^{Ph})]$.

	Х	У	Z	E(eq)	
C(44)	3390(18)	5033(15)	2427(8)	133(8)	
C(45)	2465(15)	4928(10)	2251(8)	117(6)	
C(46)	2041(9)	4065(9)	1830(6)	84(3)	
N(5)	1739(5)	892(5)	789(3)	49(2)	
C(51)	1664(6)	-255(7)	773(5)	52(2)	
C(52)	1177(7)	-785(8)	186(5)	64(2)	
C(53)	1204(7)	-1911(9)	204(6)	74(3)	
C(54)	1659(7)	-2446(8)	805(6)	71(3)	
C(55)	2126(6)	-1872(7)	1380(5)	58(2)	
C(56)	2168(5)	-735(7)	1390(4)	49(2)	
N(6)	1367(5)	1568(6)	241(3)	53(2)	
C(4)	1682(5)	2529(7)	472(4)	50(2)	
C(61)	1483(6)	3517(7)	49(4)	56(2)	
C(62)	2131(8)	4298(8)	52(5)	71(3)	
C(63)	1924(12)	5186(8)	-393(7)	95(4)	
C(64)	1109(13)	5295(10)	-839(7)	100(5)	
C(65)	482(10)	4506(12)	-864(7)	101(4)	
C(66)	661(7)	3613(9)	-419(6)	78(3)	
N(20)	2799(5)	-889(6)	2905(4)	58(2)	
C(20)	2937(6)	-1597(8)	3306(5)	60(2)	
S(20)	3131(3)	-2596(3)	3851(2)	96(1)	

Abbildung 6.21: Ellipsoiddarstellung von [ReN(NCS)(HL^{Ph})(L^{Ph})]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.
$6.2.13 \quad [\mathrm{ReN}(\mathrm{CN})(\mathrm{HL}^{\mathrm{Ph}})(\mathrm{L}^{\mathrm{Ph}})]$

Tabelle 6.43:	Kristallographische	Daten und	Parameter	der Struktu	rrechnung	von
[ReN(CN)(H	$L^{Ph})(L^{Ph})].$					

Summenformel	$\mathrm{C}_{41}\mathrm{H}_{29}\mathrm{N}_{8}\mathrm{Re}$		
M (g/mol)	819.92		
Messtemperatur	$173(2) {\rm K}$		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$		
Elementarzelle	a=10.494(1) Å	$lpha = 109.90(1)^\circ$	
	b=12.246(1) Å	$eta = 100.02(1)^\circ$	
	c= 14.403(2) Å	$\gamma = 96.45(1)^{\circ}$	
Volumen	$1684.2(3) \text{ Å}^3$		
Z	2		
Berechnete Dichte	$1.617~{ m g/cm^3}$		
Linearer Absorptionskoeffizient	3.651 mm^{-1}		
F(000)	812		
Kristallgröße	$0.2 \ge 0.1 \ge 0.04 \text{ mm}^3$		
Theta-Bereich	$3.28-29.29^\circ$		
Indizes	-14≤h≤14, -16≤k≤16, -19≤	$\leq l \leq 19$	
Zahl der gemessenen Reflexe	15782		
Zahl der unabhängigen Reflexe	8758 [R(int)= 0.0452]		
Absorptionskorrektur	numerisch (Integration)		
T_{min}, T_{max}	0.6288, 1		
Zahl der verfeinerten Parameter	449		
Goof	0.841		
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0514, wR2 = 0.1276		
R_1 / wR_2 (alle Reflexe)	R1 = 0.0743, wR2 = 0.1419		
Restelektronendichte	4.541^* und -2.581 e · Å ⁻³		
Diffraktometer	IPDS, STOE		
Programm zur Strukturlösung	SHELXS 97 [141]		

 \ast 1.138 Å vom Rheniumatom entfernt.

	X	У	Z	E(eq)
Re	271(1)	1111(1)	2490(1)	38(1)
C(10)	-298(6)	2179(5)	3763(5)	43(1)
N(11)	-594(7)	2730(6)	4488(6)	58(2)
C(1)	2224(6)	1961(5)	3141(5)	36(1)
N(1)	2932(5)	2954(4)	3119(4)	39(1)
N(2)	3146(5)	1571(4)	3674(4)	36(1)
N(3)	4397(5)	2241(5)	3944(4)	40(1)
C(2)	4240(6)	3093(5)	3594(5)	39(1)
C(11)	2360(7)	3738(5)	2675(5)	39(1)
C(12)	2637(10)	3742(7)	1775(6)	58(2)
C(13)	2117(12)	4539(9)	1390(8)	75(3)
C(14)	1348(11)	5258(10)	1875(11)	90(4)
C(15)	1089(9)	5211(7)	2769(8)	65(2)
C(16)	1575(8)	4452(6)	3177(7)	52(2)
C(21)	2926(7)	557(5)	3932(5)	39(1)
C(22)	3871(8)	-153(7)	3914(6)	53(2)
C(23)	3591(10)	-1177(7)	4099(7)	61(2)
C(24)	2414(10)	-1509(7)	4286(7)	59(2)
C(25)	1485(8)	-798(7)	4331(6)	55(2)
C(26)	1734(7)	260(7)	4158(6)	49(2)
C(31)	5342(7)	4045(6)	3739(5)	42(1)
C(32)	6603(8)	3805(7)	3860(6)	50(2)
C(33)	7664(8)	4704(7)	4046(6)	56(2)
C(34)	7470(8)	5805(7)	4101(6)	57(2)
C(35)	6225(9)	6041(6)	3985(6)	55(2)
C(36)	5148(8)	5171(6)	3797(5)	47(2)
C(3)	860(6)	-464(5)	1636(5)	37(1)
N(4)	1826(6)	-835(4)	1147(4)	39(1)
N(5)	116(6)	-1473(5)	1534(4)	42(1)
N(6)	562(6)	-2473(5)	1024(5)	45(1)

Tabelle 6.44: Atomkoordinaten (x 10^4) und isotrope Temperaturparameter (Å²x 10^3) von [ReN(CN)(HL^{Ph})(L^{Ph})].

	х	У	Z	E(eq)
C(4)	1609(7)	-2052(5)	796(5)	40(1)
C(41)	2871(7)	-55(5)	1012(5)	41(1)
C(42)	2573(8)	435(6)	289(5)	49(2)
C(43)	3614(9)	1165(7)	172(6)	57(2)
C(44)	4839(8)	1394(7)	753(6)	56(2)
C(45)	5118(8)	891(7)	1457(6)	55(2)
C(46)	4127(8)	146(6)	1578(5)	48(2)
C(51)	-1006(6)	-1458(6)	1963(5)	43(1)
C(52)	-1754(7)	-2480(6)	1927(6)	48(2)
C(53)	-2816(8)	-2392(6)	2368(6)	54(2)
C(54)	-3090(7)	-1271(7)	2854(7)	54(2)
C(55)	-2307(7)	-246(6)	2881(6)	48(2)
C(56)	-1230(6)	-294(5)	2437(5)	42(1)
C(61)	2444(7)	-2802(5)	226(5)	43(1)
C(62)	1955(9)	-3435(7)	-796(6)	58(2)
C(63)	2690(10)	-4177(7)	-1350(7)	64(2)
C(64)	3898(10)	-4266(7)	-886(7)	62(2)
C(65)	4383(10)	-3646(7)	149(7)	64(2)
C(66)	3659(9)	-2905(7)	708(6)	55(2)
N(10)	-215(7)	1621	1550	156(7)

Abbildung 6.22: Ellipsoiddarstellung von [ReN(CN)(HL^{Ph})(L^{Ph})]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.14 \quad [\mathrm{ReN}(\mathrm{PyS})(\mathrm{HL}^{\mathrm{Ph}})(\mathrm{L}^{\mathrm{Ph}})] \cdot 3 \,\, \mathrm{MeOH}$

Tabelle 6.45: Kristallographische Daten und Parameter der Strukturrechnung von $[\rm ReN(PyS)(\rm HL^{Ph})(\rm L^{Ph})]$ · 3 MeOH.

Summenformel	$\mathrm{C}_{48}\mathrm{H}_{45}\mathrm{N}_8\mathrm{O}_3\mathrm{SRe}$	
M (g/mol)	1000.18	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/c$	
Elementarzelle	$a=9.777(5)~{ m \AA}$	$lpha=90^{\circ}$
	b = 16.078(5) Å	$eta = 92.30(1)^\circ$
	c=27.431(5) Å	$\gamma = 90^{\circ}$
Volumen	$4309(3) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.542 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	2.921 mm^{-1}	
F(000)	2016	
Kristallgröße	$0.29 \ge 0.27 \ge 0.05 \ \mathrm{mm^3}$	
Theta-Bereich	$1.95-30.54^\circ$	
Indizes	-13≤h≤13, -22≤k≤20, -39≤	l≤39
Zahl der gemessenen Reflexe	52510	
Zahl der unabhängigen Reflexe	13115 [R(int)= 0.0303]	
Absorptionskorrektur	semiempirisch (SADABS)	
T_{min}, T_{max}	0.74482, 1	
Zahl der verfeinerten Parameter	554	
Goof	0.893	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0291, wR2 = 0.0640	
${ m R}_1 \ / \ { m wR}_2$ (alle Reflexe)	R1 = 0.0426, wR2 = 0.0714	
Restelektronendichte	1.382 und -2.262 e \cdot Å^{-3}	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SIR 97 [140]	

[nen(rys)(IIL	J(L J] · 5 MeOn	•			
	х	У	Z	E(eq)	
Re	7992(1)	723(1)	2335(1)	17(1)	
N(10)	8934(2)	1530(2)	2183(1)	26(1)	
C(1)	8885(2)	-260(2)	1964(1)	18(1)	
C(2)	10041(3)	-1087(2)	1457(1)	22(1)	
N(1)	9754(2)	-267(1)	1580(1)	18(1)	
N(2)	8719(2)	-1090(1)	2050(1)	19(1)	
N(3)	9415(2)	-1603(2)	1739(1)	23(1)	
C(11)	10388(3)	428(2)	1344(1)	20(1)	
C(12)	11803(3)	408(2)	1289(1)	24(1)	
C(13)	12409(3)	1028(2)	1018(1)	30(1)	
C(14)	11634(3)	1664(2)	818(1)	33(1)	
C(15)	10234(3)	1697(2)	892(1)	31(1)	
C(16)	9601(3)	1073(2)	1151(1)	25(1)	
C(21)	8011(3)	-1470(2)	2434(1)	21(1)	
C(22)	6868(2)	-1096(2)	2628(1)	21(1)	
C(23)	6253(3)	-1467(2)	3020(1)	26(1)	
C(24)	6729(3)	-2220(2)	3204(1)	28(1)	
C(25)	7844(3)	-2605(2)	2997(1)	27(1)	
C(26)	8488(3)	-2235(2)	2609(1)	24(1)	
C(31)	10881(3)	-1348(2)	1053(1)	24(1)	
C(32)	11937(3)	-1922(2)	1133(1)	32(1)	
C(33)	12727(4)	-2163(2)	747(1)	42(1)	
C(34)	12454(4)	-1840(2)	287(1)	44(1)	
C(35)	11402(4)	-1284(2)	208(1)	40(1)	
C(36)	10607(3)	-1034(2)	587(1)	30(1)	
$\mathrm{C}(3)$	8836(2)	346(2)	3017(1)	19(1)	
C(4)	9821(3)	-97(2)	3718(1)	24(1)	
N(4)	9984(2)	-16(2)	3221(1)	21(1)	
N(5)	8046(2)	442(2)	3400(1)	22(1)	

Tabelle 6.46: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å²x10³) von $[ReN(PvS)(HL^{Ph})(L^{Ph})] \cdot 3$ MeOH.

	X	у	Z	E(eq)
N(6)	8610(3)	177(2)	3836(1)	27(1)
C(41)	11113(2)	-313(2)	2948(1)	20(1)
C(42)	11353(3)	-1164(2)	2929(1)	25(1)
C(43)	12383(3)	-1450(2)	2645(1)	31(1)
C(44)	13203(3)	-888(2)	2399(1)	34(1)
C(45)	12969(3)	-43(2)	2435(1)	33(1)
C(46)	11909(3)	255(2)	2709(1)	26(1)
C(51)	6764(3)	861(2)	3332(1)	23(1)
C(52)	5899(3)	969(2)	3715(1)	32(1)
C(53)	4714(3)	1435(2)	3625(1)	35(1)
C(54)	4455(3)	1775(2)	3166(1)	34(1)
C(55)	5334(3)	1633(2)	2789(1)	27(1)
C(56)	6526(3)	1150(2)	2856(1)	23(1)
C(61)	10873(3)	-381(2)	4078(1)	27(1)
C(62)	12238(3)	-172(2)	4034(1)	30(1)
C(63)	13204(4)	-402(2)	4398(1)	38(1)
C(64)	12802(4)	-837(3)	4799(1)	46(1)
C(65)	11453(5)	-1038(3)	4848(1)	54(1)
C(66)	10473(4)	-812(3)	4487(1)	45(1)
S	5988(1)	680(1)	1798(1)	21(1)
C(71)	6184(2)	47(2)	1274(1)	21(1)
N(72)	6269(3)	442(2)	845(1)	27(1)
C(73)	6361(3)	-25(2)	439(1)	34(1)
C(74)	6373(4)	-879(2)	438(1)	40(1)
C(75)	6256(3)	-1287(2)	880(1)	36(1)
C(76)	6155(3)	-825(2)	1300(1)	29(1)
C(81)	6590(4)	2621(2)	1155(2)	43(1)
O(81)	5760(3)	2170(2)	806(1)	47(1)
C(82)	3495(5)	3530(3)	272(2)	78(2)
O(82)	4150(4)	2855(2)	73(2)	82(1)
C(83)	8939(5)	6863(3)	829(2)	58(1)
O(83)	8912(4)	6703(2)	1335(1)	68(1)

Abbildung 6.23: Ellipsoiddarstellung von [ReN(PyS)(HL^{Ph})(L^{Ph})]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$6.2.15 \quad [\mathrm{ReOCl}_2(\mathrm{OMe})(\mathrm{PPh}_3)(\mathrm{HL}^{\mathrm{Ph}})]$

Tabelle 6.47: Kristallographische	Daten und Parameter	der Strukturrechnung von
$[\mathrm{ReOCl}_2(\mathrm{OMe})(\mathrm{PPh}_3)(\mathrm{HL}^{Ph})].$		

$\mathrm{C}_{39}\mathrm{H}_{33}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{PRe}$	
863.75	
173(2) K	
0.71073 Å	
Monoklin, $C2/c$	
a=34.116(3) Å	$lpha=90^{\circ}$
$b=10.507(1)~{ m \AA}$	$eta=94.021(6)^\circ$
c=22.180(2) Å	$\gamma = 90^\circ$
7931(1) Å ³	
8	
$1.447~{\rm g/cm^3}$	
3.274 mm^{-1}	
3424	
$0.18 \ge 0.13 \ge 0.07 \text{ mm}^3$	
$1.84-26.00^\circ$	
-37≤h≤42, -11≤k≤12, -27≤	$\leq l \leq 27$
18113	
7610 [R(int)= 0.0634]	
numerisch (Integration)	
0.6269, 0.7052	
434	
0.988	
R1 = 0.0399, wR2 = 0.1017	
$R1{=}\;0.0784,wR2{=}\;0.1292$	
2.484 und -1.235 e \cdot Å^{-3}	
IPDS, STOE	
SIR 97 [140]	
	C ₃₉ H ₃₃ Cl ₂ N ₃ O ₂ PRe 863.75 173(2) K 0.71073 Å Monoklin, C2/c a= 34.116(3) Å b= 10.507(1) Å c= 22.180(2) Å 7931(1) Å ³ 8 1.447 g/cm ³ 3.274 mm ⁻¹ 3424 0.18 x 0.13 x 0.07 mm ³ 1.84 - 26.00° -37 \leq h \leq 42, -11 \leq k \leq 12, -27 \leq 18113 7610 [R(int)= 0.0634] numerisch (Integration) 0.6269, 0.7052 434 0.988 R1= 0.0399, wR2= 0.1017 R1= 0.0784, wR2= 0.1292 2.484 und -1.235 e · Å ⁻³ IPDS, STOE SIR 97 [140]

$[ReOCl_2(OMe)]$	$(PPh_3)(HL^{-1})].$			
	Х	У	Z	E(eq)
$\operatorname{Re}(1)$	3674(1)	5033(1)	2964(1)	28(1)
O(1)	3231(2)	5732(6)	2881(3)	36(1)
$\operatorname{Cl}(1)$	3521(1)	3838(2)	2020(1)	46(1)
$\operatorname{Cl}(2)$	3973(1)	6624(2)	2339(1)	39(1)
C(1)	3848(2)	6129(8)	3746(3)	29(2)
N(1)	3617(2)	6883(7)	4077(3)	31(2)
C(11)	3195(3)	7084(8)	3992(4)	36(2)
C(12)	2961(3)	6547(9)	4408(4)	40(2)
C(13)	2556(3)	6750(11)	4327(5)	50(3)
C(14)	2400(3)	7489(12)	3851(5)	58(3)
C(15)	2642(3)	8019(11)	3454(5)	55(3)
C(16)	3044(3)	7854(9)	3522(4)	42(2)
N(2)	4203(2)	6218(7)	4037(3)	32(2)
C(21)	4583(2)	5702(10)	3904(4)	39(2)
C(22)	4767(3)	6203(11)	3420(4)	47(2)
C(23)	5139(3)	5736(13)	3317(5)	58(3)
C(24)	5318(3)	4829(13)	3682(4)	56(3)
C(25)	5137(3)	4355(13)	4159(5)	58(3)
C(26)	4757(3)	4814(11)	4269(4)	47(3)
N(3)	4209(2)	6964(7)	4556(3)	39(2)
C(2)	3845(3)	7357(8)	4569(4)	34(2)
C(31)	3718(3)	8210(9)	5039(4)	42(2)
C(32)	3491(3)	9261(10)	4903(5)	53(3)
C(33)	3406(4)	10137(12)	5350(5)	67(3)
C(34)	3559(5)	9936(14)	5936(5)	82(4)
C(35)	3757(5)	8860(16)	6076(5)	93(5)
C(36)	3850(4)	7990(11)	5632(5)	62(3)
P(1)	3379(1)	3297(2)	3537(1)	29(1)
C(41)	2863(2)	2992(9)	3328(3)	35(2)
C(42)	2606(3)	4022(9)	3238(4)	39(2)

Tabelle 6.48: Atomkoordinaten $(x10^4)$ und isotrope Temperaturparameter $(Å^2x10^3)$ von [ReOCl₂(OMe)(PPh₃)(HL^{Ph})].

	Х	У	Z	E(eq)
C(43)	2204(3)	3814(10)	3134(5)	47(2)
C(44)	2059(3)	2597(10)	3119(4)	45(2)
C(45)	2306(3)	1580(10)	3211(4)	45(2)
C(46)	2708(3)	1759(9)	3318(4)	39(2)
C(51)	3638(3)	1789(8)	3442(4)	36(2)
C(52)	3587(3)	1156(9)	2883(4)	43(2)
C(53)	3792(3)	52(11)	2794(5)	49(2)
C(54)	4048(3)	-434(10)	3240(5)	52(3)
C(55)	4102(3)	176(10)	3781(5)	54(3)
C(56)	3888(3)	1291(9)	3883(4)	44(2)
C(61)	3388(3)	3516(8)	4355(4)	34(2)
C(62)	3044(3)	3362(9)	4672(4)	42(2)
C(63)	3064(4)	3605(11)	5288(4)	55(3)
C(64)	3413(4)	3974(12)	5598(5)	66(3)
C(65)	3748(4)	4116(11)	5292(5)	58(3)
C(66)	3732(3)	3893(10)	4671(4)	44(2)
O(2)	4142(2)	4108(6)	3040(3)	36(1)
C(71)	4419(3)	3241(10)	2842(5)	47(2)

Abbildung 6.24: Ellipsoid darstellung von $[{\rm ReOCl}_2({\rm OMe})({\rm PPh}_3)({\rm HL}^{\rm Ph})].$ Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

$\textbf{6.2.16} \quad [\textbf{ReOCl}_2(\textbf{OH})(\textbf{PPh}_3)(\textbf{HL}^{\textbf{Ph}})] \cdot \textbf{CH}_3\textbf{NO}_2$

$\operatorname{ReOCl}_2(\operatorname{OH})(\operatorname{PPh}_3)(\operatorname{HL}^1 \operatorname{II})] \cdot \operatorname{CH}_3\operatorname{NO}_2$			
Summenformel	$C_{39}H_{34}Cl_2N_4O_4PRe$		
M (g/mol)	910.77		
Messtemperatur	133(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	Triklin, $P\overline{1}$		
Elementarzelle	$a=10.549(5) \text{ \AA}$	$\alpha = 109.455(5)^{\circ}$	
	b=18.774(5) Å	$\beta = 101.833(5)^{\circ}$	
	c=21.136(5) Å	$\gamma = 101.783(5)^\circ$	
Volumen	$3691(2) \text{ Å}^3$		
Ζ	4		
Berechnete Dichte	$1.639~{ m g/cm^3}$		
Linearer Absorptionskoeffizient	3.527 mm^{-1}		
F(000)	1808		
Kristallgröße	$0.18 \ge 0.18 \ge 0.1 \ \mathrm{mm^3}$		
Theta-Bereich	$1.20-23.26^\circ$		
Indizes	-10≤h≤11, -20≤k≤18, -23≤	$l \leq 23$	
Zahl der gemessenen Reflexe	21369		
Zahl der unabhängigen Reflexe	10411 [R(int)= 0.1038]		
Absorptionskorrektur	semiempirisch (SADABS)		
T_{min}, T_{max}	0.687033, 1		
Zahl der verfeinerten Parameter	866		
Goof	1.043		
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0766, wR2 = 0.1746		
R_1 / wR_2 (alle Reflexe)	R1= 0.1351, wR2= 0.2058		
Restelektronendichte	1.575 und -2.079 e · Å^{-3}		
Diffraktometer	CCD, Bruker SMART		
Programm zur Strukturlösung	SIR 97 [140]		

Tabelle 6.49: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}_2({\rm OH})({\rm PPh}_3)({\rm HL}^{\rm Ph})]$ · ${\rm CH}_3{\rm NO}_2.$

) · OII ₃ NO ₂ .			
	X	У	Z	E(eq)
$\operatorname{Re}(1)$	2161(1)	5652(1)	8370(1)	24(1)
O(10)	1989(12)	6241(7)	7929(6)	33(3)
O(1)	2122(10)	4921(6)	8811(5)	23(2)
$\operatorname{Cl}(1)$	4498(5)	6386(3)	9078(2)	35(1)
Cl(2)	1459(5)	6511(3)	9322(2)	33(1)
C(1)	2917(19)	4938(11)	7615(8)	37(5)
C(2)	3470(20)	4355(13)	6621(9)	52(6)
N(1)	2940(15)	4972(8)	6959(7)	33(4)
N(2)	3491(14)	4348(9)	7633(7)	34(4)
$N(3)^{*}$	3815(15)	4005(9)	7020(7)	38(4)
$C(11)^{*}$	2571(18)	5501(11)	6691(9)	32(4)
C(12)	3420(30)	6252(14)	6889(13)	87(9)
C(13)	3080(50)	6734(19)	6557(17)	147(18)
C(14)	1890(50)	6489(19)	6053(16)	112(14)
C(15)	990(30)	5845(19)	5907(12)	84(9)
C(16)	1330(20)	5278(14)	6186(10)	60(7)
C(21)	3763(19)	4033(11)	8147(9)	33(4)
C(22)	4670(20)	4453(10)	8781(10)	39(5)
C(23)	4990(20)	4125(11)	9285(10)	43(5)
C(24)	4350(20)	3338(12)	9101(10)	49(6)
C(25)	3450(20)	2894(11)	8444(10)	42(5)
C(26)	3135(18)	3249(11)	7963(9)	35(5)
$C(31)^{*}$	3620(20)	4159(14)	5909(11)	55(6)
C(32)	3570(40)	3464(16)	5552(13)	109(13)
C(33)	3780(40)	3230(20)	4895(15)	121(14)
C(34)	3750(30)	3600(20)	4519(14)	109(13)
C(35)	3710(130)	4250(50)	4820(40)	690(140)
C(36)	3650(80)	4620(50)	5530(40)	350(40)
P(1)	-300(5)	4918(3)	7759(2)	28(1)

 $\label{eq:constraint} \begin{array}{l} \mbox{Tabelle 6.50: Atomkoordinaten (x10^4) und isotrope Temperaturparameter (Å^2x10^3) von [ReOCl_2-(OH)(PPh_3)(HL^{Ph})] \cdot CH_3NO_2. \end{array}$

	Х	У	Z	E(eq)
C(71)	-1099(18)	4344(10)	8195(9)	29(4)
C(72)	-1962(18)	3562(10)	7826(10)	38(5)
C(73)	-2540(20)	3169(12)	8196(10)	46(5)
C(74)	-2330(20)	3531(11)	8898(9)	38(5)
C(75)	-1540(20)	4264(12)	9239(12)	50(6)
C(76)	-870(20)	4688(11)	8926(9)	39(5)
C(81)	-1329(19)	5583(10)	7683(8)	32(4)
C(82)	-2340(20)	5665(11)	7977(9)	38(5)
C(83)	-3090(20)	6182(14)	7914(11)	60(7)
C(84)	-2770(20)	6644(12)	7550(10)	55(6)
C(85)	-1735(18)	6581(10)	7246(8)	32(4)
C(86)	-1030(19)	6041(9)	7298(8)	30(4)
C(91)	-770(20)	4203(11)	6884(9)	37(5)
C(92)	-1870(20)	4094(11)	6305(9)	43(5)
C(93)	-2180(30)	3531(15)	5658(10)	77(8)
C(94)	-1480(30)	2984(13)	5547(11)	75(8)
C(95)	-351(18)	3031(11)	6068(8)	30(4)
C(96)	-60(20)	3662(11)	6732(9)	46(6)
$\operatorname{Re}(2)$	6159(1)	9233(1)	7062(1)	30(1)
O(20)	7080(13)	9847(8)	6718(6)	45(3)
O(2)	5129(12)	8719(7)	7415(6)	39(3)
$\operatorname{Cl}(3)$	7651(6)	8400(3)	6960(3)	57(2)
$\operatorname{Cl}(4)$	4720(5)	8370(3)	5869(2)	45(1)
C(3)	7548(17)	9972(10)	8091(8)	23(4)
C(4)	8476(19)	10552(11)	9252(9)	33(5)
N(4)	7430(15)	9932(8)	8710(7)	32(4)
N(5)	8626(15)	10583(9)	8271(7)	32(4)
N(6)	9218(14)	10973(8)	8984(7)	30(3)
C(41)	6433(17)	9369(10)	8832(8)	26(4)
C(42)	5400(18)	9617(10)	9083(8)	32(4)
C(43)	4367(19)	9046(10)	9141(8)	29(4)
C(44)	4425(19)	8285(10)	8973(9)	36(5)

Kristallographischer Anhang

	X	У	Z	E(eq)
C(45)	5540(20)	8038(10)	8728(9)	40(5)
C(46)	6522(19)	8619(9)	8673(8)	31(4)
C(51)	9274(19)	10878(10)	7820(9)	32(4)
C(52)	9907(19)	10414(11)	7411(9)	37(5)
C(53)	10470(20)	10727(13)	6965(10)	50(6)
C(54)	10370(20)	11429(12)	6945(10)	52(6)
C(55)	9830(20)	11891(12)	7388(11)	51(6)
C(56)	9245(18)	11626(10)	7864(10)	36(5)
C(61)	8738(18)	10808(11)	10010(8)	34(5)
C(62)	9027(17)	11584(11)	10435(9)	33(4)
C(63)	9430(20)	11860(12)	11167(8)	47(6)
C(64)	9488(19)	11317(11)	11468(9)	36(5)
C(65)	9201(19)	10528(13)	11068(9)	41(5)
C(66)	8776(18)	10247(11)	10340(9)	34(4)
P(2)	4522(6)	10019(3)	7117(2)	43(1)
$C(101)^{*}$	2870(30)	9382(15)	6706(12)	61(6)
C(102)	2190(30)	9336(17)	6040(15)	99(11)
C(103)	840(50)	8720(30)	5670(20)	163(16)
C(104)	360(40)	8280(20)	5994(18)	106(11)
C(105)	910(40)	8260(20)	6610(20)	159(18)
C(106)	2280(20)	8894(14)	6970(13)	74(8)
$C(111)^{*}$	4561(17)	10648(10)	7987(8)	24(4)
$C(112)^{*}$	5800(20)	11202(12)	8458(10)	46(5)
C(113)	5890(20)	11684(10)	9101(10)	39(5)
C(114)	4780(30)	11669(12)	9348(10)	63(7)
C(115)	3560(20)	11112(12)	8906(10)	51(6)
C(116)	3460(20)	10619(10)	8246(9)	39(5)
C(121)	4730(30)	10706(14)	6688(11)	62(7)
C(122)	5340(30)	10581(18)	6138(13)	108(12)
C(123)	5440(40)	11100(20)	5782(15)	151(18)
C(124)	5200(30)	11833(15)	6069(11)	92(10)
C(125)	4680(20)	12001(15)	6620(10)	61(7)

	х	У	Z	E(eq)	
C(126)	4440(20)	11438(12)	6935(9)	52(6)	_
$C(5)^*$	1480(20)	2991(15)	9965(12)	73(7)	
N(7)	1640(20)	3606(12)	9666(10)	54(5)	
O(3)	2382(19)	4251(11)	10049(12)	98(7)	
O(4)	1020(19)	3465(13)	9042(10)	96(6)	
C(6)	7810(30)	9240(20)	5400(14)	152(18)	
N(8)	8230(30)	9020(20)	4801(16)	119(11)	
O(5)	8250(30)	8309(18)	4465(12)	135(9)	
O(6)	8610(40)	9490(20)	4545(18)	215(18)	

 \ast Diese Atome ließen sich nicht anisotrop verfeinern.

Abbildung 6.25: Ellipsoiddarstellung von $[ReOCl_2(OH)(PPh_3)(HL^{Ph})]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. Aus Gründen der Übersichtlichkeit ist jeweils nur das erste Kohlenstoffatom eines Phenylringes benannt.

6.3 Imidazoliumsalz

6.3.1 (HL^{i-Pr})Cl

Tabelle 6.51: Kristallographische Dat	en und Parameter der Strukturred	chnung von (HL ^{i-Pr})Cl.
Summenformel	$C_{11}H_{21}ClN_2$	
${ m M}~{ m (g/mol)}$	216.75	
Messtemperatur	173(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	Monoklin, $P2_1/n$	
Elementarzelle	a = 11.527(5) Å	$lpha=90^\circ$
	${ m b}{=}~7.645(5)~{ m \AA}$	$eta = 105.455(5)^\circ$
	$ m c=15.025(5)~{ m \AA}$	$\gamma = 90^{\circ}$
Volumen	$1276(1) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.128 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.269 mm^{-1}	
F(000)	472	
Kristallgröße	$0.48 \ge 0.08 \ge 0.08 \text{ mm}^3$	
Theta-Bereich	$1.99-21.96^\circ$	
Indizes	-12≤h≤11, -8≤k≤8, -14≤l≤	≤ 15
Zahl der gemessenen Reflexe	7473	
Zahl der unabhängigen Reflexe	1553 [R(int)= 0.0313]	
Absorptionskorrektur	keine	
Zahl der verfeinerten Parameter	141	
Goof	0.827	
$R_1 / wR_2 $ [I>2sigma(I)]	R1 = 0.0553, wR2 = 0.1662	
R_1 / wR_2 (alle Reflexe)	R1 = 0.0710, wR2 = 0.1888	
Restelektronendichte	0.485 und -0.433 e \cdot Å^{-3}	
Diffraktometer	CCD, Bruker SMART	
Programm zur Strukturlösung	SHELXS 86 [141]	

	Х	У	Z	E(eq)
C(1)	5990(4)	907(6)	8355(3)	32(1)
N(2)	5338(3)	-459(5)	8462(2)	35(1)
C(3)	6072(4)	-1683(6)	9020(3)	35(1)
C(4)	7206(4)	-1021(5)	9234(3)	31(1)
N(5)	7132(3)	609(4)	8813(2)	28(1)
C(6)	5610(5)	-3360(6)	9300(3)	47(1)
$\mathrm{C}(7)$	8368(4)	-1772(6)	9775(3)	40(1)
C(8)	4012(4)	-605(7)	8059(3)	46(1)
C(9)	3692(5)	-332(9)	7047(4)	65(2)
$C(10A)^{*}$	3468(12)	130(60)	8685(18)	80(10)
$C(10B)^{*}$	3348(14)	1180(40)	8362(18)	48(5)
C(11)	8143(3)	1856(6)	8930(3)	33(1)
C(12)	7941(4)	3063(7)	8106(4)	54(1)
C(13)	8303(4)	2837(6)	9829(3)	45(1)
Cl(1)	9793(1)	492(2)	2074(1)	41(1)

Tabelle 6.52: Atomkoordinaten (x10⁴) und isotrope Temperaturparameter (Å 2 x10³) von (HL^{i-Pr})Cl.

 \ast Diese Atome befinden sich zu 50% auf fehlgeordneten Positionen.

Abbildung 6.26: Ellipsoid darstellung des $(\rm HL^{i-Pr})^+$ -Kations. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit.

6.4 Hinterlegungsdaten

$[TcO(9aneN_3)(OCH_2CH_2O)]Br$	CCDC - 291102
$[TcO_3(9aneN_3)]Br$	CCDC - 291103
$[TcCl_2(OH_2)(9aneN_3)]Cl$	CCDC - 291104
$[TcO_2(L^{i-Pr})_4][TcO_4] \cdot 1.5 \text{ THF}$	CCDC - 237644
$[TcN(L^{Et})_4]Cl_2$	CCDC - 260946
$[TcN(L^{Et})_2(OSiMe_2OSiMe_2O)]$	CCDC - 260947
$[\mathrm{TcN}(\mathrm{L}^{\mathrm{Et}})(\mathrm{PMe_{2}Ph})(\mathrm{OSiMe_{2}OSiMe_{2}O})]$	CCDC - 260948
$[\text{ReO}_2(\text{L}^{i-\text{Pr}})_4][\text{ReO}_4] \cdot 1.5 \text{ THF}$	CCDC - 237643
$[ReNCl(L^{Et})_4]Cl \cdot C_6H_6$	CCDC - 290928
$[\{\operatorname{ReN}(\operatorname{PMe}_{2}\operatorname{Ph})_{3}\}\{\operatorname{ReO}_{3}\operatorname{N}\}]_{2} \cdot 4\operatorname{MeOH}$	CCDC - 272144
$[{ReN(PMe_2Ph)_3}{ReO_3N}]_2 \cdot 4MeOH (2. Modifikation)$	CCDC - 272145
$[\{\operatorname{ReN}(\operatorname{PMe}_2\operatorname{Ph})_3\}\{\operatorname{ReO}_3\operatorname{N}\}]_2 \cdot 3\operatorname{MeOH} \cdot \operatorname{H}_2\operatorname{O}$	CCDC - 272146
$[\operatorname{Re}(\operatorname{NPh})\operatorname{Cl}(\operatorname{L^{Et}})_4](\operatorname{PF}_6)_2$	CCDC - 286138
$[\mathrm{Re}(\mathrm{NPh})\mathrm{Br}(\mathrm{L^{Et}})_4](\mathrm{PF}_6)_2 \cdot 0.5 \mathrm{MeOH}$	CCDC - 286139
$[\mathrm{Re}(\mathrm{NPh})(\mathrm{OH})(\mathrm{L}^{\mathrm{Et}})_{4}](\mathrm{PF}_{6})_{2} \cdot 0.25 \mathrm{MeOH}$	CCDC - 286140
$[\mathrm{ReNCl}_2(\mathrm{PMe}_2\mathrm{Ph})_2(\mathrm{HL}^{\mathrm{Ph}})]$	CCDC - 213784
$[ReNCl(HL^{Ph})(L^{Ph})]$	CCDC - 263443
$[\rm ReN(\rm NCS)(\rm HL^{\rm Ph})(\rm L^{\rm Ph})]$	CCDC - 213785
$[{\rm ReN(CN)(HL^{Ph})(L^{Ph})}]$	CCDC - 263444
$[\rm ReN(PyS)(\rm HL^{Ph})(\rm L^{Ph})]$	CCDC - 263445
$[\mathrm{ReOCl}_2(\mathrm{OMe})(\mathrm{PPh}_3)(\mathrm{HL}^{\mathrm{Ph}})]$	CCDC - 290930
$[\mathrm{ReOCl}_2(\mathrm{OH})(\mathrm{PPh}_3)(\mathrm{HL}^{\mathrm{Ph}})] \cdot \mathrm{CH}_3\mathrm{NO}_2$	CCDC - 290929