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Preface

Morse theory was originally designed for the study of smooth manifolds by
means of smooth maps defined on them. The results of Morse theory allow
to infer global topological properties of the considered manifold from the local
behaviour of a real-valued smooth map at critical points, provided that the map
does not exhibit certain degeneracies at the critical points. Maps without such
degeneracies are called Morse functions. With respect to such a map, each point
of the manifold is either regular or non-degenerate critical. Points of the latter
kind are classified according to their index. The fundamental results of Morse
theory are obtained by examining level sets, in particular so called sublevel sets
formed by all those points whose value is at most a certain threshold h. When
the level h varies continuously, a change in topology of the corresponding level
sets occurs only when the level crosses a critical value, that is, a value attained
at some critical point. If only a single critical point is involved, the change in
topology can be related to the index of that critical point.

The main objective of this thesis is a detailed development of the fundamen-
tal results of an analogous theory for piecewise linear manifolds with piecewise
linear maps, with a focus on the question how regular points can be characterised
in this setting and on the treatment of level sets. The special interest in the
characterisation of regular points originates in some motivating open problems
explained in the following.

Motivation. The initial motivation for the studies were some questions raised
by Rote in an extended abstract [42] on piecewise linear Morse theory sum-
marising a talk given at a workshop in Oberwolfach. The abstract resumes a
discussion started in an earlier paper by Chiang, Lenz, Lu, and Rote on the
construction of contour trees [13]. The paper contains two theorems concern-
ing the characterisation of regular and critical points for piecewise linear maps
on three-dimensional combinatorial manifolds and the absence of topological
changes in the level sets of such maps when no critical values are crossed. It
is remarked that although one would expect such statements to be well-known
facts, no readily applicable results were found in the literature. The ques-
tion arising in [13] and [42] from the first theorem characterising critical points
for three-dimensional manifolds is the following: Which conditions characterise
critical points of piecewise linear maps on combinatorial d-manifolds where d is
greater than three? For the 4-dimensional case a characterisation is suggested
and it is conjectured that the algorithmic question whether a given point is crit-
ical or not is undecidable for sufficiently large dimension. The second theorem
expresses the absence of topological changes when the level h varies in inter-
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vals [a, b] without critical values by the existence of a level-preserving isotopy
φ : M=b × [a, b] → M , where M is the considered manifold and M=b the level
set consisting of all points with value b. It is noted that one part of the proof
does not carry over to higher dimensions and that the constructed isotopy φ
is only piecewise linear when restricted to a fixed level, that is to some sub-
set M=b × {h}, but not necessarily piecewise linear on its whole domain. This
raises the problem of modifying the construction in such a way that it proves
the existence of a level-preserving isotopy for arbitrary dimensions. Moreover
the constructed map defining the isotopy should be piecewise linear on its whole
domain.

The results of the study of piecewise linear Morse theory in this thesis al-
low to address the aforementioned questions and problems from [13] and [42] as
follows: In Chapters 3 and 4, several characterisations for regular and critical
points, including some previously suggested notions, are proposed and most of
them are shown to be equivalent. We also prove that it is undecidable for d ≥ 6
whether a given point in a d-dimensional simplicial complex is regular or criti-
cal. This result is derived in Corollary 6.6 from Novikov’s undecidability result
for the (d − 1)-sphere recognition problem with (d − 1) ≥ 5. It remains open
whether the problem of recognising regular points is still undecidable when the
input is restricted to complexes that are combinatorial manifolds. For inter-
vals without critical values, a modified construction is presented that defines a
piecewise linear level-preserving isotopy for the level sets in that interval. In
principle, the construction outlined in Subsection 4.2.3 works in any dimension,
but it relies on homeomorphisms whose existence is ensured in theory by the
defining properties of a regular point. In higher dimensions however, there are
no algorithms available that would actually compute the theoretically ensured
homeomorphisms for arbitrary inputs.

Previous Work. Apart from the motivating papers by Chiang, Lenz, Lu,
and Rote [13] and by Rote [42], there are several other publications that deal
with notions and results that can be attributed to piecewise linear Morse the-
ory. Among the first papers that study piecewise linear maps on combinato-
rial manifolds in terms of notions familiar from Morse theory are a paper of
Eells and Kuiper [17] and a paper of Kosinski [29]. Both papers appeared in
1962 and define piecewise linear analogues for the notions of regular points and
non-degenerate critical points of a certain index. Kosinski states that classical
Morse theory results like the Morse inequalities or the Reeb theorem can be
derived based on the suggested notions, but detailed proofs are not provided.
Eells and Kuiper prove that any combinatorial manifold has a map linear on
cells of its barycentric subdivision such that all critical points of the map are
non-degenerate. It is mentioned as well that the Morse inequalities hold for
maps without degenerate critical points. However, in their approach, which
is based on deformations, the study of level sets plays no significant role. An
approach based on deformations is also used for an analogue of Morse theory
in the category of topological manifolds in a paper of Morse [38], which is re-
ferred to by Kosinski and by Eells and Kuiper. It defines analogues for regular
and non-degenerate critical points for continuous maps on arbitrary topological
manifolds and shows amongst other results that the Morse inequalities hold for
continuous maps without degenerate critical points as well. Some of the state-
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ments in [38] deal with level sets, but direct analogues to the theorems typically
stated in textbooks on Morse theory, namely the diffeomorphism between level
sets when no critical levels are passed [36, Theorem 3.1, p. 12] and the homotopy
equivalence to the attachment of a λ-cell when passing a single critical point of
index λ [36, Theorem 3.2, p. 14], are not obtained.

The definitions for regular and non-degenerate critical points of piecewise
linear maps in [17] and [29] are both based on the idea of using piecewise linear
analogues of the properties stated by the Morse Lemma [36, Lemma 2.2, p. 6]
as characterising properties for the different kinds of points. The details of the
definitions however differ slightly. Since the characterisation of regular and crit-
ical points is one of the motivating problems of this thesis, several more or less
different characterisations are eventually shown to be equivalent, including the
definitions of Eells and Kuiper [17] and the definitions of Kosinski [29]. Particu-
larly relevant for this thesis is a notion of equivalence introduced by Kosinski for
the definitions of regular and critical points, because several characterisations
of such points considered here are obtained from different characterisations of a
similarly defined notion of equivalence termed local equivalence. We verify that
our notion of local equivalence agrees indeed with Kosinski’s notion of equiva-
lence. The objects that are classified by these equivalence relations are triples
consisting of a domain, a piecewise linear map defined on that domain, and a
point in that domain. Among the various characterisations we derive for the
equivalence relations, the following criterion is particularly convenient for the
comparison with other notions of regularity and criticality outlined in the next
paragraph: Two points with given maps on their domains are considered as
equivalent if their links are piecewise linearly homeomorphic in such a way that
the homeomorphism respects the separation in an upper and a lower part by
the respective level sets through the points.

The approach taken by Eells and Kuiper and by Kosinski, which is also cho-
sen here, is probably the most obvious way to transfer the notions of regular
and non-degenerate critical points, and consequently the notion of a Morse func-
tion, from the smooth to the piecewise linear category. But later on, different
notions of regularity and criticality for piecewise linear maps on combinatorial
manifolds have been studied. For two such approaches a brief comparison with
the standard one is included in the thesis. The first approach is due to Ban-
choff [5, 4], the second one to Brehm and Kühnel [9, 30]. It turns out that
not only the standard notions of regularity and criticality, but also these two
notions can be described in terms of a classification of the points with respect to
a suitable equivalence relation, where the three relations have different degrees
of coarseness. The finest equivalence relations are Kosinski’s relation and the
local equivalence relation mentioned above, which define the standard notions
of regularity and criticality and were characterised by homeomorphic links with
matching upper and lower parts. The equivalence that induces the approach of
Brehm and Kühnel is coarser and requires only that the lower parts of the links
of the two points have the same homology. Even coarser is the equivalence gen-
erating Banchoff’s classification. Here it suffices that the lower parts of the links
have the same Euler characteristic. The comparison of the different notions of
regularity and criticality is presented in Subsection 3.2.5.

A more recent and substantially different approach to develop Morse theory
for combinatorial manifolds received much attention and has found a lot of ap-
plications in subsequent research. It was suggested by Forman [18, 19] and is
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called discrete Morse theory. Instead of piecewise linear maps on the domain
of a complex, it considers maps that assign values to the cells of the complex.
If the map fulfils certain properties, it is called a discrete Morse function. Al-
ternatively, the theory can be described in terms of certain partial matchings
in the Hasse diagram of the face poset of the complex, so that the notion of
a Morse function can be avoided completely in this variant of discrete Morse
theory. The complex is not required to be a combinatorial manifold; the theory
is applicable even to arbitrary finite regular CW-complexes. In spite of the dif-
ferences between discrete Morse functions and piecewise linear Morse functions
in the sense used here, we show in Lemma 3.26 that any discrete Morse func-
tion on a combinatorial manifold induces by a simple construction a piecewise
linear Morse function such that each critical point of the piecewise linear Morse
function corresponds to a critical cell of the discrete Morse function or its re-
striction to the boundary. This result is the main reason why the thesis includes
a suggestion for an extended definition of regularity and non-degenerate criti-
cality for piecewise linear maps that also treats boundary points, although we
do not attempt to develop a piecewise linear Morse theory for manifolds with
boundary.

Main Results. The most important results of the thesis are related to the
characterisation of regular points. The definition suggested here and previously
in [17] and [29] can be stated in a nutshell as follows: A point p is regular
with respect to a piecewise linear map f if there is a piecewise linear local
coordinate system for a neighbourhood of p such that expressing f in terms
of these coordinates yields a linear map in some neighbourhood in Euclidean
space. We express this requirement in Definition 3.12 using the notion of local
equivalence introduced and studied in Section 3.1. In this study we identify
several equivalent characterisations for the notion of local equivalence. A list
of these characterisations is given in Theorem 3.11. Each of them induces a
corresponding characterisation for regular points. These characterisations are
listed at the beginning of Section 4.1.

Two of these characterisations induced by different characterisations of local
equivalence are particularly convenient. For stating them, it is necessary to
observe that the link lk(p) of a point p is separated into an upper level link
lk(p)≥f(p) consisting of those points in the link with f -value at least f(p) and
a symmetrically defined lower level link lk(p)≤f(p). The first characterisation
requires that lk(p) is piecewise linearly homeomorphic to a standard sphere in
such a way that the separation into upper and lower level link corresponds to
the separation of the standard sphere into two half-spheres by an equatorial
plane. The second rephrases the condition by using combinatorially equivalent
subdivisions instead of piecewise linear homeomorphisms: A point is regular
if and only if some subdivision of lk(p) is combinatorially equivalent to some
subdivision of the standard sphere such that vertices in the upper level link
correspond to vertices in the upper half-sphere and vertices in the lower level
link correspond to vertices in the lower half-sphere. The underlying facts for
the local equivalence relation that imply these characterisations are stated and
proven in Lemmata 3.7, 3.8, 3.9 and Corollary 3.10.

Based on these observations, it is not hard to verify that the characterisations
for low dimensions observed in [13] match with the definition used here. More-
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over, the characterisation in terms of the separation in upper and lower level
link can be rephrased as in Lemma 4.1 by requiring that the level set lk(p)=f(p)
is an unknotted co-dimension 1 sphere in the sphere lk(p). On the other hand,
the original definition of regular points in terms of a local coordinate system
can easily be transformed into the characterisation stated in Theorem 4.10,
which requires the existence of a piecewise linear level-preserving isotopy in
some neighbourhood of the point.

Under a suitable general position assumption on the map f , criticality can
only occur at vertices. Theorem 4.19 characterises a regular vertex v of a com-
binatorial manifold under this assumption by the existence of a global piecewise
linear level-preserving isotopy in a sufficiently small interval [f(v)− ε, f(v) + ε].
Still assuming general position for the map f defined on the combinatorial man-
ifold M , we also prove in Theorem 4.20 that for intervals [a, b] without critical
values a piecewise linear level-preserving isotopy φ : M=b × [a, b] → M exists.
This generalises the result in [13] for the 3-dimensional case to arbitrary di-
mensions and strengthens it in the sense that the isotopy is piecewise linear
on its whole domain M=b × [a, b]. Furthermore, this statement is a counter-
part of a corresponding statement of smooth Morse theory (see Fact 1.3 in the
introductory summary of smooth Morse theory presented in Section 1.1).

For the algorithmic problem of recognising regular vertices raised in [13], we
obtain by a reduction from the sphere recognition problem the result stated in
Corollary 6.6 that it is undecidable whether a certain vertex of a given simpli-
cial complex of dimension d ≥ 6 with a map linear on cells is regular or not.
However, since the reduction produces from negative instances for the sphere
recognition problem instances for the regular vertex recognition problem, where
the simplicial complex is not a manifold, the question remains open whether the
problem remains undecidable when restricted to combinatorial manifolds.

From the existence of a level-preserving isotopy for intervals without critical
values, we can derive in Theorem 5.1 a piecewise linear analogue of the funda-
mental result from smooth Morse theory on the behaviour of level sets stated
in Fact 1.2: If no critical point of a combinatorial manifold M has a value in
the interval [a, b], then the level sets M≤a and M≤b consisting of all the points
with value at most a or b respectively are piecewise linearly homeomorphic and
the latter deformation retracts to the former. For the other fundamental result
on level sets, Fact 1.4, which describes the change in homotopy type of the level
sets when passing a critical point as the attachment of a cell, the corresponding
statement for the piecewise linear category is shown in Theorem 5.2.

From these two fundamental results, the equivalence of the homotopy type
of the manifold M with a CW-complex (Theorem 5.3), the Morse inequalities
(Theorem 5.4), and the Reeb theorem (Theorem 5.5) follow in much the same
way as their smooth counterparts (Facts 1.5, 1.6, and 1.7). At least the Morse
inequalities and the Reeb theorem for piecewise linear maps have been observed
previously in the literature [9, 17, 29, 30].

Another interesting result presented in Lemma 3.26 shows that any discrete
Morse function g on a combinatorial manifold M can be transformed into a
piecewise linear Morse function f such that critical points of f and critical cells
of g correspond to each other and the pieces on which f is linear are the cells of
a derived subdivision ofM . An analogous result for Banchoff’s notion of regular
and critical points was found previously by Bloch [8]. Moreover, the result can
be regarded as a generalisation of the existence proof for piecewise linear Morse
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functions given by Eells and Kuiper [17], which appeared long before the notion
of a discrete Morse function was introduced: Applying the transformation to
the trivial example of a discrete Morse function that assigns to each cell its
dimension yields exactly the piecewise linear Morse function used in that proof.

Outline of the Thesis. The first chapter serves as an introduction that re-
views the basic facts relevant for our study and fixes some notation used through-
out the thesis. It is divided into three sections. The first section briefly reviews
the results from classical smooth Morse theory for which we develop piecewise
linear analogues. The second section covers various topics from piecewise linear
topology providing the basic tools and results for our work. The last section
summarises the required definitions and results from discrete Morse theory.

The level sets with respect to a map linear on cells of a simplicial complex are
domains of polytopal complexes whose structure is induced in a natural way from
the original simplicial complex. The complexes obtained in that way are called
level set complexes and their properties are studied in Chapter 2. The main
concern is to describe the rules that govern the influence of the combinatorial
structure of the original complex on the combinatorial structure of the level set
complex. The results serve as a toolbox for the proofs later on, which is applied
whenever simple observations regarding level sets and level set complexes are
needed.

Chapter 3 defines the kind of maps that we consider as piecewise linear
Morse functions. For that aim, several characterisations for a notion of local
equivalence of maps at points are shown to be equivalent, and regular and
non-degenerate critical points are defined based on that notion. The obtained
notions are compared to previously suggested definitions by Eells and Kuiper,
by Kosinski, by Banchoff, and by Brehm and Kühnel. We also show that any
discrete Morse function on a combinatorial manifold can be transformed into a
piecewise linear Morse function linear on cells of the derived of the combinatorial
manifold such that each critical point of the piecewise linear map is induced by
a corresponding critical cell of the discrete Morse function.

Additional properties and characterisations of regular points not solely based
on the different characterisations of local equivalence are studied in Chapter 4.
A short first part deals with a characterisation of regular points in terms of un-
knotted sphere or ball pairs, which relates the problem of characterising regular
points to the Schoenflies conjecture. The longer second part is concerned with
level-preserving piecewise linear isotopies.

In Chapter 5, we state and prove, applying the results of the previous chap-
ters, piecewise linear analogues of classical Morse theory statements. The selec-
tion of the analogues presented is based on Sections 3 to 5 of Milnor’s textbook
on Morse theory [36].

The last chapter considers two aspects of piecewise linear Morse theory from
a computational point of view. The first section studies the problem of recognis-
ing regular points algorithmically. The problem is connected to the problem of
sphere recognition, which yields recognition algorithms in low dimensions, but
undecidability results in higher dimensions, when arbitrary simplicial complexes
are allowed as input. The second section derives an upper bound for the number
of cells in combinatorially equivalent complexes that represent a level-preserving
piecewise linear isotopy. For that aim, the construction outlined in Chapter 4
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for obtaining such an isotopy is analysed with regard to the number of cells
produced by the various subdivision steps performed during the construction.
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Chapter 1

Introduction

The results of classical smooth Morse theory provide methods to infer global
topological information on a smooth manifold from examining how some suit-
able smooth function defined on the manifold behaves locally at certain so-called
critical points. These points are usually defined and classified into different types
according to the derivatives of the function at the respective point. But there is
an equivalent characterisation of such points that can be transferred from the
the context of differential topology and smooth manifolds to analogous charac-
terisations in other contexts, namely topological manifolds in general topology
or combinatorial manifolds in piecewise linear topology. This work addresses
implications of such a definition in the latter case of piecewise linear topology.
We study the relation to other characterisations of critical points in this setting
and how results similar to those of classical smooth Morse theory can be proven.

For establishing a piecewise linear analogue of Morse theory, the considered
objects are combinatorial manifolds without boundary, represented by a finite
simplicial complex, with real-valued piecewise linear functions defined on their
domains. Furthermore we assume that the functions are in general position in
the following sense: Any simplicial complex endowed with a piecewise linear
function on its domain can be subdivided in such a way that each restriction of
the function to some simplex of the subdivision is a linear map. Therefore we
can assume without loss of generality that the function is linear on the cells of
the given complex. Under this assumption, the function is uniquely determined
by its values at the vertices of the simplicial complex. We say that the function
is in general position if the values at the vertices are all distinct.

For a lot of basic results and technical lemmata, the assumptions can be
relaxed to various degrees without substantial changes to the proofs. So many
results will be stated under less restrictive assumptions, with the following gen-
eralisations being the most frequently occurring ones in this work: The general
position assumption can be dropped in some situations; in particular for results
regarding the combinatorial structure of level sets, combinatorial manifolds can
be replaced by arbitrary simplicial complexes, or complexes whose cells may be
arbitrary convex polytopes, sometimes even unbounded polyhedral sets; occa-
sionally we consider combinatorial manifolds with boundary.

The introduction gives a review of basic notions and facts which serve as
tools throughout this work. It starts with a short survey on smooth Morse
theory, continues with selected topics from piecewise linear topology that are

1



2 CHAPTER 1. INTRODUCTION

relevant for this work, and concludes with a short summary of discrete Morse
theory.

1.1 Smooth Morse Theory
This section provides a collection of some basic results from smooth Morse
theory, which serve as reference for their piecewise linear counterparts discussed
in the main part. Detailed presentations of Morse theory are offered for example
by the textbooks of Milnor [36] and Matsumoto [33]; Rote and Vegter give a
short survey of basic results in [43, Section 7.4]. Readers not familiar with the
notions used in the following may consult these references.

Definitions. Morse theory offers methods to obtain topological information
on a smooth manifold M by studying some smooth real-valued function f de-
fined on the manifold. Crucial for this study are the points of M where the
derivative of f vanishes, called the critical points of f . A critical point p of f is
non-degenerate if the Hessian of f at p is non-degenerate; in this case the index
of p is the number of negative eigenvalues of the Hessian. A smooth function
f : M → R is called aMorse function, if all its critical points are non-degenerate.
The terms regular point and ordinary point are used synonymously to denote a
non-critical point. A real number h is called a critical value of f if its preimage
under f contains a critical point, otherwise it is a regular value of f .

An alternative characterisation of critical points is suggested by the Morse
lemma [33, Theorem 2.16, p. 44], [36, Lemma 2.2, p. 6]. It states that near a non-
degenerate critical point p, using a suitable coordinate system centred at p, the
function f can be represented by a shifted normalised non-degenerate quadratic
form. For regular points, a similar local representation of f by a shifted non-
constant linear form exists. Eells and Kuiper have included this additional
observation regarding regular points in their statement of the Morse lemma,
labelled as “Proposition” in [17, p. 8]. One easily checks that the existence of
a local representation of f near p by one of these forms is also sufficient for
the point p being regular or non-degenerate critical. The following summary
restates the Morse lemma with the mentioned supplements.
Fact 1.1. Let M be a smooth d-manifold with a smooth function f : M → R
defined on it. Then a point p in M is a regular point if and only if there is
a p-centred local coordinate system (X1, . . . , Xd) such that f has the following
representation in terms of these coordinates:

f = f(p) +X1

A point p in M is a non-degenerate critical point of index λ if and only if there
is a p-centred local coordinate system (X1, . . . , Xd) such that the representation
of f in terms of these coordinates is as follows:

f = f(p)−X2
1 − · · · −X2

λ +X2
λ+1 + · · ·+X2

d

An important tool in Morse theory is the study of level sets. In smooth Morse
theory, the type of levels sets typically considered is the set of points inM whose
value under some Morse function f is at most a given value h in R, which we
denote by M≤h. The essential results of Morse theory relate the topological
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changes of level sets, at least up to homotopy equivalence, when going from a
level set M≤a to a level set M≤b, to the critical points in the preimage under
f of the interval [a, b]. For compact manifolds M , this yields a description of
topological changes when going from the empty set, equal to M≤a for some a
less than the global minimum value of f on M , to the whole manifold M , equal
to M≤b for some b greater than the global maximum value of f on M . For
this purpose, the whole interval, say [minp∈M f(p) − ε,maxp∈M f(p) + ε], is
subdivided into subintervals such that each interval either contains no critical
value or at most one critical value in its interior. We can assume without loss of
generality that intervals of the latter kind are of the form [h− ε, h+ ε] for some
critical value h and some real number ε > 0. This way, taking the topological
changes necessary for going from the start of some subinterval to the start of
the next, we obtain a sequence of topological changes for going from the empty
set to M .

Before we state the results, we briefly recall the notion of CW-complexes
used in one of the statements. More detailed summaries are given for example
by Hatcher [25, pp. 5–8, 519–529] and Forman [18, Section 1]. CW-complexes
are constructed starting from the empty set by iteratively attaching cells to
the previously obtained complex. For CW-complexes, the cells are topological
balls; hence the boundary of a d-cell is a (d−1)-dimensional topological sphere.
A space Y is said to be obtained from X by the attachment of a d-cell, if there
is a continuous map g, called the attaching map, from the boundary Sd−1 of
a d-ball Bd to the space X such that Y is the quotient space obtained from
the disjoint union of X and Bd by identifying s and g(s) for each s ∈ Sd. The
construction of the quotient space is colloquially described as gluing Bd at its
boundary to X along g. A finite CW-complex is any element of a finite sequence
of spaces such that the first space of the sequence is the empty space and each
subsequent space is obtained from its predecessor by the attachment of a cell.
Hatcher [25] requires that the attachments occur in order of increasing dimen-
sion; Forman [18, Theorem 1.5] notes that any finite CW-complex is homotopy
equivalent to such a one fulfilling this requirement.

Results. The first observation is that for intervals without critical values, the
topology of the level sets remains unchanged.
Fact 1.2 ([33, Theorem 3.1, p. 73], [36, Theorem 3.1, p. 12]). LetM be a smooth
manifold with a real-valued smooth function f defined on it. Assume that the
preimage of the interval [a, b] under f is compact and contains no critical points.
Then the level set M≤a = {p ∈ M | f(p) ≤ a} is diffeomorphic to the level set
M≤b = {p ∈ M | f(p) ≤ b}. Furthermore, the latter set M≤b deformation
retracts to the former set M≤a.

Another result illustrating the absence of topological changes in intervals
without critical values is the existence of an isotopy between the level sets
in the interval. Matsumoto [33, Theorem 2.31, p. 66] expresses this isotopy
as a diffeomorphism between the preimage of the interval, f−1([a, b]), and
the product f−1(a) × [0, 1] of the preimage of a single value with an inter-
val. The proof provided there implies that the constructed diffeomorphism has
an additional property, which has a particularly neat formulation when the in-
terval [0, 1] is reparametrised linearly to [a, b]: The obtained diffeomorphism
Φ: f−1(a) × [a, b] → f−1([a, b]) is level preserving in the sense that for all lev-
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els h in [a, b] and points p in f−1(a) the equality f(Φ(p, h)) = h holds. This
yields the following slightly strengthened version of the theorem in Matsumoto’s
textbook.
Fact 1.3. Let M be a smooth manifold with a smooth function f : M → R
such that f−1([a, b]) contains no critical points. Then there is a level preserving
isotopy from f−1(a) to f−1(b), in other words a diffeomorphism

Φ: f−1(a)× [a, b]→ f−1([a, b])

such that the equation f(Φ(p, h)) = h holds for all h in [a, b] and all p in f−1(a).
It remains to describe the topological changes in the level sets, when the

interval [a, b] contains a critical value. We restrict our attention to the case that
the preimage f−1(h) of the critical value h contains only a single critical point.
For the case of several critical points with the same value, see the generalised
result stated in [36, Remark 3.3, p. 19]. Alternatively, this case can be avoided
by slightly modifying the considered function: For any Morse function, there
is an arbitrarily close Morse function with the same critical points but distinct
values at each of them [33, Theorem 2.34, p. 69]. The topology change when
crossing a critical level of a single non-degenerate critical point is equivalent to
the attachment of a cell:
Fact 1.4 ([36, Theorem 3.2, p. 14]). Let p be a non-degenerate critical point of
index λ of a Morse function f on a smooth manifold M with value f(p) = h.
Assume that for some ε > 0 the preimage f−1([h − ε, h + ε]) is compact and p
is the only critical point contained in it. Then M≤h+ε is homotopy equivalent
to M≤h−ε with a λ-cell attached.

It is possible to achieve a diffeomorphism instead of a homotopy equivalence
by thickening the attached cell to a suitably attached handle and smoothing out
the obtained space [33, Theorem 3.2, p. 77].

Applying the cell attachments for each critical point, starting with the empty
set, we obtain a CW-complex that is homotopy equivalent to the manifold M .
Fact 1.5 ([36, Theorem 3.5, p. 20]). Let f be a Morse function on a smooth
manifold M such that M≤h is compact for every real number h. Then M is
homotopy equivalent to a CW-complex whose cells are in bijection with the
critical points of f : one λ-cell for each critical point of index λ.

Using handle attachment instead of cell attachment, we obtain a handle
decomposition of M [33, Theorem 3.4, p. 81].

We conclude with two implications, the Morse inequalities, which relate
Betti numbers and indices of critical points, and the Reeb theorem, stating
that a compact manifold with exactly two critical points is homeomorphic to a
sphere.
Fact 1.6 (Morse inequalities [36, Theorem 5.2, p. 29; Inequality (4λ), p. 30]).
Let M be a compact smooth manifold with a Morse function f . Denote by cλ
the number of critical points of index λ of f , and by βλ the λ-th Betti number
of M . Then the following inequalities and equalities hold:

1. The Weak Morse Inequalities. For each λ:

βλ ≤ cλ
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2. An equality representing the Euler characteristic χ(M) of M in two ways:

χ(M) =
∑
λ

(−1)λcλ =
∑
λ

(−1)λβλ

3. The Strong Morse Inequalities. For each λ:

λ∑
i=0

(−1)iβλ−i ≤
λ∑
i=0

(−1)icλ−i

Fact 1.7 (Reeb theorem [36, Theorem 4.1, p. 25]). If a smooth manifold has a
Morse function with exactly two critical points, then it is homeomorphic to a
sphere.

1.2 Piecewise Linear Topology
This sections serves as a survey on definitions and results from piecewise linear
topology that are the basic tools for our study. The treatment is restricted to
finite complexes embedded geometrically in some Euclidean space. The com-
binatorial structure of the complexes given by the partial ordering induced by
the face relation receives special attention. The results are mainly taken from
the textbooks of Rourke and Sanderson [44], Glaser [21], and Hudson [26]. For
basic properties of convex polyhedral sets, we also refer to Grünbaum [23].

1.2.1 Polyhedral Sets and Polyhedral Complexes
The combinatorial manifolds that we want to investigate by means of piecewise
linear Morse theory are given as simplicial complexes. As in the case of smooth
Morse theory, an important tool for this investigation is the study of level sets.
A level set is the preimage under a given function of a certain level range.
We are primarily interested in level sets that are preimages of closed intervals.
In Chapter 2, we show that a level set of this kind can be regarded as the
domain of a complex, whose combinatorial structure is naturally induced by
that of the considered manifold. However, the cells of this naturally induced
level set complex are not necessarily simplices; in general, we obtain a complex
whose cells are convex polytopes. It turns out that the basic results on level
set complexes in Chapter 2 have more concise formulations when we generalise
the considered domains and level ranges to a class of complexes that contains
as subclasses simplicial complexes, complexes whose cells are convex polytopes,
and complexes formed by closed intervals. In this subsection, we introduce
this class of complexes, which we call polyhedral complexes. Out of habit, we
stick to the term “cell” for the members of the complexes, even if the members
sometimes do not fulfil all conditions that are commonly required from cells. We
also mention the notion of maps linear on cells, including cellular and simplicial
maps as special cases.

Polyhedral Sets. For our polyhedral complexes, the cells are taken from the
class of polyhedral sets. We recall the definition of polyhedral sets, following
the terminology used by Grünbaum [23, Section 2.6, p. 26].
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Definition 1.8 (polyhedral set). A subset of the Euclidean space Rd is called
a polyhedral set, if it is the intersection of finitely many closed half-spaces of Rd.
A subset F of a polyhedral set P is a face of P , denoted by F v P , if it
is either empty, or the whole set P , or the intersection of P with a supporting
hyperplane of P [23, Section 2.4, p. 17]. When (H+

i )i∈I is a family of half-spaces
whose intersection is the polyhedral set P and (Hi)i∈I is the corresponding
family of hyperplanes such that Hi bounds H+

i for each i, then for any subset
J ⊆ I and the corresponding subfamily of hyperplanes (Hi)i∈J , the intersection
P ∩

⋂
i∈J Hi of P with the hyperplanes is a face of P , and any non-empty face

of P is representable as such an intersection [23, Section 2.6, pp. 26–27]. For a
polyhedral set P , we denote by F(P ) the set of faces of P . A vertex of P is a
point v in P such that the singleton set {v} is a face of P . The set of vertices
of P is denoted by Vrt(P ). The union of the proper faces of P is the boundary
of P , the remaining points form the interior of P . These definitions agree with
the topological notions of boundary and interior, when P is considered as a
subset of its affine hull.

The term “convex polyhedron” seems to be more commonly used for a poly-
hedral set, but switching to Grünbaum’s notion avoids confusion with the more
general concept of a polyhedron defined in the book on piecewise linear topology
by Rourke and Sanderson, our main reference for facts from this field [44, p. 2].

A convex polytope can be characterised as a bounded polyhedral set [23,
Theorem 3.1.3, p. 32], or equivalently as the convex hull of a finite set of points
[23, p. 31]. It is the convex hull of its vertices, and each face is the convex hull
of some subset of vertices. Note that the polyhedral sets contained in R1 are
exactly the closed intervals.

Polyhedral Complexes. Our definition of polyhedral complexes agrees with
the one given by De Loera, Rambau, and Santos in [16, pp. 45–46]: We adopt
the closure properties from the usual definition of simplicial complexes, see for
example [43, p. 280], and extend the allowed class of cells from simplices to
polyhedral sets, as suggested in [23, p. 41]. Therefore, the simplicial complexes
form a subclass of the polyhedral complexes. Allowing only convex polytopes
as cells yields another important subclass. In addition to these well known
subclasses, we introduce the notion of interval complexes: Since Morse theory
deals with real-valued functions, complexes embedded in R and hence formed
by closed intervals occur naturally in our study. The notions of subcomplexes
and subdivisions, as defined for example in [44, p. 15], extend to polyhedral
complexes in the obvious way.

Definition 1.9 (polyhedral complex). A polyhedral complex is a finite family
of polyhedral sets in some Rn such that the following closure properties hold:

1. Each face of a family member is again a family member.

2. The intersection of two family members is a face of both members, possibly
the empty set, and thus a family member by the first property.

The family members are called the cells of the complex. A polytopal complex
is a polyhedral complex such that each cell is a convex polytope. A simplicial
complex is a polyhedral complex whose cells are simplices; in particular, it is a
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polytopal complex. An interval complex is a polyhedral complex embedded in
the one-dimensional euclidean space R. In other words, the cells of an interval
complex are closed intervals which intersect, if at all, only at their endpoints.

The domain or underlying set |K| of a polyhedral complex K is the union
of its cells. For each point p in the domain |K|, there is a unique cell of K con-
taining p in its interior, namely the intersection of all cells in K containing p.
In other words, |K| is the disjoint union of the interiors of cells in K. A sub-
complex of a polyhedral complex is a subfamily that is a polyhedral complex,
and a subdivision of a polyhedral complex L is a polyhedral complex K such
that K and L have the same domain and each member of K is contained in a
member of L.

The face relation v among the cells of a polyhedral complex induces a partial
ordering on the complex. The notion of vertices extends from cells to complexes:
A vertex of K is a vertex of one of its members, or equivalently, a point v in
|K| such that {v} is a cell of K; the set of vertices of K is denoted by Vrt(K).
Sometimes the cell {v} ∈ K is also called a vertex. In this sense a vertex of K
corresponds to a 0-dimensional cell of K.

Simplicial and polytopal complexes are standard notions in combinatorial
topology; the latter kind however appears under various names in the literature.
Polytopal complexes are called “convex linear cell complexes” by Glaser [21,
p. 9] and Hudson [26, p. 5], or simply “cell complexes” by Rourke and Sander-
son [44, p. 14]. Grünbaum [23, p. 39] mentions the terms “convex complex” and
“geometric cell complex”, and also the term “polyhedral complex”, which we
adopted for the more general class. The term “polytopal complex” chosen here
is used amongst others by Adiprasito and Benedetti [1, 2]. Our terminology of
polyhedral and polytopal complexes intends to reflect the popular convention
that polyhedra are allowed to be unbounded polyhedral sets whereas polytopes
are restricted to be bounded.

As noted in the definition, the face relation defines a poset structure on the
complex. Since each cell of a complex is a face of some cell, at least of itself,
the terms face and cell are often used synonymously. The term cell is preferred
when considering the polyhedral set as a member of a complex, the term face
emphasises its embedding in the poset structure. If some cell F is a face of some
cell S, we also call S a co-face of F .

For polytopal and simplicial complexes, the standard basic example is the
complex formed by the set of faces of a single convex polytope or simplex. These
examples generalise to the basic example of a polyhedral complex, namely the
complex associated with a polyhedral set P . The set of cells of this complex
coincides with the set F(P ) of faces of P . If the set P is a convex polytope, a
simplex, or a closed interval, then the associated complex is polytopal, simplicial,
or an interval complex respectively. The poset structure on F(P ) induced by
the face relation is often referred to as the face lattice of P .

The proper faces F(P ) \ {P} of a polyhedral set P form a subcomplex
of F(P ). The domain of this subcomplex is the topological boundary of the
polyhedral set in its affine hull. It is a common abuse of notation to denote
the associated complex F(P ) by P , and the boundary complex F(P ) \ {P}
by bd(P ) [44, p. 14]. The combination with another frequent convention for
simplified notation, namely dropping the braces enclosing the element of a sin-
gleton set, leads to further ambiguity: A vertex v may denote a point p in space,



8 CHAPTER 1. INTRODUCTION

the 0-simplex {p} containing the point, or the complex {∅, {p}} associated with
the 0-simplex. The exact meaning is usually clear from the context, and the
identification of the three objects often seems so natural that the inaccuracy is
hardly ever noticed.

Maps Linear on Cells. Our primary object of study are complexes that
have a map defined on their domain such that the restriction to each cell is
a linear map. By a linear map, we mean any map obtained by restricting
an affine linear map on some affine subspace to some domain contained in the
subspace. The following definitions concerning such maps are taken from Rourke
and Sanderson’s textbook [44, pp. 16–17].

Definition 1.10. A map f : |K| → X ⊆ Rm defined on the domain of a
polyhedral complex K is called linear on cells of K, if for each cell S ∈ K,
the restriction of f to S is a linear map. For two polytopal complexes K and L,
a map f : |K| → |L| is called cellular, if f is linear on cells of K and for each
cell S of K, the image f(S) is a cell in L. A cellular map f : |K| → |L| is called
simplicial, if K and L are simplicial complexes.

A map that is linear on cells of a polytopal complexK is uniquely determined
by its values on vertices. All other values can be inferred by cell-wise linear
interpolation. We say that a map f : |K| → R linear on cells of K is in general
position if the values at the vertices are all distinct.

For any map f0 : Vrt(K) → X defined on the vertices of polytopal com-
plex K, there is, by the previous observation, at most one map f linear on cells
of K extending f0 to |K|. The existence of f however can not be ensured for ar-
bitrary polytopal complexes, because f0 might not respect affine dependencies of
vertices in a common cell. But for simplicial complexesK, where all vertices of a
common cell are affinely independent, an extension of f0 always exists: Cell-wise
linear interpolation of a map f0 : Vrt(K) → X gives a map f : |K| → conv(X)
from |K| to the convex hull of X. If additionally the codomain X is the do-
main of a simplicial complex L and for each simplex S of K, its vertices are
mapped to vertices of a simplex in L, that is f0(Vrt(S)) = Vrt(T ) for some
simplex T ∈ L, then the extension by cell-wise linear interpolation yields a
simplicial map f : |K| → |L|.

By abuse of notation, the vertical bars representing the domain are some-
times dropped to indicate that f is linear on cells or cellular: f : K → X for
some X ⊆ Rm denotes a map f : |K| → X that is linear on cells of K and
f : K → L for a complex L denotes a cellular map f : |K| → |L|. We will use
the notation without vertical bars for functions, if at all, only sparingly, be-
cause we occasionally consider functions whose arguments are indeed the cells
of the complex and not the points in its domain: The combinatorial equivalences
φcomb : K → L considered in Subsection 1.2.7 bijectively assign cells of one com-
plex to cells of another complex; the functions studied in discrete Morse theory,
a theory developed by Forman [18] and shortly summarised in Section 1.3 of
this thesis, assign a real number to each cell of a complex. Nevertheless, the
dropping of the vertical bars is quite common in many other contexts when no
ambiguity arises, for example topological properties of the domain of a complex
are often attributed to the complex itself.
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Table 1.1: The different kinds of closed intervals and for each interval I the
associated interval complex formed by the set of its faces F(I).

I F(I)
[a, b] {∅, {a}, {b}, [a, b]}
(−∞, h] {∅, {h}, (−∞, h])}
R {∅,R}

I F(I)
{h} {∅, {h}}
[h,∞) {∅, {h}, [h,∞)}
∅ {∅}

1.2.2 Interval Complexes
This subsection contains a few remarks on interval complexes. By our defini-
tion, the cells of interval complexes are closed intervals, including unbounded
intervals, singletons, and the empty interval. There is only one interval complex
containing the interval R, namely {R, ∅}. Other interval complexes can contain
at most one interval half-bounded at the right end and at most one interval
half-bounded at the left end, in total at most two half-bounded intervals.

We are mainly concerned with the simplest case of an interval complex, the
complex associated with a single closed interval. The cells of the associated
interval complex are the interval itself, the empty cell, and for each endpoint of
the interval a cell containing only the endpoint. Table 1.1 lists the details for
all kinds of closed intervals. Each cell is a face of itself, the empty cell is a face
of every other cell, and an endpoint cell is a face of the whole interval. Let us
take a look at an example to see why regarding a closed interval as a complex
can be useful for describing level sets.

Consider a triangle T = abc (see Figure 1.1) with a linear function f on T
defined by linear interpolation between the values at the vertices. Let us assume
that these values and the level value h ∈ R we are interested in are in the fol-
lowing order: f(a) < f(b) < h < f(c). Then the preimage f−1(h) of the level h
is a line segment that divides the triangle into a quadrilateral f−1((−∞, h]) and
a triangle f−1([h,∞)). (From now on, we simplify our notation for preimages
of intervals and omit the outer parentheses when the interval is denoted by its
endpoints in brackets.) The edges of the quadrilateral are the edge ab, the line
segment f−1(h) and two line segments contained in the edges ac and bc, namely
the part of the edges between a or b and the intersection point of the respec-
tive edge with the line segment f−1(h). These line segments can be written as
ac ∩ f−1(−∞, h] and bc ∩ f−1(−∞, h]. The vertices of the quadrilateral are a,
b, ac∩ f−1(h), and bc∩ f−1(h). Similarly, the triangle f−1[h,∞) has the edges
f−1(h), ac ∩ f−1[h,∞), and bc ∩ f−1[h,∞), and the vertices c, ac ∩ f−1(h),
and bc ∩ f−1(h). Note that the vertex c can be represented by the intersection
c∩f−1[h,∞), that the line segment f−1(h) coincides with T ∩f−1(h), and that
similar representations exist for the vertices a and b and for the edge ab together
with the preimage f−1(−∞, h].

When the letter I denotes one of the closed intervals (−∞, h] or [h,∞),
and is regarded as a polyhedral set, the faces of I are either I itself, or the
singleton set of its endpoint h, or the empty set. For each face of the level
set f−1(I) = T ∩ f−1(I) we have found a representation as the intersection of
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f(a)

f(b)

h

f(c)

f

a

b

c

f−1(h)

f−1[h,∞)

f−1(−∞, h]

Figure 1.1: A triangle T = abc subdivided at level h. The linear function
f : T → R assigns to each point of T its height with respect to the vertical
axis. Indicated are the quadrilateral level set f−1(−∞, h] below level h, the
triangular level set f−1[h,∞) above level h, and their common intersection, the
line segment forming the level set f−1(h) exactly at level h.

some face of the triangle T and the preimage of some face of the interval I.
Conversely, one easily checks that each such intersection is a face of the level
set. Hence, we can sum up our observations by the following statement: Each
face of T ∩ f−1(I) can be written as F ∩ f−1(Y ) where F is a face of T and Y
is a face of I, moreover each such term F ∩ f−1(Y ) is a face of T ∩ f−1(I).

We will see in Chapter 2 that this statement remains true if T and I are
replaced by arbitrary polyhedral sets and can be generalised from single cells to
complexes. Since we will apply the results of Chapter 2 later only to finite sim-
plicial complexes M , the consideration of unbounded intervals could be avoided
by bounding them by maxx∈|M | f(x) from above and by minx∈|M | f(x) from
below. This would even permit to restrict our study completely to the more
common class of polytopal complexes. But it seems more intuitive to describe
a level set such as f−1(−∞, h] as the set of points whose f -value is at most a
certain threshold h rather than as the set f−1[minx∈|M | f(x), h] of points whose
f -value lies between the global minimum and the threshold.

1.2.3 Operations on Complexes
We recall some frequently used operations on complexes. The operations have
geometric and combinatorial aspects. The notion of joins, including as special
cases cones and suspensions, is only introduced for polytopal complexes; prod-
ucts and intersections are also defined for polyhedral complexes with unbounded
cells.

Joins. The geometric definition of a join of two subsets A and B in Rn as
the union of all line segments connecting a point in A with a point in B can be
applied to any pair of subsets [44, p. 1], [21, Exercise IV.5, p. 137]. But such
a broad application has the disadvantage that the combinatorial description of
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a join given below fails to hold for arbitrary pairs. Therefore we restrict the
definition of a join to independent sets as considered in [44, p. 22]. Equivalent
restrictions are used for the definition of a join of simplicial complexes in [21,
p. 6] and [26, p. 6].

Definition 1.11 (independent sets [44, p. 22]). Two subsets A and B of Rn are
independent if they are disjoint and the interiors of all line segments between a
point in A and a point in B are pairwise disjoint. In other words, A and B are
independent if for every point that is a convex combination λa + (1 − λ)b of a
point a in A and a point b in B, the representation as such a convex combination
is unique in the sense that λ ∈ [0, 1] is unique, a ∈ A is unique unless λ = 0,
and b ∈ B is unique unless λ = 1.

For the combinatorial description of a join, we use the notion of the product
order on a Cartesian product of posets. Let (A,≤A) and (B,≤B) be two posets.
Then a poset structure (A × B,≤×) on the set-theoretic Cartesian product of
A and B is given by the rule that (a, b) ≤× (a′, b′) holds if a ≤A a′ and b ≤B b′.
Two posets (A,≤A) and (B,≤B) are isomorphic if there is a bijection φ : A→ B
such that φ(a) ≤ φ(a′) holds in B if and only if a ≤ a′ holds in A.

Definition 1.12 (join). For two independent subsets A and B of Rn, their
join, denoted by AB is defined as follows: If both sets are non-empty, the
join AB is the union of all line segments connecting a point in A to a point in
B; equivalently, AB is the set of all points expressible as convex combinations
λa+(1−λ)b of a point a in A and a point b in B. For joins involving the empty
set, we define ∅A = A∅ = A.

The join of a p-dimensional and a q-dimensional convex polytope is (p+q+1)-
dimensional convex polytope whose faces are exactly the pairwise joins of faces
of the original polytopes: F(ST ) = {FG | F ∈ F(A), G ∈ F(B)}. Adding the
observation that the intersection of joins ST ∩ S′T ′ agrees with the join of the
intersections (S ∩ S′)(T ∩ T ′), we can conclude that the following definition of
a join of complexes yields a valid complex:

For polytopal complexes K and L with independent domains |K| and |L|
in Rn, the collection of all pairwise joins {ST | S ∈ K,T ∈ L} is a polytopal
complex, called the join of K and L and denoted by KL, whose domain is the
join of the domains: |KL| = |K||L|. The relationship of the dimensions carries
over from joins of convex polytopes to joins of polytopal complexes. The vertex
set Vrt(KL) of the join KL is the union of the vertex sets of K and L. If K
and L are simplicial, then their join KL is also simplicial.

Combinatorially, that is with regard to the poset structure, the join acts
like a product: A cell FG in KL is a face of some other cell ST in KL if and
only if F is face of S in K and G is a face of T in L. In other words, the face
relation vKL induces a poset on KL that is isomorphic to the product order
of the posets (K,vK) and (L,vL), where the poset isomorphism is given by
assigning ST in KL to (S, T ) in the set-theoretic Cartesian product K × L.

The independence of two sets can be enforced by embedding them into inde-
pendent subspaces of a higher dimensional space. This construction is called the
external join in [44, p. 23] and also applies to sets embedded in different spaces:
Embed the sets A ⊆ Rn and B ⊆ Rm as A × {0}m × {0} and {0}n × B × {1}
into Rn × Rm × R, identified with Rn+m+1 in the usual way. The embedded
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sets are independent in Rn+m+1 and their join is the external join of A and B.
Consequently, the external join of two polytopal complexes is the complex con-
sisting of all external joins of cell pairs. Whenever we consider joins of sets or
complexes that are non-independent or embedded in different spaces, we are
referring to the external join.

Two important special cases of joins are cones and suspensions. A cone is
the join of a set with a single point, a suspension is the join of a set with two
distinct points. In both definitions, we tacitly assume that the joined sets are
independent or an external join is performed.

Definition 1.13 (cone). A cone on a set B ⊆ Rn is the join of B and a singleton
set {v} ⊆ Rn. We usually write vB instead of {v}B. For a cone vB, the point v
is called the apex of the cone and the set B its base. For a complex K and a
singleton set {v}, the complex formed by the join of the complexes F({v}) and
K is also called a cone on K. Clearly, the domain of this cone complex on K
is the cone on the domain of K with apex v. Again we prefer writing vK in
place of F({v})K or {v}K, and we call v the apex and K the base of the cone.
Occasionally we refer to F({v}) or {v} as apex as well, and to |K| as the base.

Definition 1.14 (suspension). A suspension of a set B ⊆ Rn is the join of B
and a set {v, w} of two distinct points. For a complex K, a suspension of K
is a join of K with a complex {∅, {v}, {w}} for distinct vertices v and w. We
sometimes call the points v and w the apices of the suspension.

Cartesian Products. The Cartesian product of two polyhedral sets, one
in Rm, the other in Rn, is a polyhedral set in Rn+m. The faces of the product
are the pairwise products of faces: F(S×T ) = {F ×G | F ∈ F(A), G ∈ F(B)}.
Given two sets S and S′ in Rn and two sets T and T ′ in Rm, the intersection of
the Cartesian products S×T ∩S′×T ′ is the Cartesian product of the intersec-
tions (S ∩S′)× (T ∩T ′). These observations allow to define a product complex
of two polyhedral complexes by collecting all pairwise Cartesian products of
cells [44, p. 15].

Since this description resembles the description of a join of complexes, with
join replaced by product, let us point out some differences. In the case of a join
of two complexes, assigning to each pair (S, T ) of cells the cell ST in the join
establishes a bijection between pairs of cells and cells of the join. For products
however, the assignment (S, T ) 7→ S×T is not injective, because any Cartesian
product with an empty cell as factor yields the empty cell. Fortunately, the
empty cell is the only cell representable by products of different pairs. Conse-
quently, the combinatorial structures of the face posets of joins and products
differ. For joins, we observed that FG is a face of ST if and only if F is a face
of S and G is a face of T . For products, the implication that if F is face of S
and G is a face of T , then F ×G is a face of S × T still holds, but the converse
fails when the empty cell is involved. A correct characterisation of the poset
structure on the product complex is provided by the following statement: The
cell F × G is a face of S × T if and only if F is empty, or G is empty, or F is
face of S and G is a face of T .

Another difference is the dimension: The join of an n-cell and an m-cell is an
(n+m+1)-cell, whereas their product is an (n+m)-cell. In particular, the vertex
set of a product complex is the Cartesian product of the vertex sets, the vertex
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set of a join is the union of the vertex sets. Furthermore the join of simplicial
complexes is simplicial, but the product complex of simplicial complexes is not
simplicial in general. Actually, a product complex is only simplicial in very
trivial cases, when the domain is empty, or one of the complexes is 0-dimensional
and the other simplicial; as soon as both factors contain an edge, the product
complex contains a quadrilateral and is not simplicial. At least the product
complex of polytopal complexes is a polytopal complex.

Note that the set-theoretic Cartesian product K×L of two complexes, which
we used above to describe the poset structure on the join, and the product com-
plex of K and L, which we also denote by K × L, are different objects: The
elements of the former are pairs of cells, whereas the elements of the latter
are Cartesian products of cells. Set-theoretic Cartesian products of complexes
appear here essentially only in the already mentioned context, namely as iso-
morphic description of poset structures. Product complexes occur in this work
mostly in connection with an isotopy or homotopy, in products such as K× [0, 1]
or K× [a, b], where the second factor is the complex associated with the interval
parametrising the isotopy or homotopy. Therefore the meaning of a term K×L
will usually be clear from context, otherwise we will explicitly state whether we
refer to the set-theoretic product or the product complex.

Definition 1.15 (product complex). The product complex K × L of two poly-
hedral complexes K and L is the complex formed by all Cartesian products
S × T where S is a cell in K and T is a cell in L. The domain |K × L| of
the product complex is the Cartesian product |K| × |L| of the domains. The
face poset structure on K × L is induced by the structures on K and L by the
following characterisation: A cell F × G is a face of S × T if and only if F is
empty, or G is empty, or F is face of S and G is a face of T .

For polytopal complexes K and L, the face poset on the product complex
K × L is isomorphic to the restriction of the face poset on the (external) join
complexKL to the subset obtained by removing the cells S = S∅ and T = ∅T for
non-empty cells S ∈ K and T ∈ L. Furthermore, in the language of structure
preserving maps between posets, the map from the join KL to the product
complex K × L given by the assignment ST 7→ S × T is a surjective monotone
map with respect to the face posets, that is FG v ST implies F ×G v S × T .
For non-polytopal complexes K and L, where we did not define the notion of a
join, we can use the product order to obtain an analogous result: The face poset
on K ×L is isomorphic to the product order of (K,vK) and (L,vL) restricted
to the subset of pairs where the members are either both non-empty or both
empty. The assignment (S, T ) 7→ S × T yields a surjective monotone map from
the product order to the face poset of K × L.

Intersections. For the intersection of two polyhedral sets, we can observe
similar rules as for joins and products, that allow to define an intersection
complex as the set of all pairwise intersections of cells. The intersection of
two polyhedral sets in Rn is again a polyhedral set in Rn. The faces of the
intersection are the pairwise intersections of faces: F(S ∩ T ) = {F ∩ G | F ∈
F(A), G ∈ F(B)}. Clearly, we also have (S ∩ T ) ∩ (S′ ∩ T ′) = (S ∩ S′) ∩
(T ∩ T ′). Therefore, for two polyhedral complexes K and L embedded in Rn,
the set {S ∩ T | S ∈ K,T ∈ L} is a polyhedral complex in Rn. We denote
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this intersection complex by K ∩ L, although in general it differs from the
set-theoretic intersection. On the other hand, the set-theoretic intersection of
complexes is usually only considered for subcomplexes of the same complex,
where both notions, the set-theoretic intersection and the intersection complex,
yield the same result.

Definition 1.16 (intersection complex). The intersection complex K∩L of two
polyhedral complexes K and L is the complex formed by all pairwise intersec-
tions S ∩ T of cells S in K and T in L. The domain |K ∩ L| of the intersection
complex is the intersection |K| ∩ |L| of the domains.

The intersection gives yet another operation on complexes whose cells are
given by a pairwise operation on cells. What are the differences to the previous
two examples, the join and the product complexes? Let us again consider the
map assigning to pairs of cells (S, T ) the result of the operation, in this case S∩T .
As in the case of products, any intersection involving the empty cell results in
the empty cell; but in most cases, there are even more disjoint pairs of cells than
just the trivial ones. And the empty cell is sometimes not the only cell that is
the intersection of several distinct pairs of cells. For example, the intersection
of two non-parallel edges sharing the same point in Rn as vertex agrees with
the intersection of one edge with the vertex and with the intersection of the
vertex with itself. Hence, in general, the dimension of the intersection of two
cells or complexes can range between −1 and the smaller dimension of the two
cells or complexes. In particular, not all vertices of the intersection complex are
necessarily obtained by an intersection involving a vertex; higher dimensional
cells may also intersect in just a single point. Furthermore the intersection of
two simplices is not necessarily a simplex, therefore the intersection complex
of simplicial complexes is not necessarily simplicial. But it is sufficient that at
least one of the two complexes is polytopal to obtain a polytopal intersection
complex.

Situations where a cell in the intersection complex is representable as inter-
section of different pairs of cells also induce counterexamples to a hypothetical
implication that F ∩G being a face of S ∩T implies that F is a face of S and G
is a face of T . Take for F and G the non-parallel edges of the previous example
and for S and T their shared vertex, then F ∩G is a face of S ∩ T , but neither
F is a face of S nor G is a face of T . The converse implication however still
holds for the poset structure of intersection complexes: If F is a face of S and
G is a face of T , then F ∩G is a face of S ∩ T .

This leads to two questions: Which pairs of cells have the same intersections?
Are there rules characterising the face poset of the intersection complex in terms
of the face posets of the original complexes? The answer to the first question
clearly depends on the geometric location of the cells in space. It turns out
that the second question is related to the first one: Considering two pairs of
cells as equivalent, if their intersections agree, and taking a suitable system
of canonical representatives for the equivalence classes, the face poset of the
intersection complex is isomorphic to the restriction of the product order of the
original complexes to this set of representatives. For further details we refer to
the study of level set complexes and their combinatorial structure in Chapter 2,
because intersection complexes can be considered as special cases of level set
complexes.
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1.2.4 Piecewise Linear Maps
In this subsection, we review some characterisations and properties of piecewise
linear maps. As reflected in the name, one characterisation of piecewise linear
maps calls a map piecewise linear, if the domain can be subdivided into suitable
pieces, such that the restriction of the map to each piece is a linear map. In
particular, a map linear on cells of a polyhedral complex K is piecewise linear
in this sense. Our study concerning the notions of regular and critical points
of piecewise linear maps in Chapter 3 profits from having other points of view
on these maps at hand. In particular, some notions introduced by Rourke and
Sanderson [44] for their characterisation of piecewise linear maps are useful for
us. Therefore we summarise the basic results on piecewise linear maps from [44].
Throughout the thesis, we will often abbreviate the words “piecewise linear” by
the letters PL.

The different points of view on piecewise linear maps already start with
different descriptions of the class of objects from which domains and codomains
of the maps are taken. Sometimes the objects are described as domains of
simplicial complexes, sometimes as polyhedra in the sense explained below. Our
setting of considering a function f : |M | → R linear on cells of a complex M
that forms combinatorial manifold is already a bit of a mixture of both points
of view, because the domain of f is represented as the domain of a simplicial
complex, but the codomain R is not viewed as a complex.

Polyhedra, Cone Neighbourhoods, and Links. Rourke and Sanderson
define a polyhedron as a subset P of an Euclidean space fulfilling the following
local property [44, p. 2]: Each point p ∈ P has a neighbourhood N in P such
that N is the cone with apex p and base L for some compact set L. Such a
neighbourhood N is called a cone neighbourhood or star of p in P , and L is
called a link. The cone neighbourhood N can always be assumed to be an ε-
neighbourhood, that is, N is a ball in P of radius ε centred at p and L is the
corresponding sphere for some sufficiently small ε, where distances in P are given
by the ∞-norm of the ambient space [44, p. 3]. Apparently, the argument does
not rely on the ∞-norm being used as norm; but the piecewise linear setting
suggests using norms whose ε-balls are convex polytopes, with ∞-norm and 1-
norm being the standard examples. Using the facts that Euclidean spaces and
half-spaces are polyhedra [44, Examples 1.3 (5) and 1.3 (8), p. 4], and that a
finite intersection of polyhedra is a polyhedron [44, Example 1.3 (3), p. 4], we
can conclude that polyhedral sets are polyhedra.

Another result states that a locally finite union of a family of compact poly-
hedra is a polyhedron, where locally finite means that any point has a neigh-
bourhood intersecting only finitely many polyhedra from the family [44, Exam-
ple 1.3 (5), p. 4]. Conversely, any polyhedron has a representation as a locally
finite union of a family of simplices, and for compact polyhedra, a finite family
of simplices suffices [44, Theorem 2.2, p. 12]. In particular, convex polytopes
can be represented as finite unions of simplices. This implies that polyhedra can
be equivalently characterised as locally finite unions of simplices, or as locally
finite unions of convex polytopes. Furthermore, this equivalence restricts to an
equivalence of compact polyhedra and (globally) finite unions of simplices or
convex polytopes: Any finite union of simplices or convex polytopes is a com-
pact polyhedron, because a finite union of compact sets is compact, and any
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compact polyhedron is a finite union of simplices, in particular a finite union of
convex polytopes.

So far, the family of simplices or convex polytopes does not necessarily form
a complex. For the case of compact polyhedra, Rourke and Sanderson show that
this additionally requirement can be met [44, Theorem 2.11, p. 16]: Any compact
polyhedron is the domain of some simplicial complex. On the other hand, the
domain of any simplicial or polytopal complex is a compact polyhedron since it
is a finite union of compact convex polytopes. Summing up, compact polyhedra,
domains of simplicial complexes, and domains of polytopal complexes describe
the same class of subsets of Euclidean spaces.

Characterisations of Piecewise Linear Maps. A continuous map f : P →
Q for two polyhedra P and Q is piecewise linear, if each point p in P has a cone
neighbourhood N = pL such that the function values of f are obtained by
linearly interpolating between the apex p and the base L: For any point q in N
with its representation as convex combination q = λp+ (1−λ)r for some r ∈ L,
the equality f(q) = λf(p) + (1 − λ)f(r) holds [44, p. 5]. This characterising
property is referred to as f being locally conical. If P is represented as a locally
finite union of compact polyhedra Pi, then a map f is piecewise linear if and
only if the restriction of f to Pi is piecewise linear for each i; in particular,
f being linear on each Pi is sufficient [44, Example 1.5, p. 5]. Conversely, if
f : P → Q is a piecewise linear map, then there is a representation of P as
the locally finite union of simplices such that for each simplex, the restriction
of f to that simplex is a linear map [44, Corollary 2.3, p. 12]. Therefore, we
obtain an equivalent characterisation of piecewise linear maps in terms of the
existence of a representation of the domain as a union of polytopal or simplicial
pieces where the map is linear: A map f : P → Q between polyhedra P and
Q is piecewise linear if and only if there is a representation of P as the locally
finite union of simplices such that for each simplex, the restriction of f to that
simplex is a linear map. Analogously, f is piecewise linear if and only if P is
representable as a locally finite union of convex polytopes such that f is linear
on each polytope.

Let us consider now the case that P is a compact polyhedron, in other
words the domain of some polytopal or simplicial complex K. It turns out
that for this case, piecewise linear maps correspond to maps linear on cells
of a suitable subdivision of the complex. From the above characterisations of
piecewise linear maps, we can immediately conclude that maps linear on cells
of a polytopal complex K are piecewise linear, because the cells of the complex
are compact polytopes. As a side note, this result extends to maps linear on
cells of polyhedral complexes: The non-compact cells are polyhedra and hence
locally finite unions of compact polyhedra; this yields a representation of the
domain as a locally finite union of compact polyhedra where the map is linear,
implying piecewise linearity.

We want to consider maps from |K| to R, but the results in the literature
for piecewise linear maps on complexes are usually stated for maps between
domains of complexes. Therefore, we start with some observations explaining
why the codomain can be assumed to be the domain of some other polytopal
or simplicial complex, so that the results carry over to arbitrary codomains.

For any piecewise linear map defined on a compact polyhedron, its image is
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again a compact polyhedron [44, Corollary 2.5, p. 13]. Thus, given a piecewise
linear map f : |K| → X ⊆ Rm on a polytopal complex K, we can restrict the
codomain to the image f(|K|) ⊆ X of f . Since f(|K|) is a compact polyhedron,
it is the underlying set of some simplicial complex L embedded in Rm and we
may consider f as a piecewise linear map f : |K| → |L|. Alternatively, we can
use the fact that images of compact sets are compact. Hence the image of f
is contained in some large enough hypercube, and choosing for L the polytopal
complex associated with the hypercube works as well. We also could replace the
hypercube by some other large enough convex polytope or simplex, if we prefer.

The relation between piecewise linear maps, maps linear on cells of a sub-
division, and cellular or simplicial maps on subdivisions is established by the
following results: If the map f : |K| → |L| between polytopal complexes K and
L is linear on cells of K, then K and L have simplicial subdivisions such that
f is simplicial with respect to these subdivisions [44, Lemma 2.13, p. 17]. If
f : |K| → |L| is piecewise linear, the same consequence follows: The map f
is simplicial with respect to some suitable subdivisions of K and L to simpli-
cial complexes [44, Theorem 2.14, p. 17]. Combining these observations with
the previous ones shows that the following properties for maps f : |K| → |L|
between polytopal complexes K and L are equivalent:

1. The map f is piecewise linear.

2. The map f is linear on cells of a suitable subdivision of K.

3. The map f is cellular with respect to suitable subdivisions of K and L.

4. The map f is simplicial with respect to suitable simplicial subdivisions of
K and L.

Forgetting about the structure as complex on |L|, we obtain the following char-
acterisation of piecewise linear maps on polytopal complexes with arbitrary
codomains: A map f : |K| → X ⊆ Rm on a polytopal complex K is piecewise
linear if and only if K has a simplicial subdivision such that f is linear on cells
of that subdivision; replacing “simplicial subdivision” by “subdivision” yields
another variant of the equivalence.

The Cone Construction. A frequent construction in PL topology is the
cone construction, which extends PL maps between complexes to cones of the
complexes. This construction can be considered as a special case of a join of
maps defined as follows [44, Remark 2.22 (4), p. 23]: Let AB and CD be joins,
with at least AB adhering to our convention of being a join of independent
sets or an external join. For two maps f : A → C and g : B → D, the join
h : AB → CD of the maps is defined by the following assignment: To a point
in AB represented by λa + (1 − λ)b for some a ∈ A, b ∈ B, and λ ∈ [0, 1], we
assign the value λf(a) + (1 − λ)g(b). The join of PL maps is again PL. If A
and C are single points v and w, then specifying f explicitly is unnecessary, and
h : vB → wD defined by h(λv + (1− λ)b) = λw + (1− λ)g(b) is called the cone
on g [44, Exercise 1.6 (3), pp. 5–6].

Summary. The following summary recapitulates the basic facts for our set-
ting.
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Fact 1.17. Domains of polytopal complexes fulfil the following property char-
acterising polyhedra: Any point p has a cone neighbourhood N = pL, called
a star of p, with compact base L, called a link of p. A map f : |K| → Rm is
piecewise linear, if it is continuous and locally conical, that is, any point p in
|K| has a link L such that f(λp+ (1− λ)r) = λf(p) + (1− λ)f(r) for all r ∈ L
and λ ∈ [0, 1]; or equivalently, if K has a simplicial subdivision such that f is
linear on cells of that subdivision.

1.2.5 Subcomplexes
We list some frequently occurring types of subcomplexes, namely k-skeletons,
links, stars, anti-stars, and deletions.
Definition 1.18 (k-skeleton). For arbitrary complexes K, the subset of all cells
of dimension at most k forms a subcomplex of K, called the k-skeleton of K
and denoted by skelk(K) [44, Example 2.8 (8), p. 15].

The subcomplexes described as stars and links most often occur as the star
or the link of a certain vertex v. The star of a vertex v is the set of all cells
containing v and all their faces; the link of v consists of all cells of the star of v
that do not contain v. For the different characterisations of regular and critical
points of piecewise linear maps in Chapter 3, it is convenient to extend these
notion to arbitrary points of the domain. Another generalisation is obtained by
considering vertices as 0-dimensional cells and define stars and links for arbitrary
cells of a complex. The deletion of a vertex is the set of cells not containing the
vertex. When we reformulate this condition as the set of cells not intersecting
the vertex, we obtain the notion of an anti-star, that agrees with the deletion
for vertices and when generalised to points in the domain, but differs from it
when generalised to cells.

The generalised definitions for cells are taken from [23, p. 40] for the star,
the link, and the anti-star, and from [2] for the deletion.
Definition 1.19. Let K be a polyhedral complex. For a vertex v ∈ Vrt(K), or
an arbitrary point x ∈ |K| in the domain, or a cell S ∈ K, we define subcom-
plexes of K called the star, the link, the deletion, and the anti-star of v, x, or
S in K as follows.

The star of v in K, denoted by stK(v), is the subcomplex of K consisting of
all cells in K that contain the vertex v or are a face of such a cell. Analogously,
the star stK(x) of x in K is the set of all cells containing the point x plus all
their faces, and the star stK(S) of S in K is the set of all cells that contain the
cell S or are a face of such a cell. In other words, the star of S is the smallest
subcomplex containing all co-faces of S.

The link of v in K, denoted by lkK(v), is the set of cells in stK(v) that do
not contain v. The link lkK(x) of x in K is the set of cells in stK(x) that do
not contain x, and the link lkK(S) of S in K is the set of cells in stK(S) that
do not intersect S.

The deletion of v inK, denoted by delK(v), is the set of cells not containing v.
Analogously, delK(x) is the set of cells not containing x, and delK(S) is the set
of cells not containing S as a whole.

The anti-star of v in K, denoted by astK(v), is the set of cells not inter-
secting {v}. Analogously, astK(x) is the set of cells not intersecting {x}, and
astK(S) is the set of cells not intersecting S.
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Table 1.2: Relationships between stars, links, deletions, and anti-stars in a
polyhedral complex K for a vertex v ∈ Vrt(K), a point x in the domain |K|,
and a non-empty cell S ∈ K.

ast(v) = del(v) ast(x) = del(x) ast(S) ⊆ del(S)
lk(v) = st(v) ∩ ast(v) lk(x) = st(x) ∩ ast(x) lk(S) = st(S) ∩ ast(S)
lk(v) = st(v) ∩ del(v) lk(x) = st(x) ∩ del(x) lk(S) ⊆ st(S) ∩ del(S)
K = st(v) ∪ del(v) K = st(x) ∪ del(x) K = st(S) ∪ del(S)

Table 1.3: Relationships of links and stars in simplicial complexes K for a
vertex v ∈ Vrt(K), a point x in the domain |K| and the simplex X containing
x in its interior, and a simplex S ∈ K.

st(v) = v lk(v) st(x) = X lk(X) st(S) = S lk(S)
lk(x) = bd(X) lk(X)

In all cases, we omit the complex K in the subscript, when it is clear from
the context, and write st(S), lk(x), del(v), and so on. For all four notions, the
definition for a vertex v and the definition for its corresponding 0-dimensional
cell {v} agree, and vertices are just a special case of arbitrary elements of the
domain. Furthermore, when X denotes the cell containing the point x in its
interior, then the equalities st(X) = st(x) and del(X) = del(x) hold; the link and
the anti-star of X however are usually only a subcomplex of the corresponding
complex for x.

We conclude this subsection with some observations regarding links, stars,
anti-stars, and deletions.

Fact 1.20. The following relationships between the subcomplexes are collected
in Table 1.2: For points in the domain, including vertices, deletion and anti-
star agree; for non-empty cells S, the anti-star ast(S) is a subcomplex of the
deletion del(S). The link is always the intersection of star and anti-star [23,
p. 40], and for single points, it is also the intersection of star and deletion.
Finally, the whole complex K is in all cases representable as the union of the
star and the deletion.

For polytopal complexes K, the domain | st(x)| of the star of a single point
x forms a cone neighbourhood of x whose link is the domain of the link, that
is | st(x)| = x| lk(x)|. In other words, as Rourke and Sanderson [44, p. 20] put
it, the domains of the star and the link of a point x in K as defined here are an
example of a star and a link of x in the compact polyhedron |K| in the sense
defined in Subsection 1.2.4. For this reason, both definitions of stars and links
can coexist peacefully.

In the case of simplicial complexes, the additional relationships between links
and stars listed in Table 1.3 hold: For vertices, the representation of the star as
cone on the link does not only hold for the domains, but also for the complexes;
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the star of a vertex v is the cone on the link of v with apex v. This generalises
from vertices to simplices because the star of a simplex is the join of the simplex
with its link [44, Remark 2.22 (3), p. 23]. For arbitrary points x in the domain,
we can also express st(x) and lk(x) as joins using the simplex X containing x
in its interior as indicated in Table 1.3.

1.2.6 Subdivisions
In this subsection, we review stellar, derived, and barycentric subdivisions of
polytopal complexes. A barycentric subdivision is a special case of a derived
subdivision, and a derived subdivision is again a certain stellar subdivision.
A stellar subdivision in turn is obtained by a sequence of elementary starrings.
Therefore we start with the definitions of starrings and stellar subdivisions,
taken from [44, p. 15] and [21, p. 8].

Definition 1.21 (elementary starring). Let K be a polytopal complex, and let
p be a point in its domain |K|. The following operation is called an elementary
starring of K at p and produces a subdivision of K: Remove all cells containing
p from K, and add for each cell S that is a face of a removed cell but not
removed itself the cell pS. In other words, we replace the star of p by the cone
on its link with apex p and obtain the complex delK(p) ∪ p lkK(p).

Definition 1.22 (stellar subdivision). A stellar subdivision of a polytopal com-
plex K is any subdivision that is obtained by a sequence of elementary starrings
starting from K.

The construction of a derived subdivision of a polytopal complex K requires
the choice of a family of points: for each non-empty cell S in K, a point vS in
the interior of S; these points form the vertex set of the subdivision. There are
three common ways of characterising a derived subdivision. The first character-
isation constructs the derived subdivision as a stellar subdivision obtained by
starring at each point vS in order of decreasing dimension of S [26, p. 9]. The
second characterisation constructs the subdivision starting from the complex of
the empty cell by iteratively adding a subdivision of S in order of increasing
dimension of S, namely the subdivision of S formed by the cone with apex vS
whose base is the derived subdivision of the boundary of S obtained by the pre-
vious steps [44, p. 20]; clearly, the choice of vertices for the derived subdivision
of the boundary of S has to be the restriction of the choice made for the derived
subdivision of the whole complex K. The third method directly characterises
the vertex sets whose convex hulls form the cells of the subdivision: The convex
hull of the vertex set {vS0 , . . . , vSk} is a cell of the derived subdivision if and only
if the corresponding face set {S0, . . . , Sk} forms a chain in the face poset of K,
that is Sσ(0) v Sσ(1) v . . . v Sσ(k) for some permutation σ of the indices [21,
p. 7].

Definition 1.23 (derived subdivision). A subdivision of a polytopal complexK
is called a derived subdivision if it is a stellar subdivision obtained by choosing
for each non-empty cell S a point vS in its interior and performing elementary
starrings at the points vS in order of decreasing dimension of S. The cells
of the derived subdivision can be characterised as convex hulls of vertex sets
{vS0 , . . . , vSk} such that the corresponding face set {S0, . . . , Sk} forms a chain
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in the face poset of K. Each non-empty cell S of K gets subdivided into the
cone with apex vS and with the derived subdivision restricted to the boundary
of S as base. A derived subdivision of a polytopal complex is always a simplicial
complex; it is sometimes called a first derived, and an r-th derived is defined
inductively as a derived of a (r − 1)-th derived [44, p. 20].

For constructing a derived subdivision algorithmically, we need a subroutine
for finding points in the interior of a cell. When the vertex set {v1, . . . , vk} of
the cell is given, the simplest term that is guaranteed to represent a point in
the interior is the coordinate-wise arithmetic mean of the vertices 1

k

∑k
i=1 vi [23,

Exercise 2.3.6, p. 17]; the resulting point is the barycentre of the vertices, that
is the centre of mass with respect to a mass distribution concentrated at the
vertices, with equal weights at each vertex. One could also use the barycentre
with respect to a mass that is uniformly distributed throughout the volume
of the cell. For simplices, both barycentres agree, but for arbitrary convex
polytopes, the barycentre with respect to a uniform mass distribution can differ
from the barycentre of the vertices and its computation is less straightforward.
Therefore we usually prefer using the barycentres of the vertices.

Definition 1.24 (barycentric subdivision). By a barycentric subdivision we
mean a derived subdivision, where for each cell S the barycentre of its vertices
is chosen as vS .

The fact that any derived subdivision of a polytopal complex is simplicial
shows that any polytopal complex can be triangulated, that is, it can be subdi-
vided into a simplicial complex. Interestingly, it is even possible to triangulate a
polytopal complex without introducing new vertices; such a triangulation can be
obtained by a stellar subdivision that performs elementary starrings at each ver-
tex of the given polytopal complex in some arbitrary order [44, Proposition 2.9
and following Exercise, p. 16].
Fact 1.25. Any polytopal complex can be triangulated without additional ver-
tices. Any derived subdivision yields a triangulation, and a stellar subdivision
consisting of elementary starrings at each vertex of the given complex in some
arbitrary order yields a triangulation without additional vertices.

A triangulation obtained by elementary starrings at each vertex is sometimes
called a pulling triangulation. This notion comes from the following operation
described in [23, p. 80]: Start with a convex polytope defined as the convex
hull of some vertices. Modify the polytope by “pulling” one of its vertices v,
that is, move the vertex in a suitable direction slightly outwards by some small
enough amount such that the original position of the vertex is contained in the
interior of the modified convex polytope. Then the face poset of the boundary
of this modified polytope is isomorphic to the one obtained from the original
polytope boundary complex by starring at v, with the isomorphism assigning
the resulting modified vertex to v and all other vertices to themselves.

1.2.7 Combinatorial Equivalences and Piecewise Linear
Homeomorphisms

Combinatorial Equivalences. In our definition of polyhedral complexes, we
noted that the face relation among the cells induces a poset structure on the
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complex. The notion of combinatorial equivalence is based on that structure.
Grünbaum defines the notion for what we call polytopal complexes [23, p. 199]:
Two polytopal complexes are combinatorially equivalent if their induced poset
structures are isomorphic. Rourke and Sanderson call combinatorially equiva-
lent complexes abstractly isomorphic [44, p. 20]. It is a well known fact that
combinatorially equivalent simplicial complexes are also PL-homeomorphic, and
that, even stronger, two simplicial complexes are PL-homeomorphic if and only
if they have combinatorially equivalent subdivisions. One purpose of this subsec-
tion is to recall some background of this result and to observe that it generalises
to polytopal complexes. Furthermore, we extend the notion of combinatorial
equivalence to polyhedral complexes for convenient formulations of our results
on level set complexes in Chapter 2.

Let us see what would happen if we adopted the plain characterisation by
isomorphic posets to polyhedral complexes. Such a characterisation would con-
sider the complex {R, ∅} of the whole real line and the complex {{h}, ∅} of a
singleton as equivalent. But we can avoid this undesired effect if we additionally
require the poset isomorphism to respect the dimension of the cell.

Definition 1.26 (combinatorial equivalence). Two polyhedral complexesK and
L are combinatorially equivalent if there is a bijection φcomb : K → L between
them that is a poset isomorphism with respect to the poset structure given by
the face relation and that maintains the dimensions of the cells. That means that
φcomb maps the cells of K to the cells of L such that dim(φcomb(S)) = dim(S)
holds for any cell S of K, and for any pair (S, T ) of cells of K, the cell S is a
face of T in K if and only if φcomb(S) is a face of φcomb(T ) in L:

S v T ⇐⇒ φcomb(S) v φcomb(T )

When referring to the map φcomb establishing the combinatorial equivalence of
the complexes, we often call the map itself a combinatorial equivalence between
K and L for short.

Note that in the case of two polytopal complexes, the requirement to respect
the dimension is fulfilled by any poset isomorphism [23, p. 38]. Therefore the
restriction of our notion of combinatorial equivalence to polytopal complexes
agrees with Grünbaum’s definition. Moreover, there is yet another characteri-
sation of combinatorial equivalence for polytopal complexes, namely in terms of
vertices. This follows from the fact that a convex polytope is the convex hull
of its vertices. We say that a subset W of vertices of some complex K spans a
cell S in K if S is the convex hull of the vertices in W .
Fact 1.27. Two compact polytopal complexes K and L are combinatorially
equivalent if and only if there is a bijection φVrt : Vrt(K) → Vrt(L) mapping
the vertices of K to the vertices of L such that a subset of vertices spans a cell
in one complex if and only if its corresponding subset of vertices spans a cell in
the other complex. In other words, the bijection φVrt fulfils the condition that
for all subsets W ⊆ Vrt(K) of vertices of K, the convex hull of W is a cell of K
if and only if the convex hull of the image of W under φVrt is a cell of L:

conv(W ) ∈ K ⇐⇒ conv(φVrt(W )) ∈ L

For a proof, one easily checks that such a bijection φVrt of the vertex sets can be
transformed into a combinatorial equivalence φcomb and vice versa as follows:
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Assume first that a bijection φVrt as above exists. In order to define φcomb(S)
for a cell S of K, consider the vertex set of S and its image under φVrt. Because
of the condition on φVrt, the image spans a cell of L, and we can define φcomb

by assigning this cell to S:

φcomb(S) = conv(φVrt(Vrt(S)))

On the other hand, the restriction of a combinatorial equivalence φcomb : K → L
to the set of vertices Vrt(K) gives the corresponding vertex set bijection φVrt.
There is one subtlety to keep in mind here: Vertices are elements of the ambient
Euclidean space, whereas cells are subsets of the space. Hence, formally speak-
ing, we should distinguish between a vertex v ∈ |K| in the domain of a complex
and its corresponding cell {v} ∈ K in the complex formed by the singleton set
containing the vertex. The equation

{φVrt(v)} = φcomb({v})

is the formally correct way to express φVrt in terms of φcomb. By abuse of nota-
tion, we may identify vertices with their singleton set cells and write φVrt(v) =
φcomb(v) instead. We will continue using this identification of singleton cells
with their element whenever it seems preferable.

The close connection between vertex bijections and cell bijections establish-
ing a combinatorial equivalence of complexes allows to switch freely between the
two points of view. Therefore we also refer to the vertex bijection φVrt between
combinatorially equivalent complexes as a combinatorial equivalence. When we
want to distinguish the two points of view, we call φVrt a combinatorial equiv-
alence in terms of vertices and φcomb a combinatorial equivalence in terms of
cells or in terms of face posets.

Recall from Definition 1.10 that a map f : |K| → |L| from the domain of a
polytopal complex K to the domain of a polytopal complex L is called cellular
if it maps cells linearly to cells. If such a cellular map is bijective, then it also
induces a bijection between the cells. Hence, assigning to each cell S in K
its image f(S) in L under some bijective cellular map f : |K| → |L| yields a
combinatorial equivalence in terms of cells from K to L, and the restriction of
f to the vertex set of K yields the corresponding combinatorial equivalence in
terms of vertices.

Notions Maintaining Combinatorial Equivalences. For several of the
constructions in the previous subsections, the combinatorial structure of the re-
sulting complex depends only on the combinatorial structures of the underlying
complexes. Therefore, applying these constructions to combinatorially equiva-
lent input complexes yields combinatorially equivalent output complexes. We
collect some statements of this kind.
Fact 1.28. This collection of statements covers operations on complexes, sub-
complexes, and subdivisions.

If K and K ′ are combinatorially equivalent polyhedral complexes, and so are
L and L′, then the Cartesian products K × L and K ′ × L′ are combinatorially
equivalent, and for polytopal complexes, the joins KL and K ′L′ are combina-
torially equivalent as well. In particular, all cones on a polytopal complex K
are combinatorially equivalent to each other and to each cone on a complex
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Table 1.4: Corresponding stars, links, deletions, and anti-stars of combi-
natorially equivalent complexes K and L. By abuse of notation, we use
the letter φ to denote both the combinatorial equivalence in terms of cells
φcomb : K → L and the corresponding combinatorial equivalence in terms of
vertices φVrt : Vrt(K)→ Vrt(L). The results are stated for a vertex v ∈ Vrt(K)
in the first column and for a cell S ∈ K in the last column. The middle column
states the results for a point x ∈ |K| together with a point y ∈ |L| in a corre-
sponding cell, that is, the cell X ∈ K containing x in its interior corresponds
via φcomb to the cell Y = φcomb(X) containing y in its interior.

φ(stK(v)) = stL(φ(v)) φ(stK(x)) = stL(y) φ(stK(S)) = stL(φ(S))
φ(lkK(v)) = lkL(φ(v)) φ(lkK(x)) = lkL(y) φ(lkK(S)) = lkL(φ(S))
φ(delK(v)) = delL(φ(v)) φ(delK(x)) = delL(y) φ(delK(S)) = delL(φ(S))
φ(astK(v)) = astL(φ(v)) φ(astK(x)) = astL(y) φ(astK(S)) = astL(φ(S))

K ′ combinatorially equivalent to K. Analogously, for combinatorially equiva-
lent polytopal complexes K and K ′, all suspensions of K are combinatorially
equivalent to each other and to each suspension of K ′. In all cases, the combi-
natorial equivalence between the resulting complexes arises naturally from the
original equivalences: If φcomb : K → K ′ and ψcomb : L→ L′ denote the original
combinatorial equivalences, then for cells S ∈ K and T ∈ L the assignment
S × T 7→ φcomb(S) × ψcomb(L) gives a combinatorial equivalence from K × L
to K ′ × L′ and the assignment ST 7→ φcomb(S)ψcomb(L) gives a combinatorial
equivalence from KL to K ′L′.

Now let K and L be combinatorially equivalent polyhedral complexes with
corresponding combinatorial equivalences φcomb : K → L and φVrt : Vrt(K) →
Vrt(L). Then corresponding subcomplexes of K and L are combinatorially
equivalent and certain subdivision steps can be performed in an analogous way
on both complexes so that the resulting subdivisions are combinatorially equiv-
alent. In detail, we have the following results:

Any subcomplex K ′ of K is combinatorially equivalent to its correspond-
ing subcomplex φcomb(K ′) of L with the restriction of φcomb to the subcom-
plexes being the combinatorial equivalence. For example, the k-skeleton of
L corresponds to the k-skeleton of K under the combinatorial equivalence:
skelk(L) = φcomb(skelk(K)). Similar results hold for stars, links, deletions,
and anti-stars of vertices, cells, or points that are corresponding under the com-
binatorial equivalence, where points can be considered as corresponding, if the
cells containing the points in their interiors are corresponding; see Table 1.4 for
a list of such results.

Combining the previous observations with the fact from Definition 1.21 that
an elementary starring of K at x produces the complex delK(x) ∪ x lkK(x),
we can conclude that elementary starrings at corresponding points of combina-
torially equivalent polytopal complexes yields combinatorially equivalent sub-
divisions. In particular, if x and x′ are in the interior of the same cell of a
polytopal complex K, the subdivision obtained by starring K at x and the
subdivision obtained by starring K at x′ are combinatorially equivalent. De-
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note by K ′ = delK(x) ∪ x lkK(x) the result of starring K at a point x and by
L′ = delL(y)∪ y lkL(y) the result of starring L at a point y corresponding to x.
Then both subdivisions contain at most one additional vertex compared to the
original complexes, namely x and y; in other words, the vertex sets of K ′ and L′
can be written as Vrt(K ′) = Vrt(K) ∪ {x} and Vrt(L′) = Vrt(L) ∪ {y}. There-
fore the combinatorial equivalence between K ′ and L′ can be easily expressed in
terms of vertices: Extend the original combinatorial equivalence φVrt between
the vertex sets of K and L to the vertex sets of K ′ and L′ by assigning the
additional vertex y ∈ Vrt(L′) to the additional vertex x ∈ Vrt(K ′).

In Definition 1.23, the cells of a derived subdivision were characterised by
chains in the original face posets. This characterisation shows that the combi-
natorial structure of a derived subdivision is uniquely determined by the com-
binatorial structure of the original complex and is independent of the choice of
the points vS used as vertices of the subdivision. Hence, derived subdivisions of
combinatorially equivalent polytopal complexes are combinatorially equivalent.
This applies in particular to all derived subdivisions of a single polytopal com-
plex obtained by different choices of points used as vertices. A combinatorial
equivalence in terms of vertices between a derived of K with chosen points vS
for each S ∈ K and a derived of L with chosen points uT for each T ∈ L is
given by assigning uφcomb(S) to vS .

More on Subdividing and Triangulating Combinatorially Equivalent
Complexes. Regarding the fact that elementary starrings at corresponding
points of combinatorially equivalent complexes produces combinatorially equiv-
alent complexes, if we want to generalise this fact from single starrings to stellar
subdivisions by induction, we have to be careful. It is not sufficient in general,
that the points at which a starring is performed lie in corresponding cells of the
starting complexes, as the counterexample in Figure 1.2 shows. Rather they
have to lie in corresponding cells of the subdivisions obtained by the previous
starrings. Therefore we can at least infer by induction that for any choice of
points in one complex there is a choice of corresponding points in the other
complex leading to combinatorially equivalent stellar subdivisions: Assuming
we have a combinatorial equivalence φcomb

j−1 after the first j − 1 elementary star-
rings and the given point for the next starring in one complex is interior to some
cell Sj , then the point for the next starring in the other complex can be chosen
arbitrarily in the interior of the cell corresponding to Sj via φcomb

j−1 .
Fact 1.29. Let K and L be combinatorially equivalent polytopal complexes,
and let K ′ be a stellar subdivision of K obtained by a sequence of starrings
at points (pi)ni=1 in |K|. Then there is a choice of a corresponding sequence of
points (qi)ni=1 in |L| such that the stellar subdivision of L obtained by the corre-
sponding sequence of starrings at the points (qi)ni=1 is combinatorially equivalent
to K ′.

Although derived subdivisions are a special case of stellar subdivisions, we
already observed in Fact 1.28, relying on a different characterisation of derived
subdivisions, that we can choose the points for the starrings freely in the interior
of each cell of the original complex, without changing the combinatorial type of
the results. In this special case of a stellar subdivision, the problem that points
originally belonging to corresponding cells fail to do so after some subdivision
steps does not occur because of the order of the starrings: A cell is only sub-
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Figure 1.2: Example of three combinatorially different stellar subdivisions that
use points lying originally in the interior of the same cell. The top row shows the
original complex of two triangles sharing an edge with a point on a boundary
edge for the first starring and a point in the interior of the adjacent triangle
for the second starring; only the position of the second point inside the triangle
differs in each column. The positions are chosen in such a way that the points
belong to the interior of different cells after the first starring. The bottom row
shows the resulting complexes after performing the second starring. The results
are pairwise non-equivalent, which can be verified by comparing the number of
vertices with exactly three incident edges.

divided into several strictly smaller cells if the starring is performed at a point
which is contained in the cell as interior or boundary point; but the starring at
the chosen interior point of the cell is always performed before all other star-
rings potentially affecting the cell. The problem does also not occur for the other
method suggested in Fact 1.25 for triangulating polytopal complexes, namely
starring at the original vertices. Hence we can conclude that combinatorially
equivalent polytopal complexes have combinatorially equivalent triangulations.

Lemma 1.30. Let K and L be combinatorially equivalent polytopal complexes;
then there are combinatorially equivalent simplicial subdivisions K ′ of K and
L′ of L. Furthermore, it is not necessary to introduce new vertices.

Proof. Fact 1.25 mentions two kinds of subdivisions that produce simplicial com-
plexes. We may construct combinatorially equivalent triangulations with both
methods. The first method of taking derived subdivisions of both complexes
introduces new vertices; as already stated in Fact 1.28, the resulting triangu-
lations are combinatorially equivalent. The second method of starring at each
vertex in corresponding orders does not introduce new vertices and hence proves
the additional statement; it produces combinatorially equivalent subdivisions as
observed above.

As a special case of the first method, we can use the barycentric subdivisions
from Definition 1.24. For each cell S of any dimension of the polytopal complexes
K and L with vertices v1, . . . , vk, we choose for vS the point 1

k (v1 + · · · + vk)
in the interior of the cell and obtain derived subdivisions K ′ of K and L′ of L.
The combinatorial equivalence of K and L in terms of vertices φVrt : Vrt(K)→
Vrt(L) extends to a combinatorial equivalence ψVrt : Vrt(K ′) → Vrt(L′) of K ′
and L′ by setting ψVrt( 1

k (v1 + · · ·+ vk)) = 1
k (φVrt(v1) + · · ·+ φVrt(vk)).
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For the second method, we perform an elementary starring at each vertex
for some fixed order v1, . . . , vk of the vertices of K, and the corresponding order
φVrt(v1), . . . , φVrt(vk) of the vertices of L. By induction, since all starrings are
performed at vertices, φVrt remains a combinatorial equivalence in terms of ver-
tices between each intermediate pair of subdivisions obtained by performing the
first j ≤ k starrings on both complexes, and for each index i from 1 to k, the
vertices vi and φVrt(vi) remain interior to the same pair of corresponding cells,
namely {vi} and {φVrt(vi)}. Therefore, the observations from Fact 1.28 regard-
ing elementary starrings at corresponding points of combinatorially equivalent
complexes, applied iteratively, imply that the obtained simplicial subdivisions
of K and L are combinatorially equivalent with the same equivalence in terms
of vertices as the original one.

We observed in Fact 1.29 that any stellar subdivision of a polytopal complex
can be imitated on any combinatorially equivalent complex by an analogous
subdivision. For arbitrary subdivisions however, there are some limitations.
Assume that K and L are combinatorially equivalent polytopal complexes and
K ′ is a subdivision of K. In general, it is not true that a subdivision L′ of L
exists such that K ′ and L′ are combinatorially equivalent. A counterexample
is a regular octahedron and a slightly perturbed combinatorially equivalent oc-
tahedron whose vertices are in general position, that is, no four of them in a
common plane. The latter has subdivision containing a tetrahedron whose cor-
responding vertices in the regular octahedron lie in a common plane. Therefore
the regular octahedron cannot be subdivided in such a way.

PL Homeomorphisms. Now we turn to the relationship between combina-
torial equivalences and PL homeomorphisms. Recall that a homeomorphism is
defined as a continuous bijection with continuous inverse map. For a PL home-
omorphism it is additionally required that both maps, the bijection and its
inverse, are piecewise linear. Since piecewise linear maps are continuous, it suf-
fices to characterise a PL homeomorphism as a bijective piecewise linear map
with piecewise linear inverse. For our usual setting, we can even prove that any
piecewise linear bijection between polytopal complexes has a piecewise linear
inverse: If K and L are polytopal complexes and φ : |K| → |L| is a PL bijection,
then K and L have subdivisions K ′ and L′ such that φ is simplicial. Now con-
sider φ restricted to some simplex S of K ′ and its inverse φ−1 restricted to the
corresponding simplex T = φ(S) of L′. Then the restricted map φ extends to
an affine linear map of full rank from the affine hull of S to the affine hull of T
and this extension has an affine linear inverse that agrees with φ−1 on T . This
proves that φ−1 is linear on each cell of L′ and thus a piecewise linear map. Note
that analogous arguments show that a cellular bijection has a cellular inverse
and that a simplicial bijection has a simplicial inverse. Two polyhedra P and Q
are called PL-homeomorphic, if there is a PL homeomorphism φ : P → Q, and
two polyhedral complexes are called PL-homeomorphic if their domains are.

Let us make a remark on injective PL maps. If φ : P → Q is a PL injection
and P is a compact polyhedron, then the image φ(P ) of φ in Q is a compact
polyhedron as well because images of compact polyhedra under PL maps are
compact polyhedra [44, Corollary 2.5, p. 13]. Then P and φ(P ) are domains
of simplicial complexes and φ establishes a PL bijection between the domains,
hence P and φ(P ) are PL-homeomorphic. But if P is non-compact, the image is
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not necessarily a polyhedron [44, Exercise 1.7 (1) (c)]. Therefore the definition
of a PL embedding in [44, p. 7] explicitly requires the image to be a polyhe-
dron: A PL embedding is a PL map φ : P → Q such that the image φ(P ) is
a polyhedron and φ : P → φ(P ) is a PL homeomorphism. By the above, any
PL injection defined on a compact polyhedron, in particular on the domain of
a polytopal complex, is a PL embedding.

PL Homeomorphisms and Combinatorially Equivalent Subdivisions.
For combinatorially equivalent simplicial complexes K and L, the combinatorial
equivalence in terms of vertices φVrt : K → L naturally induces a PL homeomor-
phism φPL : |K| → |L| between the domains of the complexes by simplex-wise
linear interpolation. Note that the image of each simplex under this homeomor-
phism is exactly the simplex assigned to it by the combinatorial equivalence in
terms of cells: φPL(S) = φcomb(S). For arbitrary polytopal complexes however,
it is in general not possible to find a cell-wise linear homeomorphism without
subdividing. For example, all convex quadrilaterals are combinatorially equiv-
alent, but a linear bijection maps parallelograms only to parallelograms. By
subdividing the quadrilaterals into two triangles by a diagonal, we obtain combi-
natorially equivalent simplicial complexes and can define a PL homeomorphism
by interpolating linearly in both triangles individually. Lemma 1.30 shows that
any two combinatorially equivalent polytopal complexes have combinatorially
equivalent simplicial subdivisions, which allow to define a PL homeomorphism
by simplex-wise linear interpolation. This yields the following close relation
between PL homeomorphisms and combinatorially equivalent subdivisions:

Theorem 1.31. Two polytopal complexes are PL-homeomorphic if and only if
they have combinatorially equivalent subdivisions.

Proof. Let K and L be polytopal complexes and let φPL : |K| → |L| be a
PL homeomorphism. For the proof that K and L have combinatorially equiva-
lent subdivisions, we use [44, Theorem 2.14, p. 17] to obtain subdivisions K ′ and
L′ such that φPL : |K ′| → |L′| is simplicial. Hence, with respect to these sub-
divisions, φPL is a cellular bijection, and we may apply our earlier observation
that a cellular bijection induces a combinatorial equivalence: The restriction of
φPL to the vertex set of K ′ gives the desired combinatorial equivalence in terms
of vertices φVrt : Vrt(K ′)→ Vrt(L′).

For the other direction, let K ′ and L′ be combinatorially equivalent subdi-
visions of K and L. By Lemma 1.30, we can assume without loss of generality
that K ′ and L′ are simplicial. The combinatorial equivalence φVrt : Vrt(K ′)→
Vrt(L′) can be extended to a PL map φPL : |K ′| → |L′| by simplex-wise linear
interpolation. The map φPL maps each simplex S of K ′ bijectively onto its
corresponding simplex φcomb(S) in L′, where φcomb denotes the combinatorial
equivalence in terms of cells. Furthermore, for each simplex the bijection re-
stricts to a bijection between the interiors of the corresponding simplices. Since
the interiors of the simplices are disjoint and together cover the domain of their
complex, the map φPL is also a global bijection between |K ′| and |L′|. Hence
φPL is a piecewise linear bijection between the domains of polytopal complexes
and thus, as observed above, a PL homeomorphism. Its inverse is the PL map
obtained by simplex-wise linear interpolation of the inverse of φVrt.

Most of our considerations are based only on combinatorial and topological
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features of a complex and carry over to all combinatorially equivalent complexes,
independently of the geometric location of their cells. Therefore we sometimes
do not distinguish between geometrically different instances of combinatorially
equivalent complexes. In particular, we identify the results of operations such as
taking cones, suspensions, or derived subdivisions, where the geometry depends
on a choice of vertices, but all choices lead to combinatorially equivalent results.
This point of view justifies speaking about the cone, the suspension, or the de-
rived subdivision of a complex K and writing cone(K), susp(K), and sdvdrv(K)
respectively to denote such a resulting complex. This approach is also reflected
in the usage of abstract simplicial complexes, which are defined as collections
of subsets of a finite base set, closed under taking subsets. One obtains an ab-
stract simplicial complex from a geometric one by taking the vertex set as finite
base set, and including for each simplex the subset of the vertices that spans
the simplex into the collection of subsets. The face relation is represented by
the inclusion relation. It is well known that each abstract simplicial complex
can be realised by some geometric simplicial complex. Since all realisations
of an abstract simplicial complex are combinatorially equivalent, they are PL-
homeomorphic. For a similarly defined notion of abstract polytopal complexes
however, there are abstract complexes not realisable in Euclidean space [23,
Exercise 11.1.8, pp. 206–210].

1.2.8 Pseudo-Radial Projection
An important basic result of piecewise linear topology is the fact that all poly-
hedral links of a point in a polyhedron are PL-homeomorphic, proven by the
so called pseudo-radial projection [44, pp. 20–21]. Recall from Subsection 1.2.4
that for some point p in a polyhedron P , any compact subset L such that pL
is a cone neighbourhood of p in P is called a link of p. For any two links
of a fixed point p, radial projection with p as centre point establishes a topo-
logical homeomorphism between the two links [44, Exercise 1.7 (2), p. 6]. Of
course, we primarily consider links that are itself polyhedra and thus domains
of simplicial complexes, and we would preferably apply the strengthened result
mentioned above, claiming the existence of PL homeomorphisms between any
two such polyhedral links of some fixed point. Since radial projection itself is
not piecewise linear in general, even if both links are polyhedra, another solu-
tion is necessary, namely pseudo-radial projection, which can be perceived as a
piecewise linear approximation to the radial projection. Clearly, any PL homeo-
morphism between links of points extends to a PL homeomorphism between the
corresponding cone neighbourhoods by the cone construction, because the cone
on a PL homeomorphism is again a PL homeomorphism [44, Exercise 1.6 (3),
pp. 5–6]. Hence, all stars with polyhedral link of a fixed point in a polyhedron
are PL-homeomorphic.

Link Complexes. From now on, whenever we consider a link of a point in a
polyhedron, we tacitly assume that the link is a polyhedron. We also implicitly
make this assumption, when we talk about cone neighbourhoods and stars,
namely that the link forming the base and consequently the cone neighbourhood
itself are polyhedra. In the context of links of points in polyhedra, we call a
polytopal complex whose domain is a link of some point a link complex of the
considered point.
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PL Invariance of Links and Stars. The above results can be generalised
from two links of a single point to links of two points that correspond to each
other by some PL homeomorphism. This generalised result is called “PL in-
variance of links and stars” by Rourke and Sanderson in [44, pp. 6–7, 20–21];
it states for PL-homeomorphic polyhedra P and Q with PL homeomorphism
φ : P → Q and a point p ∈ P that any link of p in P is PL-homeomorphic to
any link of φ(p) in Q, and that any star of p in P is PL-homeomorphic to any
star of φ(p) in Q. This applies in particular to the links and the stars if P and Q
are domains of polytopal complexes K and L: The links lkK(p) and lkL(φ(p))
are PL-homeomorphic, and so are the stars stK(p) and stL(φ(p)).

Now consider two points with PL-homeomorphic links. From a local point of
view, since all their cone neighbourhoods are PL-homeomorphic, the points are
similar. Therefore we may regard the property of having PL-homeomorphic links
as the defining property of an equivalence relation on the class of all pairs (p, P )
where P is a polyhedron and p a point in P . We will refine this equivalence
relation in Chapter 3 by considering additionally the local behaviour near p of
a real-valued PL map defined on P . In preparation of this, we explain some of
the underlying ideas as far as they already apply to the unrefined relation and
are based on observations associated with the PL invariance of links and stars
and its proof by pseudo-radial projection.

Pseudo-Radial Projection. We start with some remarks regarding pseudo-
radial projection based on the descriptions in [44, Lemma 2.19, p. 21] and [26,
Lemma 1.12, pp. 20–21]. Consider a point p in a polyhedron P and two polytopal
link complexes K and L forming links of p in P . This situation occurs for
example when we are given two polytopal complexes K and L with the same
domain |K| = |L| and we look at the links lkK(p) and lkL(p) of a point p in
that domain. The aim is to construct a PL homeomorphism between K and L
by pseudo-radial projection. Since all points of a link of p lie on distinct rays
emanating from p, a standard radial projection from the centre p assigns to each
point in some given link of p a corresponding point on the same ray in some
other given link of p. Changing roles of both links, radial projection also yields
the inverse map of this assignment. In fact, the obtained bijection between the
two links is a topological homeomorphism.

Denote by π : K → L the projection in direction from K to L and by
π−1 : L→ K its inverse projection in the opposite direction. Now each cell S in
K is mapped by π to the union of cells

⋃
T∈L(T ∩ π(S)). Inversely, each cell T

in L is mapped by the inverse to the union
⋃
S∈K(S ∩ π−1(T )). We obtain a

subdivision K ′ of K formed by all cells of the form S ∩ π−1(T ) for S ∈ K and
T ∈ L, and analogously a subdivision L′ of L formed by all cells of the form
T ∩ π(S) for S ∈ K and T ∈ L. The cell S ∩ π−1(T ) projects to T ∩ π(S) by π,
and inversely T ∩ π(S) projects to S ∩ π−1(T ) by π−1. See Figure 1.3 for an
example abbreviating S∩π−1(T ) by ST and T ∩π(S) by TS . Furthermore, faces
of such cells induced by S ∈ K and T ∈ L are induced by the faces of S and T :

F(S ∩ π−1(T )) = {F ∩ π−1(G) | F v S,G v T}
F(T ∩ π(S)) = {G ∩ π(F ) | F v S,G v T}

Using these observations, one easily checks that the mutual assignment of S ∩
π−1(T ) and T ∩ π(S) yields a well defined combinatorial equivalence in terms
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of cells between the subdivisions K ′ and L′. Since the assignment is based
on the cell-wise images and preimages under π and π−1, we can think of this
combinatorial equivalence as the combinatorial equivalence induced by radial
projection.

This already implies, using Theorem 1.31, that the link complexes K and
L are PL-homeomorphic. The construction of the PL homeomorphism involves
the choice of combinatorially equivalent simplicial subdivisions ofK ′ and L′. We
would prefer a choice such that the combinatorial equivalence is still induced
by radial projection. This can be achieved easily: For any convex polytope
contained in a cell S′ of K ′, its radial projection to |L′| is a combinatorially
equivalent convex polytope contained in the projected cell π(S′) of L′. In par-
ticular simplices contained in S′ are mapped to simplices contained in π(S′).
Hence the family of all simplices π(X), where X ranges over the simplices of
a simplicial subdivision of K ′, forms a simplicial subdivision of L′. Clearly,
this also works with π−1 and the roles of K ′ and L′ reversed. In particular,
we can adapt the methods from Lemma 1.30 to obtain compatible simplicial
subdivisions whose combinatorial equivalence is still given by radial projection:
The simplicial subdivisions obtained from K ′ and L′ by starring at each vertex
in corresponding orders are mapped to each other by radial projection. If we
construct a derived subdivision, we have to choose corresponding points in the
interior of the cells to obtain a combinatorial equivalence by projection: A cho-
sen point vS′ in the interior of a cell S′ in K ′ corresponds to uT ′ = π(vS′), which
is chosen as interior point of the cell T ′ = π(S′) in L′. After having chosen the
simplicial subdivisions, we assign to each vertex in one subdivided link its ra-
dially projected corresponding vertex in the other subdivided link and obtain a
PL homeomorphism by simplex-wise linear interpolation. This homeomorphism
is called a pseudo-radial projection, because it approximates the radial projec-
tion by piecewise linear interpolation between the values of the radial projection
at the vertices of the combinatorially equivalent simplicial subdivisions.

Pseudo-Radial Projection via Polyhedral Fans. Let us describe one of
the construction step for the pseudo-radial projection again from a slightly dif-
ferent point of view, namely the construction for obtaining the combinatorially
equivalent subdivisions K ′ and L′. Consider one of the links, say K. For each
cell S ∈ K, construct the convex polyhedron S+ = {λp+(1−λ)q | q ∈ S, λ ≤ 1}
formed by all the rays emanating from p and intersecting S [44, Proof of
Lemma 2.19, p. 21]. In other words, S+ is obtained from the cone pS by extend-
ing each line segment connecting the apex p with some point in the base S to a
ray emanating from p (see Figure 1.3). We can also think of S+ as the cone pS
with “the base removed”, which is a short expression for the following more pre-
cise construction: Take a minimal collection of half-spaces whose intersection
defines pS; remove from the collection the half-space whose boundary contains
S and whose interior contains p; the intersection of the remaining half-spaces
is S+. The polyhedron S+ is the convex hull of the rays emanating from p and
intersecting a vertex of S. Its non-empty faces are obtained from applying the
same construction to the faces T of S, yielding faces T+ of S+. A polyhedron
that is generated as the convex hull of finitely many rays emanating from a
single point a, like S+ or its non-empty faces T+, is called an extended convex
polyhedral cone from the apex a or an extended cone for short.
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S T

S+
T+ S+ ∩ T+

TS
ST

Figure 1.3: Two links of a point in R2 and their combinatorially equivalent sub-
divisions found by radial projection. The left and the central figure show each
a link of a point in the plane. Both links have a highlighted and labelled edge,
S on the left and T in the centre. The induced extended cones S+ and T+ are
also indicated. The figure on the right depicts the combinatorially equivalent
subdivisions of both links found by radial projection. The cells of the subdi-
visions obtained by projecting T to S and vice versa are highlighted, together
with the corresponding extended cone S+ ∩ T+. They are labelled by ST and
TS , where ST denotes the cell S ∩ π−1(T ) = S+ ∩ T+ ∩ S and TS denotes the
cell T ∩π(S) = S+ ∩T+ ∩T , with π being the map from the first to the second
link given by radial projection.

The collection of all S+ with S ranging over the cells ofK forms a polyhedral
complex. A polyhedral complex formed by extended convex polyhedral cones
with common apex is called a polyhedral fan in [16, Definition 2.1.7, p. 46],
at least if the common apex is the origin. Let us apply this notion also for
the general case with a common apex different from the origin. Back to our
construction, we obtained a polyhedral fan K+ with apex p and the cells from
K as removed bases of the extended cones. We can think of the construction of
this fan as extending the local situation at p to infinity, with the local situation
being described by those cells in the complex obtained from K by starring at p
that contain p. Analogously, we may construct a polyhedral fan L+ with apex p
using the cells from L. The intersection complex K+∩L+ is again a polyhedral
fan with apex p and a common subdivision of both K+ and L+. We can find
for each extended cone cell in this intersection complex a corresponding pair of
a cell S in K and a cell T in L such that the extended cone consists exactly of
those rays emanating from p that intersect K in S and that intersect L in T .
When we now take again the intersection complex of K+ ∩ L+ with K, we
obtain K ′ because the cells S+ ∩ T+ ∩ S and S ∩ π−1(T ) coincide; analogously,
the intersection complex of K+ ∩L+ with L is L′, where S+ ∩T+ ∩T coincides
with π(S)∩T (see Figure 1.3, where S+∩T+∩S is labelled ST and S+∩T+∩T
is labelled TS).

Let us draw some conclusions from the above construction. Suppose that
K and L induce the same polyhedral fans K+ = L+. Then K ′ agrees with
K and L′ agrees with L which means that K and L are already combinatori-
ally equivalent without subdividing and with the equivalence induced by radial
projection. Figure 1.4 depicts three such combinatorially equivalent links of a
point in the plane inducing the same polyhedral fan. Since we obtained K+ by
removing the bases from the cones pS for S in K, we can find other links of p
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Figure 1.4: Three links of a point in R2 inducing the same polyhedral fan. The
first and second link from left to right are scaled copies of the combinatorially
equivalent subdivisions obtained in the example from Figure 1.3. The link on
the right side was obtained by choosing on each ray forming a 1-dimensional
cell of the polyhedral fan some arbitrary vertex.

combinatorially equivalent to K by suitably reinserting bases in the extended
cones S+ such that the bases form a valid complex with a domain contained in
the polyhedron P . We can visualise this as tilting or translating the half-spaces
and their bounding hyperplanes originally defining the bases in such a way that
the hyperplanes still intersect all rays of the extended cone inside P and that
the resulting movements of bases of neighbouring cones agree on their common
intersection. Another way to generate tilted or translated bases is to move the
vertices spanning the cells forming the bases, namely the vertices of K: Each
vertex of K is allowed to move along the interior of the ray emanating from p
and passing through the respective vertex. Then we obtain a polyhedral link of
p in P that is combinatorially equivalent to K, provided that for each subset
of vertices spanning a base, that is, a cell of K, the moved counterparts still
span a cell contained in P combinatorially equivalent to the cell spanned before
the moves,. If K is simplicial, the requirement of combinatorial equivalence is
always fulfilled, because for each subset of vertices spanning a base, the points
of this subset and the point p are affinely independent, and this property still
holds when the points different from p move along their rays emanating from p.
The requirement of being contained in P on the other hand is always fulfilled
if all vertices move only in direction towards p because in this case for each
original base cell S ∈ K, its moved base cell is contained in the cone pS, which
again is contained in P by the assumption that K is a link of p in P .

Summary. A short summary of our observations concludes this subsection.
Fact 1.32. Let φ : P → Q be a PL homeomorphism between polyhedra P and Q
mapping p ∈ P to q ∈ Q. Then all polyhedral links of p in P and all polyhedral
links of q in Q are PL-homeomorphic to each other. By the cone construction,
all stars of p and q obtained as cones of these polyhedral links are also PL-
homeomorphic. The different links of the point p ∈ P are PL-homeomorphic
by pseudo-radial projection. For a cell S of a link complex K of p, let S+ be
the extended cone from p with base S. The collection of all S+ with S ∈ K
forms a polyhedral fan K+ centred at p. For two link complexes K and L of p,
the intersection complex K ′ = (K+ ∩ L+) ∩ K is a subdivision of K and the
intersection complex L′ = (K+ ∩ L+) ∩ L is a subdivision of L combinatorially
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equivalent to K ′. The combinatorial equivalence is induced by cell-wise radial
projection, assigning (S+ ∩ T+)∩ S ∈ K ′ to (S+ ∩ T+)∩ T ∈ L′ for S ∈ K and
T ∈ L. Simplicial subdivisions maintaining cell-wise radial projection define
a pseudo-radial projection by simplex-wise linear interpolation of the radial
projection at the vertices.

Two link complexes inducing the same polyhedral fan are combinatorially
equivalent already without subdivisions by cell-wise radial projection. For a
given link complex K of p, we can construct combinatorially equivalent links
with the same polyhedral fan by moving or tilting the bases of the cones in pK
slightly, or equivalently, moving the vertices of K along rays emanating from p,
with these movements being subject to some restrictions ensuring that we obtain
a valid polyhedral link in P . These restricting conditions are met for example
if K is simplicial and the vertices are moved in direction towards p from their
original position.

1.2.9 Combinatorial Manifolds
There are several ways of characterising manifolds in piecewise linear topology.
First of all, there are characterisations defining manifolds in the category of
polyhedra, which are called piecewise linear manifolds [26, p. 20], [44, p. 7];
and there are characterisations defining manifolds in the category of simplicial
complexes, which are called combinatorial manifolds [21, p. 18], [26, p. 26]. Since
the domain of a simplicial complex is a compact polyhedron and vice versa, both
categories overlap. Somewhat unsurprisingly, both notions of manifolds agree
in that case: A simplicial complex is a combinatorial manifold if and only if its
domain is a piecewise linear manifold [26, p. 26], [44, Exercise 2.21 (1), p. 22].

Piecewise Linear Manifolds. We start with characterisations of PL man-
ifolds. Rourke and Sanderson [44, p. 7] define a piecewise linear d-manifold
without boundary as a polyhedron in which any point has a neighbourhood
PL-homeomorphic to an open set in Rd. For a d-manifold with boundary, also
points with neighbourhoods PL-homeomorphic to open subsets of a half-space
in Rd are allowed. The boundary of such a manifold consists of the points whose
neighbourhood is PL-homeomorphic to an open subset of a half-space in such
a way that the point in question is mapped to the boundary of the half-space.
The other points form the interior of the manifold. This definition strongly re-
sembles the common characterisation of a topological manifold, with topological
spaces replaced by polyhedra and continuous maps replaced by piecewise linear
ones.

For our study, this characterisation has the drawback that it deals with open
neighbourhoods, whereas we prefer to consider cone neighbourhoods, namely
the stars of points in simplicial complexes, which are closed neighbourhoods.
A characterisation of PL manifolds in terms of closed neighbourhoods is given
by Hudson [26, p. 20]. It starts by defining PL balls and PL spheres:

Definition 1.33 (PL ball, PL sphere). A piecewise linear d-ball is a polyhedron
PL-homeomorphic to a d-simplex. A piecewise linear d-sphere is a polyhedron
PL-homeomorphic to the boundary of a (d+ 1)-simplex.

Clearly, instead of taking a simplex as reference for defining balls and spheres,
we could replace it by any other PL ball of the same dimension. Every compact
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convex polytope of dimension d is a PL d-ball [26, Lemma 1.12, p. 20], [44,
Corollary 2.20, p. 21]. Most notable examples are cross-polytopes as balls of
the 1-norm and hypercubes as balls of the ∞-norm, the latter being used for
the definition of PL balls and spheres in [44, p. 8]. Having defined the notions
of PL balls and spheres, Hudson [26, p. 20] characterises a PL manifold as a
polyhedron such that any point has a neighbourhood that is a PL ball. This
characterisation includes manifolds with boundaries, because the point may
lie on the boundary of the ball. Thus, for characterising manifolds without
boundary we would additionally require for each point a ball neighbourhood
containing the point in the interior of the ball.

Since the characterisation so far allows arbitrary closed neighbourhoods, we
would like to show that we can restrict our attention to cone neighbourhoods
without loss of generality. Along the way we also show a possible characteri-
sation in terms of links instead of stars. So let us assume a point p in a poly-
hedron P has a closed neighbourhood N PL-homeomorphic to a d-simplex ∆d.
Denote by φ : N → ∆d the PL homeomorphism and let φ(p) = q. Because N
is a PL ball, there is some simplicial complex K with domain N such that φ
is simplicial with respect to K and some subdivision of the simplex ∆d. We
show that the cone neighbourhood stK(p) of p in N with polyhedral link lkK(p)
as base is a PL d-ball and a cone neighbourhood of p in P . Note that the
simplex ∆d itself is a star of q in ∆d, with the corresponding link being the
union of all proper faces of ∆d not containing q. In particular, the link of q
is a PL (d − 1)-sphere if q is in the interior of ∆d, and it is a PL (d − 1)-ball
if q is on the boundary of ∆d. By PL invariance of links and stars, any cone
neighbourhood of p in N is a PL d-ball, and the corresponding link is either a
PL (d − 1)-sphere if p is in the interior of the ball N or a PL (d − 1)-ball if p
is on the boundary of N . Because N is a neighbourhood of p in P , any cone
neighbourhood of p in N is also a cone neighbourhood of p in P . Applying
PL invariance of links and stars again, we see that not only stK(p), but actually
all cone neighbourhoods of p in P are PL d-balls. Furthermore, any link of p
in P is either a PL (d − 1)-sphere if p is interior to its ball neighbourhood, or
a PL (d− 1)-ball if p is on the boundary of its ball neighbourhood. Therefore,
having a PL (d − 1)-sphere or a PL (d − 1)-ball as link is necessary for having
a PL d-ball as neighbourhood; and since the cone on a PL (d − 1)-sphere or a
PL (d− 1)-ball is a PL d-ball [44, Proposition 2.23, p. 23], this condition is also
sufficient.

Let us summarise the different criteria defining a piecewise linear manifold.
For the summary and in the following, we denote by Rd+ the half-space of Rd
consisting of all points x = (x1, . . . , xd) whose last coordinate xd is non-negative.

Definition 1.34 (PL manifold). A polyhedron P is called a piecewise linear d-
manifold without boundary if for each point p in P one of the following equivalent
statements holds:

• The point p has a neighbourhood in P that is PL-homeomorphic to an
open set in Rd.

• The point p has a neighbourhood in P that is a PL d-ball containing p in
its interior.

• The point p has a cone neighbourhood in P that is a PL d-ball containing
p in its interior.
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• The point p has a link in P that is a PL (d− 1)-sphere.
A piecewise linear d-manifold with boundary is a polyhedron P such that for
each point p in P one of the following equivalent statements holds:
• The point has a neighbourhood in P that is PL-homeomorphic to an open

set in Rd+.

• The point has a neighbourhood in P that is a PL d-ball.

• The point has a cone neighbourhood in P that is a PL d-ball.

• The point has a link in P that is a PL (d− 1)-sphere or a PL (d− 1)-ball.
The boundary of a manifold with boundary consists of those points whose link is
a PL ball; they lie on the boundary of their ball neighbourhood. The remaining
points, whose links are PL spheres and which are interior to their respective
ball neighbourhoods, form the interior of the manifold.

Combinatorial Manifolds. Now we turn to the characterisation of combi-
natorial manifolds. Following Glaser [21, p. 18], we also start by defining balls
and spheres:
Definition 1.35 (combinatorial ball, combinatorial sphere). A combinatorial
d-ball is a simplicial complex whose domain is a PL d-ball. A combinatorial
d-sphere is a simplicial complex whose domain is a PL d-sphere.

By the common abuse of notation that attributes properties of the domain
of a complex to the complex itself, we occasionally call a complex a PL ball
or sphere if it is a combinatorial ball or sphere. We denote a combinatorial or
PL d-ball by Bd and a combinatorial or PL d-sphere by Sd.
Definition 1.36 (combinatorial manifold). A simplicial complex K is a com-
binatorial d-manifold without boundary if for each vertex v the link lkK(v) is
a combinatorial (d− 1)-sphere. It is a combinatorial d-manifold with boundary
if each vertex link lkK(v) is a combinatorial (d − 1)-sphere or a combinatorial
(d− 1)-ball.

By PL invariance of links and stars, it is clear that the domain of a simplicial
complex K is a PL d-manifold if and only if lkK(x) is a combinatorial (d −
1)-sphere or -ball for each point x in the domain, where balls only occur for
manifolds with boundary. It is less obvious that checking the links of vertices
suffices, so that a simplicial complex is a combinatorial manifold if and only if
its domain is a PL manifold. This can be deduced starting from a property of
combinatorial manifolds stated in [21, Theorem II.2, p. 19], which is used as the
defining property of combinatorial manifolds in [26, p. 26]:
Fact 1.37. Let S be an r-simplex in a combinatorial d-manifold K. Then its
link lkK(S) is a combinatorial (d − r − 1)-sphere or -ball, with balls occurring
only for manifolds with boundary.

Using for a point x in the interior of S the equality lkK(x) = bd(S) lkK(S)
from Table 1.3, we see that lkK(x) is the join of a combinatorial (r − 1)-sphere
and a combinatorial (d − r − 1)-sphere or -ball. Hence, completing the proof
sketch, lkK(x) is a combinatorial (d−1)-sphere or -ball because joins of balls and
spheres obey the following rules [21, Proposition II.1, p. 18], [26, Lemma 1.13,
p. 22], [44, Proposition 2.23, p. 23]:
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Fact 1.38. For combinatorial as well as piecewise linear balls and spheres the
following rules concerning their joins hold:

• The join of a d-ball and an r-ball is a (d+ r + 1)-ball.

• The join of a d-ball and an r-sphere is a (d+ r + 1)-ball.

• The join of a d-sphere and an r-sphere is a (d+ r + 1)-sphere.

Fact 1.37 implies that each (d−1)-simplex in a combinatorial d-manifold has
either one or two d-simplices as proper co-faces. In manifolds without boundary
only (d − 1)-simplices with exactly two proper co-faces occur. Otherwise, the
(d − 1)-simplices with only one d-simplex as co-face and all their faces form
the boundary of the manifold [21, p. 17]. It consists of the simplices whose
link is a combinatorial ball [26, Lemma 1.18, p. 27], and it is a combinatorial
(d− 1)-manifold without boundary [21, Corollary II.4, p. 21].

Another important fact about PL balls and spheres is the following [44,
Lemma 1.10, p. 8]:
Fact 1.39. Assume that for two PL balls B1 and B2, there is a PL homeomor-
phism between their boundary spheres. Then the boundary homeomorphism
extends to a PL homeomorphism between B1 and B2 by the cone construction.

The fact that polytopal complexes can be triangulated by starring at its ver-
tices and PL invariance of links and stars shows that the domain of a polytopal
complex is a PL manifold if and only if the link of every vertex is a PL sphere
or ball. Therefore one might be tempted to extend the notions of combinatorial
manifolds, spheres, and balls to polytopal complexes, because many properties
would also hold for the extended notions. But an analogue of Fact 1.37 fails for
polytopal cells. For this reason, when we occasionally call a polytopal complex
a combinatorial manifold, sphere, or ball, we actually mean that some triangu-
lation of it is a combinatorial manifold, sphere, or ball, which is independent of
the choice of the triangulation.

1.2.10 Homotopy and Homology
Several different parts of the thesis deal with notions that are related to homo-
topy and homology. Both concepts are central for the broad field of algebraic
topology. Here we only sketch the basic notions and state the definitions and
results relevant for our study. For further information, we refer to textbooks on
algebraic topology, for example Hatcher [25].

Homotopies. A homotopy is a continuous map h : X× I → Y for topological
spaces X and Y and some closed interval I. The interval is usually imagined to
model a certain time interval, and is often assumed to be the unit interval [0, 1].
This point of view leads to a family of maps consisting of maps ht for each point t
in time interval I, where ht : X → Y is defined by ht(x) = h(x, t) for each x
in X. The homotopy is viewed as a continuous transition from the map ha at
the left endpoint of the interval I = [a, b] to the map hb at the right endpoint.
The maps ha and hb are called homotopic. When for some subspace Z of X,
the restrictions of all maps ht to Z agree, the homotopy h is called a homotopy
relative to Z.
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Homotopy Equivalences and Deformation Retractions. Two topolog-
ical spaces X and Y are homotopy equivalent if there are continuous maps
f : X → Y and g : Y → X such that the compositions f ◦ g and g ◦ f are
homotopic to the identities on X and Y respectively. The maps f and g are
called homotopy equivalences. A special case of homotopy equivalences is in-
duced by deformation retractions. A retraction from a topological space X to
a subspace Z is a continuous map f : X → Z such that the restriction to that
subspace is the identity on Z. A deformation retraction from X to Z as above
is a homotopy from the identity on X to a retraction from X to Z; it is a strong
deformation retraction if it is a homotopy relative to Z. For a deformation
retraction from X to Z, the spaces X and Z are homotopy equivalent with the
retraction from X to Z homotopic to the identity on the one hand, and the in-
clusion map from Z to X on the other hand being the homotopy equivalences.
We also say that X deformation retracts to Z or that Z is a deformation retract
of X, if there is a deformation retraction from X to Z.

Collapses. Typical examples of deformation retracts arise from collapses. For
simplicial complexes, the operation of an elementary collapse is defined as the
removal of two distinct simplices T v S from a complex K with the property
that T and S are the only co-faces of T in K [21, p. 49]. The domain of the
resulting complex is a strong deformation retract of |K|. The cell S in such an
elementary collapse is necessarily a maximal element of the face poset, and T
is called a free face of S in K. The operation of an elementary collapse can be
defined more generally for a pair of cells in a CW complex. A detailed definition
is given for example by Cohen in [14, p. 14]. Important for our purposes is
only the implied fact that the definition for simplicial complexes works without
change for polytopal complexes as well: If T is a proper face of S such that T
and S are the only co-faces of T in some polytopal complex K, then we call
the removal of S and T from K an elementary collapse, and the domain of the
resulting polytopal complex K \ {S, T} is a strong deformation retract of |K|.
We sometimes say that a pair (S, T ) fulfilling the requirements for an elementary
collapse “can be collapsed” or “defines a valid elementary collapse”.

Applying the operation of an elementary collapse iteratively yields the no-
tion of a collapse: Let K1 ⊇ K2 ⊇ · · · ⊇ Kn be a sequence of subcomplexes such
that Ki+1 is obtained from Ki by an elementary collapse Ki+1 = Ki \ {Si, Ti}.
Then we say that K1 collapses to Kn and write K1 ↘ Kn; the sequence
((S1, T1), (S2, T2), . . . , (Sn−1, Tn−1)) is said to describe a sequence of valid el-
ementary collapses. If K1 collapses to Kn, then |Kn| is a strong deformation
retract of |K1|. A complex that collapses to a single vertex is called collapsible.

Isotopies. An isotopy is a homotopy h : X × I → Y such that each map ht
for t ∈ I is a topological embedding. When X and Y are polyhedra, we could
additionally require that the isotopy h is piecewise linear and each map ht
is a PL embedding, and call such an isotopy a piecewise linear isotopy. An-
other characterisation defines a PL isotopy as a level-preserving PL embedding
H : X × I → Y × I, where level-preserving means that there is a function
h : X × I → Y such that the equality H(x, t) = (h(x, t), t) holds for all x in
X and t in I, in other words, H leaves the I-part unchanged [44, Definitions
3.21, p. 37]. Hudson [26, p. 128] remarks that both characterisations are equiva-
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lent. We will later define a special kind of PL isotopies called f -level-preserving
PL isotopies. One could consider such f -level-preserving PL isotopies in terms
of the second characterisation, but let us point out already here that being level-
preserving in the sense of that characterisation and being f -level-preserving are
distinct and independent requirements.

Collars and Bicollars. Other special cases of homotopies are collars and
bicollars, which play only a minor role in this thesis, when we mention that
certain level sets are bicollared with a bicollar given by an f -level-preserving
PL isotopy. We use these notions in the following sense, based on the definitions
by Rourke and Sanderson [44, p. 24] and by Rolfsen [40, p. 34]: Let h : X×I → Y
be a PL embedding for polyhedra X ⊆ Y such that ht is the inclusion map of
X into Y for some t in the interval I; then h, or sometimes also its image, is
called a collar on X in Y if t is an endpoint of the interval, and it is called
a bicollar if t is in the interior of the interval. The polyhedron X is said to
be collared or bicollared in Y . By piecewise linear reparametrisation of the
interval, one can assume defaults for the interval I and the value t at which ht
is the inclusion map, namely I = [0, 1] and t = 0 for collars, and I = [−1, 1]
and t = 0 for bicollars. Rourke and Sanderson additionally require that the
image of a collar h : X × [0, 1]→ Y is a neighbourhood of X = h(X ×{0}) in Y
with h(X× [0, 1)) being open in Y . The bicollars on level sets occurring here as
images of f -level-preserving PL isotopies also have the property that they form
a neighbourhood of the level set.

Homology Groups. The main application area of homology in this thesis are
computational aspects because the homology of a simplicial complex is com-
putable and a topological invariant of its domain. Note that we can apply
simplicial homology also to polytopal complexes by triangulating them. There-
fore we can avoid resorting to more general concepts of homology for the most
part, such as cellular homology for CW-complexes, which include polytopal com-
plexes, or singular homology for arbitrary topological spaces. For the definition
of homology groups, different abelian groups can be used as coefficients. Com-
mon choices for the coefficients are first of all the integers Z, the rationals Q,
and the field with two elements Z2.

Homology groups can be defined based on a chain complex, a sequence of
abelian groups Cn with homomorphisms ∂n : Cn → Cn−1 called boundary maps,
such that the composite of two successive boundary maps is the trivial homo-
morphism ∂n ◦ ∂n+1 = 0, or equivalently, the image im(∂n+1) is contained in
the kernel ker(∂n). The n-th homology group Hn of the chain complex is the
quotient group ker(∂n)/ im(∂n+1).

In the case of simplicial homology, the group of n-chains Cn(K) for a sim-
plicial complex K is a direct sum of copies of the coefficient group, one copy for
each n-simplex in K. The elements are usually written as formal sums

∑
σ gσσ

where σ ranges over the n-simplices in K and the gσ are elements from the
coefficient group. For coefficients from Z, this means that Cn(K;Z) is the free
abelian group generated by the n-simplices of K. The chain groups Cn(K)
for usual homology are trivial for n > dim(K) or n < 0, but there is a vari-
ant called reduced homology where the chain complex differs at a single chain
group in the sequence: In the so-called augmented chain complex of K the
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chain group C−1(K) is not trivial but generated by the empty simplex, hence
isomorphic to the coefficient group. The homology groups with respect to the
augmented chain complex ofK are called reduced homology groups and denoted
by H̃n(K).

It remains to define the boundary maps ∂n used in simplicial homology. It
suffices to specify the results for the generating elements, that is an (n−1)-chain
∂n(gσ) for each n-simplex σ and element g of the coefficient group. This is par-
ticularly simple for coefficients from Z2: The boundary map maps an n-simplex
σ = 1 ·σ to the formal sum

∑
τvσ,dim(τ)=n−1 τ of its (n−1)-faces. For other co-

efficient groups, the (n−1)-chain ∂n(gσ) is the sum
∑
gττ of the (n−1)-faces τ

of σ with coefficients gτ = g or gτ = −g depending on orientation, for details
see Hatcher [25, pp. 102–105, 153], Kaczynski, Mischaikow, and Mrozek [28,
pp. 382–384], or Zomorodian [48, pp. 31, 71]. For the definition of the boundary
map ∂0 in reduced homology, the empty simplex is considered a (−1)-face of a
vertex, for the definition in usual homology, ∂0 is the trivial map. This way,
we obtain for each n an n-th homology group Hn(K) of K and an n-th reduced
homology group H̃n(K).

For arbitrary topological spaces X, singular homology groups Hn(X) and
H̃n(X) are defined based on the following chain complex: The chain group
Cn(X) is generated as direct sum from the set of continuous maps f : ∆n → X
from the n-simplex ∆n to X. For reduced homology, the empty map f : ∅ → X
generates C−1(X), for unreduced homology, C−1(X) is trivial. The boundary
map is defined for a generating n-chain f : ∆n → X by taking the formula for
the simplicial boundary of ∆n and replacing each face of ∆n in the formal sum
by the restriction of f to that face. The simplicial homology groups, reduced
and unreduced, of a simplicial complex are isomorphic to their correspondent
singular homology groups of the domain [25, Theorem 2.27, p. 128]. We say that
two topological spaces X and Y “have the same homology” if corresponding
homology groups are isomorphic. Homotopy equivalent spaces have the same
homology [25, Corollary 2.11, p. 111]. A topological space is acyclic if all its
reduced homology groups are trivial [25, p. 142].

It is easy to switch between reduced and unreduced homology because of the
following rules, here stated for the case of integer coefficients [25, p. 110]: For
non-empty spaces X, the unreduced homology group H0(X) is isomorphic to
the direct sum of Z with the reduced homology group H̃0(X), and for all other
n 6= 0, the unreduced homology group Hn(X) is isomorphic to the reduced
homology group H̃n(X); for the special case of the empty set, Hn(∅) and H̃n(∅)
are isomorphic for all n 6= −1, and for the remaining case n = −1, the unreduced
homology group H−1(∅) = 0 is the trivial group, whereas the reduced homology
group H̃−1(∅) is isomorphic to Z.

For a subspace Y of a topological space X we may define relative homology
groups Hn(X,Y ) as follows [25, p. 115]: The chain groups Cn(X,Y ) are the
quotient groups Cn(X)/Cn(Y ). Since the usual boundary map ∂n : Cn(X) →
Cn−1(X) maps Cn(Y ) to Cn−1(Y ), it induces naturally a well defined boundary
map on the quotient groups.

Betti Numbers and Euler Characteristic. The n-th Betti number βn(X)
of a topological space X is the rank of the n-th homology group Hn(X) for in-
teger coefficients. One can also define Betti numbers with respect to coefficients
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from a field F as the dimension of the F -vector space Hn(X;F ). The Betti
numbers with respect to the rational coefficients agree with the standard Betti
numbers for integer coefficients [25, Corollary 3A.6, p. 266]. Moreover, we can
define reduced Betti numbers β̃n(X) analogously as the rank of the n-th reduced
homology group H̃n(X). The above results concerning the relation between re-
duced and unreduced homology groups imply βn(X) = β̃n(X) for all n and X
but the following exceptions: If n = 0 and X 6= ∅, then β0(X) = β̃0(X) + 1
holds, and if n = −1 and X = ∅, then β−1(∅) = β̃−1(∅) − 1 holds. If all
but finitely many homology groups Hn(X) are trivial and thus all but finitely
many βn = 0, the Euler characteristic χ(X) is defined as the alternating sum∑
n(−1)nβn(X) of the Betti numbers. For simplicial complexes or even finite

CW-complexes, the Euler characteristic can also be computed by the alternat-
ing sum

∑
n≥0(−1)ncn where cn is the number of n-cells in the complex [25,

Theorem 2.44, p. 146].

Homology Computation, Homology Spheres, and Novikov’s Undecid-
ability Result for Sphere Recognition. As already mentioned, homology
groups of simplicial complexes are computable for various coefficient groups, in-
cluding integers, rationals, and finite fields. The Betti numbers can also be read
off from the computed groups. The standard way to compute the homology is
based on representing the boundary maps between the freely generated chain
groups by matrices and transforming them into their Smith normal forms, as
described by Kaczynski, Mischaikow, and Mrozek [28, Chapter 3, pp. 93–141]
and Zomorodian [48, Section 7.3.1, p. 137–139].

A manifold that has the same homology as a d-sphere is commonly called
a homology d-sphere. We usually restrict our attention to homology spheres
that are combinatorial manifolds. The notion of a homology ball is defined
and used analogously. A result of Novikov implies that there is no algorithm
for distinguishing combinatorial d-spheres from other homology d-spheres in
dimension d ≥ 5. Novikov’s proof of his “theorem on the impossibility of rec-
ognizing whether an n-dimensional manifold is an n-dimensional sphere (n ≥
5) or whether a contractable domain in (n + 1)-dimensional Euclidean space
with smooth boundary is an (n + 1)-dimensional disc” is included in a paper
by Volodin, Kuznetsov, and Fomenko [47]. An exposition of Novikov’s proof
adapted to a piecewise linear setting is given by Chernavsky and Leksine [12].
Another variant of the result is stated by Matoušek, Tancer, and Wagner [32,
Theorem 3.1]: For each d ≥ 5, there is a computable sequence of combinatorial
d-manifolds Ki, each a homology sphere, such that no algorithm exists deciding
for each Ki whether it is a combinatorial sphere or not. For future reference,
we restate the result as follows:

Fact 1.40 (Novikov). For d ≥ 5, it is algorithmically undecidable whether a given
simplicial complex is a combinatorial d-sphere or not. The problem remains
undecidable if the input complexes are restricted to homology d-spheres.

1.2.11 Pachner Moves and Recognition of 3-Spheres

Sphere recognition in dimensions greater than four is algorithmically undecid-
able by Novikov’s result just stated above. In this subsection we review known
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facts on sphere recognition in small dimensions with a focus on the 3-dimensional
case.

Sphere Recognition and Ball Recognition. Note first that sphere recog-
nition is computationally equivalent to ball recognition in the sense that both
problems can be reduced to each other. This observation is based on the fol-
lowing two facts. Firstly, for a d-ball contained in a d-sphere, the closure of
its complement is again a d-ball [44, Corollary 3.13, p. 35]. Secondly, a d-ball
with a cone on its boundary attached is a d-sphere, which can easily be seen
by looking a the boundary of the (d+ 1)-dimensional cross-polytope subdivided
into two hemispheres by the equator: Both hemispheres are balls and cones on
their common boundary, hence the whole sphere is one hemisphere with a cone
attached to its boundary. A homeomorphism from a ball to the hemisphere ex-
tends by the cone construction to a homeomorphism from the ball with a cone
on its boundary to the whole sphere. Therefore we can reduce ball recognition
to sphere recognition by attaching a cone to the boundary of the given complex.
The resulting complex is a combinatorial d-sphere if and only if the original
complex is a combinatorial d-ball. On the other hand, d-sphere recognition can
be reduced to d-ball recognition by removing a single, arbitrary d-simplex from
the input complex. The resulting complex is a combinatorial d-ball if and only
if the input complex is a combinatorial d-sphere.

Before we turn to the recognition of 3-spheres, let us settle matters with the
other remaining dimensions. A combinatorial 0-sphere consists of exactly two
vertices. Only slightly less trivial is the recognition of 1-spheres: In the language
of graphs, a combinatorial 1-sphere is a non-empty connected graph in which
every vertex has degree two. For the recognition of combinatorial 2-spheres, one
starts with checking whether the link of each vertex is a 1-sphere and whether
the 1-skeleton is connected. If both tests succeed, the considered simplicial
complex is a connected compact combinatorial 2-manifold without boundary.
By the classification of compact surfaces, such a manifold is a combinatorial
2-sphere if and only if its Euler characteristic is two. The question whether
combinatorial 4-spheres are algorithmically recognisable or not is still open [24].

The first correct algorithm for 3-sphere recognition was proposed by Ru-
binstein [45]. Thompson described a variant of the algorithm with a different
point of view on the correctness proof [46]. Based on the results leading to this
algorithm, Mijatović showed that a conceptually simple algorithm using Pach-
ner moves allows to recognise 3-spheres as well [34]. We summarise the facts
important for us from Mijatović’s paper [34], but note that the treatment there
allows for non-combinatorial abstract simplicial complexes, that is, the same set
of vertices may span several distinct simplices. For example, one obtains a trian-
gulation of a d-sphere by gluing together two copies of a d-simplex by identifying
corresponding boundary cells. Mijatović remarks that in dimension 3, any tri-
angulation can be made combinatorial by taking the second derived subdivision,
which can also be obtained by suitable Pachner moves.

Pachner Moves. For the definition of a d-dimensional Pachner move, con-
sider the boundary of a (d + 1)-simplex ∆d+1 consisting of d + 2 d-simplices.
Each collection of k such d-simplices for 1 ≤ k ≤ d + 1 defines a combinato-
rial d-ball, and the remaining d+ 2− k d-simplices form another combinatorial
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d-ball with the same boundary. Up to combinatorial equivalence the two tri-
angulations depend only on k. A Pachner move is a switch between two such
triangulations of a d-ball with the same boundary as follows. Denote by Bdk
the subcomplex of bd(∆d+1) with k d-simplices and by B̄dk the opposite sub-
complex containing the other d + 2 − k d-simplices. By Fact 1.39, the identity
on the common boundary Bdk ∩ B̄dk extends to a homeomorphism between the
balls Bdk and B̄dk . Therefore, if a combinatorial d-manifold K contains Bdk as a
subcomplex, up to combinatorial equivalence of course, we can replace the sim-
plices from Bdk \Bdk ∩ B̄dk by the simplices from B̄dk \Bdk ∩ B̄dk without changing
the topology of K. In other words, the triangulation in the interior of the ball
Bdk is replaced by the interior triangulation of the ball B̄dk with the boundary
left unchanged. Such a modification is called a (k - (d− k + 2)) Pachner move.
It can be reversed by the corresponding ((d − k + 2) - k) Pachner move. The
simplest example of a Pachner move is a (1 - (d + 1)) move: It amounts to an
elementary starring at a point in the interior of a d-simplex, which subdivides
the d-simplex into (d+ 1) smaller d-simplices.

Mijatović’s Algorithm for 3-Sphere Recognition The key facts making
Mijatović’s algorithm possible are the following:
Fact 1.41 ([34, Theorem 1.1]). Two combinatorial d-manifolds K and L are PL-
homeomorphic if and only if there is a finite sequence of d-dimensional Pachner
moves transforming K into L up to combinatorial equivalence.
Fact 1.42 ([34, Theorem 1.2]). Let S be the the 3-sphere triangulation formed
by two 3-simplices with identified boundaries. Any triangulation of a 3-sphere
with t 3-simplices can be transformed into S by at most 6 ·106t225·104t2 Pachner
moves.
Fact 1.43 ([34, Proposition 1.3]). If there is a computable function f : N×N→ N
such that for any two triangulations K and L of a compact PL manifold M ,
with K containing at most k and L containing at most l maximal simplices, the
number of Pachner moves needed to transform K into L is bounded by f(k, l),
then the recognition problem for the manifold M is algorithmically decidable.

The construction of an algorithm proving the last fact is simple: Fix a
triangulation K of M with k maximal simplices and let L be the input complex
of the algorithm with l maximal simplices. Check for all possible sequences of
Pachner moves starting from L with length at most f(k, l) whether the resulting
complex is combinatorially equivalent to K. Since the second fact provides a
computable bound for the case thatM is the 3-sphere, such an algorithm allows
to recognise combinatorial 3-spheres.

The argument used for Fact 1.43 can be used in many other variants. We
sketch a general proof template that can be applied to obtain other similar
results. Let C be a class of pairs of simplicial complexes. Suppose a com-
putable function f : C → N exists such that whenever a pair (K,L) in C is a pair
of PL-homeomorphic manifolds, then the number of Pachner moves needed to
transform K into L is bounded by f(K,L). Then the problem whether a pair of
manifolds from class C is PL-homeomorphic is algorithmically decidable. Note
that for bounded dimension, a function f bounding the number of necessary
Pachner moves in terms of the size of the complexes, measured in number of
maximal simplices or total number of simplices, always exists: Up to combina-
torial equivalence, there are only finitely many simplicial complexes of bounded
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dimension of a certain size, so there are only finitely many homeomorphic man-
ifold pairs. For each homeomorphic manifold pair, there is a finite sequence
of Pachner moves by Fact 1.41, hence for each given input size, the value of f
can be chosen as the maximum of a finite set. By contraposition, the above
observation implies that if the problem whether a manifold pair is homeomor-
phic is algorithmically undecidable for class C, then this function f or any other
function bounding the number of necessary Pachner moves for that class is not
computable.

1.2.12 Schoenflies Conjecture
In Chapter 4 we will develop and study several equivalent characterisations of
regular points in PL Morse theory. One of the characterisations for a point x
in a combinatorial d-manifold requires that the intersection | lk(x)| ∩ f−1(f(x))
of | lk(x)| with the level set at f(x) is embedded in | lk(x)| in the same way as
the standard (d− 2)-sphere is embedded in the standard (d− 1)-sphere. Since
the Schoenflies conjecture, in a nutshell, states that any embedding of a (d−2)-
sphere into the (d − 1)-sphere is equivalent to the standard one, the status of
the conjecture has influence on the characterisation of regular vertices as well.
We give a short survey on the notions and results that are interesting for us,
following the treatment in [44].

Definitions. At first, we list some definitions for pairs [44, p. 50]: For a
PL manifold Q of dimension k contained in a PL manifold P of dimension d,
the pair (P,Q) is called a (d, k)-manifold pair. The pair is a sphere pair if both
manifolds are PL spheres, and it is a ball pair if both manifolds are PL balls. The
standard ball and sphere pairs are given by the hypercubes formed by the ∞-
norm unit balls and spheres and their restriction to a subspace: The standard
(d, k)-ball pair is ([−1, 1]d, [−1, 1]k × {0}d−k), the standard (d, k)-sphere pair
is (bd([−1, 1]d+1),bd([−1, 1]k+1) × {0}d−k). Two manifold pairs (P,Q) and
(P ′, Q′) are said to be homeomorphic as pairs if there is a PL homeomorphism
h : P → P ′ such that h(Q) = Q′. A ball or sphere pair is called unknotted if it is
homeomorphic as a pair with the standard ball or sphere pair. A manifold pair
(P,Q) is proper if bd(Q) = Q ∩ bd(P ). A proper (d, k)-manifold pair (P,Q) is
called locally flat if each point in Q has a neighbourhood N in P such that the
pair (N,N ∩Q) is homeomorphic as a pair with the standard (d, k)-ball pair. It
is common to say that Q is locally flat in P or that Q is unknotted in P if the
pair (P,Q) has that property. Similarly, if a locally flat or unknotted pair (P,Q)
arises from a PL embedding f : M → P with image Q, then the embedding f
of M into P is also called locally flat or unknotted respectively.

Clearly, we can apply all these definitions to combinatorial manifolds as well.
Note that if the domain of a combinatorial manifold L is contained in the domain
of another compact manifold K, then there are subdivisions K ′ and L′ of K and
L such that L′ is a subcomplex of K ′. This is proven by the following fact [44,
Addendum 2.12, p. 16]: For polytopal complexes K and L1, . . . , Ln such that
|Li| ⊆ |K| for each i, there are simplicial subdivisions K ′ of K and L′i of Li
such that L′i is a subcomplex of K ′ for each i. Since compact polyhedra can be
triangulated, we can find for any manifold pair (P,Q) of compact manifolds, in
particular for ball and sphere pairs, a combinatorial manifold pair (K,L) such
that |K| = P , |L| = Q, and L is a subcomplex of K.
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The Conjecture and Its Status. Now the d-dimensional Schoenflies con-
jecture for the PL category can be stated as follows:

Conjecture 1.44 (Schoenflies conjecture). Every (d, d − 1)-sphere pair is un-
knotted.

The conjecture is known to be true for d ≤ 3, and it is still open for d ≥ 4 [44,
p. 47]. It is either true for all dimensions or false for all dimensions d ≥ 4, see
Luft [31]. A weaker positive result is the following [31, Theorem 5]: If Sd−1

is a combinatorial (d − 1)-sphere contained in a combinatorial d-sphere Sd,
then Sd−1 divides Sd into two complexes Bd1 and Bd2 with Bd1 ∪ Bd2 = Sd and
Bd1 ∩ Bd2 = Sd−1 and with the decomposition being different from the trivial
one with this property, namely the decomposition into Sd and Sd−1. This
decomposition is unique [31, Theorem 3], and the components Bd1 and Bd2 are
both topological d-balls. Furthermore, if one of them is a combinatorial ball,
then the other component is a combinatorial ball as well [31, Theorem 2], see
also [44, Corollary 3.13, p. 35]. Using the cone construction, one can prove
that both components being balls is necessary and sufficient for the pair being
unknotted. Locally flat (d, d − 1)-sphere pairs are known to be unknotted for
all dimensions except d = 4, where the Schoenflies conjecture is still open even
if local flatness is already assumed [44, p. 47].

1.3 Discrete Morse Theory
A completely different approach to translate the ideas of Morse theory to sim-
plicial complexes called discrete Morse theory was developed by Forman [18,
19]. Discrete Morse theory studies functions that assign values to the cells of
a complex, in contrast to the piecewise linear setting, where the domain of the
considered function is the domain of the complex. Furthermore, discrete Morse
functions can be defined for arbitrary finite CW complexes, whereas the defi-
nition of PL Morse functions used here requires that the considered complex is
a combinatorial manifold. In spite of the differences, there is a result linking
discrete Morse functions on combinatorial manifolds to piecewise linear Morse
functions on the derived subdivision. Therefore we give a short introduction
to the basic notions. We omit the subtleties necessary for CW complexes and
focus on discrete Morse theory for polytopal complexes.

Definitions. Forman defines a discrete Morse function on a polytopal com-
plex K as follows [18, Definition 2.1]:

Definition 1.45 (discrete Morse function). A function f : K → R defined on
the cells of a polytopal complex K is a discrete Morse function if for each d-cell
S in K the number of (d − 1)-faces T v S with f(T ) ≥ f(S) is at most one,
and the number of (d+ 1)-co-faces U w S with f(U) ≤ f(S) is at most one.

In discrete Morse theory, the empty cell is usually not considered to belong
to the domain of a discrete Morse function. The definition requires that each
cell S has at most one exceptional immediate face with greater or equal f -value,
and at most one exceptional immediate co-face with smaller or equal f -value.
A basic result is that for each cell S at most one of the two exceptional cases
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occurs [18, Lemma 2.4]. The presence or absence of exceptional faces or co-faces
is used to distinguish between critical and non-critical cells:

Definition 1.46 (critical cell). A cell S in K is a critical cell of a discrete
Morse function f : K → R if S has no exceptional faces or co-faces, that is all
immediate faces have strictly smaller f -value, and all immediate co-faces have
strictly larger f -value.

The non-critical cells of a discrete Morse function always appear as immedi-
ate face/co-face pairs T v S with f(T ) ≥ f(S). These pairs can be viewed as
a partial matching in the Hasse diagram of the face poset: The Hasse diagram
of a finite poset is a graph whose vertices are the elements of the poset and
whose edges are given by the cover relation, that is, two elements x and y are
connected by an edge if x < y or y < x holds and there is no third element z
with x < z < y or y < z < x. In our case, the cover relation of the face poset is
the immediate face relation. Since the empty cell is neglected in discrete Morse
theory, the Hasse diagrams are also considered without a vertex for the empty
cell. Chari [11] showed that matchings in the Hasse diagram coming from a
discrete Morse function can be characterised as acyclic matchings in the follow-
ing sense: Consider the face poset of a polytopal complex with the empty cell
removed and a matching in the corresponding Hasse diagram without empty
cell. The matching is called cyclic if there is a non-trivial simple cycle in the
Hasse diagram such that the vertices are alternatingly face and co-face of its
predecessors and every other edge belongs to the matching. In other words,
there is a sequence of distinct cells (S1, S2, . . . , S2n−1, S2n) with n > 1 such that
S2k−1 v S2k belongs to the matching for each k with 1 ≤ k ≤ n, the cell S2k+1
is an immediate face of S2k for each k with 1 ≤ k ≤ n − 1, and the cell S2k is
an immediate face of S1. Otherwise the matching is called acyclic. With these
notions, the following holds [11, Proposition 3.3]:
Fact 1.47. For any discrete Morse function, the induced matching of the non-
critical cells in the Hasse diagram is acyclic. For any acyclic matching in the
Hasse diagram, there is a discrete Morse function inducing that matching.

For this reason acyclic matchings are also called Morse matchings.
From a given Morse matching, it is not hard to construct discrete Morse

functions inducing that matching that fulfil even stronger requirements than
demanded by Forman’s definition. A popular variant for the definition of dis-
crete Morse functions is as follows, see for example [1]: A discrete Morse function
on a polytopal complex K is a function f : K → R such that T v S implies
f(T ) ≤ f(S), the preimage of each real number contains at most two cells and
if the preimage contains two cells S 6= T , then one is the immediate face of the
other. In particular, under this definition a discrete Morse function is monotone
with respect to the poset ordering on K and the usual ordering on R; the non-
critical cells are immediate face/co-face pairs T v S where monotonicity is not
strict, that is f(T ) = f(S). Discrete Morse functions inducing the same Morse
matching are often considered as equivalent [1]; so every discrete Morse function
in Forman’s sense is equivalent to some monotone discrete Morse function in
the sense just described.

For our approach in Chapter 3 leading to a link from discrete Morse functions
to piecewise linear Morse functions on the derived subdivision, we need slightly
different additional assumptions on a discrete Morse function f : K → R. The
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assumptions are: All values f(S) for S ∈ K are distinct; the pairs of the induced
Morse matching are the only exceptions to monotonicity, that is, T v S implies
f(T ) ≤ f(S) unless the pair (T, S) belongs to the induced Morse matching, in
which case f(T ) > f(S) holds. A discrete Morse function f ′ fulfilling these
assumptions can be constructed from an equivalent monotone discrete Morse
function f as above by perturbing the values of the matched pairs. For example,
setting f ′(S) = f(S) if S is critical or the larger cell of a matched pair T v S
with f(T ) = f(S) and setting f ′(T ) = f(T ) + ε for sufficiently small ε if T is
the smaller cell of a matched pair yields such a discrete Morse function f ′.

Results. Forman shows that with the notions of a discrete Morse function
and its critical cells results analogous to those of smooth Morse theory can be
deduced. The role of the index of a critical point is taken over by the dimension
of a critical cell. Instead of a level set M≤h, one considers a level subcomplex
K(h) consisting of all cells whose f -value is at most h and all their faces. There
are results relating the change in homotopy type between K(a) and K(b) for
a < b to the critical cells with f -value in the interval (a, b]. The first result is
an analogue to the last statement of Fact 1.2 from smooth Morse theory.
Fact 1.48 ([18, Lemma 2.6]). Let f be a discrete Morse function on a polytopal
complex K. If there are no critical cells with f -value in the interval (a, b], then
the level subcomplex K(b) collapses to the level subcomplex K(a).

Then there is an analogue to Fact 1.4:
Fact 1.49 ([18, Lemma 2.7]). Assume that for some discrete Morse function
f : K → R the preimage f−1(a, b] contains exactly one critical cell. Let λ be
the dimension of that cell. Then K(b) is homotopy equivalent to K(a) with a
λ-cell attached.

Based on this, one obtains the main theorem of discrete Morse theory, which
is an analogue of Fact 1.5 for smooth Morse theory.
Fact 1.50 ([18, Theorem 2.5]). Let f be a discrete Morse function on polytopal
complex K. Then K is homotopy equivalent to a CW-complex whose cells
are in bijection with the critical cells of f : one λ-cell for each critical cell of
dimension λ.

There are also discrete versions of the Morse inequalities (Fact 1.6) and the
Reeb theorem (Fact 1.7).
Fact 1.51 (Morse inequalities [18, Theorem 2.11]). LetK be a polytopal complex
with a discrete Morse function f . Denote by cλ the number of critical cells of
dimension λ of f , and by βλ the λ-th Betti number of |K|. Then the following
inequalities and equalities hold:

1. The Weak Morse Inequalities. For each λ:

βλ ≤ cλ

2. An equality representing the Euler characteristic χ(K) of K in two ways:

χ(K) =
∑
λ

(−1)λcλ =
∑
λ

(−1)λβλ
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3. The Strong Morse Inequalities. For each λ:

λ∑
i=0

(−1)iβλ−i ≤
λ∑
i=0

(−1)icλ−i

Fact 1.52 (Reeb theorem [18, Theorem 8.2]). If a combinatorial manifold has a
discrete Morse function with exactly two critical cells, then it is a combinatorial
sphere.



Chapter 2

Level Set Complexes

The study of level sets is an important tool in smooth Morse theory. The classi-
cal results collected in Section 1.1 contain statements involving various kinds of
level sets of a Morse function f : M → R: the preimageM≤h = f−1(−∞, h] of a
closed interval (−∞, h], half-bounded to the right, the preimage f−1(a) of a sin-
gle value a ∈ R, and the preimage f−1[a, b] of a closed bounded interval [a, b].
When we consider analogous preimages for a function f : |M | → R linear on
cells of a combinatorial manifold M , it turns out that they are the domain of
a polytopal complex naturally induced by the cells of M . These complexes are
typical examples of the level set complexes defined and studied in this chapter.

The results of the chapter are mainly quite basic observations on the com-
binatorial structure of the level set complexes. The observations serve as a
toolbox for many proofs in the subsequent chapters, so that we can avoid re-
peating similar simple arguments that distract from the actual proof ideas. We
develop the toolbox for a more general setting than we actually need later on.
In this general setting we consider the domains of two polyhedral complexes,
the first serves as the domain of the function f linear on cells, the second as the
“level range”, that is the set whose preimage defines the desired level set. This
allows for more uniform and simple formulations of the results than restricting
the focus to real-valued functions on combinatorial manifolds.

The first section of the chapter defines level set complexes in Definition 2.6
and starts with first simple observations on how their cells can be represented
by the cells of the domain complex and the cells of the level range complex. The
notion of a canonical representation by such pairs introduced in the next sec-
tion by Definition 2.8 permits refined results on the combinatorial structure of
the level set complex. In fact, Lemma 2.10 yields the fundamental observation
that the combinatorial structure of the original complexes and the canonical
representations determine the combinatorial structure of the level set complex
completely. A convenient alternative characterisation of canonical representa-
tions is given in Lemma 2.15. Finally, we return to the special case of real-valued
functions: The last section provides results regarding combinatorial equivalence
of certain level set complexes and possible collapses in level set complexes. For
example, the absence of combinatorial changes in level set complexes when the
varying level does not pass a value attained at a vertex is expressed by com-
binatorial equivalences in Lemmata 2.35 and 2.36. The collapse described in
Lemma 2.46 shows that a level set f−1(−∞, h] of a polytopal complex M is

49
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homotopy equivalent to the subcomplex of M consisting of those cells that are
completely contained in the level set.

2.1 Definitions and Basic Observations
The main objective of this thesis is to translate classical smooth Morse theory
to a piecewise linear setting with combinatorial manifolds and functions linear
on cells of them. Therefore it is unavoidable to study the properties of level
sets in this setting. For analogues of the results from Section 1.1, we need to
consider the following types of level sets for a function f linear on cells of a
combinatorial manifold M : The set of points in |M | whose f -value is at most a
given real value h, the set of points whose f -value is exactly a given value a, and
the set of points whose f -value lies in the range of some interval [a, b]. Level
sets of the first type are often called a lower level set at level h or a sublevel set
of h. The dual concept to such sets are upper level sets which consist of points
whose f -value is at least a given value. Switching from f to its negative −f
turns upper level sets into lower level sets and vice versa.

The common feature of the level sets described above is that they are preim-
ages of closed intervals. Since f is linear on cells, these preimages can be ob-
tained from the combinatorial manifoldM by intersecting each cell S ofM with
suitable hyperplanes or half spaces. These intersections are convex polytopes
that coincide only in common faces. Therefore, the level sets can be viewed as
polytopal complexes. In the following, we work out the details of this point of
view. We gain more insight by extending some of the ideas to a more general
situation: The combinatorial manifold M can be replaced by an arbitrary poly-
hedral complex, the map f : |M | → Rr is still linear on cells, and as level sets we
can allow any set of points in |M | that is the preimage under f of the domain
of some polyhedral complex embedded in Rr.

2.1.1 Notation
Before we start, some remarks on the notation used for level sets seem to be
appropriate. From an abstract point of view, we can use the term level set for
any subset of the domainD of a function f : D → C that is the preimage f−1(R)
of some subset R of the codomain C of f . We call the corresponding subset R
of the codomain the level range. This way, the characterisation of a level set
can be rephrased by saying that a level set is a subset of the domain consisting
of all the points that are mapped to a given level range in the codomain. In
this abstract setting, we denote the level set f−1(R) ⊆ D by Df∈R. When the
function f is clear from the context, we omit it and write simply D∈R.

From this general notation, we derive several variants for special level ranges,
namely intervals, and additional structure on the level set as a complex. All
these variants have in common as a basic scheme, that the level set is denoted
by the domain followed by a subscript expression indicating the level range.
Occasionally, the considered function is included in the subscript, but often it
will be omitted since only a single function is considered.

The derived expressions for describing level set complexes adhere to the
pattern illustrated by the following example: Let I ⊆ R be a closed interval,
let M be a polyhedral complex with a map f : |M | → R linear on cells, and let
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Table 2.1: A list of abbreviated notations for level sets using the domain of a
polyhedral complex M with a map f : |M | → R linear on cells as example. The
first line represents the standard notation that can be used not only for intervals,
but also for arbitrary subsets I ⊆ R. The other lines define abbreviations for
special intervals typically occurring as level ranges: A real number h defines
level sets consisting of all points with f -value strictly smaller than, strictly
larger than, equal to, at most, or at least the given value h. In each equation,
the first term is the abbreviated expression without function symbol, the second
term is the level set expression including the function symbol, the third term
describes the level set in set-builder notation, and the last term represents the
level set as a preimage under f of the level range.

|M |∈I = |M |f∈I = {x ∈ |M | | f(x) ∈ I} = f−1(I)
|M |<h = |M |f<h = {x ∈ |M | | f(x) < h} = f−1(−∞, h)
|M |>h = |M |f>h = {x ∈ |M | | f(x) > h} = f−1(h,∞)
|M |=h = |M |f=h = {x ∈ |M | | f(x) = h} = f−1(h)
|M |≤h = |M |f≤h = {x ∈ |M | | f(x) ≤ h} = f−1(−∞, h]
|M |≥h = |M |f≥h = {x ∈ |M | | f(x) ≥ h} = f−1[h,∞)

S be a cell of the complex M . Then for the domain |M |, the notation |M |f∈I
denotes the level set f−1(I) = {x ∈ |M | | f(x) ∈ I}, which is the underlying set
of the level set complex Mf∈I , and Sf∈I = {x ∈ S | f(x) ∈ I} denotes a cell of
this complex.

Ideally, the expression for a level set complex would consist of complexes for
domain and range, the expression for a cell of a level set complex would consist
of cells for domain and range, and the expression for the underlying set would
consist of the underlying sets for domain and range. But we allow the usual
abuse of notation for these level set expressions as well, in particular for the
level range expression, that is, identifying complexes with their domain or cells
with the complex formed by their faces. Otherwise only Mf∈F(I) would be a
formally correct expression for the aforementioned level set complex.

One instance of the special notation for intervals occurred already in Sec-
tion 1.1 on classical Morse theory: For the lower level set at level h of a smooth
manifold with Morse function f we used the term M≤h. Table 2.1 lists possible
subscript expressions, using as domain the underlying set |M | of a polyhedral
complex M with a map f : |M | → R linear on cells. We consider such alter-
native subscript expressions as abbreviations for the corresponding standard
expressions, for example |M |f≤h is a shortened term for |M |f∈(−∞,h].

When we consider a level set |M |∈I for a polyhedral complex M as above
and choose a closed interval I as level range, the level set can be viewed as
the domain of a polyhedral complex whose combinatorial structure is induced
by the complex M , as we will see in the following. This complex is a typical
example of a level set complex, and we denote it byM∈I . Apart from the trivial
cases I = R and I = ∅, a closed interval I is one of (−∞, h], [h,∞), [a, b], or
{h} = [h, h] for some real values h, a, and b. Table 2.2 lists the abbreviated
notations for level set complexes associated with these intervals, which are the
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Table 2.2: Notation for level set complexes typically considered in Morse theory.
It can be used more generally for arbitrary polyhedral complexesM with a map
f : |M | → R linear on cells. Listed are the level set complexes whose domains
consist of all the points whose f -value is, in that order, equal to, at most, or
at least a given real number h, or is contained in the closed interval between
two real numbers a and b. In each row, the first term is the notation without
function symbol, the second term the notation including function symbol.

M=h = Mf=h denotes the complex induced on |M |f=h

M≤h = Mf≤h denotes the complex induced on |M |f≤h
M≥h = Mf≥h denotes the complex induced on |M |f≥h
M∈[a,b] = Mf∈[a,b] denotes the complex induced on |M |f∈[a,b]

level ranges commonly considered in Morse theory.

2.1.2 Level Set Cells
For the remainder of this chapter, I denotes a closed interval and M a polyhe-
dral complex with a map f : |M | → Rr linear on cells unless explicitly stated
otherwise. In the following examinations, we usually begin with closed intervals
as level ranges for real valued maps f as motivating example, and extend the
observations to more general maps and level ranges afterwards. As mentioned
above, the cells S∈I for S a cell of M belong to the level set complex M∈I .
Therefore we start our study of level set complexes by examining such level set
cells.

Definition and Examples. In its most general form, a level set cell is the
preimage of a polyhedral set R in some Rr as level range under a linear map g
defined on a polyhedral set S in some Rd. Usually R and S are cells of polyhedral
complexes and g is the restriction to S of a map f linear on cells of the complex
containing S. For the simple case that S is an affine space with a non-constant
linear map g : S → R, it is a basic fact from linear algebra, that the preimage of
a single value h ∈ R, in other words S=h, forms a hyperplane in S. Furthermore
S≤h and S≥h are the closed half-spaces separated by this hyperplane. For an
arbitrary polyhedral set S with linear function g, we can always think of g as
the restriction of a linear function defined on the affine hull of S. Since this
map is uniquely determined by g, we do not strictly distinguish between linear
maps defined on S and linear maps defined on its affine hull. This way, if g
is a linear map on the affine hull of S, then S=h is the intersection of S with
the hyperplane g−1(h), and S≤h and S≥h are the intersections of S with the
respective closed half-spaces defined by that hyperplane.

In the usual setting, the considered polyhedral set S is a cell of M . Then
the restriction f |S of f to S is a linear map, and the unique linear extension
of f |S to the affine hull of S will be denoted by fS . In order to use the same
notation for the abstract study of level set cells, we assume more generally that
S is a polyhedral set and fS : aff(S)→ Rr is an affine linear function defined on
the affine hull of S. When we focus on a single cell, it is convenient to restrict
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Table 2.3: Faces of a level set cell S∈I , where I is belongs to one of the non-trivial
types of closed intervals (−∞, h], [h,∞), {h}, and [a, b] for real numbers h, a,
and b.

Faces of S≤h: T≤h and T=h for T a face of S
Faces of S≥h: T≥h and T=h for T a face of S
Faces of S=h: T=h for T a face of S
Faces of S∈[a,b]: T∈[a,b], T=a, and T=b for T a face of S

our attention to the affine hull of the cell and forget about its embedding in
a possibly higher dimensional ambient space. In particular, when we say that
certain preimages of fS are hyperplanes or half-spaces, as in the example above
with the map g, these notions are used with respect to the affine hull of S and
not with respect to the ambient space.

Under these assumptions, we can represent any level set of S as the in-
tersection of S with a preimage of fS : For any level range R ⊆ Rr, the
equality S∈R = S ∩ f−1

S (R) holds. Let us resume the example outlined above
and consider a real-valued, non-constant map fS and the typical level ranges
formed by closed intervals. The lower and upper level sets S≤h and S≥h are
intersections of S with half-spaces, namely S≤h = S ∩ {x | fS(x) ≤ h} and
S≥h = S∩{x | fS(x) ≥ h}. The level set S∈[a,b] is the intersection of S with the
two half-spaces {x | fS(x) ≥ a} and {x | fS(x) ≤ b}, in other words, S∈[a,b] is
the intersection of S with the range between the two parallel hyperplanes f−1

S (a)
and f−1

S (b). Finally, for S=h = S∈[h,h] the hyperplanes coincide, and S=h is the
intersection of S and the hyperplane f−1

S (h). Summing up, for closed intervals
I, the level set S∈I is the intersection of S with at most two half-spaces, hence a
polyhedral set, and if S is bounded, S∈I is also bounded. Since S is a polyhedral
set, we can conclude that the level set S∈I is a polyhedral set as well, and if S
is a convex polytope, then so is S∈I .

The Face Lattice of a Level Set Cell. As a next step, we consider the faces
of such level set cells. Recall from Definition 1.8 that all non-empty faces of a
polyhedral set P can be written as the intersection of P with hyperplanes that
bound the half-spaces used to define P . Furthermore each such intersection is a
face of P , possibly empty, but different intersections might represent the same
face. Since the level set S∈I is defined by the half spaces used to define S and at
most two additional half-spaces, the hyperplanes we have to consider for faces
of S∈I are the hyperplanes used for S and at most two additional hyperplanes,
namely f−1

S (h) for S≤h, S≥h, and S=h or f−1
S (a) and f−1

S (b) for S∈[a,b]. The
possible choices of hyperplanes lead to the list given in Table 2.3. Note that
this enumeration can be summed up by the statement that the faces of S∈I are
the cells T∈Y where T is a face of S and Y is either I itself or the singleton set
of one of its endpoints. Regarding the interval I as a polyhedral set, we can
describe Y as a face of I.

Now let us rephrase and prove our observations on faces of level set cells
using the notion of interval complexes as suggested in Subsection 1.2.2. Recall
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that we denote by F(P ) the set of faces of a polyhedral set P .

Lemma 2.1. Assume that S is a polyhedral set, fS : aff(S) → R is a real
valued affine linear function defined on the affine hull of S, and the level range
I ⊆ R is a closed interval. Then the level set S∈I is a polyhedral set. Its set of
faces F(S∈I) is the set of all level sets T∈X where T is a face of S and X is a
face of I in the interval complex F(I):

F(S∈I) = {T∈X | T ∈ F(S), X ∈ F(I)}

In other words, if T is a face of S and X is face of I, then T∈X is a face of
S∈I and every face of S∈I is of this type. Note that if S is a convex polytope,
then S∈I is a convex polytope, but simplicial S does not necessarily lead to a
simplicial S∈I .

Proof. We start with the degenerate case that fS is constant. If the constant
function value does not belong to the interval I, then S∈I is the empty cell, and
for each face T of S and each face X of I, the set T∈X is empty as well. If the
constant function value belongs to I, then S∈I agrees with S, and each face T
of S agrees with T∈I . Likewise, for faces X of I either T∈X is empty or agrees
with T . From these observations the desired results follow easily for constant
maps. For the trivial intervals R and ∅, similar observations yield the results:
For each face T of S, including S itself, T∈R agrees with T and T∈∅ is empty.

Now let us deal with the more interesting cases where fS is non-constant
and I is non-trivial. As before, half-spaces and hyperplanes are taken with
respect to the affine hull of S. So let (H+

k )k∈K be a family of half-spaces in
aff(S) defining S, and let (Hk)k∈K be the corresponding family of hyperplanes
that bound those half-spaces. Then S∈I can be represented as the intersection
of S with one or two half-spaces, namely the half-space f−1

S (−∞, b] if I has
a right endpoint b, and the half-space f−1

S [a,∞) if I has a left endpoint a.
Combined with the representation of S as intersection of half-spaces, we obtain
a representation as intersection of half-spaces for S∈I , showing that S∈I is a
polyhedral set.

Now we prove the statements regarding the faces of S∈I . First we show
that each face of S∈I is of the desired form. The empty face is represented
by any T∈X where T = ∅ or X = ∅. So let F be a non-empty face of S∈I .
Using the facts from Definition 1.8 mentioned above, F is the intersection of
S∈I with some of the Hk and possibly the level hyperplane f−1

S (b) bounding the
half-space f−1

S (−∞, b] if I has a right endpoint b, or the level hyperplane f−1
S (a)

bounding the half-space f−1
S [a,∞) if I has a left endpoint a. Let J be the subset

of K such that (Hk)k∈J are the hyperplanes involved in this intersection. Then
T = S ∩

⋂
k∈J Hk is a face of S, and we have:

S∈I ∩
⋂
k∈J

Hk = f−1
S (I) ∩ S ∩

⋂
k∈J

Hk = f−1
S (I) ∩ T = T∈I (2.1)

If no level hyperplane f−1
S (h) for h an endpoint of I is involved, we already

have the desired form. Since two different level hyperplanes f−1
S (a) and f−1

S (b)
for a 6= b are disjoint, at most one level hyperplane f−1

S (h) is involved. For
X = {h} ∈ F(I) we obtain:

F = S∈I ∩
⋂
k∈J

Hk ∩ f−1
S (X) = f−1

S (I) ∩ T ∩ f−1
S (X) = T∈X (2.2)
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It remains to show that each T∈X is a face of S∈I , that is, T∈X is empty or
the intersection of S∈I with hyperplanes bounding half-spaces defining S∈I . The
set of such hyperplanes includes the hyperplanes Hk and the level hyperplanes
f−1
S (h) for h an endpoint of I. We can assume T 6= ∅ and X 6= ∅. Then
T = S ∩

⋂
k∈J Hk for some J ⊆ K. If X = I, then T∈I = S∈I ∩

⋂
k∈J Hk

by Equation (2.1), and if X = {h} for some endpoint of I, then T∈X = S∈I ∩⋂
k∈J Hk ∩ f−1

S (X) by Equation (2.2) as desired.
The observations in the last remark are fairly trivial: Any polyhedral set

contained in a convex polytope is a convex polytope; the triangle with a quadri-
lateral level set depicted earlier in Figure 1.1 is a simple example illustrating
the second part.

The lemma and its proof can be generalised to functions fS taking values in
higher dimensional spaces and level ranges R that are polyhedral sets instead
of an interval I:

Lemma 2.2. Assume that S and R are polyhedral sets, and that fS is an affine
linear function defined on the affine hull aff(S) of S taking values in some
Rr ⊇ R. Then the level set S∈R := {x ∈ S | fS(x) ∈ R} is a polyhedral set. Its
set of faces F(S∈R) is the set of all level sets T∈X where T is a face of S and
X is a face of R:

F(S∈R) = {T∈X | T ∈ F(S), X ∈ F(R)}

In other words, if T is a face of S and X is face of R, then T∈X is a face of S∈R
and every face of S∈R is of this type. Note that if S is a convex polytope, then
S∈R is a convex polytope as well, whereas the range R being a convex polytope
is not sufficient for such a conclusion.

Proof. Again as in the previous proof, let (H+
k )k∈K be a family of half-spaces in

aff(S) defining S, and let (Hk)k∈K be the corresponding family of hyperplanes
bounding those half-spaces. Analogously, let (h+

κ )κ∈L be a family of half-spaces
in Rr defining R with the corresponding family (hκ)κ∈L of bounding hyper-
planes. First we show that S∈R is a polyhedral set. We can rewrite S∈R as
S ∩

⋂
κ∈L f

−1
S (h+

κ ). It suffices to show that each f−1
S (h+

κ ) is an intersection of
half spaces. More precisely, we prove that f−1

S (h+
κ ) is either empty, the whole

space aff(S), or a half-space bounded by f−1
S (hκ).

Recall the following basic facts from linear algebra: Any half-space of an
affine space A can be written as the solution set of some inequality g(y) ≥ 0
where g is a real-valued affine linear function defined on A. Moreover, the
corresponding bounding hyperplane is formed by the points y where equality,
that is g(y) = 0, is attained. On the other hand, any such solution set g(y) ≥ 0
is either empty, the whole space, or a half-space bounded by the hyperplane
g(y) = 0, with the first two options occurring for constant maps g only. If
g(y) ≥ 0 is empty, then so is g(y) = 0; and if g(y) ≥ 0 is the whole space
then g(y) = 0 is either empty or the whole space. So assume that g(y) ≥ 0
characterises h+

κ and hence g(y) = 0 characterises hκ. Then g(fS(x)) ≥ 0
characterises f−1

S (h+
κ ) and g◦fS is an affine linear map, showing that f−1

S (h+
κ ) is

either empty, the whole space aff(S), or a half-space bounded by the hyperplane
g(fS(x)) = 0, which can be described equivalently as fS(x) ∈ hκ or f−1

S (hκ) as
desired.
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Note that, from a technical point of view, the representation of S∈R as⋂
k∈K H

+
k ∩

⋂
κ∈L f

−1
S (h+

κ ) is not necessarily a representation as intersection of
half-spaces since some of the f−1

S (h+
κ ) might not be half-spaces. Nevertheless

one easily checks that the relation from Definition 1.8 between the set of faces of
S∈R and the set of its intersections with subfamilies of its bounding hyperplanes
extends to the set of intersections S∈R ∩

⋂
k∈J Hk ∩

⋂
κ∈J′ f

−1
S (hκ) for subfami-

lies indexed by J ⊆ K and J ′ ⊆ L, although some of the f−1
S (hκ) might not be

bounding hyperplanes of S∈R, namely, each non-empty face of S∈R can be rep-
resented as such an intersection, and any such intersection is a face of S∈R. This
is obvious if S∈R is empty because its only face, the empty cell, is represented
by all intersections S∈R ∩

⋂
k∈J Hk ∩

⋂
κ∈J′ f

−1
S (hκ). Otherwise all preimages

f−1
S (h+

κ ) are either half-spaces or the whole space aff(S). Preimages that are the
whole space can be neglected when taking intersections, hence S∈R has a repre-
sentation as intersection of half-spaces

⋂
k∈K H

+
k ∩

⋂
κ∈L′ f

−1
S (h+

κ ) where L′ ⊆ L
is the subset of indices κ such that f−1

S (h+
κ ) is a half-space. For this represen-

tation the characterisation from Definition 1.8 applies directly. This yields for
each non-empty face of S∈R a representation as S∈R∩

⋂
k∈J Hk∩

⋂
κ∈J′ f

−1
S (hκ)

where only indices κ from L′ occur. Allowing more subfamilies by permitting
indices κ from L will only increase the possible representations. But the preim-
ages f−1

S (hκ) for κ outside of L′ are either empty or the whole space. If an
empty preimage occurs, the whole intersection represents the empty face; the
terms representing the whole space can be omitted without affecting the result-
ing intersection.

With this prerequisite we can verify the claimed description of the set of
faces. We first show that for each face T of S and each face X of R, the set T∈X
is a face of S∈R. We can assume T 6= ∅ and X 6= ∅, otherwise T∈X is the empty
face. Then T = S ∩

⋂
k∈J Hk for some index set J ⊆ K and X = R ∩

⋂
κ∈J′ hκ

for some index set J ′ ⊆ L. Substituting these representations for T and X in
T∈X and rearranging terms yields the following equation:

T∈X = S ∩
⋂
k∈J

Hk ∩ f−1
S (R ∩

⋂
κ∈J′

hκ) = S ∩
⋂
k∈J

Hk ∩ f−1
S (R) ∩

⋂
κ∈J′

f−1
S (hκ)

= S ∩ f−1
S (R) ∩

⋂
k∈J

Hk ∩
⋂
κ∈J′

f−1
S (hκ) = S∈R ∩

⋂
k∈J

Hk ∩
⋂
κ∈J′

f−1
S (hκ) (2.3)

The last term of the equation is a face of S∈R as we have checked just above.
Conversely, for showing that any face F of S∈R is of the form T∈X , we can

apply the characterisation of faces as intersections and Equation (2.3) back-
wards: The empty face is represented by any term T∈X where T = ∅ or X = ∅.
So let F be a non-empty face of S∈R. By our previous observation, F has a
representation as intersection S∈R ∩

⋂
k∈J Hk ∩

⋂
κ∈J′ f

−1
S (hκ). Furthermore

T = S ∩
⋂
k∈J Hk is a face of S, and X = R ∩

⋂
κ∈J′ hκ is a face of R. Reading

Equation (2.3) backwards proves that F agrees indeed with T∈X for this choice
of T and X.

Concerning the simple observations of the last remark, the first part follows
again from the fact that polyhedral subsets of convex polytopes are convex
polytopes. The simplest examples for the second part are constant maps on an
unbounded polyhedral set S: For the constant result c of the function, S∈{c} = S
is unbounded although the singleton set {c} is a convex polytope.
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Vertices of Level Set Cells. Besides their characterisation as bounded poly-
hedral sets, convex polytopes are also characterised as convex hulls of finite point
sets. In fact, each convex polytope is the convex hull of its vertices. Regard-
ing the representation of S∈I as polyhedral set, we already observed that the
cell S∈I can be described as the intersection of the half-spaces used to define
S and the half-space f−1

S [a,∞) if a is a left endpoint of I and the half-space
f−1
S (−∞, b] if b is a right endpoint of I. The resulting set of half-spaces is not
necessarily minimal, even if the subset used to define S is minimal for S. For
the representation of S∈I as convex hull of its vertices, we want to identify the
vertices of the cell S∈I . Since vertices are 0-dimensional faces, we can use our
observations from above.

Lemma 2.3. Let S be a convex polytope with a real valued affine linear function
fS defined on the affine hull of S, and let I be a closed interval. Then the vertices
of S∈I are either vertices of S lying in f−1

S (I) or the intersection of an edge uv
of S with a hyperplane f−1

S (h) where h is an endpoint of I with fS(u) < h and
fS(v) > h.

Proof. Vertices of S lying in f−1
S (I) and intersections of edges uv of S with a

hyperplane f−1
S (h) that separates u and v are 0-dimensional faces and hence

vertices of S∈I . It remains to show that each vertex of S∈I is of one of the two
kinds.

Let (Hk)k∈K be the family of hyperplanes that bound half-spaces defin-
ing S. Then vertices of S∈I are intersections of some of the Hk and possi-
bly a hyperplane f−1

S (h) where h is an endpoint of I, provided this intersec-
tion is a single point w and lies in S∈I . If only the hyperplanes Hk are in-
volved, that is w =

⋂
k∈J⊆K Hk, the intersection point w is a vertex of S lying

in f−1
S (h). Otherwise, if a hyperplane f−1

S (h) is necessary in the intersection,
that is w =

⋂
k∈J⊆K Hk ∩ f−1

S (h) (
⋂
k∈J⊆K Hk, the intersection of the re-

maining hyperplanes
⋂
k∈J⊆K Hk is a line `. If the intersection of ` with S is

not an edge uv of S with fS(u) < h and fS(v) > h, which implies the second
alternative w = uv ∩ f−1

S (h), then either S ∩ ` is a vertex of S or S ∩ ` is an
edge uv intersecting f−1

S (h) at one of its endpoints. In the first case w is the
vertex S ∩ `, in the latter case one of the vertices u or v. Thus, in both cases w
is already covered by the first alternative.

We refrain from generalising this observation to higher dimensional codo-
mains because characterising 0-dimensional faces gets more involved when sev-
eral level hyperplanes f−1

S (hκ) and their possible linear dependencies among
each other and with other bounding hyperplanes have to be taken into account.

2.1.3 Definition of Level Set Complexes
Now that we have studied level set cells and their faces, we are in a position to
formally define level set complexes by proving that suitable collections of level
set cells fulfil the requirements for being a complex. We start with a version
focusing on the typical case with a polytopal complex as domain and a closed
interval as level range. The proof however will only be given for the general
version following directly afterwards.
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Lemma 2.4. Let M be a polytopal complex with a map f : |M | → R linear on
cells and let I be a closed interval. The set of all level set cells S∈Y where S is
a cell of M and Y is a face of I forms a polytopal complex denoted by M∈I with
underlying set |M |∈I .

M∈I = {S∈Y | S ∈M,Y ∈ F(I)}

For the face poset structures (M,v), (F(I),v), and (M∈I ,v) the following
implication holds:

T v S ∧X v Y =⇒ T∈X v S∈Y

Lemma 2.5. Let M be a polyhedral complex embedded in some Rm with a map
f : |M | → Rr linear on cells and let R be a polyhedral complex embedded in Rr.
The set of all level set cells S∈Y where S is a cell of M and Y is a cell of R
forms a polyhedral complex denoted by M∈R with underlying set |M |∈R.

M∈R = {S∈Y | S ∈M,Y ∈ R}

For the face poset structures (M,v), (R,v), and (M∈R,v) the following impli-
cation holds:

T v S ∧X v Y =⇒ T∈X v S∈Y (2.4)

If M is a polytopal complex, then M∈R is polytopal as well. If R = F(P ) is the
face lattice of a polyhedral set P , we usually abbreviate the complex M∈F(P ) by
M∈P .

Proof. We first show that the family of setsM∈R as defined above is a polyhedral
complex. Large parts of the proof follow directly from Lemma 2.2: We have
proven that all sets of the form S∈Y for S ∈M and Y ∈ R are polyhedral sets.
Furthermore, each face of such a cell is of the form T∈X for T a face of S and X
a face of Y . Because M and R are complexes, T is a cell of M and X a cell of
R, yielding T∈X ∈M∈R. Therefore the family M∈R contains with each cell also
all its faces. For completing the proof that the cells in M∈R form a complex,
it remains to show that the intersection of two cells in M∈R is a face of both.
Using again the fact that M and R are complexes, it follows for S, T ∈ M and
Y,X ∈ R that the intersection S ∩ T ∈ M is a face of S and T and that the
intersection Y ∩X ∈ R is a face of X and Y . Therefore, the equality

S∈Y ∩ T∈X = S ∩ f−1(Y ) ∩ T ∩ f−1(X) = (S ∩ T )∈Y ∩X

shows that the intersection of two cells of M∈R is again a cell of M∈R and a
face of both by Lemma 2.2.

The underlying set of M∈R is the union of all the cells S∈Y . We obtain

|M∈R| =
⋃

S∈M,Y ∈R
S∈Y =

⋃
S∈M,Y ∈R

(S ∩ f−1(Y ))

=
⋃
Y ∈R

f−1(Y ) ∩
⋃
S∈M

S = f−1(|R|) ∩ |M | = |M |∈R

as desired. Implication (2.4) follows from Lemma 2.2 as well, just as the fact
that M∈R is a polytopal complex if M is, because polytopal cells S generate
only polytopal level set cells S∈Y .
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The above results justify the following definition of level set complexes.

Definition 2.6 (level set complex). LetM and R be polyhedral complexes with
a map f : |M | → Rr linear on cells of M , where R is embedded in Rr. Then
the complex M∈R consisting of the cells S∈Y = S ∩ f−1(Y ) for each S ∈M and
Y ∈ R is called a level set complex of M with level range R.

Intersection Complexes as Level Set Complexes. Before we go on, let us
resume some discussion from Subsection 1.2.3. The first topic is the connection
between level set complexes and intersection complexes that we foreshadowed.
Recall that an intersection complex K∩L of two complexes K and L embedded
in Rd was defined as the set of cells S∩T where S is some cell ofK and T is some
cell of L. When we define f : |K| → Rd as inclusion map, the resulting level set
complex K∈L agrees with the intersection complex K ∩ L. We can obviously
switch the roles of K and L and obtain another representation of K ∩L as level
set complex L∈K with respect to the inclusion map of |L| into Rd. Therefore
intersection complexes are a special case of level set complexes.

Monotone Maps to the Face Poset of a Level Set Complex. The other
topic to which we add some additional remarks addresses order preserving maps
between the poset structures of certain complexes. We observed in Subsec-
tion 1.2.3 that for polyhedral complexes M and R, there is a surjective mono-
tone map, let us call it ψ, from the product order of two face posets (M,vM )
and (R,vR) to the product complexM×R. The map ψ assigns to a pair (S, Y )
of faces in the product order the cell S × Y in M × R, and gives a poset iso-
morphism when restricted to the pairs (S, Y ) whose members are either both
non-empty or both empty. Now if R ⊆ Rr is the considered level range for some
map f : |M | → Rr linear on cells, then Implication (2.4) states that a similar
map φ assigning to each pair (S, Y ) of faces in the product order of (M,vM )
and (R,vR) the level set cell φ(S, Y ) = S∈Y in the level set complex M∈R is
order preserving as well. Furthermore φ factors through the product complex
M × R via ψ in the sense that there is a monotone map φ′ : M × R → M∈R
from the face poset of the product complex M ×R to the face poset of the level
set complexM∈R such that φ = φ′ ◦ψ. Obviously, φ′ is given by the assignment
φ′(S × Y ) = S∈Y , which only requires a short note on its well-definedness: The
only cell in M × R with ambiguous representation is the empty cell because
∅ = S×∅ = ∅×Y holds for all S in M and Y in R. But the corresponding cells
S∈∅ and ∅∈Y in the level set complex represent the empty cell as well. Since
all cells of the level set complex M∈R are representable as level set cell S∈Y for
some S ∈M and Y ∈ R, the maps φ and φ′ are surjective.

Observations. The ambiguity of the representation of cells in a level set com-
plex is in general not limited to the empty cell. We will investigate this topic in
more detail in the next section. The availability of alternative representations
for the empty cell allows to omit all terms S∈∅ in the definition of the complex
M∈I for a closed interval I 6= ∅ without losing a cell. Doing so yields the de-
scriptions given in Table 2.4 for the typical interval level ranges. From these
descriptions, we can directly read off that M=h is a subcomplex of M≤h and
M≥h, and that M=a and M=b are subcomplexes of M∈[a,b]. More generally, the
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Table 2.4: The typically considered level set complexes and their cells. The
letter M denotes a polyhedral complex, and h, a, and b are real numbers.

M=h = {S=h | S ∈M}
M≤h = {S=h | S ∈M} ∪ {S≤h | S ∈M}
M≥h = {S=h | S ∈M} ∪ {S≥h | S ∈M}

M∈[a,b] = {S=a | S ∈M} ∪ {S=b | S ∈M} ∪ {S∈[a,b] | S ∈M}

following facts are immediate consequences of the definitions of subcomplexes
and subdivisions.
Fact 2.7. If K is a subcomplex of M and Y is a face or subcomplex of R, then
K∈Y is a subcomplex of M∈R. Similarly, if K is a subdivision of M and Y is a
subdivision of R, thenK∈Y is a subdivision ofM∈R. In particular, if |R| contains
the image of f , then M∈R is a subdivision of M . Since any interval complex J
can be regarded as a subcomplex of some subdivision I of R, we obtain for any
interval complex J an associated subcomplex M∈J of some subdivision M∈I
of M .

2.2 Canonical Representations
In the previous section, we have shown that each cell of a level set complexM∈R
is represented by a term S∈Y containing a cell S fromM and a cell Y from R as
parameters. We even formalised this representation by a pair of cells as an order
preserving map from the product order of the face posets ofM and R to the face
poset of the level set complex. Moreover we observed that the representation
of a cell of M∈R by a term S∈Y is not always unique, in other words the order
preserving map φ from the product order of (M,vM ) and (R,vR) to M∈R is
not injective. In this section, we investigate in more detail how the ambiguity of
the representation affects the combinatorial structure of the level set complex.
We will see that among the terms representing the same cell, there is a natural
candidate to be considered as the canonical representation of the cell. These
canonical representations allow a description of the face poset of the level set
complex up to isomorphism, as shown in Lemma 2.10. Furthermore we develop
some alternative criteria for characterising canonical representations.

2.2.1 Definition of Canonical Representations and Impor-
tance for Determining the Combinatorial Structure
of Level Set Complexes

Examples. We already discussed the empty cell as the most obvious example
of a cell with ambiguous representation. Whenever the cells S and f−1

S (Y ) do
not intersect, in particular when S = ∅ or Y = ∅, the cell S∈Y is empty. There-
fore the empty cell has always several representations, unless the degenerate
level set complex {∅}∈{∅} is considered. It is possible to create examples of level
set complexes M∈R where the empty cell is the only ambiguously represented
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0

f

a b

c

e

dg
T

cell of F(e) representing terms of F(T )≤0

∅ ∅∈∅, ∅=0, ∅≤0, a∈∅, b∈∅, c∈∅,

e∈∅, d∈∅, g∈∅, T∈∅, c=0, c≤0

a a=0, a≤0, g=0, g≤0

b b=0, b≤0, d=0, d≤0

e e=0, e≤0, T=0, T≤0

Figure 2.1: An example of a level set complex with ambiguously represented non-
empty cells. Consider the triangle T depicted on the left and the complex F(T )
formed by its faces, the non-trivial ones being its edges e, d, and g and its
vertices a, b, and c. Let f be the linear map assigning to each point its height
with respect to the vertical axis. Then the level set complex F(T )≤0 agrees
with F(e). The edge e is an example of an ambiguously represented non-empty
cell of F(T )≤0: The terms T≤0 and e=0 are two out of four possible represen-
tations. The table on the right hand side lists for each cell of F(T )≤0 = F(e)
all terms of the form S∈Y for some S ∈ F(T ) and some Y ∈ F((−∞, 0]) repre-
senting the cell.

cell and terms of the form S∈∅ and ∅∈Y are the only terms representing it. Such
examples are equivalently characterised by the property that the monotone map
φ′ from the product complex M × R to the level set complex M∈R assigning
S∈Y to S × Y is injective; in fact, φ′ is even a poset isomorphism in this case,
as we will see later. An easy example of this kind is given by the intersection
complex formed by two complexes in R2, one consisting of horizontal lines, the
other of vertical lines; each pair of a horizontal and a vertical line intersects at
a unique vertex of the intersection complex. On the other hand, such examples
are somewhat untypical, as illustrated by the following sufficient condition for a
non-trivial representation of the empty cell: Whenever R contains at least two
vertices u and w, and M contains at least one vertex v, then at least one of v∈u
and v∈w is empty.

An example of an ambiguously represented non-empty cell in a level set
complex is depicted in Figure 2.1. This example apparently relies on choosing
a linear map f on a triangle T in such a way that an edge of T is parallel to the
isolines of f and choosing exactly the value of f at this edge as a vertex of the
level range. One easily checks that slight perturbations of the vertices of the
triangle, or of the map f , or of the endpoints of the interval considered as level
range suffice to spoil the property of having a non-empty ambiguously repre-
sented cell. We will prove later in Corollary 2.16 a characterisation for canonical
terms implying that for terms S∈Y that are not the canonical representation of
their cell, either fS(S) intersects Y in a proper face of Y or f−1

S (Y ) intersects
S in a proper face of S. Therefore the property that distinct terms represent
the same non-empty cell is in general sensitive to perturbations. In this sense
one could say that non-empty ambiguously represented cells are a degenerate
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feature of level set complexes.
The ambiguity in the representation of a cell S∈Y in a level set complexM∈R

has another consequence. If S∈Y and T∈X represent the same cell, then it is
also represented by the intersection (S ∩ T )∈Y ∩X . In this situation, we have
T∈X v (S ∩ T )∈Y ∩X , but neither T v S ∩ T nor X v Y ∩X is necessarily true.
A concrete instance of this situation can be found in the example of Figure 2.1:
The cell T≤0 agrees with and thus is a face of e=0, but neither the triangle T is a
face of its edge e nor the interval (−∞, 0] is a face of its endpoint 0. Therefore,
the reverse implication of the statement T v S∧X v Y =⇒ T∈X v S∈Y made
in Lemma 2.5, Implication (2.4) is not true in general. By introducing the notion
of a canonical representation of a level set cell, we obtain a description of level
set cells that avoids double counting and allows for a partial converse of that
implication.

Definition of Canonical Representations. The observation, that a cell
with two representations can also be represented by the intersection, suggests
to use the smallest possible representation according to the face poset ordering
in M and R, which is well-defined by that observation.
Definition 2.8 (canonical representation). Let T∈X be a level set cell of a level
set complex M∈R for some T ∈ M and X ∈ R. The term T∈X represents the
cell T∈X canonically, if it is the smallest representation of the cell, that is, for
any other term U∈Z with U ∈ M and Z ∈ R such that U∈Z = T∈X , the cell T
is a face of U in M and X is a face of Z in R. Equivalently, T∈X is a canonical
representation of T∈X , if T =

⋂
j∈J U(j) and X =

⋂
j∈J Z(j) where the family

(U(j)∈Z(j))j∈J is the collection of all representations of T∈X by cells U(j) ∈M
and Z(j) ∈ R. In particular, each cell of a level set complex M∈R has a unique
canonical representation. We will frequently abbreviate the statement that a
term T∈X is a canonical representation of the cell T∈X by “T∈X is canonical”
or similar statements.

Determining the Combinatorial Structure of a Level Set Complex
from the Terms Canonically Representing Its Cells. The next lemma
is the partial converse of the implication T v S∧X v Y =⇒ T∈X v S∈Y from
Lemma 2.5 mentioned before.
Lemma 2.9. Assume that M and R are a polyhedral complexes. Let S and T
be cells of M and let Y and X be cells of R. If T∈X is a face of S∈Y and the
term T∈X represents the cell canonically, then T is a face of S and X is a face
of Y .
Proof. If T∈X is a face of S∈Y , then the intersection of both is the face T∈X
itself. Hence, T∈X is also represented by (S ∩ T )∈Y ∩X . By assumption, T∈X
is the representation by the smallest possible cells, thus T v S ∩ T v S and
X v Y ∩X v Y .

Summing up the observations we obtain the following conclusion which shows
that the combinatorial structure of a level set complex M∈R, that is, its face
poset up to isomorphism, is uniquely determined by the combinatorial structures
of M and R and by the subset of the set-theoretic Cartesian product M ×
R consisting of those pairs (S, Y ) whose corresponding term S∈Y canonically
represents the corresponding cell S∈Y .
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Lemma 2.10. For polyhedral complexes M and R, let S and T be cells of M
and let Y and X be cells of R. If T is a face of S and X is a face of Y , then T∈X
is a face of S∈Y . Moreover, if T∈X is a canonical representation, the converse
is also true: T∈X is a face of S∈Y if and only if T is a face of S and X is a
face of Y .

T v S ∧X v Y =⇒ T∈X v S∈Y for S, T ∈M and X,Y ∈ R
T v S ∧X v Y ⇐⇒ T∈X v S∈Y if additionally T∈X is canonical

Proof. The first observation is shown in Lemma 2.2, the converse for canonically
represented cells in Lemma 2.9.

The equivalence T v S ∧X v Y ⇐⇒ T∈X v S∈Y for canonical terms T∈X
shows that the monotone map φ from the product order of (M,vM ) and (R,vR)
assigning S∈Y to the pair (S, Y ) defines a poset isomorphism when restricted
to the set of pairs (S, Y ) such that S∈Y is a canonical term. This observation
carries over to the monotone map φ′ : M×R→M∈R from the product complex
to the level set complex: When restricted to the Cartesian products S×Y such
that S∈Y is canonical, the map φ′ yields a poset isomorphism. In particular,
for the special case that S∈∅ and ∅∈Y for non-empty S and Y are the only
non-canonical cells, the posets of the product complex M × R and the level
set complex M∈R are isomorphic via φ′. Therefore we can restate the result of
Lemma 2.10 informally as follows: The face poset of a level set complex M∈R is
isomorphic to the product order of the face posets of M and R restricted to the
canonical terms, that is, the pairs (S, Y ) such that S∈Y is canonical, with the
isomorphism being described by the assignments (S, Y ) 7→ S∈Y . In particular,
the canonical terms enumerate the cells of a level set complex without double-
counting: M∈R = {S∈Y | S ∈M,Y ∈ R,S∈Y is canonical}

2.2.2 Criteria Characterising Canonical Representations
In the following, we want to develop some criteria to identify those terms S∈Y
that are canonical representations of their cells. Clearly ∅∈∅ is the canonical
representation of the empty cell, and no term S∈∅ or ∅∈Y for S 6= ∅ and Y 6= ∅
is canonical. As a first step, we aim for a general characterisation of canonical
terms applying to arbitrary level set complexes, stating that S∈Y is canonical if
and only if both are empty or some value in the interior of Y is attained at some
point in the interior of S. From this characterisation, which is presented as last
criterion in Lemma 2.15, we deduce specialised criteria for closed intervals as
level ranges.

General Criteria for Arbitrary Level Ranges

Slightly Strengthening the Minimality Condition in the Definition.
Let us start with an observation regarding those terms that do not canon-
ically represent a cell. Reversing the characterisation of canonical terms as
face-minimal representations yields that for any non-canonical term S∈Y , the
cell S∈Y has another representation U∈Z with faces U v S and Z v Y where
at least one of the two face relations is proper. A simple argument shows that
there even is a representation where exactly one of the two face relations is
proper and one of U or Z agrees with S or Y respectively; in other words either
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U∈Y for some proper face U of S, or S∈Z for a proper face Z of Y represents
the cell S∈Y . This allows to treat the two alternatives independently in case
distinctions, with one case assuming a representation by a smaller cell of the
domain, the other case assuming a representation by a smaller cell in the level
range. The key observation for this result relies on the transitivity of the face
relation:

Lemma 2.11. Assume that a cell in a level set complex is represented by
terms S∈Y and T∈X such that T v S and X v Y . Then any intermediate
term, that is a term U∈Z for faces U and Z with T v U v S and X v Z v Y ,
is a representation of the cell as well.

Proof. By Lemma 2.10, the cell T∈X is a face of U∈Z and U∈Z is a face of S∈Y .
Thus, if T∈X and S∈Y agree, U∈Z = S∈Y as desired.

Now we can state the result as an alternative criterion for non-canonical
terms and consequently, via contraposition, as an alternative characterisation
of canonical terms.

Corollary 2.12. Let M∈R be a level set complex and consider a cell represented
by a term S∈Y for some S ∈M and Y ∈ R.

1. The term S∈Y is non-canonical if and only if U∈Y = S∈Y for some proper
face U of S or S∈Z = S∈Y for some proper face Z of Y holds.

2. The term S∈Y is canonical if and only if for all proper faces U of S the
inequality U∈Y 6= S∈Y , and for all proper faces Z of Y the inequality
S∈Z 6= S∈Y holds. In other words, the term S∈Y is canonical if and only
if replacing one of S or Y in the term by a proper face always yields a
proper face of the level set cell S∈Y .

In both characterisations, we can restrict our attention to immediate faces U
of S and Z of Y .

Proof. We only prove the first statement, since the second statement is an im-
mediate consequence resulting from negating both sides of the equivalence. The
“if”-part follows from the definition of a canonical representation: The assumed
alternative representations U∈Y or S∈Z render the term S∈Y a non-minimal
representation of its cell. For the “only if”-part, assume that S∈Y is not canon-
ical and the cell is also represented by a term T∈X for some faces T v S and
X v Y , where at least one of the face relations is proper. If T is a proper face
of S, we choose U = T , otherwise Z = X. By Lemma 2.11, the intermediate
term U∈Y or S∈Z represents S∈Y . For the strengthened version, we modify our
choice of U or Z. If T is a proper face of S, we choose for U an intermediate
face T v U v S that is an immediate face of S, otherwise we choose for Z an
intermediate face X v Z v Y that is an immediate face of Y .

The Role of the Interiors. The next lemma establishes the connection be-
tween the requirements regarding representations by proper faces described in
the previous observation and the requirements involving interior points and val-
ues that we are aiming for. For the proof we need a fact on convex sets stated
for example in [23, Proposition 2.2.4, p. 12] and an immediate consequence of
it.



2.2. CANONICAL REPRESENTATIONS 65

Fact 2.13. Assume that C is a convex set contained in the boundary of another
convex set K ⊆ Rd. Then there is a supporting hyperplane of K containing C.
Since the intersection of the supporting hyperplane with K defines a proper face
of K, this implies that C is contained in a proper face of K. Furthermore, since
the intersection of two convex sets is convex, we can conclude that a convex set
does not intersect the interior of a convex set K if and only if it intersects K at
most in a proper face of K.

Lemma 2.14. Let fS : aff(S)→ Rr be an affine linear map on a polyhedral set
S and Y a polyhedral set in Rr. Then S∈Y does not intersect the interior of S
but its boundary if and only if S∈Y is non-empty and contained in a proper face
of S. Furthermore, fS does not attain a value in the interior of Y but in its
faces if and only if S∈Y and hence fS(S) ∩ Y are non-empty and fS(S) ∩ Y is
contained in a proper face of Y .

Proof. For the first statement, note that S∈Y is a convex subset of S. If it is not
intersecting the interior of S, this implies by Fact 2.13 that S∈Y is contained in
a proper face of S. The other direction is obviously true since a proper face does
not intersect the interior. The second statement can be shown similarly: The
set fS(S)∩Y is a convex subset of Y , and it is empty if and only if S∈Y is empty.
If fS(S)∩Y is not intersecting the interior of Y , it is implied by Fact 2.13 once
more that fS(S) ∩ Y is contained in a proper face of Y . The other direction
follows again because proper faces do not intersect the interior.

Characterisation by Interior Points Attaining Interior Values. Now
we are ready to prove the characterisation suggested above.

Lemma 2.15. The following criteria can be used to characterise canonical rep-
resentations S∈Y . The first two equivalences consider separately the two con-
ditions that replacing in the term S∈Y the cell S on the one hand, and cell Y
on the other hand by a proper face yields a proper face of the level set cell.
The third equivalence is the criterion for canonical terms obtained as immediate
consequence by requiring both conditions. The last equivalence combines the two
conditions into a single one.

1. The inequality U∈Y 6= S∈Y holds for all proper faces U of S if and only if
S is empty or the interior of S contains a point x with fS(x) ∈ Y .

2. The inequality S∈Z 6= S∈Y holds for all proper faces Z of Y if and only if
Y is empty or S contains a point x such that fS(x) is in the interior of
Y .

3. A term S∈Y is canonical if and only if S and Y are empty or the interior
of S contains a point x1 such that fS(x1) ∈ Y and S contains a point x2
such that fS(x2) is in the interior of Y .

4. A term S∈Y is canonical if and only if S and Y are empty or the interior
of S contains a point x such that fS(x) is in the interior of Y .

Proof. The right hand sides of the first two equivalences are obviously sufficient
conditions for the corresponding left hand sides: If a point or its value lies in
the interior of the domain or level range, then the point is not contained in the
level set cell defined by a proper face of the domain or level range respectively.
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We continue by showing that the criteria on the right hand sides of the first two
equivalences are necessary.

For the first statement, assume that S is non-empty and does not contain
an interior point x with fS(x) ∈ Y . If S∈Y is empty, then choosing U = ∅
gives a representation of S∈Y = U∈Y by a proper face U of S. Otherwise, S∈Y
intersects S but not the interior of S. By Lemma 2.14, it is contained in some
proper face U of S, which fulfils S∈Y = U∈Y .

For the second statement, assume that no value in the interior of Y is
attained. If S∈Y is empty, then choosing Z = ∅ gives a representation of
S∈Y = S∈Z by a proper face Z of Y . Otherwise fS(S)∩ Y intersects Y but not
the interior of Y . By Lemma 2.14, it is contained in some proper face Z of Y ,
which fulfils S∈Z = S∈Y .

The third equivalence is an immediate consequence of Corollary 2.12 and
the first two equivalences. Its right hand side criterion is obviously implied by
the right hand side criterion of the last equivalence. It remains to show that the
right hand side of the last equivalence is a necessary condition for a canonical
term. If S∈Y is canonical, then by the third statement, there is an interior point
x1 of S with fS(x1) ∈ Y and a point x2 ∈ S such that fS(x2) is in the interior
of Y . Then the midpoint of x1 and x2 lies in the interior of S and its value
under fS is the midpoint of fS(x1) and fS(x2), hence lies in the interior of Y .
Therefore the right hand side of the last statement is a necessary condition for
S∈Y to be canonical.

Characterisations by Intersecting Interiors. Rephrasing the above crite-
ria gives the following characterisation that was mentioned in the discussion on
which kinds of ambiguously represented cells typically appear.

Corollary 2.16. A term S∈Y is canonical if and only if S and Y are both
empty or fS(S) intersects the interior of Y and f−1

S (Y ) intersects the interior
of S. Conversely, a term S∈Y is non-canonical if and only if at least one of S
and Y is non-empty and fS(S) intersects Y at most in a proper face of Y or
f−1
S (Y ) intersects S at most in a proper face of S.

Proof. The statement that fS(S) intersects the interior of Y is just another
way of saying that S contains a point x such that fS(x) is in the interior of Y .
Similarly, f−1

S (Y ) intersects the interior of S if and only if fS(x) ∈ Y for some
interior point x of S. For the converse, recall from Fact 2.13 that for convex sets,
not intersecting the interior of another convex set is the same as intersecting at
most a proper face of the other set.

For the subsequent discussion, we make use of the fact that the image fS(S)
of S and the preimage f−1

S (Y ) of Y are polyhedral sets. This fact follows from
a more general result:
Fact 2.17. Images and preimages of polyhedral sets under affine maps are poly-
hedral sets.

We refer to Rockafellar [39, Theorem 19.3, p. 174] for a proof. The part for
preimages can also be obtained as special case of the result shown in Lemma 2.2
that level set cells S∈R are polyhedral sets: For affine spaces A and B, which
we can identify with suitable Euclidean spaces Rd and Rr respectively, and an
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affine map f : A→ B, we can choose S = A and fS = f so that for polyhedral
sets R ⊆ B the level set cell S∈R agrees with the preimage f−1(R).

We may ask whether the two conditions in the criterion for canonical cells
in Corollary 2.16 can be combined into a single one in a fashion similar to the
last statement of Lemma 2.15. Clearly, the single criterion of this statement
can be rephrased by requiring that fS(int(S)) intersects the interior of Y or
alternatively by requiring that f−1

S (int(Y )) intersects the interior of S. But the
more interesting question is, whether the condition that fS(S) and Y intersect
in their interiors or the condition that f−1

S (Y ) and S intersect in their interiors
can be used as criterion. It turns out that the former condition works, but for
the latter condition, one direction of a presumed equivalence fails.

Let us deal with the negative result first. It relies on the observation that
interior points of f−1

S (Y ) are not necessarily preimages of interior points in Y .
A simple example is a constant map fS whose constant value c is contained in
a proper face Z of Y . Then f−1

S (Y ) = f−1
S (c) is the whole affine space aff(S),

furthermore aff(S) and S intersect in their interiors, but S∈Y is not canonical
because S∈Z is a representation by smaller cells. On the other hand, if S∈Y is
canonical and non-empty, the criterion is fulfilled: By Lemma 2.15, an interior
point of S is mapped to an interior point of Y . It suffices to show that preimages
of interior points of Y are interior points of f−1

S (Y ). To show this, consider the
restriction of fS to the affine hull of f−1

S (Y ). The image of this map is a
subspace of the affine hull of Y . Let us denote the obtained linear map from
aff(f−1

S (Y )) to aff(Y ) by fY . For an interior point y ∈ Y consider in aff(Y ) an
open neighbourhood N of y contained in Y . Since fY is defined as a restriction
of fS to a set containing all preimages of elements in Y and since N is contained
in Y , we have f−1

Y (N) = f−1
S (N). Furthermore this preimage f−1

Y (N) = f−1
S (N)

is an open set in aff(f−1
S (Y )) by continuity of fY , and it is a subset of f−1

S (Y ).
This implies that points in f−1

S (N) are interior points of f−1
S (Y ), and since

preimages of y are contained in f−1
S (N), we have accomplished the proof.

Now we consider the other proposed condition that fS(S) and Y intersect in
their interiors. The difficulty that prevents an immediate prove by Lemma 2.15
lies in the fact that boundary points of S may be mapped to interior points
of fS(S). We remedy this problem by showing that among the preimages of an
interior point of fS(S) there is always an interior point of S. The other part of
the proof that interior points of S are mapped to interior points of fS(S) can
be conveniently inferred from the open mapping theorem. We start by stating
this theorem and add the implications relevant for us. For further details on
the open mapping theorem, we refer to textbooks on functional analysis, for
example Conway [15].

Fact 2.18. A Banach space is a normed vector space that is Cauchy complete
with respect to the metric induced by the norm [15, Definition III.1.2, p. 65].
The open mapping theorem for Banach spaces states that a surjective continuous
linear operator between Banach spaces is open, that is, it maps open sets to open
sets [15, Theorem III.12.1, p. 93]. We can easily infer that surjective affine linear
maps between finite dimensional affine spaces are open by considering such maps
as linear operators on Banach spaces in a natural way: Any affine space can
be identified with a vector space by choosing some point as origin. An affine
map f : A → B between affine spaces A and B turns into a continuous linear
operator on vector spaces if the image f(O) of the origin O in A is chosen as
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origin of B. All norms on finite dimensional vector spaces are equivalent, the
resulting normed vector spaces are Banach spaces, and the induced topology
agrees with the standard topology. Hence a map f as above can be viewed as a
continuous linear operator between Banach spaces. Enforcing surjectivity of the
affine map by considering its image, an affine subspace, as codomain yields the
following conclusion: Any affine map between finite dimensional affine spaces
maps open sets in its domain to open sets in its image.

Now we can prove that the condition that fS(S) and Y intersect in their
interiors can be used for characterising canonical terms.

Lemma 2.19. A term S∈Y for non-empty S is canonical if and only if the
interiors of fS(S) and Y intersect. For empty S the term is canonical if and
only if Y is empty.

Proof. The case that S is empty is trivial. For non-empty S, we start with an
observation that we need for one of the directions of the equivalence, namely
we check that the image fS(aff(S)) of the map fS : aff(S) → Rr agrees with
the affine hull aff(fS(S)) of the image of S under fS . Clearly, we have fS(S) ⊆
fS(aff(S)), which implies immediately aff(fS(S)) ⊆ aff(fS(aff(S))). Since the
image fS(aff(S)) is an affine subspace of Rr it agrees with its own affine hull,
thus aff(fS(S)) ⊆ fS(aff(S)). On the other hand, any element z of aff(S) is an
affine combination of elements from S. By linearity of fS , its image fS(z) is an
affine combination of elements in fS(S), showing that fS(aff(S)) ⊆ aff(fS(S)).

We continue by showing the direction that fS(S) and Y intersecting in their
interiors is a necessary condition for S∈Y being canonical in case of a non-
empty cell S. If S∈Y for non-empty S is canonical then by Lemma 2.15 the
cell S contains an interior point x with value fS(x) in the interior of Y . It
suffices to show that interior points of S are mapped to interior points of fS(S).
So let x be an interior point of S. This assumption means that x has an
open neighbourhood N in aff(S) such that N is contained in S. We want
to apply our observation in Fact 2.18 based on the open mapping theorem to
show that fS(N) ⊆ fS(S) is an open neighbourhood of fS(x) in aff(fS(S))
because this demonstrates that fS(x) is an interior point of fS(S) as desired.
By Fact 2.18 the affine map fS maps the open set N to a set fS(N) that is open
in the image fS(aff(S)) of fS . Our preliminary observation that fS(aff(S)) =
aff(fS(S)) completes the proof for the necessity of the condition.

Now we prove that fS(S) and Y intersecting in their interiors is sufficient
for S∈Y being canonical. The assumption that the interiors of fS(S) and Y
intersect means that fS attains on S a value y in the interior of Y and that
this value y is also interior to fS(S). The proof is completed when we show
that any interior point of fS(S) has some preimage in the interior of S, because
such a preimage x of the value y = fS(x) in the interior of Y demonstrates
that the criterion in the last statement of Lemma 2.15 is fulfilled. For verifying
this claim, we follow a proof suggested in [41]. So let us consider an interior
point y of fS(S). Choose an arbitrary interior point z of S. If fS(z) agrees
with y, we are done. Otherwise consider the line segment between fS(z) and
y. Since y is an interior point, we can extend the line segment at its endpoint
y to a slightly longer line segment from fS(z) to a point y′ still lying in fS(S)
such that y lies in the interior of that extended line segment. Let x′ be some
element of S which is mapped to y′ by fS . By linearity, the line segment ` from
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z to x′ is mapped by fS bijectively to the line segment from fS(z) to y′, hence
some interior point x of ` is mapped to y. Since both endpoints of ` lie in S
and at least one of them, namely z, lies in the interior of S, all interior points
of ` including x are interior points of S by convexity. Thus we have found some
interior point x of S that is a preimage of y as desired.

Criteria for Closed Intervals as Level Ranges

From now on we focus on the typical situation where M is a polytopal complex
and the level range is a closed interval. We already discussed the trivial case of
the empty set as level range, where ∅∈∅ is the only canonical term. The other
trivial level range besides ∅ is R = F(R), where any term S∈R = S is canonical
except for S = ∅. For the remaining cases of closed intervals, we want to infer
simple criteria for terms being canonical using our results for general level set
cells. Several of these criteria can be stated in two equivalent variants, where one
variant considers only values of f attained at vertices, while the other variant
considers values of f attained at arbitrary points of the domain. The equivalence
of these variants relies on the following easy preliminary observation:

Fact 2.20. Assume that S is a convex polytope with an affine linear function
fS : aff(S) → Rr. Let J be a convex set in Rr, not necessarily closed. By
convexity, the following equivalence holds:

fS(v) ∈ J for all vertices v of S ⇐⇒ fS(x) ∈ J for all x ∈ S

This is logically equivalent to the following statement where J̄ denotes the com-
plement of an arbitrary convex set.

S contains a vertex v with fS(v) ∈ J̄ ⇐⇒ S contains some x with fS(x) ∈ J̄

In particular, by choosing for J appropriate intervals with endpoint h ∈ R, this
implies the equivalences listed in Table 2.5, which allow to switch between the
whole domain of the cell S and its vertex set when considering certain properties
of the values attained by a real valued function fS .

Real Values Attained in the Interior of a Cell. When we consider a non-
empty closed interval I as level range, then the last criterion in Lemma 2.15
states that a term S ∈ I is canonical if and only if fS attains an interior value h
of I in the interior of S. Therefore we turn to the question when a certain value
h ∈ R is attained in the interior of a cell S. Recall from Definition 1.8 that
the interior of a cell is its underlying subset without the underlying subsets of
its proper faces, or equivalently, it is the topological relative interior of the cell
viewed as a subset of its affine hull. When considering interval complexes, it
should be noted that this definition of interior differs slightly from the notion of
the interior of an interval when viewed as subset of R. The difference lies in the
treatment of singleton intervals I = {h}, whose interior in R is empty, but is {h}
itself in aff({h}) = {h}. For all other kinds of closed intervals both notions of
interior yield the same result. The next lemma differentiates between constant
and non-constant maps for the question whether a real value is attained in the
interior of a cell or not.
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Table 2.5: Some equivalences regarding the values attained by an affine linear
map fS : aff(S)→ R on a convex polytope S and on its vertex set. The value h
is an arbitrary real number. The equivalences are instances of the more general
observations stated in Fact 2.20.

S contains a vertex v with fS(v) < h ⇐⇒ S contains some x with fS(x) < h

S contains a vertex v with fS(v) > h ⇐⇒ S contains some x with fS(x) > h

S contains a vertex v with fS(v) ≤ h ⇐⇒ S contains some x with fS(x) ≤ h
S contains a vertex v with fS(v) ≥ h ⇐⇒ S contains some x with fS(x) ≥ h
S contains a vertex v with fS(v) 6= h ⇐⇒ S contains some x with fS(x) 6= h

fS(v) ≥ h for all vertices v of S ⇐⇒ fS(x) ≥ h for all x ∈ S
fS(v) ≤ h for all vertices v of S ⇐⇒ fS(x) ≤ h for all x ∈ S
fS(v) > h for all vertices v of S ⇐⇒ fS(x) > h for all x ∈ S
fS(v) < h for all vertices v of S ⇐⇒ fS(x) < h for all x ∈ S
fS(v) = h for all vertices v of S ⇐⇒ fS(x) = h for all x ∈ S

Lemma 2.21. A linear map fS : aff(S) → R attains a value h ∈ R in the
interior of the polyhedral set S if and only if fS is constant with value h or
S contains elements x+ and x− with fS(x+) > h and fS(x−) < h. If S is
a convex polytope, x+ and x− can be chosen as vertices of S. Note that the
second alternative can be expressed in other words by the condition that f−1

S (h)
is a hyperplane in the affine hull of S that cuts S.

Proof. Assume first that fS is not constant and attains h in a point x in the
interior of S. Then f−1

S (h) is a hyperplane in the affine hull of S containing the
point x. Consider the line through x perpendicular to that hyperplane. On one
side of the hyperplane, the map fS attains only values strictly greater than h, on
the other side the values are strictly smaller. Since x lies in the interior of S, we
can choose two points x+ and x− on the line with fS(x+) > h and fS(x−) < h
lying sufficiently close to x such that x+ and x− are elements of S. If S is a
convex polytope, we can apply the appropriate equivalences from Table 2.5 to
obtain the desired vertices. This completes the proof for one direction of the
equivalence.

For the other direction, the case that fS is constant is trivial. The other
case can be shown by contraposition: We assume that no interior point of S has
the fS-value h and show that this assumption prevents the existence of at least
one of the supposed points x+ and x− with fS(x+) > h and fS(x−) < h. The
assumption means that the interiors of the convex sets S and f−1

S (h) are disjoint.
In this situation a variant of the hyperplane separation theorem applies: Two
convex sets can be separated by a hyperplane in their common affine hull if and
only if their interiors are disjoint [23, Theorem 2.2.2, p. 11]. We can conclude
that there is a hyperplane H in aff(S) separating S and f−1

S (h). But then H
must be parallel to f−1

S (h), because otherwise H would cut f−1
S (h) and cannot

be separating. Therefore H is the level set hyperplane of fS for some value h′,
so that H = f−1

S (h′) divides aff(S) into aff(S)fS≤h′ and aff(S)fS≥h′ . Since H
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is separating S from f−1
S (h), we have two possibilities on which sides of H the

two sets lie. Either S lies in aff(S)fS≤h′ and f−1
S (h) lies in aff(S)fS≥h′ , which

implies f(x) ≤ h′ ≤ h for all x ∈ S contradicting the existence of x+. Or S lies
in aff(S)≥h′ and f−1

S (h) lies in aff(S)≤h′ , which implies f(x) ≥ h′ ≥ h for all
x ∈ S contradicting the existence of x−.

Rephrasing this criterion for a value to be attained in the interior to a cri-
terion for the contrary yields the following corollary.

Corollary 2.22. The map fS : aff(S) → R does not attain a value h ∈ R in
the interior of a polyhedral set S if and only if one of the following cases occurs:

1. S is empty.

2. fS(x) ≥ h for all x ∈ S and fS(x+) > h for some x+ ∈ S.

3. fS(x) ≤ h for all x ∈ S and fS(x−) < h for some x− ∈ S.

The latter two alternatives include the case that fS is constant with a value
different from h. If S is a convex polytope, the cases can be reformulated in
terms of vertices.

1. S is empty.

2. fS(v) ≥ h for all vertices v of S and fS(v+) > h for some vertex v+ of S.

3. fS(v) ≤ h for all vertices v of S and fS(v−) < h for some vertex v− of S.

Proof. The result can be obtained from the equivalence stated in Lemma 2.21
by negating both sides. The reformulation in terms of vertices is possible by
Fact 2.20.

For a convex polytope S fulfilling the criterion that it contains vertices with
fS-value strictly greater than h and vertices with strictly smaller value, an
interior point x with fS(x) = h can be constructed from the vertices of S.
The construction relies again on a fact that we used already for finding an
interior point of a cell suitable for performing an elementary starring or even
constructing a derived subdivision. Namely, any point represented by a convex
combination with positive coefficients for all points of a finite point set lies in the
interior of the convex hull of this point set [23, Exercise 2.3.6, p. 17]. Therefore
it suffices to construct a convex combination x of vertices of S with fS(x) = h
such that all coefficients are positive. Let b+ be the barycentre of all vertices of
S with fS-value strictly greater than h. Analogously b− denotes the barycentre
of all vertices with strictly smaller value. Then fS(b+) > h and fS(b−) < h and
we can choose λ ∈ (0, 1) such that λfS(b+) + (1 − λ)fS(b−) = h. Let x be the
barycentre of the point λb+ + (1 − λ)b− and all vertices of S whose fS-value
equals h. Then fS(x) = h and x lies in the interior of S because its construction
yields a representation of x as a convex combination of all vertices of S where
all coefficients are positive.
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Real Values Attained Only on the Boundary of a Cell. The next result
considers the situation that a value h is attained at some point of a cell S, but
not at one of its interior points.

Lemma 2.23. The map fS : aff(S) → R does not attain a value h ∈ R in the
interior of a polyhedral set S but in its faces if and only if f−1

S (h) is a supporting
hyperplane of S in the affine hull of S.

Proof. The left hand side assumption implies that fS is not constant, hence
f−1
S (h) is a hyperplane in the affine hull of S, and it implies that this hyperplane
is not disjoint from S. By Lemma 2.21, the hyperplane f−1

S (h) also does not
cut S. The only remaining alternative is that f−1

S (h) is a supporting hyperplane
of S. For the other direction, if f−1

S (h) is a supporting hyperplane, then its
intersection with S is a proper face of S. Hence the value h is attained only at
points lying in that face.

Note that Lemmata 2.21 and 2.23 yield a trichotomy for considered cells S,
non-constant maps fS : aff(S) → R, and real values h, which can be expressed
either in terms of the hyperplane f−1

S (h) or in terms of where the value h is
attained: Thy hyperplane f−1

S (h) either cuts S, or it supports S, or it is disjoint
from S; correspondingly, either the value h is attained in the interior of S, or it
is attained in a boundary face, but not in the interior, or it is not attained at
all in S. For constant maps fS , the set f−1

S (h) is not a hyperplane but either
the whole space or empty. The case that a value is attained in the boundary
but not in the interior does not occur; either h is the constant value of fS and
is attained in the interior of S, or h differs from the constant value of fS and is
not attained at all.

A Criterion for All Kinds of Closed Intervals. As summarised in Sec-
tion 1.1, smooth Morse theory considers the topological changes in the level
sets M≤h occurring while the value h grows. For an analogous study of level
set complexes M≤h in the piecewise linear case, we might want to ask which
terms S≤h and S=h for varying value of h are canonical. A generalisation of this
question to arbitrary level set complexes asks for a given cell S and affine linear
map fS : aff(S) → Rr, for which cells Y the term S∈Y is canonical. Among
the criteria for canonical representations developed earlier, the criterion from
Lemma 2.19 that S∈Y is canonical if and only if the interior of Y intersects the
interior of fS(S) or both are empty, seems to be particularly well suited for this
point of view, when we want to characterise those cells Y that induce canonical
terms for S. Applying this criterion for real valued functions fS and closed
intervals I yields the following condition, where we have to keep in mind again
that we consider a singleton interval as its own interior.

Lemma 2.24. For a non-empty polyhedral set S let J be the closed interval of
the values attained by the real-valued linear function fS on S, that is J = fS(S).
If S is bounded then J = [minx∈S fS(x),maxx∈S fS(x)] is the interval bounded
by the maximum and minimum of fS on S and it suffices to take the minimum
and maximum value of the vertices. Let I be a closed interval. Then the term
S∈I for non-empty S is canonical if and only if the interiors of J and I intersect,
with the interiors being taken relative to the respective affine hulls. For empty
S the term is canonical if and only if I is empty.
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Proof. The observations regarding the definition of J rely on standard facts:
The image of S is a polyhedral set in R, hence a closed interval. A bounded
polyhedral set S is compact, thus the continuous map fS attains a maximum and
a minimum on S. A maximum value h on S is characterised by the conditions
that fS(x) ≤ h holds for all x ∈ S and that S contains some x with fS(x) ≥ h.
Applying the corresponding equivalences from Table 2.5 yields that h is the
maximum value attained on S if and only if it is the maximum value attained
on its vertex set Vrt(S). Similarly the minimum on S agrees with the minimum
on Vrt(S). Therefore it suffices to take the minimum and maximum values at
the vertices as endpoints for J . This last observation is in fact nothing other
than the famous basic result from linear programming that optimal values are
attained at vertices, which means more precisely that if a linear function attains
a value on a polyhedral set S that is maximal or minimal for S then there is
also a vertex of S at which this value is attained.

The characterisation of the canonical terms is the one from Lemma 2.19
applied to this special case.

Singletons and Half-Bounded Intervals. The next result focuses on the
level set cells that are defined by intervals with one endpoint h, namely cells of
the form S=h, S≤h, and S≥h. Indicated by parentheses is a variant of the result:
When the considered cell S is bounded, that is, a convex polytope, then we can
invoke the equivalences from Table 2.5 and replace every occurrence of the word
“element” in the statement by the word “vertex”. The result distinguishes six
cases depending on the position of h relative to the interval fS(S). When we
think of h as a parameter on the real line that continuously increases from
−∞ to +∞ and keep track of which of the cases below applies for a given
cell S, then the label number of the applicable case is weakly monotonically
increasing. In detail, for non-constant fS attaining a maximum and a minimum
on S, case 1 occurs for h < minx∈S fS(x), case 2 for h = minx∈S fS(x), case 3
for minx∈S fS(x) < h < maxx∈S fS(x), case 5 for h = maxx∈S fS(x), and case 6
for h > maxx∈S fS(x). If maximum or minimum or both are not attained, the
condition for case 3 changes whereas cases 1 and 2 and cases 5 and 6 either
disappear when the respective optimum appearing in the conditions above is
not attained, or apply under the same conditions as above: If fS attains neither
maximum nor minimum, case 3 applies to all h ∈ R; if fS attains a maximum
but no minimum, cases 1 and 2 disappear, case 3 applies to h < maxx∈S fS(x),
while the conditions for cases 5 and 6 remain unchanged; symmetrically, if fS
attains a minimum but no maximum, the conditions for cases 1 and 2 remain
unchanged, case 3 applies to h > minx∈S fS(x), and cases 5 and 6 disappear.
For constant maps fS with constant value c, case 1 applies for h < c, case 4 for
h = c and case 6 for h > c.

Lemma 2.25. For a given non-empty (bounded) cell S and varying value h,
we can now list which of the terms S=h, S≤h and S≥h are canonical and which
are not.

1. If fS(x) > h for all elements (vertices) x ∈ S, then S≥h is canonical and
agrees with S, while S=h and S≤h are not canonical. They are empty and
represented by ∅∈∅. This case occurs for constant fS and for non-constant
fS attaining a minimum on S.
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2. If fS(x) ≥ h for all elements (vertices) x ∈ S and for some elements
(vertices) x+ and x0 the relations fS(x+) > h and fS(x0) = h hold, in
other words if fS is non-constant and h its minimum on S, then S≥h is
canonical and agrees with S, while S=h and S≤h are not canonical. The
cells S≤h and S=h agree and are represented by T=h where T is the face
of S defined by the supporting hyperplane f−1

S (h).

3. If S contains elements (vertices) x+ and x− fulfilling fS(x+) > h and
fS(x−) < h, then S=h, S≤h and S≥h are canonical and fS is non-constant.

4. If fS(x) = h for all elements (vertices) x ∈ S, then fS is constant and
S=h is canonical and agrees with S, while S≤h and S≥h are not canonical.
They also agree with S and are canonically represented by S=h.

5. If fS(x) ≤ h for all elements (vertices) x ∈ S and for some elements
(vertices) x− and x0 the relations fS(x−) < h and fS(x0) = h hold, in
other words if fS is non-constant and h its maximum on S, then S≤h is
canonical and agrees with S, while S=h and S≥h are not canonical. The
cells S≥h and S=h agree and are represented by T=h where T is the face
of S defined by the supporting hyperplane f−1

S (h).

6. If fS(x) < h for all elements (vertices) x ∈ S, then S≤h is canonical and
agrees with S, while S=h and S≥h are not canonical. They are empty and
represented by ∅∈∅. This case occurs for constant fS and for non-constant
fS attaining a maximum on S.

Proof. One easily checks that the six cases are mutually exclusive and that
the list covers all possible situations. Since case 5 is symmetric to case 2 and
case 6 is symmetric to case 1, we only consider the first four cases. We can
express the situation using the notation introduced for the characterisation of
canonical terms from Lemma 2.24: On the one hand, we have the closed interval
J = fS(S) of the values attained on S, on the other hand, the interval I is one of
{h}, (−∞, h], or [h,∞). Note that fS is constant if and only if J is a singleton.
Now we decide for each case whether J and I intersect in their interior or not.
In the former case the corresponding term is canonical by Lemma 2.24, in the
latter case the term is not canonical and we describe which term represents the
cell canonically instead.

The assumption of the first case means that J has a left endpoint and that
h is strictly smaller than this endpoint. Then {h} and (−∞, h] do not intersect
J at all, meaning that S=h and S≤h are empty and represented by ∅∈∅. For
the interval I = [h,∞) however, I and J intersect in their interior, regardless
of whether J is a singleton or not, in fact their intersection is J itself and any
interior point of J is also interior to I, hence S≥h is canonical and agrees with S.

When the second case applies, J has a left endpoint that agrees with h and
is not a singleton. Then for sufficiently small ε, the value h+ε is interior to both
[h,∞) and J , rendering S≥h canonical. For the other two intervals I = {h} or
I = (−∞, h], the value h is the only value of I that is attained on S and it
is not interior to J . Rather, f−1

S (h) is a hyperplane such that S is contained
completely in one of its closed half-spaces, namely the half-space defined by
the inequality fS(x) ≥ h. Furthermore, since the value h is attained on S, the
hyperplane f−1

S (h) is a supporting hyperplane for S. The intersection of this
supporting hyperplane with S is at the same time a proper face T of S, the
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level set cell S=h, and the level set cell S≤h. Therefore T=h is the canonical
representation for S=h and S≤h. To avoid confusion regarding the variant for
polytopal cells S with vertices in place of arbitrary points, let us point out that
Table 2.5 does not contain an equivalence stating that S contains a point x0
with value h if and only if it contains a vertex with value h, because such a
statement is obviously wrong. The argument relies instead on the observation
which we made already in the proof of Lemma 2.24: Under the assumption that
fS(x) ≥ h holds for all x ∈ S, the condition that fS(x0) = h holds for some
x0 in S is equivalent to the condition that fS(x0) ≤ h holds for some x0 in S,
and for this condition an appropriate equivalence in Table 2.5 exists. This is
again an instance of the basic fact from linear programming that a minimum is
always attained at a vertex.

In the third case, the value h lies in the interior of an interval J that is not
a singleton. For sufficiently small ε, the values h − ε and h + ε lie still in the
interior of J , so that the value h is interior to J and {h}, the value h − ε is
interior to J and (−∞, h], and the value h+ ε is interior to J and [h,∞). This
shows that all three terms S=h, S≤h and S≥h are canonical in this case.

When the fourth case occurs, J agrees with {h}, so that the only interior
point h of J is interior to {h} but not to (−∞, h] or [h,∞). Therefore S=h is
canonical, and since it agrees with S, S≤h, and S≥h, it is also the canonical
representation for S≤h and S≥h.

The next two lemmata are in principle just a reformulation of the previous
result. We only rearrange the cases so that we obtain a convenient reference
for the following situation: We are given a polyhedral complex M with a real-
valued map f linear on cells, inducing for each cell S of M a linear map fS on
the affine hull of S. Furthermore we consider a real value h and ask for which
cells S of M the term S=h is canonical. The first lemma lists the criteria for
S=h being canonical and afterwards the criteria for S=h being non-canonical.
The second lemma provides criteria in the same fashion for the case that we ask
for the terms S≤h or S≥h instead of S=h. Again we indicate in parentheses a
variant of the result for bounded polyhedral sets where the word “element” is
replaced by the word “vertex” at appropriate places using the equivalences from
Table 2.5.

Lemma 2.26. A term S=h canonically represents the cell S=h for a (bounded)
polyhedral set S if and only if one of the following cases occurs:

1. The cell S is non-empty and all elements (vertices) x of S have the con-
stant value fS(x) = h.
While maintaining the requirement to be non-empty, this case can be equiv-
alently described by the condition that S lies completely in f−1

S (h) or by the
condition that f−1

S (h) agrees with the whole affine hull of S. In this case
the level set cell S=h agrees with the cell S and hence their dimensions
dim(S=h) = dim(S) agree.

2. The cell S contains at least one element (vertex) x+ with fS(x+) > h and
at least one element vertex x− with fS(x−) < h.
An equivalent criterion for this case is the requirement that f−1

S (h) is a
hyperplane that cuts S, that is, for each of the two sides of the hyperplane,
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there are elements (vertices) of S lying strictly on that side. In this case
we have dim(S=h) = dim(S)− 1.

On the other hand, S=h is not a canonical representation if and only if one
of the following cases occur

1. The cell S is empty.
In this case the canonical representation for the cell S=h is ∅∈∅.

2. All elements (vertices) x of S have values fS(x) ≥ h and the inequality is
strict for at least one element (vertex).

3. All elements (vertices) x of S have values fS(x) ≤ h and the inequality is
strict for at least one element (vertex).

In the last two cases the canonical representation for the cell S=h depends on
whether the value h is attained on S or not: If the inequalities are strict for all
elements (vertices), the intersection S ∩ f−1

S (h) is empty, otherwise f−1
S (h) is a

supporting hyperplane of S. In the former case S=h is empty and represented by
∅∈∅, in the latter case S=h = S ∩ f−1

S (h) is a proper face T of S with T = T=h,
hence it is canonically represented by T=h.

Arranging the cases differently yields another criterion for S=h being non-
canonical: Either S is empty, or the map fS is constant with a value c 6= h, or
fS is non-constant on aff(S) and the cell S lies completely in one of the closed
half-spaces defined by the hyperplane f−1

S (h).

Proof. By the last criterion from Lemma 2.15, the term S=h is canonical if and
only if fS attains the value h in the interior of S. We proved in Lemma 2.21
that this condition is fulfilled if and only if one of the two stated cases occurs.
The mentioned alternative criteria are easily verified as equivalent. The remark
on the dimension is trivial in the first case. For the second case we use that if a
hyperplane H intersects an interior point p of a full-dimensional convex set C,
then there is an open ball B around p contained in C, and the fact that H ∩B
is an open ball in H shows that H ∩ C is a convex set of dimension dim(H) =
dim(C)−1. Choosing forH the hyperplane f−1

S (h) and for p ∈ S = C an interior
point of S with value fS(p) = h yields that S=h = H∩S has dimension dim(S)−
1. From the two cases that ensure a canonical representation, the first agrees
with case 4 in Lemma 2.25, the second agrees with case 3 in Lemma 2.25.

On the other hand, the three suggested cases for non-canonical terms are
exactly the three cases for h being not attained in the interior of S established
in Corollary 2.22. The claim regarding the canonical representation for the
cell S=h is trivial for the first case, and can be transferred from Lemma 2.25 for
the other two cases, because the second case covers cases 1 and 2 of Lemma 2.25,
and the third case covers cases 5 and 6 of Lemma 2.25.

The criterion suggested in the last paragraph can also be read off from the
cases in Lemma 2.25: The second alternative corresponds to cases 1 and 6 for
constant maps, the third alternative subsumes cases 1, 2, 5, and 6 for non-
constant maps.

Lemma 2.27. For a (bounded) polyhedral set S, the term S≤h is canonical if
and only if S contains an element (vertex) x− such that fS(x−) < h. In this
case the dimension of S≤h agrees with the dimension of S.
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On the other hand, S≤h is not canonical if and only if fS(x) ≥ h for all
elements (vertices) x ∈ S. If S≤h is not canonical, then the canonical repre-
sentation can be S=h, T=h for a proper face T of S, or ∅∈∅. The first possible
term S=h is the canonical representation of S≤h if and only if fS is constant
with value h and S is non-empty. A term T=h is the canonical representation if
and only if all elements (vertices) x ∈ S have values fS(x) ≥ h and S contains
elements (vertices) x+ and x0 with fS(x+) > h and fS(x0) = h. The appropri-
ate cell T for this case is the face of S defined by the intersection of S with the
supporting hyperplane f−1

S (h). The term ∅∈∅ is the canonical representation if
and only if fS(x) > h for all elements (vertices) x ∈ S.

For the symmetric case of a term S≥h analogous statements hold: The
term S≥h is canonical if and only if S contains an element (vertex) x+ such that
fS(x+) > h. The dimension of S≥h agrees with the dimension of S in this case.
Contrariwise, S≥h is not canonical if and only if fS(x) ≥ h for all elements
(vertices) x ∈ S. The cell S≥h is canonically represented by the term S=h if
and only if S 6= ∅ and fS is constant with value h; by a term T=h if and only
if all elements (vertices) x ∈ S have values fS(x) ≤ h and S contains elements
(vertices) x− and x0 with fS(x−) < h and fS(x0) = h and if T is the face
defined by the supporting hyperplane f−1

S (h); and by the term ∅∈∅ if and only if
fS(x) < h for all elements (vertices) x ∈ S.

Proof. Since the term S≥h can be treated in an completely symmetric way, we
only consider the term S≤h. For proving the claimed criterion for canonical
terms, we apply again the last equivalence from Lemma 2.15, which states in
this case that S≤h is canonical if and only if fS attains a value in the interior
of (−∞, h] at an interior point of S. But values in the interior of (−∞, h] are real
numbers strictly smaller than h. So we can see immediately that fS(x−) < h
for some x− ∈ S is a necessary condition. For verifying that the condition
is also sufficient, we only have to justify why the requirement that x− is an
interior point of S can be dropped. This is due to continuity and to the fact
that any neighbourhood of a point in a convex set contains also interior points
of the convex set: If x− is an arbitrary point of S with fS(x−) < h, then in a
sufficiently small neighbourhood of x−, all values attained by fS are still less
than h, and an interior point of S lying in that neighbourhood is the desired
interior point of S with value less than h. Note that the criterion just proven
covers the cases 3, 5, and 6 from Lemma 2.25.

The remark on the dimension relies on continuity as well: Consider an an
interior point x− of S with fS(x−) < h. Then all points in a sufficiently small
ball around x− still lie in S and have a value less than h, proving that S≤h
contains a ball of the same dimension as S.

The stated criterion for S≤h being non-canonical is obviously the negation
of the criterion for being canonical. The claimed canonical representations for
the cell S≤h arise from cases 1, 2, and 4 from Lemma 2.25.

Level Values Not Attained at Vertices. When we assume that the
cell S is polytopal and that the considered value h is not attained at vertices,
the situation is simplified considerably. The next lemma shows that if this
assumption applies to all cells of a complex M , then the empty cell is the only
cell with non-canonical representations in the level set complexes M=h, M≤h,
and M≥h.
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Lemma 2.28. Assume that M is a polytopal complex with a map f : |M | → R
linear on cells and that the real value h fulfils f(v) 6= h for all vertices v of M .
Let S be a cell of M . Then S=h, S≤h, and S≥h are canonical representations if
and only if the respective set is non-empty. For S=h this is again equivalent to S
containing two vertices v+ and v− with f(v+) > h and f(v−) < h. Furthermore,
for X,Y ∈ {(−∞, h], {h}, [h,∞)} and an additional cell T of M , the cell T∈X
is a face of S∈Y if and only if T∈X is empty or T is a face of S and X is a face
of Y .

Proof. For the first claim we show the contraposition that S=h, S≤h, and S≥h
are not canonical if and only if they represent the empty cell. Since by assump-
tion f−1(h) does not contain vertices, the cases where f−1

S (h) is a supporting
hyperplane of S or contains S disappear for polytopal cells S. This means that
the cases 2, 4, and 5 from Lemma 2.25 do not apply, when we ask whether
S=h, S≤h, or S≥h are canonical or not. In the remaining cases these terms are
non-canonical if and only if they represent the empty cell. When the term S=h
is considered, case 3 from Lemma 2.25 is the only remaining case where S=h is
canonical. The stated equivalent condition for S=h is exactly the criterion given
there for that case. The last assertion follows from Lemma 2.10 because T∈X is
either empty as a cell or canonical as a term.

Bounded Non-Singleton Intervals. The only remaining type of closed in-
tervals which we did not consider in detail yet consists of the intervals [a, b]
with two endpoints. First, we give a criterion characterising the canonical ones
among the terms of the form S∈[a,b], and we list which terms under which con-
dition canonically represent a cell S∈[a,b] if the term S∈[a,b] is not canonical, just
as we did for S=h, S≤h, and S≥h in Lemmata 2.26 and 2.27. Again a variant
for polytopal cells with occurrences of “element” being replaced by “vertex” is
indicated by parentheses. Afterwards we state an analogue of Lemma 2.28 for
a level set complex M∈[a,b] where M is a polytopal complex and the values a
and b are not attained at vertices of M .

Lemma 2.29. For a (bounded) polyhedral set S and real numbers a < b, the
term S∈[a,b] is canonical if and only if S contains elements (vertices) x and y
with fS(x) > a and fS(y) < b. In this case the dimensions of S and S∈[a,b]
agree.

If S∈[a,b] is not canonical, then the canonical representation is one of the
following:

1. S=a if and only if S is non-empty and fS is constant with value a.

2. S=b if and only if S is non-empty and fS is constant with value b.

3. T=a for a proper face T of S if and only if fS(x) ≤ a for all elements
(vertices) x ∈ S and equality and strict inequality are both attained, with
T being the face of S defined by the intersection of S with the supporting
hyperplane f−1

S (a).

4. T=b for a proper face T of S if and only if fS(x) ≥ b for all elements
(vertices) x ∈ S and equality and strict inequality are both attained, with
T being the face of S defined by the intersection of S with the supporting
hyperplane f−1

S (b).
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5. ∅∈∅ if and only if fS(x) < a for all elements (vertices) x ∈ S or fS(x) > b
for all elements (vertices) x ∈ S.

Proof. The claims can be shown with arguments similar to those used in the
proof of Lemma 2.27 for terms of the form S≤h. Applying once again the last
equivalence from Lemma 2.15 yields that a term S∈[a,b] is canonical if and only
if some interior point of S is mapped to an interior point of [a, b], in other words
a < fS(x) < b for some interior point of S. This shows that the stated criterion
is necessary for S∈[a,b] being canonical. Now assume for the other direction
that fS(x) > a and fS(y) < b hold. As a first step, one easily checks by case
distinction depending on which order relations additionally hold between fS(x),
fS(y), a, and b that the interval between the values fS(x) and fS(y) contains
a value h in the interior of the interval [a, b]. This value h in the interval
between fS(x) and fS(y) is attained at some point p of S by convexity of S and
continuity of fS . Using again continuity of fS and the fact that arbitrary small
neighbourhoods of points in S contain interior points of S implies that the value
of some interior point of S sufficiently close to p still lies in the interior of [a, b].
This ensures that S∈[a,b] is canonical by the last criterion from Lemma 2.15.
Furthermore an interior point of S with value in the interior of [a, b] has a
neighbourhood that is contained completely in S∈[a,b] by continuity, which shows
dim(S∈[a,b]) = dim(S) whenever the term S∈[a,b] is canonical.

For non-canonical terms S∈[a,b], one easily checks that the five cases in the list
are mutually disjoint and cover all remaining alternatives. Furthermore, in each
case the claimed term obviously represents the same cell as S∈[a,b] and neither
the domain nor the level range used for the term can be replaced by smaller
faces, showing that the term is the canonical representation of the cell.

Lemma 2.30. Assume that M is a polytopal complex with a map f : |M | → R
linear on cells and that the real values a < b fulfil f(v) /∈ {a, b} for all vertices v
of M . Let S be a cell of M . For any cell S of M , the term S∈[a,b] is a canonical
representation of its cell if and only if S∈[a,b] is non-empty. Furthermore, for
X,Y ∈ {{a}, [a, b], {b}} and cells S and T of M , the level set cell T∈X is a face
of S∈Y if and only if T∈X is empty or T is a face of S and X is a face of Y .

Proof. Under the assumption that S is polytopal and non-empty, all five cases
from Lemma 2.29 for non-canonical terms S∈[a,b] require that at least one of
the values a and b is attained at a vertex of S. The claim concerning the face
relation follows again from Lemma 2.10.

Summary in First-Order Logic Style. Note that the Lemmata 2.26, 2.27,
and 2.29 provide for each cell S∈Y of a level set complex, with Y being one of
{h}, (−∞, h], [h,∞), or [a, b], a criterion for a term T∈X being the canonical
representation of S∈Y . When the cell S is a convex polytope, then they even
provide a criterion in terms of the values that the vertices of S attain. In prepa-
ration for a proof in the next section, we collect all these criteria in Table 2.6,
expressing them in a way that we can treat them just like formulas of first-order
logic. We introduce a quaternary predicate φ(S, Y, T,X) that denotes the state-
ment that T∈X is the canonical representation of the cell S∈Y , where S and T
are cells of M , and Y and X are closed intervals. Allowing ourselves another
slight abuse of notation, we abbreviate the predicate by φ(S∈Y , T∈X).
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Corollary 2.31. For deciding whether a term T∈X is the canonical representa-
tion of the cell represented by S∈Y , the previous results provide the criteria listed
in Table 2.6. The property that T∈X is the canonical representation of S∈Y is
expressed by the predicate φ(S∈Y , T∈X). On the left hand side of the table, we
list instances of the predicate, distinguishing cases into certain patterns accord-
ing to the types of the closed intervals X and Y and their mutual face and order
relations and according to the mutual face relations between S and T . Here the
term “order relations” refers to the distinction made when Y is an interval [a, b]
and X corresponds to one of its endpoints, namely whether the corresponding
endpoint is is a left or a right endpoint. The listed patterns cover all possi-
ble cases where S and T are cells of the considered complex M , and X and Y
are closed intervals. Just as Lemmata 2.26, 2.27, and 2.29 were stated in two
variants, the table allows two variants of interpretation. The expression v ∈ S
occurring several times on the right hand side in bounded quantifiers and in set
builder notation can be interpreted in two meaningful ways: The literal interpre-
tation considers all points of the cell S as the range for the variable v. With this
interpretation, the list is correct for all polyhedral complexes M . When we only
allow polytopal complexes M , we can alternatively assume that the variable v
ranges only over vertices of S, as suggested by the choice of the letter v instead
of the letter x. Note that in the expression conv{v ∈ S | f(v) = h}, taking the
convex hull is only necessary for the latter interpretation; for the former it is
unnecessary but still correct.

Proof. The cases Y = ∅ and Y = R are trivial, the remaining criteria are shown
in Lemmata 2.26, 2.27, and 2.29.

2.3 Combinatorial Equivalences and Collapses
Now that we have a suitable description of the combinatorial structure of a level
set complex based on the notion of canonical representation, we can prove for
certain pairs of level set complexes that they are combinatorially equivalent. In
this section, we collect some results of this kind. They will be useful later for
proving certain level sets as PL-homeomorphic because combinatorially equiv-
alent polytopal complexes have PL-homeomorphic domains by Theorem 1.31.
In other parts of this section we study collapses that can be performed on level
set complexes. Since collapses induce homotopy equivalences, the results yield
convenient tools for establishing homotopy equivalences between level sets and
other spaces. Throughout the section, we assume thatM is a polytopal complex
with a map f : |M | → R linear on cells. Clearly, the level ranges in this situation
are interval complexes, in most cases complexes associated with a single closed
interval I.

2.3.1 Natural Combinatorial Equivalences between Level
Set Complexes

The first topic addresses natural combinatorial equivalences between level set
complexes M∈I1 and M∈I2 that arise when one interval serving as level range is
obtained from the other by moving the endpoints slightly as long as they avoid
values that are attained at vertices. For example, if no vertex has a value in
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Table 2.6: A list of criteria for the predicate φ(S∈Y , T∈X) expressing that T∈X
canonically represents S∈Y . The first line covers some obviously false cases. For
the other lines we assume T 6= S since the case S = T is covered explicitly in
separate lines. Predicates φ(S=c, T=c) with c ∈ {a, b, h} referenced on the right
hand side as sub-formula can be replaced using the formula for φ(S=h, T=h).

If T /∈ F(S), or X /∈ F(Y ), or T = ∅ and X 6= ∅, or T 6= ∅ and X = ∅:

φ(S∈Y , T∈X) ⇐⇒ false

Otherwise, for T 6= S

φ(S∈∅, ∅∈∅) ⇐⇒ true
φ(S=h, S=h) ⇐⇒ (S 6= ∅ ∧ ∀v ∈ S : f(v) = h)

∨ (∃v ∈ S : f(v) < h ∧ ∃v ∈ S : f(v) > h)
φ(S=h, T=h) ⇐⇒ ((∀v ∈ S : f(v) ≤ h ∧ ∃v ∈ S : f(v) < h)

∨ (∀v ∈ S f(v) ≥ h ∧ ∃v ∈ S : f(v) > h))
∧ ∃v ∈ S : f(v) = h ∧ T = conv{v ∈ S | f(v) = h}

φ(S=h, ∅∈∅) ⇐⇒ ∀v ∈ S : f(v) > h ∨ ∀v ∈ S : f(v) < h

φ(S≤h, S≤h) ⇐⇒ ∃v ∈ S : f(v) < h

φ(S≥h, S≥h) ⇐⇒ ∃v ∈ S : f(v) > h

φ(S≤h, T≤h) ⇐⇒ false
φ(S≥h, T≥h) ⇐⇒ false
φ(S≤h, S=h) ⇐⇒ S 6= ∅ ∧ ∀v ∈ S : f(v) = h

φ(S≥h, S=h) ⇐⇒ S 6= ∅ ∧ ∀v ∈ S : f(v) = h

φ(S≤h, T=h) ⇐⇒ ∀v ∈ S : f(v) ≥ h ∧ φ(S=h, T=h)
φ(S≥h, T=h) ⇐⇒ ∀v ∈ S : f(v) ≤ h ∧ φ(S=h, T=h)
φ(S≤h, ∅∈∅) ⇐⇒ ∀v ∈ S : f(v) > h

φ(S≥h, ∅∈∅) ⇐⇒ ∀v ∈ S : f(v) < h

φ(S∈[a,b], S∈[a,b]) ⇐⇒ ∃v ∈ S : f(v) > a ∧ ∃v ∈ S : f(v) < b

φ(S∈[a,b], T∈[a,b]) ⇐⇒ false
φ(S∈[a,b], S=a) ⇐⇒ S 6= ∅ ∧ ∀v ∈ S : f(v) = a

φ(S∈[a,b], S=b) ⇐⇒ S 6= ∅ ∧ ∀v ∈ S : f(v) = b

φ(S∈[a,b], T=a) ⇐⇒ ∀v ∈ S : f(v) ≤ a ∧ φ(S=a, T=a)
φ(S∈[a,b], T=b) ⇐⇒ ∀v ∈ S : f(v) ≥ b ∧ φ(S=b, T=b)
φ(S∈[a,b], ∅∈∅) ⇐⇒ ∀v ∈ S : f(v) > b ∨ ∀v ∈ S : f(v) < a

φ(S∈R, S∈R) ⇐⇒ S 6= ∅
φ(S∈R, T∈R) ⇐⇒ false
φ(S∈R, ∅∈∅) ⇐⇒ S = ∅
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the interval [h1, h2], thenM=h1 andM=h2 are combinatorially equivalent by the
assignment S=h1 7→ S=h2 . Since the cells in a level set complex can be identified
without double-counting with the canonical terms for level set cells, we could
restrict the assignment to canonical terms to avoid ambiguity. But it turns
out that this is unnecessary since the assignment by the natural equivalence is
independent of the representation of the cell if the two level ranges fulfil the
requirements.

Monotonically Combinatorially Equivalent Interval Complexes. In
order to describe the sufficient requirement for pairs (I1, I2) of intervals that
ensures that M∈I1 and M∈I2 are combinatorially equivalent in a natural way,
we have to refine our notion of combinatorial equivalence for interval complexes.
The notion from Definition 1.26 considers half-bounded intervals (−∞, h1] and
[h2,∞) bounded in different directions as equivalent, but even if h1 = h2, we
cannot expect any combinatorial equivalence between M≤h1 and M≥h2 . Fur-
thermore it allows for combinatorial equivalences that switch the left and right
endpoints of corresponding bounded intervals, that is, [a1, b1] is mapped to
[a2, b2], but {a1} to {b2}, and {b1} to {a2}. For avoiding these undesirable
effects of the general definition, we introduce the notion of an order-respecting
combinatorial equivalence for interval complexes.

Definition 2.32 (order-respecting combinatorial equivalence). Two interval
complexes I and J are called order-respecting combinatorially equivalent or
monotonically combinatorially equivalent if there is a combinatorial equiva-
lence Ψ: I → J in the sense of Definition 1.26 between them such that the
following conditions are fulfilled:

1. The combinatorial equivalence assigns only half-bounded intervals of the
same type to each other; in other words, it respects the six kinds of inter-
vals listed in Table 1.1.

2. Its restriction to the vertices respects the natural order on R as follows:
for any x and y with {x′} = Ψ({x}) and {y′} = Ψ({y}) the equivalence
x ≤R y ⇐⇒ x′ ≤R y

′ holds.

It is not hard to see that the combinatorial equivalence Ψ: I → J required
in the definition is uniquely determined if such an equivalence exists. Hence it
is justified to call Ψ the order-respecting combinatorial equivalence between the
interval complexes.

As usual, we are mainly interested in the case that the considered pair of
level ranges consists of the interval complexes F(I1) and F(I2) associated with
closed intervals I1 and I2 different from ∅ and R. Table 2.7 lists the assignments
made by the order-respecting combinatorial equivalence Ψ for such pairs of level
ranges.

It remains to formalise the requirement for the intervals I1 and I2 that one
can be obtained from the other by shifting the endpoints such that the shift
does not pass across a value attained at some vertex of M . We suggest the
following definition that works for arbitrary interval complexes:

Definition 2.33. Let M be a polytopal complex with a map f : M → R linear
on cells. Two monotonically combinatorially equivalent interval complexes I
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Table 2.7: The order-respecting combinatorial equivalence Ψ: F(I1) → F(I2)
for the typically considered pairs of closed intervals I1 and I2. For each pair, a
table of values listing the assignments made by Ψ is given. The trivial assign-
ment Ψ: ∅ 7→ ∅ is omitted in all lists. For the last row, ai 6= bi is assumed.

I1 I2 table of values for Ψ
{h1} {h2} {h1} 7→ {h2}

(−∞, h1] (−∞, h2] {h1} 7→ {h2} (−∞, h1] 7→ (−∞, h2]
[h1,∞) [h2,∞) {h1} 7→ {h2} [h1,∞) 7→ [h2,∞)
[a1, b1] [a2, b2] {a1} 7→ {a2} {b1} 7→ {b2} [a1, b1] 7→ [a2, b2]

and J are called combinatorially equivalent for M and f , if the order-respecting
combinatorial equivalence Ψ: I → J fulfils the following condition for any pair
of corresponding vertices x ∈ Vrt(I) and x′ ∈ Vrt(J ), that is Ψ({x}) = {x′}: If
x <R x

′, then no vertex of M has an f -value in [x, x′], and if x′ <R x, then no
vertex of M has an f -value in [x′, x]. We also call two closed intervals I1 and I2
combinatorially equivalent for M and f , if their associated complexes F(I1)
and F(I2) are.

Applying this definition to the typically considered pairs of intervals, we
obtain the following requirements for I1 and I2 being combinatorially equivalent
forM and f : For the first three cases in Table 2.7 it is required that no vertex v
ofM has a value f(v) in the interval [h1, h2] or [h2, h1], assuming the two values
h1 and h2 are distinct. For the last case it is required that no vertex v of M
has a value f(v) in the interval [a1, a2] or [a2, a1], unless a1 = a2, and that no
vertex has a value in the interval [b1, b2] or [b2, b1], unless b2 = b1.

Transferring Combinatorial Equivalences from Interval Complexes to
Level Set Complexes. Now we want to show that if two interval complexes I
and J are combinatorially equivalent for M and f , then the level set com-
plexes M∈I and M∈J are combinatorially equivalent in a natural way, because
the equivalence is induced by the order-respecting combinatorial equivalence of
I and J . We observed already in Lemma 2.10 that the combinatorial structure
of a level set complex is uniquely determined by the combinatorial structure of
domain and level range and by which terms are canonical. Since M is combi-
natorially equivalent to itself and, by assumption, I and J are monotonically
combinatorially equivalent, we can bijectively assign to each pair (S, Y ) in the
Cartesian product of M and I a corresponding pair (S,Ψ(Y )) in the Cartesian
product of M and J , where Ψ: I → J denotes the order-respecting combina-
torial equivalence. Thus, for any term S∈Y representing a cell in M∈I there is
a corresponding term S∈Ψ(Y ) representing a cell in M∈J . Lemma 2.10 states
that the face poset of a level set complex is isomorphic to the product order of
the posets of domain and level range restricted to the pairs forming canonical
terms, with the isomorphism assigning to each such pair the cell represented
by the term. Now if for all S and Y the term S∈Y is canonical if and only
if S∈Ψ(Y ) is canonical, the cited lemma asserts that M∈I and M∈J are com-



84 CHAPTER 2. LEVEL SET COMPLEXES

binatorially equivalent with the combinatorial equivalence being given by the
natural bijection assigning to a cell of M∈I with canonical representation S∈Y
the cell of M∈J with canonical representation S∈Ψ(Y ). But we can prove even
a bit more for such an assignment: If I and J are combinatorially equivalent
for M and f , then T∈X is the canonical representation for S∈Y if and only if
T∈Ψ(X) is the canonical representation for S∈Ψ(Y ), showing that the assignment
S∈Y 7→ S∈Ψ(Y ) does not depend on the choice of the representing term for the
cell S∈Y and yields a well-defined combinatorial equivalence from M∈I to M∈J
even if not restricted to canonical terms explicitly.

For proving this claim, recall that we introduced a predicate φ(S, Y, T,X),
abbreviated by φ(S∈Y , T∈X), for the statement that T∈X is the canonical rep-
resentation of the cell S∈Y and gave a list of suitable criteria in terms of the
values attained at vertices in Table 2.6, distinguishing all possible cases where
X and Y are closed intervals. It is not hard, but somewhat tedious to check for
all cases that if I and J are combinatorially equivalent for M and f by Ψ, then
φ(S, Y, T,X) is equivalent to φ(S,Ψ(Y ), T,Ψ(X)). We can reduce the amount
of work a bit when we treat the criteria just like formulas of first-order logic
and decompose them into their atomic formulas.

Lemma 2.34. Let I and J be combinatorially equivalent interval complexes
for a polytopal complex M and a map f : |M | → R linear on cells by the order-
respecting combinatorial equivalence Ψ: I → J . Then for all cells S and T in
M and all closed intervals X and Y in I, the term T∈X is the canonical repre-
sentation for S∈Y in M∈I if and only if T∈Ψ(X) is the canonical representation
for S∈Ψ(Y ) in M∈J .

Proof. Expressing the claim in terms of the predicate φ, our aim is to prove that
φ(S, Y, T,X) is equivalent to φ(S,Ψ(Y ), T,Ψ(X)), or written in short form:
φ(S∈Y , T∈X) ⇐⇒ φ(S∈Ψ(Y ), TΨ(X)). The cases listed in Table 2.6 cover all
kinds of closed intervals that can occur in an interval complex. The order-
respecting combinatorial equivalence asserts that X v Y holds if and only if
Ψ(X) v Ψ(Y ) does, and that X is empty if and only if Ψ(X) is. This proves
that the obviously false case in the first line of Table 2.6 occurs for the terms S∈Y
and T∈X if and only if it occurs for the terms S∈Ψ(Y ) and T∈Ψ(X). Similarly, the
fact that the order-respecting combinatorial equivalence respects the type of the
interval and the order of the endpoints ensures that for each line of Table 2.6,
the pattern on the left hand side matches the types of the intervals Y and X and
their mutual face and order relations if and only if it matches the type of the
intervals Ψ(Y ) and Ψ(X) and their mutual face and order relations. Therefore
it suffices to check that the truth value of the corresponding right hand sides
remains unchanged when X is replaced by Ψ(X) and Y by Ψ(Y ).

Since we assume M to be polytopal, we can use the interpretation of the
table in which the variable v ranges only over vertices of S. We treat the criteria
on the right hand side just like formulas of first-order logic and decompose them
into their atomic formulas. This way we obtain, apart from formulas such as
S = ∅ that do not depend on the level range, only formulas of the pattern
f(v) R h, where R is one of the binary relations =, <, >, ≤, ≥ between the
value f(v) of some vertex v of M and some value h such that {h} is a vertex of
the level range, and the formula T = conv{v ∈ S | f(v) = h} for some vertex {h}
of the level range. We could even reduce the number of patterns by expressing
some of the binary relations as a boolean combination in terms of the other ones,
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if we like. Now we show first that a replacement of X by Ψ(X) and of Y by
Ψ(Y ) does not affect the truth value of the atomic formulas. When we perform
such a replacement and look at its effect on the atomic formulas of the patterns
f(v) R h and T = conv{v ∈ S | f(v) = h}, the replacement will only change
the value substituted for h from some value h1 with {h1} ∈ Vrt(I) to some
value h2 such that {h2} = Ψ({h1}) ∈ Vrt(J ). If h1 = h2, the atomic formulas
f(v) R h1 and f(v) R h2 as well as the formulas T = conv{v ∈ S | f(v) = h1}
and T = conv{v ∈ S | f(v) = h2} are trivially equivalent. Otherwise, the
assumption that I and J are combinatorially equivalent for M and f asserts
that no vertex of M has an f -value in the interval [h1, h2] or [h2, h1], whichever
of the two values h1 and h2 is the smaller one. Under this assertion in turn,
the atomic formulas f(v) R h1 and f(v) R h2 are obviously equivalent for any
vertex v and any of the five relations R, and furthermore conv{v ∈ S | f(v) =
h1} and conv{v ∈ S | f(v) = h2} are both empty, meaning that the formulas
T = conv{v ∈ S | f(v) = h1} and T = conv{v ∈ S | f(v) = h2} are equivalent
as well. This proves that the truth value of the atomic formulas is not affected
by the replacement. Since the truth value of the whole formula does only depend
on the truth values of the atomic formulas, we have established our claim that
replacing X and Y by Ψ(X) and Ψ(Y ) does not affect the truth values on the
right hand sides. Therefore we have φ(S∈Y , T∈X) ⇐⇒ φ(S∈Ψ(Y ), TΨ(X)) as
desired.

Now we can prove that interval complexes that are combinatorially equiv-
alent for M and f induce level set complexes on M that are combinatorially
equivalent in a natural way.

Lemma 2.35. Let M be a polytopal complex with a map f : |M | → R linear on
cells. If I and J are combinatorially equivalent level ranges for M and f , then
M∈I and M∈J are combinatorially equivalent polytopal complexes. The natural
equivalence is given by the assignment S∈Y 7→ S∈Ψ(Y ) for the order-respecting
combinatorial equivalence Ψ mapping the intervals of I to the intervals of J .
Under this assignment S∈Y is canonical if and only if S∈Ψ(Y ) is canonical.
Furthermore the assignment is independent of the representation of the cell S∈Y
by a cell S of M and a face Y of I and hence is well-defined.

More specific instances of this result for the typically considered intervals
are collected in Table 2.8. The trivial assignments made by the corresponding
combinatorial equivalence are listed in Table 2.9.

Proof. We first show that the assignment S∈Y 7→ S∈Ψ(Y ) for Y ∈ I is well-
defined. Assume that S∈Y1 and S∈Y2 represent the same cell and this cell is
canonically represented by T∈X in M∈I . By Lemma 2.34, this implies that
T∈Ψ(X) is the canonical representation in M∈J of both S∈Ψ(Y1) and S∈Ψ(Y2).
Hence, S∈Ψ(Y1) and S∈Ψ(Y2) represent the same cell and the assignment S∈Y 7→
S∈Ψ(Y ) yields a well-defined map. For the remainder of the proof, let Φ: M∈I →
M∈J with Φ(S∈Y ) = S∈Ψ(Y ) denote this natural map.

Switching the roles of I and J and using the same proof for the inverse
map Ψ−1, which is an order-respecting combinatorial equivalence for M and f
as well, we obtain that the assignment S∈Z 7→ S∈Ψ−1(Z) for Z ∈ J yields a well-
defined map Φ′ : M∈J → M∈I . The assignment rules immediately imply the
equalities Φ′(Φ(S∈Y )) = S∈Ψ−1(Ψ(Y )) = S∈Y and Φ(Φ′(S∈Z)) = S∈Ψ(Ψ−1(Z)) =
S∈Z , so that Φ is proven to be bijective with its inverse Φ−1 being Φ′.
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Table 2.8: For a polytopal complex M with a map f : |M | → R linear on cells
such that for all vertices v ofM the value f(v) does not lie in one of the intervals
[h1, h2], [a1, a2], [b1, b2], each of the following pairs of level set complexes is a
pair of combinatorially equivalent complexes, with the equivalence denoted by
the symbol comb≡ .

M=h1

comb≡ M=h2 M≤h1

comb≡ M≤h2 M≥h1

comb≡ M≥h2

M∈[a,b1]
comb≡ M∈[a,b2] M∈[a1,b]

comb≡ M∈[a2,b] M∈[a1,b1]
comb≡ M∈[a2,b2]

Table 2.9: Under the assumptions made for Table 2.8, the natural combinatorial
equivalences between the level set complexes is described completely by the
following assignments.

S=h1 7→ S=h2 S≤h1 7→ S≤h2 S≥h1 7→ S≥h2

S∈[a,b1] 7→ S∈[a,b2] S∈[a1,b] 7→ S∈[a2,b] S∈[a1,b1] 7→ S∈[a2,b2]

S=a1 7→ S=a2 S=b1 7→ S=b2 S=a 7→ S=a S=b 7→ S=b ∅∈∅ 7→ ∅∈∅

It remains to show that Φ is a combinatorial equivalence in terms of cells.
SinceM∈I andM∈J are both polytopal complexes for polytopalM , it suffices to
check that Φ respects the face relation, that is T∈X v S∈Y holds in M∈I if and
only if Φ(T∈X) v Φ(S∈Y ) holds in M∈J . For showing the direction going from
M∈I to M∈J , we can assume that T∈X is canonical, since any cell has a canon-
ical representation. This implies by Lemma 2.34 that T∈Ψ(X) is the canonical
representation of Φ(T∈X). For the opposite direction we can symmetrically as-
sume that T∈Ψ(X) is the canonical representation for Φ(T∈X) implying that T∈X
is canonical as well. Under these assumptions, Lemma 2.10 and the fact that Ψ
is a combinatorial equivalence yield the following equivalences completing the
proof:

T∈X v S∈Y ⇐⇒ T v S ∧X v Y ⇐⇒ T v S ∧Ψ(X) v Ψ(Y )
⇐⇒ T∈Ψ(X) v S∈Ψ(Y ) ⇐⇒ Φ(T∈X) v Φ(S∈Y )

2.3.2 More Combinatorially Equivalent Level Set Com-
plexes and First Conclusions

A First Step towards Level Preserving Isotopies. The next result es-
tablishes a combinatorial equivalence between the level set complex M∈[a,b] and
the product complex M=h × [a, b] of the level set complex M=h with an in-
terval [a, b] containing h when no value in the interval [a, b] is attained at a
vertex of M . This result can be viewed as a first step towards a piecewise linear
analogue of Fact 1.3 for smooth Morse theory, that there is a level preserv-
ing isotopy between level sets of an interval without critical values. Note that
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for any value t ∈ [a, b] the product complex M=h × {t} can be identified with
M=h in the obvious way, and that it can also be identified in a natural way
with a level set complex of M=h× [a, b], namely the complex (M=h× [a, b])π2=t
where π2 is the projection to the second coordinate of the Cartesian product
|M=h| × [a, b], which is a linear map. For t = a or t = b the complex M=h×{t}
is even a subcomplex of M=h × [a, b] that can be identified with M=h. Using
this identification, it makes sense to say that a combinatorial equivalence on
M=h× [a, b] restricted to the subcomplex M=h×{a} or M=h×{b} agrees with
some combinatorial equivalence defined on M=h.

Lemma 2.36. Assume that M is a polytopal complex with a map f : |M | → R
linear on cells such that f(v) /∈ [a, b] for all vertices v of M . Then M∈[a,b] is
combinatorially equivalent to M=h× [a, b] for any h ∈ [a, b]. At the endpoints of
the interval [a, b], the combinatorial equivalence restricts to the natural combina-
torial equivalences in the sense of Lemma 2.35 betweenM=a andM=h (identified
with M=h × {a}) on the one hand and between M=b and M=h (identified with
M=h × {b}) on the other hand.

Proof. Under the given assumption that no value in [a, b] is attained at vertices
of the polytopal complex M , Lemmata 2.28 and 2.30 yield that for any fixed
cell S of M either all of S=a, S=b, S∈[a,b], and S=h are canonical or all of them
are empty. This shows that assignments that map the cell S∈Y in M∈[a,b] to
the cell S=h×Y in M=h× [a, b] and vice versa are independent of the represen-
tation of the cells and inverse to each other. At the endpoints of the interval
with the indicated identifications, these assignments obviously agree with the
assignments of the natural combinatorial equivalence from Lemma 2.35.

For establishing that the assignments define a combinatorial equivalence be-
tween M∈[a,b] and M=h × [a, b], it remains to check that T∈X is a face of S∈Y
in M∈[a,b] if and only if T=h ×X is a face of S=h × Y in M=h × [a, b]. Accord-
ing to Lemma 2.30 again, the face relation T∈X v S∈Y holds in M∈[a,b] if and
only if T∈X is empty or T v S and X v Y hold. By our first observation in
this proof, T∈X is empty if and only if T=h is empty or X is empty, which is
again equivalent to T=h×X being the empty cell in M=h× [a, b]. Furthermore,
by Lemma 2.28, the relation T=h v S=h holds if and only if T=h is empty or
T v S. We can conclude that T∈X v S∈Y holds if and only if T=h is empty or
X is empty or T=h v S=h and X v Y hold. But this last criterion is exactly
the characterisation of the face relation T=h × X v S=h × Y in the product
complex M=h × [a, b] as observed in Definition 1.15.

Corollary 2.37. For any value h that is not attained as f -value at vertices of
a polytopal complex M , the level set M=h is bicollared in M . If additionally M
is a combinatorial manifold and M=h a sub-manifold of M , then M=h is locally
flat in M .

Proof. If f(v) 6= h for all vertices, then for some small enough ε no vertex has
a value in [a, b] = [h − ε, h + ε]. Applying Lemma 2.36 for the intervals [a, h]
and [h, b] yields combinatorial equivalences between M=h × [a, h] and M∈[a,h]
on the one hand and M=h × [h, b] and M∈[h,b] on the other hand. When we
identify the common subcomplex M=h × {h} of M=h × [a, h] and M=h × [h, b]
with M=h, both combinatorial equivalences restrict to the natural combinato-
rial equivalence, which is the identity on M=h. Consider the interval complex
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I = F([a, h]) ∪ F([h, b]). Then M∈I contains M∈[a,h], M∈[h,b], and M=h as
subcomplexes and M=h×I contains M=h× [a, h], M=h× [h, b], and M=h×{h}
as subcomplexes. Since the two combinatorial equivalences agree on their com-
mon intersection, we can combine them into a single combinatorial equivalence
between M∈I and M=h × I. We follow the construction of Lemma 1.30 to
obtain combinatorially equivalent triangulations of both complexes without in-
troducing new vertices, and transform the combinatorial equivalence between
M∈I and M=h × I into a PL homeomorphism φ : |M=h × I| → |M∈I | between
their domains by simplex-wise linear interpolation based on the constructed tri-
angulations. According to our observations in Lemma 1.30, the combinatorial
equivalence in terms of vertices between the induced triangulations ofM=h×{h}
andM=h is still the one given by the natural identification of the vertices, so that
simplex-wise linear interpolation yields the natural identification of |M=h×{h}|
and |M=h|, in other words the restriction of φ to |M=h×{h}| corresponds to the
identity on |M=h|. Since the domain of I is the interval [a, b], we can consider φ
as a PL embedding of |M=h|× [a, b] into |M |, and as such it fulfils the definition
of a bicollar.

For the second claim, consider a point p in |M=h|. We have to check two
properties: The first is that p is a boundary point of |M=h| if and only if
it is a boundary point of |M |, which establishes that (M,M=h) is a proper
manifold pair; and the second is that for some neighbourhood N of p in |M |,
the pair (N,N=h) is homeomorphic to the standard ball pair. We verify both
properties in parallel. Note first that any neighbourhood of p in |M∈[a,b]| is
also a neighbourhood of p in |M | because |M∈[a,b]| is a neighbourhood of |M=h|
by continuity of f . Since M=h is a manifold by assumption, there is a ball
neighbourhood N ′ of p in |M=h|. Furthermore, p is a boundary point of |M=h| if
and only if it is a boundary point ofN ′. Now the pair (N ′×[a, b], N ′) is obviously
homeomorphic to the standard ball pair and N ′ × [a, b] is a neighbourhood of
(p, h) in |M=h| × [a, b], with (p, h) being a boundary point of N ′ × [a, b] if and
only if p is a boundary point of N ′. The PL homeomorphism φ constructed in
the first part of the proof maps this pair (N ′ × [a, b], N ′) to some pair (N,N ′)
with N ′ = N=h where N is some neighbourhood of p in |M∈[a,b]| which is
also a neighbourhood of p in |M | as noted above. Furthermore, φ(p, h) = p
is a boundary point of N if and only if (p, h) is a boundary point in N ′ ×
[a, b]. Now we can concatenate the single proof steps and establish the two
desired properties: Composing the equivalences regarding the property of being
a boundary point, we obtain that p is a boundary point of M=h if and only if
it is a boundary point of its neighbourhood N in |M |, which is again equivalent
to p being a boundary point of |M |. This proves that (M,M=h) is a proper
manifold pair. For the second property, we have seen that for the constructed
neighbourhood N of p in |M |, the pair (N,N=h) = (N,N ′) is homeomorphic
to (N ′ × [a, b], N ′) which is again homeomorphic to the standard ball pair as
desired.

A Useful Combinatorial Equivalence and Its Implications. For simpli-
cial complexes, there is a useful combinatorial equivalence between certain level
sets in the link and the star of a vertex. Namely, for a value b different from the
value f(v) at the vertex v, the level set of the star of v at level b is, depending
on whether b is greater or less than f(v), equivalent either to the upper level
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v

st(v)=b

lk(v)≥b

U

U≥b

(vU)=b

vU

Figure 2.2: An example for the combinatorial equivalence of lk(v)≥b and st(v)=b
for a vertex v of a simplicial complex and a value b > f(v). For an edge U ∈ lk(v)
and the adjacent triangle vU ∈ st(v), the level set cells U≥b ∈ lk(v)≥b and
(vU)=b ∈ st(v)=b, that correspond to each other in the combinatorial equiva-
lence, are indicated.

set of the link above level b or to the lower level set of the link below level b.
An instance of such a pair of combinatorially equivalent level set complexes is
depicted in Figure 2.2, including an example for a pair of level set cells that cor-
respond to each other under the combinatorial equivalence defined in the proof
below. Actually the proof only requires that the star of the considered vertex v
is the cone on its link with apex v. But if each vertex of a polytopal complex
fulfils this condition, then an elementary starring at a vertex has no effect on
the complex, which means that the complex is in fact simplicial, because trian-
gulating it by starring at each vertex reproduces the original complex. On the
other hand, the weaker assumption still has its merits for polytopal complexes in
general, since we can perform an elementary starring at some arbitrary point p
in its domain, yielding a subdivision with p as a vertex fulfilling st(p) = p lk(p).
The result plays a crucial role for the construction of level-preserving isotopies
in Chapter 4.

Lemma 2.38. Let M be a polytopal complex with a map f : |M | → R linear
on cells. Consider a vertex v such that st(v) is the cone v lk(v) and some
value b > f(v). There is a combinatorial equivalence between the level set
complexes lk(v)≥b and st(v)=b that is the identity on their common subcom-
plex lk(v)=b. Symmetrically, for b < f(v), there is a combinatorial equivalence
between the level set complexes lk(v)≤b and st(v)=b that is the identity on their
common subcomplex lk(v)=b

Proof. We only give the proof for the case b > f(v). Our aim is to define a poset
isomorphism φcomb : lk(v)≥b → st(v)=b that extends the identity on lk(v)=b.
Clearly, any cell of lk(v)≥b that does not already belong to lk(v)=b can be rep-
resented by a term U≥b for some cell U of lk(v) and its canonical representation
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is necessarily of that form. Similarly, since we assume st(v) = v lk(v), any
cell of st(v)=b that does not belong to lk(v)=b is canonically represented by a
term (vW )=b for some cell W ∈ lk(v). Singling out the canonical ones among
those terms U≥b and (vW )=b with the help of Lemmata 2.26 and 2.27 yields
the following bijective correspondences: A term U≥b represents canonically an
i-dimensional cell of lk(v)≥b not belonging to lk(v)=b if and only if U is an i-
dimensional cell of lk(v) that contains at least one vertex with a value greater
than b; a term (vW )=b represents canonically an i-dimensional cell of st(v)=b
not belonging to lk(v)=b if and only if W is an i-dimensional cell of lk(v) that
contains at least one vertex with a value greater than b. Therefore the assign-
ment φcomb(U≥b) = (vU)=b defines a dimension-respecting bijection between
lk(v)≥b \ lk(v)=b and st(v)=b \ lk(v)=b when restricted to cells U of lk(v) that
contain at least one vertex with a value greater than b.

For verifying that φcomb, defined as identity on lk(v)=b and by the above
assignment on lk(v)≥b \ lk(v)=b, is a poset isomorphism, it remains to check
that it respects the face relation, that is Σ v S holds in lk(v)≥b if and only
if φcomb(Σ) v φcomb(S) holds in st(v)=b. This is trivial if Σ and S are both
in lk(v)=b, or if Σ = ∅, which is equivalent to φcomb(Σ) = ∅. So let S be
canonically represented by U≥b and assume first that Σ is a non-empty face of S.
By Lemma 2.1, we have Σ = F≥b or Σ = F=b for some F v U . Furthermore
we can assume without loss of generality that this representation is canonical,
because any canonical representation of a non-empty face of U≥b is of one of the
two forms. In the former case, φcomb(Σ) = (vF )=b v (vU)=b = φcomb(S) holds.
In the latter case we obtain φcomb(Σ) = F=b v U=b v (vU)=b = φcomb(S). It
remains to show the other direction where we assume that φcomb(Σ) is a face
of φcomb(S) = (vU)=b. Non-empty faces of (vU)=b are canonically represented
either by a term (vF )=b or by a term F=b for some face F of U . If φcomb(Σ)
is canonically represented by (vF )=b, we obtain the desired face relation Σ =
F≥b v U≥b = S. Otherwise, if φcomb(Σ) is canonically represented by F=b, we
can conclude Σ = F=b v U≥b = S, which completes the proof.

Applying the fact that combinatorial equivalences induce PL homeomor-
phisms to the combinatorial equivalence constructed in the previous lemma
allows to transfer topological properties of lk(v)≥b to st(v)=b. The next lemma
relies on that observation.

Lemma 2.39. Let M be a d-dimensional combinatorial manifold with a map
f : |M | → R linear on cells. Consider a point x ∈ |M | that is contained in the
interior of a cell where f is non-constant, which means in particular that x must
not be a vertex. Then the level set |M |=f(x) is a (d − 1)-dimensional manifold
in some neighbourhood of x.

Proof. Choose a vertex v of the cell that contains x in its interior such that
f(x) 6= f(v). We can assume f(x) > f(v) without loss of generality, otherwise a
completely symmetric argument applies. By Lemma 2.38, the level set st(v)=f(x)
is combinatorially equivalent to lk(v)≥f(x) with lk(v)=f(x) being fixed. Thus,
there is a PL homeomorphism between | st(v)|=f(x) and | lk(v)|≥f(x) which is the
identity on | lk(v)|=f(x). By our choice of the vertex v, the point x is contained
in | st(v)|, but not in | lk(v)|, implying that it belongs to | st(v)|=f(x) but not
to | lk(v)|=f(x). Therefore the PL homeomorphism maps x to some point y in
| lk(v)|>f(x). Now | lk(v)| is a PL (d − 1)-manifold, in fact a ball or sphere,



2.3. COMBINATORIAL EQUIVALENCES AND COLLAPSES 91

since we assume M to be a d-manifold. Hence its open subset | lk(v)|>f(x)
is a PL (d − 1)-manifold as well, and also its corresponding set under the PL
homeomorphism, namely (| st(v)|\ | lk(v)|)=f(x). The general fact for any vertex
v of a combinatorial manifold M that | st(v)| \ | lk(v)| is an open neighbourhood
in |M | of any of its points, shows that |M |=f(x) is a (d − 1)-manifold in the
neighbourhood | st(v)| \ | lk(v)| of x as desired, namely the manifold (| st(v)| \
| lk(v)|)=f(x). Furthermore x is mapped to a boundary point of lk(v) if and only
if x itself is a boundary point.

Note that if any two vertices forming an edge of M have different f -values,
then the assumption on the point x in the Lemma is fulfilled for any point that
is not a vertex. Recall that we defined a map linear on cells to be in general
position if all its values at vertices are distinct, so that this remark applies in
particular to maps in general position. In addition, we can invoke Corollary 2.37
for any level set |M |=h such that the value h is not attained at vertices.

Corollary 2.40. Let M be a d-dimensional combinatorial manifold with a map
f : |M | → R linear on cells.

1. If f is in general position (it suffices to assume that any vertices u, v such
that uv is an edge of M have distinct f -values), then any point in |M |=h
that is not a vertex of M has some neighbourhood in |M | in which |M |=h
is a (d− 1)-manifold.

2. Even without general position assumption on f , it is true for any value h
not attained at vertices, that |M |=h is a (d − 1)-dimensional locally flat
sub-manifold of |M |.

Proof. Under the given assumptions, any point that is not a vertex is contained
in the interior of a cell where f is non-constant and Lemma 2.39 yields the first
claim. Since being a manifold is a local property, a set that is a manifold in the
neighbourhood of any of its points, is also globally a manifold. If the value h is
not attained at vertices, then no point x in |M |=h is contained in a cell where
f is constant, because the constant value for the cell would be h and it would
be attained at all vertices of the cell. This observation holds even if f is not
in general position. Therefore |M |=h is a (d− 1)-dimensional manifold for any
value h not attained at vertices, because it is a manifold in the neighbourhood
of any of its points by Lemma 2.39. It follows from Corollary 2.37 that |M |=h
is locally flat in |M |.

2.3.3 Collapsing Lower Level Set Complexes
Now we turn to the investigation of collapses that can be performed on level set
complexes.

Collapsing Canonically Represented Pairs. For lower and upper level set
complexes M≤h or M≥h, the cells S of M that are neither completely contained
in nor disjoint from the level set contribute two cells to the complex, namely
S=h and the lower part S≤h or the upper part S≥h respectively. We show that
this pair of cells can be collapsed, which may require prior collapsing of co-
faces. Note that even if M is simplicial, the level set complexes M≤h or M≥h
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are usually not simplicial. Therefore the results rely on the remark made in
Subsection 1.2.10, that collapses can be defined without change on polytopal
complexes as well. Below, we formulate all results only for lower level set com-
plexes. The analogous statements for upper level set complexes are also true
and can be proven in the same way. We start with a proof for maximal cells S.

Lemma 2.41. Let S be a maximal cell of a polytopal complex M such that the
terms S≤h and S=h are canonical. Then an elementary collapse of the cells S≤h
and S=h can be performed in the complex M≤h.

Proof. For verifying that two cells C v D in a complex can be removed by
an elementary collapse, it suffices to show that C and D are distinct and that
the only co-faces of the smaller cell C are C itself and the other cell D. The
assumption that S≤h is canonical guarantees that S≤h and S=h are distinct
cells. Since S=h is canonical, the co-faces of S=h are of the form T≤h or of the
form T=h where T is a co-face of S by Lemma 2.9. This implies T = S because
S is assumed to be maximal in M . Hence S=h and S≤h are the only co-faces of
S=h as desired.

For a cell S with the property that the level set cells S≤h and S=h are
canonical, this property is inherited by all the co-faces of S. Therefore we can
collapse S≤h and S=h after having collapsed inductively all cells T≤h and T=h
for T a co-face of S. This result can be obtained as a corollary of the following
more general strategy for performing collapses on level set complexes:

Lemma 2.42. Let K be a subcomplex of a polytopal complex M such that for
each cell S ∈M \K either the terms S≤h and S=h are both canonical or the level
set cell S≤h is contained in |K|. Then M≤h collapses to K≤h. More specifically,
for each cell S ∈M \K fulfilling the first alternative, the cells S≤h and S=h can
be eventually collapsed after having collapsed co-faces of the same type, whereas
for each cell S ∈M \K that fulfils the second but not the first alternative there
is a cell T ∈ K such that S≤h = S=h = T=h = T holds. Performing all collapses
of the cells S≤h and S=h for S fulfilling the first alternative in a suitable order
yields a collapse from M≤h to K≤h.

Proof. We start with showing the claimed property for cells in S ∈M \K that
fulfil the second but not the first alternative. Note that among the cases in
Lemma 2.25, only Case 3 has the property that the terms S≤h and S=h are
both canonical. This case occurs when f attains on S values strictly greater
than h as well as values strictly smaller than h, a property that is obviously
inherited by all co-faces of S. Hence, if the first alternative does not apply
for S, then f is bounded on S by h, either from below or from above. We
show that the assumption that a value strictly smaller than h is attained on
S leads to contradiction with the other assumptions, excluding Cases 5 and 6
from Lemma 2.25: If a value strictly smaller than h were attained on S, then h
would be an upper bound, meaning S≤h = S. Since we assume that the second
alternative applies, we would obtain that S is contained in |K|, which means
that it belongs to the subcomplex K, contradicting the assumption S ∈M \K.
The only remaining possibility is that h is a lower bound for f on S, which
implies S≤h = S=h, and we also know that these two level set cells agree with a
face T of S, namely with ∅ in Case 1 of Lemma 2.25, where all f -values on S are
strictly greater than h, with S itself in Case 4, where f is constant on S with
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value h, and with the proper face T of S defined by the supporting hyperplane
f−1
S (h) in Case 2, where h is the minimum attained by some non-constant f
on S. In each case, the equality T = T=h is obvious from T = S=h, and the face
T = S≤h is a cell of K, because we assume that S≤h is contained in |K|.

Let (S1, S2, . . . , Sk) be an enumeration of the cells inM \K such that when-
ever Si is a co-face of Sj then i ≤ j. We claim that the sequence of pairs of level
set cells ((S1

≤h, S
1
=h), (S2

≤h, S
2
=h), . . . , (Sk≤h, Sk=h)) describes a sequence of valid

elementary collapses or vacuous operations from the starting complexM≤h, with
a pair describing an elementary collapse if Sj≤h and Sj=h are both canonical, and
a vacuous operation if Sj≤h = Sj=h = T j=h = T j for some T j ∈ K. In other
words, we let K0 = M and Kj = Kj−1 \ Sj for 1 ≤ j ≤ k and show that Kj−1

≤h
collapses to or agrees with Kj

≤h for 1 ≤ j ≤ k. This sequence gives a collapse
from K0

≤h = M≤h to Kk
≤h = K≤h

We consider the complex Kj−1
≤h and the pair (Sj≤h, S

j
=h). If Sj≤h = Sj=h =

T j=h = T j for some T j ∈ K, then clearly Kj−1
≤h and Kj

≤h agree because T j ∈ Kj .
Otherwise we want to collapse the pair (Sj≤h, S

j
=h). Since K is a subcomplex, all

co-faces of Sj are contained in M \K and by our assumption on the sequence
(S1, S2, . . . , Sk), each co-face of Sj is of the form Si for some i ≤ j. Hence
Sj is a maximal cell of Kj−1 = M \ {S1, S2, . . . , Sj−1}. By Lemma 2.41, an
elementary collapse of Sj≤h and Sj=h can be performed in Kj−1

≤h , meaning Kj−1
≤h

collapses to Kj
≤h as desired.

Corollary 2.43. Let S be a cell of a polytopal complex M such that S≤h
and S=h are canonical. Then there is a collapse of M≤h which removes all
cells T≤h and T=h for T a co-face of S.

Proof. Let K be the subcomplex of M obtained by removing S and all its co-
faces from M . It follows immediately from our characterisations of canonically
represented cells that the terms T≤h and T=h for T a co-face of S are also
canonical: The cell S contains elements x+ and x− with f(x+) > h and f(x−) <
h, and then so does T . Hence the cells from M \ K fulfil the requirements of
Lemma 2.42, yielding a collapse of M≤h to K≤h, which is the complex obtained
from M≤h by removing all cells T≤h and T=h for T a co-face of S.

Partial Collapse to a Certain Level. In another variant of the previous
results, instead of collapsing a whole cell S≤h we only collapse the part of the cell
that lies above a certain level. Formally speaking, we consider the subdivision
M≤a ∪M≥a of the complex M induced by the level set M=a where a < h and
the cell S≥a ∈ M≤a ∪M≥a, and apply the collapse to the pair consisting of
(S≥a)≤h = S∈[a,h] and (S≥a)=h = S=h. We call such an operation a collapse
of S≤h to S≤a or a collapse to level a, because in the complex obtained from
M≤h by subdividing and collapsing, the cell S≤h is first subdivided into S≤a
and S∈[a,h], and then the latter part S∈[a,h] is removed, leaving only the former
part S≤a.

Corollary 2.44. Assume a < h and consider the subdivision M≤a ∪M≥a of
a polytopal complex M induced by the level set M=a. Then the following state-
ments regarding collapses in (M≤a ∪M≥a)≤h = M≤a ∪M∈[a,h] hold:
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Let S be a maximal cell of a polytopal complex M such that S≤h and S=h are
canonical. Then on M≤a ∪M∈[a,h] an elementary collapse removing the cells
(S≥a)≤h = S∈[a,h] and (S≥a)=h = S=h can be performed.

Let K be a subcomplex of M such that for each cell S ∈M \K the terms S≤h
and S=h are canonical or the level set cell S≤h is contained in |K| or in |M |≤a.
Then (M≤a ∪M≥a)≤h = M≤a ∪M∈[a,h] collapses to M≤a ∪ (K≥a)≤h = M≤a ∪
K∈[a,h].

Proof. We show that the first claim can be obtained from Lemma 2.41 and the
second from Lemma 2.42 by applying them to M≤a ∪M≥a in place of M and
M≤a ∪K≥a in place of K. Note that we can consider M≤a ∪M≥a as a single
level set complexM∈I for the interval complex I = F((−∞, a])∪F([a,∞)). At
first we observe that S≤h and S=h being both canonical implies that (S≥a)≤h
and (S≥a)=h are both canonical: As used already in the proof of Lemma 2.41,
the terms S≤h and S=h being both canonical is equivalent to S containing
elements x+ and x− with f(x+) > h and f(x−) < h. This condition implies
obviously that the upper part S≥a of the subdivided cell S contains elements y+

and y− with f(y+) > h and f(y−) < h, meaning that the terms (S≥a)≤h and
(S≥a)=h are canonical representations for their cells in (M≥a)≤h. Now if S is a
maximal cell in M with S≤h and S=h being canonical, then we can also prove
that S≥a is maximal in M∈I as follows: The term S≥a is canonical because
S contains an element x+ with f(x+) > h. Therefore Lemma 2.9 shows that
any co-face of S≥a in M∈I is of the form T∈Y where T is a co-face of S in
M and Y a co-face of (−∞, a] in I. Since S is maximal in M and (−∞, a] is
maximal in I, the cell S≥a is also maximal in M∈I . This finishes already the
proof for the first claim, because the maximal cell S≥a in M≤a ∪M≥a fulfils the
requirements of Lemma 2.41, and applying it yields that an elementary collapse
of (S≥a)≤h = S∈[a,h] and (S≥a)=h = S=h can be performed in (M≤a ∪M≥a)≤h.

For the second claim, it remains to check that under the given assumptions
for any cell C in (M≤a ∪M≥a) \ (M≤a ∪ K≥a) either C≤h and C=h are both
canonical or C≤h is contained in |M |≤a ∪ |K|≥a. Such a cell C from the given
set is necessarily representable by a term of the form S≥a for some S ∈M \K.
For such cells S in turn, we assume that either S≤h and S=h are both canonical
or that S≤h is contained in |K| or |M |≤a. We have already seen that the former
assumption implies that C≤h = (S≥a)≤h and C=h = (S≥a)=h are canonical.
If the latter assumption applies and S≤h is contained in |K| or |M |≤a, then
C≤h = (S≥a)≤h = (S≤h)≥a is contained in |K|≥a or |M |≤a as desired. Thus, the
subcomplex M≤a ∪K≥a of M≤a ∪M≥a fulfils the requirements of Lemma 2.42,
showing that M≤a ∪M∈[a,h] collapses to M≤a ∪K∈[a,h].

Performing Collapses to All Applicable Cells. To conclude this chapter,
we examine which cells remain when we perform the collapses to all applicable
cells. We consider both variants, the complete collapse of all pairs S≤h and S=h
in M≤h such that both terms are canonical according to Corollary 2.43 and the
collapse to level a of all cells S∈[a,h] and S=h in M≤a ∪M∈[a,h] such that S≤h
and S=h are canonical according to Corollary 2.44. A small example illustrating
both variants is depicted in Figure 2.3. In the first variant, it turns out that we
obtain not only a subcomplex of M≤h but also a subcomplex of M . It consists
of those cells ofM that have only vertices whose f -values are at most h, in other
words, it is the subcomplex induced by such vertices. This complex can also be
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Figure 2.3: Instances of the collapses of level set complexes described in
Lemma 2.46. The light and dark shaded areas together form the original level
set complex, on the left hand side M≤h, on the right hand side its subdivision
M≤a ∪M∈[a,h]. The dark shaded areas alone represent the resulting complex
after the collapse, namely scp≤h(M) on the left side andM≤a∪(scp≤h(M))∈[a,h]
on the right side.

characterised as the largest subcomplex of M contained in |M |≤h. We denote
such a subcomplex of M consisting of all cells of M lying completely in |M |≤h
for some level h by scp≤h(M), so that the result can be stated symbolically as
M≤h ↘ scp≤h(M).

This first version of the result has been remarked already previously in the
literature: It is mentioned in passing by Brehm and Kühnel [9, p. 468] and
stated by Kühnel [30, Lemma 7.2 (ii), p. 97], with a focus on the case that
M is a combinatorial manifold and h = f(v) for some vertex v. Immediate
consequences of this result are observed by Morozov [37, p. 24], who notes that
there is a deformation retraction from M≤h to scp≤h(M), and by Bauer [6,
Proposition 2.25, p. 31], who points out the homotopy equivalence of the two
complexes. Deformation retractions similar to those induced by the collapses in
the second variant, which retract M∈[a,a+ε] to M=a when f−1(a, a+ ε] contains
no vertices andM∈[f(v)−ε,f(v)] toM=f(v)−ε∪(v(scp≤f(v)(lk(v)))∩M∈[f(v)−ε,f(v)])
when v is the only vertex attaining a value in [f(v)− ε, f(v)], are presented by
Bestvina [7, Propositions 2.4 and 2.7].

Definition 2.45. For a polytopal complex M with a map f linear on cells
and a real value h we denote by scp≤h(M) the subcomplex of M consisting
of all cells of M lying completely in |M |≤h, in other words the subcomplex
induced by the vertices with f -value at most h. We can define an analogous
subcomplex scp≥h(M), which is induced by the vertices with f -value at least h.

Lemma 2.46. Let M be a polytopal complex with a map f linear on cells.
Then for any real value h, the level set complex M≤h collapses to the subcom-
plex scp≤h(M) of M .

M≤h ↘ scp≤h(M)

Furthermore, for any value a ≤ h, the complex M≤a ∪ M∈[a,h] collapses to
M≤a∪ (scp≤h(M))∈[a,h]. In particular, if f−1(a, a+ ε] does not contain vertices
for some ε > 0, then M≤a ∪M∈[a,a+ε] collapses to M≤a.
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Proof. We start by showing that the subcomplex K = scp≤h(M) fulfils the
assumptions of the complex K in Lemma 2.42 and Corollary 2.44. A cell S
outside of K necessarily contains a vertex with f -value strictly greater than h.
Examining again the cases from Lemma 2.25, we see that if S also contains a
vertex with f -value strictly less than h then S≤h and S=h are both canonical.
Otherwise the equalities S≤h = S=h = T=h = T hold for some cell T ∈ K,
meaning that S≤h is contained in |K|. This proves that K has the desired
properties.

Applying Lemma 2.42 yields that M≤h collapses to K≤h. But since K con-
tains only cells of M where f is bounded from above by h, the complexes K≤h
and K agree. This shows the first claim. For the second claim, we apply Corol-
lary 2.44 and obtain that M≤a ∪M∈[a,h] collapses to M≤a ∪ (scp≤h(M))∈[a,h].

For the last claim, it suffices to show that (scp≤a+ε(M))∈[a,a+ε] is a sub-
complex of M≤a. Note that with the given assumption, all cells of M lying
completely in |M |≤a+ε also lie completely in |M |≤a and hence the subcom-
plex scp≤a+ε(M) agrees with scp≤a(M). This gives (scp≤a+ε(M))∈[a,a+ε] =
(scp≤a(M))∈[a,a+ε] = (scp≤a(M))=a, with the last term obviously being a sub-
complex of M≤a.



Chapter 3

Piecewise Linear Morse
Functions

The object of study in classical smooth Morse theory are smooth manifolds
with a smooth map defined on them that fulfils a certain property, namely
that all its critical points are non-degenerate. Such maps are called Morse
functions. In this chapter, we study piecewise linear analogues of the definitions
related to Morse functions, such as definitions for regular and critical points
and the distinction of the latter kind into degenerate and non-degenerate ones.
A short comparison of some previously studied notions of criticality for piecewise
linear maps is also part of the chapter. Furthermore we draw some connections
between Morse functions on simplicial complexes in the piecewise linear sense
and discrete Morse functions on simplicial complexes.

The usual definition of critical points for smooth functions as points where
the derivative vanishes has no direct analogue for piecewise linear maps. But the
Morse lemma in the variant described in Fact 1.1 provides characterisations of
regular and non-degenerate critical points that can be adapted from the smooth
category to other categories of topology. It states that a non-degenerate critical
point p of index λ of a smooth function f is characterised by the existence of
a neighbourhood with local coordinates (x1, . . . , xd) such that p = (0, . . . , 0)
and f(x1, . . . , xd) = f(p) − x2

1 − · · · − x2
λ + x2

λ+1 + · · · + x2
d in this coordinate

system. Similarly, regular points p are characterised by a neighbourhood with
local coordinates (x1, . . . , xd) such that p = (0, . . . , 0) and f(x1, . . . , xd) = f(p)+
x1 in this coordinate system. The remaining points are degenerate critical and
a smooth function is a Morse function if all points are either regular or non-
degenerate critical.

In a paper of Morse [38], analogous characterisations are used to define
“topologically ordinary points”, “topologically critical points (associated with a
canonical mapping of index λ)”, and “topologically non-degenerate functions”
on general topological manifolds. The only change is the type of the local
coordinate system. In classical Morse theory, the local coordinates are given by
diffeomorphisms, whereas the local coordinates in the general topology setting
of [38] can be given by arbitrary homeomorphisms.

This suggests to define analogous objects in the piecewise linear category.
Clearly, the local coordinate system in the characterisations would be given by

97
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PL homeomorphisms. But we also have to change the “standard” functions
for non-degenerate critical points, because a sum of squared coordinates or its
negatives is not a PL function. For our study, we separate the characterisation
of regular and non-degenerate critical points into two parts that can be treated
independently.

For the first part we introduce in Definition 3.1 the notion of local equiv-
alence, that allows to express the statement that some function agrees locally
with some other function when expressed in suitable PL local coordinates in
terms of this equivalence relation. The class of objects that is partitioned into
equivalence classes by this relation is formed by triples (M,x, f) consisting of a
complexM , a point x in its domain, and a map f linear on cells of the complex.
For a given complex M with a map f linear on cells, the points in the domain
can be classified into regular points and different kinds of non-degenerate and
degenerate critical points according to the equivalence class of (M,x, f). We es-
tablish several equivalent characterisations for local equivalence, which in turn
gives several equivalent characterisations for regular and critical points. The
list in Theorem 3.11 gives a synopsis on the different characterisations of local
equivalence.

The second part consists only of identifying the “standard” functions that
exhibit the desired local behaviour at regular or non-degenerate critical points.
More specifically, certain triples are used as reference for defining regular or the
different kinds of non-degenerate critical points of f on M as those points x
such that (M,x, f) is locally equivalent to the respective reference triple. For
example, a suitable reference triple for regular points in d-dimensional mani-
folds could consist of Rd, that is the complex {∅,Rd} to be more precise, its
origin as considered point, and the linear map assigning to each point its first
coordinate x1. The reference triples and which kind of points they define are
listed in Definition 3.12. For the resulting notion of PL Morse functions (Def-
inition 3.13) we show in Theorem 3.24 that any combinatorial manifold has a
PL Morse function that is linear on cells of its derived subdivision. The con-
struction used in the proof is a special case of a more general construction
described in Lemma 3.26, that produces from a given discrete Morse function
on a combinatorial manifold a PL Morse function linear on cells of the derived
of that manifold, whose critical points correspond to critical cells of the original
function.

The first section of this chapter is devoted to the study of local equivalence
and the different ways to characterise this relation. The definition of regular and
critical points and the comparison with other notions of criticality is presented
in the second section. Additional properties and characterisations of regular
points will be considered in a chapter of its own following the present one.

3.1 Local Equivalence
The criterion for non-degenerate critical points given by the Morse lemma and
its variant for regular points have in common that they require the existence of
a local coordinate system such that the representation of the considered func-
tion in these coordinates agrees with a certain function. It seems useful to
capture this common point by introducing a notion that considers functions as
equivalent at points of their domain, when they can be represented by the same
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Figure 3.1: Commuting diagram for Definition 3.1 illustrating local equivalence
of f at x and f ′ at x′.

function in suitable local coordinate systems for both points. We can even go
further and avoid the detour via coordinate systems by using a direct homeo-
morphism between suitable neighbourhoods of the points. This way the notion
of local equivalence also applies to points that do not have a neighbourhood
homeomorphic to some Euclidean space or half-space. Since in Morse theory,
the classification of points into regular and critical points does not change when
the function is shifted by adding a constant, we consider functions also as equiv-
alent when they differ only by a constant. These considerations lead to a notion
that defines two functions at two points in polyhedral complexes as equivalent
if the points have PL-homeomorphic neighbourhoods such that the function
values of corresponding points in these neighbourhoods differ by the same con-
stant throughout the neighbourhoods. We use PL-invariance of links and stars
to show alternative characterisations of local equivalence of two maps at two
points. In particular we show that it is enough to find a PL-homeomorphism
of the links of the points that respects the subdivision into upper level link and
lower level link, with (lk(p))≥f(p) being the upper level link and (lk(p))≤f(p)
being the lower level link of a point p with respect to a map f . This result is
stated in Corollary 3.10.

A notion of equivalence based on the above ideas for defining regular and
critical points in the piecewise linear category has been suggested previously
by Kosinski in [29], where such a notion is even defined for maps that take
values in higher dimensional Euclidean spaces. Although the literal definitions
of Kosinski’s notion of equivalence and of the local equivalence studied below
differ in some details, they turn out to be equivalent in all cases where both
notions can be applied. We postpone the comparison of the two notions to the
next section, when the results of the current section are available and make the
comparison easier.

3.1.1 Definition and First Observations
Definition 3.1 (local equivalence). Let M and M ′ be polyhedral complexes
with maps f : |M | → R and f ′ : |M ′| → R linear on cells. The function f at x ∈
|M | is called locally equivalent to f ′ at x′ ∈ |M ′| if there are neighbourhoods Nx
of x in M and N ′x′ of x′ in M ′, a PL homeomorphism φ : Nx → N ′x′ mapping
x to x′, and a constant c, such that for any y ∈ Nx, the difference between the
value at the point itself and the value at its corresponding point φ(y) agrees
with the constant c, that is, f ′(φ(y)) − f(y) = c. In other words, restricted
to Nx, the maps f ′ ◦ φ and f + c agree, so that the diagram in Figure 3.1
commutes. Note that the value of the constant c is necessarily f ′(x′) − f(x),
and that the requirement can also be expressed by the condition that the map
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Nx
g

!!

φ
// N ′x′

g′

��

R

Figure 3.2: Commuting diagram for Remark 3.2 illustrating local equivalence
of f at x and f ′ at x′ by the shifted maps g = f − f(x) and g′ = f ′ − f ′(x′).

(f ′ ◦φ)−f is constant throughout Nx, again with the constant being necessarily
c = f ′(x′)− f(x).

Variants of the Definition. The definition can be rephrased in various ways
by shifting the maps f and f ′ or by making additional assumptions on the
neighbourhoods that are possible because the PL homeomorphism φ can be
restricted to smaller neighbourhoods once a suitable pair of neighbourhoods is
established. We collect some easy observations of this kind. The possibility to
switch freely between more and less restrictive assumptions facilitate the proofs
of other characterisations later on.
Remark 3.2. In Definition 3.1, instead of considering the values of the maps f
and f ′ itself, we can equivalently consider values that are shifted by some con-
stants. In other words, f and f ′ are locally equivalent at x and x′ if and only
if the maps f + s and f ′ + s′ defined by (f + s)(y) = f(y) + s for y ∈ |M |
and s ∈ R and by (f ′ + s′)(y′) = f ′(y′) + s′ for y′ ∈ |M ′| and s′ ∈ R are
locally equivalent at these two points. For a fixed pair of points x and x′, a
particularly useful choice for shifting the maps is the consideration of the maps
g = f − f(x) and g′ = f ′ − f ′(x′). One advantage of this choice is that the
function values at the two points agree and even that the common value is zero:
g(x) = g′(x′) = 0. Another advantage is that it leads to the simplified com-
mutative diagram from Figure 3.2 where g′ ◦ φ = g holds when the maps are
restricted to the neighbourhoods Nx and N ′x′ :

Proof. The maps f ′ ◦φ and f+c agree on Nx if and only if the maps (f ′+s′)◦φ
and (f + s) + (c− s+ s′) agree on Nx.

The above remark shows that when we ask for local equivalence at a fixed
pair of points x and x′, we can always assume f(x) = f ′(x′) = 0 without loss
of generality. Furthermore, the requirement that the difference f ′(φ(y))− f(y)
between the function values at corresponding points y and φ(y) is constantly
f ′(x′)−f(x) throughout the neighbourhood is equivalent to the requirement that
the values of the shifted maps f − f(x) and f ′ − f ′(x′) agree at corresponding
points y and φ(y) throughout the neighbourhood: f(y) − f(x) = f ′(φ(y)) −
f ′(x′).
Remark 3.3. For the neighbourhoods Nx and N ′x′ in Definition 3.1 certain addi-
tional properties can be assumed without loss of generality. In the following, we
focus on the neighbourhood Nx, but all assumptions can be made analogously
for N ′x′ even if not stated explicitly. First of all, the assumptions described in
Subsection 1.2.8 on pseudo-radial projection can be applied: We can assume
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that Nx is a cone neighbourhood xLx with a polytopal complex Lx as link com-
plex of x. Furthermore it can be assumed that the restriction of the map f
to the neighbourhood |xLx| is linear on cells of the complex xLx. A similar
assumption regarding the PL homeomorphism φ is possible: Without loss of
generality the map φ is a cellular bijection between cone neighbourhoods given
by complexes xLx and x′L′x′ .

Proof. Once a pair of PL-homeomorphic neighbourhoods Nx and N ′x′ with PL
homeomorphism φ : Nx → N ′x′ and the properties required in Definition 3.1
is established, we can restrict φ to any smaller neighbourhood Ñx ⊆ Nx and
consider Ñx and its image Ñ ′x′ = φ(Ñx) ⊆ N ′x′ . Then the pair of neighbour-
hoods Ñx and Ñ ′x′ obviously fulfils the required properties as well, with the
restriction φ̃ of φ being the PL homeomorphism. Therefore we start with some
neighbourhoods N0 of x and N ′0 of x′ fulfilling the requirements in Definition 3.1
with some PL homeomorphism φ0 : N0 → N ′0, and construct iteratively smaller
PL-homeomorphic neighbourhoods Ni ⊆ Ni−1 of x and N ′i ⊆ N ′i−1 of x′ with
the PL homeomorphism φi : Ni → N ′i being a restriction of φ0, until we ob-
tain a pair of neighbourhoods Nk and N ′k that fulfils all suggested additional
properties.

As a first step, we choose for N1 a compact cone neighbourhood xL̃1 con-
tained in stM (x) ∩N0, for example an ε-neighbourhood for sufficiently small ε.
Since N1 is compact, its image N ′1 = φ0(N1) = φ1(N1) is also compact, and
we can find polytopal complexes K0 and K ′0 whose domains are the considered
neighbourhoods N1 = |K0| and N ′1 = |K ′0|. We subdivide both complexes by
taking the intersection complexes K1 = K0∩M and K ′1 = K ′0∩M ′. Recall from
Theorem 1.31 and its proof, that we can find subdivisions K2 of K1 and K ′2 of
K ′1 such that φ1 : |K2| → |K ′2| is a cellular bijection with respect to the subdi-
visions K2 and K ′2 inducing a combinatorial equivalence between K2 and K ′2.
This means that a restriction of φ1 yields a cellular bijection between the com-
binatorially equivalent subcomplexes stK2(x) and stK′2(x′). Since φ1(x) = x′,
this map remains a cellular bijection when we subdivide stK2(x) and stK′2(x′)
by elementary starrings at x and x′ into x lkK2(x) and x′ lkK′2(x′).

We show that N2 = |x lkK2(x)| and N ′2 = |x′ lkK′2(x′)| have all desired
properties. By construction, N2 andN ′2 are cone neighbourhoods with polytopal
complexes lkK2(x) and lkK′2(x′) as link complexes. The step where we took the
intersection complexes with M and M ′ to obtain K1 and K ′1 ensures that each
cell of K1 is contained in a cell of M and that each cell of K ′1 is contained in a
cell of M ′. Now x lkK2(x) and x′ lkK′2(x′) are subdivisions of the subcomplexes
stK2(x) and stK′2(x′) of the subdivisions K2 and K ′2 of K1 and K ′1 respectively.
This implies that each cell of x lkK2(x) is contained in a cell of M and that
each cell of x′ lkK′2(x′) is contained in a cell of M ′, so that f is linear on cells of
x lkK2(x) and f ′ is linear on cells of x′ lkK′2(x′). We noted already above that the
restriction φ2 of φ1 is a cellular bijection between x lkK2(x) and x′ lkK′2(x′).

Characterisation Using Link Complexes. When we restrict the PL home-
omorphism φ2 : N2 → N ′2 constructed in the preceding proof to the link com-
plexes | lkK2(x)| and | lkK′2(x′)| and apply the cone construction with the apices x
and x′ to the restriction, we obtain φ2 itself again. Since a PL homeomor-
phism between link complexes always induces a PL homeomorphism between
the corresponding stars, we could ask whether finding a PL homeomorphism
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φlk : |Lx| → |L′x′ | between link complexes Lx for x and L′x′ for x′ such that
(f ′ ◦ φlk) − f has the constant value f ′(x′) − f(x) throughout Lx is sufficient
for a local equivalence of f at x and f ′ at x′. Although the answer is negative
in general, a simple additional condition on the induced cone neighbourhoods
xLx and x′L′x′ turns the suggested condition into a characterisation of local
equivalence. We have to ensure that the values of the maps on the links and at
the points x and x′ themselves capture the local behaviour of the maps near x
and x′ completely. This is the case if f and f ′ are linear on all the line segments
connecting x or x′ with points in the links. Since this additional property is
inherited by smaller neighbourhoods |xL̃x| ⊆ |xLx| and |x′L̃′x′ | ⊆ |x′L′x′ | when
fulfilled by the larger ones, we could say informally that the characterisation
works for sufficiently small link complexes.

Lemma 3.4. Let M and M ′ be polyhedral complexes with maps f : |M | → R
and f ′ : |M ′| → R linear on cells. Then f at x ∈ |M | is locally equivalent to f ′
at x′ ∈ |M ′| if and only if there are link complexes Lx for x and L′x′ for x′ with
a PL homeomorphism φlk : |Lx| → |L′x′ | such that the following properties hold:

• The link complex Lx witnesses that f is conical at x in the sense that the
equality f(λx+ (1−λ)y) = λf(x) + (1−λ)f(y) for y ∈ |Lx| and λ ∈ [0, 1]
characterises the values of f in the cone neighbourhood xLx.

• The link complex L′x′ witnesses that f ′ is conical at x′ in the sense that
the equality f ′(λx′+ (1−λ)y′) = λf ′(x′) + (1−λ)f ′(y′) for y′ ∈ |L′x′ | and
λ ∈ [0, 1] characterises the values of f ′ in the cone neighbourhood x′L′x′ .

• The map (f ′◦φlk)−f has the constant value f ′(x′)−f(x) throughout |Lx|.

For the first property, it is sufficient to choose a link complex Lx whose domain
is contained in | stM (x)|. Analogously, choosing L′x′ with |L′x′ | ⊆ | stM ′(x′)|
guarantees the second property.

Proof. For showing that the condition is necessary for local equivalence, we can
take the link complexes of the cone neighbourhoods constructed in the previous
proof for Remark 3.3. Since f and f ′ are linear on cells of these cone neighbour-
hoods, the first two properties are fulfilled. Restricting the PL homeomorphism
φ2 from the previous proof to the links yields a PL homeomorphism φlk with
the desired properties.

For proving sufficiency, extend φlk by the cone construction to a PL home-
omorphism φ between the cone neighbourhoods xLx and x′L′x′ . Since by as-
sumption f and f ′ are also given by the cone construction on the respective
cone neighbourhoods, the map (f ′ ◦ φ) − f has not only the constant value
f ′(x′) − f(x) on |Lx| and at x but also throughout |xLx| by interpolation, be-
cause we can compute the value for any z = λx+ (1−λ)y ∈ |xLx| with y ∈ |Lx|
as follows:

((f ′ ◦ φ)− f)(z) = f ′(φ(λx+ (1− λ)y))− f(λx+ (1− λ)y)
= f ′(λx′ + (1− λ)φlk(y))− (λf(x) + (1− λ)f(y))
= λ(f ′(x′)− f(x)) + (1− λ)(f ′(φlk(y))− f(y))
= λ(f ′(x′)− f(x)) + (1− λ)(f ′ ◦ φlk − f)(y)
= λ(f ′(x′)− f(x)) + (1− λ)(f ′(x′)− f(x))
= f ′(x′)− f(x)
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Since f is assumed to be linear on cells ofM , it is linear on each line segment
from x to a point in | stM (x)|. This proves that f being conical at x is witnessed
by any link of x contained in | stM (x)|. Analogously, f ′ being conical at x′ is
witnessed by any link of x′ contained in | stM ′(x′)|

Characterisation in Terms of Combinatorially Equivalent Subdivi-
sions. We can use the fact that the existence of a PL homeomorphism is
equivalent to the existence of combinatorially equivalent subdivisions to obtain
another characterisation of local equivalence. This characterisation would re-
quire combinatorially equivalent link complexes for x and x′, but in general we
would still have to check whether the induced PL homeomorphism φlk fulfils
(f ′ ◦ φlk) − f = f ′(x′) − f(x) at every point. When we ensure that f and f ′

can be computed by interpolation between the vertices of the considered link
complexes and the points x and x′ itself, then checking the values at vertices
suffices.
Remark 3.5. Let M and M ′ be polyhedral complexes with maps f : |M | → R
and f ′ : |M ′| → R linear on cells. Then f at x ∈ |M | is locally equivalent to f ′ at
x′ ∈ |M ′| if and only if there are combinatorially equivalent link complexes Lx
for x and L′x′ for x′ with the following three properties: The link complexes
witness that f and f ′ are conical at x and x′ respectively; the map f is linear on
cells of Lx, and f ′ is linear on cells of L′x′ ; for any pair of vertices v ∈ Vrt(Lx)
and v′ ∈ Vrt(L′x′) that correspond under the combinatorial equivalence, the
difference of the function values is constantly f ′(v′)− f(v) = f ′(x′)− f(x).

Proof. For necessity, we can again use the link complexes constructed in the
proof for Remark 3.3. They fulfil all properties by construction.

For showing sufficiency, we can assume that Lx and L′x′ are simplicial by
subdividing them according to Lemma 1.30 without introducing new vertices.
Such a subdivision does not affect the three properties. The PL homeomor-
phism φlk : |Lx| → |L′x′ | induced by simplex-wise linear interpolation fulfils
(f ′ ◦ φlk)(v) − f(v) = f ′(x′) − f(x) initially at every vertex v of Lx by as-
sumption. Since φlk is simplicial, f linear on cells of Lx, and f ′ linear on cells of
L′x′ , this property is inherited from the vertices by all points in |Lx| by simplex-
wise linear interpolation. This shows that (f ′ ◦ φlk) − f = f ′(x′) − f(x) holds
throughout |Lx| and applying Lemma 3.4 yields local equivalence of f at x and
f ′ at x′.

Transitivity of the Local Equivalence Relation. We still have to show
that our definition of local equivalence induces an equivalence relation on the
class of all triples (M,x, f) where x ∈ |M | is a point in the domain of a poly-
hedral complex M with a function f : |M | → R linear on cells. Reflexivity and
symmetry are obvious. For transitivity, we can use the observation that the
neighbourhoods in the definition can be replaced by smaller neighbourhoods.

Lemma 3.6. The local equivalence relation is transitive and hence an equiva-
lence relation on the class of all triples (M,x, f) where x ∈ |M | is a point in the
domain of a polyhedral complex M with a function f : |M | → R linear on cells.

Proof. Assume that f ′ at x′ ∈ |M ′| is locally equivalent to f at x ∈ |M | by the
neighbourhood homeomorphism φ : N ′ → N1 commuting with g = f−f(x) and
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g′ = f ′ − f ′(x′) and that f at x ∈ |M | is locally equivalent to f ′′ at x′′ ∈ |M ′′|
by ψ : N2 → N ′′ commuting with g = f − f(x) and g′′ = f ′′ − f ′′(x′′). Take
a neighbourhood N of x contained in both neighbourhoods N1 and N2 and
replace the neighbourhoods of x′ and x′′ by the corresponding images of N
under the homeomorphism, namely Ñ ′ = φ−1(N) and Ñ ′′ = ψ(N). Then
ψ ◦φ : Ñ ′ → Ñ ′′ gives the desired PL-homeomorphism between neighbourhoods
of x′ and x′′ commuting with g′ and g′′.

3.1.2 Characterisations Based on Signs Instead of Values
Now we want to show that the precise function values on the links are not really
important for checking local equivalence.

Sufficiency of Matching Signs. So far, we have required for a point y in a
link of x and its corresponding point y′ = φlk(y) in a link of x′, that the values
g(y) = f(y) − f(x) and g′(y′) = f ′(y′) − f ′(x′) agree exactly. But it turns
out that it suffices that the signs of g(y) and g′(y′) agree to guarantee local
equivalence. Rephrased in terms of f and f ′, this means that it suffices that the
order relations of the function values of f in comparison to the value f(x) and
the order relations of f ′ in comparison to the value f ′(x′) agree at corresponding
points of the links. In the case that the complexes M and M ′ are polytopal, an
additional advantage of this weaker requirement is that we can always assume
that the considered link complexes are subdivisions of lkM (x) and lkM ′(x′). We
start by proving sufficiency of such a criterion.

Lemma 3.7. Consider two polyhedral complexes M and M ′ with two associ-
ated maps f : |M | → R and f ′ : |M ′| → R linear on cells. Assume that there are
combinatorially equivalent link complexes L for x and L′ for x′ such that f is
linear on cells of xL and f ′ linear on cells of x′L′, for example some combinato-
rially equivalent subdivisions of lkM (x) and lkM ′(x′) in polytopal complexes M
and M ′. Furthermore assume that for each vertex v of L and its corresponding
vertex v′ of L′ under the combinatorial equivalence, the value f(v) has the same
order relation in comparison to f(x) as the value f ′(v′) in comparison to f ′(x′),
that is: f(v) ≥ f(x)↔ f ′(v′) ≥ f ′(x′) and f(v) ≤ f(x)↔ f ′(v′) ≤ f ′(x′). This
assumption can be restated more conveniently in terms of the shifted maps g =
f − f(x) and g′ = f ′ − f ′(x′): Assume that the shifted maps g and g′ have
the same sign at corresponding vertices of L and L′. Then f at x is locally
equivalent to f ′ at x′.

Proof. We can assume that L and L′ are simplicial by subdividing them ac-
cording to Lemma 1.30 without introducing new vertices. Recall from Subsec-
tion 1.2.8 on pseudo-radial projection that moving the vertices of L and L′ on
rays emanating from x and x′ in direction towards x and x′ does not affect the
combinatorial equivalence between the complexes. Choose ε > 0 smaller than
any non-zero absolute value |g(v)| and |g′(v′)| of the shifted functions at the
vertices v of L and v′ of L′. Construct a link L1 for x from L by keeping all
vertices v with g(v) = 0 and replacing all other vertices v by the vertex v1 such
that v1 lies on the ray through v emanating from x and |g(v1)| = ε. By our
choice of ε, the replacement of v by v1 corresponds to a movement in direc-
tion of x on the ray. Therefore L1 and L are combinatorially equivalent links
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Figure 3.3: Schematic example for the construction of the link complex L1 for
x from the link complex L for x in the proof of Lemma 3.7. At the vertices of
L, the symbols +, −, or 0 indicate that the shifted function g has positive or
negative sign, or is zero at the respective vertex. At the corresponding vertices
of L1 the value of g is +ε, −ε, or zero. The link complexes L and L1 are
combinatorially equivalent by pseudo-radial projection in a similar fashion as
the link complexes in Figure 1.4, because L1 is obtained from L by replacing
each vertex by a vertex lying on the same ray emanating from x.

for x by pseudo-radial projection according to Fact 1.32. See Figure 3.3 for a
schematic example of such a construction of L1 from L. Analogously, construct
a link L′1 for x′ from L′ by keeping all vertices v′ with g′(v′) = 0 and replacing
all other vertices v′ by the vertex v′1 such that v′1 lies on the ray through v′

emanating from x′ and |g′(v′1)| = ε. Again L′1 is combinatorially equivalent to
L′ by pseudo-radial projection. We show that L1 and L′1 are combinatorially
equivalent link complexes fulfilling the criteria in Remark 3.5.

The combinatorial equivalence between L and L′ induces a combinatorial
equivalence between L1 and L′1 in the obvious way. By construction, each cell S1
of L1 is contained in a cell xS, where S is the cell of L which corresponds to S1
by pseudo-radial projection. Since f is linear on xS by assumption, it is linear
on xS1 ⊆ xS as well. This guarantees that f is linear on cells of the link
complex L1 and furthermore that L1 witnesses that f is conical at x. Similarly,
each cell of L′1 is contained in a cell of x′L′, so that L′1 witnesses that f ′ is
conical at x′ and f ′ is linear on cells of L′1.

The last required property in Remark 3.5 that f ′(v′1)−f(v1) = f ′(x′)−f(x)
holds at corresponding vertices v1 of L1 and v′1 of L′1 can be rephrased in terms of
the shifted maps g and g′ by requiring that g(v1) = g′(v′1) holds at corresponding
vertices. A classification of the vertices of L and L′ into three classes according
to the sign of g and g′, induces a partition into three classes for the vertices of
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L1 and L′1: For corresponding vertices v of L and v′ of L′ with g(v) = g′(v′) = 0,
we chose v1 = v in L1 and v′1 = v′ in L′1, so that for such pairs of corresponding
vertices the equality g(v1) = g′(v′1) still holds. For corresponding vertices v of L
and v′ of L′ with g(v) > 0 and g′(v′) > 0, we chose the corresponding vertices v1
of L1 and v′1 of L′1 in such a way that g(v1) = ε = g′(v′1) holds. And finally,
for corresponding vertices v of L and v′ of L′ with g(v) < 0 and g′(v′) < 0,
we chose the corresponding vertices v1 of L1 and v′1 of L′1 in such a way that
g(v1) = −ε = g′(v′1) holds. Since we assumed that the signs of g and g′ agree at
corresponding vertices of L and L′, all possible cases are covered and the proof
is finished.

The Other Direction. It remains to show that a criterion as in the previous
lemma is also necessary for local equivalence.

Lemma 3.8. If (M,x, f) and (M ′, x′, f ′) are locally equivalent, then any pair
of link complexes L for x and L′ for x′ such that |L| ⊆ | stM (x)| and |L′| ⊆
| stM ′(x′)|, in particular for polytopal complexes M and M ′ the pair L = lkM (x)
and L′ = lkM ′(x′), has combinatorially equivalent subdivisions such that corre-
sponding vertices have the same order relation in comparison to the values at x
and x′ respectively.

Proof. Apply the characterisation of local equivalence from Lemma 3.4 to the
pair of triples (M,x, f) and (M ′, x′, f ′). This yields link complexes Lx for x
and L′x′ for x′ witnessing f and f ′ as conical at x and x′ respectively and a PL
homeomorphism φlk : |Lx| → |L′x′ | with g′ ◦φlk = g on |Lx|, where g = f − f(x)
and g′ = f ′ − f ′(x′) as usual. Then we use pseudo-radial projection to find
combinatorially equivalent subdivisions L̃x of Lx and L̃ of L as described in
Subsection 1.2.8: We take the polyhedral fans L+

x and L+ and construct the
intersection complexes L̃x = L+

x ∩L+∩Lx and L̃ = L+
x ∩L+∩L. By construction,

the link complexes L̃x and L̃ induce the same polyhedral fan L+
x ∩ L+. An

analogous construction yields combinatorially equivalent subdivisions L̃′x′ of L′x′
and L̃′ of L′.

As a next step, we apply the fact that PL-homeomorphic complexes can be
subdivided in such a way that the PL homeomorphism is a simplicial bijection
with respect to these subdivisions. We obtain subdivisions L̄x of L̃x and L̄′x′ of
L̃′x′ such that φlk : |L̄x| → |L̄′x′ | is simplicial. These subdivisions and the simpli-
cial map φlk can be lifted by the pseudo-radial projections between L̃x and L̃ on
the one hand and between L̃′x′ and L̃′ on the other hand to subdivisions L̄ of L̃
and L̄′ of L̃′ and a simplicial bijection ψ : |L̄| → |L̄′| as follows: The polyhedral
fan L̄+

x is a subdivision of the polyhedral fan L̃+
x = L̃+. Therefore pseudo-radial

projection of the simplicial link complex L̄x to L̃ yields a simplicial subdivision
of L̃, namely L̄ = L̄+

x ∩ L̃. With this construction, we can observe that L̄ and
L̄x are combinatorially equivalent by pseudo-radial projection. In particular, a
vertex v̄ of L̄ corresponds to a vertex v̄x of L̄x under this equivalence if and only
if the extended cones v̄+ and v̄+

x define the same ray emanating from x. The
subdivision L̄′ of L̃′ is obtained analogously by pseudo-radial projection of L̄′x′
to L̃′. The simplicial map ψ : |L̄| → |L̄′| is merely the composite of the three
simplicial bijections inherent to our construction: first, the simplicial bijection
induced by pseudo-radial projection from |L̄| and |L̄x|, then the simplicial bi-
jection φlk from |L̄x| to |L̄′x′ |, and finally the simplicial bijection induced by
pseudo-radial projection from |L̄′x′ | to |L̄′|.
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We show that L̄ and L̄′ are combinatorially equivalent subdivisions of L
and L′ with the desired property that the maps g and g′ have the same sign
at corresponding vertices of L̄ and L̄′. The combinatorial equivalence is given
by the simplicial bijection ψ. A vertex v̄ of L̄ corresponds to a vertex v̄′ of
L̄′ under ψ if and only if their counterparts by pseudo-radial projection, that
is, the vertices v̄x in L̄x and v̄′x′ in L̄′x′ with the property that v̄x and v̄ lie
on the same ray emanating from x and that v̄′x′ and v̄′ lie on the same ray
emanating from x′, correspond to each other via φlk. So let v̄ and v̄′ such a pair
of corresponding vertices in L̄ and L̄′ with counterparts v̄x in L̄x and v̄′x′ in L̄′x′ .
Since g′ ◦φlk agrees with g on |L̄x| = |Lx|, the function values g(v̄x) and g′(v̄′x′)
at the counterparts agree. Therefore it suffices to show that g(v̄x) has the same
sign as g(v̄), and that g′(v̄′x′) has the same sign as g′(v̄′). We only show the
former claim, the latter follows from a completely analogous proof.

The vertices v̄ and v̄x lie on the same ray emanating from x, hence one of
the line segments xv̄ and xv̄x is contained in the other. The map f is linear
on both line segments: It is linear on xv̄ because v is contained in |L| which
in turn is assumed to be contained in | stM (x)|; it is linear on xv̄x because Lx
witnesses that f is conical at x. Clearly, the shifted map g is also linear on
both line segments, and its value at x is zero. Since a linear map on a line
segment is either constant or uniformly strictly increasing or decreasing in a
given direction, we can conclude that when we follow the ray emanating from
x in direction of v and vx, pass through the point with smaller distance to x
of the two points, and continue until we reach the point with larger distance,
then the values of the map g along the path will either be constantly zero,
implying g(v) = g(vx) = 0, or they will be strictly increasing, implying that
g(v) and g(vx) are both positive, or they will be strictly decreasing, implying
that g(v) and g(vx) are both negative. This completes the proof.

From Matching Signs at Vertices to Matching Signs at All Points. In
the previous two lemmata, the criterion asks only for matching signs of g and g′
at corresponding vertices of combinatorially equivalent subdivisions. When we
switch from combinatorial equivalences to PL homeomorphisms, we could ask
for matching signs at all corresponding points. Such a characterisation of local
equivalence is possible and stated in the next lemma, but a PL homeomorphism
with that property cannot be obtained immediately from a combinatorial equiv-
alence with matching signs only by interpolation. For example, two edges that
each have one endpoint with negative value and one endpoint with positive
value are combinatorially equivalent with matching signs at the vertices. But
the intermediate points on the edges where the functions attain the value zero
are not necessarily corresponding under the induced simplicial map between the
two edges. For obtaining a PL homeomorphism between the edges that respects
the sign at all intermediate points, we have two subdivide both edges into a non-
negative and a non-positive part at the point where zero is attained and then
interpolate on the non-negative and non-positive parts individually.

Lemma 3.9. Let M and M ′ be polyhedral complexes with maps f : |M | → R
and f ′ : |M ′| → R linear on cells. Assume that L is a link complex for x ∈
|M | whose domain is contained in | stM (x)|, and analogously that L′ is a link
complex for x′ ∈ |M ′| whose domain is contained in | stM ′(x′)|. Then f at x
is locally equivalent to f ′ at x′ if and only if there is a PL homeomorphism
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φlk : |L| → |L′| such that φlk maps |L≥f(x)| to φlk(|L≥f(x)|) = |L′≥f ′(x′)| and
|L≤f(x)| to φlk(|L≤f(x)|) = |L′≤f ′(x′)|, in other words if and only if there is a PL
homeomorphism between L and L′ such that f − f(x) and f ′ − f ′(x′) have the
same sign at corresponding points in |L| and |L′|.

Proof. We assume first local equivalence and construct a PL homeomorphism.
Subdivide L into L̃ = L≤f(x) ∪ L≥f(x) and L′ into L̃′ = L′≤f ′(x′) ∪ L

′
≥f ′(x′).

By Lemma 3.8, the complexes L̃ and L̃′ have combinatorially equivalent sub-
divisions L̄ and L̄′ such that f − f(x) and f ′ − f ′(x′) have the same sign
at corresponding vertices. We can assume that L̄ and L̄′ are simplicial us-
ing Lemma 1.30. Then a PL homeomorphism φlk : |L̄| → |L̄′| is induced by
simplex-wise linear interpolation of the combinatorial equivalence in terms of
vertices.

By construction, L̄ contains L̄=f(x), L̄≤f(x) and L̄≥f(x) as subcomplexes,
and analogously, L̄′ contains L̄′=f ′(x′), L̄′≤f ′(x′) and L̄′≥f ′(x′) as subcomplexes.
Since f − f(x) and f ′ − f ′(x′) have the same sign at corresponding vertices
of L̄ and L̄′ and on each simplex the respective map attains either only non-
negative or only non-positive values, the signs also agree at the interpolated
corresponding points as follows: The sign of f(y) − f(x) for y ∈ |L̄| is zero if
and only if y is contained in a simplex of L̄=f(x); a simplex belongs to L̄=f(x)
if and only if its corresponding simplex under the combinatorial equivalence
belongs to L̄′=f ′(x′), meaning that y is contained in a simplex of L̄=f(x) if and
only if φlk(y) is contained in a simplex of L̄′=f ′(x′); but φlk(y) is contained in a
simplex of L̄′=f ′(x′) if and only if the sign of f ′(φlk(y)) − f ′(x′) is zero. For a
positive sign, we can argue that f(y) − f(x) for y ∈ |L̄| is positive if and only
if y is contained in the interior of a simplex of L̄≥f(x) that does not belong to
L̄=f(x); a simplex of L̄ belongs to L̄≥f(x) but not to L̄=f(x) if and only if the
corresponding simplex in L̄′ belongs to L̄′≥f ′(x′) but not to L̄′=f ′(x′), meaning
that y is contained in the interior of a simplex of L̄≥f(x) \ L̄=f(x) if and only if
φlk(y) is contained in a simplex of L̄′≥f ′(x′) \ L̄′=f ′(x′); but φlk(y) is contained in
the interior of a simplex of L̄′≥f ′(x′) \ L̄′=f ′(x′) if and only if f ′(φlk(y)) − f ′(x′)
has positive sign. A symmetric argument using L̄≤f(x) and L̄′≤f ′(x′) yields the
desired equivalence for negative signs at corresponding points.

Now we show that local equivalence is implied by a PL homeomorphism
φlk : |L| → |L′| respecting the signs at corresponding points. When we subdivide
L into L̃ by taking its intersection complex with x lkM (x), the map f is linear
on cells of xL̃. For an analogous subdivision L̃′ of L′, the map f ′ is linear on
cells of xL̃′. Regarding φlk as PL homeomorphism from |L̃| to |L̃′|, we can find
combinatorially equivalent simplicial subdivisions L̄ of L̃ and L̄′ of L̃′ such that
the restriction of φlk to the vertex set of L̄ forms the combinatorial equivalence
in terms of vertices between the two subdivisions. Then the link complexes L̄
and L̄′ fulfil all conditions required in Lemma 3.7 for ensuring local equivalence,
namely that the signs of f−f(x) and f ′−f ′(x′) agree at corresponding vertices,
that f is linear on cells of xL̄, and that f ′ is liner on cells of x′L̄′.

When the considered complexes are polytopal, the previous lemma can be
applied in particular to L = lkM (x) and L′ = lkM ′(x′).
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Corollary 3.10. For polytopal complexes M and M ′ with maps f : |M | → R
and f ′ : |M ′| → R linear on cells, f at x ∈ |M | is locally equivalent to f ′ at x′ ∈
|M ′| if and only if there is a PL homeomorphism φlk : | lkM (x)| → | lkM ′(x′)|
between the links of x and x′ mapping the lower level link | lkM (x)|≤f(x) of x to
the lower level link | lkM ′(x′)|≤f ′(x′) of x′ and the upper level link | lkM (x)|≥f(x)
of x to the upper level link | lkM ′(x′)|≥f ′(x′) of x′.

Proof. Apply Lemma 3.9 to L = lkM (x) and L′ = lkM ′(x′).

The PL homeomorphism φlk in Lemma 3.9 can be extended by the cone con-
struction to a PL homeomorphism φ : |xL| → |x′L′| between the corresponding
cone neighbourhoods, and this homeomorphism obviously respects the signs of
f −f(x) and f ′−f ′(x′) at every point of the cone neighbourhood if φlk respects
the signs on the links.

Summary. The next theorem summarises the criteria for local equivalence
we collected in the preceding results. Note that some of the criteria establish a
certain kind of trade-off between exactly matching values and matching signs on
the one hand and the mere existence of suitable corresponding neighbourhoods
and a freedom to choose a pair of sufficiently small neighbourhoods on the
other hand: For the criteria where the PL homeomorphism is only required to
respect the signs, such a homeomorphism exists between any pair of sufficiently
small cone neighbourhoods with polytopal link complexes if the maps are locally
equivalent at the points. For the criteria that require exactly matching values at
corresponding points, we can only ensure for sufficiently small neighbourhoods
that a matching neighbourhood at the other point exists if the maps are locally
equivalent.

Theorem 3.11. The following conditions equivalently characterise the property
that (M,x, f) and (M ′, x′, f ′) are locally equivalent triples of a polytopal com-
plex, a point in its domain, and a map linear on its cells. All but the last two
criteria also work for polyhedral complexes.

1. There is a PL homeomorphism between some cone neighbourhoods of x
and x′ mapping x and x′ to each other such that f − f(x) and f ′ − f ′(x′)
commute with the PL homeomorphism.

2. There are combinatorially equivalent cone neighbourhoods of x and x′ such
that x corresponds to x′ and the maps f − f(x) and f ′ − f ′(x′) are linear
on cells of the cone neighbourhoods and agree at corresponding vertices.

3. There are PL-homeomorphic link complexes for x and x′ contained in the
stars of x and x′ such that f − f(x) and f ′− f ′(x′) commute with the PL
homeomorphism.

4. There are combinatorially equivalent link complexes for x and x′ contained
in the stars of x and x′ such that f − f(x) and f ′ − f ′(x′) are linear on
cells of the link complexes and agree at corresponding vertices.

5. There are PL-homeomorphic link complexes for x and x′ contained in the
stars of x and x′ such that f − f(x) and f ′− f ′(x′) have the same sign at
corresponding points.
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6. There are combinatorially equivalent link complexes for x and x′ contained
in the stars of x and x′ such that f−f(x) and f ′−f ′(x′) are linear on cells
of the link complexes and have the same sign at corresponding vertices.

7. Any pair of link complexes for x and x′ that are contained in the stars of
x and x′ is PL-homeomorphic in such a way that f − f(x) and f ′− f ′(x′)
have the same sign at corresponding points.

8. Any pair of link complexes for x and x′ that are contained in the stars of
x and x′ has combinatorially equivalent subdivisions such that f − f(x)
and f ′ − f ′(x′) have the same sign at corresponding vertices.

9. There is a PL homeomorphism between lk(x) and lk(x′) mapping upper
level link to upper level link and lower level link to lower level link, that is,
f − f(x) and f ′ − f ′(x′) have the same sign at corresponding points.

10. The links lk(x) and lk(x′) have combinatorially equivalent subdivisions
such that f − f(x) and f ′ − f ′(x′) have the same sign at corresponding
vertices.

3.2 Regular and Critical Points
In smooth Morse theory, a Morse function is defined as a smooth map whose
critical points are all non-degenerate. For an analogous definition of piecewise
linear Morse functions (Definition 3.13), we suggest in Definition 3.12 a classi-
fication of the points in the domain of a piecewise linear function into regular
points, non-degenerate critical points, and degenerate critical points based on
the local equivalence class of the map at the point. We show in Lemma 3.22
that a map linear on cells of a combinatorial manifold and in general position
has only critical points that are vertices of the combinatorial manifold. Fur-
thermore, any combinatorial manifold has a piecewise linear Morse function in
the sense of the proposed definition as stated in Theorem 3.24: For any derived
subdivision of the combinatorial manifold, a PL Morse function linear on cells
of the subdivision can be constructed.

We also compare our definition of regular and critical points with previously
suggested and studied notions. The definitions given by Kosinski in [29] and by
Eells and Kuiper in [17] are basically equivalent to ours. Other variants amount
to a weakening of the requirements for what we called local equivalence from
a topological condition to a condition based only on homology. The definition
by Brehm and Kühnel [9] considers the homology with coefficients in a field
of the lower level link (lk(v))≤f(v) and classifies the vertices by the Betti num-
bers. Banchoff’s approach in [4] amounts to classify the vertices by the Euler
characteristic of the lower level link.

The discrete Morse theory developed by Forman [18, 19] differs fundamen-
tally from the other approaches. The functions considered are not PL functions
on the domain, but functions that assign numbers to cells. Nevertheless some
links between discrete Morse theory and PL Morse theory can be found: Our
proof for the existence of PL Morse functions on the derived of any combina-
torial manifold exhibits some similarities with the existence proof for discrete
Morse functions that establishes such a function with all cells being critical. In
fact, it can be viewed as a special case of a more general method described in
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Lemma 3.26 for constructing PL Morse functions from discrete Morse functions
preserving criticality in a certain sense.

3.2.1 Reference Triples
Recall that regular points and non-degenerate critical points in smooth Morse
theory can be characterised as points where a suitable local coordinate system
allows to represent the map f by the standard example of its kind. Regular
points p have a p-centred local coordinate system (X1, . . . , Xd) in terms of which
the map is represented by f(p) +X1, and non-degenerate critical points p have
a p-centred local coordinate system (X1, . . . , Xd) in terms of which the map is
represented by f(p) − X2

1 − · · · − X2
λ + X2

λ+1 + · · · + X2
d . At least for regular

points, this characterisation can easily be transferred to the piecewise linear
setting. For smooth Morse theory, the local coordinate system is understood to
be a smooth coordinate system, and the piecewise linear analogue is to require
a piecewise linear local coordinate system instead. This suggests the following
characterisation for a PL-ordinary or PL-regular point p of a piecewise linear
map f on the domain of a polyhedral complexM : The point is PL-regular if and
only if there is a p-centred piecewise linear local coordinate system (X1, . . . , Xd)
such that f is represented by the term f(p) +X1 in these coordinates.

We can rephrase this condition using the notion of local equivalence in-
troduced in the previous section. The existence of a p-centred piecewise lin-
ear local coordinate system (X1, . . . , Xd) such that f is represented by a map
f ′(X1, . . . , Xd) in terms of these coordinates is equivalent to (M,p, f) being
locally equivalent to some triple (U, 0, f ′) with U being some suitable poly-
hedral complex whose domain is a neighbourhood of 0 in Rd where the map
f ′ is defined. Since we can neglect the shifting by the constant f(p) when
using local equivalence for the characterisation, we obtain that p is a PL-
regular point for f if and only if (M,p, f) is locally equivalent to (Rd, 0, f ′)
with f ′(X1, . . . , Xd) = X1. In this fashion, we can classify points in the domain
of a polyhedral complex with a real-valued map linear on cells according to the
local equivalence class. Certain triples (M,x, f) are treated as reference to rep-
resent their local equivalence class. The reference triples used here consist of a
suitable subdivision of a Euclidean space or half-space, the origin as considered
point, and a standard map whose level sets near the origin behave as desired.

For the piecewise linear analogue of the non-degenerate critical points, we
cannot adopt the standard reference maps used in the smooth case because a
sum of signed squares of the coordinates is not a piecewise linear map. Re-
placements for these maps should be chosen in such a way that the level sets
have the same topological features near the point as their smooth counterparts.
A natural candidate for a piecewise linear analogue of the square of a coordi-
nate is its absolute value. Hence we could replace a sum of signed squares of
coordinates −X2

1 − · · · − X2
λ + X2

λ+1 + · · · + X2
d by a sum of correspondingly

signed absolute values of the coordinates and define a PL non-degenerate crit-
ical point of index λ as a point at which f is locally equivalent to the map
−|X1| − · · · − |Xλ|+ |Xλ+1|+ · · ·+ |Xd| at the origin of Rd.

In a paper on the construction of contour trees by Chiang, Lenz, Lu, and
Rote [13], also points on the boundary of a 2- or 3-dimensional combinatorial
manifold with a real-valued map linear on cells are taken into account for the
classification into regular and critical points. Inspired by this classification, we
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also suggest standard functions for non-degenerate boundary points. However,
apart from some basic observations on such points, we do not investigate PL
Morse theory for manifolds with boundary any further.

Definition 3.12 (regular and critical points). The following reference maps
are used as standard examples for defining regular and non-degenerate critical
points:

πdj (X1, . . . , Xd) = Xj

fdλ(X1, . . . , Xd) = −|X1| − · · · − |Xλ|+ |Xλ+1|+ · · ·+ |Xd|
gdλ(X1, . . . , Xd) = −|X1| − · · · − |Xλ|+ |Xλ+1|+ · · ·+ |Xd−1| − |Xd|

The maps πdj and fdλ occur in reference triples for both interior and boundary
points, whereas the maps gdλ are only used for boundary points. For the globally
linear coordinate maps πdj we use the Euclidean space Rd or the Euclidean half-
space Rd+ = Rd

πd
d
≥0 without further subdivision, that is, the induced complexes

F(Rd) = {∅,Rd} or F(Rd+) = {∅,Rd−1,Rd+} where Rd−1 is identified with the
hyperplane Rd

πd
d
=0 bounding the half-space. The maps fdλ and gdλ are linear on

each orthant of Rd. Hence we subdivide the Euclidean space or half-space into
orthants by the hyperplanes Xj = 0 for each j, yielding the subdivisions Ωd of
Rd and Ωd+ of Rd+. The maps fdλ are considered on both subdivisions Ωd and Ωd+;
the maps gdλ are only considered on the subdivision Ωd+ of the half-space Rd+.
These subdivisions can be defined formally as intersection complexes of level
set complexes with respect to the coordinate functions and the interval complex
I = {∅, (−∞, 0], {0}, [0,∞)} as follows:

Ωd =
d⋂
j=1

(F(Rd))πd
j
∈I Ωd+ =

d−1⋂
j=1

(F(Rd+))πd
j
∈I

In each case, we use the origin 0 of Rd as reference point.
Let M be a polyhedral complex with a map f : |M | → R linear on cells.

A point x ∈ |M | is called a PL-regular or PL-ordinary (interior) point of f
(in dimension d > 0) if (M,x, f) is locally equivalent to (Rd, 0, πd1); it is called
a PL-regular boundary point of f (in dimension d > 1) if (M,x, f) is locally
equivalent to (Rd+, 0, πd1). All points that are not PL-regular points of f are
called PL-critical points of f . Certain types of PL-critical points listed below
are called PL non-degenerate critical points, the remaining critical points are
PL degenerate critical points: A point x ∈ |M | is called a PL non-degenerate
critical (interior) point of f (in dimension d ≥ 0) of index λ if (M,x, f) is locally
equivalent to (Ωd, 0, fdλ) where the index λ is an integer in the range 0 ≤ λ ≤ d; it
is called a PL non-degenerate boundary-critical point of f (in dimension d > 0)
of index λ for 0 ≤ λ < d if it is locally equivalent to (Ωd+, 0, fdλ) or (Ωd+, 0, gdλ);
when we want to distinguish the two types of boundary-critical points, we call
points with fdλ as reference map of lower type, and points with gdλ as reference
map of upper type. We usually omit the prefix “PL” and call the points regular,
non-degenerate critical, and so on. A value h ∈ R is called a critical value if its
preimage f−1(h) contains a critical point, otherwise it is called a regular value.
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Definition 3.13 (PL Morse function). A map f : |M | → R linear on cells
of a polyhedral complex M is called a PL Morse function, if for some fixed
dimension d all points in |M | are PL-regular or PL non-degenerate critical points
in dimension d.

Remark 3.14. Note that if M has a map f : |M | → R that is a PL Morse
function, then |M | is necessarily a PL manifold.

Proof. Since f is at each point locally equivalent to one of the standard maps
at the origin of some d-dimensional Euclidean space or half-space for some fixed
dimension d, each point has a neighbourhood PL-homeomorphic to a neighbour-
hood of the origin in Rd or Rd+. This means that |M | is a PL d-manifold, and the
interior points of |M | are exactly the regular interior points and non-degenerate
critical interior points of f , and the boundary points of |M | are exactly the
regular boundary points and non-degenerate boundary-critical points of f .

Unambiguity of the Classification. As a first step, we check that the clas-
sification of the points in Definition 3.12 is unambiguous in the sense that for
each point x ∈ |M | and each map f : |M | → R linear on cells of M at most one
of the reference triples used in Definition 3.12 is locally equivalent to (M,x, f).
We consider the standard cross-polytope as link complex for the origin and show
that no PL homeomorphism can map the lower level link with respect to one
reference map to the lower level link with respect to another reference map. In
fact two such lower level links are not even homotopy equivalent since they have
different Betti numbers. For distinguishing the cases for boundary points we do
not only consider the link as a whole but also its restriction to the boundary.
The occurring lower level links are homotopy equivalent to either a single point,
or the empty set, or some λ-sphere. We recall some facts that we need for the
proof.
Fact 3.15. Any cone is collapsible, that is, for any complex K, the cone aK
collapses to the apex a [21, Example 2, p. 49]. Any maximal cell S of K is a
free face of aS, and collapsing such a pair yields the cone a(K \ {S}), hence
induction on the number of cells of K proves the claim.
Fact 3.16. A single point, the empty set, and the λ-spheres for λ ≥ 0 each
have different sets of Betti numbers. Therefore any two spaces that are each
homotopy equivalent to one of the above spaces but not to the same one are
neither homotopy equivalent nor PL-homeomorphic to each other.

For a point and the empty set the homology groups and the Betti numbers
can be easily computed using simplicial homology with integer coefficients and
the complex {∅} for the empty set and a complex F(v) = {∅, {v}} with some
vertex v for a point: For the complex {∅}, all chain groups Cn({∅}), bound-
ary maps δn, and consequently all homology groups Hn({∅}) are zero, yielding
βn({∅}) = 0 for all n. For F(v), the only non-zero chain group is C0(F(v))
which is isomorphic to Z, and all boundary maps are zero, yielding H0(F(v))
isomorphic to Z as only non-zero homology group and β0(F(v)) = 1 as only
non-zero Betti number.

For the computation of the homology groups of the λ-spheres Sλ, we refer to
Hatcher [25, Corollary 2.14, p. 114] stating for the reduced homology groups that
H̃λ(Sλ) is isomorphic to Z and that all other groups H̃n(Sλ) for n 6= λ are zero.
For transferring this result to unreduced homology, recall from Subsection 1.2.10
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Table 3.1: The first five Betti numbers β0 to β4 for a point, the empty set, and
the λ-spheres for λ ≤ 4.

β0 β1 β2 β3 β4 . . .

point 1 0 0 0 0 . . .

empty set 0 0 0 0 0 . . .

0-sphere 2 0 0 0 0 . . .

1-sphere 1 1 0 0 0 . . .

2-sphere 1 0 1 0 0 . . .

3-sphere 1 0 0 1 0 . . .

4-sphere 1 0 0 0 1 . . .
...

...
...

...
...

...
. . .

the fact for non-empty spaces X, that the unreduced homology group H0(X) is
isomorphic to the direct sum of Z with the reduced homology group H̃0(X) and
that for all other n 6= 0, the unreduced homology group Hn(X) is isomorphic to
the reduced homology group H̃n(X) [25, p. 110]. This gives the Betti numbers
β0(S0) = 2, β0(Sλ) = 1 for λ > 0, βλ(Sλ) = 1 for λ > 0, and βn(Sλ) = 0 for
n 6= 0 and n 6= λ. The Betti numbers βn with 0 ≤ n ≤ 4 for a point, the empty
set, and Sλ with λ ≤ 4 are listed in Table 3.1.

Lemma 3.17. Any two distinct reference triples used in Definition 3.12 are not
locally equivalent, namely the triples (Rd, 0, πd1) for regular interior points, the
triples (Rd+, 0, πd1) for regular boundary points, the triples (Ωd, 0, fdλ) for non-
degenerate critical interior points, and the triples (Ωd+, 0, fdλ) and (Ωd+, 0, gdλ) for
non-degenerate boundary-critical points.

Proof. Any link complex of the origin in Rd is a (d − 1)-sphere, and any link
complex of the origin in Rd+ is a (d−1)-ball. Since local equivalence implies that
the link complexes of the considered points are PL-homeomorphic, two reference
triples could only be locally equivalent if the dimensions match and either both
triples classify interior points or both triples classify boundary points. Note that
all reference maps have the value 0 at the origin. Furthermore for simplifying the
proof, we can replace the reference triple (Rd, 0, πd1) by the locally equivalent
triple (Ωd, 0, πd1) and the reference triple (Rd+, 0, πd1) by the locally equivalent
triple (Ωd+, 0, πd1). The local equivalence of these two pairs of triples is due
to the fact that for any subdivision K of a complex M , the triples (M,x, f)
and (K,x, f) are locally equivalent as witnessed by the identity id : |M | → |K|
between the neighbourhoods |M | = |K| of x. Let us deal with triples classifying
interior points first.

Interior Points. As link complex for the origin in Rd, we choose the bound-
ary of the standard cross-polytope, in other words the unit sphere Sd−1

1 with
respect to the 1-norm around the origin. It can be considered as a simplicial
complex in a natural way: For each orthant or Rd, the intersection with Sd−1

1 is
a simplex spanned by the end points of the unit vectors spanning the orthant,
and these simplices are the maximal simplices of a simplicial complex triangulat-
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ing Sd−1
1 . The vertices of this triangulation are the points whose coordinates are

those of the standard base vectors or their negatives, that is, all but one of the
coordinates are zero and the exceptional value is 1 or −1. We denote by ei the
vertex with coordinate Xi = 1 and by −ei the vertex with coordinate Xi = −1.

So let f and g be two distinct functions among the reference maps πd1 and fdλ .
If (Ωd, 0, f) were locally equivalent to (Ωd, 0, g), Lemma 3.9 would imply that
there is a PL homeomorphism φlk : Sd−1

1 → Sd−1
1 mapping (Sd−1

1 )f≤0 homeo-
morphically to (Sd−1

1 )g≤0. We will show that (Sd−1
1 )πd1≤0 is a collapsible PL ball,

hence homotopy equivalent to a point, (Sd−1
1 )fd0≤0 is empty, and (Sd−1

1 )fd
λ
≤0 is

homotopy equivalent to a (λ− 1)-sphere for 1 ≤ λ ≤ d, rendering the existence
of φlk impossible because of Fact 3.16.

The values of the standard maps at the vertices of Sd−1
1 are easy to com-

pute. The map πd1 is zero at all but two vertices of Sd−1
1 , with πd1(e1) = 1 and

πd1(−e1) = −1 being the exceptions. Since no simplex of Sd−1
1 contains both e1

and −e1, the lower level complex (Sd−1
1 )πd1≤0 is the subcomplex of Sd−1

1 con-
sisting of those simplices that do not contain e1, in other words the simplices
lying in the half-space X1 ≤ 0. Similarly, (Sd−1

1 )πd1 =0 is the (d− 2)-dimensional
unit sphere with respect to the 1-norm in the subspace X1 = 0 and the sub-
complex of Sd−1

1 consisting of the simplices lying in that subspace. Moreover,
(Sd−1

1 )πd1≤0 is the cone on (Sd−1
1 )πd1 =0 with apex −e1. Therefore (Sd−1

1 )πd1≤0 is
a (d− 1)-ball, and it collapses to the apex −e1 by Fact 3.15.

The map fd0 has the value 1 at all vertices of Sd−1
1 , hence (Sd−1

1 )fd0≤0 is
empty. For maps fdλ with λ > 0, we apply Lemma 2.46 stating for polytopal
complexes M that M≤h collapses to scp≤h(M). Accordingly, (Sd−1

1 )fd
λ
≤0 col-

lapses to and is homotopy equivalent to the subcomplex scpfd
λ
≤0(Sd−1

1 ) induced
by the vertices with fdλ-value at most 0. At the vertices ei and −ei with i ≤ λ,
we have fdλ(ei) = fdλ(−ei) = −1 < 0, and at the remaining vertices ei and −ei
with i > λ, the values are fdλ(ei) = fdλ(−ei) = 1 > 0. Therefore scpfd

λ
≤0(Sd−1

1 )
agrees with the (λ − 1)-dimensional unit sphere with respect to the 1-norm in
the subspace spanned by the first λ standard base vectors.

Boundary Points. Now we turn to the reference triples for boundary
points. The basic proof strategy is the same as for interior points. As link
complex for the origin in Rd+ we choose the part of Sd−1

1 lying in Rd+. It is
the subcomplex of Sd−1

1 induced by all vertices except −ed and a cone with
apex ed on the intersection of Sd−1

1 and the subspace Xd = 0 as base. Iden-
tifying the subspace Xd = 0 with Rd−1, the base can be identified with the
standard (d − 2)-dimensional unit sphere Sd−2

1 in that subspace, illustrating
that Sd−1

1 ∩ Rd+ = edS
d−2
1 is a (d − 1)-ball with boundary sphere Sd−2

1 . Again
the assumption that the triples (Ωd+, 0, f) and (Ωd+, 0, g) are locally equivalent
for some distinct maps f and g among the standard reference maps, which are
πd1 , fdλ , and gdλ in this case, would imply by Lemma 3.9 that there is a PL
homeomorphism φlk : edSd−2

1 → edS
d−2
1 such that the signs of f(y) and g(φ(y))

agree at each point y ∈ edSd−2
1 . This homeomorphism necessarily restricts to

a PL homeomorphism from the boundary sphere Sd−2
1 to itself respecting the

signs of f and g in the above sense. But applying the characterisation of local
equivalence in Lemma 3.9 in the other direction shows that the restricted home-
omorphism between the boundaries witnesses that the restrictions of f and g to
the subspace Rd−1 are locally equivalent at the origin. Obviously, the restriction
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of πd1 to Rd−1 is πd−1
1 , and the restriction of both fdλ and gdλ to Rd−1 is fd−1

λ .
Now the first part of the proof for interior points in Rd−1 already excludes the
existence of φlk for most of the possible pairs f and g. The only pairs that are not
covered yet consist of a map fdλ and a map gdλ with the same index λ. For such
pairs we establish a contradiction by showing that scpfd0≤0(edSd−2

1 ) is empty,
that scpfd

λ
≤0(edSd−2

1 ) is a (λ − 1)-sphere for λ > 0 and that scpgd
λ
≤0(edSd−2

1 )
collapses to a point. Since fdλ(ed) = 1 > 0, we can conclude immediately that
scpfd

λ
≤0(edSd−2

1 ) is the subcomplex scpfd−1
λ
≤0(Sd−2

1 ), for which we have shown
in the first part of the proof that it is empty for λ = 0 and a (λ − 1)-sphere
for λ > 0. For gdλ, the value at ed is gdλ(ed) = −1 < 0, hence scpgd

λ
≤0(edSd−2

1 )
is the cone with apex ed and base scpgd−1

λ
≤0(Sd−2

1 ), which collapses to ed by
Fact 3.15.

3.2.2 Constructing Link Complexes
Identifying regular and critical points by means of Definition 3.12 becomes more
convenient when we have some tools available to construct suitable link com-
plexes of the origin in Rd or Rd+ for which a combinatorial equivalence with
some link complex of the considered point can be found easily. For meeting the
requirements of Lemma 3.7 which assert local equivalence, the standard map in
question has to be linear on cells of the cone on the link complex with apex at
the origin. This condition is vacuous for the standard map πd1 since it is globally
linear, for the other standard maps it suffices that each cell of the constructed
link complex is contained in one of the orthants. The results in the following
provide some useful tools for constructing link complexes of the origin.

Lemma 3.18. If L is a combinatorial (d− 1)-sphere embedded in Rd such that
its domain |L| and the singleton {0} consisting of the origin are independent
sets in the sense of Definition 1.11, in other words, such that the cone 0L with
base L and apex 0 is a valid simplicial complex in Rd, then L is a link complex
of the origin in Rd. For an analogous result in the half-space Rd+, we assume
that L is a combinatorial (d− 1)-ball embedded in Rd+ with domain independent
of {0} such that the boundary sphere of the ball L agrees with the intersection
of L with the bounding hyperplane Rd−1 of Rd.

Proof. Since 0L is a cone by assumption, we only have to check that |0L| is
a neighbourhood of the origin in Rd or Rd+. We start with the proof for the
whole Euclidean space Rd. By the assumption that L is a combinatorial sphere,
there is a PL homeomorphism φ : |Sd−1

1 | → |L| from the (d − 1)-dimensional
1-norm unit sphere Sd−1

1 in Rd to L. Performing the cone construction to φ
gives a PL homeomorphism φ0 : |0Sd−1

1 | → |0L| between the two cones with the
origin as apex. On this homeomorphism φ0, we want to apply the invariance
of domain theorem [40, p. 33]. It states that the image ψ(U) of a continuous
injection ψ : U → Rd defined on an open set U ⊆ Rd is open in Rd. Choosing
for U the open set |0Sd−1

1 | \ |Sd−1
1 | and the restriction of φ0 to this subset as

continuous injection ψ, the invariance of domain theorem implies that the image
φ0(|0Sd−1

1 | \ |Sd−1
1 |) = |0L| \ |L|, which contains the origin, is an open set in Rd.

Therefore the superset |0L| of this image is a neighbourhood of the origin in Rd.
The proof for the half-space can be based on the proof for the whole space.

Under the given assumptions, L and its mirror image L− obtained by reflection
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at the bounding hyperplane Rd−1 together form a combinatorial (d− 1)-sphere
L∪L− such that {0} and |L∪L−| are independent sets. Then L∪L− is a link
complex for the origin in Rd by the first part, and consequently, its intersection
with the half-space L = (L∪L−)∩Rd+ is a link complex for the origin in Rd+.

Joining Link Complexes. The next result shows how to construct link com-
plexes for the origin from lower dimensional link complexes for the origin in com-
plementary subspaces. We consider Rd as decomposed into the subspaces Rk
and Rd−k, with Rk being identified with the subspace of vectors whose last
d − k coordinates Xk+1, . . . , Xd are zero and with Rd−k being identified with
the subspace of vectors whose first k coordinates X1, . . . , Xk are zero. When
considering the origin in Rd+, the second subspace Rd−k is replaced by the half-
space Rd−k+ identified with the set of vectors whose first k coordinates X1, . . . ,
Xk are zero and whose last coordinate Xd is non-negative.

Lemma 3.19. Let L1 be a link complex for the origin in Rk and let L2 be a link
complex for the origin in Rd−k for some k in the range 1 ≤ k ≤ d−1. Then the
the domains of L1 × {0}d−k and {0}k × L2 are independent sets in Rd and the
join of the two complexes is a link complex for the origin in Rd. If L2 is a link
complex for the origin in Rd−k+ instead, then the domains of L1 × {0}d−k and
{0}k × L2 are independent sets as well and their join is a link complex for the
origin in Rd+. When we consider the empty set as link complex for the origin in
R0, we can also allow the extreme cases k = 0 and k = d, where L1 = L1∅ or
L2 = ∅L2 are already link complexes for the origin in Rd or Rd+ themselves.

Proof. The cases k = 0 and k = d are trivial. We first prove that |L1 ×{0}d−k|
and |{0}k × L2| are independent sets. Assume that λ({p1} × {0}d−k) + (1 −
λ)({0}k × {p2}) = µ({q1} × {0}d−k) + (1− µ)({0}k × {q2}) for some points p1
and q1 in |L1| and p2 and q2 in |L2| with parameters λ and µ in [0, 1]. We have
to show λ = µ and p1 = q1 unless λ = µ = 0 and p2 = q2 unless λ = µ = 1.
Considering the first k and the last d−k coordinates separately, the assumption
implies λp1 = µq1 and (1−λ)p2 = (1−µ)q2. Since a link complex for the origin
has the property that any ray emanating from the origin intersects the link at
exactly one point, we can conclude that the equality λp1 = µq1 for p1 and q1 in
|L1| implies λ = µ and p1 = q1 unless λ = µ = 0, and that (1−λ)p2 = (1−µ)q2
for p2 and q2 in |L2| implies λ = µ and p2 = q2 unless λ = µ = 1 as desired.

Let us denote the join (L1 × {0}d−k)({0}k × L2) by L. For verifying that
0L is a valid cone in Rd, we have to check that any ray emanating from the
origin intersects |L| at most once. Consider a ray generated by the non-zero
vector (x1, . . . , xd). Assuming µ(x1, . . . , xd) = p for some µ ≥ 0 and a point
p = λ({p1} × {0}d−k) + (1 − λ)({0}k × {p2}) with λ, p1, and p2 as above
implies µ(x1, . . . , xk) = λp1 and µ(xk+1, . . . , xd) = (1 − λ)p2. The case µ =
0 is impossible since at least one of λp1 or (1 − λ)p2 is non-zero. The case
λ = 0 happens if and only if x1 = · · · = xk = 0 holds, and then µ and
p2 are uniquely determined by the equality µ(xk+1, . . . , xd) = p2 because L2
is a link complex for the origin in Rd−k. Symmetrically, λ = 1 happens if
and only if xk+1 = · · · = xd = 0 holds, and then µ and p1 are determined
by µ(x1, . . . , xk) = p1. Otherwise the equalities (µ/λ)(x1, . . . , xk) = p1 and
(µ/(1 − λ))(xk+1, . . . , xd) = p2 determine uniquely p1, p2, and the quotients
µ/λ and µ/(1−λ). Since both quotients are positive, their reciprocals λ/µ and
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(1 − λ)/µ, their sum λ/µ + (1 − λ)/µ = 1/µ, and the reciprocal µ of the sum
are also positive and uniquely determined. In particular, the uniqueness of µ
shows that the ray in direction (x1, . . . , xd) intersects |L| in at most one point.

For completing the proof, we can either observe that the equalities above
do not only reduce the uniqueness problem of the solutions µ, λ, p1, and p2
to the complementary subspaces but also their existence problem. Therefore
solutions for the equalities above exist and can be computed from the solutions
in the complementary subspaces for any non-zero vector (x1, . . . , xd) in Rd (with
xd ≥ 0 in the case that L2 is a link complex for Rd−k+ ), which shows that |L| is a
link for the origin in Rd or Rd+ respectively. Or we can apply Lemma 3.18: We
just proved that |L| and {0} are independent sets. Furthermore L1 is a (k− 1)-
sphere and if L2 is a link in Rd, it is a (d−k−1)-sphere, or if L2 is a link in Rd+,
it is a (d− k− 1)-ball. By Fact 1.38 the join L = (L1×{0}d−k)({0}k ×L2) is a
(d−1)-sphere in the former case, and a (d−1)-ball in the latter case. Moreover
in the latter case, the boundary of the (d − 1)-ball is the join of L1 × {0}d−k
and {0}k × bd(L2), and since L2 is a link in Rd−k+ its boundary coincides with
its intersection with the hyperplane defined by the last coordinate being zero.
Hence L1×{0}d−k and {0}k×bd(L2) both lie in the bounding hyperplane Rd−1

and their join is at the same time the boundary sphere of L and its intersection
with the bounding hyperplane Rd−1. Therefore all requirements of Lemma 3.18
are fulfilled implying that L is a link complex for the origin.

Perturbing Link Complexes. For some of the following proofs, we need
a result stating that a slight perturbation of the positions of the vertices of a
simplicial complex embedded in Rn preserves the property of being a simplicial
complex and even its combinatorial structure, provided the perturbation is small
enough. More precisely, for any subset of vertices spanning a simplex of the orig-
inal complex, the perturbed set of vertices still spans a simplex and the resulting
family of perturbed simplices still forms a simplicial complex combinatorially
equivalent to the original one with the combinatorial equivalence assigning each
vertex to its perturbed counterpart. The following Fact formalises such a claim
and includes a sketch for a proof.

Fact 3.20. Let K be a simplicial complex embedded in Rn. An ε-perturbation
of the positions of the vertices is a map P0 : Vrt(K) → Rn such that for each
vertex v ∈ Vrt(K) the distance between v and its perturbed position P0(v) is
at most ε. Such an ε-perturbation induces a map P on K, that assigns to each
simplex S ∈ K a convex polytope P (S) = conv{P0(v) | v ∈ Vrt(S)} which is
the convex hull of the perturbed vertices of S. The image of P , that is the
collection {P (S) | S ∈ K} of all these convex polytopes is denoted by P (K)
and called an ε-perturbation of K. There is an ε > 0, depending on K, such
that for any ε-perturbation P0 of the positions of the vertices of K, the induced
ε-perturbation P (K) of K is a simplicial complex combinatorially equivalent to
K, with P : K → P (K) being the combinatorial equivalence in terms of cells
and P0 : Vrt(K)→ Vrt(P (K)) being the combinatorial equivalence in terms of
vertices.

A proof for this claim can be based on a continuity argument: Let the se-
quence (v1, . . . , vN ) be an enumeration of the vertices of K. It is possible to find
a finite family of continuous functions fj : (Rn)N → R in terms of the coordi-
nates of an N -tuple of points in Rn, such that fj(v1, . . . , vN ) > 0 holds for each
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j and whenever fj(u1, . . . , uN ) > 0 holds for each j, the N -tuple (u1, . . . , uN )
of points ui ∈ Rn generate a simplicial complex combinatorially equivalent to
K, with φVrt(vi) = ui defining a combinatorially equivalence in terms of ver-
tices. The continuity of the fj ensures that there is an ε such that if each ui
has distance at most ε from vi, then fj(u1, . . . , uN ) > 0 still holds for each j.
The maps fj are chosen in such a way, that they witness by the computation
of suitable determinants, that certain subsets of the points are affinely indepen-
dent or that certain points lie on different sides of some hyperplane containing
some other points. Such tests are sufficient to witness that a certain collection
of convex hulls of subsets of the points fulfils the defining properties of a sim-
plicial complex: Affine independence of a subset of points witnesses that they
span a simplex. The fact that two simplices intersect only in a common face
can be witnessed by a separating hyperplane containing the common vertices
of the simplices, such that the non-common vertices of one simplex and the
non-common vertices of the other simplex lie strictly on opposite sides of the
separating hyperplane.

We illustrate the construction of the maps fj by some schematic examples.
The continuity of the constructed maps will follow immediately from the fact
that the map assigning to an n-tuple of vectors its determinant is continuous.
Let vi0 , . . . , vik span a k-simplex of K. This means that the points are affinely
independent and consequently that the vectors vi1−vi0 , . . . ,vik−vi0 are linearly
independent. If necessary, namely if k < n, we can extend this family of vectors
to a base of Rn by some suitable vectors wk+1, . . . , wn. The fact that these
vectors form a base is then witnessed by their determinant being non-zero. If the
determinant is positive, we add the map that computes the determinant of the
vectors vi1 − vi0 , . . . ,vik − vi0 , wk+1, . . . , wn as a function of the coordinates of
the points vi0 , . . . , vik to the family of maps fj we want to construct, otherwise
we add the negative of this map to the family. When we compute the value
of the map added to the family with the points vi0 , . . . , vik replaced by some
points ui0 , . . . , uik and the obtained value is still positive, this fact witnesses
that the points ui0 , . . . , uik are affinely independent and span a k-simplex.

Now assume that vi−k′ , . . . , vi−1 , vi0 , . . . , vik spans a simplex of K, and
that vi0 , . . . , vik , vik+1 , . . . , vik′′ spans another simplex of K, with vi0 , . . . ,
vik being exactly the common vertices of the two simplices. The fact that the
two simplices intersect only in their common face spanned by vi0 , . . . , vik is
witnessed by the existence of a hyperplane H containing vi0 , . . . , vik such that
the points vi−k′ , . . . , vi−1 lie strictly on one side, and the points vik+1 , . . . ,
vik′′ lie strictly on the other side. This property can be checked by computing
k′+k′′−k determinants of certain vectors as follows: The first n−1 vectors span
the underlying vector space of H and the last vector points from the hyperplane
to one of the other vertices vi−k′ , . . . , vi−1 or vik+1 , . . . , vik′′ . To determine these
vectors we choose points p0 = vi0 , . . . , pk = vik and possibly some additional
points pk+1, . . . , pn−1 in H such that p0, . . . , pn−1 are affinely independent and
their affine hull is the separating hyperplane H. Note that k = −1 is possible
when the simplices are disjoint. Then we take the vectors wi = pi − p0 for
1 ≤ i ≤ n− 1 and compute for each choice wn = vi−k′ − p0, . . . , wn = vi−1 − p0,
wn = vik+1 − p0, . . . , wn = vik′′ − p0 the determinant of the vectors w1,. . . , wn.
The results for the former choices with wn = vi−k′ −p0, . . . , wn = vi−1−p0 have
the same sign which is opposite to the common sign of the results for the latter
choices with wn = vik+1 − p0, . . . , wn = vik′′ − p0. We can assume without loss
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of generality that the former choices yield negative results and the latter choices
yield positive results. Then we add maps computing the negative determinant
of the vectors w1,. . . , wn for the choices wn = vi−k′ − p0, . . . , wn = vi−1 − p0
and maps computing the determinant of the vectors w1,. . . , wn for the choices
wn = vik+1−p0, . . . , wn = vik′′ −p0 to the family of maps fj , expressing each of
these maps as a function of the coordinates of the points vi−k′ , . . . , vik′′ . When
we compute the values of these maps with the points vi−k′ , . . . , vik′′ replaced
by some points ui−k′ , . . . , uik′′ and the obtained values are all positive, we can
conclude that the convex hulls of the points ui−k′ , . . . , ui−1 , ui0 , . . . , uik on
the one hand and the points ui0 , . . . , uik , uik+1 , . . . , uik′′ on the other hand
intersect only in a common face spanned by ui0 , . . . , uik , because the computed
determinants witness that the points ui−k′ , . . . , ui−1 lie on one side, and the
points uik+1 , . . . , uik′′ on the other side of a hyperplane spanned by the points
ui0 , . . . , uik , pk+1, . . . , pn−1.

As a first application of this fact, we show that for sufficiently small ε, an
ε-perturbation of a link complex of the origin in Rd is still a link complex of the
origin in Rd. For an analogous conclusion concerning link complexes in Rd+, we
have to assume that the perturbation moves the points on the boundary of the
link complex only within the bounding hyperplane Rd−1.

Lemma 3.21. Let L be a link complex for the origin in Rd. There exists an
ε > 0, such that any ε-perturbation P (L) of L is a link complex for the origin
in Rd as well and combinatorially equivalent to L.

For any link complex L of the origin in Rd+ exists an ε such that for any
ε-perturbation P0 of the positions of the vertices of L that maps points in the
bounding hyperplane Rd−1 to points lying again in Rd−1, the induced pertur-
bation P (L) is a link complex of the origin in Rd+ combinatorially equivalent
to L.

Proof. For a link complex L of the origin in Rd, any ε-perturbation P (L) for
sufficiently small ε is combinatorially equivalent to L by Fact 3.20 and hence
a (d − 1)-sphere. Extending the perturbation of L to a perturbation of 0L by
keeping the vertex at the origin fixed and applying again Fact 3.20 shows that
0(P (L)) is a valid cone complex in Rd. This asserts that the requirements of
Lemma 3.18 are fulfilled and P (L) is a link complex for the origin in Rd.

For a link complex L of the origin in Rd+ the analogous applications of
Lemma 3.18 show that P (L) is a (d − 1)-ball combinatorially equivalent to
L and 0(P (L)) is a valid cone in Rd+. We can assume that ε is so small that no
interior vertex of L is moved to the bounding hyperplane Rd−1. Together with
the assumption that boundary vertices of L are moved within Rd−1, this implies
the requirement from Lemma 3.18 for links in Rd+ that the boundary of P (L) is
exactly the intersection of P (L) with Rd−1. Therefore Lemma 3.18 yields that
P (L) is a link complex for the origin in Rd+ as desired.

3.2.3 Restricting Criticality to Vertices
Now we turn to the claim that critical points of a map in general position on a
combinatorial manifold can only occur at vertices. We show that any point lying
in the interior of a simplex of a combinatorial manifold where the considered
map linear on cells is non-constant on that simplex is a regular point. This
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implies the claim because vertices are the only simplices on which a map in
general position is constant.

Lemma 3.22. Assume that M is a combinatorial d-manifold f : |M | → R is
a map linear on cells of M . If a point q lies in the interior of a cell where
f is non-constant, then q is a regular point of f . This claim holds likewise
for interior and boundary points, with only minor differences in the proof; the
necessary changes for boundary points are indicated by parentheses.

Proof. Let Q be the k-cell containing q in its interior and fQ the non-constant
linear map on aff(Q) agreeing with f on Q. Recall from Table 1.3 that lk(q) is
the join of the boundary bd(Q) and the link lk(Q) of Q. The boundary bd(Q)
is a (k− 1)-sphere formed by the boundary complex of a k-simplex. Since M is
a manifold, the link lk(Q) is a (d− k − 1)-sphere (-disk) by Fact 1.37 and lk(q)
is a (d− 1)-sphere (-ball). We show how to construct a cone neighbourhood of
the origin that is combinatorially equivalent to a subdivision of lk(q) such that
f − f(q) and πd1 have the same sign at corresponding vertices. Since πd1 is linear
on Rd(+) as a whole, this implies by Lemma 3.7 that (M, q, f) and (Rd(+), 0, πd1)
are locally equivalent and consequently q is a regular point.

Map aff(Q) by a suitable bijective affine transformation in such a way to the
k-dimensional subspace Rk of Rd where all coordinates Xk+1 up to Xd are zero,
that q is mapped to the origin and the half-space aff(Q)fQ≤f(q) is mapped to
the half-space X1 ≤ 0 of Rk. The image of the simplex Q under this map is a
k-simplex B in Rk that contains the origin in its relative interior. Hence bd(B)
is a (k − 1)-sphere, {0} and |bd(B)| are independent sets because 0 bd(B) can
be obtained by an elementary starring of B at the origin, and bd(B) is a link
complex for the origin in Rk by Lemma 3.18. Furthermore the signs of f − f(q)
at the vertices of Q and the signs of πd1 at the corresponding vertices of B
agree. Therefore the affine transformation induces a combinatorial equivalence
between bd(Q) and bd(B) such that f − f(q) and πd1 have the same sign at
corresponding vertices.

Consider the 1-norm unit (d−k−1)-(half)-sphere in the (d−k)-dimensional
subspace (sub-half-space) where all coordinates X1 up to Xk are zero (and
Xd ≥ 0). Let S be a subdivision of this (half-)sphere that is combinatorially
equivalent to a subdivision S′ of lk(Q). Clearly S is a link complex for the origin
in the subspace (sub-half-space). By Lemma 3.19, the join of S and bd(B) is a
link complex for the origin. It is combinatorially equivalent to the subdivision
S′ bd(Q) of lk(q) = lk(Q) bd(Q). The only property we have not fulfilled yet
are the matching signs of f −f(q) and πd1 at corresponding vertices of S′ and S.
To achieve this, we choose, according to Lemma 3.21, a sufficiently small ε > 0
such that any ε-perturbation of S bd(B) (leaving vertices in Rd−1 within Rd−1)
is again a link complex for the origin combinatorially equivalent to S bd(B) and
apply the lemma to a specific ε-perturbation P0 for the positions of the vertices
of S bd(B) defined as follows: We shift the vertices of S that correspond to
vertices of S′ with positive/negative f − f(q)-value slightly in positive/negative
X1-direction by an ε amount, the other vertices remain unchanged. The result-
ing perturbed complex P (S bdB) is still a link complex for the origin in Rd(+)
combinatorially equivalent to S′ bd(Q) and πd1 and f − f(q) have the same sign
at corresponding vertices by construction.

The fact that points in the interior of a cell where f is non-constant are
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regular provides another proof for the result from Corollary 2.40 that |M |=h
is a (d − 1)-manifold for any value h not attained at vertices of M as follows:
Let x ∈ |M |=h. Then x lies in the interior of a cell where f is non-constant,
because otherwise the value h = f(x) would be a attained at the vertices of the
cell containing x in its interior. By Lemma 3.22, the point x is regular, and
the characterisation of local equivalence via PL-homeomorphic neighbourhoods
such that the shifted maps agree at corresponding points yields for (M,x, f)
and (Rd, 0, πd1) a local coordinate system centred at x such that the shifted
map f − h is represented by πd1 in these coordinates. Therefore |M |=h in some
neighbourhood of x corresponds to the subspace πd1 = 0 in some neighbourhood
of the origin in the local coordinates. This shows that in a neighbourhood of x,
the level set |M |=h is a (d−1)-sub-manifold embedded in |M |. Since this applies
to any point x ∈ |M |=h, the level set |M |=h as a whole is a (d−1)-sub-manifold
embedded in |M |.

3.2.4 Existence of PL Morse Functions and Their Con-
struction from Discrete Morse Functions

For the proof of the next result that any combinatorial manifold has a PL Morse
function on its derived, we need a simple observation concerning the links of
vertices in a derived subdivision.

Lemma 3.23. Consider a vertex vS in a derived subdivision sdvdrv(M) of a
simplicial complex M which is the vertex chosen in the interior of a cell S
of M to construct the derived. Then the link lksdvdrv(M)(vS) in the derived is
combinatorially equivalent to the join of the derived sdvdrv(lkM (S)) of the link of
S in M and the derived sdvdrv(bd(S)) of the boundary of S. The combinatorial
equivalence in terms of vertices is given by the following assignment: A vertex vT
in sdvdrv(bd(S)) with T ∈ bdS is mapped to vT in lksdvdrv(M)(vS) and a vertex
vU from sdvdrv(lkM (S)) with U ∈ lkM (S) is mapped to the vertex vSU from
lksdvdrv(M)(vS).

Proof. Recall from Definition 1.23 that a simplex in a derived subdivision of M
is spanned by vertices vS0 , . . . , vSk such that the cells S0, . . . , Sk form a chain
in the face poset of M . Therefore a simplex in sdvdrv(M) containing the vertex
vS is spanned by vS , some vertices vT1 , . . . , vTm , and some vertices vW1 , . . . ,
vWn with T1 @M . . . @M Tm @M S @M W1 @M . . . @M Wn. Consequently,
simplices in lksdvdrv(M)(vS) are the join of a simplex spanned by some of the
vertices vT1 , . . . , vTm as above and a simplex spanned by some of the vertices
vW1 , . . . , vWn

as above. Since we assume T1 @M . . . @M Tm @M S, the cells Ti
lie in the boundary of S and a simplex spanned by vertices vT1 , . . . , vTm is
a simplex in the derived sdvdrv(bd(S)) of the boundary of S. On the other
hand, the co-faces Wj of S can be represented as a join of S and some simplices
Uj ∈ lkM (S) with U1 @M . . . @M Un. The corresponding vertices vU1 , . . . ,
vUn span a simplex in the derived sdvdrv(lkM (S)) of the link of S. With these
observations, we can easily check that the vertices vT1 , . . . , vTm , vSU1 , . . . ,
vSUn span a simplex in lksdvdrv(M)(vS) if and only if the vertices vT1 , . . . , vTm
span a simplex in sdvdrv(bd(S)) and the vertices vU1 , . . . , vUn span a simplex
in sdvdrv(lkM (S)). This proves that the assignments of vT to itself for T ∈ bd(S)
and of vU to vSU for U ∈ lkM (S) define a combinatorial equivalence in terms of
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vertices between the join of sdvdrv(lkM (S)) and sdvdrv(bd(S)). Note that the
fact lkM (vS) = bd(S) lkM (S) from Table 1.3 asserts that | sdvdrv(lkM (S))| =
| lkM (S))| and | sdvdrv(bd(S))| = |bd(S)| are independent sets in the ambient
space of M .

Existence Proof. The statement of the following theorem, that any combi-
natorially manifold has a PL Morse function, was also observed by Eells and
Kuiper in [17], where PL Morse functions are called Comb-non-degenerate func-
tions. Their proof is based on the same idea as the proof given below.

Theorem 3.24. For any derived subdivision sdvdrv(M) of a combinatorial d-
manifold M , there is a PL Morse function on |M | linear on cells of sdvdrv(M).

Proof. A derived subdivision of M contains for any cell S ∈ M a vertex vS in
the interior of S. For a map f0 : Vrt(sdvdrv(M))→ R, let f be the map linear
on cells of sdvdrv(M) obtained by simplex-wise linear interpolation between the
values of f0. We show that any such map f obtained from a map f0 that fulfils
f0(vT ) < f0(vS) whenever T is a proper face of S in M is a PL Morse function.
A possible choice for f0 fulfilling the requirement is f0(vS) = dim(S). This is
also the map used in the existence proof of Eells and Kuiper in [17]. When
a map in general position is desired, we can modify this example by adding
small individual values εS at each vertex vS with all εS being distinct positive
numbers less than 1, yielding distinct values f0(vS) = dim(S) + εS . So let
f be the simplex-wise linear interpolation of a map f0 with f0(vT ) < f0(vS)
whenever T is a proper face of S. We claim that all non-vertices are regular
and all vertices vS are non-degenerate critical with index λ = dim(S).

Non-Vertices. If x ∈ | sdvdrv(M)| is not a vertex, then the cell that con-
tains x in its interior is a simplex formed by vertices vSi where the cells Si
when indexed in suitable order form a strictly increasing sequence in the face
poset of M . Consequently, the values f(vSi) arranged in the same order form a
strictly increasing sequence of real numbers and are distinct. Lemma 3.22 shows
that x is regular.

Proof Idea for Vertices. For a vertex vS , denote by φcomb the combi-
natorial equivalence in terms of cells φcomb : sdvdrv(lkM (S)) sdvdrv(bd(S)) →
lksdvdrv(M)(vS) between the link in the derived and the join of the derived
boundary of S and the derived link of S in M obtained from Lemma 3.23.
Using the combinatorial equivalence, which is the identity on the common sub-
complex sdvdrv(bd(S)), we can describe the link lksdvdrv(M)(vS) as the join of
φcomb(sdvdrv(lkM (S))) and sdvdrv(bd(S)).

The proof idea is the following, with the modifications for boundary cells S
added in parentheses: The boundary of S is a (λ−1)-sphere for λ = dim(S), and
for cells T ∈ bdS, the vertices vT in sdvdrv(bd(S)) have a value f(vT ) < f(vS);
since M is a combinatorial manifold, the link of S in M is a (d− λ− 1)-sphere
(-ball), and for U ∈ lkM (S), the vertices vSU of φcomb(sdvdrv(lkM (S))) have a
value f(vSU ) > f(vS). On the other hand, the reference map fdλ is negative, even
constantly −1, on the (λ− 1)-dimensional 1-norm unit sphere Sλ−1

1 around the
origin in the λ-dimensional subspace with coordinates Xi = 0 for λ+ 1 ≤ i ≤ d;
and it is positive, even constantly 1, on the (d−λ− 1)-dimensional 1-norm unit
(half-)sphere Sd−λ−1

1 around the origin in the (d−λ)-dimensional subspace (sub-
half-space) with coordinates Xi = 0 for 1 ≤ i ≤ λ (and Xd ≥ 0). (Note that the
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case λ = dim(S) = d cannot occur if S is a boundary simplex of a combinato-
rial d-manifold.) Since the (d− 1)-dimensional 1-norm unit (half-)sphere Sd−1

1
around the origin in Rd is the join of Sλ−1

1 and Sd−λ−1
1 , it suffices to choose com-

binatorially equivalent subdivisions with matching signs at corresponding ver-
tices for sdvdrv(bd(S)) and Sλ−1

1 on the one hand and for φcomb(sdvdrv(lkM (S)))
and Sd−λ−1

1 on the other hand. The respective joins of these subdivisions yield
combinatorially equivalent subdivisions with matching signs at corresponding
vertices of the joins sdvdrv(bd(S))φcomb(sdvdrv(lkM (S))) = lksdvdrv(M)(vS) and
Sλ−1

1 Sd−λ−1
1 = Sd−1

1 .
Decomposing the Construction. As outlined above, our aim is to con-

struct a link complex for the origin, namely a subdivision of the 1-norm unit
(half-)sphere Sd−1

1 that is combinatorially equivalent to some subdivision of
lksdvdrv(M)(vS) in such a way that fdλ and f − f(vS) have the same sign at cor-
responding vertices. Since each cell of Sd−1

1 is contained in some cell of Ωd(+), in
other words, in one of the orthants, the reference map fdλ is linear on cells of the
cone 0L for any subdivision L of Sd−1

1 . Once the link complex is constructed,
Lemma 3.7 asserts that (M,vS , f) and (Ωd(+), 0, fdλ) are locally equivalent and
hence vS is a non-degenerate critical point of f of index λ by definition.

The construction of the combinatorially equivalent subdivisions of Sd−1
1 and

lksdvdrv(M)(vS) can be decomposed into two independent constructions of pairs
of combinatorially equivalent subdivisions by representing both complexes as
joins: The 1-norm unit (half-)sphere Sd−1

1 is the join of the unit sphere Sλ−1
1

and the unit (half-)sphere Sd−λ−1
1 in orthogonal subspaces as described above.

The link lksdvdrv(M)(vS) is the join of φcomb(sdvdrv(lkM (S))) and sdvdrv(bd(S)).
Now it suffices to construct combinatorially equivalent subdivisions of Sλ−1

1 and
sdvdrv(bd(S)) on the one hand and of Sd−λ−1

1 and φcomb(sdvdrv(lkM (S))) on
the other hand such that both equivalences respect the sign at corresponding
vertices because the joins of the subdivisions yield subdivisions of the joins with
the desired properties: Clearly, for any complexes K and L with subdivisions K ′
and L′, the joinK ′L′ of the subdivisions is a subdivision of the joinKL, because
if A′ ∈ K ′ is contained in A ∈ K and B′ ∈ L′ is contained in B ∈ L then
A′B′ is contained in AB. We noted already in Fact 1.28 that a combinatorial
equivalence of K and K ′ and of L and L′ implies a combinatorial equivalence
of the joins KL and K ′L′. The vertex set of the join is the union of the original
vertex sets, and the combinatorial equivalence in terms of vertices for the joins
arises from the union of the two combinatorial equivalences. Therefore the
joined combinatorial equivalence respects the signs at corresponding vertices if
and only if the original combinatorial equivalences do so.

The Boundary Part. For proving the existence of combinatorially equiv-
alent subdivisions of Sλ−1

1 and sdvdrv(bd(S)) with matching signs of fdλ and
f−f(vS) at corresponding vertices, we show first that both maps have negative
values throughout the complexes, which ensures matching signs at correspond-
ing vertices for any combinatorially equivalent subdivisions, and afterwards the
existence of the combinatorial equivalence. Since Sλ−1

1 is considered as embed-
ded in the λ-dimensional subspace with coordinates Xi = 0 for λ+1 ≤ i ≤ d and
since the map fdλ restricted to this subspace is the negative of the 1-norm by def-
inition, the map fdλ is constantly −1 on the 1-norm unit sphere |Sλ−1

1 |. A cell T
in the boundary of S fulfils T @ S, hence f(vT ) < f(vS) holds for vertices vT in
sdvdrv(bd(S)). Therefore f − f(vS) is negative at all vertices of sdvdrv(bd(S))
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and consequently negative on the whole complex since the values at the other
points are obtained by linear interpolation between the negative values at the
vertices. The boundary of the λ-simplex S is a combinatorial (λ − 1)-sphere
and so is the derived of the boundary. The unit sphere Sλ−1

1 is a combinato-
rial (λ− 1)-sphere as well, hence Sλ−1

1 and sdvdrv(bd(S)) have combinatorially
equivalent subdivisions because they are PL-homeomorphic combinatorial man-
ifolds.

The Link Part. The construction of combinatorially equivalent subdivi-
sions for the complexes Sd−λ−1

1 and φcomb(sdvdrv(lkM (S))) works similarly. The
(half-)sphere Sd−λ−1

1 is embedded in the (d − λ)-dimensional subspace (sub-
half-space) with coordinates Xi = 0 for 1 ≤ i ≤ λ (and Xd ≥ 0), where
the map fdλ agrees with the 1-norm and consequently attains the constant
value 1 on the unit (half-)sphere |Sd−λ−1

1 |. For a cell U in lkM (S), the join
SU is a proper co-face of S, hence f(vSU ) > f(vS) holds for vertices vSU in
φcomb(sdvdrv(lkM (S))). Therefore fdλ is positive on |Sd−λ−1

1 | and f − f(vS) is
positive on |φcomb(sdvdrv(lkM (S)))|. The link lkM (S) is a (d−λ−1)-dimensional
combinatorial sphere (ball) because M is a combinatorial manifold, and this
remains true for the derived subdivision sdvdrv(lkM (S)) and its counterpart
φcomb(sdvdrv(lkM (S))) under the combinatorial equivalence φcomb. The com-
plex Sd−λ−1

1 is a combinatorial (d − λ − 1)-sphere (-ball) as well, so there are
combinatorially equivalent subdivisions of Sd−λ−1

1 and φcomb(sdvdrv(lkM (S)))
with positive signs for fdλ and f − f(vS) at all vertices. This completes the
proof.

Constructing PL Morse Functions from Discrete Morse Functions.
For any of the PL Morse functions f considered in the proof of the theorem,
every vertex is critical with respect to f . This property is reminiscent of the
existence proof for discrete Morse functions by observing that the map g(S) =
dim(S) assigning to each cell its dimension is a discrete Morse function for which
each cell is critical [19, p. 108]. Moreover, if every cell is critical with respect to
a discrete Morse function g, then g fulfils g(T ) < g(S) whenever T is a proper
face of S, which corresponds exactly to our assumption used in the proof on
the values of the map f at the vertices of the derived, which implied that f is
a PL Morse function where every vertex is critical, namely that f(vT ) < f(vS)
holds whenever T is a proper face of S. This observation suggests to conjecture
a more general result that allows to transform a discrete Morse function g on
a combinatorial manifold M into a PL Morse function f on the derived of M
by interpolating simplex-wise linearly between the values f(vS) = g(S) at each
vertex vS of the derived corresponding to a cell S of M .

A simple counterexample that refutes this conjecture in its most general
form is the combinatorial 1-manifold formed by an edge e with vertices u and w
together with the discrete Morse function g given by the values g(u) = 0 and
g(w) = g(e) = 1. When f is defined as proposed, we obtain an edge between
ve and w in the derived of e where f is constantly 1, so that all points on
that edge are degenerate critical with respect to f . But if the discrete Morse
function g fulfils a general position assumption such as the one suggested in
Section 1.3, namely that all values are distinct and that matched pairs in the
Morse matching are the only exception to monotonicity, then the induced map f
defined as above turns out to be a PL Morse function. Furthermore the critical
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points of f are exactly the vertices vS for which the cell S is critical with respect
to g or a boundary cell of M which is critical with respect to the restriction
of g to bd(M). The index of such a critical vertex vS is the dimension of S.
Since there is for any discrete Morse function g an equivalent discrete Morse
function g′ in general position, we can find for any discrete Morse function g on
a combinatorial manifold M a PL Morse function f linear on cells of sdvdrv(M)
such that the critical points of f are exactly the vertices vS with S being a
critical cell of g or of the restriction of g to the boundary of M .

Before we prove the conjecture under the additional assumption on g, let us
shortly review two earlier related results. For the first result due to Bloch [8],
consider a finite regular CW-complex M with discrete Morse function g and a
Euclidean space Rn of sufficiently large dimension n with a non-constant linear
map f : Rn → R, which can be viewed as map linear on cells for any complex
embedded in Rn. (In [8], the map f is described as the projection onto a line
spanned by a unit vector in the space.) The result states that the barycentric
subdivision of M can be embedded in Rn in such a way that a cell S in M is
critical with respect to g if and only if the barycentre vS of S is critical with
respect to f , however Bloch uses for vS and f a notion of criticality that is
due to Banchoff [4, 5]. This notion differs from the one introduced here in
Definition 3.12 and will be reviewed later in this section. The other result deals
with the map f linear on cells of a derived obtained from a discrete Morse
function g on a simplicial complex K by simplex-wise linear interpolation of the
values f(vS) = g(S). Bauer [6, Theorem 2.27, p. 32] shows that for every level
h ∈ R, the level subcomplex K(h) generated by the cells S of K with g(S) ≤ h
and the lower level set | sdvdrv(K)|f≤h are homotopy equivalent.

For some of the cases in the proof of the conjecture, we need the following
preliminary observations:

Lemma 3.25. If K is a simplicial complex with a map f linear on cells such
that all vertices have positive f -values except for one vertex v− with negative f -
value, then for any stellar subdivision of K there is a combinatorially equivalent
subdivision of K with the original vertices of K being fixed under the combina-
torial equivalence such that v− is still the only vertex with non-positive f -value.
Note that the roles of positive and negative values can be switched by considering
−f , and that the level h = 0 separating the value of the exceptional vertex from
the values of the other vertices can be replaced by any arbitrary level h ∈ R by
shifting the map f .

When we apply Theorem 1.31 for two PL-homeomorphic simplicial com-
plexes K and L to obtain combinatorially equivalent subdivisions K ′ of K and
L′ of L, we can assume without loss of generality that one of the subdivisions is
stellar.

Proof. For the first claim, it suffices to consider a single elementary starring,
the rest follows from induction on the number of elementary starrings performed
in the stellar subdivision. Since K is simplicial, an elementary starring at v−
itself is a vacuous operation and the statement trivial. Otherwise, the point x
at which the elementary starring is performed is interior to a cell X containing
at least one vertex v with f(v) > 0. By continuity of f any interior point y
of X sufficiently close to v fulfils f(y) > 0. We noted already in Fact 1.28
that starring at different points x and y in the interior of the same cell X lead
to combinatorially equivalent results, and that the combinatorial equivalence in
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terms of vertices is given by extending the identity on Vrt(K) by the assignment
of x to y.

For the second claim, we use the following fact cited from Hudson [26,
Lemma 1.10, p. 17]: For simplicial complexes K and L with PL map φ : |K| →
|L|, there is a subdivision K ′ of K and a stellar subdivision L′ of L such that
φ is simplicial with respect to K ′ and L′. Applying this result to a PL home-
omorphism φ, we can observe that K ′ and L′ are combinatorially equivalent
because φ is a simplicial bijection between these subdivisions. For showing that
we can alternatively assume that K ′ is stellar, we consider the inverse homeo-
morphism φ−1 instead.

Lemma 3.26. Assume that g is a discrete Morse function on the combinatorial
d-manifold M such that all values g(S) of g for S ∈ M are distinct and for
any pair T @ S such that (T, S) is not an immediate face/co-face pair, the
inequality g(T ) < g(S) holds. Define a map f : | sdvdrv(M)| → R linear on cells
of a derived of M by simplex-wise linear interpolation between the values at the
vertices of the derived given by f(vS) = g(S) for each vertex vS chosen in the
interior of a cell S ∈M . Then f is a PL Morse function such that:

1. All non-vertices of sdvdrv(M) are regular with respect to f .

2. If S is critical with respect to g and an interior cell of M , then vS is
non-degenerate critical with respect to f with index λ = dim(S).

3. If S is critical with respect to g and a boundary cell of M , then vS is
non-degenerate boundary-critical of lower type with index λ = dim(S).

4. If S is regular with respect to g and an interior cell of M , then vS is
regular with respect to f .

5. If S is regular with respect to g and a boundary cell of M matched with
a face or co-face in the boundary, in other words also regular with respect
to the restriction of g to bd(M), then vS is regular with respect to f .

6. If S is regular with respect to g and a boundary cell of M matched with
a co-face not in the boundary, in other words critical with respect to the
restriction of g to bd(M), then vS is non-degenerate boundary-critical of
upper type with respect to f with index λ = dimS.

Proof. If all cells are critical with respect to g, the induced map f is of the
type considered in Theorem 3.24. The proof given there for non-vertices relied
only on the fact that f is non-constant on any simplex of dimension at least 1.
And the proof for a vertex vS relied only on the inequalities f(vT ) < f(vS) for
proper faces T of S and f(vW ) > f(vS) for proper co-faces W of S. Therefore
the same proofs cover the first three cases when applied to a non-vertex of the
derived or a vertex vS such that S is critical with respect to g, even if not all
cells are critical with respect to g:

The First Three Cases. The non-vertices are regular by Lemma 3.22
because all values at vertices are distinct and consequently any non-vertex is
contained in the interior of a cell where f is non-constant. For critical cells
S, the link lksdvdrv(M)(vS) of vS in the derived is the join of a (λ − 1)-sphere
formed by vertices vT with T @ S and hence f(vT ) < f(vS) and a (d− λ− 1)-
sphere (-ball) formed by vertices vW with S @ W and hence f(vW ) > f(vS),
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which proves local equivalence with (Ωd(+), 0, fdλ) by considering the 1-norm unit
(half-)sphere Sd−1

1 as join of the (λ− 1)-sphere formed by vertices of Sd−1
1 with

negative fdλ-value and the (d − λ − 1)-sphere (-ball) formed by vertices with
positive fdλ-value. Therefore vS is critical with index λ = dim(S) for interior
cells S and boundary-critical of lower type with index λ = dim(S) for boundary
cells S.

We will use the representation of lksdvdrv(M)(vS) used in the proof of Theo-
rem 3.24 as the join of φcomb(sdvdrv(lkM (S))) and sdvdrv(bd(S)) for the other
cases as well, where φcomb is the combinatorial equivalence in terms of cells be-
tween the join sdvdrv(lkM (S)) sdvdrv(bd(S)) and lksdvdrv(M)(vS) obtained from
Lemma 3.23.

Cases 4 and 5. For the next two cases, assume that S is regular and
either interior or paired with another boundary cell. Let λ = dim(S). As usual,
modifications for the boundary case are indicated by parentheses. Our aim is
to construct a link complex for the origin in Rd(+) combinatorially equivalent to
a subdivision of lksdvdrv(M)(vS) such that πd1 and f − f(vS) have the same sign
at corresponding vertices. There are two alternatives to consider: Either S is
paired with an immediate face, or it is paired with an immediate co-face in the
Morse matching.

Paired with a Face. We first deal with the alternative that S is paired
with an immediate face T @ S implying λ ≥ 1. Then the inequalities f(vT ) >
f(vS), f(vW ) > f(vS) for S @ W , and f(vF ) < f(vS) for T 6= F @ S hold.
Again the construction of the link complex of the origin is decomposed into two
constructions in orthogonal subspaces: On the one hand, we construct a link
complex combinatorially equivalent to sdvdrv(bd(S)) in the subspace defined by
Xi = 0 for λ+ 1 ≤ i ≤ d that respects the signs after some perturbation within
that subspace. On the other hand we construct a link complex in the subspace
(sub-half-space) defined by Xi = 0 for 1 ≤ i ≤ λ (and Xd ≥ 0) combinatorially
equivalent to a subdivision of φcomb(sdvdrv(lkM (S))). Then we join the two link
complexes and shift the vertices of the latter one slightly in positiveX1-direction
to obtain matching signs for its vertices as well.

For the construction of the link complex combinatorially equivalent to the
derived of bd(S) we proceed as follows: Choose as link complex L′T for the origin
in the (λ− 1)-dimensional subspace defined by Xi = 0 for i = 1∨ λ+ 1 ≤ i ≤ d
the boundary of a (λ− 1)-simplex T ′ containing the origin in its interior. Later
on, some perturbed copies of the vertices of T ′ will correspond to the vertices
of T under the combinatorial equivalence. As link complex L′1 for the origin in
the 1-dimensional subspace defined by Xi = 0 for i 6= 1, we choose a vertex v′T
with positive X1-coordinate and a vertex t′ with negative X1-coordinate. The
vertex v′T will correspond to vT and the vertex t′ will correspond to the vertex t
of S lying opposite to the face T , in other words, the vertex fulfilling S = tT .
By Lemma 3.19, the join L′1L′T is a link complex for the origin in the subspace
defined by Xi = 0 for λ+1 ≤ i ≤ d. The suggested correspondences for the ver-
tices yield a combinatorial equivalence between L′1L′T and the complex obtained
from bd(S) by performing an elementary starring at vT . This elementary star-
ring can be considered as the first step in constructing the derived subdivision of
bd(S) by starring at each chosen point vF for F ∈ bd(S) in order of decreasing
dimension of F . By Fact 1.29, there is an analogous stellar subdivision L′− of
L′1L

′
T combinatorially equivalent to sdvdrv(bd(S)) such that the previously sug-
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gested correspondences between vertices are maintained. Since in the remaining
steps of the construction of sdvdrv(bd(S)) only points that are not interior to
cells containing the first new vertex vT are chosen as new vertices, all corre-
sponding vertices in L′− are not interior to cells of L′1L′T containing v′T . This
implies that v′T is the only vertex of L′− with positive X1-coordinate because all
other vertices are interior to cells of L′1L′T not containing v′T and v′T is the only
vertex of L′1L′T with positive X1-coordinate by construction. Hence, for each
vertex vF of sdvdrv(bd(S)) with F 6= T , the corresponding vertex v′F in L′− has
non-positive X1-coordinate πd1(v′F ) ≤ 0. Since we are aiming for negative values
for the vertices corresponding to a vertex vF of sdvdrv(bd(S)) with F 6= T , we
perturb L′− by shifting all vertices v′F with πd1(v′F ) = 0 by an ε amount in neg-
ative X1-direction. By Lemma 3.21 we obtain a link complex L′′− of the origin
in the subspace defined by Xi = 0 for λ+ 1 ≤ i ≤ d combinatorially equivalent
to sdvdrv(bd(S)) with matching signs of πd1 and f − f(vS) at corresponding
vertices, provided ε > 0 is small enough.

The existence of a link complex of the origin in the subspace (sub-half-
space) defined by Xi = 0 for 1 ≤ i ≤ λ (and Xd ≥ 0) combinatorially equivalent
to a subdivision of φcomb(sdvdrv(lkM (S))) follows immediately from the fact
that any link complex for the origin in the considered subspace and the com-
plex φcomb(sdvdrv(lkM (S))) are both combinatorial (d− λ− 1)-spheres (-balls)
and hence PL-homeomorphic. Since PL-homeomorphic spaces have combina-
torially equivalent subdivisions, we can choose an arbitrary link complex L′+
for the origin and there exists a subdivision L′′+ of L′+ combinatorially equiv-
alent to some subdivision L+ of φcomb(sdvdrv(lkM (S))). Recall that the ver-
tices of φcomb(sdvdrv(lkM (S))) are of the form vW for some proper co-face W
of S and that f(vW ) > f(vS) holds for those vertices. Therefore the shifted
map f − f(vS) is positive throughout |φcomb(sdvdrv(lkM (S)))|, in particular it
is positive at the vertices of L+. According to Lemma 3.19, joining L′′− and
L′′+ produces a link complex L′′ = L′′−L

′′
+ for the origin in Rd(+) combinatorially

equivalent to the join of sdvdrv(bd(S)) and L+. This join in turn is a subdivision
of sdvdrv(bd(S))φcomb(sdvdrv(lkM (S))) = lksdvdrv(M)(vS). By our construction
so far, the sign of πd1 at the vertices in L′′− already matches with the sign of
f − f(vS) at corresponding vertices of sdvdrv(bd(S)), and the vertices in L′′+
all have πd1 -value 0, whereas the (f − f(vS))-value of the corresponding vertices
in L+ is positive. Shifting the vertices of L′′+ by an ε amount in positive X1-
direction yields an ε-perturbation L′′′ of L′′ fulfilling all desired properties for
some sufficiently small ε > 0.

Paired with a Co-Face. For the alternative that S is paired with a
co-face W (in the boundary), implying λ < d (λ < d − 1), the inequalities
f(vW ) < f(vS), f(vY ) > f(vS) for S @ Y 6= W , and f(vT ) < f(vS) for T @ S
hold. The link complex for the origin is again formed by joining link complexes
in complementary subspaces and shifting their vertices. On the one hand, we
construct a link complex for the origin in the subspace (sub-half-space) defined
by Xi = 0 for 2 ≤ i ≤ λ+ 1 (and Xd ≥ 0) combinatorially equivalent to a sub-
division L+ of φcomb(sdvdrv(lkM (S))) such that in the link complex, the vertex
corresponding to vW is the only vertex with negative X1-coordinate whereas
all other vertices have positive X1-coordinate, and in L+ all vertices except vW
have f -value strictly larger than f(vS). On the other hand, in the subspace
defined by Xi = 0 for i = 1∨λ+ 2 ≤ i ≤ d, we can choose a simplex S′ contain-
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ing the origin in its interior, then the derived of its boundary is combinatorially
equivalent to sdvdrv(bd(S)) and after joining sdvdrv(bd(S′)) with the first link
complex, we shift the vertices belonging to sdvdrv(bd(S′)) slightly in negative
X1-direction. In the following, both constructions are explained in more detail.

For the first construction, choose an arbitrary link complex for the origin
in the subspace (sub-half-space) defined by Xi = 0 for 2 ≤ i ≤ λ + 1 (and
Xd ≥ 0). Since the chosen link complex and φcomb(sdvdrv(lkM (S))) are both
combinatorial (d− λ− 1)-spheres (-balls), there are combinatorially equivalent
subdivisions L+ of φcomb(sdvdrv(lkM (S))) and L′+ of the chosen link complex.
Using both observations from Lemma 3.25, we can assume that L+ is stellar
and vW remains the only vertex with non-positive (f − f(vS))-value. After
performing a suitable rotation (fixing the boundary of the sub-half-space set-
wise), we can assume without generality that the vertex v′W in L′+ corresponding
to vW lies on the negative X1-axis.

We modify L′+ according to Fact 1.32 by moving its vertices along their rays
emanating from the origin until all vertices have the same Euclidean distance to
the origin. This yields a link complex L′′+ of the origin combinatorially equiv-
alent to L′+ and L+ with vertices in convex position such that the vertex v′′W
corresponding to vW has negative X1-coordinate πd1(v′′W ) and all other vertices
of L′′+ have X1-coordinate strictly larger than πd1(v′′W ).

Now we can shift L′′+ in positive X1-direction by an amount of πd1(v′′W ) − δ
for sufficiently small δ > 0 such that the shifted copy of v′′W still has negative
X1-coordinate but all other shifted vertices have positive X1-coordinate. Let
L′′′+ denote the shifted copy. The convex position of the vertices and the fact
that the vertex v′′′W corresponding to vW obtained from shifting v′′W along the
X1-axis still lies on the negative X1-axis ensures that 0L′′′+ is a valid cone in the
subspace (sub-half-space) defined by Xi = 0 for 2 ≤ i ≤ λ+1 (and Xd ≥ 0). By
Lemma 3.18, the complex L′′′+ is a link complex for the origin in that subspace
(sub-half-space). Moreover it has the desired property that it is combinatorially
equivalent to a subdivision of φcomb(sdvdrv(lkM (S))) with vW being the only
vertex fulfilling f(vW ) ≤ f(vS) such that the vertex corresponding to vW has
negative X1-coordinate but all other vertices have positive X1-coordinate.

The second construction in the subspace defined by Xi = 0 for i = 1∨λ+2 ≤
i ≤ d is easy. As sketched above, we choose a λ-simplex S′ in that subspace
containing the origin in its interior. Denote by L′− the derived of the boundary of
S′, then L′− is a link complex for the origin in the subspace and combinatorially
equivalent to sdvdrv(bd(S)). The join L′ = L′−L

′′′
+ is now a link complex for

the origin by Lemma 3.19 and combinatorially equivalent to the subdivision
sdvdrv(bd(S))L+ of lksdvdrv(M)(vS). After shifting the vertices from L′− by some
sufficiently small ε amount in negativeX1-direction, the obtained ε-perturbation
of L′ has all desired properties.

The Last Case. It remains to consider the last case that S is a regular
boundary cell matched with a co-face W not in the boundary. As in the second
alternative of the previous two cases, the inequalities f(vW ) < f(vS), f(vY ) >
f(vS) for S @ Y 6= W , and f(vT ) < f(vS) for T @ S hold. Again the proof splits
into two constructions of link complexes of the origin in a subspace and a sub-
half-space. Since the proposed reference map is gdλ, we use subdivisions of the
1-norm unit (half-)sphere in both parts, so that their join L′ is a subdivision
of the 1-norm unit half-sphere in Rd+ and gdλ is linear on cells of 0L′. The
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easier part is the subspace Xi = 0 for λ + 1 ≤ i ≤ d, in which we construct
a link complex for the origin combinatorially equivalent to some subdivision of
sdvdrv(bd(S)). Note that λ < d because S is a boundary cell. The harder part
of the proof is the construction of a link complex in the sub-half-space defined
by Xi = 0 for 1 ≤ i ≤ λ and Xd ≥ 0 combinatorially equivalent to a subdivision
of φcomb(sdvdrv(lkM (S))) such that gdλ and f − f(vS) have the same sign at
corresponding vertices.

So let us deal first with the construction of a link complex in the subspace
Xi = 0 for λ + 1 ≤ i ≤ d. The reference map gdλ has the constant value −1
when restricted to the 1-norm unit sphere Sλ−1

1 in that subspace. On the other
hand, the values attained by f on | sdvdrv(bd(S))| are strictly smaller than f(vS)
because of the inequality f(vT ) < f(vS) for T @ S. Therefore finding combi-
natorially equivalent subdivisions of Sλ−1

1 and sdvdrv(bd(S)) suffices. Such an
equivalence exists because both complexes are combinatorial (λ− 1)-spheres.

Now we turn to the construction of the link complex in the sub-half-space
defined by Xi = 0 for 1 ≤ i ≤ λ and Xd ≥ 0. For our proof, we need the
combinatorial annulus theorem [44, Corollary 3.19, p. 36], which states that if
A is a PL n-ball contained in the interior of another PL n-ball B, then the closure
of B \A is PL-homeomorphic to an annulus, that is, the Cartesian product of a
PL (n−1)-sphere and a compact interval. If necessary, perform as a preliminary
step a stellar subdivision on φcomb(sdvdrv(lkM (S))) such that the star of vW is
contained completely in the interior of the |φcomb(sdvdrv(lkM (S)))|. Since W is
an interior cell of M , the vertex vW is an interior point of the (d − λ − 1)-ball
|φcomb(sdvdrv(lkM (S)))| and such a stellar subdivision exists, for example the
derived subdivision will do. By Lemma 3.25, we can assume that all vertices
except vW of the obtained stellar subdivision L+ of φcomb(sdvdrv(lkM (S))) have
f -value strictly larger than f(vS). The star of vW in L+ is a (d − λ − 1)-ball,
and we made sure that it is contained in the interior of the (d−λ−1)-ball |L+|.
Applying the combinatorial annulus theorem yields that |delL+(vW )|, which is
the closure of |L+| \ | stL+(vW )|, is a (d− λ− 1)-dimensional annulus. We can
perform an analogous construction on the 1-norm unit half-sphere H in the
sub-half-space defined by Xi = 0 for 1 ≤ i ≤ λ and Xd ≥ 0. Note that the
vertex ed with coordinates Xd = 1 and Xi = 0 for i 6= d is the only vertex of
H whose gdλ-value is −1, all other vertices have gdλ-value 1. Choose a stellar
subdivision H ′ of H such that all vertices except ed have positive gdλ-value and
| stH′(ed)| is contained in the interior of of |H ′|. Then |delH′(ed)| is a (d−λ−1)-
dimensional annulus as well.

Find PL homeomorphisms from |delH′(ed)| and from |delL+(vW )| to the
standard annulus Sd−λ−2 × [0, 1] such that the links | lkH′(ed)| and | lkL+(vW )|
are mapped to Sd−λ−2 × {1}. Then a composition of one PL homeomorphism
with the inverse of the other yields a PL homeomorphism between |delH′(ed)|
and |delL+(vW )| mapping | lkH′(ed)| and | lkL+(vW )| to each other. Conse-
quently, there are combinatorially equivalent subdivisions A of delL+(vW ) and
A′ of delH′(ed) that restrict to combinatorially equivalent subdivisions of AL of
lkL+(vW ) and A′L of lkH′(ed). By construction, f−f(vS) is positive throughout
|delL+(vW )| and gdλ is positive throughout |delH′(ed)| implying that the signs
at corresponding vertices of A and A′ agree. As final step for the second part,
we add the cones vWAL, a subdivision of stL+(vW ), to A and edA′L, a subdivi-
sion of stH′(ed), to A′. Then A ∪ vWAL is a subdivision of L+ combinatorially
equivalent to the subdivision A′ ∪ edA′L of H ′ and the signs of f − f(vS) and gdλ



132 CHAPTER 3. PIECEWISE LINEAR MORSE FUNCTIONS

agree at corresponding vertices. Now we only have to join A′ ∪ edA′L with the
link complex in the other subspace considered in the first part to obtain a link
complex for the origin in Rd+ with all desired properties.

3.2.5 Comparison with Previous Notions

In the last part of this chapter, we compare the definition of regular and critical
points for piecewise linear functions suggested in Definition 3.12 with similar
notions of regularity and criticality introduced previously by other authors.
The first two notions by Kosinski [29] and by Eells and Kuiper [17] are also
based on the existence of a local coordinate system, in terms of which the
function has a certain standard representation. Kosinski’s approach even uses
a definition of two PL maps being equivalent at a pair of points for describing
the local coordinate system, which resembles our notion of local equivalence.
Since the notions of Kosinski, the notions of Eells and Kuiper, and the notions
suggested here are all based on the idea of using a piecewise linear analogue of
the Morse lemma as definition for defining regular and non-degenerate critical
points, it comes as no surprise that the three notions are in principle equivalent.
Some of the differences lie in more or less general assumptions such as whether
the complexes are finite or locally finite, which does not really matter because
all notions classify a point only depending on local properties near the point,
or whether manifolds with boundaries are considered or not. Our aim is to
check that despite of different choices for the standard reference functions and
other minor differences in the definitions, the obtained classification is the same
whenever all three notions apply.

In contrast to the three notions where local PL homeomorphisms are required
for identifying points as regular or critical, the other two notions reviewed here
for classifying the points with respect to a piecewise linear function do not take
all possible local topological features into account. We observe for the notion
of Brehm and Kühnel [9] and for the notion of Banchoff [4] that the definitions
can be rephrased in such a way that they can be described as classifying the
points with respect to different notions of local equivalence that are coarser than
the notion of local equivalence suggested in Definition 3.1. The classification by
Brehm and Kühnel is based on homology, namely on the Betti numbers of the
lower level link (lk(v))≤f(v). Banchoff’s classification is even coarser because it
considers only the Euler characteristic of the lower level link.

All four notions described below consider piecewise linear maps on combina-
torial manifolds. It is worth mentioning here two other related types of Morse
theory that have been discussed previously and have some overlaps with piece-
wise linear Morse theory. Agrachev, Pallaschke, and Scholtes [3] have studied
Morse theory for piecewise smooth functions on smooth manifolds. Amongst
other results, they obtain a level preserving isotopy for intervals without critical
values and the Morse inequalities. Rote [42] applies their characterisation of
regular points to the piecewise linear case and illustrates with a 2-dimensional
example that a point can be critical in that sense, although a piecewise lin-
ear level-preserving isotopy across the level of that point exists. Another type
of Morse theory that is applicable in principle to the piecewise linear setting
is stratified Morse theory by Goresky and MacPherson [22]. In this theory,
Rote [42] observes, all vertices of the complex would be treated as critical points.
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Whether there are deeper connections between these types of Morse theory and
our approach has not been investigated further.

Definition of Kosinski

The approach of Kosinski in [29] splits into two parts. The first part introduces a
notion of equivalence for maps at points similar to the notion of local equivalence
from Definition 3.1. Based on that notion, the second part calls a map regular at
a point or says that it has a non-degenerate singularity of a certain index at the
point, if the map at that point is equivalent to some standard map at the origin
of Rd. Since our approach is also divided into parts along the same idea, we
first compare Kosinski’s equivalence relation with local equivalence, and show
that they yield the same relation for real-valued PL maps on manifolds. For the
second part, we check that Kosinski’s standard maps are locally equivalent to
our standard maps at the origin.

Kosinski’s Equivalence Relation. For the definition of the equivalence of
maps at points Kosinski uses open neighbourhoods and a notion of a continuous
map being PL at a point. Since we prefer to consider cone neighbourhood
complexes and maps linear on cells of such complexes, we start by explaining
how to switch between the two models. Kosinski uses manifolds as domains for
the maps, but the notion of a manifold differs slightly from Definition 1.36 for
combinatorial manifolds: Locally finite simplicial complexes whose domain is a
closed subset of Rn are allowed as complexes as well, and the complex is required
to be connected. A continuous map f : V → |M1| from an open subset V of
a manifold |M | to another manifold |M1| is called PL at a point p ∈ V if
p has an open neighbourhood U and |M | and |M1| have a triangulations K
and K1 such that for any simplex S of K intersecting U the intersection S ∩ V
is mapped linearly into a simplex of K1. We want to sketch how this definition
of f being PL at p can be seen as equivalent to the condition that p has a cone
neighbourhood complex pL in |M | such that f is linear on cells of pL.

Let us assume first that f is linear on cells of a cone neighbourhood pL.
Recall from Subsection 1.2.4 that f being linear on cells of pL implies that
there are subdivisions N of pL and K1 of M1 such that f is simplicial with
respect to the subdivisions. Choose a subdivision K of M that contains some
subdivision of N , and let U = V be some open neighbourhood of p contained
in |pL|. Then each simplex of K intersecting U is contained in a simplex of N
and is mapped linearly into some simplex of K1. Now assume that f is PL at
p in the sense defined above. Choose some cone neighbourhood complex pL′

contained in U∩V , form the intersection complex of pL′ withK, and triangulate
the result to obtain a simplicial subdivision N ′ of pL′. Let L = lkN ′(p). Then
pL is a cone neighbourhood complex for p in |M |, and each of its simplices is
completely contained in U , in V , and in a simplex of K. Hence each simplex of
pL is mapped linearly into some simplex of the triangulation K1 of |M1|, and
therefore f is linear on cells of pL.

Kosinski’s definition of maps being equivalent at a pair of points is not
restricted to real-valued functions, also higher dimensional Euclidean spaces are
allowed as co-domains. Consider two manifolds |M | and |M ′| with PL maps
f : |M | → Rk and f ′ : |M ′| → Rk and two points p ∈ |M | and p′ ∈ |M ′|. Then
Kosinski calls f at p equivalent to f ′ at p′ if there are neighbourhoods Up of p
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Up

f

��

φ
// U ′p′

f ′

��

Rk h // Rk

Figure 3.4: Commuting diagram for Kosinski’s notion of f at p being equivalent
to f ′ at p′.

in |M | and U ′p′ of p′ in |M ′| and topological homeomorphisms h : Rk → Rk and
φ : Up → U ′p′ such that φ maps p to p′ and is PL at p, the map h is orientation
preserving and PL at f(p) (in [29], it says PL at f ′(p′), which seems to be a
mistake), and the compositions h ◦ f and f ′ ◦ φ agree on Up as illustrated by
the commuting diagram from Figure 3.4.

Comparison with Local Equivalence. For comparing Kosinski’s equiv-
alence relation with the local equivalence relation from Definition 3.1, let us first
check that local equivalence implies equivalence in the sense of Kosinski. If f at
p is locally equivalent to f ′ at p′, there are neighbourhoods Np of p and N ′p′ of p′,
a PL homeomorphism φ : Np → N ′p′ mapping p to p′, and a constant c ∈ R such
that f ′ ◦φ = f + c holds on Np. As a PL homeomorphism, φ is clearly PL at p.
Choosing for h : R → R the map defined by h(t) = t + c, we see immediately
that h is PL at every point and orientation preserving, and that f ′ ◦ φ = h ◦ f
holds on Nx. Therefore we obtain Kosinski’s definition by restricting φ to some
open neighbourhood Up of p contained in Np and its image U ′p′ = φ(Up) as open
neighbourhood of p′ contained in N ′p′ .

Now we show for real-valued maps f and f ′ that f at p being equivalent
to f ′ at p′ in the sense of Kosinski implies local equivalence of f at p and
f ′ at p′. So assume that the equivalence is witnessed by neighbourhoods Up
and U ′p′ with homeomorphisms φ : Up → U ′p′ and h : R → R such that the
requirements of the definition are fulfilled. Since h is PL at f(p) and orientation
preserving, we can find positive real numbers λ−, λ+, and ε such that h(t) =
λ−(t− f(p)) + f ′(p′) for t ∈ [f(p)− ε, f(p)] and h(t) = λ+(t− f(p)) + f ′(p′) for
t ∈ [f(p), f(p) + ε]. Let K and K ′ be triangulations of |M | and |M ′| such that
f and f ′ are linear on cells of the respective triangulations. Choose a suitable
link complex L inducing a sufficiently small cone neighbourhood pL of p such
that the following assumptions hold: The homeomorphism g, which is PL at
p, restricts to a simplicial bijection between pL and a cone neighbourhood p′L′
for some link complex L′ = φ(L) of p′, in particular L is contained in Up and
L′ is contained in U ′p′ ; the link complex L is contained in | stK(p)|, and L′ is
contained in | stK′(p′)|; for all x ∈ |pL| the inequality |f(x)− f(p)| < ε holds.

When we prove that f(x) − f(p) and f ′(φ(x)) − f ′(p′) have the same sign
for any x ∈ |L|, then Lemma 3.9 shows that f at p is locally equivalent to f ′
at p′. Since f ′ ◦ φ agrees with h ◦ f on |L| ⊆ Up, we have f ′(φ(x)) − f ′(p′) =
h(f(x))−f ′(p′). Since we assumed that f(x) lies in an ε-neighbourhood of f(p)
for x ∈ |L|, where h is represented by the terms mentioned above, we obtain
h(f(x))−f ′(p′) = λ(f(x)−f(p)) for λ = λ− > 0 if f(x) ≤ f(p) and λ = λ+ > 0
if f(x) ≥ f(p). In any case, we have f ′(φ(x)) − f ′(p′) = λ(f(x) − f(p)) for
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Table 3.2: Rules for calculating a term Θi(Xi) from f(ei) and f(−ei) to repre-
sent Kosinski’s standard maps by a term f(X1, . . . , Xd) =

∑d
i=1 Θi(Xi).

f(ei) f(−ei) Θi(Xi)
1 1 |Xi|
1 −1 Xi

−1 1 −Xi

−1 −1 −|Xi|

some positive number λ, showing that f(x) − f(p) and f ′(φ(x)) − f ′(p′) have
the same sign.

Kosinski’s Standard Maps. For the definition of the standard reference
maps, Kosinski considers the 1-norm unit ball in Rd triangulated as a cone 0Sd−1

1
with apex at the origin 0 and the natural triangulation of the 1-norm unit
sphere Sd−1

1 as base. The maps are obtained by simplex-wise linear interpolation
between given values at the vertices. As before, we denote the vertices of Sd−1

1
by ei and −ei where ei is the point with coordinates Xi = 1 and Xj = 0 for
j 6= i.

The standard reference maps of Kosinski are those maps f that fulfil f(0) = 0
and f(v) ∈ {−1, 1} for vertices v of Sd−1

1 . It is easy to check that these maps can
be characterised as those maps that are representable by a term f(X1, . . . , Xd) =∑d
i=1 Θi(Xi) where each Θi(Xi) is one of the terms Xi, −Xi, |Xi|, or −|Xi|.

Which case applies for Θi depends on the values f(ei) and f(−ei) as listed in
Table 3.2.

With these standard maps, Kosinski calls a piecewise linear map f ′ : |M ′| →
R on a d-manifold |M ′| regular at p′ ∈ |M ′| if f ′ at p′ is equivalent to a standard
map f at 0, such that f(ei) = −f(−ei) for at least one index i in the range
1 ≤ i ≤ d, in other words Θi(Xi) ∈ {Xi,−Xi} for at least one index i. The
map f ′ is said to have a non-degenerate singularity of index λ at p instead, if
f ′ at p′ is equivalent to a standard map f at 0, such that f(ei) = f(−ei) = −1
for exactly λ indices i in the range 1 ≤ i ≤ d and f(ei) = f(−ei) = 1 for the
remaining indices, in other words Θi(Xi) = −|Xi| for exactly λ indices i and
Θi(Xi) = |Xi| for the remaining indices.

Let us verify that Kosinski’s notions agree with the corresponding notions
from Definition 3.12: A PL map f ′ is regular at p′ in Kosinski’s sense if and
only if p′ is a regular (interior) point of f ′ in the sense of Definition 3.12; it has
a non-degenerate singularity of index λ at p′ if and only if p′ is a non-degenerate
critical (interior) point of f ′ of index λ. We only have to check that Konsiski’s
reference maps are locally equivalent at the origin to the corresponding reference
maps from Definition 3.12.

This is easy for the reference maps characterising critical points. The map fdλ
is one of the reference maps used by Kosinski for a singularity of index λ. All
others are obtained by a permutation of the coordinates, that is, if f fulfils
f(ei) = f(−ei) = −1 for exactly λ indices i in the range 1 ≤ i ≤ d and f(ei) =
f(−ei) = 1 for the remaining indices, then there is a permutation τ of the indices
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such that f(X1, . . . , Xd) = fdλ(Xτ(1), . . . , Xτ(d)). But a permutation of the co-
ordinates is a linear homeomorphism from Rd to itself fixing the origin, showing
that fdλ is locally equivalent to any map f(X1, . . . , Xd) = fdλ(Xτ(1), . . . , Xτ(d))
obtained by a permutation τ of the coordinates.

For showing that Kosinski’s reference maps f with f(ei) = −f(−ei) for at
least one index i for regular points are locally equivalent to πd1 , we can first ob-
serve that the index i with f(ei) = −f(−ei) can be assumed to be i = 1. A per-
mutation of the coordinates as described in the previous case shows that any
reference map f with f(ei) = −f(−ei) for at least one index i is locally equiva-
lent at the origin to a reference map f with f(e1) = −f(−e1). Furthermore, the
linear automorphism of Rd mapping each point x to its negative −x maps the
origin to itself and witnesses that each reference map f with f(e1) = −f(−e1) is
locally equivalent at the origin to a reference map f with f(e1) = −f(−e1) = 1.
Therefore it suffices to prove local equivalence with πd1 only for such maps f
with f(e1) = −f(−e1) = 1.

This is verified by an ε-perturbation of the 1-norm unit sphere Sd−1
1 such that

πd1 has the same sign at the perturbed vertices as f has at the original vertices.
The vertices e1 and −e1 have already matching signs, and all other vertices
lie in the hyperplane X1 = 0 and can be shifted slightly in negative/positive
X1-direction such that the sign of πd1 at the shifted vertex agrees with the sign
of f at the original vertex.

Definition of Eells and Kuiper

The notion that we want to examine next appeared in [17], where Eells and
Kuiper consider manifolds with non-degenerate maps that have exactly three
critical points in the topological, the combinatorial, and the differentiable cat-
egory. For the combinatorial category, they define a PL function f : |M | → R
as Comb-non-degenerate if each point of |M | is either Comb-ordinary or Comb-
critical of index λ in the following sense: A p-centred local coordinate sys-
tem is a PL homeomorphism X : U → Rd defined on some neighbourhood
U of p such that X(p) is the origin; the coordinate system is represented by
a family Xi : U → R of coordinate maps with X(y) = (X1(y), . . . , Xd(y))
for y ∈ U . A point p is Comb-ordinary with respect to f if there are a
p-centred local coordinate system Xi in a neighbourhood U and a positive
number µ such that Xd(y) = µ(f(y) − f(p)) holds for y ∈ U . Likewise,
a point p is Comb-critical of index λ if there are a p-centred local coordi-
nate system Xi in a neighbourhood U and a positive number µ such that
−maxλi=1 |Xi(y)| + maxdi=λ+1 |Xi(y)| = µ(f(y) − f(p)) holds for y ∈ U . In
the following, we show that the point classification is equivalent to the classi-
fication from Definition 3.12 regarding interior points: A Comb-ordinary point
is regular and vice versa, a Comb-critical point of index λ is a critical point of
index λ and vice versa.

The two conditions can be rearranged to express the shifted map f − f(p)
in terms of the coordinates Xi. A Comb-ordinary point fulfils Equation (3.1),
and a Comb-critical point of index λ fulfils Equation (3.2):

f(y)− f(p) = µ−1Xd(y) (3.1)

f(y)− f(p) = µ−1(− λmax
i=1
|Xi(y)|+ dmax

i=λ+1
|Xi(y)|) (3.2)
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In this form, the definition of Eells and Kuiper can be easily seen as equivalent
to a rephrasing using local equivalence: The point p is Comb-ordinary if f at p is
locally equivalent to µ−1Xd at the origin, and it is Comb-critical of index λ if f at
p is locally equivalent to µ−1(−maxλi=1 |Xi|+maxdi=λ+1 |Xi|) at the origin. The
scaling factor µ−1 can be omitted because a scaling is a linear homeomorphism
of Rd to itself fixing the origin. The map Xd at the origin is locally equivalent
to X1 at the origin as witnessed by a permutation of the coordinates mapping
the last to the first coordinate. Therefore a point is Comb-ordinary if and only
if it is a regular (interior) point in the sense of Definition 3.12.

It remains to prove the following statement:

Lemma 3.27. For each λ in the range 0 ≤ λ ≤ d, the reference map hdλ =
−maxλi=1 |Xi| + maxdi=λ+1 |Xi| for Comb-critical points of index λ and the ref-
erence map fdλ = −

∑λ
i=1 |Xi| +

∑d
i=λ+1 |Xi| for PL critical points of index λ

are locally equivalent at the origin.

Proof. Our aim is to find a subdivision of the ∞-norm unit sphere Sd−1
∞ , which

is a hypercube, combinatorially equivalent to the derived of the standard trian-
gulation of the 1-norm unit sphere Sd−1

1 such that for a suitable choice of the
vertices of the derived, the sign of hdλ at a vertex in the hypercube triangulation
agrees with the sign of fdλ at the corresponding vertex of the derived of Sd−1

1 .
Of course we obey the requirement from Lemma 3.7 allowing to conclude local
equivalence that hdλ is linear on cells of the cone with apex at the origin and the
chosen triangulation of the hypercube as base. The analogous requirement for
fdλ is already fulfilled because we use a subdivision of the standard triangulation
of Sd−1

1 where each cell is contained in an orthant and fdλ is linear on orthants.
Subdividing the Hypercube. A subdivision of Rd such that hdλ is lin-

ear on cells of the subdivision is induced by cutting the space along the fol-
lowing hyperplanes: Each coordinate hyperplane Xi = 0, which separates the
half-space |Xi| = Xi from the half-space |Xi| = −Xi, each diagonal hyper-
plane Xi = Xj for i 6= j, which separates the half-space max(Xi, Xj) = Xi

identical with max(−Xi,−Xj) = −Xj from the half-space max(Xi, Xj) = Xj

identical with max(−Xi,−Xj) = −Xi, and each diagonal hyperplaneXi = −Xj

for i 6= j, which separates the half-space max(Xi,−Xj) = Xi identical with
max(−Xi, Xj) = Xj from the half-space max(Xi,−Xj) = −Xj identical with
max(−Xi, Xj) = −Xi. Since all hyperplanes contain the origin we obtain a
polyhedral fan, which is a subdivision of the polyhedral fan formed by the or-
thants. We will see that this polyhedral fan induces the barycentric subdivision
of the standard triangulation on Sd−1

1 and a combinatorially equivalent trian-
gulation of Sd−1

∞ .
For any hyperplane Xi = 0, the whole situation is symmetric with respect to

a reflection at the hyperplane Xi = 0. Therefore we can restrict our attention
to the first orthant Xi ≥ 0 for all i. The construction for the first orthant can
be extended to the whole space by taking symmetric copies of the construction
in the other orthants.

Consider first the ∞-norm unit sphere Sd−1
∞ and the ∞-norm unit ball Bd∞

bounded by it. The ball Bd∞ is the cone 0Sd−1
∞ on the∞-norm unit sphere with

apex at the origin and it has the same domain as the hypercube [−1, 1]d. Its
intersection with the first orthant is the hypercube [0, 1]d. So the part of Sd−1

∞
lying in the first orthant can be viewed as a subcomplex of [0, 1]d consisting of
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the faces not containing the origin. Consequently, restricting the subdivision
of [0, 1]d induced by the diagonal hyperplanes Xi = Xj (the other diagonal
hyperplanes Xi = −Xj intersect the first orthant only in one of its proper faces
and do not affect the subdivision) to this subcomplex is another way to describe
the subdivision induced by the diagonal hyperplanes on the part of Sd−1

∞ lying
in the first orthant.

The subdivision of the hypercube [0, 1]d obtained from cutting it along the
diagonal hyperplanes is a triangulation of the hypercube reviewed in [16, Sec-
tion 6.3.2, pp. 314–315], where several alternative characterisations and addi-
tional properties of the triangulation are observed. Important for us are the
following properties of the triangulation stated there:

The triangulation does not introduce additional vertices to the hypercube;
in fact, it can be obtained by performing an elementary starring at each vertex
of the hypercube provided that the order of the vertices respects the following
restriction: Whenever two vertices v = (v1, . . . , vd) and u = (u1, . . . , ud) of the
hypercube [0, 1]d fulfil vi ≤ ui for all indices i, then the starring at v is performed
before the starring at u.

The set of maximal dimensional simplices of the triangulation is in bijection
with the set of permutations of the index set {1, . . . , d}. The bijection is given
by representing a maximal dimensional simplex as a set Tτ = {(x1, . . . , xd) | 0 ≤
xτ(1) ≤ · · · ≤ xτ(d) ≤ 1} for some permutation τ . When we choose for vertices
v0(τ), . . . , vd(τ) the coordinates vi(τ)τ(j) = 0 if j ≤ i and vi(τ)τ(j) = 1 for
j > i, the convex hull of these vertices is the simplex Tτ .

We can draw the following additional conclusions from these observations:
The half-spaces defining Tτ are 0 ≤ Xτ(1), Xτ(1) ≤ Xτ(2), . . . , Xτ(d−1) ≤ Xτ(d),
Xτ(d) ≤ 1. The position of Tτ with regard to the other subdividing hyperplanes
is implied, Tτ lies in the following half-spaces: Xi ≥ 0, Xi ≤ 1, and Xi ≥ −1
for all i; Xi ≥ −Xj for all i 6= j; and Xτ(i) ≤ Xτ(j) for all i < j. All maximal
simplices contain the origin as vertex, hence the triangulation is a cone with apex
at the origin whose base is the triangulation we are looking for, a triangulation
of the part of Sd−1

∞ lying in the first orthant.
Let us denote this triangulation by S+

∞ and a maximal simplex of S+
∞ whose

cone with the origin is Tτ by Sτ , so that Tτ = 0Sτ holds for each permutation τ .
Clearly we can describe Sτ as intersection of Tτ with one of its bounding hyper-
planes, namely with the hyperplane Xτ(d) = 1. In contrast, omitting the half-
space Xτ(d) ≤ 1 from the family of half-spaces defining Tτ yields the extended
cone S+

τ . From the characterisation of the maximal simplices we can infer that
a set of vertices forms a simplex of S+

∞ if and only if there is a permutation τ
and a subset J ⊆ {0, . . . , d− 1} such that the set agrees with {vi(τ) | i ∈ J}.

The corresponding description of such a simplex of S+
∞ as intersection of Tτ

with some of its bounding hyperplanes is obtained as follows: The bounding
hyperplane Xτ(d) = 1 always belongs to the intersection; the hyperplane 0 =
Xτ(1) belongs to the intersection if and only if all vertices vi(τ) with i ∈ J
have coordinate vi(τ)τ(1) = 0; the hyperplane Xτ(k) = Xτ(k+1) belongs to
the intersection if and only if for each vertex vi(τ) with i ∈ J the τ(k)-th
coordinate vi(τ)τ(k) and the τ(k + 1)-th coordinate vi(τ)τ(k+1) agree.

Combinatorial Equivalence by Pseudo-Radial Projection. Now let
S+

1 be the barycentric subdivision of the simplex ∆ of Sd−1
1 forming its in-

tersection with the first orthant. We want to convince ourselves that S+
1 and
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S+
∞ are combinatorially equivalent by pseudo-radial projection. As before, we

denote the vertices of ∆ by ei with ei having i-th coordinate 1 and all other
coordinates zero. For each non-empty face F of ∆ represented as convex hull
F = conv{ek | k ∈ K} for some non-empty subset K ⊆ {1, . . . , d}, the barycen-
tre bF is given by bF = ‖

∑
k∈K ek‖

−1
1

∑
k∈K ek. On the other hand, the terms∑

k∈K ek for non-empty K ⊆ {1, . . . , d} enumerate the vertices of S+
∞. Since for

each non-empty subset K, the two points ‖
∑
k∈K ek‖

−1
1

∑
k∈K ek and

∑
k∈K ek

lie on the same ray emanating from the origin, pseudo-radial projection yields
as combinatorial equivalence φVrt : Vrt(S+

∞) → Vrt(S+
1 ) in terms of vertices a

map defined by the assignments φVrt(
∑
k∈K ek) = ‖

∑
k∈K ek‖

−1
1

∑
k∈K ek for

each non-empty K ⊆ {1, . . . , d}.
Consider a non-empty face F∞ of S+

∞ defined by relations between the co-
ordinates 0 R0 Xτ(1), Xτ(1) R1 Xτ(2), . . . , Xτ(d−1) Rd−1 Xτ(d), Xτ(d) = 1
where each relation Ri is either the order relation ≤ or the equality = and at
least one relation is not the equality. As noted above, the extended cone F+

∞
is defined by omitting the last relation Xτ(d) = 1. The vertices of F∞ are
of the form vi(τ) with i ∈ J where J is the subset of {0, . . . , d − 1} fulfilling
J = {i | Ri is the order relation ≤}. In fact, vi(τ) is the point defined by the
relations 0 Ri0 Xτ(1), Xτ(1) R

i
1 Xτ(2), . . . , Xτ(d−1) R

i
d−1 Xτ(d), Xτ(d) = 1 where

Rii is the order relation ≤ and all other Rij with j 6= i are the equality =.
By definition of the vi(τ), they can be represented as vi(τ) =

∑
j>i eτ(j).

Define for each permutation τ and each index i in the range 0 ≤ i ≤ d−1 a face
F i(τ) of ∆ by taking the convex hull of the vertices eτ(j) with j > i. It follows
immediately that F i+1(τ) is a face of F i(τ) for any applicable index i, meaning
that the F i(τ) with i ∈ J form a chain in the face poset of ∆. Moreover the
barycentre of F i(τ) is the point bF i(τ) = ‖vi(τ)‖−1

1 vi(τ). Since the F i(τ) form
a chain, the corresponding barycentres bF i(τ) with i ∈ J span a cell F1 of the
barycentric subdivision.

A barycentre bF i(τ) can be represented by the relations 0 Ri0 Xτ(1), Xτ(1) R
i
1

Xτ(2), . . . , Xτ(d−1) R
i
d−1 Xτ(d),

∑d
i=1Xτ(i) = 1 with the same relations Rij as

above. Since the intersection of F+
∞ with ∆ is given by the relations 0 R1 Xτ(1),

Xτ(1) R2 Xτ(2), . . . , Xτ(d−1) Rd Xτ(d),
∑d
i=1Xτ(i) = 1, we can conclude that

pseudo-radial projection of the cell F∞ to ∆ is exactly the cell F1 spanned by
the barycentres bF i(τ) with i ∈ J . Note that we can find for any cell of S+

1
spanned by barycentres bGk with the (Gk)k∈K forming a chain in the face poset
a permutation τ and a subset J of {0, . . . , d− 1} such that the chains (Gk)k∈K
and (F i(τ))i∈J consist of the same set of faces.

Let us denote the subdivision of the ∞-norm unit sphere and hypercube
boundary Sd−1

∞ = bd([−1, 1]d) induced by cutting along the hyperplanesXi = 0,
Xi = Xj , and Xi = −Xj by S′∞ and the barycentric subdivision of the standard
triangulation of the 1-norm unit sphere Sd−1

1 by S′1. With the above consid-
erations, we have verified that S′∞ and S′1 are combinatorially equivalent via
pseudo-radial projection with the combinatorial equivalence in terms of vertices
φ′

Vrt : Vrt(S′∞) → Vrt(S′1) scaling the distance from the origin for each vertex
from unit length with respect to∞-norm to unit length with respect to 1-norm.

A Derived with Matching Signs. However, with the barycentric subdivi-
sion the signs of hdλ at the vertices of S′∞ and the signs of fdλ at the vertices of S′1
do not always agree at corresponding vertices. To overcome this obstacle, we can
use the fact that a barycentric subdivision is combinatorially equivalent to any
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other derived subdivision. Therefore we can alter S′1 and φ′Vrt to a derived sub-
division S∗1 of Sd−1

1 and a combinatorial equivalence φ∗Vrt : Vrt(S′∞)→ Vrt(S∗1 )
by replacing the barycentres bF ∈ Vrt(S′1) of the cells F in Sd−1

1 by other
points vF in the interior of the respective cell F . We show that it is possible to
choose for each cell F a vertex vF such that fdλ has the same sign at vF as hdλ
at the corresponding vertex in S′∞.

For defining the vertices, we divide the coordinates of the vertices in S′∞
into the head block of the first λ coordinates (X1, . . . , Xλ) and the tail block
of the last d − λ coordinates (Xλ+1, . . . , Xd). If the tail block of a vertex u =
(u1, . . . , ud) of S′∞ is zero, then its hdλ-value is negative and (u1, . . . , uλ, 0, . . . , 0)
is mapped by φ′Vrt to the barycentre of a simplex F in S′1 whose vertices are
among the ek with k ≤ λ and hence have the fdλ-value −1. We choose an arbi-
trary point vF in the interior of F for φ∗Vrt(u1, . . . , uλ, 0, . . . , 0), which inherits
the negative fdλ-value −1 from the vertices by interpolation.

Similarly, if the head block is zero, then (0, . . . , 0, uλ+1, . . . , ud) has positive
hdλ-value and is mapped by φ′Vrt to the barycentre of a simplex F in S′1 whose
vertices are among the ek with k ≥ λ + 1 and hence have the fdλ-value 1. We
choose an arbitrary point vF in the interior of F for φ∗Vrt(0, . . . , 0, uλ+1, . . . , ud),
which necessarily has the positive fdλ-value 1.

The remaining vertices have non-zero head and tail blocks and consequently
their hdλ-value is zero. They are mapped to the barycentre of a simplex F in S1
that has vertices ek with k ≥ λ + 1 and fdλ-value 1 and vertices ej with j ≤ λ
and fdλ-value −1. This implies that the term Ffd

λ
=0 is a canonical representation

of its level set and hence we can choose an interior point vF of the simplex with
fdλ-value fdλ(vF ) = 0 for φ∗Vrt(u1, . . . , ud). This defines a derived subdivision
S∗1 of Sd−1

1 and a combinatorial equivalence φ∗Vrt : Vrt(S′∞) → Vrt(S∗1 ) with
matching signs of hdλ and fdλ at corresponding vertices as desired.

Alternative Proof. Note that there is an alternative proof for the local
equivalence of fdλ and hdλ at the origin by joining link complexes for the head
and tail block subspaces. For a fixed index λ, a subdivision of Rd obtained
by cutting along the coordinate hyperplanes Xi = 0 and only those diagonal
hyperplanes Xi = Xj and Xi = −Xj where the indices i and j either both
belong to the head block or both belong to the tail block suffices for hdλ being
linear on cells. When we construct a subdivision of Sλ−1

1 in the head block
subspace and a subdivision of Sd−λ−1

1 in the tail block subspace such that hdλ
is linear on cells of the cone on these subdivisions with the origin as apex, then
hdλ is linear on cells of the cone on the join of the subdivisions as well. Since hdλ
and fdλ are both negative on the whole Sλ−1

1 in the head block subspace and are
both positive on the whole of Sd−λ−1

1 in the tail block subspace, matching signs
at the vertices of the join are obtained immediately for this construction.

Definition of Brehm and Kühnel

Another notion of criticality suggested by Brehm and Kühnel in [9] is based on
homology. An alternative reference for the notion is Kühnel’s treatment in [30].
Brehm and Kühnel consider maps f : |M | → R linear on cells of a combinatorial
d-manifold M and in general position. In their terminology such maps are
called regular simplex-wise linear and due to the general position assumption
criticality occurs only at vertices. They call a vertex v in |M | critical if not all
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of the following singular relative homology groups vanish.

Hi(|M |≤f(v), |M |≤f(v) \ {v})

Furthermore they remark that these singular homology groups are isomorphic
to simplicial relative homology groups as follows.

Hi(|M |≤f(v), |M |≤f(v) \ {v}) ∼= Hi(scp≤f(v)(st(v)), scp≤f(v)(lk(v)))

For the latter relative homology group an isomorphic non-relative reduced ho-
mology group can be found using an observation in Hatcher [25, p. 125] stating
for arbitrary spaces Y ⊆ X that Hi(X,Y ) is isomorphic to H̃i(X ∪ cone(Y )).

Hi(scp≤f(v)(st(v)), scp≤f(v)(lk(v)))
∼= H̃i(scp≤f(v)(st(v)) ∪ cone(scp≤f(v)(lk(v))))

Since scp≤f(v)(st(v)) is a cone with apex v and base scp≤f(v)(lk(v)), the com-
plex on the right hand side is combinatorially equivalent to the suspension of
scp≤f(v)(lk(v)).

H̃i(scp≤f(v)(st(v)) ∪ cone(scp≤f(v)(lk(v)))) ∼= H̃i(susp(scp≤f(v)(lk(v))))

Another result stated in Hatcher [25, Section 2.1, Exercise 20, p. 132] relates
the homology of a suspension susp(X) to the homology of the original space X
by H̃i(X) = H̃i+1(susp(X)). Furthermore we can use the fact that lk(v)≤f(v)
collapses to scp≤f(v)(lk(v)) and hence the two spaces have the same homology.

H̃i(susp(scp≤f(v)(lk(v)))) ∼= H̃i−1(scp≤f(v)(lk(v))) ∼= H̃i−1(lk(v)≤f(v))

Summing up these isomorphisms, we obtain that v is critical in the sense of
Brehm and Kühnel if and only if H̃i−1(lk(v)≤f(v)) 6= 0 for some i, in other
words, if and only if the space lk(v)≤f(v) is not acyclic. Brehm and Küh-
nel also define the notion of an index of a critical point. A critical point
is said to have index λ with multiplicity kλ if kλ is the rank of the homol-
ogy group Hi(|M |≤f(v), |M |≤f(v) \ {v}), which agrees with the rank of the re-
duced homology group H̃i−1(lk(v)≤f(v)) by the above isomorphisms. In other
words, the multiplicity kλ of the index λ is the (λ − 1)-th reduced Betti num-
ber of the lower link, which can be alternatively understood as the lower level
link lk(v)≤f(v) or the lower subcomplex scp≤f(v)(lk(v)) of the link, yielding the
equalities kλ = β̃λ−1(lk(v)≤f(v)) = β̃λ−1(scp≤f(v)(lk(v))).

Comparison. For comparing the notion of criticality of Brehm and Kühnel
with the notion from Definition 3.12, observe that local equivalence of f at
a point v with one of the standard maps πd1 or fdλ at the origin implies a PL
homeomorphism between lk(v)≤f(v) and (Sd−1

1 )πd1≤0 or (Sd−1
1 )fd

λ
≤0 respectively.

We showed in the proof of Lemma 3.17 that (Sd−1
1 )πd1≤0 is a ball and that

(Sd−1
1 )fd

λ
≤0 is homotopy equivalent to a (λ − 1)-sphere, with the empty set

being considered as (−1)-sphere. Reading off the Betti numbers from Table 3.1
and converting them into reduced Betti numbers allows us to determine the
classification of the points according to Brehm and Kühnel. We can conclude



142 CHAPTER 3. PIECEWISE LINEAR MORSE FUNCTIONS

that regular points in our sense are not critical in the sense of Brehm and
Kühnel, because the lower level link lk(v)≤f(v) of a regular point v is a ball
and balls are acyclic. The lower level link lk(v)≤f(v) of non-degenerate critical
point v of index λ in our sense is homotopy equivalent to a (λ−1)-sphere, which
has the reduced Betti numbers β̃λ−1(Sλ−1) = 1 and β̃n(Sλ−1) = 0 for n 6= λ−1.
Therefore such points are critical points in the sense of Brehm and Kühnel that
have index λ with multiplicity kλ = 1 and all other indices with multiplicity 0.

The definition of Brehm and Kühnel can be interpreted as a classification
of points in a combinatorial manifold with a map linear on cells with respect
to an equivalence relation that considers two triples (M,x, f) and (M ′, x′, f ′)
as equivalent if and only if β̃n(lkM (x)f≤f(x)) = β̃n(lkM ′(x′)f ′≤f ′(x′)) holds for
all n. Note that replacing the reduced Betti numbers by the unreduced ones
yields the same equivalence relation. By Characterisation 9. from Theorem 3.11
for local equivalence, the triples (M,x, f) and (M ′, x′, f ′) are locally equivalent
if and only if there is a PL homeomorphism from lkM (x) to lkM ′(x′) mapping
upper level link to upper level link and lower level link to lower level link,
which induces in particular a PL homeomorphism between lkM (x)f≤f(x) and
lkM ′(x′)f ′≤f ′(x′). Since homeomorphic spaces have the same Betti numbers,
the equivalence relation defined by matching Betti numbers of the lower link
is at least as coarse as the local equivalence relation. When we do not insist
on general position it is easy to construct an example showing that matching
Betti numbers of the lower link is even strictly coarser than local equivalence:
Take the suspension susp(Sd−1) on some combinatorial (d−1)-sphere Sd−1 with
d ≥ 2 and define f(a1) = f(a2) = f(u) = 0 for the two apices a1 and a2 and for
a single vertex u in Sd−1 and define f(w) > 0 for all other vertices w in Sd−1.
Then a1 is not critical in the sense of Brehm and Kühnel because the lower level
link consists of a single point and is acyclic, but it is degenerate critical in our
sense because the lower level link is not homeomorphic to a (d− 1)-ball.

When we restrict our attention to maps in general position and combinato-
rial manifolds without boundary, it seems to be harder to design an example
witnessing that the two equivalence relations differ. For example, if we wanted
to construct a vertex in a combinatorial d-manifold as above that is not criti-
cal in the sense of Brehm and Kühnel but critical in our sense, any candidate
(M,x, f) would have a homology (d − 1)-ball as lower level link lkM (x)f≤f(x)
embedded in the (d− 1)-sphere lkM (x). This raises the question whether there
are, in sufficiently large dimension, PL homology (d−1)-balls different from the
standard ball that embed piecewise linearly into some PL (d − 1)-sphere, be-
cause this might lead to an example as desired, provided that we can represent
such an embedded homology (d − 1)-ball as the lower level set Sd−1

≤0 of some
map linear on cells of some triangulation of the (d − 1)-sphere Sd−1 such that
the value 0 itself is not attained at vertices. Unfortunately it seems that this
question has not been addressed yet in the literature, not even in the smooth
or general topology categories.

So instead of an example relying on embedded homology balls, we could
look for an example relying on a standard ball that is embedded in a non-
standard way, that is, lkM (x)f≤f(x) is PL-homeomorphic to the lower half-
sphere (Sd−1

1 )πd1≤0 but no homeomorphism between them extends to a homeo-
morphism between lkM (x) and Sd−1

1 mapping lkM (x)f≥f(x) to the upper half-
sphere (Sd−1

1 )πd1≥0. But if f is in general position, the boundary sphere of
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lkM (x)f≤f(x) corresponding to the (d− 2)-sphere (Sd−1
1 )πd1 =0 under the home-

omorphism is the level set lkM (x)f=f(x). Recall from the facts cited in Sub-
section 1.2.12 that a (d − 2)-sphere embedded in a (d − 1)-sphere decomposes
the (d − 1)-sphere into two uniquely determined parts, and if one of the parts
is a PL-ball, both parts are PL-balls and the embedding is unknotted. In our
example, the (d − 2)-sphere lkM (x)f=f(x) separates the (d − 1)-sphere lkM (x)
into lkM (x)f≤f(x) and lkM (x)f≥f(x) with the former part being a PL-ball im-
plying that the latter part is a PL-ball as well. Using Fact 1.39 for extending
homeomorphisms between boundary spheres of balls to homeomorphisms of
the balls themselves, we can extend the homeomorphism between lkM (x)f=f(x)
and (Sd−1

1 )πd1≥0 in two ways: On the one hand to a homeomorphism between
lkM (x)f≤f(x) and (Sd−1

1 )πd1≤0 and on the other hand to a homeomorphism be-
tween lkM (x)f≥f(x) and (Sd−1

1 )πd1≥0. The union of these two homeomorphisms
witnesses local equivalence of (M,x, f) with (Rd, 0, πd1), thus x is a regular point
of f .

The above considerations show that the desired example for a point that is
not critical in the sense of Brehm and Kühnel, but critical in our sense cannot be
obtained by trying to embed a standard ball into the sphere in a non-standard
way. But the idea of embedding a standard lower level link in a non-standard
way should work in the cases where non-standard embeddings are known to
exist. One such case is the existence of knotted spheres in co-dimension 2 [44,
p. 52], which we use to sketch a construction of a critical point in dimension d ≥ 4
that has index d− 2 with multiplicity 1 and all other indices with multiplicity 0
as defined by Brehm and Kühnel, just as a non-degenerate critical point of
index d−2 in our sense would, but is degenerate critical in that sense. Consider
a non-trivially embedded thickened knot Sd−3 ×B2 in Sd−1, thought of as the
lower level link embedded into the link of the point to be constructed. Since the
thickened knot Sd−3×B2 deformation retracts onto its core knot Sd−3, it has the
same homology as a (d− 3)-sphere. When we consider the map hdd−2 as defined
in Lemma 3.27 on the boundary sphere Sd−1

∞ of the hypercube, we can verify
that (Sd−1

∞ )hd
d−2≤0 is exactly the thickened unknot Sd−3

∞ × [−1, 1]2. We assumed
Sd−3×B2 to be a non-trivial knot in Sd−1, so there is no homeomorphism from
Sd−1 to Sd−1

∞ taking Sd−3 × B2 to the unknot Sd−3
∞ × [−1, 1]2. If we manage

to represent Sd−3 × B2 as lower level set Sd−1
f≤0 for a map f linear on cells of

a triangulation of Sd−1 not attaining the value 0 at vertices, we can extend
this to a combinatorial d-manifold with a map f linear on cells, such that the
triangulation of Sd−1 is the link of a vertex and Sd−3 ×B2 the lower level link.
Then we have obtained a degenerate critical vertex where the Betti numbers of
the lower link agree with the Betti numbers of a (d− 3)-sphere as desired.

Definition of Banchoff

The last notion of criticality we review here is due to Banchoff’s expositions in
[4] and [5]. Banchoff defines in [4] an index for all vertices of a polytopal complex
with respect to a height function in general position. Rephrased in our nota-
tion, the index a(v, f) of v with respect to a function f is defined by a(v, f) =∑
S∈M (−1)dimSA(S, v, f), where A(S, v, f) is an indicator function that is 1 if

and only if v is a vertex of S and f attains its maximum on S at v and 0 oth-
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erwise. In other words, A(S, v, f) = 1 holds if and only if S ∈ scp≤f(v)(st(v)) \
scp≤f(v)(lk(v)). Thus the index of v agrees with the following difference of
Euler characteristics: a(v, f) = χ(scp≤f(v)(st(v))) − χ(scp≤f(v)(lk(v))). Since
scp≤f(v)(st(v)) is a cone with apex v and base scp≤f(v)(lk(v)), its Euler charac-
teristic is 1 and we obtain a(v, f) = 1− χ(scp≤f(v)(lk(v))) = 1− χ(lk(v)≤f(v)).

We can derive an equivalence relation on triples (M, v, f) from Banchoff’s
definition by considering two triples (M, v, f) and (M ′, v′, f ′) as equivalent if
the index a(v, f) of v in M with respect to f agrees with the index a(v′, f ′)
of v′ in M ′ with respect to f ′. Compared to the classification of Brehm and
Kühnel, Banchoff’s classification is a coarsening: Brehm and Kühnel classify
vertices by the Betti numbers of the lower link, whereas Banchoff considers
only its Euler characteristic, that is the alternating sum of all Betti numbers.
In particular, vertices v that are not critical with respect to f in the sense
of Brehm and Kühnel have index a(v, f) = 0. It is easy to design examples of
lower links whose Euler characteristics agree but whose individual Betti numbers
differ: Define a piecewise linear map f on a 2-sphere that is negative in the
interior two disjoint regions, namely in a strip around the equator and a ball
around the north pole, zero on their boundaries, and positive elsewhere, for
example by taking the derived of S2

1 in R3 and choosing negative values for
vertices on the equator and at the north pole and positive values for all other
vertices of the derived. The disjoint union of a ball and an annulus has the
non-zero Betti numbers β0 = 2 and β1 = 1, but its Euler characteristic 1 agrees
with the Euler characteristic of a single ball. After completing the example
to a combinatorial 3-manifold with PL map f where the example occurs as
link lk(v) with embedded lower level link lk(v)≤f(v), we obtain a vertex v with
index a(v, f) = 0 that is critical in the sense of Brehm and Kühnel having
indices 0 and 1 with multiplicity 1 and all other indices with multiplicity 0.
Using the fact that the Euler characteristic χ(X) can be expressed in terms
of the reduced Betti numbers by χ(X) = 1 +

∑
(−1)nβ̃n(X), we see that the

index a(v, f) in the sense of Banchoff can also be computed as alternating sum
of the multiplicities kλ of the indices λ the vertex v has according to Brehm and
Kühnel:

a(v, f) = 1− χ(lk(v)≤f(v)) = −
∑

(−1)nβ̃n(lk(v)≤f(v))

=
∑

(−1)λβ̃λ−1(lk(v)≤f(v)) =
∑

(−1)λkλ

Recall that the lower level link of a regular point in our sense is a ball and
has Euler characteristic 1, and that the lower link of critical points of index λ in
our sense has the homology of a (λ − 1)-sphere and hence Euler characteristic
1− (−1)λ−1. This yields as index for regular points the value 0, and for critical
points of index λ the value (−1)λ. Banchoff does not explicitly define the notions
of critical and regular vertices in [4]. But the paper contains a comparison of
the smooth and PL situation taking the n-torus as example. In this example,
the same correspondence as above is obtained: Vertices with index a(v, f) = 0
correspond to regular points in the smooth example, critical vertices of index
λ in the smooth sense correspond to vertices with index a(v, f) = (−1)λ. In
another paper [5], Banchoff restricts the study to 2-dimensional closed manifolds
embedded in R3 and defines the index in a different but equivalent fashion. The
account illustrates the results by comparing them to smooth analogues, and it is
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also observed that ordinary points where the level plane of the height function
through the point cuts the star into two pieces have index 0. Bloch [8] suggests
to adopt the condition that the index is non-zero as definition for critical points
in the sense of Banchoff.
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Chapter 4

More Characterisations for
Regular Points

In the previous chapter, we defined regular points as those points where the
map is locally equivalent to the linear coordinate map πd1 at the origin. Since
local equivalence can be characterised in many different fashions, we already
obtained several characterisations for regular points. This chapter adds some
more characterisations of regular points, at least if general position is assumed.

The original motivation for the studies in this thesis are questions regarding
the properties of regular points, in particular properties that are characterising
such points and properties expressing the absence of topological changes in the
level sets. Chiang, Lenz, Lu, and Rote raise such kind of questions in a paper
on the construction of contour trees [13]. These questions are collected and
supplemented by references to related results and problems by Rote in [42].
In both papers general position for the map f : |M | → R linear on cells of a
combinatorial manifold M is assumed, so that critical behaviour occurs only
at vertices, and a vertex v is called regular if all level sets |M |=h for h in a
sufficiently small interval [f(v)−ε, f(v)+ε] are homeomorphic [13, Definition 3].
For the three-dimensional case, it is shown that there even is a level preserving
isotopy between the level sets of an interval range [a, b] whose preimage contains
only regular points, namely a continuous map Φ: |M |=b × [a, b]→M such that
for each h ∈ [a, b] the restriction of Φ to |M |=b×{h} yields a PL homeomorphism
between |M |=b and |M |=h [13, Theorem 2]. However, the map Φ constructed in
the proof is not piecewise linear when considered on its whole domain |M |=b ×
[a, b], and one part of the proof does not carry over to higher dimensions, as
Rote points out in [42].

In this chapter, we prove the existence of a piecewise linear f -level-preserving
isotopy Φ: |M |=b × [a, b] → M as above for arbitrary dimension, whenever f
is in general position and the preimage f−1[a, b] contains only regular points
in the sense of Definition 3.12. The result establishes a piecewise linear ana-
logue to Fact 1.3 from smooth Morse theory and is presented in Theorem 4.20.
Moreover, this property can be used to characterise regular vertices as stated in
Theorem 4.19: For a map in general position, a vertex v is regular if and only if a
piecewise linear f -level-preserving isotopy Φ: |M |=b× [a, b]→M in some inter-
val [a, b] containing f(v) in its interior exists. Even without the general position
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assumption, regular points can be characterised according to Theorem 4.10 by
the existence of an f -level-preserving isotopy in some neighbourhood of the
point.

Most parts of the chapter are dedicated to the study of f -level-preserving
isotopies leading to the results outlined above. But the first observations es-
tablish a link between the characterisation of regular points and the Schoenflies
conjecture using the observation in Lemma 4.1 that the definition of regular
points can be rephrased in terms of unknotted sphere or ball pairs. This yields
additional characterisations of regular points for situations where the Schoen-
flies conjecture is already known to be true and conjectured candidates for a
characterisation in situations where the Schoenflies conjecture is still open.

4.1 Unknotted Sphere Pairs
Characterisations of Regular Points Implied by the Different Charac-
terisations of Local Equivalence. Let us first review the characterisations
of regular points that follow from Definition 3.12 in connection with the alter-
native characterisations of local equivalence from Theorem 3.11. Each criterion
for local equivalence from the list in Theorem 3.11 yields a criterion for x ∈ |M |
being a regular point of a map f : |M | → R linear on cells of a polytopal com-
plexM . The following list states these criteria, supplemented by a few remarks.
Again all but the last two criteria also work for polyhedral complexes. In each
criterion, the considered neighbourhood or link complex for the origin is a neigh-
bourhood or link complex in Rd with d > 0 for regular interior points and a
neighbourhood or link complex in Rd+ with d > 1 for regular boundary points;
for the last two criteria, Sd−1 can stand for any link complex for the origin,
but is intended to represent some standard link complex such as the 1-norm
or ∞-norm unit sphere around the origin for interior points or the respective
half-sphere for boundary points.

1. There is a PL homeomorphism between some cone neighbourhood of x
and some cone neighbourhood of the origin mapping x to the origin such
that f − f(x) and the linear coordinate map πd1 commute with the PL
homeomorphism. Rephrasing this criterion gives the classical characteri-
sation via local coordinate systems: The point x is regular if there is an
x-centred PL local coordinate system (X1, . . . , Xd) such that f is repre-
sented by f(x) +X1 in these coordinates.

2. There are combinatorially equivalent cone neighbourhoods of x and of the
origin such that x corresponds to 0, the map f is linear on cells of the cone
neighbourhood, and the values of f − f(x) and πd1 agree at corresponding
vertices.

3. There is a link complex for x contained in st(x) and PL-homeomorphic to
a link complex for the origin such that f −f(x) and πd1 commute with the
PL homeomorphism.

4. There is a link complex for x contained in st(x) and combinatorially equiv-
alent to a link complex for the origin such that f is linear on cells of the
link complex and f − f(x) and πd1 agree at corresponding vertices.



4.1. UNKNOTTED SPHERE PAIRS 149

5. There is a link complex for x contained in st(x) and PL-homeomorphic
to a link complex for the origin such that f − f(x) and πd1 have the same
sign at corresponding points.

6. There is a link complex for x contained in st(x) and combinatorially equiv-
alent to a link complex for the origin such that f is linear on cells of the
link complex and f − f(x) and πd1 have the same sign at corresponding
vertices.

7. Any pair of a link complex for x contained in st(x) and a link complex for
the origin is PL-homeomorphic in such a way that f − f(x) and πd1 have
the same sign at corresponding points.

8. Any pair of a link complex for x contained in st(x) and a link complex for
the origin has combinatorially equivalent subdivisions such that f − f(x)
and πd1 have the same sign at corresponding vertices.

9. There is a PL homeomorphism between lk(x) and Sd−1 mapping the upper
level link lk(x)≥f(x) to the upper half-sphere (for interior points, quarter-
sphere for boundary points) Sd−1

πd1≥0 and the lower level link lk(x)≤f(x) to
the lower half-sphere (quarter-sphere) Sd−1

πd1≤0, that is, f−f(x) and πd1 have
the same sign at corresponding points. This characterisation is the one
that suits the purposes of this chapter best.

10. The link lk(x) and Sd have combinatorially equivalent subdivisions such
that f − f(x) and πd1 have the same sign at corresponding vertices.

Since the second to last characterisation is crucial for this chapter, let us
elaborate on it a bit further. In a nutshell, it requires that the separation of the
link into upper and lower level link has to be homeomorphic to the separation of
a standard sphere into two half spheres by an equatorial hyperplane for an inte-
rior regular point, and that it is homeomorphic to the separation of a standard
half-sphere into two quarter-spheres by an equatorial hyperplane for regular
boundary points. Note that this requirement matches the suggested character-
isation for regular interior vertices in 4-dimensional manifolds in [13] and [42],
namely that the level set through the vertex should decompose the link into
two 3-dimensional balls intersecting in their common boundary, because cone
constructions as in Fact 1.39 show that the union of two balls intersecting in
their boundaries is homeomorphic to the union of two opposite half-spheres of
a standard sphere. Our results on local equivalence from the previous chap-
ter show that it does not matter which link complex for the origin in Rd or
Rd+ exactly we treat as the standard sphere or half-sphere Sd−1: For two link
complexes L and L′ of the origin, pseudo-radial projection between the subdi-
visions Lπd1≤0 ∪ Lπd1≥0 and L′

πd1≤0 ∪ L
′
πd1≥0 yields a homeomorphism respecting

the separation into upper and lower part.

Characterisation by Unknotted Sphere or Ball Pairs. A homeomor-
phism between lk(x) and Sd−1 witnessing regularity of x by mapping upper
part to upper part and lower part two lower part maps in particular the sep-
arating level set lk(x)=f(x) to the equator Sd−1

πd1 =0 of the sphere or half-sphere.
Hence for a regular point x, the pair (lk(x), lk(x)=f(x)) is homeomorphic to the
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pair (Sd−1, Sd−1
πd1 =0) which in turn is homeomorphic to the standard (d−1, d−2)-

sphere pair for interior x or to the standard (d−1, d−2)-ball pair for boundary
points x, as one easily checks. This yields as necessary condition for x being reg-
ular that (lk(x), lk(x)=f(x)) is an unknotted sphere or ball pair. For obtaining a
necessary and sufficient condition, we only have to add a trivial supplementary
assumption.

Lemma 4.1. A point x in a polytopal complex M is a regular point of a map
f : |M | → R if and only if its link lk(x) contains vertices u− and u+ with
f(u−) < f(x) and f(u+) > f(x) and the pair (lk(x), lk(x)=f(x)) is an unknotted
(d− 1, d− 2)-sphere or -ball pair with d > 0 for sphere pairs, which characterise
regular interior points, and d > 1 for ball pairs, which characterise regular
boundary points.

Proof. Assume first that x is regular for showing necessity of the condition.
Necessity. The existence of the vertices u− and u+ is already guaranteed

if we find arbitrary points y− and y+ in | lk(x)| with f(y−) < f(x) and f(y+) >
f(x) because the values of y− and y+ are obtained by interpolation of values of
vertices of lk(x). By regularity, there is a homeomorphism between lk(x) and
the 1-norm unit (half-)sphere Sd−1

1 such that f − f(x) and πd1 have the same
sign at corresponding points. The point e1 = (1, 0, . . . , 0) in Sd−1

1 has positive
πd1 -value, thus its counterpart y+ in lk(x) fulfils f(y+) > f(x); analogously, the
point−e1 = (−1, 0, . . . , 0) in Sd−1

1 has negative πd1 -value, thus its counterpart y−
in lk(x) fulfils f(y−) < f(x).

For necessity, it remains to show that (lk(x), lk(x)=f(x)) is an unknotted
sphere or ball pair. Since the pair (lk(x), lk(x)=f(x)) is homeomorphic to any
pair (Sd−1, Sd−1

πd1 =0) where Sd−1 is a link complex of the origin, we are free to
choose a link complex Sd−1 in Rd such that (Sd−1, Sd−1

πd1 =0) is easily recognised as
unknotted sphere pair and a link complex Sd−1 in Rd+ such that (Sd−1, Sd−1

πd1 =0)
is easily recognised as unknotted ball pair. In Subsection 1.2.12, we adopted
the standard pairs suggested in [44], namely the standard (d− 1, d− 2)-sphere
pair (bd([−1, 1]d),bd([−1, 1]d−1)×{0}) and the standard (d−1, d−2)-ball pair
([−1, 1]d−1, [−1, 1]d−2×{0}). We sketch how to construct for a suitable choice of
the link complex Sd−1 for the origin a homeomorphism between (Sd−1, Sd−1

πd1 =0)
and the respective standard pair.

Interior Points. For regular interior points, we choose the ∞-norm unit
sphere Sd−1

∞ = bd([−1, 1]d) as link complex Sd−1 for the origin in Rd. With this
choice, the pair (Sd−1, Sd−1

πd1 =0) agrees with (bd([−1, 1]d), {0} × bd([−1, 1]d−1)),
which is almost the standard sphere pair. We only have to apply the linear
transformation of Rd that swaps the first and last coordinate to obtain a home-
omorphism between (bd([−1, 1]d), {0} × bd([−1, 1]d−1)) and the standard pair.

Boundary Points. For regular boundary points we choose for Sd−1 the
1-norm unit half-sphere Sd−1

1 ∩Rd+ as link complex for the origin in Rd+. Observe
that Sd−1

1 ∩Rd+ is the cone on Sd−2
1 ×{0} with apex at ed = (0, . . . , 0, 1) and the

level set (Sd−1
1 ∩Rd+)πd1 =0 is the cone on {0}×Sd−3

1 ×{0} with apex ed. Taking
as apex the origin instead of ed, we obtain the combinatorially equivalent pair
(Bd−1

1 × {0}, {0} × Bd−2
1 × {0}), where Bk1 = 0Sk−1

1 is the 1-norm unit ball
around the origin in Rk. We can omit the last coordinate, which is constantly
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zero. Swapping the first and the (d− 1)-th coordinate gives the homeomorphic
ball pair (Bd−1

1 , Bd−2
1 × {0}).

The boundaries of the balls form the 1-norm (d − 2, d − 3)-sphere pair
(Sd−2

1 , Sd−3
1 ×{0}), which is homeomorphic to the∞-norm (d−2, d−3)-sphere

pair (Sd−2
∞ , Sd−3

∞ × {0}) by pseudo-radial projection. Extending this boundary
homeomorphism to the balls by the cone construction as in Fact 1.39 yields a
homeomorphism of the 1-norm (d − 1, d − 2)-ball pair (Bd−1

1 , Bd−2
1 × {0}) to

the ∞-norm (d − 1, d − 2)-ball pair (Bd−1
∞ , Bd−2

∞ × {0}) which agrees with the
standard (d − 1, d − 2)-ball pair ([−1, 1]d−1, [−1, 1]d−2 × {0}). This completes
the proof for the necessity of the criterion.

Sufficiency. Now we prove that the criterion is also sufficient.
Interior Points. Assume first that the pair (lk(x), lk(x)=f(x)) is an unknot-

ted (d−1, d−2)-sphere pair. We saw in the first part of the proof that the stan-
dard sphere pair is homeomorphic to the pair (Sd−1

∞ , (Sd−1
∞ )πd1 =0). Thus there is

a PL homeomorphism φ : | lk(x)| → |Sd−1
∞ | with φ(| lk(x)|=f(x)) = |Sd−1

∞ |πd1 =0.
It suffices to show that either φ itself or its composition with the reflection of Rd
at the hyperplane πd1 = 0, which swaps the upper half-sphere (Sd−1

∞ )πd1≥0 and
the lower half-sphere (Sd−1

∞ )πd1≤0, maps the upper level link lk(x)≥f(x) to the
upper half-sphere and the lower level link lk(x)≤f(x) to the lower half-sphere.

Applying the results from [31] cited in Subsection 1.2.12 concerning the
separation of a sphere by a sphere of co-dimension 1 yields: The (d− 2)-sphere
| lk(x)|=f(x) separates the (d−1)-sphere | lk(x)| in a unique non-trivial way into
two parts B1 and B2 with B1 ∩ B2 = | lk(x)|=f(x) and B1 ∪ B2 = | lk(x)|. The
existence of u− and u+ guarantees that the decomposition given by the choices
B1 = | lk(x)|≥f(x) and B2 = | lk(x)|≤f(x) not only fulfils B1 ∩B2 = | lk(x)|=f(x)
and B1∪B2 = | lk(x)| but also differs from the trivial decomposition into | lk(x)|
and | lk(x)|=f(x). On the other hand, since φ is a homeomorphism, the choices
B1 = φ−1(|Sd−1

∞ |πd1≥0) and B2 = (|Sd−1
∞ |πd1≤0) yield a non-trivial decomposition

with these properties as well. Therefore uniqueness of the decomposition implies
that either the equalities φ(| lk(x)|≥f(x)) = |Sd−1

∞ |πd1≥0 and φ(| lk(x)|≤f(x)) =
|Sd−1
∞ |πd1≤0 or the equalities φ(| lk(x)|≥f(x)) = |Sd−1

∞ |πd1≤0 and φ(| lk(x)|≤f(x)) =
|Sd−1
∞ |πd1≥0 hold. In the former case, φ itself is the desired homeomorphism that

maps the upper level link to the upper half-sphere and the lower level link to
the lower half-sphere, in the latter case the composition of φ and the reflection
at the hyperplane πd1 = 0 has this property.

Boundary Points. For completing the proof, it remains to consider the
case of an unknotted (d − 1, d − 2)-ball pair (lk(x), lk(x)=f(x)). From the first
part of the proof we use the fact that the standard ball pair is homeomorphic
to the pair (Sd−1

1 ∩ Rd+, (Sd−1
1 ∩ Rd+)πd1 =0). Therefore a PL homeomorphism

φ : | lk(x)| → |Sd−1
1 ∩ Rd+| with φ(| lk(x)|=f(x)) = |Sd−1

1 ∩ Rd+|πd1 =0 exists. Our
aim is again to prove that either φ itself or its composition with the reflection
at the hyperplane πd1 = 0 maps the upper level link to the upper quarter-sphere
and the lower level link to the lower quarter-sphere.

We transfer the problem from the realm of ball pairs to the realm of sphere
pairs by taking the double of all involved objects, so that we can apply the
separation result for spheres again. The double of a manifold N is the quotient
space obtained from N and a copy N ′ of N by identifying each boundary point p
in N with its copy p′ in N ′. Hence for a combinatorial manifold N , the double
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of N can be written as the union of N and a combinatorially equivalent complex
N ′ such that the intersection of N and N ′ is exactly the boundary of N and at
the same time the boundary of N ′ and the combinatorial equivalence restricts
to the identity on the common intersection.

When we take the double D = lk(x)∪(lk(x))′ of lk(x), we can extend f to D
by letting f(p′) = f(p) for each point p ∈ lk(x) and its copy p′ ∈ (lk(x))′. The
double of Sd−1

1 ∩ Rd+ whose boundary coincides with the intersection with the
hyperplaneXd = 0 can be identified with the union of the complex and its mirror
image under reflection at the hyperplane. This union of the half-sphere Sd−1

1 ∩
Rd+ and its mirror image is exactly the whole sphere Sd−1

1 and the πd1 -values of
a point and its mirror image agree. We can also extend the homeomorphism φ
to a homeomorphism between D and Sd−1

1 in a natural way by letting φ(p′) =
(φ(p))′ for a copied point p′ ∈ (lk(x))′ of a point p ∈ lk(x) where (φ(p))′ is the
mirror image of the point φ(p) ∈ Sd−1

1 ∩ Rd+. The following properties of this
construction can be easily checked: The level sets D≤f(x), D≥f(x), and D=f(x)
are doubles of lk(x)≤f(x), lk(x)≥f(x), and lk(x)=f(x) respectively. Similarly, the
upper and lower half spheres of Sd−1

1 are the doubles of the upper and lower
quarter spheres of Sd−1

1 ∩Rd+, and their common intersection (Sd−1
1 )πd1 =0 is the

double of (Sd−1
1 ∩Rd+)πd1 =0. Furthermore the extended homeomorphism φ maps

D=f(x) to (Sd−1
1 )πd1 =0.

These observations yield that the pair (D,D=f(x)) is homeomorphic by the
extended homeomorphism φ to the pair (Sd−1

1 , (Sd−1
1 )πd1 =0), which is obviously

homeomorphic to the standard sphere pair by pseudo-radial projection and a co-
ordinate swap. Hence (D,D=f(x)) is an unknotted sphere pair and |D|>f(x) and
|D|<f(x) are both non-empty, because their subsets | lk(x)|>f(x) and | lk(x)|<f(x)
already are by assumption. Using again the results from Subsection 1.2.12, the
same arguments as above show that either the extended homeomorphism φ
or its composition with the reflection at the hyperplane πd1 = 0 maps D≥f(x)
to (Sd−1

1 )πd1≥0 and D≤f(x) to (Sd−1
1 )πd1≤0. But then the original homeomor-

phism φ, which is the restriction of the extended homeomorphism φ to lk(x)
on the one hand and Sd−1

1 ∩ Rd+ on the other hand, or its composition with
the reflection necessarily maps lk(x)≥f(x) to (Sd−1

1 ∩Rd+)πd1≥0 and lk(x)≤f(x) to
(Sd−1

1 ∩ Rd+)πd1≤0 as desired.

Corollary 4.2. If a map f : |M | → R linear on cells of a polytopal com-
plex M is in general position, then a point x ∈ |M | is regular, if and only
if (lk(x), lk(x)=f(x)) is an unknotted (d−1, d−2)-sphere or -ball pair with d > 1
or lk(x) is a 0-sphere such that one of its vertices has an f -value less than f(x)
and the other vertex an f -value greater than f(x).

Proof. We only have to check that the condition that lk(x) contains vertices u−
and u+ with f(u−) < f(x) and f(u+) > f(x) from the previous lemma is
automatically fulfilled if (lk(x), lk(x)=f(x)) is an unknotted (d− 1, d− 2)-sphere
or -ball pair with d > 1 and f is in general position.

When x is a vertex, no vertex of lk(x) has the value f(x) by general position.
Since lk(x)=f(x) is a (d − 2)-sphere or -ball with d > 1, it is non-empty. But
for lk(x)=f(x) being non-empty, in the absence of vertices with value f(x), it
is necessary that lk(x) contains vertices u− and u+ with f(u−) < f(x) and
f(u+) > f(x).
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When x is not a vertex, consider the cell X containing x in its interior. Then
the value f(x) is attained in the interior of X, namely at x. By Lemma 2.21,
the map f is either constant on X or the cell X contains vertices u− and u+
with f(u−) < f(x) and f(u+) > f(x). But the former alternative is excluded
because X contains at least two vertices and their f -values differ by the general
position assumption. Since the vertices of X also belong to the vertices of lk(x),
the vertices u− and u+ of the latter alternative satisfy the requirements.

The Influence of the Schoenflies Conjecture. WhenM is a combinatorial
manifold and x an interior point of |M |, then lk(x) is a sphere. For checking
whether x is regular based on the characterisation from Lemma 4.1, disregarding
the simple test on vertices u+ and u− with values greater than and less than
f(x) respectively, it remains to check whether lk(x)=f(x) is a sphere and is
unknotted in lk(x). If lk(x)=f(x) is known to be a sphere, the remaining question
leads to the Schoenflies problem. Recall from Subsection 1.2.12 that the d-
dimensional Schoenflies conjecture postulates that any embedding of Sd−1 in
Sd is unknotted. For the piecewise linear case, the conjecture is true for d ≤ 3.
For higher dimensions the problem is still open, but the conjecture is true for all
dimensions if and only if it holds in dimension d = 4. If we add the assumption
that the embedding of Sd−1 in Sd is locally flat, then the conjecture is known
to be true in all dimensions except d = 4, where even this weaker version is
still unsolved. The current status of the conjecture allows to draw the following
conclusions from Lemma 4.1 and Corollary 4.2:

Lemma 4.3. Let M be a combinatorial d-manifold with interior point x ∈ |M |
and a map f : |M | → R linear on cells of M . Assume either that lk(x) contains
vertices u− and u+ with f(u−) < f(x) and f(u+) > f(x) or that d > 1 and f
is in general position.

1. If the dimension d is smaller than or equal to 4, then x is regular if
and only if lk(x)=f(x) is PL-homeomorphic to the (d − 2)-sphere. If the
Schoenflies conjecture is true in all dimensions, the restriction d ≤ 4 can
be omitted.

2. If the dimension d is greater than or equal to 6 (or d ≤ 4) and for all
vertices u of lk(x) the value f(u) differs from f(x), then x is regular if
and only if lk(x)=f(x) is PL-homeomorphic to the (d − 2)-sphere. If the
Schoenflies conjecture is true for locally flat embeddings of S3 into S4, the
claim is also true for d = 5.

3. If we assume general position for f , d > 1, and d 6= 5, then x is regular if
and only if x is not a vertex or lk(x)=f(x) is PL-homeomorphic to the (d−
2)-sphere. If the Schoenflies conjecture is true for locally flat embeddings
of S3 into S4, the claim is also true for d = 5.

Proof. All three claims listed are just reformulations of the characterisation in
Lemma 4.1 where the requirement that the pair (lk(x), lk(x)=f(x)) is unknotted
is replaced by using or assuming the truth of the Schoenflies conjecture. The
existence of the vertices u− and u+ is explicitly assumed or follows from general
position as in Corollary 4.2. The assumption that M is a d-manifold and that
x is an interior point implies that lk(x) is a (d − 1)-sphere. It is also assumed
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in all claims that lk(x)=f(x) is a (d − 2)-sphere, so that (lk(x), lk(x)=f(x)) is a
(d−1, d−2)-sphere pair. The truth of the Schoenflies conjecture for (d−1, d−2)-
sphere pairs with d ≤ 4 or assuming its truth for higher dimension asserts that
the pair is unknotted and yields the first claim. The second claim relies on
the Schoenflies conjecture for locally flat sphere pairs. Although the claim also
holds for d ≤ 4, this case is not interesting because the stronger general version
of the Schoenflies conjecture provides the simpler characterisation stated in the
first claim. Recall from Corollary 2.40 that for any combinatorial manifold N ,
the level set N=h is locally flat in N if h is not attained at vertices. Hence,
if f(u) 6= f(x) for all vertices of lk(x), then lk(x)=f(x) is locally flat in lk(x).
Since the Schoenflies conjecture for locally flat (d− 1, d− 2)-sphere pairs is true
for all d 6= 5 and open for d = 5, we obtain the second claim. For the last
claim, the case of non-vertices is covered by the consequence of Lemma 3.22
that non-vertices are regular for maps in general position. For vertices, general
position ensures the assumption made in the second claim that f(u) 6= f(x) for
all vertices of lk(x) is fulfilled. Thus the truth of the Schoenflies conjecture for
locally flat (d− 1, d− 2)-sphere pairs with d 6= 5 or assuming it for d = 5 gives
the last claim.

4.2 Level Preserving Isotopies
Now we turn to the relation between regular points and level preserving iso-
topies. For the study we first define the notion of an f -level-preserving isotopy
and introduce some additional technical terms involving such isotopies. Then we
derive a characterisation of critical points by local f -level-preserving isotopies.
Finally we construct for maps in general position f -level-preserving isotopies
across vertices, so that we obtain an isotopy on the whole manifold for any
interval without critical values.

4.2.1 Definition and Basic Properties
Definition 4.4 (f -level-preserving PL isotopy). LetM be a polyhedral complex
and f : |M | → R linear on cells. An f -level-preserving PL isotopy of level sets
between M=a and M=b is a PL homeomorphism φ : |M |=h × [a, b] → |M |∈[a,b]
with h ∈ [a, b] such that for any t ∈ [a, b] the restriction of φ to |M |=h × {t}
is a PL homeomorphism between |M |=h × {t} and |M |=t. If we denote by
φt : |M |=h → |M |=t the map defined by φt(x) = φ(x, t) for x ∈ |M |=h, then
the last condition can be rephrased by saying that for all t ∈ [a, b] the map
φt is a PL homeomorphism between |M |=h and |M |=t. We sometimes call
an f -level-preserving PL isotopy φ : |M |=h × [a, b] a PL isotopy on M , if the
exact boundaries of the interval [a, b] are irrelevant or implied from the context.
Similarly, we call φ a PL isotopy between a and b, ifM is clear from the context.

A local f -level-preserving PL isotopy in a neighbourhood of x ∈ |M | is an f -
level-preserving PL isotopy φ : |N |=h×[a, b]→ |N |∈[a,b] where the domain |N | of
N is a neighbourhood of x in |M | and [a, b] is a neighbourhood of f(x) in R, that
is f(x) ∈ (a, b). Note that for polytopal M , we can always find a subdivision of
M such that N is a subcomplex of that subdivision [44, Addendum 2.12, p. 16].

If K is a subcomplex of M and the image of the restriction of an f -level-
preserving PL isotopy φ : |M |=h× [a, b]→ |M |∈[a,b] to the subcomplex |K|=h×
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[a, b] is the level set |K|∈[a,b], then the restricted map φ||K|=h×[a,b] : |K|=h ×
[a, b] → |K|∈[a,b] is an f -level-preserving PL isotopy on K between K=a and
K=b. We abbreviate φ||K|=h×[a,b] by φ|K and call it the restriction of φ to K.

A PL isotopy between complexes X and Y is often defined as a level-
preserving embedding Φ: X × I → Y × I, where level-preserving means that Φ
leaves the I-part unchanged, in other words, Φ(x, t) = (φ(x, t), t) for a suitable
function φ : X × I → Y [44, Definitions 3.21, p. 37]). Hudson [26, p. 128] re-
marks that the condition that Φ is level-preserving is equivalent to the condition
on φ, that for each t the map φt : X → Y is an embedding, where φt is defined
by φt(x) = φ(x, t). Hence, in our definition of an f -level-preserving PL isotopy,
the usual notion of being level-preserving is implied by the condition that the
restriction of φ to |M |=h ×{t} is a PL homeomorphism. The property of being
f -level preserving is an additional requirement independent of the property of
being level-preserving in that sense.

We start the study of f -level preserving isotopies with some simple observa-
tions that are inherent to the concept of an isotopy.

Lemma 4.5. If φ : |M |=h×[a, b]→ |M |∈[a,b] is an f -level-preserving PL isotopy
and h′ a value in the interval [a, b], then there is an f -level-preserving PL isotopy
ψ : |M |=h′ × [a, b] → |M |∈[a,b] that is the identity at level h′, meaning that
ψh′ = id|M |=h′ holds.

More generally, if a self-homeomorphism χ of |M |=h′ is given, there is an
f -level-preserving PL isotopy ψ : |M |=h′ × [a, b] → |M |∈[a,b] that restricts to χ
at level h′, namely ψh′ = χ.

Proof. The first claim follows from the second by choosing χ = id|M |=h′ . So
let us prove the second claim. Define the map ψ by the assignment ψ(x, t) =
φ(φ−1

h′ (χ(x)), t). Since χ and φ−1
h′ are PL homeomorphisms, the assignment

(x, t) 7→ (φ−1
h′ (χ(x)), t) defines a PL homeomorphism from |M |=h′ × [a, b] to

|M |=h × [a, b]. Then ψ is a PL homeomorphism because it is the composition
of this PL homeomorphism and the PL homeomorphisms φ. Furthermore ψt =
φt ◦ φ−1

h′ ◦ χ is a PL-homeomorphism between |M |=h′ and |M |=t. Thus ψ is an
f -level-preserving PL isotopy and for t = h′ we obtain ψh′ = φh′ ◦ φ−1

h′ ◦ χ = χ
as desired.

Lemma 4.6. If there is an f -level-preserving PL isotopy between M=a and
M=b and there is an f -level-preserving PL isotopy between M=b and M=c for
a ≤ b ≤ c, then there is an f -level-preserving PL isotopy between M=a and
M=c.

Proof. By the previous lemma, we can assume that both PL isotopies are
the identity at level b: φ : |M |=b × [a, b] → |M |∈[a,b] with φb = id|M |=b and
ψ : |M |=b × [b, c] → |M |∈[b,c] with ψb = id|M |=b . Then φ and ψ agree on their
common domain |M |=b×{b} and we can combine the maps φ and ψ to a single
map χ : |M |=b×[a, c]→ |M |∈[a,c] by letting χ = φ for arguments in |M |=b×[a, b]
and χ = ψ for arguments in |M |=b× [b, c]. Since the images of φ and ψ intersect
only in the image |M |=b of their common domain |M |=b × {b}, the map χ is a
PL-homeomorphism. Furthermore, χt agrees with φt for t ∈ [a, b] and with ψt
for t ∈ [b, c]. Therefore, χ is an f -level-preserving PL isotopy.
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Lemma 4.7. The restriction of an f -level-preserving PL isotopy to some subin-
terval is again an f -level-preserving PL isotopy. More precisely, if φ : |M |=h ×
[a, b] → |M |∈[a,b] is an f -level-preserving PL isotopy for the interval [a, b] and
[a′, b′] ⊆ [a, b] a subinterval containing h, then the restriction of φ to |M |=h ×
[a′, b′] is an f -level-preserving PL isotopy between M=a′ and M=b′ .

Proof. Since φ is f -level-preserving, the image of |M |=h × [a′, b′] under φ is the
level set complex |M |∈[a′,b′]. Thus the restriction ψ : |M |=h×[a′, b′]→ |M |∈[a′,b′]
of the PL homeomorphism φ to |M |=h × [a′, b′] is a PL homeomorphism as
well. This homeomorphism is f -level-preserving because ψt = φt holds for each
t ∈ [a′, b′] and φ is f -level-preserving.

4.2.2 Characterising Regular Points by Local Level Pre-
serving Isotopies

Now assume that M is a combinatorial manifold, that an f -level-preserving
PL isotopy φ : |M |=h × [a, b] → |M |∈[a,b] exists, and that x ∈ |M | has a value
f(x) in the open interval (a, b). We want to show that x is regular. Actually,
it is enough that an f -level-preserving PL isotopy in some neighbourhood of x
exists.

Lemma 4.8. Let M be a d-dimensional combinatorial manifold and f : |M | →
R linear on cells. Assume that in some neighbourhood of x ∈ |M |, a local
f -level-preserving PL isotopy exists. Then x is a regular point.

Proof. Let N be a neighbourhood of x in |M | with a local f -level-preserving
PL isotopy φ : |N |=h×[a, b]→ |N |∈[a,b] for some interval [a, b] containing f(x) in
its interior. For simplifying the proof, we first argue that we can assume f(x) = 0
without loss of generality. The general case can be reduced to this situation by
shifting f , the interval [a, b], and the level h. The local equivalence class of
(M,x, f) is not affected by shifting the map f , thus x is regular with respect
to f if and only if x is regular with respect to f − f(x). The f -level-preserving
PL isotopy φ for the interval [a, b] induces an (f−f(x))-level-preserving isotopy
φ′ for the shifted interval [a − f(x), b − f(x)] in the obvious way: The as-
signment φ′(p, t) = φ(p, t+ f(x)) defines an (f − f(x))-level-preserving isotopy
φ′ : |N |f−f(x)=h−f(x)×[a−f(x), b−f(x)]→ |N |f−f(x)∈[a−f(x),b−f(x)]. Note that
the domains of the involved level sets in |N |, namely |N |f−f(x)=h−f(x) = |N |f=h
and |N |f−f(x)∈[a−f(x),b−f(x)] = |N |f∈[a,b], remain unchanged. One easily checks
that φ′ is a homeomorphism if and only if φ is and that φ′t−f(x) agrees with φt.
Hence φ′ is a local (f − f(x))-level-preserving isotopy if and only if φ is a local
f -level-preserving isotopy.

So let us assume f(x) = 0. For treating interior and boundary points simul-
taneously, we use again the term Rk(+) to denote alternatively Rk for interior
points or Rk+ for boundary points. By isotopy |N |=f(x) is homeomorphic to any
other level set |N |=t for t ∈ [a, b], and we can choose t in such a way that |N |=t
does not contain vertices of N . Recall from Corollary 2.40 that such a level set
is a (d − 1)-dimensional manifold, hence |N |=t is a (d − 1)-manifold for each
t ∈ [a, b] by isotopy. Let y = (x′, f(x)) be the point in |N |=h× [a, b] correspond-
ing to x under the isotopy, that is, the point fulfilling φ(y) = φ(x′, f(x)) = x.
Since |N |=h is a manifold, there is a neighbourhood U ′ of x′ in |N |=h with a
coordinate chart χ′ : |U ′| → |V | ⊆ Rd−1

(+) mapping x′ to the origin and |U ′| to
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some neighbourhood |V | of the origin that witnesses that fact. This induces a
coordinate chart χ : |U ′| × [a, b]→ [a, b]× |V | ⊆ Rd(+) defined by the assignment
χ(p, t) = (t, χ′(p)) for p ∈ |U ′| and t ∈ [a, b] which maps y to the origin, be-
cause we assumed f(x) = 0, and the neighbourhood U = U ′ × [a, b] of y to the
neighbourhood χ(|U |) = [a, b] × |V | of the origin in Rd(+). Since φ is f -level-
preserving, f ◦ φ ◦χ−1 agrees on χ(|U |) with the coordinate map πd1 . Therefore
some neighbourhood of x in |M |, namely φ(|U |), is PL-homeomorphic to the
neighbourhood χ(|U |) of the origin in Rd(+) via χ ◦φ−1 such that f corresponds
to the coordinate function πd1 . In other words, (M,x, f) is locally equivalent to
(Rd(+), 0, πd1), showing that x is regular.

The criterion for regular points in the previous lemma is not only sufficient
but also necessary. For establishing this, we assume that x is regular, and we
want to construct an f -level-preserving PL isotopy. The definition of regularity
gives such an isotopy in some neighbourhood of x almost immediately. But a
construction that yields an isotopy for the special neighbourhood st(x) or for
the whole manifoldM is more involved, and we prove these stronger conclusions
only for vertices under suitable general position assumptions on f .

Lemma 4.9. If x ∈ |M | is regular with respect to a map f : |M | → R linear
on cells of a combinatorial manifold M , then there is a local f -level-preserving
isotopy in some neighbourhood of x.

Proof. From the previous proof, we adopt the observation that we can as-
sume f(x) = 0 without loss of generality and the notation Rd(+) for Rd if x
is a regular interior point or for Rd+ if x is a regular boundary point. Since
x is regular, (M,x, f) is locally equivalent to (Rd(+), 0, πd1). This means that
there are neighbourhoods Nx of x in |M | and N0 of the origin in Rd(+) and a
PL homeomorphism ψ : |N0| → |Nx| such that f corresponds to the coordinate
function πd1 via ψ. Choose ε small enough so that the ∞-norm ball B of ra-
dius ε in Rd(+) around the origin is contained in |N0|. This ball is of the form
B = [−ε, ε] × B′ with B′ being the ∞-norm ball of radius ε around the ori-
gin in Rd−1

(+) We show that ψ induces an f -level-preserving PL isotopy in the
neighbourhood |N | = ψ(|B|) of x between |N |=−ε and |N |=ε. Note that since
f and πd1 correspond via ψ, the level set |N |∈[−ε,ε] agrees with |N | and the
restriction of ψ to {0} × |B′| yields a PL homeomorphism χ : |B′| → |N |=0,
so that for any p ∈ |N |=0 and t ∈ [−ε, ε], the pair (t, χ−1(p)) describes an
element of [−ε, ε] × B′ = B. In fact, since χ−1 and id[−ε,ε] are PL homeomor-
phisms, the assignment (p, t) 7→ (t, χ−1(p)) defines a PL homeomorphism from
|N |=0 × [−ε, ε] to |B|. The isotopy φ : |N |=0 × [−ε, ε] → N∈[−ε,ε] is defined by
composing this homeomorphism with ψ , which maps |B| to |N | = |N |∈[−ε,ε],
in other words, φ is given by the assignment φ(p, t) = ψ(t, χ−1(p)). For each
t ∈ [−ε, ε], the restricted map φt is a composition of a homeomorphism mapping
|N |=0 to {t} × |B′| and a restriction of ψ mapping {t} × |B′| = |B|πd1 =t home-
omorphically to |N |=t because f and πd1 commute with ψ. Thus, φ fulfils all
requirements for being a local f -level-preserving PL isotopy in a neighbourhood
of x.

We obtain the following alternative characterisation of regular points:
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Theorem 4.10. Let M be a combinatorial manifold with a map f : |M | → R
linear on cells. A point x ∈ |M | is regular if and only if there is a local f -level
preserving isotopy in some neighbourhood of x.

Proof. One direction of the equivalence is stated in Lemma 4.8, the other in
Lemma 4.9.

4.2.3 Constructing Level Preserving Isotopies across Ver-
tices

Isotopies Defined by Combinatorially Equivalent Subdivisions. As
a next step, we develop some sufficient conditions for a PL homeomorphism
between |M |=h × [a, b] and |M |∈[a,b] being f -level-preserving. We assume that
the PL homeomorphism is given as a combinatorial equivalence between some
subdivisions of M=h × [a, b] and M∈[a,b]. If the levels of corresponding vertices
agree, that is, the combinatorial equivalence maps a vertex v = (x, t) of M=h ×
[a, b] to a vertex v′ with f(v′) = t, then an f -level-preserving isotopy exists.

Lemma 4.11. Let T1 and T2 be combinatorially equivalent simplicial subdivi-
sions of M=h× [a, b] and M∈[a,b] for some h ∈ [a, b] and a polytopal complex M
with a map f : |M | → R linear on cells. Denote by φVrt : Vrt(T1)→ Vrt(T2) the
combinatorial equivalence in terms of vertices between the vertex set of T1 and
the vertex set of T2. Assume that φVrt is f -level-preserving in the sense that
for all vertices v = (y, t) ∈ Vrt(T1) the function f at the corresponding vertex
v′ = φVrt(y, t) in Vrt(T2) has the value f(v′) = t. Then the PL homeomorphism
φ : |M |=h× [a, b]→ |M |∈[a,b] defined by simplex-wise linear interpolation of φVrt

is an f -level-preserving PL isotopy.

Proof. Since simplex-wise linear interpolation of a combinatorial equivalence of
simplicial complexes yields a PL homeomorphism, φ is indeed a PL homeomor-
phism. It remains to show that φt is a PL homeomorphism from |M |=h to
|M |=t for each t ∈ [a, b]. Let x be an element of |M |=h and consider the pair
(x, t) ∈ |M |=h × [a, b] for some t ∈ [a, b] which is used to define φt(x) = φ(x, t).
We can write (x, t) =

∑
i µi(xi, ti) = (

∑
i µixi,

∑
i µiti) as a convex combina-

tion of vertices (xi, ti) of a simplex in T1. With this representation, we ob-
tain f(φ(

∑
i µi(xi, ti))) = f(

∑
i µiφ(xi, ti)) =

∑
µif(φVrt(xi, ti)) =

∑
µiti = t

because φ is linear on simplices of T1 and maps vertices of such a simplex
to vertices of a simplex in T2, the map f is linear on simplices of T2, and
f(φVrt(y, t)) = t holds for all vertices (y, t) ∈ Vrt(T1) by our assumption that
φVrt is f -level-preserving. Hence we obtain for each t ∈ [a, b] that the image
φt(|M |=h) = φ(|M |=h × {t}) is contained in |M |=t. Since φ is bijective, any
element of |M |=t ⊆ |M |∈[a,b] has a preimage in |M |=h × [a, b] under φ. But
elements (x′, t′) ∈ |M |=h × [a, b] with t′ 6= t are impossible as a preimage of a
point in |M |=t because such elements are mapped to |M |=t′ which is disjoint
from |M |=t. Thus, φt(|M |=h) = φ(|M |=h × {t}) is not only contained in but
also agrees with |M |=t. This implies that the PL homeomorphism φ restricts to
a PL homeomorphism between |M |=h×{t} and |M |=t, and since φt is obtained
from this restricted homeomorphism by identifying |M |=h × {t} with |M |=h,
the map φt is a PL homeomorphism as well.

We can weaken the assumptions in the previous lemma by requiring that
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M=h× [a, b] and M∈[a,b] have combinatorially equivalent subdivisions T1 and T2
that are polytopal complexes, but not necessarily simplicial complexes.

Lemma 4.12. Let T1 and T2 polytopal complexes that are combinatorially
equivalent subdivisions of M=h × [a, b] and M∈[a,b] for some h ∈ [a, b] and
a polytopal complex M with a map f : |M | → R linear on cells. Denote by
φVrt : Vrt(T1) → Vrt(T2) the combinatorial equivalence in terms of vertices be-
tween the vertex sets. Assume that φVrt is f -level-preserving in the same sense
as in Lemma 4.11, that is f(φVrt(y, t)) = t for all vertices (y, t) of T1. Then
there is an f -level-preserving PL isotopy φ : M=h × [a, b]→M∈[a,b].

Proof. Using Lemma 1.30, we can find combinatorially equivalent simplicial
subdivisions T ′1 and T ′2 of T1 and T2. When we arrange that the combinato-
rial equivalence ψVrt : Vrt(T ′1) → Vrt(T ′2) is still f -level-preserving, applying
Lemma 4.11 yields the desired result. This is trivial if we use starring at each
vertex in according orders for constructing T ′1 and T ′2, because in this case
the vertex sets Vrt(T ′1) = Vrt(T1) and Vrt(T ′2) = Vrt(T2) do not change and
ψVrt = φVrt is still f -level-preserving.

If we construct derived subdivisions T ′1 and T ′2 of T1 and T2 instead, a simple
method to ensure that ψVrt is f -level-preserving, is taking barycentric subdi-
visions. For those, the combinatorial equivalence ψVrt is defined by the as-
signments ψVrt( 1

k (p1 + · · ·+ pk)) = 1
k (φVrt(p1) + · · ·+ φVrt(pk)) for each set of

vertices {p1, . . . , pk} spanning a cell of T1. One easily checks that this combi-
natorial equivalence is f -level-preserving because φVrt is f -level-preserving and
for both maps f and the projection from |M |=h × [a, b] to the interval [a, b] in
the Cartesian product, the value of the map at the barycentre of a cell is the
barycentre of the values at the vertices.

Intervals without Vertices. As a first application, we show that for intervals
[a, b] whose preimage does not contain vertices an f -level-preserving PL isotopy
exists.

Lemma 4.13. Let M be a polytopal complex with a map f : |M | → R linear on
cells. Suppose no vertex of M has a value f(v) ∈ [a, b] under f . Then for any
h ∈ [a, b], the complexes M=h× [a, b] and M∈[a,b] are combinatorially equivalent
and there is an f -level-preserving PL isotopy φ : |M |=h× [a, b]→ |M |∈[a,b]. For
any subcomplex K of M , φ restricts to an f -level-preserving PL isotopy φ|K
on K: φ|K : |K|=h × [a, b] → |K|∈[a,b]. The combinatorial equivalence is given
by S=h × Y 7→ S∈Y for S a cell of M and Y ∈ {{a}, {b}, [a, b]}. If h = a,
it restricts on M=a × {a} to the projection onto M=a, and on M=a × {b}, it
restricts to the natural combinatorial equivalence in the sense of Lemma 2.35
between M=a, identified with M=a × {b} by projection, and M=b.

Proof. The fact that the suggested assignment yields a combinatorial equiva-
lence ofM=h× [a, b] andM∈[a,b] was proven in Lemma 2.36, including the obser-
vation that the equivalence restricts to the natural combinatorial equivalences
at the endpoints a and b. Moreover, this combinatorial equivalence obviously
restricts to a combinatorial equivalence between K=h× [a, b] and K∈[a,b] for any
subcomplex K. Using Lemma 4.12 we obtain the desired PL isotopy φ. Note
that the map φ is not uniquely determined by the combinatorial equivalence, the
interpolated values depend on the chosen simplicial subdivisions. But if we use
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onK=h×[a, b] andK∈[a,b] the subdivisions induced from the chosen subdivisions
on M=h × [a, b] and M∈[a,b], then the interpolated values of the PL isotopy on
the subcomplex K agree with the interpolated values of the PL isotopy on the
whole complex M . Hence the restriction to K of the f -level-preserving isotopy
φ on M is an f -level-preserving isotopy on K.

Isotopies on the Star of Regular Vertices. Now we consider a regular
vertex v and we want to construct an f -level-preserving PL isotopy on st(v)
for some suitable interval [f(v) − ε, f(v) + ε]. We can divide this problem into
finding an isotopy for the interval [f(v)− ε, f(v)] in the lower level star and an
isotopy for the interval [f(v), f(v) + ε] in the upper level star. By considering
f and −f , we can observe that both problems are symmetric, and it suffices to
find a PL isotopy for the interval [f(v), f(v) + ε].

So let f(v) = a and assume general position in the sense that all vertices
in lk(v) have an f -value different from f(v). Choose ε small enough such that
for b = f(v) + ε no vertex in lk(v) has an f -value in [a, b]. We want to show
that with the general position assumption, an f -level preserving PL isotopy
between st(v)=a and st(v)=b exists. As a first step, we list some complexes that
are combinatorially equivalent in a natural way; this preliminary observation is
used in the subsequent proofs.

Lemma 4.14. Let v be a vertex in a combinatorial manifold M with f : |M | →
R linear on cells such that no vertex of lk(v) has an f -value in the interval
[a, b] = [f(v), f(v) + ε]. Then there are natural combinatorial equivalences be-
tween the following polytopal complexes that are unions of complexes with a
common subcomplex as intersection.

st(v)=b ∪ lk(v)∈[a,b] with intersection lk(v)=b

lk(v)≥b ∪ lk(v)∈[a,b] with intersection lk(v)=b

st(v)=b × {b} ∪ lk(v)=b × [a, b] with intersection lk(v)=b × {b}
lk(v)≥b × {b} ∪ lk(v)=b × [a, b] with intersection lk(v)=b × {b}
lk(v)≥a × {b} ∪ lk(v)=a × [a, b] with intersection lk(v)=a × {b}

The equivalences are obtained by the natural combinatorial equivalences of the
left hand terms of the unions and the natural combinatorial equivalences of the
right hand terms which agree on the respective common intersections.

Proof. Complexes of the form X × {b} can be naturally identified with the
complex X by projection. For the left hand terms of the unions, st(v)=b is
naturally combinatorially equivalent to lk(v)≥b by Lemma 2.38 and this equiv-
alence restricts to the identity on lk(v)=b. The complexes lk(v)≥b and lk(v)≥a
are naturally combinatorially equivalent by Lemma 2.35, because no vertex of
lk(v) has a value in [a, b]. This equivalence restricts to the natural equivalence
between lk(v)=b and lk(v)=a.

For the right hand terms of the unions, by Lemma 2.36, the complexes
lk(v)∈[a,b], lk(v)=b×[a, b], and lk(v)=a×[a, b] are combinatorially equivalent and
the equivalences restrict to the natural equivalences between lk(v)=b, lk(v)=b ×
{b}, and lk(v)=a × {b}.

For the existence of an f -level-preserving PL isotopy on st(v) between the
levels a and b, it is necessary that the level sets st(v)=a and st(v)=b are PL-
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homeomorphic. The next lemma shows that the desired isotopy can be con-
structed from such a homeomorphism and an isotopy on the link, provided that
the maps match with each other in the sense that they both induce the same
homeomorphism between lk(v)=a and lk(v)=b. The proof idea is illustrated by
a simple 2-dimensional example in Figure 4.1. It is based on the proof given
in [13] for the existence of a level-preserving isotopy across regular values in the
3-dimensional case.
Lemma 4.15. Let v be a regular vertex of a combinatorial manifold M with
a map f : |M | → R linear on cells and let f(v) = a < b. Then there is an
f -level-preserving PL isotopy between st(v)=a and st(v)=b if there is an f -level-
preserving PL isotopy between lk(v)=a and lk(v)=b and there is a PL homeo-
morphism between st(v)=a and st(v)=b which agrees on lk(v) with the isotopy.

More precisely, if ψ : | lk(v)|=a× [a, b]→ | lk(v)|∈[a,b] is an f -level-preserving
PL isotopy on the link and χ : | st(v)|=a → | st(v)|=b a PL homeomorphism with
χ|| lk(v)|=a = ψb, then an f -level-preserving PL isotopy φ : | st(v)|=a × [a, b] →
st(v)∈[a,b] with φb = χ and φ|lk(v) = φ|lk(v)=a×[a,b] = ψ is obtained by a cone
construction.
Proof. Let π be the projection π : st(v)=a × {b} → st(v)=a that identifies
st(v)=a×{b} with st(v)=a. Then the restrictions of the maps χ◦π, ψb◦π, and ψ
to the intersection of their domains, which is | lk(v)|=a×{b}, agree. Hence we can
define a map on the union of the domains of ψ and χ◦π by case distinction. This
yields a PL map θ : | lk(v)|=a× [a, b]∪ | st(v)|=a×{b} → | lk(v)|∈[a,b] ∪ | st(v)|=b
which is well defined by θ|| lk(v)|=a×[a,b] = ψ and θ|| st(v)|=a×{b} = χ ◦ π and can
be considered as the union of the maps ψ and χ ◦ π. Since the images of ψ
and χ ◦ π, namely | lk(v)|∈[a,b] and | st(v)|=b, intersect in | lk(v)|=b, which is ex-
actly the image ψ(| lk(v)|=a×{b}) = χ◦π(| lk(v)|=a×{b}) of the intersection of
the domains of ψ and χ◦π, the union θ of the PL homeomorphisms ψ and χ◦π is
a PL homeomorphism as well. Moreover, θ is f -level-preserving in the sense that
f(θ(x, t)) = t for x ∈ | lk(v)|=a and t ∈ [a, b] or x ∈ | st(v)|=a and t = b. The fact
that θ is a PL homeomorphism implies in particular, that there are combinatori-
ally equivalent simplicial subdivisions Θ1 of lk(v)=a×[a, b]∪st(v)=a×{b} and Θ2
of lk(v)∈[a,b] ∪ st(v)=b such that θ is a simplicial bijection. Therefore restricting
the homeomorphism θ to the vertex set of Θ1 yields a combinatorial equivalence
in terms of vertices θVrt : Vrt(Θ1)→ Vrt(Θ2) that is f -level-preserving.

Observe that st(v)=a× [a, b] and st(v)∈[a,b] can be subdivided by performing
elementary starrings at the vertex (v, a) of st(v)=a× [a, b] and at the vertex v of
st(v)∈[a,b], giving the subdivided complexes the structure of a cone: The cone
with base lk(v)=a × [a, b] ∪ st(v)=a × {b} and apex (v, a) is a subdivision of
st(v)=a × [a, b] obtained by starring st(v)=a × [a, b] at the vertex (v, a), and
the cone with base lk(v)∈[a,b] ∪ st(v)=b and apex v is a subdivision of st(v)∈[a,b]
obtained by starring st(v)∈[a,b] at the vertex v. Define the cones T1 = (v, a)Θ1
and T2 = vΘ2 and extend the combinatorial equivalence θVrt between the vertex
sets of Θ1 and Θ2 to a combinatorial equivalence φVrt : Vrt(T1) → Vrt(T2)
between the vertex sets of T1 and T2 by letting φVrt(v, a) = v and φVrt(u) =
θVrt(u) for each vertex u of Θ1. Then T1 and T2 are combinatorially equivalent
simplicial subdivisions of st(v)=a × [a, b] and st(v)∈[a,b], and the combinatorial
equivalence φVrt is f -level-preserving. By Lemma 4.11, the linear interpolation
φ of φVrt is an f -level-preserving PL-isotopy as desired. Moreover, φ agrees with
θ on the bases of the cones, because φVrt is defined as θVrt on the bases, and
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v (v, a)

(v, b)

v (v, a)

(v, b)

Figure 4.1: Illustration for Lemma 4.15. Depicted on top left is the star of a
regular vertex v. The grey-shaded area is the domain of the level set st(v)∈[a,b]
for the interval [a, b] = [f(v), f(v) + ε], the uninterrupted black edges are the
edges of st(v)∈[a,b]. The dashed edges are the additional edges introduced by
an elementary starring of st(v)∈[a,b] at v. This starring subdivides st(v)∈[a,b]
into a cone with apex v and the complex lk(v)∈[a,b] ∪ st(v)=b as base. This
base is highlighted by thickened edges. The figure on top right depicts the
complex st(v)=a × [a, b]. The dashed edges belong to the subdivision of this
complex obtained by an elementary starring at (v, a). This subdivision yields a
cone with apex (v, a) and base lk(v)=a × [a, b] ∪ st(v)=a × {b}. Again the base
is highlighted by thickened edges. The bottom row displays combinatorially
equivalent subdivisions of the two cones in the top row: The additional vertices
indicated by squares yield combinatorially equivalent subdivisions of the bases,
and together with the dotted lines combinatorially equivalent subdivisions of
st(v)∈[a,b] and st(v)=a × [a, b].
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therefore φ restricts to ψ on lk(v)=a× [a, b] and the maps φb and χ agree by the
choice of θ as union of ψ and χ ◦ π.

The previous lemma showed how a PL isotopy on the star can be defined
based on the assumption that a PL isotopy on the link and a matching PL home-
omorphism between st(v)=a and st(v)=b exist. Now we prove for a regular ver-
tex v and a map f in general position that there are pairs of maps fulfilling
the assumption, which implies the existence of a PL isotopy on the star of such
vertices.

Lemma 4.16. Let v be a regular vertex of a combinatorial manifold M with a
map f : |M | → R linear on cells. Assume that no vertex of lk(v) has the same
f -value f(v) = a as v and choose b > a small enough such that f(u) /∈ [a, b]
holds for all vertices u ∈ lk(v). Then there is an f -level-preserving PL isotopy
φ : | st(v)|=a × [a, b]→ | st(v)|∈[a,b] on the star of v.

If an f -level-preserving PL isotopy ψ : | lk(v)|=a× [a, b]→ | lk(v)|∈[a,b] on the
link lk(v) is given, then φ can be chosen in such a way that its restriction φ|lk(v)
to lk(v) agrees with ψ.

Proof. If an f -level-preserving PL isotopy ψ for the interval [a, b] on lk(v) is not
already given, we can choose one by applying Lemma 4.13 for the complex lk(v)
because no vertex of lk(v) has an f -value in [a, b]. We show that we can construct
a PL homeomorphism χ : | st(v)|=a → | st(v)|=b as in Lemma 4.15.

Since v is regular, the complexes st(v)=a and lk(v)≥a are combinatorial balls
of dimension dim(M)−1. As noted in Lemma 4.14, there is a natural combina-
torial equivalence between lk(v)≥a×{b}∪ lk(v)=a× [a, b] and st(v)=b∪ lk(v)∈[a,b]
that restricts to a combinatorial equivalence between lk(v)≥a and st(v)=b, thus
st(v)=b is a combinatorial (dim(M)− 1)-ball as well.

If v is an interior vertex, then lk(v)=a is the boundary of the ball st(v)=a
and lk(v)=b is the boundary of the ball st(v)=b. The map ψb defined by the iso-
topy on the link is a PL homeomorphism between the boundaries lk(v)=a and
lk(v)=b of these balls. Since any PL homeomorphism between boundaries of
PL balls can be extended to the whole balls by Fact 1.39, we obtain a PL home-
omorphism χ : | st(v)|=a → | st(v)|=b such that χ and ψ fulfil the assumptions
of Lemma 4.15. Applying the Lemma yields an f -level-preserving isotopy φ as
desired.

It remains to consider the case of a boundary vertex v ∈ Vrt(bd(M)). First,
we construct a PL isotopy on the star stbd(M)(v) of v in the boundary. The
link lkbd(M)(v) in the boundary coincides with the boundary bd(lkM (v)) of
the link in the whole manifold. Recall from Corollary 2.37 that the assump-
tion f(u) /∈ [a, b] for vertices u ∈ lk(v) asserts that for each h ∈ [a, b], the
level set (lkM (v))=h is a locally flat sub-manifold of lkM (v), which implies
in particular that the boundary bd((lkM (v))=h) of such a level set coincides
with the level set (lkbd(M)(v))=h in the boundary. This means, because any
PL homeomorphism ψh maps boundary points to boundary points, that ψ re-
stricts to an f -level-preserving isotopy ψ|lkbd(M)(v) on lkbd(M)(v). Consider-
ing v as an interior vertex of bd(M), we can apply the construction for in-
terior vertices described above. We obtain an f -level-preserving PL isotopy
φbd : | stbd(M)(v)|=a×[a, b]→ | stbd(M)(v)|∈[a,b] on the star stbd(M)(v) of v taken
in the boundary of M such that the restriction φbd|lkbd(M)(v) agrees with the
restriction ψ|lkbd(M)(v).
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Now consider the boundaries of the level sets (stM (v))=a and (stM (v))=b
in the star, which are both combinatorial balls. They both decompose into
the level set in the link and the level set in the boundary as follows: The
boundary of the combinatorial ball (stM (v))=a is the union of (lkM (v))=a and
(stbd(M)(v))=a which intersect in (lkbd(M)(v))=a, and the boundary of the com-
binatorial ball (stM (v))=b is the union of (lkM (v))=b and (stbd(M)(v))=b which
intersect in (lkbd(M)(v))=b. Furthermore, we have the PL homeomorphism
ψb : | lkM (v)|=a → | lkM (v)|=b between the level sets in the link forming the
respective first parts of the two decompositions and the PL homeomorphism
φbd
b : | stbd(M)(v)|=a → | stbd(M)(v)|=b between the level sets in the boundary

forming the respective second parts. Both homeomorphisms ψb|(lkbd(M)(v))=a and
φbd
b |(lkbd(M)(v))=a agree on their common domain | lkbdM (v)|=a which is mapped

homeomorphically to | lkbdM (v)|=b. Thus we can define a PL homeomorphism
ψ+
b on the union of the domains by taking the union of the maps ψb and φbd

b :
ψ+
b : | lkM (v)|=a ∪ | stbdM (v)|=a → | lkM (v)|=b ∪ | stbdM (v)|=b. This map ψ+

b

is again a PL homeomorphism between the boundaries of the combinatorial
balls (stM (v))=a and (stM (v))=b and can be extended to a PL homeomorphism
χ : | stM (v)|=a → | stM (v)|=b between the balls by Fact 1.39. Again we have
constructed a map χ as desired and can proceed as above.

Extending Isotopies to the Whole Manifold and across Several Reg-
ular Vertices. The next result shows that for a map f in general position, a
regular vertex v, and a sufficiently small interval [f(v), f(v) + ε], a PL isotopy
between the global level sets M=f(v) and M=f(v)+ε exists.

Lemma 4.17. Let v be a regular vertex of a combinatorial manifold M with
a map f : |M | → R linear on cells. Assume that v is the only vertex of M
with f -value f(v) = a. Furthermore, choose b > a such that f(u) /∈ [a, b] holds
for all vertices u 6= v of M . Then there is an f -level-preserving PL isotopy
φ : |M |=a × [a, b]→ |M |∈[a,b].

Proof. We regard M as the union of the subcomplexes del(v) and st(v) inter-
secting in lk(v) and combine PL isotopies on the two parts that agree on the
intersection to a PL isotopy on the whole complex M .

An f -level-preserving isotopy φdel on del(v) that restricts to an f -level-
preserving isotopy φlk on lk(v) exists by Lemma 4.13. For the star, there is
an f -level-preserving PL-isotopy φst on st(v) that restricts to φlk on lk(v) by
Lemma 4.16. Hence, the union φ of φdel and φst is well-defined and an f -level-
preserving isotopy on M as desired.

Remark 4.18. The same proof works also for several regular vertices with the
same regular value a as long as their stars intersect only in their links, in other
words, since M is simplicial, if the vertices with value a are not adjacent by an
edge of M .

From Lemma 4.8 and Lemma 4.16 or Lemma 4.17, we obtain alternative
characterisation of regular vertices in manifolds where f -values of adjacent or
even of all vertices are distinct.

Theorem 4.19. Let M be combinatorial manifold and f : |M | → R linear on
cells such that no adjacent vertices have same f -value. Then a vertex v in M
is regular if and only if there is an f -level-preserving PL isotopy on st(v) for
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some interval [a, b] containing f(v) in its interior. If all f -values of vertices are
distinct, then a vertex v is regular if and only if there is an f -level-preserving
PL isotopy on M for some interval [a, b] containing f(v) in its interior.

Proof. We showed in Lemma 4.8 that an f -level-preserving PL isotopy in a
neighbourhood of v implies its regularity. Since st(v) and the whole mani-
fold M are neighbourhoods of v, in both claims the criterion for regularity of v
is sufficient. For necessity of the criterion in the first claim, we use Lemma 4.16.
It yields under the given assumption on the f -values that there is an f -level-
preserving PL isotopy on st(v) for some interval [f(v), f(v) + ε+]. A symmetric
version of the lemma yields an f -level-preserving PL isotopy on st(v) for some
interval [f(v)− ε−, f(v)]. By Lemma 4.6, both isotopies can be combined to an
f -level-preserving PL isotopy on st(v) for the interval [f(v)−ε−, f(v)+ε+] as de-
sired. For the second claim, Lemma 4.17 and Remark 4.18 and their symmetric
variants give isotopies on M for intervals [f(v), f(v) + ε+] and [f(v)− ε−, f(v)]
that can be combined to the desired f -level-preserving PL isotopy on M for the
interval [f(v)− ε−, f(v) + ε+].

We can also conclude that for any interval [a, b] without critical values and
a map f in general position an f -level-preserving PL isotopy exists. This result
is a piecewise linear analogue of Fact 1.3 from smooth Morse theory.

Theorem 4.20. Let M be a combinatorial manifold and f : |M | → R linear on
cells. Assume that the preimage f−1[a, b] contains no critical points and that
any pair of vertices of M lying in that preimage has distinct f -values or is not
adjacent. Then there is an f -level-preserving PL isotopy φ : |M |=a × [a, b] →
|M |∈[a,b].

Proof. Subdivide the interval such that each subinterval contains at most one
value that is attained by f at a vertex and this value is one of the endpoints of
the subinterval. Such a subdivision can be obtained for example by subdividing
[a, b] at every value that is attained by f at a vertex and afterwards halving
the intervals between two consecutive such values. We obtain isotopies on each
subinterval as follows: Apply Lemma 4.13 for intervals where both endpoints are
not attained at vertices. For the remaining intervals, Lemma 4.17 together with
Remark 4.18 applies, either in original form for intervals whose left endpoint is
attained at a vertex or in a symmetric variant for intervals whose right endpoint
is attained at a vertex. Combine the obtained isotopies of the subintervals to
an isotopy of the whole interval according to Lemma 4.6.
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Chapter 5

Piecewise Linear Analogues
of Classical Results from
Smooth Morse Theory

This chapter collects piecewise linear analogues of some fundamental results
from classical smooth Morse theory. The selection of the results follows the
treatment in Milnor’s book on Morse theory [36], which we also used already
as a guideline for the selected facts in the introductory review of smooth Morse
theory in Section 1.1. We usually assume that M is a combinatorial manifold
without boundary with a PL Morse function f : |M | → R linear on cells and in
general position. The first two theorems relate the change in homotopy type,
when going from a level set M≤a to a level set M≤b, to the critical points of
M that have an f -value in the range [a, b]. Theorem 5.1 states that no change
occurs when the range contains no critical value, Theorem 5.2 characterises
the change occurring when passing a single critical point as the attachment of
a cell. This leads to the description of the homotopy type of M in terms of a
CW-complex with one λ-cell for each critical point of index λ, which is presented
in Theorem 5.3. Finally we derive the Morse inequalities in Theorem 5.4 and
the Reeb theorem in Theorem 5.5.

5.1 The Fundamental Results on the Behaviour
of Level Sets

Absence of Topological Changes for Intervals without Critical Values.
The first result deals with the case that the interval [a, b] contains no critical
value. In this case the level sets M≤a and M≤b are homeomorphic and the
latter deformation retracts to the former. This result is the PL analogue of
Fact 1.2 from smooth Morse theory, which we cited from [36, Theorem 3.1, p. 12].
The proof given here relies on the existence of an f -level-preserving PL isotopy
between M=a−δ and M=b for some δ > 0. The assumption that such an isotopy
exists can be regarded as a replacement for the general position assumption and
the condition that the interval contains no critical value, because Theorem 4.20
asserts the existence of the isotopy for a map in general position and an interval
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Table 5.1: Transformation of M≤b into M≤a by PL homeomorphisms for an
interval [a, b] without critical values under the assumptions of Theorem 5.1.

M≤b
PL≡ M≤a−ε/2 ∪M∈[a−ε/2,b]
PL≡ M≤a−ε/2 × {a− ε/2} ∪M=a−ε/2 × [a− ε/2, b]
PL≡ M≤a−ε/2 × {a− ε} ∪M=a−ε/2 × [a− ε, a]
PL≡ M≤a−ε × {a− ε} ∪M=a−ε × [a− ε, a]
PL≡ M≤a−ε ∪M∈[a−ε,a]
PL≡ M≤a

without critical values.

Theorem 5.1. Let M be a combinatorial manifold with a map f : |M | → R
linear on cells. Assume that for some δ > 0 an f -level-preserving PL isotopy
φ : M=a−δ × [a − δ, b] → M∈[a−δ,b] exists. A sufficient condition for this as-
sumption is that the preimage f−1[a, b] contains no critical points and that the
vertices of M lying in that preimage have distinct f -values; the second part of
the condition already implies that non-vertices of M lying in f−1[a, b] are not
critical, so that only vertices have to be checked for the first part of the condi-
tion. Then M≤a is PL-homeomorphic to M≤b, and M≤b deformation retracts
to M≤a.

Proof. Let us first settle the claimed sufficient condition for the existence of the
isotopy. If the preimage f−1[a, b] contains no critical points and only vertices
with distinct f -values, this property also holds for the preimage f−1[a− δ, b] of
a slightly larger interval [a− δ, b] provided that δ is small enough. Namely, if we
choose δ in such a way that no vertex has a value in the interval [a−δ, a), then all
non-vertices in f−1[a− δ, b], in particular the additional points in f−1[a− δ, a),
lie in cells where f is non-constant and hence are regular points by Lemma 3.22.
The existence of the isotopy on the interval [a − δ, b] follows from the absence
of critical values according to Theorem 4.20.

Homeomorphism. Now we show how to obtain a PL homeomorphism
between M≤a and M≤b. Choose a positive ε ≤ δ small enough such that
f−1[a − ε, a) contains no vertices. We start with M≤b and transform it in
several steps by applying PL homeomorphisms, which are sometimes given by
subdivisions or combinatorial equivalences, into the complex M≤a. The homeo-
morphic complexes encountered in the intermediate steps are listed in Table 5.1.
In the following we explain the PL homeomorphisms underlying these steps.

In the first step, we only perform a subdivision ofM≤b. Hence the PL home-
omorphism is simply the identity on |M |≤b. So consider the subdivision of M≤b
induced by the level set M=a−ε/2, namely the complex formed by the union of
M≤a−ε/2 and M∈[a−ε/2,b].

Using Lemmata 4.5 and 4.7 we can construct from the PL isotopy φ between
M=a−δ and M=b a PL isotopy ψ : |M |=a−ε/2 × [a − ε/2, b] → |M |∈[a−ε/2,b] for
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the smaller interval [a − ε/2, b] such that ψa−ε/2 is the identity on |M |=a−ε/2.
The projection π : |M |≤a−ε/2 ×{a− ε/2} → |M |≤a−ε/2 to the factor |M |≤a−ε/2
of the Cartesian product is a PL homeomorphism because the other factor is a
singleton and it agrees with ψ on the common intersection |M |=a−ε/2 × {a −
ε/2} of the domains of ψ and π. Thus the union of ψ and π is a well-defined
PL homeomorphism between M≤a−ε/2 ×{a− ε/2} ∪M=a−ε/2 × [a− ε/2, b] and
M≤a−ε/2 ∪M∈[a−ε/2,b]. The inverse of this homeomorphism yields the second
step of the transformation.

There is a natural combinatorial equivalence of the intervals [a− ε/2, b] and
[a− ε, a], which restricts to a combinatorial equivalence between the singletons
{a− ε/2} and {a− ε}. These combinatorial equivalences can be extended to the
Cartesian products, so that M≤a−ε/2 × {a− ε/2} is combinatorially equivalent
to M≤a−ε/2×{a− ε} and M=a−ε/2× [a− ε/2, b] is combinatorially equivalent to
M=a−ε/2× [a− ε, a]. Since these combinatorial equivalences both restrict to the
same combinatorial equivalence betweenM=a−ε/2×{a−ε/2} andM=a−ε/2×{a−
ε} on their common intersection, they yield a combinatorial equivalence between
M≤a−ε/2×{a−ε/2}∪M=a−ε/2×[a−ε/2, b] andM≤a−ε/2×{a−ε}∪M=a−ε/2×[a−
ε, a]. The combinatorial equivalence induces the PL homeomorphism underlying
the third step.

Since no vertex of M has a value in [a − ε, a − ε/2], Lemma 2.35 yields
a combinatorial equivalence between M≤a−ε/2 and M≤a−ε which restricts to
a combinatorial equivalence between M=a−ε/2 and M=a−ε. This equivalence
extends to the Cartesian products and the extensions match on the common
intersection, so that we obtain a combinatorial equivalence and consequently a
PL homeomorphism between the unionsM≤a−ε/2×{a−ε}∪M=a−ε/2× [a−ε, a]
and M≤a−ε × {a− ε} ∪M=a−ε × [a− ε, a].

Use again Lemmata 4.5 and 4.7 to construct from the PL isotopy φ between
M=a−δ and M=b a PL isotopy χ : |M |=a−ε × [a− ε, a] → |M |∈[a−ε,a] such that
χa−ε is the identity on |M |=a−ε. With this choice χmatches on |M |=a−ε×{a−ε}
with the projection of |M |≤a−ε×{a− ε} to |M |≤a−ε, so that the union of χ and
the projection yields a PL homeomorphism betweenM≤a−ε×{a−ε}∪M=a−ε×
[a− ε, a] and M≤a−ε ∪M∈[a−ε,a].

Similarly to the first step, the last step is given by the identity on the domain,
because the obtained complexM≤a−ε∪M∈[a−ε,a] is a subdivision ofM≤a induced
by the level set M=a−ε.

Deformation Retraction. Now we show that M≤b deformation retracts
to M≤a. Consider the subdivision of M≤b into M≤a ∪ M∈[a,b]. Modify the
PL isotopy φ using Lemmata 4.5 and 4.7 to obtain a PL isotopy θ : |M |=a ×
[a, b] → |M |∈[a,b] such that θa is the identity of |M |=a. The union of θ with
the projection of |M |≤a × {a} to |M |≤a yields a PL homeomorphism between
|M |≤a×{a}∪|M |=a×[a, b] and |M |≤a∪|M |∈[a,b] = |M |≤b that maps |M |≤a×{a}
to |M |≤a. Therefore a deformation retraction of M≤a × {a} ∪M=a × [a, b] to
M≤a × {a} induces via the homeomorphism the desired deformation retraction
of M≤b to M≤a. We show how to define a deformation retraction of M≤a ×
{a} ∪M=a × [a, b] to M≤a × {a}.

Triangulate M≤a × {a} ∪M=a × [a, b] without introducing new vertices ac-
cording to Fact 1.25. Call the obtained complex K and triangulate K × [0, 1]
again without introducing new vertices. Define the deformation retraction
ψ : K × [0, 1] → K by simplex-wise linear interpolation between the follow-
ing values of ψ at vertices of K × [0, 1]: For a vertex v = (u, a) of M≤a × {a},
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define ψ(v, 0) = ψ(v, 1) = v. This definition includes already the vertices of
M=a × {a} ⊆ M=a × [a, b]. For the remaining vertices (u, b) of M=a × {b} ⊆
M=a×[a, b], define ψ(u, b, 0) = (u, b) and ψ(u, b, 1) = (u, a). For verifying that ψ
is well-defined, we have to check that for each cell of the triangulation ofK×[0, 1]
the ψ-values of its vertices are vertices of a single cell ofM≤a×{a}∪M=a×[a, b].
So consider a cell T from the triangulation of K × [0, 1]. It is contained in
some cell S × [0, 1] of K × [0, 1] for S a cell of K and the vertices of T are
among the vertices of S× [0, 1]. Moreover the cell S is either contained in come
cell U of M≤a × {a} or in some cell U ′ × [a, b] of M=a × [a, b] and the vertices
of S are among the vertices of U or U ′ × [a, b] respectively. The chosen val-
ues for the vertices assert that the vertices of T are mapped to vertices of U
in the former case, and to vertices of U ′ × [a, b] in the latter case. Further-
more they assert that ψ is a homotopy relative to |M |≤a × {a}, that ψ0 is the
identity on |K| = |M |≤a × {a} ∪ |M |=a × [a, b], and that ψ1 is a retraction of
|M |≤a×{a}∪|M |=a× [a, b] to |M |≤a×{a}. Therefore ψ is a strong deformation
retraction of M≤a × {a} ∪M=a × [a, b] to M≤a × {a} as desired.

Attachment of Cells as Effect of Passing Critical Values. Now we turn
to the case that the interval [a, b] contains a single critical value. Since we
assume general position we can restrict our attention to a single non-degenerate
critical vertex v such that v is the only vertex of M lying in |M |∈[a,b]. As
stated in Fact 1.4 the change in homotopy type when going from M≤a to M≤b
in the corresponding smooth case is equivalent to the attachment of a cell. We
will prove for the piecewise linear case that the change in homotopy type is
equivalent to the attachment of a handle, which in turn is homotopy equivalent
to the attachment of a cell. Let us first recall from [44] some terminology
regarding handles and why the attachment of a handle is homotopy equivalent
to the attachment of a cell.

The following terminology for handles is taken from [44, p. 74]. A handle of
index λ on a d-manifoldM with boundary is a d-ballH withM∩H ⊆ bd(M) to-
gether with a homeomorphism h : [−1, 1]λ×[−1, 1]d−λ such that h(bd([−1, 1]λ)×
[−1, 1]d−λ) agrees withM∩H. We say that the union ofM∪H is obtained from
M by attaching the handle H. Slightly generalising the concept, let (H,H ′) be
a manifold pair homeomorphic to the pair ([−1, 1]d,bd([−1, 1]λ) × [−1, 1]d−λ)
with an attaching map g : H ′ → bd(M). Then the quotient space obtained
from M and H by identifying p and g(p) for each p ∈ H ′ is described as M
with the handle H attached by g. Some subsets of a λ-handle H that are im-
ages under h of certain subsets of the hypercube [−1, 1]d have special names:
h([−1, 1]λ×{0}) is called the core of the handle, h({0}× [−1, 1]d−λ) its co-core,
h(bd([−1, 1]λ)×{0}) its attaching sphere, h({0}×bd([−1, 1]d−λ)) its belt sphere,
h(bd([−1, 1]λ)×[−1, 1]d−λ) its attachment tube, and h([−1, 1]λ×bd([−1, 1]d−λ))
its belt tube.

The reason why the attachment of a handle and the attachment of a cell are
homotopy equivalent is sketched in [44, p. 83] as follows: There is a deformation
retraction from a λ-handle H to the union of its core and its attaching tube.
This deformation retraction induces a deformation retraction from M ∪ H to
the union of M and the core, because the attaching tube is contained in the
boundary of M . The core of a λ-handle is a λ-ball, and it is attached to the
boundary of M in the attachment sphere, which is the boundary sphere of that
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ball. This means that M with a λ-handle attached deformation retracts and
hence is homotopy equivalent to M with a λ-cell attached, namely to M with
the core of the handle attached.

With these prerequisites we prove the following piecewise linear analogue of
Fact 1.4 and its counterpart in Milnor’s book [36, Theorem 3.2, p. 14].

Theorem 5.2. Let M be a combinatorial manifold and f : |M | → R linear on
cells. Assume that v is an interior non-degenerate critical vertex of index λ with
f(v) = h and v is the only vertex with a value in [h− ε, h+ ε] for some ε > 0.
Then the complex M≤h+ε is homotopy equivalent to M≤h−ε with a λ-handle
attached, which is again homotopy equivalent to M≤h−ε with a λ-cell attached.

Proof. As cited above from [44, p. 83], the result of the attachment of a λ-handle
is homotopy equivalent to the result of the attachment of its core, which is a
λ-cell. This proves the last assertion, that M≤h−ε with a λ-handle attached is
homotopy equivalent to M≤h−ε with a λ-cell attached.

The proof idea for the main part of the statement is to show that the sub-
division M≤h−ε ∪M∈[h−ε,h+ε] of M≤h+ε collapses to M≤h−ε with a λ-handle
attached, namely M≤h−ε ∪ st(v)∈[h−ε,h+ε], where st(v)∈[h−ε,h+ε] forms the λ-
handle attached to M≤h−ε with the common intersection st(v)=h−ε of M≤h−ε
and st(v)∈[h−ε,h+ε] as attaching tube. For verifying that st(v)∈[h−ε,h+ε] is a λ-
handle, we map it in several steps homeomorphically to the ball [−1, 1]d such
that st(v)=h−ε corresponds to bd([−1, 1]λ)× [−1, 1]d−λ.

As a first step, we show that the subdivision M≤h−ε∪M∈[h−ε,h+ε] of M≤h+ε
collapses to M≤h−ε ∪ st(v)∈[h−ε,h+ε] using Corollary 2.44. We consider the
subcomplex K = st(v) and the value a = h − ε < h + ε. By our choice of
ε, for every cell S ∈M \ st(v) exactly one of the following three cases occurs:

1. All vertices of S have f -value strictly less than h−ε. This implies S≤h+ε =
S≤h−ε is contained in M≤h−ε.

2. All vertices of S have f -value strictly greater then h + ε. This implies
S≤h+ε = ∅ is contained in M≤h−ε.

3. The cell S has vertices with f -value strictly less than h + ε and vertices
with f -value strictly greater than h + ε. This implies that S≤h+ε and
S=h+ε are canonical.

Hence K = st(v) fulfils the requirements in Corollary 2.44, whose application
yields that M≤h−ε ∪ M∈[h−ε,h+ε] collapses to M≤h−ε ∪ st(v)∈[h−ε,h+ε]. Since
M≤h−ε ∪ M∈[h−ε,h+ε] is a subdivision of M≤h+ε, this means that M≤h+ε is
homotopy equivalent to M≤h−ε with st(v)∈[h−ε,h+ε] attached. It remains to
show that the attachment of st(v)∈[h−ε,h+ε] to M≤h−ε is indeed the attachment
of a λ-handle.

The common intersection of st(v)∈[h−ε,h+ε] and M≤h−ε is st(v)=h−ε, which
is contained in the boundary ofM≤h−ε. For verifying that st(v)∈[h−ε,h+ε] is a λ-
handle attached toM≤h−ε via their common intersection st(v)=h−ε as attaching
tube of the handle, we map the pair (st(v)∈[h−ε,h+ε], st(v)=h−ε) in several steps
homeomorphically to the pair ([−1, 1]d,bd([−1, 1]λ) × [−1, 1]d−λ). One easily
checks that the cone with apex v and base st(v)=h−ε∪st(v)=h+ε∪lk(v)∈[h−ε,h+ε]
is a subdivision of st(v)∈[h−ε,h+ε]. The base of the cone contains the subcom-
plexes st(v)=h−ε and st(v)=h+ε. By Lemma 2.38, the former complex st(v)=h−ε
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is combinatorially equivalent to lk(v)≤h−ε leaving lk(v)=h−ε fixed, and the latter
complex st(v)=h+ε is combinatorially equivalent to lk(v)≥h+ε leaving lk(v)=h+ε
fixed. Hence we can replace the two subcomplexes by their combinatorially
equivalent counterparts. We obtain that st(v)∈[h−ε,h+ε] is homeomorphic to
the cone with apex v and base lk(v)≤h−ε ∪ lk(v)≥h+ε ∪ lk(v)∈[h−ε,h+ε] with
the attaching tube st(v)=h−ε corresponding to lk(v)≤h−ε. Note that the cone
with apex v and base lk(v)≤h−ε ∪ lk(v)≥h+ε ∪ lk(v)∈[h−ε,h+ε] is a subdivision
of st(v), so that we obtain the pair (st(v), lk(v)≤h−ε) as homeomorphic pair for
(st(v)∈[h−ε,h+ε], st(v)=h−ε).

For the next step, we observe the base lk(v)≤h−ε∪ lk(v)≥h+ε∪ lk(v)∈[h−ε,h+ε]
is a subdivision of lk(v)≤h−ε ∪ lk(v)≥h−ε. Since no vertex of lk(v) has a value
in the interval [h− ε, h], the complex lk(v)≤h−ε ∪ lk(v)≥h−ε is naturally combi-
natorially equivalent to lk(v)≤h ∪ lk(v)≥h by Lemma 2.35, and this combinato-
rial equivalence maps the subcomplex lk(v)≤h−ε to lk(v)≤h. Adding the apex
v to this equivalence yields a combinatorial equivalence between v(lk(v)≤h−ε ∪
lk(v)≥h−ε) and v(lk(v)≤h∪ lk(v)≥h) still mapping lk(v)≤h−ε to lk(v)≤h, in other
words because both cones are subdivisions of st(v), the pair (st(v), lk(v)≤h−ε)
is homeomorphic to the pair (st(v), lk(v)≤h).

The next homeomorphism is provided by the fact that v is a non-degenerate
critical point of index λ. But instead of using the standard reference map fdλ
from Definition 3.12 for characterising non-degenerate critical points by local
equivalence, we use the map hdλ = −maxλi=1 |Xi|+ maxdi=λ+1 |Xi| suggested by
Eells and Kuiper [17] as reference map, which we showed to be equivalent to
fdλ in Lemma 3.27. Therefore the triple (M,v, f) is locally equivalent to the
triple (Rd, 0, hdλ). Recall from Theorem 3.11 that locally equivalent triples can
be characterised by the property that any two link complexes contained in the
stars of the considered points are homeomorphic in such a way that the shifted
maps have the same sign at corresponding points. Choosing for our case lk(v)
as link complex for v and bd([−1, 1]d) as link complex for the origin in Rd,
we obtain a PL homeomorphism between the subdivision lk(v)≤h ∪ lk(v)≥h of
lk(v) and bd([−1, 1]d) such that lk(v)≤h is mapped to (bd([−1, 1]d))hd

λ
≤0. Using

the cone construction with apex v on the one hand, and the origin as apex on
the other hand, this yields a PL homeomorphism from the cone with apex v
and base lk(v)≤h ∪ lk(v)≥h, which is a subdivision of st(v) again, to the cone
0(bd([−1, 1]d)), which is a subdivision of [−1, 1]d, such that lk(v)≤h is mapped
to (bd([−1, 1]d))hd

λ
≤0. In other words, the pair (st(v), lk(v)≤h) is homeomorphic

to the pair ([−1, 1]d, (bd([−1, 1]d))hd
λ
≤0).

It remains to show that the level set (bd([−1, 1]d))hd
λ
≤0 that is homeomor-

phic with the attachment tube agrees with bd([−1, 1]λ) × [−1, 1]d−λ. Since
the boundary of the hypercube bd([−1, 1]d) can be written as the union of
bd([−1, 1]λ)× [−1, 1]d−λ and [−1, 1]λ × bd([−1, 1]d−λ), it suffices to check that
the hdλ-values of points in bd([−1, 1]λ) × [−1, 1]d−λ are non-positive and that
the hdλ-values of points in ([−1, 1]λ×bd([−1, 1]d−λ))\(bd([−1, 1]λ)× [−1, 1]d−λ)
are positive. An element (x1, . . . , xλ, xλ+1, . . . , xd) of bd([−1, 1]λ) × [−1, 1]d−λ
has the property that one of its first λ coordinates x1, . . . , xλ has abso-
lute value 1. The remaining coordinates have absolute value at most one,
which implies hdλ(x1, . . . , xλ, xλ+1, . . . , xd) = −maxλi=1 |xi| + maxdi=λ+1 |xi| ≤
−1 + 1 = 0. On the other hand, if (x1, . . . , xλ, xλ+1, . . . , xd) does not belong
to bd([−1, 1]λ) × [−1, 1]d−λ then none of its first λ coordinates has absolute
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value 1, implying maxλi=1 |xi| < 1. If moreover (x1, . . . , xλ, xλ+1, . . . , xd) be-
longs to [−1, 1]λ× bd([−1, 1]d−λ), then one of its last d− λ coordinates has ab-
solute value 1. Thus, an element (x1, . . . , xλ, xλ+1, . . . , xd) lying in ([−1, 1]λ ×
bd([−1, 1]d−λ))\(bd([−1, 1]λ)×[−1, 1]d−λ) fulfils hdλ(x1, . . . , xλ, xλ+1, . . . , xd) =
−maxλi=1 |xi|+ maxdi=λ+1 |xi| > −1 + 1 = 0. This completes the proof.

5.2 Consequences: Homotopy Type, Morse In-
equalities, and Reeb Theorem

The remaining results of this chapter follow from Theorems 5.1 and 5.2 in much
the same way as their smooth counterparts follow from Facts 1.2 and 1.4.

Homotopy Equivalence to CW-Complexes. We continue with an ana-
logue of Fact 1.5, which states the result from [36, Theorem 3.5, p. 20] that a
manifold with Morse function is homotopy equivalent to a CW-complex consist-
ing of one λ-cell for each critical point of index λ.
Theorem 5.3. Let M be a combinatorial manifold without boundary with a
PL Morse function f : |M | → R linear on cells of M . Assume general position
for f , that is, all vertices of M have distinct f -values. Then M is homotopy
equivalent to a CW-complex whose cells are in bijection with the critical points
of f : one λ-cell for each non-degenerate critical point of index λ.
Proof. The following proof is completely analogous to the one given in [36,
Theorem 3.5, p. 20] for the smooth case, with the simplification that we assume
that for each critical value there is only one critical vertex. We use the notion
of a CW-complex in the sense that we briefly described in Section 1.1 following
Forman [18, Section 1].

We order the vertices of M by increasing f -value to a sequence (v1, . . . , vn)
with f(v1) < · · · < f(vn). Let hi = f(vi) for 1 ≤ i ≤ n. We show by induction
that for small enough ε > 0, namely ε < 1

2 · min2≤i≤n (hi − hi−1), the level
set complex M≤hi+ε is homotopy equivalent to a CW-complex Wi with one
λ-cell for each non-degenerate critical vertex of index λ in (v1, . . . , vi). Since
M≤hn+ε = M , this gives the desired result.

By choosing a value h0 < h1−2ε, we can start the induction with i = 0. Then
M≤h0+ε is empty and the empty CW-complex W0 has the desired properties.

Now assume for induction hypothesis thatM≤hi−1+ε is homotopy equivalent
to a CW-complex Wi−1 with one λ-cell for each non-degenerate critical vertex
of index λ in (v1, . . . , vi−1). If vi is a regular vertex, then the interval [hi−1 +
ε, hi + ε] contains one vertex, which is regular, and by Theorem 5.1, M≤hi+ε is
homeomorphic to M≤hi−1+ε, and hence homotopy equivalent to Wi := Wi−1.

It remains to consider the case that vi is a critical vertex of index λ. We
can again apply Theorem 5.1, this time for the interval [hi−1 + ε, hi − ε]. It
shows that M≤hi−ε is homeomorphic to M≤hi−1+ε and hence homotopy equiv-
alent to Wi−1. By Theorem 5.2, the complex M≤hi+ε is homotopy equivalent
to M≤hi−ε with a λ-cell attached. Now we use the following fact from [36,
Lemma 3.7, p. 21]: Denote by X ∪g Bλ the space obtained from a space X by
attaching the λ-cell Bλ along the attaching map g : bd(Bλ) → X. Then any
homotopy equivalence φ : X → Y between spaces X and Y extends to a homo-
topy equivalence between X ∪g Bλ and Y ∪φ◦g Bλ. For our situation, the fact
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implies that the homotopy equivalence between M≤hi−ε and Wi−1 extends to a
homotopy equivalence between M≤hi−ε with a λ-cell attached and some CW-
complex Wi that is obtained from Wi−1 by a suitable attachment of a λ-cell.
This CW-complexWi consists of the cells fromWi−1 and additionally one λ-cell
corresponding to the critical point vi. Composing the homotopy equivalences,
we obtain that M≤hi+ε is homotopy equivalent to Wi as desired.

Morse Inequalities and Reeb Theorem. The final two results of this chap-
ter are the Morse inequalities and the Reeb theorem for PL Morse functions.
They were stated previously by Kosinski [29, Theorems 2.3 and 2.4]. Analo-
gous results for regular simplex-wise linear functions in the sense of Brehm and
Kühnel [9] are also known: The Morse inequalities are stated in [9, Theorem 2]
and [30, Lemma 7.3]; a variant of the Reeb theorem, where the conclusion for
4-dimensional manifolds asserts only a homotopy sphere, and not a PL sphere
as asserted for the other dimensions, is proven in [30, Corollary 7.4].

From the representation of M by a homotopy equivalent CW-complex, we
can now deduce the Morse inequalities. The smooth analogue was noted in
Fact 1.6.

Theorem 5.4 (Morse Inequalities). Let M be a combinatorial manifold without
boundary with a PL Morse function f : |M | → R linear on cells and in general
position. Denote by cλ the number of critical vertices of index λ in M , and by
βλ the λ-th Betti number of M . Then the following inequalities and equalities
hold:

1. The Weak Morse Inequalities. For each λ:

βλ ≤ cλ

2. An equality representing the Euler characteristic χ(M) of M in two ways:

χ(M) =
∑
λ

(−1)λcλ =
∑
λ

(−1)λβλ

3. The Strong Morse Inequalities. For each λ:

λ∑
i=0

(−1)iβλ−i ≤
λ∑
i=0

(−1)icλ−i

Proof. As Forman states in [18, Theorems 1.7 and 1.8], the equalities and in-
equalities hold for any CW-complex W , if cλ denotes the number of λ-cells in
W and βλ the λ-th Betti number of W . By the previous Theorem 5.3, there
is a CW-complex W whose number of λ-cells agrees with the number of criti-
cal points of index λ in M and which is homotopy equivalent to M , implying
that the Betti numbers of W and M agree. From these observations the result
follows immediately.

The final result of this chapter is the PL analogue of the Reeb theorem cited
in Fact 1.7 from [36, Theorem 4.1, p. 25].
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Theorem 5.5 (Reeb theorem). Let M be a combinatorial manifold without
boundary with a PL Morse function f : |M | → R linear on cells and in gen-
eral position. Assume that f has exactly two critical vertices. Then M is a
PL sphere.

Proof. The proof is taken almost literally from its smooth version in [36, The-
orem 4.1, p. 25].

The two critical vertices must be the vertices where minimum and the max-
imum of f onM are attained. Let v be the vertex with minimum f -value and u
be the vertex with maximum f -value. For sufficiently small ε the level set com-
plex M≤f(v)+ε agrees with st(v)≤f(v)+ε and with the cone with apex v and base
st(v)=f(v)+ε. By Lemma 2.38, the base st(v)=f(v)+ε is combinatorially equiva-
lent to lk(v)≥f(v)+ε. But lk(v)≥f(v)+ε agrees with lk(v) for sufficiently small ε,
since f(v) is the minimum value of f on M . Moreover, the cone with apex v
and base lk(v) is simply the PL ball st(v), showing that M≤f(v)+ε is a PL ball.
By a similar argument M≥f(u)−ε is a PL ball as well. Furthermore M≤f(v)+ε
is PL-homeomorphic to M≤f(u)−ε by Theorem 5.1, since all remaining vertices
with an f -value in [f(v) + ε, f(u) − ε] are regular. Hence M is the union of
two PL balls M≤f(u)−ε and M≥f(u)−ε that intersect in their common boundary
M=f(u)−ε, showing that M is a PL sphere.
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Chapter 6

Computational Aspects

The last chapter addresses two selected topics that arise when we consider
PL Morse theory from a computational point of view. The first section deals
with the question whether regular vertices can be recognised algorithmically.
We obtain positive solutions for low dimensions, but for higher dimensions, the
answer is more difficult. When arbitrary complexes are allowed as input, it
is possible to show undecidability of the problem as stated in Corollary 6.6.
The complexity remains open when the problem is restricted to inputs that are
known to be combinatorial manifolds.

In the other section of this chapter, we use our results on the existence of
f -level-preserving PL isotopies to sketch the design of algorithms in low di-
mensions that compute such isotopies. The aim is to compute combinatorially
equivalent subdivisions of M=a × [a, b] and M∈[a,b] that represent the isotopy
φ : |M |=a × [a, b] → |M |∈[a,b] for an interval [a, b] containing no critical values.
We derive upper bounds on the number of cells in the combinatorially equivalent
subdivisions produced by the outlined algorithms.

6.1 Recognising Regular Vertices
This section addresses the question whether regular points can be recognised
algorithmically. The difficulty of this computational problem depends on the
dimension of the considered domain. For combinatorial manifolds of dimension
at most 3 and maps in general position, Chiang, Lenz, Lu, and Rote [13] give
characterisations for regular points that lead to simple recognition algorithms
which require only counting the number of connected components of the lower
level link and the upper level link of the considered vertex. They also propose
a characterisation for 4-dimensional manifolds, that is easy to check algorithmi-
cally. For higher dimensions they suspect NP-hardness or even undecidability of
the problem. We shortly review the positive results in low dimensions, in partic-
ular, we verify the suggested characterisation for 4-dimensional domains, which
is obtained by applying Lemma 6.1 to the 4-dimensional case. For complexes of
dimension at least 6 we obtain an undecidability result in Corollary 6.6. This
result however is somewhat unsatisfactory because it relies on a reduction with
the property that all negative instances it produces consist of a vertex whose
link is not a sphere. So the reduction rather re-establishes the undecidability
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of the class of manifolds, which leads to the question whether regular and crit-
ical points become algorithmically distinguishable if the domain is asserted to
be a manifold. This question remains open and is related to the problem that
we already encountered in Subsection 3.2.5, when we compared the notion of
criticality defined by Brehm and Kühnel [9] to our notion, namely the question
whether there are homology (d − 1)-balls different from the standard ball that
embed into the standard (d− 1)-sphere.

6.1.1 Algorithmic Solutions in Low Dimensions
Regular Vertex Recognition by Sphere Recognition Algorithms and
Schoenflies Conjecture. In Chapter 4 we discussed several equivalent char-
acterisations for critical points. The characterisations that are best suited for an
algorithmic approach are those that we proved in the first part of that chapter:
Lemma 4.1 characterised regular points x by requiring that (lk(x), lk(x)=f(x)) is
an unknotted sphere or ball pair and that the sets | lk(x)|>f(x) and | lk(x)|<f(x)
are both non-empty. By Corollary 4.2, the second condition can be omitted for
maps in general position except for 1-dimensional domains. Depending on the
status of the Schoenflies conjecture, in the cases described in Lemma 4.3 a sphere
pair (lk(x), lk(x)=f(x)) is automatically unknotted, so that it is unnecessary to
check this property explicitly. Consequently algorithms for sphere recognition
allow to design algorithms for the recognition of regular points, whenever we
are in a situation where the Schoenflies conjecture holds. Recall from Subsec-
tion 1.2.11 that for low dimensions d ≤ 3, algorithms for d-sphere recognition
exist. Combining this fact with the truth of the d-dimensional PL Schoenflies
conjecture for d ≤ 3 yields recognition algorithms for regular interior points in
dimension at most 4.

Lemma 6.1. Let f : |M | → R be linear on cells of a simplicial complex M . For
low dimensions d ≤ 4 and each point x ∈ |M |, it can be tested algorithmically
whether x is a regular interior point of f in dimension d.

Proof. By Lemma 4.1, a regular interior point in dimension d is characterised by
the requirements that lk(x) contains vertices u− and u+ with f(u−) < f(x) and
f(u+) > f(x) and that (lk(x), lk(x)=f(x)) is an unknotted (d− 1, d− 2)-sphere
pair. Checking the first requirement is trivial. Then we can apply the existing
recognition algorithms for (d − 1)-spheres and (d − 2)-spheres for d ≤ 4 for
verifying that lk(x) is a (d−1)-sphere and that lk(x)=f(x) is a (d−2)-sphere. If
both tests succeed, the truth of the (d−1)-dimensional PL Schoenflies conjecture
for d − 1 ≤ 3 asserts that the (d − 1, d − 2)-sphere pair (lk(x), lk(x)=f(x)) is
unknotted.

As observed in Corollary 4.2, the test for the vertices u− and u+ can be
omitted for d > 1 if f is in general position. If M is asserted to be a combi-
natorial d-manifold and x an interior point of |M |, the definition of a manifold
confirms that lk(x) is a (d− 1)-sphere, so that checking this property becomes
unnecessary as well. Furthermore we proved in Lemma 3.22 that non-vertices
are always regular if M is a manifold and f is in general position, so that only
vertices have to be checked for regularity under these assumptions. These obser-
vations verify the correctness of the characterisation suggested in [13] for regular
interior vertices of 4-dimensional manifolds with a map in general position: The
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suggested characterisation requires that the level set lk(v)=f(v) separates the
link lk(v) into two 3-balls intersecting in the 2-sphere lk(v)=f(v). The authors
also remark that the validity of the 3-dimensional PL Schoenflies conjecture
implies that lk(v)=f(v) being a 2-sphere is already sufficient to fulfil the require-
ments, and that this sufficient condition can be checked algorithmically. When
we apply the preceding lemma and the above observations for the case d = 4, we
can conclude that an interior vertex v of a combinatorial 4-manifold with a map
in general position is regular if and only if lk(v)=f(v) is a 2-sphere, and that such
a 2-sphere separates the link lk(v) into two 3-balls because the 3-dimensional PL
Schoenflies conjecture is true. In other words, we obtain exactly the regularity
condition proposed in [13].

Let us briefly review some related observations by Chiang, Lenz, Lu, and
Rote [13] concerning the classification of vertices in 2- and 3-dimensional do-
mains. It is assumed that M is a combinatorial manifold with a map in general
position. Therefore all non-vertices are regular and only vertices require fur-
ther attention. The vertices are classified in [13] as follows: For a vertex v,
consider the graph formed by the 1-skeleton of its link. The vertices u in the
link with f(u) < f(v) induce a sub-graph N−(v), a sub-graph N+(v) is in-
duced analogously by the vertices u with f(u) > f(v). One easily checks that
N−(v) and N+(v) are the 1-skeleta of the subcomplexes scp≤f(v)(lk(v)) and
scp≥f(v)(lk(v)) respectively. The vertices are classified according to the num-
bers C−(v) = β0(N−(v)) and C+(v) = β0(N+(v)), which denote the number
of connected components of N−(v) and N+(v). Since a simplicial complex has
the same 0-th Betti number as its 1-skeleton, these numbers can be expressed
equivalently as C−(v) = β0(scp≤f(v)(lk(v))) and C+(v) = β0(scp≥f(v)(lk(v))).
Moreover, the collapses from lk(v)≤f(v) to scp≤f(v)(lk(v)) and from lk(v)≥f(v) to
scp≥f(v)(lk(v)) following from Lemma 2.46 and the homotopy equivalences in-
duced by these collapses yield the alternative equalities C−(v) = β0(lk(v)≤f(v))
and C+(v) = β0(lk(v)≥f(v)).

Counting Connected Components of Upper and Lower Level Links.
The aim of the studies in [13] is the design of an algorithm for the construction of
contour trees. Important for this purpose are only those critical vertices where
the number of connected components of the level sets |M |<h, |M |=h, or |M |>h
changes, when the level h passes across the f -value of that point. The authors
show that a vertex v fulfilling C−(v) = C+(v) = 1 does not cause a change in
the number of connected components of the level sets [13, Lemma 5]. Vertices
not fulfilling this property are called component-critical, and this property is
easy to check algorithmically. Clearly, the component-critical vertices form a
subset of the critical vertices, and regular vertices are not component-critical.
The case analysis in [13] for 2- and 3-dimensional manifolds establishes the fol-
lowing observations: In dimension 2, a vertex is regular if and only if it is not
component-critical [13, Theorem 3]. This applies to interior and to boundary
points. In dimension 3, there are critical points that are not component-critical,
but such vertices are necessarily boundary points which are local extrema with
respect to the boundary [13, Theorem 1]. In other words, interior points are
regular if and only if they are not component-critical, whereas boundary points
are regular if and only if they are not component-critical with respect to the
whole manifold and with respect to the boundary. These observations imply
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that in dimensions 2 and 3, regular points of manifolds with a map in gen-
eral position, including regular boundary points, can be recognised by count-
ing the number of connected components of the upper and lower level links
lkM (v)≤f(v), lkM (v)≥f(v), lkbd(M)(v)≤f(v), and lkbd(M)(v)≥f(v). It is remarked
in the appendix of [13] that a non-degenerate critical vertex of index 2 in a
4-dimensional manifold is not component-critical, so that counting connected
components does not suffice for recognising regular vertices in dimension 4 and
above.

Related Algorithmically Solvable Problems. In the remainder, we omit
the treatment of boundary points and focus on combinatorial manifolds without
boundary. Moreover we concentrate on the classification of vertices. When the
considered point is not a vertex, we can turn it into a vertex by performing an
elementary starring at the point. This operation might ruin a general position
assumption, but under such an assumption non-vertices are already regular.

Recall that a simplicial complex is a combinatorial manifold if and only if the
link of every vertex is a combinatorial sphere. For a single vertex, this require-
ment is also a necessary condition for the vertex being regular or non-degenerate
critical. Consequently, we obtain as necessary condition for a map linear on cells
of a simplicial complex being a PL Morse function that the complex is required
to be a combinatorial manifold. The sphere recognition algorithms in low di-
mensions provide a method to recognise combinatorial manifolds of dimension
at most 4. When the given complex is known to be a manifold for some reason,
or even f is known to be a PL Morse function, some problems concerning the
classification of vertices can be solved algorithmically even in higher dimensions.
The results of this kind listed below are trivial or obvious consequences of facts
we observed earlier.

Lemma 6.2. Let f : |M | → R be linear on cells of a simplicial complex M .
If dim(M) ≤ 4, then it can be tested algorithmically whetherM is a combina-

torial manifold. Furthermore regular vertices, non-degenerate critical vertices of
index 0, and non-degenerate critical vertices of index dim(M) can be recognised
algorithmically.

If M is known to be a combinatorial manifold, then non-degenerate critical
vertices of index 0, and non-degenerate critical vertices of index dim(M) can be
recognised algorithmically for any dimension of M .

If f : |M | → R is known to be a PL Morse function, then it can be computed
whether a vertex v is regular or critical, and in the latter case, its index can be
computed.

Proof. The complex M is a combinatorial d-manifold, if and only if the link
of every vertex is a combinatorial (d − 1)-sphere. Algorithms for recognising
combinatorial (d− 1)-spheres are known to exist for d− 1 ≤ 3. This shows that
manifolds of dimension at most 4 can be recognised algorithmically.

We observed already in Lemma 6.1 that regular vertices of dimension d at
most 4 are algorithmically recognisable: It suffices to check that lk(v) is a (d−1)-
sphere and contains vertices u+ and u− with f(u+) > f(v) and f(u−) < f(v)
and that lk(v)=f(v) is a (d − 2)-sphere. The existence of the required vertices
can be checked easily, for the other two conditions we use again the existing
algorithms for recognising low-dimensional spheres.
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A non-degenerate critical vertex of index 0 is characterised by the condition
that its link is a (dim(M)− 1)-sphere and that its value f(v) is strictly smaller
than all f -values of its neighbouring vertices in the link. Non-degenerate critical
vertices of index dim(M) are characterised analogously with the word “smaller”
replaced by “larger”. Comparison of the f -values is easy, and the condition that
the link is a sphere can be checked for dim(M) ≤ 4, which completes the proof
of the first claim, or follows from the assumption that M is a combinatorial
manifold in the second claim.

If f is known to be a PL Morse function, then the triple (M,v, f) is locally
equivalent to the triple (Rd, 0, πd1) in the case that v is regular or to one of
the triples (Ωd, 0, fdλ) with 0 ≤ λ ≤ d = dim(M) in the case that v is a non-
degenerate critical vertex of index λ. When we take Sd−1

1 as link complex for the
origin, we can conclude that lk(v)≤f(v) is homeomorphic to one of the standard
lower level links, namely to (Sd−1

1 )πd1≤0 for regular v or to (Sd−1
1 )fd

λ
≤0 for a crit-

ical vertex v of index λ. Recall that we verified in the proof of Lemma 3.17 that
(Sd−1

1 )πd1≤0 is a ball and that (Sd−1
1 )fd

λ
≤0 is homotopy equivalent to a (λ− 1)-

sphere, with the empty set being treated as (−1)-sphere. Moreover we observed
that the different types of standard lower level links can be distinguished from
each other by their Betti numbers. Thus, for classifying the vertices under the
assumption that f is a PL Morse function, it suffices to compute the Betti
numbers of the lower level link lk(v)≤f(v) or of the subcomplex scp≤f(v)(lk(v)),
which yields the same results because the former collapses to the latter. If the
Betti numbers agree with those of a single point, then v is regular, and if they
agree with those of a (λ− 1)-sphere for some λ ≥ 0, then v is a non-degenerate
critical vertex of index λ.

6.1.2 Undecidability in Higher Dimensions
Turing Equivalence of Regular Vertex Recognition and Sphere Recog-
nition. Now we investigate the difficulties that we encounter when we want
to recognise regular vertices in higher dimensions. Let us first argue why the
recognition problem of regular vertices in dimension d > 1, at least in its most
general form, and the problem of recognising (d− 1)-spheres have a similar de-
gree of computational difficulty. In fact, we will show that both problems are
Turing reducible to each other.

Lemma 6.3. The problem of deciding whether for a given simplicial complexM
with a map f linear on cells in general position and a vertex v inM , the vertex v
is a regular vertex in dimension d or not is Turing reducible to the (d−1)-sphere
recognition problem in the class of simplicial complexes.

Proof. Recall from Subsection 1.2.11 that sphere recognition and ball recogni-
tion in the same dimension are computationally equivalent. Thus, the following
explanation on how to design an algorithm for recognising regular vertices in
dimension d when an algorithm for recognising (d − 1)-balls is available yields
a Turing reduction from the former problem to the latter.

The correctness of the algorithm we want to design relies mainly on two
facts. The first fact is the characterisation of regular points given in Lemma 4.1:
A vertex v is regular if and only if the pair (lk(v), lk(v)=f(v)) is an unknotted
(d− 1, d− 2)-sphere pair and | lk(v)|>f(v) and | lk(v)|<f(v) are both non-empty.
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The second fact is the sufficient condition for unknotted sphere pairs that follows
from the results cited from [31] in Subsection 1.2.12. If upper and lower level link
lk(v)≥f(v) and lk(v)≤f(v) are both combinatorial (d−1)-balls whose boundaries
coincide with each other and with the common intersection lk(v)=f(v) of the
balls, then (lk(v), lk(v)=f(v)) is unknotted and | lk(v)|>f(v) and | lk(v)|<f(v) are
both non-empty because a ball is always a proper superset of its boundary. Since
the boundary of a combinatorial (d− 1)-ball is generated by those (d− 2)-faces
that have only one instead of two (d − 1)-dimensional co-faces, the condition
concerning the boundaries can be checked algorithmically and we are left with
the problem of recognising (d− 1)-balls.

For a Turing reduction in the other direction, we show that the problem of
recognising (d− 1)-spheres is many-one reducible to the problem of recognising
regular vertices in dimension d. As briefly indicated earlier, the reduction has
the property that it maps positive instances of the sphere problem to a triple
(M,v, f) such that M is a combinatorial d-manifold without boundary with a
map f in general position and a regular vertex v, whereas in a triple (M,v, f)
resulting from a negative instance of the sphere problem, not only the vertex v is
not a regular interior point, but also the complex M fails to be a combinatorial
manifold without boundary because the link of v is not a sphere.

Lemma 6.4. The problem of recognising combinatorial (d − 1)-spheres can be
reduced to the problem whether a given vertex of a simplicial complex with a map
linear on cells in general position is a regular interior vertex in dimension d or
not.

Proof. Let K be an instance of the sphere recognition problem. We want to
construct fromK an instance (M, v, f) of the regular vertex recognition problem
consisting of a simplicial complex M , a vertex v in M , and a map f linear on
cells of M in general position defined by distinct values at the vertices of M .
The proof idea is to design the triple (M,v, f) in such a way that a subdivision
of K is the link of the vertex v in question and the chosen values for the map f
ensure that v is regular if K is a sphere.

As a first step of the construction, select a maximal simplex S of K and
perform an elementary starring at a point w in the interior of the selected
simplex. Let M be the suspension of the obtained subdivision L of K. One of
the apices of the suspension is the vertex v, the other apex is denoted by v′.
Define the values for the map f as follows: For the vertices v, v′, and w,
the chosen values are f(v) = 0, f(v′) = −ε for some small positive ε, and
f(w) = −1. The remaining vertices ofM are vertices of the original complex K.
Assign distinct small positive values to the vertices of the selected maximal
simplex S, and distinct large positive values for the remaining vertices of K.
If the input instance K is a simplicial complex, the above construction clearly
yields a simplicial complex M with a map f linear on cells in general position
and a vertex v in M . For verifying that this construction reduces the sphere
recognition problem to the regular vertex problem, we prove the following two
implications: If the complex K is a combinatorial (d − 1)-sphere, then M is
a combinatorial d-manifold without boundary and v is regular. If K is not a
(d− 1)-sphere, then the link of v in M is not a (d− 1)-sphere, which means in
particular that M is not a combinatorial manifold without boundary and that
v is not a regular interior vertex.
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The latter implication is easy to prove. The link of an apex in a suspen-
sion susp(X) is the original complex X, in our case the link of v in M is the
subdivision L of K. Hence lkM (v) is a (d−1)-sphere if and only if K is a (d−1)-
sphere, yielding the desired implication as one direction of the equivalence. For
the former implication, note first that a suspension can be described equivalently
as a join with a 0-sphere, and recall from Fact 1.38 that a join of a (d−1)-sphere
and a 0-sphere is a d-sphere. Therefore the constructed complexM is a d-sphere
if K is a (d− 1)-sphere. We saw already above that lkM (v) agrees with L and
is a (d− 1)-sphere. For showing that v is a regular interior point, we verify that
lkM (v)=0 is a combinatorial (d − 2)-sphere and that one of the components of
the induced decomposition into lkM (v)≤0 and lkM (v)≥0, namely the component
lkM (v)≤0, is a combinatorial (d − 1)-ball bounded by lkM (v)=0. By the facts
cited in Subsection 1.2.12, this asserts that the pair (lkM (v), lkM (v)=0) is an
unknotted (d− 1, d− 2)-sphere pair and consequently v is a regular vertex.

Consider the lower level link lkM (v)≤0. By the choice of values for f , the
vertex w with f(w) = −1 is the only vertex in L with non-positive f -value.
Hence lkM (v)≤0 = L≤0 agrees with stL(w)≤0, and lkM (v)=0 = L=0 agrees with
stL(w)=0. Moreover, stL(w)≤0 is the cone with apex w and base stL(w)=0. By
Lemma 2.38, the level set complex stL(w)=0 forming the base is combinatorially
equivalent to the level set complex lkL(w)≥0. But lkL(w) is the boundary of
the selected simplex S whose vertices all have positive f -values. Thus lkL(w)≥0
agrees with the link lkL(w) itself, and this link is a combinatorial (d−2)-sphere
because it is the boundary of a (d−1)-simplex. We have obtained a combinato-
rial equivalence between stL(w)=0 and lkL(w) which extends to a combinatorial
equivalence between the cones w stL(w)=0 and w lkL(w) = stL(w). Since the
latter cone is a combinatorial (d− 1)-ball bounded be the base lkL(w), we can
conclude that the cone w stL(w)=0 is a combinatorial (d − 1)-ball bounded by
its base stL(w)=0 as well and that the boundary stL(w)=0 = lkM (v)=0 is a
combinatorial (d− 2)-sphere. This completes the proof.

It is possible to modify the reduction by a preprocessing step in such a way
that it avoids output instances where the link of v is a combinatorial ball: Since
such output instances could only occur if K is a combinatorial ball, it suffices
to check in the preprocessing whether K is a simplicial complex, whether all
maximal simplices of K have dimension d− 1, and whether all (d− 2)-simplices
have exactly two (d−1)-dimensional co-faces. Any combinatorial (d−1)-sphere
passes these tests, but for combinatorial (d − 1)-balls and balls and spheres of
other dimensions at least one of the tests fails. By outputting a suitable negative
instance if one of the tests fails, we can ensure that all negative instances of the
(d − 1)-sphere recognition problem are reduced to instances where M is not a
combinatorial manifold, neither with nor without boundary, and v is not regular,
neither a regular interior point nor a regular boundary point.

Corollary 6.5. Regular vertex recognition in dimension d for a given triple
(M, v, f) consisting of a simplicial complex M , a map f linear on cells of M
in general position, and a vertex v in M is Turing equivalent to (d− 1)-sphere
recognition for a given simplicial complex.

Proof. The Turing reductions are given in Lemmata 6.3 and 6.4.
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Undecidability Result. Novikov’s result cited in Fact 1.40 that d-sphere
recognition in dimension d ≥ 5 is undecidable together with the above reduc-
tion imply immediately the undecidability of the problem of recognising regular
vertices in dimension d ≥ 6 in simplicial complexes with maps in general posi-
tion.

Corollary 6.6. Given a simplicial complex with a map linear on cells in general
position, a vertex v of the simplicial complex, and a dimension d ≥ 6, it is
undecidable whether v is a regular vertex in dimension d.

Proof. It is undecidable whether a given simplicial complex is a (d− 1)-sphere
for d−1 ≥ 5 by Novikov’s result. The reduction described in Lemma 6.4 reduces
this problem to the question whether a given vertex in a simplicial complex with
a map linear on cells in general position is a regular point in dimension d. Thus
regular vertex recognition in dimension d ≥ 6 is undecidable as well.

Since the reduction produces non-manifold instances, the hardness result
applies only if the regular vertex recognition problem is considered on a class
of inputs that contains such instances. It is still open whether this problem
becomes decidable or remains hard in higher dimensions if it is restricted to a
class of inputs whereM is a combinatorial d-manifold or at least lk(v) is asserted
to be a (d − 1)-sphere. In the following, we will refer to this question as the
regular vertex recognition problem for d-manifolds. The assertion that lk(v) is a
(d−1)-sphere leaves as necessary and sufficient condition for v being regular that
lk(v)=f(v) is a (d−2)-sphere and its embedding in lk(v) is unknotted. This means
that the regular vertex recognition problem for d-manifolds becomes decidable if
an algorithm for the following problem exists: Given a simplicial complexK that
is asserted to be a (d−1)-sphere and a subcomplex L ofK, decide whether (K,L)
is an unknotted (d − 1, d − 2)-sphere pair. Note that the proof of Lemma 6.3
also shows that the existence of a (d − 1)-sphere recognition algorithm allows
to decide whether a given pair (K,L) is an unknotted (d− 1, d− 2)-sphere pair
even without the assertion of K being a (d− 1)-sphere.

Is it also possible to reduce the decision problem whether a pair (K,L), where
K is asserted to be a (d−1)-sphere, is an unknotted (d−1, d−2)-sphere pair to
the regular vertex recognition problem for d-manifolds? A simple approach for
designing such a reduction would aim for the construction of an instance where
the given pair (K,L) occurs as embedding of L = lk(v)=f(v) into K = lk(v) for
some vertex v in the constructed d-manifold M . A suitable candidate for M
is the suspension of the given (d − 1)-sphere K with one of the apices playing
the role of the vertex v. Then the remaining task is to define a map f , we
can assume f(v) = 0, in such a way that lk(v)=0 agrees with L and the map f
has opposite signs on the two parts that lk(v) is separated into by lk(v)=0.
As long as we are not requiring f to be in general position, it seems possible
to achieve such a construction. But if we want to show that the problem of
recognising unknotted (d − 2)-spheres in asserted (d − 1)-spheres is equivalent
to the vertex recognition problem for d-manifolds not only for arbitrary maps f
but also when restricted to maps in general position, then a suitable reduction
seems to be harder to find.

The Status of the Regular Vertex Recognition Problem Depending
on Dimension. Let us study the consequences of the above results depending
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on the dimension of the complex M containing the vertex v for which we want
to decide whether it is regular or not.

From Dimension 1 to Dimension 4. In dimension 1, it suffices to check
whether v has exactly two adjacent vertices, one with smaller and one with
larger f -value, for verifying that v is regular. In dimension 2, we can check
at first whether the link of v is a 1-sphere, in other words, expressed in the
language of graphs, whether lk(v) is a simple cycle. This test is unnecessary if
the given complex is already known to be a 2-manifold. If the test succeeds or
is unnecessary, it remains to check that lk(v)=f(v) is a 0-sphere, which means
that it consists of exactly to vertices. For 3-dimensional domains, we can check
whether lk(v) is a 2-sphere because algorithms for 2-sphere recognition can be
derived from the classification of 2-dimensional manifolds. Again, this check can
be omitted ifM is known to be a 3-manifold. In either case, it remains to verify
that lk(v)=f(v) is a 1-sphere for recognising v as regular vertex. Dimension 4 still
follows the same pattern as the previous ones. If M is not already known to be
a 4-manifold, we can choose one of the existing 3-sphere recognition algorithms
and check whether lk(v) is a 3-sphere. Afterwards we only have to check whether
lk(v)=f(v) is a 2-sphere.

Dimension 5. Starting from dimension 5, the situation changes. Accord-
ing to Corollary 6.5, the hardness of the 5-dimensional case depends on the
hardness of recognising 4-spheres. It is unknown whether an algorithm for
recognising 4-spheres exists or the problem is undecidable. Since lk(v) being a
4-sphere is a necessary condition for v being a regular vertex in dimension 5,
it is open whether we can test this condition. For the same reason it is also
unknown whether the class of 5-manifolds is decidable. We can check however
the necessary condition requiring lk(v)=f(v) to be a 3-sphere using a suitable
recognition algorithm for 3-spheres. But even if it is asserted that lk(v) is a
4-sphere, for example because M is known to be a 5-manifold for some reason,
checking this condition is not sufficient, because the Schoenflies conjecture for
embeddings of the 3-sphere into the 4-sphere is open, even in the locally flat case
that would apply if we assumed general position. If the Schoenflies conjecture in
this dimension is true, in general or at least in the locally flat case, and lk(v) is
asserted to be a 4-sphere, then checking that lk(v)=f(v) is a 3-sphere is enough,
either for arbitrary f or at least if f is in general position. Moreover, if an
algorithm for 4-sphere recognition exists, then regular vertices in dimension 5
can be recognised using the reduction from Lemma 6.3, independently from the
status of the Schoenflies conjecture: We only have to check that lk(v)≤f(v) and
lk(v)≥f(v) are both combinatorial 4-balls and that lk(v)=f(v) is the boundary of
both balls. On the other hand, if 4-sphere recognition is undecidable, the re-
duction from Lemma 6.4 shows that the problem of recognising regular vertices
in dimension 5 is in general undecidable as well.

We may ask what happens if the Schoenflies conjecture for embeddings of the
3-sphere into the 4-sphere turns out to be false. The next question that arises
naturally under this premise is whether we can recognise unknotted embeddings
of the 3-sphere into the 4-sphere although knotted embeddings are known to
exist. If the answer to that question is positive, we can solve the regular vertex
recognition problem for 5-manifolds. This holds even if 4-sphere recognition and
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consequently the general problem of recognising regular points in dimension 5 for
arbitrary given simplicial complexesM is undecidable. If the answer is negative
and unknotted (4,3)-sphere pairs are not algorithmically recognisable, we can
apply the reduction sketched above which reduces this problem to the regular
vertex recognition problem for 5-manifolds. This would yield undecidability of
the latter problem, as long as we are not requiring f to be in general position.
If the Schoenflies conjecture turned out to be false in general, but true for
the locally flat case, such a result would be satisfactory, because then regular
vertex recognition for 5-manifolds would be undecidable for arbitrary maps f
but decidable for maps in general position. But if the Schoenflies conjecture
were false even in the locally flat case, the question arises whether we can find a
reduction where the constructed map is in general position, which would render
vertex recognition for 5-manifolds undecidable even if the problem is restricted
to maps in general position. A solution for this task however seems to be harder
to achieve.

Dimension 6. In dimension 6, Novikov’s result that 5-spheres are not
algorithmically recognisable implies that it is undecidable whether a given com-
plex is a 6-manifold and that the general problem of recognising regular vertices
in dimension 6 is undecidable. If f is in general position and an algorithm for
recognising 4-spheres exists, regular vertices in 6-manifolds can be recognised
by checking whether lk(v)=f(v) is a 4-sphere because the Schoenflies conjecture
for locally flat embeddings of 4-spheres into 5-spheres is true. If the Schoenflies
conjecture holds for arbitrary embeddings, the recognition works as well for ar-
bitrary f . In the case that recognising 4-spheres is undecidable, the situation
in dimension 6 is similar to that of dimensions d ≥ 7 considered next.

Dimension 7 and Above. For dimension d ≥ 7 the general problem of
recognising regular vertices is undecidable. When the problem is restricted to
d-manifolds and we assume general position, then the remaining necessary and
sufficient condition for v being regular is that lk(v)=f(v) is a (d − 2)-sphere.
The general problem of recognising (d − 2)-spheres in undecidable for d ≥ 7.
Whether the problem becomes decidable or not if it is restricted to complexes
that are defined as level set complexes of a (d− 1)-sphere, as is the case for the
level set complex lk(v)=f(v) of lk(v), is open.

Variants of the Reduction from the Sphere Recognition Problem and
the Problem of Recognising PL Morse Functions. Let us resume the
discussion concerning reductions from the sphere recognition problem to the
regular vertex recognition problem. We proposed in Lemma 6.4 a reduction from
the recognition problem for (d − 1)-spheres to the general recognition problem
for regular vertices in dimension d. The reduction is designed in such a way
that the complex given as instance for the sphere problem, modified by a single
elementary starring, plays the role of lk(v) in the instance of the regular vertex
recognition problem. There is a conceptually simpler reduction where the given
instance plays the role of lk(v)=f(v) instead. However, in this reduction all
vertices of the given complex are mapped to the same f -value f(v), so that the
map is not in general position. Moreover it reduces (d − 2)-sphere recognition
to regular vertex recognition in dimension d, so that undecidability can only be
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inferred from dimension 7 on and not for dimension 6. The reduction works as
follows: Let K be the given instance of the (d− 2)-sphere recognition problem.
First take the suspension L of K with apices a+ and a−, which will play the
role of lk(v) in our reduction. Then take again the suspension M of L with
apices v and v′. Define f by the values f(v) = 0, f(a+) = 1, f(a−) = −1,
and f(w) = 0 for all vertices w of K; the value f(v′) can be chosen arbitrary
because v′ does not belong to st(v). By construction, we have lk(v) = L and
lk(v)=f(v) = K. If K is a combinatorial (d− 2)-sphere, then it is unknotted in
its suspension L = susp(K). Since additionally positive and negative values are
attained in lk(v), namely at the apices a+ and a−, the vertex v is a regular vertex
in dimension d in that case. On the other hand, if K is not a combinatorial
sphere, then L is not a combinatorial sphere either and consequently M is not
a combinatorial manifold without boundary. As for the other reduction, we can
sort out certain complexes K including combinatorial balls by a preprocessing
to avoid instances M that are combinatorial manifolds with boundary.

Another variant of the reduction shows that it is undecidable whether a
map f linear on cells of a simplicial complexM of dimension d ≥ 6 is a PL Morse
function. Recall from Lemma 6.2 that once f is known to be a Morse function,
regular vertices and the different kinds of non-degenerate critical vertices are al-
gorithmically distinguishable by computing the Betti numbers of the lower level
link of the vertex. In this sense, the hardness of recognising regular vertices in
higher dimensions lies in differentiating between a regular vertex and a degen-
erate critical vertex for which the homologies of the complexes lk(v), lk(v)=f(v),
lk(v)≤f(v), and lk(v)≥f(v) for the considered vertex v match with those required
by a regular vertex.

Lemma 6.7. The problem of recognising (d− 1)-spheres can be reduced to the
decision problem whether a map f : |M | → R that is linear on cells of a given
d-dimensional complex M and in general position is a PL Morse function or
not. In particular, the latter problem is undecidable for d ≥ 6.

Proof. Let K be an instance for the (d − 1)-sphere recognition problem. In a
preprocessing, we check whether K is a simplicial complex in which all maximal
cells have dimension d− 1 and each (d− 2)-cell has exactly two proper co-faces.
If one of the tests fails, the instance K is reduced to a fixed negative instance
(M,f) where f is not a PL Morse function. OtherwiseM is the suspension of K
with apices v+ and v−, and for defining f we choose arbitrary distinct values for
the vertices in K and a value f(v+) strictly greater and a value f(v−) strictly
smaller than all these values. We claim that f is a PL Morse function if and
only if K is a combinatorial (d− 1)-sphere.

By construction K is the link of both the apices v+ and v−. The preprocess-
ing asserts that K is neither a combinatorial ball nor a combinatorial k-sphere
for k 6= d − 1, and if it is not a combinatorial (d − 1)-sphere either, then M is
not a combinatorial manifold and f is not a PL Morse function.

It remains to consider the case that K is a combinatorial (d − 1)-sphere.
We verify that all vertices in K are regular vertices of f , and the apices v−
and v+ are non-degenerate critical vertices of index 0 and d respectively. Since
f(v−) < f(u) holds for all vertices u of the (d−1)-sphere K = lk(v−), the vertex
v− is a non-degenerate critical vertex in dimension d of index 0. Symmetrically,
v+ is a non-degenerate critical vertex in dimension d of index d. Let u be a
vertex of K. Its link in M is the suspension of its link in K with the apices v+
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and v−. Since K is a combinatorial (d − 1)-sphere, lkK(u) is a combinatorial
(d − 2)-sphere and a suitable subdivision L of it is combinatorially equivalent
to a (d − 2)-sphere that forms a link complex L′ for the origin in the (d − 1)-
dimensional subspace of Rd consisting of those points whose first coordinate
is zero. Joining this link complex L′ with the 0-sphere E consisting of the
points e1 = (1, 0, . . . , 0) and −e1 = (−1, 0, . . . , 0) yields a link complex for the
origin in Rd that is combinatorially equivalent to the subdivision V L of lkM (u),
where V denotes the complex consisting of the two vertices v+ and v−, with
v+ corresponding to e1 and v− corresponding to −e1 under the combinatorial
equivalence. Then an ε-perturbation of EL′ that moves each vertex of L′ in
positive or negative X1-direction depending on the sign of f − f(u) at the
corresponding vertex in L witnesses that f at u is locally equivalent to πd1 at
the origin of Rd. Thus u is a regular vertex in dimension d.

The claimed undecidability for d ≥ 6 follows immediately from the undecid-
ability of the (d−1)-sphere recognition problem for d−1 ≥ 5 and the reduction
outlined above.

Regular Vertex Recognition Problem for Manifolds. Let us continue
with a few thoughts and remarks concerning the open question that we called
the regular vertex recognition problem for d-manifolds. Our reduction from the
sphere recognition problem to the general regular vertex recognition problem
produced negative instances where the link of the considered vertex already
failed to be a sphere, so that the vertex is not regular no matter which values
for f we choose. Therefore we cannot exclude a priori that the problem might
become decidable when lk(v) is known to be a sphere. Clearly, there are some
necessary conditions for v being regular that we can test algorithmically: We
can compute the homologies of the level set complexes lk(v)=f(v), lk(v)≤f(v),
and lk(v)≥f(v) and check whether they agree with those required by a regular
vertex. If the homologies do not match we have verified that v is not regular.
But how should we proceed, if lk(v)≤f(v) and lk(v)≥f(v) cannot be distinguished
by means of homology from (d−1)-balls and lk(v)=f(v) not from a (d−2)-sphere?

If f is in general position, we can be sure that the three level sets are mani-
folds and lk(v)=f(v) is the boundary of the other two level set complexes. In this
case we have decomposed the (d−1)-sphere lk(v) into two homology (d−1)-balls
lk(v)≤f(v) and lk(v)≥f(v) that intersect in a homology (d− 2)-sphere lk(v)=f(v)
forming their boundaries. If it were true that the only homology (d−1)-ball that
embeds piecewise linearly into the (d − 1)-sphere is the standard (d − 1)-ball,
such a decomposition could only occur if (lk(v), lk(v)=f(v)) were an unknotted
(d− 1, d− 2)-sphere. This means that checking the homology would actually be
sufficient for recognising regular vertices. We already encountered the question
whether there are homology (d − 1)-balls different from the standard ball em-
beddable into the (d − 1)-sphere when we compared the definition of a critical
vertex of Brehm and Kühnel with our definition.

Still assuming general position and additionally d 6= 5, the truth of the
Schoenflies conjecture for locally flat embeddings suggests a similar question
regarding the embedding of lk(v)=f(v): If the standard (d − 2)-sphere is the
only homology (d − 2)-sphere with a locally flat piecewise linear embedding
into the (d− 1)-sphere, then checking the homology of lk(v)=f(v) would suffice
for solving the regular vertex recognition problem for d-manifolds with maps
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in general position. Since for d − 2 ≤ 2 the standard (d − 2)-sphere is the
only homology (d− 2)-sphere, this observation re-establishes the decidability of
the regular vertex recognition problem for d-manifolds for d ≤ 4. For higher
dimensions, the only results I found deal with the case d = 5, but only for
topological manifolds on the one hand and for smooth manifolds on the other
hand. Freedman [20] states that all homology 3-spheres embed topologically into
the 4-sphere and notes that the Poincaré homology sphere and more generally
homology 3-spheres with Rochlin invariant 1 do not embed smoothly into the
4-sphere. Budney and Burton [10] explore a census of 3-manifolds and ask
which of them embed smoothly into the 4-sphere. It turns out that among
the homology 3-spheres contained in the census both cases occur: Some of
them embed smoothly, including examples different from the standard sphere,
and some do not. However, the case d = 5 is only of minor interest for our
purposes since the standard 3-sphere is algorithmically distinguishable from
other homology 3-spheres and this still does not solve the problem because the
Schoenflies conjecture for piecewise linear embeddings of the 3-sphere into the
4-sphere is open even for the locally flat case.

Strengthening our hardness result for general regular vertex recognition to
the restricted problem for manifolds seems to be a hard task as well. With
the characterisations of regular points we have at hand, other commonly known
undecidable problems than sphere and ball recognition do not have an obvious
connection to the regular vertex recognition problem. The reduction given in
Lemma 6.4 can be understood as follows: From the given candidate K for being
a sphere, a small ball is removed and the construction ensures that the rest K−
plays the role lk(v)≥f(v) in the instance for the regular vertex problem. But in
the construction, lk(v) is only a sphere if K− is a ball. For a reduction that
produces only manifold instances, we would ideally aim for a construction that
always produces a (d − 1)-sphere as lk(v) and embeds K− as lk(v)≥f(v) into
that sphere. Clearly, this requires K− to be embeddable into the (d−1)-sphere.
Matoušek, Tancer, and Wagner [32] showed that the question whether a given
(d − 1)-dimensional complex embeds in Rd−1 is undecidable for d − 1 ≥ 5. It
seems likely that an analogous result holds regarding embeddability into the
(d − 1)-sphere. In this case, sorting out exactly those complexes that do not
embed is impossible. Even if we manage to sort out some other subset of
complexes that contains all those not embeddable but does not contain any ball,
it is unclear how to construct an embedding algorithmically for the remaining
complexes.

A Heuristic Approach and Structured Meshes. We conclude this section
with two final remarks, that outline possible algorithmic approaches to solve the
problem at least for certain instances. The first remark refers to an heuristic
approach to the sphere recognition problem, the second remark considers the
special properties of the problem, when it is restricted to structured meshes.

Experiments by Joswig, Lutz, and Tsuruga [27] suggest that an algorithm
based on heuristics often succeeds in recognising spheres even in higher dimen-
sions where the problem is undecidable in general. Thus we may hope that
for most of the vertices that we want to test for regularity, our reductions to
sphere recognition problems produce instances for which the heuristic approach
performs quite well.
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Among the scenarios proposed by Chiang, Lenz, Lu, and Rote [13] as exam-
ples for a map f : |M | → R linear on cells of a simplicial complex M , the case
of structured meshes deserves special attention when it comes to recognising
regular vertices. A structured mesh is a triangulation of a set of grid points
that follows a regular pattern. The grid points can be thought of as sample
points where the values of a scalar function are measured and the simplex-wise
linear interpolation f of these values serves as an approximation on the whole
domain of the mesh for the actual function underlying the measurements. Ob-
serve that in a structured mesh, up to combinatorial equivalence, only finitely
many different simplicial complexes occur as link of a vertex. In fact, the fol-
lowing considerations apply to any class of simplicial complexes where only
finitely many combinatorially different vertex links occur. We can infer from
Lemma 3.7, that if lkM (x) and lkM ′(x′) are combinatorially equivalent and
f − f(x) and f ′ − f ′(x′) have the same sign at corresponding vertices, then
the triples (M,x, f) and (M ′, x′, f ′) are locally equivalent. This means that
the local equivalence class of a triple (M,v, f) is uniquely determined by the
combinatorial type of lkM (v) and for each of the vertices of lkM (v) the informa-
tion whether its f -value is smaller than, greater than, or equal to f(v). Thus,
if the combinatorial type of lkM (v) is restricted to finitely many types, there
are also only finitely many local equivalence classes that a triple (M, v, f) could
belong to. This reduces the question whether (M, v, f) is locally equivalent to
(Rd, 0, πd1), in other words whether v is regular, to a combinatorial problem with
only finitely many instances.

For such a finite problem, an algorithm giving correct answers always exists.
But there is a subtlety to keep in mind here: At this point, we can not exclude
that among the finitely many combinatorially distinct instances, there are in-
stances where the question whether they are locally equivalent to (Rd, 0, πd1) is
independent of the axiomatic system we use for our proofs. For such a case,
we might want to allow decision algorithms with a third possible result besides
acceptance and rejection that indicates independence of the instance from the
axiomatic system. In this sense, the problem of recognising regular vertices be-
comes decidable when it is restricted to a class of simplicial complexes with only
finitely many combinatorially different vertex links, in particular for structured
meshes of fixed kind and dimension.

6.2 Computing Isotopies
In Theorem 4.20 we proved for maps in general position that if f−1[a, b] contains
no critical vertices, then an f -level-preserving PL isotopy φ : |M |=a × [a, b] →
|M |∈[a,b] exists. Since the isotopy is a special kind of homeomorphism, it can
be represented by suitable combinatorially equivalent simplicial subdivisions of
the two complexes M=a × [a, b] and M∈[a,b]. The question arises whether these
subdivisions and the combinatorial equivalence between them can be computed
by an algorithm. Analysing the proofs leading to the existence result shows
that there is only one non-constructive part, for which algorithmic solutions
are only available in low dimensions or in form of heuristics that might fail for
certain instances. All other steps can be performed in principle by algorithms
when a solution for the non-constructive part is provided. In this section, we
develop for the low dimensional cases upper bounds on the number of cells of
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the combinatorially equivalent subdivisions that a straightforward algorithmic
implementation of the theoretical results would produce. For our studies, we
assume throughout the section that M is a combinatorial manifold without
boundary and that the map f : |M | → R is linear on cells of M and in general
position.

6.2.1 General Remarks on the Computation of Level Pre-
serving Isotopies and the Combinatorially Equiva-
lent Subdivisions Representing Them

In the proof of Theorem 4.20, we decompose the problem into subintervals
that are easier to deal with because their preimage contains at most on ver-
tex, which is additionally one of the endpoints of the interval. The problem for
those subintervals whose preimage contains a vertex is solved in Lemma 4.17
by considering star and deletion of the vertex separately while taking care that
the isotopies match on the common intersection. This approach of decomposing
the problem into smaller pieces has consequences for representing the isotopies
by combinatorially equivalent subdivisions. When we do not have an assertion
that the subdivisions coming from the isotopies of two sub-problems match on
their common intersection, we have to subdivide both solutions even further to
obtain subdivisions that match and provide a solution for the larger problem.
For subintervals [a, b] whose preimage do not contain vertices or when the dele-
tion of the single vertex is considered, the complexes M=a× [a, b] and M∈[a,b] or
(delM (v))=a × [a, b] and (delM (v))∈[a,b] are already combinatorially equivalent
without subdivisions. However, since these complexes are usually polytopal,
we have to subdivide the cells to obtain simplicial subdivisions. These tasks
can be solved in principle algorithmically by taking intersection complexes and
performing suitable stellar subdivisions like starring at every vertex or variants
of the derived subdivision. But the number of cells produced by these kinds
of subdivisions can easily grow large. For example, the subdivision of the hy-
percube [0, 1]d used in the proof of Lemma 3.27 can be obtained by starring at
each vertex in a certain order and produces, starting from the 3d+ 1 cells of the
hypercube, a subdivision containing more than d! simplices [16, Section 6.3.2,
pp. 314–315].

The non-constructive part of the proof lies in finding an isotopy near a
vertex, that is, an isotopy between st(v)=f(v) and st(v)=f(v)+ε, or symmetri-
cally between st(v)=f(v)−ε and st(v)=f(v). Lemma 4.15 describes the construc-
tion when a homeomorphism between st(v)=f(v) and st(v)=f(v)+ε with certain
properties is given. The existence of such a homeomorphism is deduced in
Lemma 4.16 from the existence of a homeomorphism between st(v)=f(v) and
lk(v)≥f(v). This homeomorphism in turn is an almost immediate consequence
of the defining property of a regular point that yields homeomorphisms from
lk(v)≥f(v) and st(v)=f(v) to some standard combinatorial (dim(M) − 1)-balls.
When a ball recognition algorithm is available that also provides for positive
instances combinatorially equivalent subdivisions as certificate, the isotopy be-
tween st(v)=f(v) and st(v)=f(v)+ε can be constructed by an algorithm from the
certificate. With the general problem of recognising balls being undecidable in
higher dimensions, it seems unlikely that the isotopy can be computed by an
algorithm that works for arbitrary instances. Since under the given assumptions
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the complex st(v)=f(v) for a regular vertex v is combinatorially equivalent to the
cone on the boundary of st(v)=f(v)+ε, we could try to transform the complex
st(v)=f(v)+ε into the cone on its boundary by some random Pachner moves.
If this heuristic attempt succeeds, we can also compute the isotopy between
st(v)=f(v) and st(v)=f(v)+ε for this instance.

On the other hand, if an algorithm existed that always succeeds in decid-
ing whether st(v)=f(v)+ε is PL-homeomorphic to the cone on its boundary, it
would actually solve the regular vertex problem for manifolds without bound-
ary and a map in general position because of the following facts: The complex
st(v)=f(v)+ε for sufficiently small ε and f in general position is a combinatorial
manifold. Hence, for the cone on its boundary being PL-homeomorphic, it is
necessary that the boundary is a combinatorial sphere because it forms the link
of the apex in the cone. That means that st(v)=f(v)+ε is a combinatorial ball.
By general position, lk(v)≥f(v)+ε and lk(v)≥f(v) are combinatorially equivalent
to st(v)=f(v)+ε according to Lemma 4.14. Thus lk(v)≥f(v) is a ball which proves
that lk(v)=f(v) is unknotted in lk(v), provided that lk(v) is a sphere, and conse-
quently v is regular. Therefore st(v)=f(v)+ε being PL-homeomorphic to the cone
on its boundary implies v being regular. The reverse implication follows from
the proof of Lemma 4.16, where we noted that st(v)=f(v)+ε is a combinatorial
ball for regular v, which implies that it is PL-homeomorphic to the cone on its
boundary.

The constructions in the proofs of Lemmata 4.15, 4.16, and 4.17, which
provide the isotopy in the interval [f(v), f(v)+ ε], are mostly described in terms
of PL homeomorphisms. For the purpose of this section, it is useful to consider
how these constructions can be described in terms of combinatorially equivalent
subdivisions. In the following, we sketch such a description.

The PL isotopy on del(v) is a consequence of the combinatorial equiva-
lence of del(v)∈[f(v),f(v)+ε] and del(v)=f(v) × [f(v), f(v) + ε]. For obtaining a
fixed PL isotopy, we only have to triangulate both complexes by starring at
each vertex in corresponding order, so that the triangulations are still combi-
natorially equivalent. This induces combinatorially equivalent subdivisions of
lk(v)∈[f(v),f(v)+ε] and lk(v)=f(v) × [f(v), f(v) + ε], which represent a PL iso-
topy ψ on the link, and combinatorially equivalent subdivisions of lk(v)=f(v)+ε
and lk(v)=f(v)×{f(v) + ε}, which represents a PL homeomorphism ψf(v)+ε be-
tween lk(v)=f(v) and lk(v)=f(v)+ε via the identification of lk(v)=f(v)×{f(v)+ε}
with lk(v)=f(v) by projection.

The next thing we need for the construction are combinatorially equiva-
lent simplicial subdivisions of st(v)=f(v) and st(v)=f(v)+ε such that the induced
PL homeomorphism between lk(v)=f(v) and lk(v)=f(v)+ε agrees with the homeo-
morphism ψf(v)+ε obtained above from the isotopy on del(v). Ideally, the restric-
tion of the two pairs of combinatorially equivalent subdivisions induce the same
pair of combinatorially equivalent subdivisions for lk(v)=f(v) and lk(v)=f(v)+ε,
because otherwise a further refinement of all the subdivisions is necessary in
order to proceed with the construction. Fortunately, the algorithms for finding
combinatorially equivalent simplicial subdivisions of st(v)=f(v) and st(v)=f(v)+ε
in the low dimensional cases considered here produce the same subdivisions
of lk(v)=f(v) and lk(v)=f(v)+ε as the triangulations of del(v)∈[f(v),f(v)+ε] and
del(v)=f(v) × [f(v), f(v) + ε], either for trivial reasons or thanks to appropriate
fine tuning of the algorithm. In this convenient situation the union of the ob-
tained subdivisions for st(v)=f(v)+ε and for lk(v)∈[f(v),f(v)+ε] gives a subdivision
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Θ2 of lk(v)∈[f(v),f(v)+ε]∪st(v)=f(v)+ε. Analogously, lifting the obtained subdivi-
sion for st(v)=f(v) in the obvious way to a subdivision of st(v)=f(v)×{f(v) + ε}
and taking the union with the obtained subdivision lk(v)=f(v)× [f(v), f(v) + ε]
yields a subdivision Θ1 of lk(v)=f(v) × [f(v), f(v) + ε] ∪ st(v)=f(v) × {f(v) + ε}
combinatorially equivalent to Θ2.

The cone T1 with apex (v, f(v)) and base Θ1 is a subdivision of st(v)=f(v)×
[f(v), f(v) + ε]. It is combinatorially equivalent to the cone T2 with apex v
and base Θ2, which forms a subdivision of st(v)∈[f(v),f(v)+ε]. These combi-
natorially equivalent subdivisions T1 and T2 of st(v)=f(v) × [f(v), f(v) + ε] and
st(v)∈[f(v),f(v)+ε] match on lk(v)=f(v)×[f(v), f(v)+ε] and lk(v)∈[f(v),f(v)+ε] with
the restriction of the combinatorially equivalent triangulations of del(v)=f(v) ×
[f(v), f(v) + ε] and del(v)∈[f(v),f(v)+ε] to the link. Therefore the union of T1
and the triangulation of del(v)=f(v) × [f(v), f(v) + ε] on the one hand and
the union of T2 and the triangulation of del(v)∈[f(v),f(v)+ε] on the other hand
form the desired combinatorially equivalent subdivisions of M∈[f(v),f(v)+ε] and
M=f(v) × [f(v), f(v) + ε] representing an f -level-preserving PL isotopy.

6.2.2 Dimension 1
For giving upper bounds on the number of cells needed for combinatorially equiv-
alent subdivisions of M=a × [a, b] and M∈[a,b], we start with the 1-dimensional
case. One easily checks that if f−1[a, b] contains no critical vertex, then M=a
and M=b both consist of the same number V of vertices. In M∈[a,b], these ver-
tices are paired by V disjoint paths with each path connecting one vertex in
M=a to one vertex in M=b. The intermediate vertices of the paths are the ver-
tices lying in f−1(a, b). The complex M=a × [a, b] consists of V disjoint edges,
one for each vertex of M=a. For constructing the combinatorial equivalence, it
suffices to subdivide the edges in M=a× [a, b] into paths by inserting vertices at
the appropriate places. A subdivision of M∈[a,b] is unnecessary. So the number
of cells needed for combinatorially equivalent subdivisions can be bounded by
the number of cells in M∈[a,b].

For higher dimensional manifolds M , the interval is subdivided and the
isotopy is obtained by combining the isotopies on the subintervals. Let us as-
sume that the preimage of the interval [a, b] contains k vertices and that the
sequence (hi)ki=1 denotes the f -values of these vertices in sorted order, that is
a ≤ h1 < · · · < hk ≤ b. The proof of Theorem 4.20 uses subintervals that
contain at most one value hi, with the value being either the left or the right
endpoint of the interval. Such a subdivision can be obtained by decomposing
the interval at the values hi and the intermediate values (hi + hi+1)/2. We
denote the interval complex formed by this subdivision of [a, b] by I.

6.2.3 Dimension 2
Isotopies across a Single Vertex. For a 2-dimensional manifold M , the 2-
dimensional cells of M∈I with I defined as above are either triangles or quadri-
laterals. For a regular vertex v, the isotopy for an interval [f(v), f(v) + ε]
in the star of v is constructed from combinatorially equivalent subdivisions of
st(v)=f(v) and st(v)=f(v)+ε. The level set complex st(v)=f(v) is the cone on a
0-sphere consisting of two edges sharing the vertex v as apex of the cone, in
other words a path formed by two edges. The level set complex st(v)=f(v)+ε is
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a path as well that consists of at least two edges. Combinatorially equivalent
subdivisions for two paths can be found by inserting vertices on the shorter
path until it has the same number of edges as the longer path. Note that we
used two cells more than necessary for constructing such combinatorially equiv-
alent subdivisions in the example depicted in Figure 4.1 on page 162, where
we added one vertex to the longer path st(v)=f(v)+ε as a counterpart to the
vertex v of st(v)=f(v). Clearly we could have chosen any of the interior ver-
tices of the path st(v)=f(v)+ε as counterpart for v instead of a newly inserted
vertex. The resulting upper bound on the number of cells of combinatorially
equivalent subdivisions for st(v)=f(v) and st(v)=f(v)+ε is the number of cells
in st(v)=f(v)+ε.

The cone construction described in Lemma 4.15 extends this combinatorial
equivalence between st(v)=f(v)+ε and a subdivision of st(v)=f(v) to combinatori-
ally equivalent subdivisions of st(v)∈[f(v),f(v)+ε] and st(v)=f(v)× [f(v), f(v)+ε].
From the illustration in Figure 4.1 on page 162 we see immediately that ap-
plying this cone construction to st(v)∈[f(v),f(v)+ε] leaves all cells unchanged ex-
cept for the two quadrilaterals present in the complex, which are each subdi-
vided into two triangles and a separating diagonal edge. In particular, the two
edges from lk(v)∈[f(v),f(v)+ε] are unaffected and the subdivision matches with
any subdivision of del(v)∈[f(v),f(v)+ε] that only subdivides the quadrilaterals
into two triangles by a diagonal. The polytopal complexes del(v)∈[f(v),f(v)+ε]
and del(v)=f(v) × [f(v), f(v) + ε] are already combinatorially equivalent with-
out subdivision. It suffices to subdivide the quadrilaterals in both complexes in
a consistent manner by diagonals to obtain combinatorially equivalent simpli-
cial subdivisions. Choosing arbitrary subdivisions of that kind and combining
them with the combinatorially equivalent subdivisions of st(v)∈[f(v),f(v)+ε] and
st(v)=f(v) × [f(v), f(v) + ε] yields combinatorially equivalent subdivisions of
M∈[f(v),f(v)+ε] and M=f(v) × [f(v), f(v) + ε]. The subdivision of M∈[f(v),f(v)+ε]
can be obtained from the original complex by only subdividing quadrilaterals
by diagonals. Each cell S of M induces at most three cells in the complex
M∈[f(v),f(v)+ε], namely S=f(v), S∈[f(v),f(v)+ε], and S=f(v)+ε. Since only cells
of the form S∈[f(v),f(v)+ε] can be quadrilaterals, the combinatorially equivalent
subdivisions of M∈[f(v),f(v)+ε] and M=f(v) × [f(v), f(v) + ε] have at most five
times as many cells as M .

The observations made above for an interval [f(v), f(v)+ ε] with f(v) as left
endpoint apply in a symmetric fashion to intervals [f(v)− ε′, f(v)] with f(v) as
right endpoint. The complexes for the lower and upper interval meet in the com-
mon subcomplexes M=f(v) and M=f(v) ×{f(v)}. The subdivisions constructed
above leave these subcomplexes M=f(v) and M=f(v) × {f(v)} unchanged, so
that the union of the subdivisions M∈[f(v)−ε′,f(v)] and M∈[f(v),f(v)+ε] on the
one hand and the union of the subdivisions of M=f(v) × [f(v) − ε′, f(v)] and
M=f(v) × [f(v), f(v) + ε] on the other hand form combinatorially equivalent
subdivisions ofM∈[f(v)−ε′,f(v)+ε] andM=f(v)× [f(v)− ε′, f(v)+ ε]. The number
of cells of these subdivisions is at most 9nM , where nM is the number of cells
in M .

Isotopies across Several Vertices by Recursive Merging. Applying the
above considerations to each vertex v whose f -value is one of the levels hi
yields combinatorially equivalent subdivisions of M∈[a,(h1+h2)/2] and M=h1 ×
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[a, (h1 + h2)/2], of M∈[(hk−1+hk)/2,b] and M=hk × [(hk−1 + hk)/2, b], and of
M∈[(hi−1+hi)/2,(hi+hi+1)/2] and M=hi × [(hi−1 + hi)/2, (hi + hi+1)/2] for each
index i with 1 < i < k, with each subdivision having at most 9nM cells. The
remaining task is to create subdivisions for the whole interval [a, b] from the
subdivisions of the subintervals. This can be achieved by combining subdivi-
sions of pairs of neighbouring intervals in a divide and conquer fashion: Solve
the problem for the first dk/2e subintervals and the last bk/2c subintervals re-
cursively, and combine afterwards the solutions found for the interval covered
by the first half of subintervals and for the interval covered by the second half
of subintervals to a solution for the whole interval. For estimating the total
number of cells needed, we first analyse a single recursive step and derive an
upper bound on the number of cells produced by a merging operation of two
neighbouring intervals with given combinatorially equivalent subdivisions of a
certain size.

A Single Merging Step. Let us introduce some notation for the analysis
of a general merging step. We consider a left hand interval [l,m] and a right
hand interval [m, r]. For the left hand interval, we have a subdivision L of
M∈[l,m] combinatorially equivalent to a subdivision L× of M=h− × [l,m] for
some h− ∈ [l,m]. Analogously for the right hand interval, there is a subdivision
R of M∈[m,r] combinatorially equivalent to a subdivision R× of M=h+ × [m, r]
for some h+ ∈ [m, r]. Both combinatorial equivalences represent an f -level-
preserving PL isotopy. They induce a such an isotopy on the interval [l, r]
according to Lemma 4.6. Our aim is to find an upper bound on the number
of cells of combinatorially equivalent subdivisions that represent this induced
isotopy.

In the proof of Lemma 4.6, we assume that both isotopies are the identity at
the level at which they intersect, so that they can easily combined to an isotopy
on the whole interval. Combinatorially equivalent subdivisions that represent
an isotopy that is the identity at level m can be constructed from the given
combinatorially equivalent subdivisions as explained in the following for the
example of L and L×: The complexes L and L× contain as subcomplexes at
level m combinatorially equivalent subdivisions Lm ofM=m and L×m ofM=h−×
{m}, which can be identified with M=h− . Note that any simplicial subdivision
of Lm induces a combinatorially equivalent subdivision of L×m and vice versa
via the PL homeomorphism between Lm and L×m that is provided by their
combinatorial equivalence. So let K be a simplicial subdivision of Lm and
K× its combinatorially equivalent counterpart forming a subdivision of L×m.
Using the projection that identifies M=h− × {m} with M=h− , the subdivision
K× of L×m can be considered as a subdivision of M=h− as well. In this sense,
K×× [l,m] can be regarded as a subdivision of M=h− × [l,m]. This subdivision
is combinatorially equivalent to the subdivision K × [l,m] of M=m × [l,m].
Triangulating these subdivisions by inserting corresponding diagonals in the
quadrilaterals of K× × [l,m] and K × [l,m] yields combinatorially equivalent
simplicial subdivisions of M=h− × [l,m] and M=m × [l,m].

Now we have two subdivisions ofM=h−× [l,m], namely L× and the triangu-
lation of K× × [l,m]. Their intersection complex forms a common subdivision
of L× and K×× [l,m], which we can triangulate by starring at each vertex. For
this triangulated common subdivision N×, a combinatorially equivalent subdi-
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vision N of L and thus of M∈[l,m] can be found using the homeomorphism and
isotopy represented by the combinatorial equivalence between L and L×. Sim-
ilarly, we obtain a combinatorially equivalent subdivision N ′ of M=m × [l,m]
using the homeomorphism induced by the combinatorial equivalence between
the triangulations of K×× [l,m] and K× [l,m]. Since K and its combinatorially
equivalent counterparts are already simplicial, the subdivisions leave the three
subcomplexes at levelm unaffected, namely the subcomplexes N×m = K××{m},
Nm = K, and N ′m = K×{m}. The combinatorial equivalence between N×m and
Nm, and the combinatorial equivalence between N×m and N ′m are both given by
the homeomorphism between M=h− and M=m that results from the isotopy.
Therefore the combinatorial equivalence between N ′m and Nm represents the
projection that identifiesM=m×{m} withM=m. In other words, N ′ and N are
combinatorially equivalent simplicial subdivisions of M=m × [l,m] and M∈[l,m]
representing a PL isotopy that is the identity at level m as desired.

For finding an upper bound on the number of cells of N , N ′, and N×,
let nL and nK be the number of cells in L and K respectively. The complex
K×[l,m] and its combinatorially equivalent counterpartK××[l,m] have 3nK−2
cells. Among them are (nK − 1)/2 quadrilaterals because we assume that K
triangulates a 1-dimensional manifold without boundary. Triangulating K× ×
[l,m] by inserting diagonals produces 4nK − 3 cells in total. The intersection
complex of this triangulation with L× has at most 4nKnL cells. Triangulating
this intersection complex yields N× which has the same number of cells as N
and N ′. For bounding the number of cells in N×, we observe that the polyhedra
in the intersection complex are of bounded complexity, since they are obtained
by intersecting simplices. Cells of dimension 0 and 1 do not require further
subdivision, we only need to subdivide the 2-dimensional polytopes that arise
from intersecting two triangles. Polytopes arising in that way are triangles,
quadrilateral, pentagons, and hexagons. They can be triangulated by inserting
suitable diagonals. Hence any polytope present in the intersection complex is
replaced by at most 4 new triangles and 3 new diagonals in the triangulation.
Leaving aside that actually only a bounded fraction of cells requires further
subdividing we obtain 28nKnL as generous upper bound on the number of cells
in N×.

For the recursion, it is convenient to have an upper bound on the number
of those cells of N , N ′, and N× that belong to level l, because if [l, r] is used
as a right hand interval in the next recursion step and treated symmetrically
to the description for a left hand interval above, level l plays the role of m,
the complex N plays the role of R, and some subdivision of Nl plays the role
of K. Following the construction of N× with a focus on level l, we can observe
that we start with K× × {l}, which is simplicial and hence not affected by the
triangulation ofK××[l,m]. Forming the intersection complex ofK××[l,m] with
L× yields at level l the intersection complex of K× × {l} with the subcomplex
L×l of L× that subdivides M=h− ×{l}. If nl denotes the number of cells in L×l ,
the usual bound on the number of cells in an intersection complex given by the
product yields at most nlnK cells in the intersection complex at level l. Since
we are in the special case that we deal with two subdivisions of a 1-dimensional
manifold without boundary, namely of M=h− × {l}, the number of cells in the
intersection complex is even bounded by the sum nl+nK of the numbers of cells
of the original complexes and this number does not increase by triangulating
the intersection complex.
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Summarising the construction so far, we have obtained from L and L× to-
gether with a chosen simplicial subdivision KL of Lm combinatorially equivalent
subdivisions NL of M∈[l,m] and N ′L of M=m × [l,m] representing an f -level-
preserving PL isotopy that is the identity at level m. Symmetrically, we can
construct from R, R×, and a chosen simplicial subdivision KR of Rm com-
binatorially equivalent subdivisions NR of M∈[m,r] and N ′R of M=m × [m, r]
representing an f -level-preserving PL isotopy that is the identity at level m
as well. Moreover, in both subdivisions NL and NR, the subcomplex at level
m is the chosen complex KL or KR respectively. Now when we choose for
K = KL = KR a simplicial subdivision of M=m that is a common subdivision
of Lm and Rm, then the resulting subdivisions NL and NR match at level m,
and so do the subdivisions N ′L and N ′R. Therefore the union of NL and NR
defines a subdivision of M∈[l,r], just as the union of N ′L and N ′R defines a sub-
division of M=m × [l, r]. These subdivisions are combinatorially equivalent and
represent an f -level-preserving PL isotopy φ : |M |=m × [l, r]→ |M |∈[l,r] that is
the identity at level m. The number of cells in these subdivisions is at most
28nK(nL + nR) and their subcomplexes at level l and r have at most nl + nK
or nr +nK cells respectively, where the numbers nL, nR, nK , nl, and nr denote
the numbers of cells of the complexes L, R, K, L=l, and R=r in that order.

Setting Up and Solving the Recurrence Relation. Now let us track
how the size of the subdivisions grows during the recursive steps. We use an
index j for differentiating the levels of recursion, where j = 0 denotes the deepest
level, where we have k pairs of complexes, each covering one of the intervals
[a, (h1+h2)/2], [(hk−1+hk)/2, b], and [(hi−1+hi)/2, (hi+hi+1)/2] for an index i
with 1 < i < k. With growing level j, the constructed subdivisions cover up to
2j subsequent subintervals while the number of pairs roughly halves in each step,
until we obtain finally at level j = dlog ke a single pair of subdivisions covering
the whole interval [a, b]. The term nI(j) is used in the following to denote an
upper bound on the number of cells in a subdivision that occurs at level j in
a pair that represents an isotopy covering up to 2j subsequent subintervals. In
particular, we have nI(0) ≤ 9nM , and nI(dlog ke) is the desired upper bound
on the number of cells of combinatorially equivalent subdivisions representing
an f -level-preserving PL isotopy from level a to level b. For a merging step at
recursion level j, the value nI(j) can be used as upper bound for nL and nR,
and an upper bound on the size of the complex N produced by this merging
step yields an upper bound for nI(j + 1).

In the analysis of a merging step, we also needed the size of those subcom-
plexes of the subdivisions L and R that are defined by the f -levels l, m, and r,
which are among the levels (hi−1 + hi)/2. For the maximum size of such a sub-
complex at some f -level (hi−1 +hi)/2 that separates two subintervals which are
not merged yet at recursion level j, we use the upper bound nh(j). This bound
can be used as an upper estimate on the size nl of L=l, the size nr of R=r and of
the sizes of L=m and R=m in each merging step occurring at recursion level j.
The maximum size of a complex K used in a merging step at recursion level j is
the maximum size of a common subdivision of complexes L=m and R=m occur-
ring in such a merging step. Since L=m and R=m are 1-dimensional and their
sizes are bounded by nh(j), the maximum size nK(j) of a complex K used in
a merging step at recursion level j is at most 2nh(j). For the case j = 0, we
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even have nK(0) ≤ nh(0) ≤ nM because we start the recursion with complexes
L and R that fulfil L=m = R=m = M=m, so that we can choose K = M=m.

Our analysis of a merging step allows to compute the values nI(j), nh(j),
and nK(j) recursively. The fact that the constructed subdivision N has at
most 28nK(nL+nR) cells yields the recursive bound nI(j+1) ≤ 56nK(j)nI(j).
From the bounds nl + nK and nr + nK for the subcomplexes N=l and N=r,
we obtain the inequality nh(j + 1) ≤ nh(j) + nK(j). For nK(j), we have al-
ready mentioned the relation nK(j) ≤ 2nh(j). Resolving first the recursion for
the nh(j) and the nK(j) with initial bounds nK(0) ≤ nh(0) ≤ nM yields the
bounds nh(j) ≤ 2 · 3j−1nM and nK(j) ≤ 4 · 3j−1nM for j ≥ 1. Replacing
nK(j) by this upper bound in the recursion for nI(j) produces the inequality
nI(j+ 1) ≤ 224 · 3j−1nMnI(j). With the initial bound nI(0) ≤ 9nM , we obtain
the bounds nI(j) ≤ 224j3 1

2 j(j−1)9nj+1
M for j ≥ 1. Thus, the number of cells

in combinatorially equivalent subdivisions representing an f -level-preserving
PL isotopy in an interval [a, b] without critical values for a combinatorially 2-
manifold M without boundary and a map f in general position can be bounded
by 224dlog ke3 1

2 dlog ke(dlog ke−1)9ndlog ke+1
M , where k is the number of vertices that

have an f -value in [a, b] and nM the number of cells inM . This bound holds for
an PL isotopy from M=h × [a, b] to M∈[a,b] for a median level h among the lev-
els (hi−1 +hi)/2. When we insist on representing an isotopy fromM=a× [a, b] to
M∈[a,b], we have to treat the obtained subdivisions as R× and R and construct
NR and N ′R just like we did for the other merging steps. Then NR and N ′R
represent an isotopy from M=a × [a, b] to M∈[a,b], and their size is bounded by
28nK(dlog ke)nI(dlog ke) ≤ 224dlog ke3 1

2 (dlog ke+2)(dlog ke−1)1008ndlog ke+2
M .

6.2.4 Merging Isotopies
The analysis of the 2-dimensional case is finished with the result above. Be-
fore we continue with the 3-dimensional case, we generalise the construction for
merging the subdivisions representing isotopies on subintervals to subdivisions
representing an isotopy on the whole interval to higher dimensions. The princi-
pal ideas that we outlined for the 2-dimensional case remain the same. Let us
repeat the steps for merging the subdivisions for two subsequent subintervals in
a short summary while indicating the necessary changes for higher dimensions.

The merging step is performed on two pairs of combinatorially equivalent
subdivisions, the pair L and L× for the left hand interval and the pair R and R×
for the right hand interval. The first step is constructing a common simplicial
subdivision K of the subcomplexes Lm and Rm at level m, where L and R inter-
sect. The complex K is obtained by first taking the intersection complex of Lm
and Rm and then triangulating it by starring at each vertex. Note that triangu-
lating was not necessary in the case of a 2-dimensional complex M because Lm
and Rm were 1-dimensional in that case. Now L and L× on the one hand and
R and R× on the other hand are treated symmetrically in the way explained for
the left hand interval as follows: The subdivision K of Lm is mapped bijectively
to a subdivision K× of L×m. Then K×× [l,m] is triangulated, then the intersec-
tion complex of this triangulation with L× is constructed, and this intersection
complex is finally triangulated to form a complex N×L . The resulting complex
is mapped by homeomorphisms to combinatorially equivalent subdivisions NL
of M∈[l,m] and N ′L of M=m × [l,m]. For symmetrically obtained complexes NR
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of M∈[m,r] and N ′R of M=m × [m, r], the unions NL ∪ NR and N ′L ∪ N ′R form
the desired combinatorially equivalent subdivisions for the interval [l, r].

For bounding the size of the constructed subdivisions, we have to deal in
particular with the effect that triangulating by starring at each vertex has on
the number of cells. The first such triangulation is applied to the intersection
complex of two (d− 1)-dimensional simplicial complexes, the second one to the
Cartesian product of a (d− 1)-dimensional simplicial complex with an interval,
and the last one to an intersection complex of two d-dimensional simplicial
complexes. For fixed dimension d, the cells in an intersection complex of two d-
dimensional simplicial complexes and the cells in the product complex of a (d−
1)-dimensional simplicial complex with an interval are of bounded complexity.
Therefore triangulating such a cell by starring at each vertex replaces each cell
by at most a constant number of new cells. It suffices to count only those
new cells that intersect the interior of the cell because the other cells subdivide
the boundary and each one can be attributed to the smallest boundary face
containing it.

So let cd be the maximum number of cells produced by triangulating a
face of an intersection of two d-simplices by starring at each vertex, and let
c×d be the maximum number of cells produced by triangulating a face of a
Cartesian product of a (d−1)-simplex and an interval by starring at each vertex.
Then a triangulation of an intersection complex of two d-dimensional simplicial
complexes with n1 and n2 cells constructed by triangulating at each vertex has
at most cdn1n2 cells. Similarly, triangulating a Cartesian product of an interval
with a (d−1)-dimensional simplicial complex having at most n cells by starring
at each vertex produces at most (c×d +2)n cells, because those cells that belong to
a subcomplex formed by the Cartesian product with an endpoint of the interval
are already simplicial and will not be subdivided further.

With these preliminaries, we analyse again a single merging step, now for
arbitrary dimension d of M . We reuse the notation from the 2-dimensional case
and bound the number of cells of the produced complex N for given sizes nL of
L and nK of K.

The triangulation of K× × [l,m] constructed first has at most (c×d + 2)nK
cells. Forming the intersection complex of this triangulation with L× and tri-
angulating again yields at most cd(c×d + 2)nKnL cells for the complex N× and
its combinatorially equivalent counterpart N . Focusing on level l, the construc-
tion forms an intersection complex of K× × {l} with L×l and triangulates it.
Therefore the number of cells of N at level l is bounded by cd−1nKnl.

Now we can derive recursive formulas for nI(j), nh(j), and nK(j) just as
in the 2-dimensional case. The starting values nI(0) and nh(0) are treated as
given. For low dimension, as we did already for d = 2, they can be determined
by analysing the number of cells needed to represent an isotopy for an interval
[f(v)− ε′, f(v) + ε] containing only a single vertex in its preimage.

The recursion for nI(j) follows from a bound on the size of the unionNL∪NR.
An obvious upper bound is provided by taking twice an upper bound for the
complex N , yielding nI(j+1) ≤ 2cd(c×d +2)nK(j)nI(j). The formula for nh(j) is
nh(j+1) ≤ cd−1nK(j)nh(j). For bounding the size of a complex K at recursion
level j by some value nK(j), note that we construct it by first intersecting the
(d − 1)-dimensional simplicial complexes L=m and R=m, which have size at
most nh(j) and then triangulating the result. Thus the number nK(j) of cells
in K is bounded by cd−1nh(j)2. Combining this with the recursion formula for
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nh(j + 1) gives nh(j + 1) ≤ c2d−1nh(j)3, which resolves to nh(j) ≤ c3
j−1
d−1 nh(0)3j

and nK(j) ≤ c3
j

d−1nh(0)2·3j . Plugging in the term for nK(j) into the recursion
formula for nI(j + 1) yields nI(j + 1) ≤ 2cd(c×d + 2)c3jd−1nh(0)2·3jnI(j). This
recursion in turn resolves to nI(j) ≤ 2jcjd(c

×
d + 2)jc

3
2 (3j−1)
d−1 nh(0)3(3j−1)nI(0).

Choosing recursion level j = dlog ke, where k is the number of subinter-
vals, yields the desired upper bound on the number of cells of combinatorially
equivalent subdivisions representing an isotopy on the whole interval. When
we insist on representing an isotopy mapping M=a × [a, b] to M∈[a,b], the addi-
tional subdivisions lead to the term cd(c×d + 2)nK(dlog ke)nI(dlog ke) as upper
bound for the number of cells. Replacing nK(dlog ke) and nI(dlog ke) by the
bounds derived above yields as upper bound for the number of cells the term
2dlog ke+1c

dlog ke+1
d (c×d + 2)dlog ke+1c

3
2 (5·3dlog ke−1−1)
d−1 nh(0)5·3dlog ke−3nI(0).

6.2.5 Dimension 3
Now let us discuss the 3-dimensional case. The crucial part is finding combi-
natorially equivalent subdivisions of st(v)=f(v) and st(v)=f(v)+ε for a regular
vertex v and sufficiently small ε. We analyse two approaches for solving this
task. The first approach is based on an idea suggested in the appendix of the
paper on constructing contour trees by Chiang, Lenz, Lu, and Rote [13]. They
represent a triangulation of st(v)=f(v)+ε by the vertices, edges, and faces of
a planar straight line drawing of its 1-skeleton such that the outer face is a
regular polygon and bounded by those edges and vertices that represent the
boundary lk(v)=f(v)+ε of st(v)=f(v)+ε. The complex st(v)=f(v) can be repre-
sented analogously by a wheel graph with the same regular polygon as outer
face. This yields two simplicial complexes with the same domain, namely the
convex region defined by the regular polygon. Hence combinatorially equivalent
subdivisions can be found by triangulating the intersection complex of these two
triangulations of the regular polygon. The other approach is based on Pachner
moves that transform st(v)=f(v)+ε into the cone on its boundary.

Approach by Planar Straight Line Drawings. For the first approach we
proceed as outlined above. First we triangulate st(v)=f(v)+ε, which requires
only subdividing quadrilaterals. Thus the number of cells in the triangulation
is at most three times the number of cells in st(v)=f(v)+ε and the boundary
is unaffected by the triangulation. Then we represent this triangulation by a
combinatorially equivalent complex formed by the vertices, edges, and interior
faces of a planar straight-line drawing of its 1-skeleton. The drawing is chosen
in such a way that its outer face is bounded by the edges and vertices repre-
senting the boundary lk(v)=f(v)+ε and forms a regular polygon. Taking the
cone on this bounding polygon with an apex in its interior, for example the
centre point, yields a complex with the same domain that is combinatorially
equivalent to st(v)=f(v). The combinatorial equivalence comes from the fact
that lk(v)=f(v) and lk(v)=f(v)+ε are combinatorially equivalent and st(v)=f(v)
is a cone on lk(v)=f(v). Now we have two triangulations of the convex region
bounded by the regular polygon. Triangulating their intersection complex yields
a common subdivision of these triangulations. The common subdivision induces
corresponding subdivisions on st(v)=f(v) and on st(v)=f(v)+ε, which form the
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desired pair of combinatorially equivalent subdivisions. A bound on the num-
ber of cells of these subdivisions is given by first multiplying the sizes of the
triangulation of st(v)=f(v)+ε and the size of st(v)=f(v), which gives an upper
bound on the size of the intersection complex, and multiplying the result by the
factor c2 = 7 for taking the final triangulation into account. Since the cells in
the 1-dimensional subcomplexes lk(v)=f(v)+ε and lk(v) are not affected by the
subdivisions, the combinatorial equivalence between st(v)=f(v) and st(v)=f(v)+ε
restricts to the natural one between lk(v)=f(v) and lk(v)=f(v)+ε

Approach by Pachner Moves. The other approach is based on a fact that
we cite from Mijatović [34, Lemma 4.2]: Any combinatorial 2-ball with t tri-
angles can be transformed into the cone on its boundary by at most t Pachner
moves. Since a triangulation of st(v)=f(v)+ε is a combinatorial 2-ball for a reg-
ular vertex of a combinatorial 3-manifold M and st(v)=f(v) is combinatorially
equivalent to the cone on the boundary of st(v)=f(v)+ε, the cited fact yields
for any triangulation of st(v)=f(v)+ε obtained from subdividing quadrilaterals
by diagonals a sequence of Pachner moves transforming this triangulation into
st(v)=f(v). The number of necessary steps in the sequence is bounded by the
number of triangles in the triangulation st(v)=f(v)+ε, hence at most twice the
number of 2-dimensional cells in st(v)=f(v)+ε itself. How can we find combina-
torially equivalent subdivisions of two complexes and bound their sizes when a
sequence of Pachner moves transforming one complex into the other is given?
For a single Pachner move the combinatorially equivalent subdivisions of the
initial and the resulting complex are quite obvious. For two Pachner moves we
have to perform the following steps: First intersect the subdivisions for the first
and the second move in the intermediate complex, then triangulate the result,
and finally map the common subdivision in the intermediate complex to the
initial and the final complex for obtaining combinatorially equivalent subdivi-
sions of all three complexes. With each additional Pachner move, we have to
intersect and triangulate iteratively the subdivisions induced by the additional
move with the subdivisions obtained from the previous moves.

Let us start by considering the subdivisions induced by single moves. There
are three 2-dimensional Pachner moves. A (1 - 3) move replaces a triangle of the
initial complex by a subcomplex formed by three triangles, three edges, and a
vertex, where the triangles and edges are arranged cyclically around the vertex
and the faces of the triangles and edges opposite to the vertex are identified
with the boundary of the original triangle in cyclic order. Hence the resulting
complex is combinatorially equivalent to a subdivision of the initial complex
obtained by an elementary starring at an interior point of the original triangle.
A (3 - 1) move is inverse to a (1 - 3) move. It replaces three triangles arranged
cyclically around a vertex, their common vertex, and the three edges adjacent to
the vertex by a single triangle filling in the whole arising from removing the seven
cells. Here the roles of initial and resulting complex switch. The initial complex
is combinatorially equivalent to a subdivision of the resulting complex obtained
from starring at an interior point of the inserted triangle. Finally, a (2 - 2) move
removes two triangles sharing an edge and inserts in the resulting quadrilateral
hole two other triangles sharing an edge in such a way that the common edge of
the original triangles and the common edge of the new triangles connect opposite
pairs of vertices on the quadrilateral boundary. When the two triangles lie in
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a common plane and form a convex quadrilateral, this move amounts to a flip
of the diagonal subdividing the quadrilateral. These two triangulations of the
quadrilateral have a common subdivision, which is visualised by drawing both
diagonals: It consists of the intersection point of the diagonals as vertex and
four triangles and edges arranged in cyclic order around the vertex, so that their
faces opposite to the vertex form the boundary of the quadrilateral. From this
example we can easily read off the way to obtain combinatorially equivalent
subdivisions in the general case. When we perform in the initial complex an
elementary starring at an interior point of the common edge of the removed
triangles, and in the resulting complex an elementary starring at an interior
point of the common edge of the inserted triangles, we obtain combinatorially
equivalent subdivisions of the initial and the resulting complex. In the common
subdivisions the pairs of triangles in question together with their common edges
are each subdivided into four triangles and edges arranged cyclically around a
common new vertex, with one adjacent pair of triangles with their common edge
subdividing one of the triangles and the other adjacent pair with their common
edge subdividing the other triangle.

Now assume that we have inductively constructed combinatorially equivalent
subdivisions of the first and the κ-th complex in the sequence of Pachner moves.
We can construct combinatorially equivalent subdivisions of the first and the
(κ+ 1)-th complex in the sequence as follows: Consider the κ-th complex in the
sequence and two of its subdivisions, namely the assumed subdivision combina-
torially equivalent to some subdivision of the first complex, and the subdivision
associated as outlined above with the next Pachner producing the (κ + 1)-th
complex. Take the intersection complex of these two subdivisions and trian-
gulate it by starring at each vertex. Map this refined subdivision of the κ-th
complex via the given combinatorial equivalence to a combinatorially equivalent
refined subdivision of the first complex and by the combinatorial equivalence
associated with the Pachner move as described above to a refined subdivision of
the (κ+ 1)-th complex. Iterating this step finally yields combinatorially equiva-
lent subdivisions of the initial and the final complex in the sequence of Pachner
moves.

For obtaining a bound on the number of cells in the resulting combinatorially
equivalent subdivisions, we bound the increase in the number of cells caused by
an inductive refinement step. The size of the resulting combinatorially equiv-
alent subdivisions of the first and the (κ + 1)-th complex agrees with the size
of the refined subdivision of the κ-th complex, which is the triangulation of the
intersection complex of the inductively given subdivision and the subdivision
associated with the Pachner move. We distinguish three cases depending on
the type of the Pachner move that is performed when going from the κ-th to
the (κ + 1)-th complex. For a (3 - 1) move, no further subdivision of the κ-th
complex is necessary, hence the size of combinatorially equivalent subdivisions
for the first and the (κ + 1)-th complex can be bounded by the size of combi-
natorially equivalent subdivisions for the first and the κ-th complex. A (2 - 2)
move is performed on two triangles with a common edge in the κ-th complex.
In the given subdivision of the κ-th complex combinatorially equivalent to the
first complex, there is a subcomplex that forms a subdivision of the two trian-
gles and their common edge. Intersecting this subdivision with the subdivision
associated with the (2 - 2) move, which can be visualised as cutting each of the
triangles by an edge into two triangles, has the effect of cutting some of the
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triangles and edges into two parts, namely all those triangles and edges whose
interior intersect one of the two cutting edges associated with the (2 - 2) move.
This produces up to three new cells for each cell that is cut: Edges are subdi-
vided into two sub-edges and their common vertex, triangles are cut either into
two triangles or into a triangle and a quadrilateral, and an edge separating the
two parts. Since the quadrilaterals are triangulated afterwards, each cell of the
given subdivision corresponds to at most five cells in the refined subdivision of
the κ-th complex. In a (3 - 1) move, a triangle of the κ-th complex is subdi-
vided into seven new cells, namely one vertex, three edges, and thee triangles.
Therefore the cell of the given subdivision containing the vertex is subdivided
into up to seven cells in the intersection complex, all other cells correspond to
at most six cells. At most three of those cells are 2-dimensional. They are of
bounded complexity because they are intersections of 2-dimensional simplices.
Hence the triangulation produces at most seven cells for each 2-dimensional
cell in the intersection complex. This implies that, leaving aside the additional
vertex from the subdivision associated with (3 - 1) move, each cell of the given
subdivision contributes at most 24 cells to the refined subdivision. This is the
highest possible increase among all Pachner moves.

Summing up, if the given subdivision of the κ-th complex has at most nκ
cells, the size of the refined subdivision is bounded by 24nκ + 1. Iterating this
argument, the size of combinatorially equivalent subdivisions for the first and
the last complex in a sequence of 2-dimensional Pachner moves that we obtain
from the construction above is bounded by 24tn + t where n is the number of
cells in the initial complex and t is the number of Pachner moves. Note that this
bound takes into account that the additional cell that causes the addition of 1
in the term 24nκ + 1 is a vertex and is not subdivided in the subsequent steps.
Moreover, since the reverse sequence of the inverse Pachner moves transforms
the last complex into the first, we can choose for n the minimum size of the first
and the last complex. For our application this implies a bound of 24tn + t on
the size of combinatorially equivalent subdivisions of st(v)=f(v)+ε and st(v)=f(v)
where n is the minimum of the sizes of st(v)=f(v)+ε and st(v)=f(v) and t is twice
the number of quadrilaterals plus the number of triangles in st(v)=f(v)+ε.

Completing the Construction. The remaining steps for constructing com-
binatorially equivalent simplicial subdivisions of M=f(v) × [f(v), f(v) + ε] and
M∈[f(v),f(v)+ε] from the combinatorially equivalent subdivisions of st(v)=f(v)
and st(v)=f(v)+ε are performed as outlined earlier in this section. The com-
plexes del(v)=f(v) × [f(v), f(v) + ε] and del(v)∈[f(v),f(v)+ε] are combinatori-
ally equivalent polytopal complexes and are subdivided into combinatorially
equivalent simplicial complexes by starring at each vertex. The isotopy repre-
sented by these subdivisions restricts to an isotopy on lk(v), and the induced
homeomorphism between lk(v)=f(v) and lk(v)=f(v)+ε is the natural one that
matches with the restriction of the homeomorphism between st(v)=f(v) and
st(v)=f(v)+ε. In fact, the naturally combinatorially equivalent 1-dimensional
complexes lk(v)=f(v) and lk(v)=f(v)+ε remain unaffected by all construction
steps so far. Hence we can take the union Θ1 of the triangulation of lk(v)=f(v)×
[f(v), f(v) + ε] and the subdivision of st(v)=f(v) × {f(v) + ε}. Analogously, we
form the union Θ2 of the triangulation of lk(v)∈[f(v),f(v)+ε] and the subdivision
of st(v)=f(v)+ε. Then we take the cones T1 = (v, f(v))Θ1 and T2 = vΘ2. The
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union of T1 and the triangulation of del(v)=f(v) × [f(v), f(v) + ε] is the desired
subdivision ofM=f(v)×[f(v), f(v)+ε], and the union of T2 and the triangulation
of del(v)∈[f(v),f(v)+ε] is the desired subdivision of M∈[f(v),f(v)+ε].

Before we can bound the total number of cells in the constructed subdivi-
sion, we have to analyse the effect of triangulating del(v)=f(v) × [f(v), f(v) + ε]
and its combinatorially equivalent counterpart del(v)∈[f(v),f(v)+ε] by starring at
each vertex. The 2-dimensional cells in these complexes are either triangles or
quadrilaterals. Hence each one produces at most three cells in the subdivision.
The 3-dimensional cells are combinatorially equivalent to a Cartesian product
of an interval with a triangle or quadrilateral, in other words to triangular or
quadrilateral prisms. The first starring at a vertex of a triangular prism subdi-
vides the interior into a triangular and a quadrilateral pyramid and a triangle
common to both. Among the remaining starrings, only the first one that is
performed at the base of the quadrilateral pyramid changes the subdivision. It
replaces the quadrilateral pyramid by two triangular pyramids, in other words
tetrahedra, separated by another new triangle. Thus we obtain in total five cells
replacing a triangular prism, namely three tetrahedra and two triangles. A sim-
ilar analysis applies to quadrilateral prisms. The first starring produces three
quadrilateral pyramids and three triangles arranged cyclically around a com-
mon edge. During the subsequent starrings the quadrilateral pyramids are each
subdivided into two tetrahedra and a triangle. Thus we obtain six tetrahedra,
six triangles, and an edge as replacement for a quadrilateral prism, contributing
13 cells in total.

For bounding the total number of cells in the subdivision of M∈[f(v),f(v)+ε],
we count as follows: The size of combinatorially equivalent subdivisions of
st(v)=f(v) and st(v)=f(v)+ε was bounded by the first approach by 7 times the
product of their sizes. In other words, the number of cells that each cell of
st(v)=f(v)+ε contributes to these combinatorially equivalent subdivisions is at
most 7 times the number of cells in st(v)=f(v). Bounding the number of cells
in st(v)=f(v) by nM , we obtain that each cell of st(v)=f(v)+ε contributes at
most 7nM cells to the subdivision of st(v)=f(v)+ε forming one part of Θ2.
The other part of Θ2 is obtained from triangulating lk(v)∈[f(v),f(v)+ε]. Only
the 2-dimensional cells, which are quadrilaterals, are subdivided. Thus each
cell in lk(v)∈[f(v),f(v)+ε] induces at most 3 cells in Θ2. Using 3 ≤ 7nM , we
can bound the number of cells in Θ2 by 7nM times the number of cells in
st(v)=f(v)+ε∪ lk(v)∈[f(v),f(v)+ε]. The number of cells in a cone is twice the num-
ber of cells in its base. Thus, the number of cells in T2 can be bounded by 14nM
times the number of cells in the complex st(v)=f(v)+ε∪lk(v)∈[f(v),f(v)+ε], which is
a subcomplex of st(v)∈[f(v),f(v)+ε]. The cells of the subdivision ofM∈[f(v),f(v)+ε]
lying outside of T2 come from triangulating cells of del(v)∈[f(v),f(v)+ε] lying out-
side of st(v)∈[f(v),f(v)+ε]. The triangulation produces at most 13 cells for each
original cell. The factor 13 for cells outside of st(v)∈[f(v),f(v)+ε] is dominated
by the factor 14nM for cells inside of st(v)∈[f(v),f(v)+ε]. Therefore the number
of cells in the subdivision of M∈[f(v),f(v)+ε] can be bounded by 14nM times
the number of cells in M∈[f(v),f(v)+ε]. This original complex M∈[f(v),f(v)+ε] in
turn has at most 3nM cells, yielding the upper bound 42n2

M for the number
of cells in combinatorially equivalent subdivisions of M=f(v) × [f(v), f(v) + ε]
and M∈[f(v),f(v)+ε].

In the recursion for merging isotopies on subintervals, we assumed that we
have combinatorially equivalent subdivisions forM∈[f(v)−ε′,f(v)+ε] andM=f(v)×
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[f(v) − ε′, f(v) + ε]. We can easily arrange that the subdivisions for the inter-
val [f(v), f(v) + ε] and for the interval [f(v) − ε′, f(v)] match at the common
level f(v) by a careful choice of the triangulations of the level set cells in the
deletion. It suffices that the triangulation of del(v)∈[f(v)−ε′,f(v)] and the trian-
gulation of del(v)∈[f(v),f(v)+ε] both induce the same triangulation of del(v)=f(v).
This can be achieved by choosing the orders of the vertices, in which the starrings
at the vertices are performed, in such a way that the restrictions of the sequences
to the vertices of del(v)=f(v) yields the same order for both sequences. In that
case we can take the unions of the subdivisions for the intervals [f(v)− ε′, f(v)]
and [f(v), f(v)+ε] as subdivisions for the interval [f(v)−ε′, f(v)+ε], so that the
number of necessary cells can be bounded by 84n2

M . This bound can be used as
value for nI(0) in the formula bounding the number of cells produced by the re-
cursive merging of isotopies on subintervals. For the other required value nh(0)
we have to find a suitable upper bound on the number of cells of the induced sub-
division on M=f(v)+ε. As observed above, each cell in st(v)=f(v)+ε contributes
at most 7nM cells to the subdivision of st(v)=f(v)+ε. The cells in the subdivi-
sion of M=f(v)+ε lying outside of st(v)=f(v)+ε come from triangulating the cells
in del(v)=f(v)+ε, which requires only subdividing quadrilaterals. So each cell
in del(v)=f(v)+ε contributes at most three cells to the subdivision. Hence the
number of cells in the subdivision ofM=f(v)+ε is at most 7nM times the original
number of cells in M=f(v)+ε. This allows to use 7n2

M as upper bound on the
value nh(0).

6.2.6 Dimension 4
The last remaining dimension where we have an algorithm at our disposal for
finding combinatorially equivalent subdivisions of st(v)=f(v) and st(v)=f(v)+ε
is dimension 4. Just like the second approach in the 3-dimensional case, the
algorithm considered here uses Pachner moves to construct the subdivisions.
The following result of Mijatović [35, Theorem 5.2] that bounds the number
of necessary Pachner moves allows to derive a bound on the number of cells
of corresponding combinatorially equivalent subdivisions: Any triangulation of
a 3-ball with t tetrahedra can be transformed into the cone on its boundary
without affecting the triangulation of the boundary by at most 6 · 106t226·106t2

Pachner moves. The combinatorially equivalent subdivisions and the number
of their cells can be deduced from the Pachner moves in essentially the same
way as outlined for the 3-dimensional case. For a single 3-dimensional Pach-
ner move there are simple combinatorially equivalent subdivisions of the two
involved complexes that add only a constant number of new cells to them. For
longer sequences, we iteratively intersect the subdivisions obtained in the pre-
vious steps with the subdivision representing the next step and triangulating
the resulting intersection complex. Constructing the intersection complex has
the effect of subdividing each cell of the previously obtained subdivisions into
at most a constant number of new polytopal cells of bounded complexity. The
bounded complexity ensures that a subsequent triangulation by starring at each
vertex produces only a constant number of new cells for each polytopal cell in
the intersection complex. Therefore each refinement step produces at most a
constant number of cells for each cell of the previously obtained subdivisions.
Hence a sequence of t′ three-dimensional Pachner moves starting with a complex
of size n produces combinatorially equivalent subdivisions of the initial and the
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final complex with at most ct′n cells for some suitable constant c. Note that,
when the Pachner moves do not affect the triangulation of the boundary, then
forming the intersection complexes and triangulating them by starring at the
vertices in the iterative steps will never affect the boundary either.

We construct the desired subdivision of M∈[f(v),f(v)+ε] as follows: Trian-
gulate the subcomplex del(v)∈[f(v),f(v)+ε] ∪ st(v)=f(v)+ε of M∈[f(v),f(v)+ε] by
starring at each vertex. Since the cells in M∈[f(v),f(v)+ε] are of bounded com-
plexity, each cell produces at most a constant number c′ of cells in the trian-
gulation. Find a sequence of Pachner moves according to Mijatović’s result
that transforms the obtained triangulation of st(v)=f(v)+ε into the cone on its
boundary. Construct from the Pachner moves a subdivision of the triangulation
of st(v)=f(v)+ε combinatorially equivalent to a subdivision of st(v)=f(v). Since
the constructed subdivision does not change the boundary, it matches with the
original triangulation of del(v)∈[f(v),f(v)+ε] on lk(v)=f(v)+ε. So choose for Θ2
the union of the constructed subdivision for st(v)=f(v)+ε and the triangulation
of lk(v)∈[f(v),f(v)+ε]. Then the union of the cone T2 = vΘ2 and the triangu-
lation of del(v)∈[f(v),f(v)+ε] is the desired subdivision of M∈[f(v),f(v)+ε]. The
combinatorially equivalent subdivision of M=f(v) × [f(v), f(v) + ε] is obtained
analogously: Triangulate del(v)=f(v) × [f(v), f(v) + ε] ∪ st(v)=f(v) × {f(v) +
ε}, replace st(v)=f(v) × {f(v) + ε} by the constructed subdivision combina-
torially equivalent to st(v)=f(v)+ε, and take the union of the triangulation of
del(v)=f(v)× [f(v), f(v) + ε] with the cone T1 = (v, f(v))Θ1 on the union Θ1 of
the constructed subdivision of st(v)=f(v) × {f(v) + ε} and the triangulation of
lk(v)=f(v) × [f(v), f(v) + ε].

For counting the cells in the constructed subdivision of M∈[f(v),f(v)+ε] we
proceed as in the 3-dimensional case. The triangulation of del(v)∈[f(v),f(v)+ε] ∪
st(v)=f(v)+ε of M∈[f(v),f(v)+ε] produces at most c′ cells for each of its original
cells. Therefore the number of tetrahedra in the triangulation of st(v)=f(v)+ε
is at most c′nM . This implies that the number of necessary Pachner moves
is bounded by 6 · 106(c′nM )226·106(c′nM )2 . Hence, each cell of st(v)=f(v)+ε in-
duces at most c6·106(c′nM )226·106(c′nM )2

c′ cells in the constructed subdivision of
st(v)=f(v)+ε that is combinatorially equivalent to a subdivision of st(v)=f(v). For
the complex Θ2, we can infer that each cell from st(v)=f(v)+ε contributes at most
c6·106(c′nM )226·106(c′nM )2

c′ cells and each cell from lk(v)∈[f(v),f(v)+ε] contributes
at most c′ cells. Since each cell of Θ2 contributes at most two cells to the cone T2,
each cell of st(v)∈[f(v), f(v) + ε] contributes at most 2c6·106(c′nM )226·106(c′nM )2

c′

cells to T2. The cells outside of st(v)∈[f(v), f(v) + ε] still contribute at most
c′ cells to the triangulation outside of the star. Using the dominant factor for all
cells, we conclude that the constructed subdivision ofM∈[f(v),f(v)+ε] has at most
2c6·106(c′nM )226·106(c′nM )2

c′ times as many cells as M∈[f(v),f(v)+ε] itself. Just like
in the 3-dimensional case, we can arrange that the subdivisions for the intervals
[f(v) − ε′, f(v)] and [f(v), f(v) + ε] match at level f(v) by choosing the order
of the vertices for the starrings performed when the deletion is triangulated in
such a way that they match for the vertices at the common level f(v). Thus we
can use the term 12c6·106(c′nM )226·106(c′nM )2

c′nM as upper bound for nI(0) in the
recursion formula for merging isotopies on subintervals. The same arguments
show that nh(0) can be bounded by c6·106(c′nM )226·106(c′nM )2

c′nM .
Due to the lack of suitable algorithms in higher dimensions, we cannot con-
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tinue our examination regarding the number of cells necessary to represent f -
level-preserving PL isotopies. If there were an upper bound on the number
of 4-dimensional Pachner moves that transform a 4-ball into the cone on its
boundary, it would not only allow bounding the number of cells for isotopies
in 5-dimensional manifolds, but also imply a positive solution to the long out-
standing problem whether the 4-sphere can be recognised algorithmically. An
analogous approach by Pachner moves for even higher dimensions d ≥ 6 is im-
possible because it would contradict Novikov’s result that (d − 1)-spheres for
d− 1 ≥ 5 are not algorithmically recognisable.
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Zusammenfassung

Klassische Morsetheorie betrachtet glatte Mannigfaltigkeiten und auf ihnen de-
finierte Morsefunktionen, also glatte reellwertige Funktionen, deren kritische
Punkte sämtlich nicht ausgeartet sind. Dazu werden abhängig von einem reel-
len Funktionswert die topologischen Änderungen der zugehörigen Niveaumengen
untersucht. Die Ergebnisse der Theorie erlauben es, aus den lokalen Änderungen
an kritischen Punkten Rückschlüsse über globale topologische Eigenschaften der
Mannigfaltigkeit zu ziehen. In der vorliegenden Arbeit wird eine analoge Theo-
rie für kombinatorische Mannigfaltigkeiten und auf ihnen definierten stückweise
linearen Funktionen vorgestellt. Dabei stehen drei Themen im Vordergrund:

Zunächst ist es das Ziel der Arbeit, die Herleitung der grundlegenden Er-
gebnisse der klassischen Morsetheorie aus der Betrachtung von Niveaumengen
Schritt für Schritt auf den stückweise linearen Fall zu übertragen und sorgfäl-
tig ausgearbeitete Beweise für alle Schritte vorzulegen. Nützliches Hilfsmittel
dafür ist die zunächst vorgenommene eingehende Untersuchung, wie ein poly-
edrischer Komplex mit einer Abbildung, die linear auf seinen Zellen ist, für jede
als Urbild eines abgeschlossenen Intervalls definierte Niveaumenge auf natürliche
Weise einen polyedrischen Komplex definiert, dessen zugrundeliegender Raum
mit der Niveaumenge übereinstimmt.

Als weiteres zentrales Thema der Arbeit werden verschiedene mögliche Cha-
rakterisierungen für reguläre und nicht ausgeartete kritische Punkte verglichen.
Dabei erweisen sich eine Reihe der Definitionen für solche Punkte als äquivalent,
aber zwei der in der Literatur vorgeschlagenen Charakterisierungen erheben gra-
duell schwächere Forderungen an solche Punkte. In diesem Zusammenhang wird
auch eine Methode vorgestellt, wie eine diskrete Morsefunktion auf einer kom-
binatorischen Mannigfaltigkeit in eine stückweise lineare Morsefunktion umge-
wandelt werden kann, deren kritische Punkte den kritischen Zellen der diskreten
Morsefunktion entsprechen.

Das dritte Thema betrifft Isotopien zwischen den Niveaumengen, wie sie
auch in der klassischen Morsetheorie betrachtet werden. Zumindest für ausrei-
chend generische stückweise lineare Abbildungen auf kombinatorischen Mannig-
faltigkeiten wird die Existenz von Isotopien über alle einem Intervall zugehörigen
Niveaumengen hinweg nachgewiesen, wenn das Intervall keine kritischen Werte
enthält.

Die Arbeit schließt mit Betrachtungen zu ausgewählten berechnungstheore-
tischen und algorithmischen Gesichtspunkten ab. Zum einen wird das Entschei-
dungsproblem erörtert, ob ein gegebener Punkt regulär ist. Zum anderen wird
die algorithmische Konstruktion der Isotopie zwischen den Niveaumengen mit
dem Ziel analysiert, eine obere Schranke für die Anzahl der Zellen in den kom-
binatorisch äquivalenten Komplexen zu finden, die die Isotopie repräsentieren.

213



214



Erklärung

Hiermit versichere ich, dass ich die Arbeit auf Grundlage der angegebenen Hilfs-
mittel und Hilfen selbständig verfasst habe. Ebenso versichere ich, dass die
Arbeit nicht schon einmal in einem früheren Promotionsverfahren eingereicht
worden ist.

215



216



217

Lebenslauf

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten.


	Seiten aus diss_grunert_romain.pdf
	Leere Seite




