1 1	LEITUNG	11
2 I	ERATURÜBERSICHT	13
2.1	twicklung eines Hühnerembryo	13
2.1	Entwicklungsstadien der Embryogenese	13
2.1	Entwicklung des Herz- und Kreislaufsystems sowie seines Stoffwechsels	s 13
2.1	Entwicklung der Sauerstoffversorgung	16
2.2	aptation	20
2.3	swirkungen des Sauerstoffmangels	23
2.3	Zeitliche Einteilung der Adaptationsphasen an Sauerstoffmangel	23
2.3	Senkung des Energieverbrauchs	23
2.3	Effektivere Sauerstoffbereitstellung	29
2.3	Anaerobe Energiegewinnung	33
2.4	sammenfassung der Literatur	40
3 1	TERIAL UND METHODEN	41
3.1	kubation der Hühnerembryonen	41
3.1	Herkunft und Bebrütung der Hühnerembryonen	41
3.1	Messung des Sauerstoffgehaltes im Brutschrank	41
3.1	Versuchsablauf	43
3.2	winnung und Aufbereitung der Proben	44
3.2	Präparation der Hühnerembryonen und der Herzen	44
3.3	essung morphologischer Parameter	44
3.3	Bestimmung der Körpermasse	44
3.3	Bestimmung des Herzgewichtes	45
3.3	Auswertung der Gewichtsentwicklung	45
3.4	olierung der Gesamt-RNA aus tierischen Zellen	45
3.4	Stabilisierung der Proben RNA	45
3.4	Aufarbeitung der stabilisierten Gewebeproben	45
3.4	Photometrische Bestimmung des RNA-Gehaltes	46

3.5 Kc	onventionelle PCR	47
3.5.1	PCR und RT-PCR allgemein	47
3.5.2	Recherche und Herstellung synthetischer Oligonucleotide für die	
	konventionelle PCR	47
3.5.3	Protokoll der RT-PCR	48
3.5.4	DNA-Gelelektrophorese	48
3.5.5	PCR zur Vermehrung eines PCR-Produktes (Massen-PCR)	48
3.5.6	Aufreinigung eines PCR-Produktes	49
3.5.7	Extraktion einer DNA-Bande aus einem Elektrophoresegel	49
3.6 KI	onierung von Plasmiden	50
3.6.1	Klonierung von DNA in Plasmiden allgemein	50
3.6.2	Anfügen von Adenosin-Überhängen (A)	50
3.6.3	Ligationsprotokoll	50
3.6.4	Transformationsprotokoll	51
3.6.5	Selektion plasmidtragender Bakterien	52
3.6.6	Präparation von Plasmid-DNA aus kleinen Bakterienkulturen	52
3.6.7	Prüfen auf das Vorhandensein des Inserts im Plasmid durch	
	Restriktionsverdau	53
3.6.8	Vermehrung von Plasmiden im mittleren Maßstab (Midi-Prep-Verfahren)	54
3.6.9	Sequenzierung	55
3.6.10	Herstellung von Luria Bartrani (LB) Agarplatten	55
3.6.11	Herstellung von LB-Medium	55
3.7 Qu	uantitative PCR	56
3.7.1	Allgemeines	56
3.7.2	cDNA-Synthese	57
3.7.3	Protokoll der qPCR	57
3.7.4	Recherche und Herstellung synthetischer Oligonucleotide für die qPCR	58
3.7.5	Etablierungsverfahren	58
3.7.6	Referenzgene	60
3.7.7	Kontrollen	60
3.7.8	Auswertung der qPCR-Ergebnisse	60
3.7.9	Relative Quantifizierung (dCT-Methode)	61
3.7.10	Auswertung der dC _T - und FC-Werte	62
3.8 Au	swahl der untersuchten Gene	63

4	ERG	BEBNISSE	64
4.1	Ve	ränderungen im Hühnerembryo an D10 nach Inkubation bei 15% O₂	
	un	d 40,0°C über 24 Stunden (V0)	64
4.′	1.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	64
4.′	1.2	Verhalten der Embryonen- und Herzmassen	65
4.2	Ve	ränderungen im Hühnerembryo an D12 nach Inkubation bei 15% O ₂	
	üb	er 6 d (V1)	66
4.2	2.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	66
4.2	2.2	Verhalten der Embryonen- und Herzmassen	67
4.3	Ve	ränderungen im Hühnerembryo an D18 nach Inkubation bei 15% O₂	
	VOI	n D6-12 und 21% O₂ von D13-18 (V2)	68
4.3	3.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	68
4.3	3.2	Verhalten der Embryonen- und Herzmassen	69
4.4	Ve	ränderungen im Hühnerembryo an D18 nach Inkubation bei 15% O ₂	
	VOI	n D6-12, 21% O ₂ von D13-18 und 0% O ₂ über 30 Minuten an D18 (V3)	70
4.4	4.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	70
4.4	4.2	Verhalten der Embryonen- und Herzmassen	71
4.5	Ve	ränderungen im Hühnerembryo an D18 nach Inkubation bei 15% O₂	
	VOI	n D6-12, 21% O ₂ von D13-18 und 0% O ₂ über 45 Minuten an D18 (V4)	72
4.5	5.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	72
4.	5.2	Verhalten der Embryonen- und Herzmassen	73
4.6	Ve	ränderungen im Hühnerembryo bei 21% O₂ in Abhängigkeit vom Alter	74
4.6	3.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	74
4.6	5.2	Verhalten der Embryonen- und Herzmassen	75
4.7	Vei	gleich der Reaktionen von Hühnerembryonen auf 30 min andauernde	
	An	oxie an D18 nach Inkubation bei 15% bzw. 21% O ₂ von D6-12	76
4.7	7.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	76
4.7	7.2	Verhalten der Embryonen- und Herzmassen	77
4.8	Vei	gleich der Reaktionen von Hühnerembryonen auf 45 min andauernde	
	An	oxie an D18 nach Inkubation bei 15% bzw. 21% O ₂ von D6-12	78
4.8	3.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	78

4.8	3.2	Verhalten der Embryonen- und Herzmassen unter Normoxie in	
		Abhängigkeit vom Alter an D10, D12 und D18	79
4.9	Ver	gleich der Reaktion des Hühnerembryos auf 30 Minuten bzw.	
	45 I	Minuten andauernde Anoxie an D18 nach Inkubation bei 15% bzw.	
	21%	% O₂ von D6-12	80
4.9	9.1	Vergleich der Genexpressionsraten von VEGF, Enolase, PFK und AMPK	80
4.9	9.2	Verhalten der Embryonen- und Herzmassen	81
4.10	Zus	ammenfassung der Ergebnisse	82
4.1	10.1	Veränderungen in der Genexpression	82
4.1	10.2	Verhalten der Embryonen- und Herzmassen	82
5	DISK	KUSSION	83
5.1	Ver	suchsbedingungen	83
5.1	1.1	Auswahl der untersuchten Parameter	83
5.1	1.2	RNA-Stabilität und Qualitätskontrollen	84
5.1	1.3	Statistische Auswertung	85
5.2	Ger	nexpressionsprofile in Herzgeweben unter Sauerstoffmangel	86
5.2	2.1	Altersabhängiger Anstieg der Genexpression	86
5.2	2.2	Einfluss von akutem oder chronischem Sauerstoffmangel auf die Genexpression	87
5.2) 3	Einfluss von Sauerstoffmangel und Hyperthermie auf die Genexpression	91
5.2		Zusammenfassung der Diskussion zu den Genexpressionsprofilen unter	0 1
0.2		Sauerstoffmangel	92
5.3	Ein	fluss des Sauerstoffmangels auf die Embryonen- und Herzmassen	93
5.3	3.1	Zusammenfassung der Diskussion zur Massenentwicklung	94
5.4	Zus	ammenfassung der Diskussion	95
6	SUM	MARY	98
7	LITE	RATURVERZEICHNIS	102
8	ANH	ANG	116

8.1	lnk	ubation der Hühnerembryonen	116
8.	1.1	Herkunft und Bebrütung der Hühnerembryonen	116
8.	1.2	Messung des Sauerstoffgehaltes im Brutschrank	116
8.2	Ge	winnung und Aufarbeitung der Proben	116
8.2	2.1	Präparation der Hühnerembryonen und der Herzen	116
8.3	Me	ssung morphologischer Parameter	117
8.4	Iso	lierung der Gesamt-RNA aus tierischen Zellen	117
8.4	4.1	Stabilisierung der Proben-RNA	117
8.4	4.2	Aufarbeitung der stabilisierten Gewebeproben	117
8.4	4.3	Photometrische Bestimmung des RNA-Gehaltes	117
8.5	Koı	nventionelle PCR	117
8.	5.1	Recherche und Herstellung synthetischer Oligonucleotide	117
8.	5.2	Protokoll der RT-PCR	118
8.	5.3	DNA-Gelelektrophorese	118
8.	5.4	PCR zur Vermehrung eines PCR-Produktes (Massen-PCR)	119
8.	5.5	Aufreinigung eines PCR-Produktes	119
8.	5.6	Gelextraktion von DNA	119
8.6	Klo	nierung von Plasmiden	120
8.0	6.1	Anfügen von Adenosin-Überhängen	120
8.	6.2	Ligation	120
8.	6.3	Transformationsprotokoll	120
8.	6.4	Vermehrung der monoklonalen, plasmidtragenden Bakterien in	
		kleinem Maßstab (Mini-Prep-Verfahren)	121
8.	6.5	Prüfung auf das Vorhandensein des Inserts im Plasmid durch	
		Restriktionsverdau	121
8.	6.6	Vermehrung von Plasmiden im mittleren Maßstab (Midi-Prep-Verfahren)	121
8.	6.7	Herstellung von LB-Agar und LB-Medium	122
8.7	Qua	antitative PCR	123
8.	7.1	cDNA-Synthese	123
8.	7.2	Protokoll der qPCR	123
8.	7.3	Recherche und Herstellung synthetischer Oligonucleotide für die qPCR	124
8.8	We	itere verwendete Utensilien und Geräte	124

8.9	Sequenzen verwendeter Primer	125
8.10	dC _T -Werte, Herz- und Embryonenmassen von V0	126
8.11	dC _T -Werte, Herz- und Embryonenmassen von V1	127
8.12	dC _T -Werte, Herz- und Embryonenmassen von V2	128
8.13	dC _T -Werte, Herz- und Embryonenmassen von V3	129
8.14	dC _⊤ -Werte, Herz- und Embryonenmassen von V4	130
8.15	Übersicht über die Auswertung der FC-Werte im direkten Vergleich von Test- und Basisgruppe	131
8.16	Übersicht über die Auswertung der FC-Werte zur Altersabhängigkeit	132
8.17	Übersicht über die Auswertung der FC-Werte bei Vergleich der Gruppe V2 mit V3N/H bzw. V4N/H	133
9	DANKSAGUNG	134
10	LEBENSLAUF	135
11	EIDESSTATTLICHE ERKLÄRUNG	136