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Abstract 
 
A basin may be called “complex” if its temporal evolution was complicated by several 
tectonic or thermal events like stretching and inversion or if it is composed of a variety of 
regionally distributed sub-basins with differing histories. In this regard, the Central European 
Basin System (CEBS) provides an exceptional example for a complex sedimentary basin. It 
can be regarded a complex basin in terms of (1) having suffered stretching and inversion 
phases, (2) being located above a highly heterogeneous crust and even mantle, derived form 
the accretion of different terrains during the Palaeozoic, (3) having a complex upper crust 
due to repeated activation of salt tectonics, and (4) consisting of a complex set of sub-basins. 
Geophysical data have provided insight into a rather heterogeneous lithosphere structure 
between the different regional units at deeper crustal and mantle level. Accordingly, the 
observed differential deformation patterns may be attributed to interactions between regional 
or local variations in rheology beneath the different sub-areas while only minor changes 
occurred at the stress boundaries.  
In addition, the CEBS may be regarded an outstanding “natural laboratory” for testing 
different modelling techniques. Almost all currently available models have been applied 
sometimes to the CEBS. Part 1 provides an overview concerning different models with 
practical applications to the Central European Basin, thereby the main problems encountered 
in modelling complex sedimentary basins are elucidated. Also all the models described in 
Part 1 have been applied to the basin system with some success in order to highlight some 
special aspects of its tectonic evolution, these models have not been able to capture the 
complex processes causing the evolution of sub-basins and localized inversion zones in 
details. By example, the relative simple classical kinematic models for continental 
deformation (e.g. McKenzie’s or Wernicke’s models) focus only at local subsidence without 
regarding the horizontally active stress and strain system. On the other hand, more complex 
stress and strain models (e.g. thin sheet or thin plate models) only considered the recent state 
of the basin system or alternately focused at relatively small domains preventing a unifying 
description of the basin.  
Aware of these aspects, Part 2 describes the results obtained from a two dimensional 
modelling technique concerning the regional tectonic evolution of the CEBS. The modelling 
approach is the thin-sheet model, however, in spherical coordinates, allowing to include 
large scale spatial deformation patterns. The approach provides information concerning the 
state of stress within the lithosphere and it allows deriving stress-to-strain relations due to 
lateral heterogeneities as well as changing boundary forces.  
The results for present day and past (post Palaeozoic) development of the basin system are 
presented and discussed. Thereby the relevance of inherited large-scale lithospheric 
structures is analysed with regard to the kinematics and dynamics of the study area. The 
model finally provides insight into the evolution of major subsidence centres and uplift areas 
through time in combination with the variable stress boundary conditions as defined by 
large-scale (palaeo)tectonic plate reconstructions.  
A satisfactory agreement for the recent stress and strain field has been found between model 
results and geodetic observations concerning both regional and more local features. 
Following these results, the presence of different structural domains at both shallow and/or 
deeper levels within the lithosphere is necessary and sufficient to explain processes like 
strain localization and major bending in the principal stress orientation. 
Rheological/structural contrasts within the continental lithosphere can localize deformation 
under mechanically weak areas thus inducing the formation of major fault zones. In this 



regard, fault formation is most likely the natural result of structural heterogeneities within 
the lithosphere. Consequently, artificial model devices (e.g. shear zone or deep penetrating 
faults) are not necessary to model the observed asymmetry in lithospheric deformation. In 
contrary the observed asymmetry in the patterns of continental deformation structurally 
reflects the asymmetric configuration and composition of continental lithosphere. Moreover, 
the presence of contrasting crustal and mantle structures together with varying stress 
boundary conditions controls and even determines the evolution of the different sub-basins 
including inversion through time.  
In the final part of the study I summarize the main conclusions derived within the frame of 
the obtained modelling results concerning the formation and evolution of the basin system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


