7 Anhang

7.0 Abstract

Brain capillary endothelial cells act as a barrier between blood and brain restricting the diffusion of water and solutes through the paracellular pathway. Disturbance of the bloodbrain barrier (BBB) integrity contributes to many disorders, including stroke, brain-edema, AIDS-dementia complex and others. The paracellular seal is composed of a series of highly ordered membrane contact strands called tight junctions (TJs). Several proteins were found to be localised in TJs, however the structure and regulation of the multiprotein TJ complex is unclear. Defining how the tight junction proteins interact with each other is a prerequisite for understanding how the BBB functions at the molecular level.

In the present work, the interaction of the functionally diverse TJ proteins occludin and ZO-1 was characterised using surface plasmon resonance (SPR) sprectroscopy, eptitope mapping and other affinity studies. Bioinformatic studies predicted a possible coiled coil interaction between ZO-1 and the C-terminal part of occludin. SPR experiments and peptide epitope scans narrowed down the possible interacting sites in ZO-1 to two regions: one located between the SH3 and Guk domains (including CC1, the so-called hinge region) and another at the C-terminal end of the Guk domain of ZO-1 (CC2a). Both regions are responsible for the interaction with occludin.

The helical content of coiled coil regions of ZO-1 was confirmed by circular dichroism experiments. Furthermore, the C-terminal part of occludin involved in the interaction with ZO-1 formed an α -helix in solution. Therefore, the structural requirements of a coiled coil interaction between both proteins are fulfilled.

In vitro binding studies suggest that intermolecular SH3-Guk binding may occur via 3Ddomain swapping. This 3D-domain swapping model allows the exchange of complementary substructures to generate dimers or oligomers of ZO-1. The binding of occludin to the hinge region could alter the conformational properties of ZO-1 by destabilizing inter- and intramolecular SH3-Guk interactions to promote oligomerization of ZO-1. It was hypothezised that binding of occludin may enhance the recruiting potential of ZO-1 at the plasmamembrane of tight junctions.

An assumption was made that the SH3 and Guk domains of ZO-1 form an integrated functional unit, based on the results of binding studies and literature data available for other MAGUK proteins and the conservation of residues involved in the intramolecular interaction.

The complexity of protein-protein-interactions at tight junctions has functional and regulatory relevance especially between the TJ proteins occludin and ZO-1. NO and other reactive species reduce the strength of the ZO-1/occludin interaction. This suggest a molecular mechanism for tight junction permeability depending on the occludin/ZO-1 interaction.

The findings provide a basis for forthcoming investigations, especially structural studies of TJ proteins. Obtained results will be used to create a 3 dimensional computer model of a 3 or 4 bundle helix of the ZO-1/occludin interaction in the TJs of the BBB.

7.1 Nomenklatur und Aminosäuresequenzen der verwendeten Fusionsproteine und Peptide

Nachfolgend sind alle durch Klonierung und Überexpression in *E. coli* hergestellten Konstrukte von Maus-Occludin und ZO-1 dargestellt. Alle Proteine wurden N-terminal als Maltose-Bindungsproteine (MBP) und Occludin.264.521 zusätzlich als Glutathion-S-Transferase (GST)-Fusionsprotein exprimiert.

Occludin.264-521:

KTRRKMDRYDKSNILWDKEHIYDEQPPNVEEWVKNVSAGTQDMPPPPSDYAERVDS PMAYSSNGKVNGKRSYPESFYKSTPLVPEVAQEIPLTLSVDDFRQPRYSSNGNLETPS KRAPTKGKAGKGKRTDPDHYETDYTTGGESCEELEEDWVREYPPITSDQQRQLYKR NFDAGLQEYKSLQAELDDVNKELSRLDKELDDYREESEEYMAAADEYNRLKQVKGS ADYKSKRNYCKQLKSKLSHIKRMVGDYDRRKP

Occludin.378-521:

KRAPTKGKAGKGKRTDPDHYETDYTTGGESCEELEEDWVREYPPITSDQQRQLYKR NFDAGLQEYKSLQAELDDVNKELSRLDKELDDYREESEEYMAAADEYNRLKQVKGS ADYKSKRNYCKQLKSKLSHIKRMVGDYDRRKP

Occludin.406-521:

ESCEELEEDWVREYPPITSDQQRQLYKRNFDAGLQEYKSLQAELDDVNKELSRLDKE LDDYREESEEYMAAADEYNRLKQVKGSADYKSKRNYCKQLKSKLSHIKRMVGDYD RRKP

ZO-1.644-890:

LRPVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHA LLDVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHK LRKNNHHLFTTTINLNSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDDLDL HDDRLSYLSAPGSEYSMYSTDSRHTSDYEDTDTEGGAYTDQELDETLNDEVGTPPES AITRSSEPVREDSSGMHH

ZO-1.644-812:

LRPVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHA LLDVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHK LRKNNHHLFTTTINLNSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDD

ZO-1.644-772:

LRPVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHA LLDVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHK LRKNNHHLFTTT

ZO-1.644-731:

 $\label{eq:linear} LRPVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHA\\ LLDVTPNAVDRLNYAQWYPIVVFLNPD$

ZO-1.601-890:

FWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIADVAR EKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAVDRLNY AQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLFTTTINL NSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDDLDLHDDRLSYLSAPGSEY SMYSTDSRHTSDYEDTDTEGGAYTDQELDETLNDEVGTPPESAITRSSEPVREDSSGM HH

ZO-1.601-812:

FWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIADVAR EKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAVDRLNY AQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLFTTTINL NSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDD

ZO-1.601-772:

FWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIADVAR EKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAVDRLNY AQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLFTTT

ZO-1.597-812:

DRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIA DVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAV DRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLF TTTINLNSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDD

ZO-1.597-772:

DRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIA DVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAV DRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLRKNNHHLF TTT

ZO-1.597-731:

DRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLRPVTIFGPIA DVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALLDVTPNAV DRLNYAQWYPIVVFLNPD

ZO-1.589-812:

TLPKTAGGDRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLR PVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALL DVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLR KNNHHLFTTTINLNSMNDGWYGALKEAIQQQQNQLVWVSEGKADGATSDD

ZO-1.589-772:

TLPKTAGGDRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLR PVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALL DVTPNAVDRLNYAQWYPIVVFLNPDSKQGVKTMRMRLCPESRKSARKLYERSHKLR KNNHHLFTTT

ZO-1.589-731:

TLPKTAGGDRADFWRFRGLRSSKRNLRKSREDLSAQPVQTKFPAYERVVLREAGFLR PVTIFGPIADVAREKLAREEPDIYQIAKSELRDAGTDHRSSGIIRLHTIKQIIDQDKHALL DVTPNAVDRLNYAQWYPIVVFLNPD Die in dieser Arbeit verwendeten Peptide (Maussequenzen) wurden im FMP (Arbeitsgruppe Peptidchemie von Dr. Beyermann), durch die Firma Biosyntan (Gesellschaft für bioorganische Synthesen) und durch die Jerini AG (Prof. Dr. Schneider-Mergener) synthetisiert. Die Peptide P.745-772 und P.750-769 sind für weitere Bindungsmessungen N-terminal durch Kopplung mit einem Biotinrest modifiziert worden. Die Peptide lagen als Amide vor.

(Biotin-) P.745-772: PESRK SARKL YERSH KLRKN NHHLF TTT-NH₂

(Biotin-) P.750-769: SARKL YERSH KLRKN NHHLF-NH₂

Die synthetisierten Peptide von Biosyntan wurden nach den Vorschriften der Firma mit Hilfe der simultanen multiplen Peptidsynthese hergestellt und lagen nach der Lyophilisation in Form ihrer TFE-Salze vor.

P.597-633: DRADF WRRGL RSSKR NLKRS REDLS AQPVQ TKFPA Y-NH₂

P.772-806: TINLN SMNDG WYGAL KEAIQ QQQNQ LVWVS EGKAD-NH₂

7.2 Theorie zur Berechnung kinetischer Konstanten

In den vorgenommen Berechnungen zur Bindungskinetik wurde bei den SPR-Untersuchungen das einfache 1:1 Bindungsmodell (Isotherm von Langmuir) angenommen. Wenn der Analyt in der mobilen Phase als A und der oberflächenimmobilisierte Ligand als B bezeichnet wird, gilt folgende Gleichung:

$$\begin{array}{c} k_{a} \\ A+B \underset{k_{d}}{\leftrightarrow} AB \\ & (G \ 7.1) \end{array}$$

Die Nettorate der Komplexbildung über die Zeit kann unter Einbeziehung der Assoziation und Dissoziation als reversibles Gleichgewicht wie folgt beschrieben werden:

$$\frac{d[AB]}{dt} = k_a [A][B] - k_d [AB]$$
 (G 7.2),

wobei k_a die Geschwindigkeitskonstante der Assoziation und k_d die Geschwindigkeitskonstante der Dissoziation ist.

In der Evaluierungskinetik des BIAcore-Systems ist die Änderung des SPR-Resonanzsignals R eine direkte Folge der Komplexbildung von [AB], die totale Konzentration des Liganden [B] ist die Bindungskapazität R_{max} . Die Konzentration des verfügbaren Liganden [B] wird als R_{max} -R dargestellt. Das Resonanzsignal R ist proportional zur der Bildung des Komplexes [AB] an der Sensoroberfläche, bei maximalen Resonanzsignal R_{max} sind alle Bindungsstellen auf dem Sensorchip belegt. Durch Substitution erhält man aus der Gleichung (G 7.2):

$$\frac{dR}{dt} = k_a c (R_{max} - R_t) - k_d R_t$$
 (G 7.3),

bei der dR/dt die Geschwindigkeit der Bildung des Komplexes [AB] (Änderung der Rate des SPR-Signals); c die Konzentration des Analyten A in der mobilen Phase, R das SPR Signal in RU bei der Zeit t und R_{max} die maximale Bindungskapazität in RU (maximale Konzentration des Komplexes [AB] auf der Sensoroberfläche) ist.

Durch Umformen erhält man:

$$\frac{dR}{dt} = k_a c R_{max} - (k_a C + k_d) R_t \qquad (G 7.4)$$

Eine Auftragung dR/dt gegen R ergibt eine Gerade mit der Steigung $k_s = k_a c + k_d$. Die Bestimmung von k_s erlaubt die Auftragung gegen die Analytkonzentration c aus der k_a und k_d graphisch bestimmt werden.

7.3 Abschätzung der Belegungsdichte der immobilisierten Peptidsequenzen auf dem Sensorchip

Die Abschätzung der Belegungsdichte der Peptidsequenzen aus ZO-1 auf der Sensorchipoberfläche erfolgt in Annäherung, da die räumliche Konfiguration der Peptide auf der Chipoberfläche während der Immobilisierung nicht bekannt ist.

Aus der Literatur ist bekannt, daß 1000 RU = 1 ng/mm² und die Dicke der Dextranmatrix ca. 100 nm sind. Bei einem angenommenen Molekulargewicht von ca. 3000 g/mol, wiegen 2 x 10^{11} Peptidmoleküle 1 ng. Für eine Fläche von 1 mm² ergibt sich daraus ein Volumen von 10^{-13} m³. Für eine Peptidmolekül aus 28-37 AS wird ein Volumen von 2 x 2 x 2 nm angenommen. Aus dieser Berechnung ergibt sich für 2 x 10^{11} Peptidmoleküle ein Volumen von 1,6 x 10^{-15} m³ (1,6% des Gesamtvolumen der Matrix). Bei einem Immobilisierungsgrad von 1000 RU beträgt der mittlere Abschnitt zwischen 2 immobilisierten Peptiden 8 nm.

7.4 Zusammenfassung der SPR-spektroskopischen Daten

Zusammenfassend wurden die SPR-Sensorgramme für die Wechselwirkung zwischen immobilisierten Occludin.378-521 und mobilen ZO-1-Fragmenten dargestellt. In den Abbildungen A) sind SPR-Sensorgramme für jede konzentrationsabhängige Interaktion zwischen ZO-1-Fragment und Occludin.378-521 (Immobilisierungsniveau 10,3 ng/mm²) dargestellt. B) Daneben ist die Bindung vom ZO-1-Fragment an Occludin bei höchster eingesetzter Konzentration 20-minütiger Assoziationsdauer und angegeben. Das Immobilisierungsniveau von Occludin betrug 10,3 ng/mm²; 3,8 ng/mm² und 1,23 ng/mm². C) Diagramm der korrigierten Bindungsmenge aus n24 Messungen in Abhängigkeit vom dekadischen Logarithmus der Konzentration lg(c/nM) und Angabe der Standardabweichung (MW ± SEM). D) Diagramm der Stoffmenge n (pmol) in Abhängigkeit vom dekadischen Logarithmus der Konzentration lg(c/nM). E) Die kinetische Daten der SPR-Sensorgramme sind in der unteren Tabelle zusammengefaßt.

7.1.1 Wechselwirkung von ZO-1.589-731 mit dem immobilisierten Occludin.378-521.

7.1.2 Wechselwirkung von ZO-1.589-772 mit dem immobilisierten Occludin.378-521.

7.1.3 Wechselwirkung von ZO-1.589-812 mit dem immobilisierten Occludin.378-521.

7.1.4 Wechselwirkung von ZO-1.597-731 mit dem immobilisierten Occludin.378-521.

7.1.5 Wechselwirkung von ZO-1.597-772 mit dem immobilisierten Occludin.378-521.

7.1.6 Wechselwirkung von ZO-1.597-812 mit dem immobilisierten Occludin.378-521.

7.1.7 Wechselwirkung von ZO-1.601-772 mit dem immobilisierten Occludin.378-521.

7.1.8 Wechselwirkung von ZO-1.601-812 mit dem immobilisierten Occludin.378-521.

7.1.9 Wechselwirkung von ZO-1.601-890 mit dem immobilisierten Occludin.378-521

7.1.10 Wechselwirkung von ZO-1.644-731 mit dem immobilisierten Occludin.378-521.

7.1.11 Wechselwirkung von ZO-1.644-772 mit dem immobilisierten Occludin.378-521.

7.1.12 Wechselwirkung von ZO-1.601-812 mit dem immobilisierten Occludin.378-521.

7.1.13 Wechselwirkung von ZO-1.644-890 mit dem immobilisierten Occludin.378-521.

7.1.14 SPR-Kontrollmessungen. A) Wechselwirkung von ZO-1.502-812, das sowohl die SH3- als auch die Guk-Domäne umfaßt, mit dem immobilisierten Occludin.378-521. B) Wechselwirkung von ZO-1.413-619 (bestehend aus PDZ3- sowie SH3-Domäne) mit dem immobilisierten Occludin.378-521. Der Immobilisierungsgrad von Occludin betrug bei beiden Messungen 5,3 ng/mm².

7.5 Auswertung der Längenanalyse von CC2a₂₀ mit GST-Occludin.264-521

	BLU	BLU	BLU		BLU	BLU	BLU
Sequenz	absol.	in %	Nr.	Sequenz	absol.	in %	Nr.
SARKLYERSHKLRKNNHHLF	24080	100	1	YERSHKLRKN	882	3,7	90
SARKLYERSHKLRKNNHHL	18962	78,7	4	ERSHKLRKNN	1514	6,3	81
ARKLYERSHKLRKNNHHLF	10886	45,2	19	RSHKLRKNNH	3814	15,8	55
SARKLYERSHKLRKNNHH	5925	24,6	37	SHKLRKNNHH	11271	46,8	17
ARKLYERSHKLRKNNHHL	3388	14,1	58	HKLRKNNHHL	7579	31,5	25
RKLYERSHKLRKNNHHLF	4525	18,8	48	KLRKNNHHLF	11802	49,0	13
SARKLYERSHKLRKNNH	2027	8,4	73	SARKLYERS	61	0,3	118
ARKLYERSHKLRKNNHH	4633	19,2	45	ARKLYERSH	3249	13,5	59
RKLYERSHKLRKNNHHL	6758	28,1	27	RKLYERSHK	733	3,0	94
KLYERSHKLRKNNHHLF	6604	27,4	29	KLYERSHKL	115	0,5	115
SARKLYERSHKLRKNN	4148	17,2	51	LYERSHKLR	190	0,8	111
ARKLYERSHKLRKNNH	6503	27,0	31	YERSHKLRK	168	0,7	113
RKLYERSHKLRKNNHH	4486	18,6	49	ERSHKLRKN	2//	1,2	106
KLYERSHKLRKNNHHL	4056	16,8	52	RSHKLRKNN	1044	4,3	87
LYERSHKLRKNNHHLF	9102	37,8	22	SHKLRKNNH	11150	40,3	18
SARKLYERSHKLRKN	2134	8,9	72	HALKANNHH MI DEMNUUT	12602	32,3	10
ARKLYERSHKLRKNN	2159	9,0	70	I DEDNIHHI F	1114 45245	32,0	24
RKLYERSHKLRKNNH	1914	7,9	/6	CADEL AED	10010	03,0	01
KLYERSHKLRKNNHH	5/14	23,7	39	ADVI VEDC	1246	3,5	91
LYERSHKLRKNNHHL	11745	48,8	14	DELAEDO	2006	5,Z	04 52
YERSHKLRKNNHHLF	20363	84,6	2	KLVEDSHK	2990	0,0	120
SARKLYERSHKLRK	9110	37,8	21	I.YEBSHKI.	20	0,1	120
ARALIERSHALRAN	6270	26,0	34	YERSHKIR	328	14	102
KKLIEKSHKLKKNN	3899	16,2	54	ERSHKLBK	931	3.9	89
I VEDCURI DRIMUU	5/00	23,7	40	RSHKLBKN	2708	11.2	65
VEDCURT DENNUUT	10292	42,1	20	SHKLRKNN	787	33	93
FOSHKIDKNNHHIF	10066	97,5 920	20	HKLRKNNH	11364	47.2	16
SARKI.VERSHKI.R	3703	15 /	56	KLRKNNHH	6461	26.8	33
ARKI.YERSHKI.RK	1824	76	78	LRKNNHHL	1309	5,4	83
RKLYERSHKLRKN	1963	82	74	RKNNHHLF	11576	48,1	15
KLYERSHKLRKNN	401	1.7	99	SARKLYE	67	0,3	117
LYERSHKLRKNNH	6478	26.9	32	ARKLYER	303	1,3	104
YERSHKLRKNNHH	5671	23.6	41	RKLYERS	319	1,3	103
ERSHKLRKNNHHL	13619	56,6	8	KLYERSH	492	2,0	96
RSHKLRKNNHHLF	15582	64,7	6	LYERSHK	154	0,6	114
SARKLYERSHKL	2870	11,9	63	YERSHKL	1001	4,2	88
ARKLYERSHKLR	3502	14,5	57	ERSHKLR	1813	7,5	79
RKLYERSHKLRK	5991	24,9	36	RSHKLRK	5547	23,0	42
KLYERSHKLRKN	2958	12,3	61	SHKLRKN	6576	27,3	30
LYERSHKLRKNN	1841	7,6	77	HKLRKNN	372	1,5	100
YERSHKLRKNNH	12507	51,9	11	KLRKNNH	4553	18,9	47
ERSHKLRKNNHL	12640	52,5	9	LRKNNHH	2794	11,6	64
RSHKLRKNNHHL	6920	28,7	26	RKNNHHL	1636	6,8	80
SHKLRKNNHHLF	15721	65,3	5	KNNHHLF	808	3,4	92
SARKLYERSHK	2157	9,0	71	SARKLY	207	0,9	109
ARKLYERSHKL	4210	17,5	50	ARKLYE	265	1,1	108
RKLYERSHKLR	6047	25,1	35	KALIEK	400	1,9	98
KLYERSHKLRK	357	1,5	101	LIERS	48	1.2	119
LYERSHKLRKN	113	0,5	116	VEDCUE	299	1,2	105
YERSHKLRKNN	187	0,8	112	FRSHKT	200	ו, ו 10 ס	107
ERSHKLRKNNH	4/50	19,7	44	RSHKI.R	2400	10,2 1 F	98
KORALKKNNHH	3226	13,4	60	SHKLRK	401	7,5 2 A	00 07
STALKANNHIL UKI DYNNUUT P	0100	24,2	රර 10	HKLRKN	-91 686	2,0 2 R	97
SARKI.VERSU	11003 2202	49,3	12	KLRKNN	1239	5 1	85
ADKI VEDCUK	2202	ອ, I ຂາ	69	LRKNNH	2338	97	68
RKI.YERSHKI.	1002	0,2 10.2	02 76	RKNNHH	5464	22.7	43
KLYERSHKLR	10/20	19,2 Q 1	40	KNNHHL	2894	12.0	62
LYERSHKLRK	2415	10.0	67	NNHHLF	6638	27,6	28
			υ.			-	

Tab. 7.1 Dargestellt ist eine quantitative Auswertung der Punktmuster, der eine Bindung von GST-Occludin.264-521 an die entsprechenden Peptidsequenzen aus CC2a₂₀ aus der Guk-Domäne von ZO-1 entspricht. Die Lichtintensitäten (BLU) sind als Absolut- und prozentualen Werte dargestellt. Die Nummer (letzte Spalte) kennzeichnet die Position auf der Membran.

7.6 Abbildungsverzeichnis

Abbildungen

1.1	Schematischer Aufbau der Blut-Hirn-Schranke (BHS)	2
1.2	Schematische Vorstellungen über die Zell-Zell.Kontaktstrukturen	5
1.3	Elektronenmikroskopische Aufnahmen der TJ in Epithelzellen	6
1.4	Das Protein- und Lipidmodell der TJ	7
1.5	Multiple Funktionen der TJ-Stränge und Modell der TJ	9
1.6	Faltungsmodell von Occludin	11
1.7	Gegenwärtige Vorstellung der Proteinkomplexe in den TJ	16
1.8	Prinzip der SPR-Spektroskopie	18
2.1	Darstellung der Immobilisierungsprozedur	30
2.2	SPR-Sensorgramm der Assoziation und Dissoziation von ZO-1.644-812	
	und der Regenerierung der Sensoroberfläche	32
2.3	Schematische Darstellung der Längenanalyse des potentiell helikalen	
	Abschnittes CC2a ₂₀ der Guk-Domäne von ZO-1	36
3.1	Bioinformatische Analyse von potentiellen Proteinbindungsdomänen	
	in Occludin und ZO-1	38
3.2	Amplifikate der Polymerasekettenreaktion	40
3.3	Einfluß der Induktionszeit auf die Expressionshöhe von Occludin	40
3.4	Reinigung von Occludin	41
3.5	10%-ige SDS-Page ausgewählter ZO-1-Fragmente nach der Amylose-Resin- Säulenreinigung	42
3.6	Untersuchung der Sedimentationseigenschaften von ZO-1	43
3.7	Darstellung untersuchter ZO-1-Fragmente	44
3.8	Wechselwirkung von ZO-1.644-812 mit Occludin.378-521	45
3.9	Normierung der Bindungsergebnisse zwischen ZO-1.644-812 und Occludin	46
3.10	Zusammenfassende Darstellung der Bindung aller ZO-1-Fragmente an	10
2 1 1	Occiuuiii.578-521 Zugammanfaggung allar SDD. Maßargabnigga bei der Washaalwirkung von	48
3.11	2.5 uM aingasetter ZO 1 Forgmonte mit dem immehiligierten Ogeludin	40
2 1 2	2,5 µM enigesetzter 20-1-Faigmente int dem infinoonisierten Occidum Pastimmung dar kinatischen Daramater der SDD. Songergramme von	49
5.12	70. 1.644.912 hai dar Dindung an Osaludin 279.521	50
2 1 2	ZU-1.044-612 Dei der Dindung an Occiudin.576-521 Zusammenfassung der K. Werte der Weehselwirkung verschiedener	50
5.15	Zusahinicinassung der KD- werte der wechserwirkung verschiedener	52
3 1/	Spezifität der Interaktion zwischen Occludin 378 521 und 70 1 644 812	52
3.14	Analyse des Massentransports in der Assoziationsphase	54
3.15	Finfluß verschiedener Meßbedingungen auf die Interaktion zwischen	54
5.10	ZO-1 644-812 und Occludin 378-521	54
3 17	SPR-Messungen unter Sättigungsbedingungen	55
3.17	Ontimierung der Regenerationsbedingungen an der Sensoroberfläche	56
3 10	Effekt von SIN-1 auf die Interaktion zwischen 70-1 644-812 und Occludin	57
3 20	Immobilisierung verschiedener 70-1-Pentidsequenzen an den CM5-Chin	59
3.20	Konzentrationsabhängigkeit der Bindung von Occludin 378-521 an	5)
	verschiedene Pentidsequenzen von ZO-1	60
3.22	Bestimmung der kinetischen Konstanten aus den SPR-Sensorgrammen	61
3.23	Affinitätsbindung von Occludin mit den Pentiden P 750-769 und P 745-772	63
	r = r = r	

3.24	Western Blot von Occludin aus MDCK-Zellysat zur Darstellung der Bindung	
	an $CC2a_{28}$	63
3.25	Längenanalyse von CC2a ₂₀	64
3.26	Substitutionsanalyse von CC2a ₂₀	66
3.27	Circulardichroismus-Spektren von CC1, CC2a sowie CC2b	67
3.28 4.1	Bestimmung der Strukturbestandteile des C-terminalen Teils von Occludin Semiquantitative Auswertung der SPR-Messungen aller ZO-1-Fragmente	67
	hinsichtlich ihrer Bindungsmengen an das immobilisierte Occludin.378-521	77
4.2	Schematische Darstellung der SH3-Guk-Einheit	84
4.3	Hypothetisches 3D-Domänentausch-Modell	87
7.1.1	Wechselwirkung von ZO-1.589-731 mit dem immobilisierten Occludin	117
7.1.2	Wechselwirkung von ZO-1.589-772 mit dem immobilisierten Occludin	117
7.1.3	Wechselwirkung von ZO-1.589-812 mit dem immobilisierten Occludin	118
7.1.4	Wechselwirkung von ZO-1.597-731 mit dem immobilisierten Occludin	119
7.1.5	Wechselwirkung von ZO-1.597-772 mit dem immobilisierten Occludin	119
7.1.6	Wechselwirkung von ZO-1.597-812 mit dem immobilisierten Occludin	120
7.1.7	Wechselwirkung von ZO-1.601-772 mit dem immobilisierten Occludin	121
7.1.8	Wechselwirkung von ZO-1.601-812 mit dem immobilisierten Occludin	121
7.1.9	Wechselwirkung von ZO-1.601-890 mit dem immobilisierten Occludin	122
7.1.10	Wechselwirkung von ZO-1.644-731 mit dem immobilisierten Occludin	123
7.1.11	Wechselwirkung von ZO-1.644-772 mit dem immobilisierten Occludin	123
7.1.12	Wechselwirkung von ZO-1.644-812 mit dem immobilisierten Occludin	124
7.1.13	Wechselwirkung von ZO-1.644-890 mit dem immobilisierten Occludin	125
7.1.14	SPR-Kontrollmessungen	125
Tabell	en	
0.1		22
2.1	Bezeichnung der ZO-I-Transkripte	22
2.2	Zusammensetzung der Komponenten der Sammel- und Trenngele für die	25
• •	Gelelektrophorese (SDS-Page)	25
2.3	Bedingungen der Anionenaustauschchromatographie (FPLC)	27
3.1	Zusammenfassung der kinetischen Parameter der Wechselwirkung zwischen	
	den untersuchten ZO-1-Fragmenten und dem immobilisierten Occludin	51
3.2	Der Einfluß der Flußrate auf das Bindungsverhalten (ΔRU) und die	
	kinetischen Parameter k_d , k_a , K_D	53
3.3	Kinetische Konstanten der Wechselwirkung zwischen ZO-1.644-812 und	
	Occludin.378-521 unter dem Einfluß von SIN-1	58
3.4	Kinetische Konstanten der Wechselwirkung von Occludin.378-521 mit den	
	Peptidsequenzen CC1 und CC2a aus ZO-1	62
3.5	Darstellung der prozentualen Lumineszenzwerte der Längenanalyse	65
7.1	Auswertung der Längenanalyse von CC2a20 mit GST-Occludin.264-521	126