

Universal Multishell Nanotransporters

Dissertation zur Erlangung des akademischen Grades des Doktor der Naturwissenschaften (Dr. rer. nat.)

Eingereicht in Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Michał Roman Radowski

aus Gdańsk

September 2007

- 1. Gutachter: Prof. Dr. Rainer Haag, Freie Universität Berlin
- 2. Gutachter: Prof. Dr. Heinz Rehage, Universität Dortmund

Disputation am 5.11.2007

The following PhD thesis was carried out within the research group of Prof. Dr. Rainer Haag from October 2002 until July 2003 at the Institute of Macromolecular Chemistry of the Albert-Ludwigs-Universität, Freiburg, from August 2003 until March 2005 at the Department of Chemistry of the Universität Dortmund, and from April 2005 until September 2007 at the Institute of Chemistry and Biochemistry of the Freie Universität Berlin.

The initial two years of this thesis were supported by a kekulé grant of the Fonds des Verbandes der Chemischen Industrie, to which I would like to express my gratitude.

dla Asi

Acknowledgements

First I would like to thank Professor Dr. Rainer Haag for offering me the chance to work in his research group on this interesting topic and for his scientific and personal support.

I would like to thank Asia Wodzinska for supporting me and also for helping me during this work with encapsulation experiments and analytical measurements.

I thank Juliane Keilitz for being a marvellous and patient proofreader, as well as Markus Meise, Dr. Pamela Winchester, and Wiebke Fischer for correcting of this thesis.

I am grateful to Prof. Heinz Rehage and Dr. Anuj Shukla for CAC and DLS measurements and interesting discussions and fruitful cooperation.

I must express my gratitude to PD Dr. Christoph Böttcher and Dr. Hans v. Berlepsch for CryoTEM and TEM experiments and to Dr. Marta Kopaczynska and Andrea Schulz for AFM measurements.

I would like to thank Dr. Hans Jörg Kunte and Christel Teuber for fungicidal tests and Prof. Dr. Thomas Lisowsky for antibacterial experiments.

I am grateful to Dr. Carina Treiber for endocytosis tests and Annett Richter for cytotoxical studies.

I thank Dr. Felix Kratz and Dr. Kai Licha for *in vitro* and *in vivo* studies for antitumor therapy and tumor imaging.

I am grateful to the analytical department of the Freie Universität Berlin, Dortmund Universität, and Albert-Ludwigs-Universität, Freiburg for performing analytics.

All members, former and present, of the Haag group are thanked for very nice time together and for the plesant atmosphere. Especially I would like to thank Dr. Michael Krämer, Dr. Holger Türk, Dr. Sebastian Roller, and Dr. Conrad Siegers for a help and a very nice time in Freiburg.

Last but not least I would like to thank my beloved parents, family and Asia Wodzinska, which stood all the time by my side, always ready to help me and support me.

Table of contents

List	of abbr	reviations	III	
Nom	enclatu	ure of polymers and core-multishell architectures	V	
1.	General introduction			
	1.1.	Classification of polymers due to geometrical shape	1	
	1.2.	Dendrimers	2	
	1.3.	Hyperbranched polymers		
	1.4.	Biocompatible Poly(ethers) materials for medical applications		
	1.5.	Supramolecular systems for nanocompartmentation		
		1.5.1. General aspects of nanocompartmentation	14	
		1.5.2. Block-copolymer micelles	19	
		1.5.3. Liposomes, polymeric liposomes, "Stealth" liposomes	s 23	
		1.5.4. Core-shell architectures with dendrimers and hyperbolic	ranched	
		polymers and their applications	27	
2.	Scie	entific goals	36	
3.	Deno	dritic core-multishell architectures with PEI core	38	
	3.1.	Introduction	38	
	3.2.	Synthesis of core-shell architectures		
	3.3.	Stability and solubility of core-multishell architectures in varie	ous	
		types of solvent		
	3.4.	Determination of the transport capacity (TC) of core-multishell architectures		
		3.4.1. Universal transport abilities of nanotransporters	53	
		3.4.2. Dependence of the TC on the molecular weight of PE	El core 58	
		3.4.3. Dependence of the TC on the length of mPEG chain	62	
		3.4.4. Dependence of the TC on the length of the aliphatic	chain 65	
		3.4.5. Dependence of the TC on the degree of functionalization	ation (DF)	
		of the core	69	
		3.4.6. Dependence of the TC on the concentration of the po	olymer 71	
		3.4.7. The dynamics of the encapsulation process by core-	multishell	
		architectures	78	
		3.4.8. Summary and discussion of the transport capacity	84	
4. Do	endriti	ic core-multishell architectures with PG-amine core	88	
	4.1.	Introduction	88	
	4.2.	Synthesis of the core-multishell architectures with PG core		
	4.3.	Determination of the transport capacity of core-shell architectures		

	with PG-amine core	93	
5. Dendri	c core-multishell architectures with PAMAM core	101	
5.1.	Introduction	101	
5.2.	Synthesis of core-shell architecture with PAMAM core	101	
5.3.	Determination of the transport capacity for PAMAM based core-multishell		
	architectures	103	
6. Analys	s of the transport phenomena	107	
6.1.	Molecular modelling of core-multishell architecture	107	
6.2.	CAC measurement for various core-multishell architectures	108	
6.3	Dynamic light scattering measurements of polymers	111	
6.4	CryoTEM measurements of the polymers	117	
6.5.	Negative staining TEM	119	
6.6.	AFM measurements of the polymers	120	
6.7.	Discussion of the transport theory of supramolecular aggregates	123	
7. Biome	cal applications of core-multishell architectures	130	
7.1.	Core-multishell architectures as nanotransporters for antibacterial		
	and fungicidal applications	130	
	7.1.1. Introduction	130	
	7.1.2. Preparation of silver loaded nanotransporters, results and discussion	131	
7.2.	Core-multishell architectures as drug delivery and in vivo imaging agents		
	for anti-tumor therapy	138	
	7.2.1 Anti-tumor drug delivery agent	138	
	7.2.2. <i>In vivo</i> tumor imaging agent	140	
8. Summa	y and Conclusions	142	
9. Outloo		149	
10. Exper	mental part	151	
10.1	Materials and Methods	151	
10.2	Synthesis of dendritic core-multishell architectures	156	
11. Biblio	11. Bibliography		
Appendices			

List of abbreviations

Ac	acetal
AFM	atomic force microscopy
t-BOC	tert-butyloxycarbonyl, tert-butyloxy protective group
CAC	critical aggregate concentration
CDCI ₃	deuterated chloroform
CH_2CI_2	dichloromethane (DCM)
CMC	critical micelle concentration
conc.	concentrated
const.	constant
D	dendritic unit
DB	degree of branching
DCC	N,N'-dicyclohexylcarbodiimide
DCU	1,3-dicyclohexylurea
DF	degree of (core) functionalization
DF _A	absolute degree of (core) functionalization
DF_{NH2}	absolute degree of PG (core) functionalization with amine groups
DF_{PG}	absolute degree of PG-amine core functionalization
DLS	dynamic light scattering
DCM	dichloromethane (CH ₂ Cl ₂)
DMF	N,N'-dimethylformamide
DMSO	dimethyl sulfoxide
DMSO-d ₆	deuterated dimethyl sulfoxide
DNA	deoxyribonucleic acid
DOXO	doxorubicin
DPn	degree of polymerization
DPH	diphenylhexatriene
eq.	equivalent
Et ₂ O	diethylether
EtOH	ethanol
FDA	Food and Drug Administration
h	hour
H_2SO_4	sulfuric acid
HONSu	N-hydroxysuccinimide
HOPG	highly ordered pyrolytic graphite
Hz	Hertz

κ	partition coefficient (distribution coefficient)
L	linear unit
LED	light emitting diode
OLED	organic light emitting diode
OMs	O-mesylate group
МеОН	methanol
MHz	MegaHertz
min	minute
mPEG	monomethyl poly(ethylene glycol) ether
M _n	number average molecular weight
MsCl	mesylchloride
MTX	methotrexate
M _w	weight average molecular weight
MWCO	molecular weight cut-off
MWD	molecular weight distribution (M_w/M_n)
NIPAM	<i>N</i> -isopropylacrylamide
NMR	nuclear magnetic resonance
PAA	poly(acrylic acid)
PAMAM	poly(amidoamine)
PCPP	poly (dicarboxylatophenoxyphosphazene)
PD	polydispersity
PG	polyglycerol
PEAA	poly(2-ethylacrylic acid)
PEI	poly(ethylene imine)
PEG	poly(ethylene glycol)
PEO	poly(ethylene oxide)
PHPMA	N-(2-hydroxypropyl)methacrylamide
PIHCA	polyisohexylcyanoacrylate
PLGA	poly(D,L-lactic-co-glycolic acid)
PNIPAM	poly-N-isopropylacrylamide
POE	poly(orthoethers)
PPh_3	triphenylphosphine
PPh ₃ O	triphenylphosphine oxide
PPI	poly(propylene imine)
ppm	parts per million
PTSA	p-toluenesulfonic acid, 4-methylbenzenesulfonic acid
PVP	poly(vinylpirolidone)

quant.	quantitative
RB	rose bengal
r.t.	room temperature
RNA	ribonucleic acid
SAXS	small-angle X-ray scattering
SEC	size exclusion chromatography
Т	terminal unit
тс	transport capacity
TC _{rel}	relative transport capacity
TEM	transmission electron microscopy
TLC	thin layer chromatography
UV/Vis	Ultra-Violet / Visual range spectroscopy

Nomenclature of polymers and core-multishell architectures

Polymers, dendrimers, and chemicals

PEIz	hyperbranched poly(ethylene imine) (PEI), $z = M_n$ [g mol ⁻¹]
PG _z	hyperbranched polyglycerol (PG), $z = M_n$ [g mol ⁻¹]
PAMAM[G5]	poly(amidoamine) dendrimer, 5^{th} generation, 64 -NH ₂ groups (T)
mPEG _m	methoxy poly(ethylene glcol), m = averange number of glycol
	unit per polymeric chain.
C ₆	adipic acid (1,4-butanedicarboxylic acid)
C ₁₂	1,12-dodecanedioic acid
C ₁₈	1,18-octadecanedioic acid
C _x mPEG _y	<i>x</i> -(methoxy-poly[ethylene glycol]-oxy)- <i>x</i> -oxo-diotic acid
	(amphiphile) where x is aliphatic chain length equal to the
	length of the dioic acid chain and y is averange number of
	glycol units per poly(ethylene gylcol) chain
(C _x mPEG _y)-ONSu	1-(2,5-dioxopyrrolidin-1-yl)-(x)-methoxy-poly(ethylene~glycol)yl-
	dioate (amphiphile acitve ester) where x is aliphatic chain length
	equal to the length of the dioic acid chain and y is averange
	number of glycol units per poly(ethylene gylcol) chain.
	Activation via N-hydroxysiccinamide active ester.

Core-multishell architectures

- $PEI_z(C_xmPEG_y)_a$ nomencalture of the core-multishell architectures with PEI core;
numbers indicates: $z = M_n$ [g mol⁻¹] of the core, x = inner shell
carbon chain length, y = outer mPEG shell number of glycol
units, and a = degree of functionalization of the terminal NH2
groups.
- $PG_z(-NH_2)_a(C_xmPEG_y)_b$ nomencalture of the core-multishell architectures with PG-amine core; numbers indicates: $z = M_n$ [g mol⁻¹] of the core, a = degree of functionalization of the PG core with amine groups, x = inner shell carbon chain length, y = outer mPEG shell number of glycol units, and b = degree of functionalization of the NH₂ groups.
- PAMAM[G5](C_x mPEG_y)_a nomencalture of the core-multishell architectures with PAMAM [G5] dendrimer as a core; numbers indicates: x = inner shell carbon chain length, y = outer mPEG shell number of glycol units, and a = degree of functionalization of the NH₂ groups.