The Docile Learner

CHAPTER 4
The Docile Learner:

How People Combine Advice and Reinforcement to Mak&ood Choices

Chapters 2 and 3 explained cooperative behavigroaps, by assuming that people use
reciprocity as a decision rule. A problem for agmiwes which assume that decision rules
determine people’s behavior is that they have faaex how people learn and choose among
decision rules. Different solutions have been psegoto this problem. In the tradition of
research of the adaptive decision maker (Paynk, et993), it is assumed that decision makers
trade off accuracy and effort to choose the rulgt s most efficient given their cognitive
capacities. March (1996) suggested an approprissein@mework, which assumes that decision
makers use cues in the decision environment toddewhich decision rule is (socially)
appropriate. A third approach, individual learnihgs recently gained prominence. For instance
Rieskamp and Otto (submitted for publication) hpx@posed a strategy selection theory, which
assumes that a reinforcement learning process ideschow people learn among cognitive
strategies. The aim of this chapter is to propasgat learning as an additional account for
strategy learning.

While the ultimate goal is to explain how peoplarteamong decision rules, this chapter
builds the foundation for this goal, by examinimgial learning among simpler choice options in
the multi-armed bandit paradigm. Strategy learmsng complex process where decision makers
first have to acquire the skill to apply a decisgirategy and then learn which of the available
strategies performs best in a specific task (Smr&g&iegler, 1998; Siegler & Araya, 2005;
Siegler & Chen, 2002). As the social learning medelill examine are concerned with the
second part, identifying the best option from acfedptions, | will examine social learning in
the multi-armed bandit paradigm, where people wecdecision strategies as advice which are
easy to use.

4.1 Introduction

Many decisions are made in a social context, whemsion makers can observe others’
decisions, or can seek and receive advice fronr gbeple. Accordingly, it has frequently been
argued that we learn from others what to choodsoar to make decisions (e.g. Bandura, 1977,
Joseph Henrich & McElreath, 2003; Laland, 2001 S&hotter & Sopher, 2003; Simon, 1955).
Social information seems especially valuable inaibns of uncertainty (Festinger, 1954), for
instance, when the decision maker has little kndgéeabout the judgmental domain, when

outcomes of choice options seem similar, or whéarmation about objects or choice options
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has to be accessed through one’s own experiendeedn it has recently been argued that in
many real-life situations, information about obgeot choice options is not available in the form
of attribute lists. Instead, people make decisibased on experienced consequences of their
decisions and the involved learning process (Hertiarron, Weber, & Erev, 2004). In the
present article, | argue that in decision situaicharacterized by uncertainty and incomplete
knowledge, people do not only make their decisittased on individual learning, but
additionally based on others’ advice. The main gdbahe present article consists of exploring to
what extent, and in which way, individual learnipgpcesses in repeated choice situations are
influenced by the advice of others.

The classical paradigm to examine choices fromoaoptiwith uncertain payoffs is the
multi-armed bandit paradigm, in which, in analogychoice between different slot machines,
decision makers choose between two or more optimnghich at least one has an unknown
payoff distribution (Sutton & Barto, 1998).Because in this paradigm the decision maker is
usually only informed about the payoff of the chosption, he or she faces the problem of
exploration versus exploitation. On the one ham@, decision maker wants to explore the
options to find the one that provides the highestoff. On the other hand, the decision maker
wants to exploit his or her knowledge by alwaysadiog the option with the highest estimated
payoff. How decision makers trade-off exploitatimnd exploration in multi-armed bandits has
been studied extensively (e.g. Gans, Knox, & Crp&894; e.g., Hutchinson & Meyer, 1994;
Meyer & Shi, 1995; Murray, 1971; Vulkan, 2000). Aominent version of the multi-armed
bandit problem is the lowa Gambling Task (IGT, Baey Damasio, Damasio, & Anderson,
1994), in which decision makers repeatedly cho@dscfrom four options (card decks) with
different expected payoffs (for a review, see MaislcClelland, 2004).

The optimal choice strategy in the multi-armed biamadoblem is the Gittins Index
strategy, which prescribes to choose the optioh Wit highest Gittins Index (Gittins, 1989).
The Gittins Index of an option is the sum of itpested payoff (which is updated according to
Bayes’ rule) and the increase of (discounted) &utpayoffs that can result from additional
information gained by experimenting with that optidHowever, the Gittins Index is very
complex to calculate, and is generally not assutodxt a descriptive model. Instead, learning in
repeated choice tasks or decisions from experibasebeen modeled as having only limited
demands on the decision maker’s cognitive abilittsommon result of these studies is that

21| refer tochoicesfrom experience. Others have examined how covanistbetween attributes are assessed when
objects are presented trial by trial versus ingdbfm (see Allan, 1993; Kao & Wasserman, 1993n8ba1991;
Ward & Jenkins, 1965).
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models implementing the law-of-effect (Thorndik®2T) usually describe the learning process
best.

Yechiam and Busemeyer (2005) have reviewed learnmindels for the IGT, which all
assume initial expectancies for options that adatgu on the basis of learning. First, the models
can be distinguished as interference versus deaagelsy with the first updating only the
expectancies of chosen options and the latter iaddlty reducing the expectancies of all
options as a function of time. Second, the models be distinguished as using either a
maximizing or probabilistic choice rule. With a nixzing choice rule, a model always chooses
the option with the highest expectancy, and exgloaéernative options with a constant
probability. With a probabilistic choice rule, omtis are chosen probabilistically as a function of
the options’ expectancies. In addition to the leamynimodels, Busemeyer and Stout (2002) have
examined alternative models, the Strategy-Switchiguristic and the Bayesian-Expected
Utility Model, but these models described choicesthe IGT less adequately than learning
models. Modeling behavior in a two-armed bandiktaGans et al. (2004) proposed a class of
more complex models, implementing the Gittins Indexrl a class of cognitively less demanding
models. Gans et al. used the Gittins Index straggyne descriptive model. Their Myopic
Model also uses the Gittins Index strategy, butudates the Gittins Index of choice options
based on a shortened (instead of an infinite) thmezon, and their Simple Model further
simplifies the Myopic Model by assuming that playenly distinguish between good and bad
decks (i.e., they do not calculate expected payodfs choosing a deck). The other, cognitively
less demanding, models that Gans et al. proposed hasth, which calculates the expected
payoff of a deck based on the laspayoffs from an option, Hot Hand, which assumes th
options that were good recently will be good infileire, and an Exponential Smoothing, which
has a functional form similar to simple reinforcerhkearning models (e.g., Erev & Roth, 1998).
Erev and Barron (2005) proposed the RELACS Modetxplain learning when decisions are
made from experience (see, e.g., Barron & Erev32b@rtwig et al., 2004; E. U. Weber, Shafir,
& Blais, 2004) and for the probability learning kalRELACS assumes that a reinforcement
learning process describes how decision makers laarong three different choice strategies.
The first choice strategyfast best reply chooses the best response to recent outcomes, the
second choice strateghpss aversiorand casebase reasoningavoids checks if options have
high losses and searches for patterns in the pagretim, and the third choice strategjpw best
reply, chooses options that were best over a long pefitiche.

A feature common to all models described aboveh& they assume learning, based

exclusively on individually experienced outcomémttis, the initial evaluation and the updating
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process for all choice options are assumed to &etichl. However, decision makers are often
influenced by other people when making choices.ofiee of social learning describe how
people use social information in decision makingl &arning. Bandura’s (1977) prominent
social learning theory assumes that higher ordgnitiwe processes and reinforcement processes
are necessary to account for social learning. Mpexifically, the theory assumes that people
learn simple behavior and complex concepts by @hten and cognitive modeling, without
imitating the role model and without being reinfedc (Rosenthal & Zimmerman, 1978;
Zimmerman & Rosenthal, 1974). However, reinforceméuersonal or vicarious) is still
important since it determines whether the learnetlalior will actually be implemented.
Recently, more specific computational social leagriheories have been proposed. Inspired by
the theory of the gene-culture evolution of Boyd &icherson (1985), McElreath et al. (2004)
proposed a model of imitation learning that combimelividual learning with social learning by
assuming that a choice option is reinforced throwggieived payoff and through the observation
that others choose that option. Apesteguia, Huak @echssler (2003) examined imitation
behavior of interdependent individuals. They corapdaa model from Vega-Redondo (1997) in
which decision makers observe their immediate cditgpe and imitate the behavior of the
single most successful competitor, and a model fBeshlag (1998; 1999) in which decision
makers observe players in the same role (who arearapetitors) and imitate other players
dependent on how much higher their payoff is combao their own payoff. The last group of
social learning theories describes how individuséek and integrate advice. Budescu and
Rantilla (2000) describe how decision makers irgegrexpert opinions with a model that
weights experts advice according to the amoumfofmation that advisors had available. Yaniv
and colleagues examined how decision makers irteegavice they received to update their own
numerical judgments. Yaniv and Kleinberger (200@)rfd that decision makers put too little
weight on others’ advice, given the accuracy ofie&lveceivers and advisors, whereby more
knowledgeable decision makers discount advice ntloam the less knowledgeable (Yaniv,
2004b). Regarding the integration of advice, theynfl that lower weights were given to advices
distant from their own initial estimate and to @er in a distribution of advice values (Harries,
Yaniv, & Harvey, 2004). Importantly, Yaniv (20042004b) points out that advice (from
independent decision makers) generally improvesopaance. Luan, Sorkin and ltzkowitz
(2004, submitted for publication) tested the usaafice in signal detection tasks and found that
players are sensitive to the quality of advice—tpay higher weights on better advisors—and
that they search advice in an adaptive fashion vithey can decide if, and from whom, to seek

advice.
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While these models of social learning explain haweia information is used in the
decision situations they were developed for, | torprovide a complement to these theories that
explains the use of single advice in repeated ehsittiations. More specifically, existing models
of advice-seeking and integration describe howaedis used for single judgments and not for
repeated choices, and models of imitation desanii@tion when others can be observed before
each choice, but not when one observation is fabbly repeated choices. To fill this gap, this
article proposes and tests models, explicitly modehow decision makers use individual
experience and one-time advice when making repehiades.

The article is structured as follows. In the nextt®n, | describe the paradigm | use to
examine advice following in repeated choice task&l report on the results in Experiment 4.1
which examined if decision makers would follow amvi | then illustrate models that aim to
describe advice receivers’ behavior and report hesll they describe behavior. A second
experiment then tests, among the three models atogubest for advice receivers choices. |

conclude with a general discussion.

4.2 Experiment 4.1

Experiment 4.1 examined how social learning infeemnchoices in the lowa Gambling
Task (IGT, Bechara et al., 1994). In the IGT, maoants receive an initial endowment (10 euro
in Experiment 4.1), and then choose cards from &bifierent decks (A, B, C, D). Whenever a
participant chooses deck A or B, he or she recavesvard of .5 euro, when he or she chooses
deck C or D, he or she receives .25 euro. Partitgpsometimes also incur a loss when choosing
a deck. Losses from choosing decks C and D (hertbéfgood decks”) are moderate, so that the
expected payoff from those decks after 100 triald2.5 euro. Losses from decks A and B
(henceforth “bad decks”) are so large that the etguepayoff for these decks is —12.5 euro. The
differences between decks with the same expectgaffga that one deck has relatively frequent,
but low losses (low variance), whereas the othek éhas rare, but high losses (high variance).
The payoff schedule | used is identical to the dakeintroduced by Bechara et al. (1994). A
crucial property of this schedule is that lossesnfthe bad decks (A and B) occur relatively late,
so that the bad decks initially seem to be beWéren choosing in the IGT, participants usually
need at least 20 trials to learn which decks alowearn money, and after that still sometimes
choose one of the bad decks (Maia & McClelland,4200he question the first experiment
addresses is whether social learning can improvigcipants’ performance by helping them to
detect the good decks earlier and also by incrgdbim likelihood to choose good decks later in

the task. A useful property of the IGT is that thwe good decks have identical expected payoffs,

95



The Docile Learner

so that adherence to advice can be tested by exaiow frequently participants adhere to the
advised deck in the presence of an equally attactiternative (henceforth “corresponding
deck”).

4.2.1 Method
4.2.1.1 Design

To examine the effect of social learning, partiaisgperformed the IGT with, and without,
advice. Independent participants in condition oedgrmed the IGT without receiving or giving
advice. Participants in condition two, advisorgf@ened the IGT without receiving advice, then
chose one of several predetermined advices forhangiarticipant, and finally performed the
IGT again. Participants in condition three, receyeeceived advice from an advisor and then
performed the IGT?
4.2.1.2 Participants and Procedure

In the experiment, 90 participants, mostly studdmsn the Free University of Berlin
(54% women with a mean age of 25 years), were rahdassigned to the three conditions.

In the independent learning condition, participamése instructed that they are taking part
in a decision making experiment in which they wordgeatedly choose cards from four card
decks. It was then explained that drawing a cardldvalways lead to a gain or a loss, which
would be depicted on the back of a card, and thatgain or loss would be added to their
account. The instructions also explained that ooeldclearn during the experiment which
payoffs are associated with which decks.

To inform all participants about the stochastiaunatof the task, it was explained that the
payoffs from the card decks were determined beafweexperiment began, and that participants’
choices could not influence the payoffs from thekdeor the order of the payoffs within a deck.
To further clarify the stochastic nature, the @tparticipants in each condition were asked to
imagine that they choose from actual card decksbésavior (i.e., frequency to choose good
decks, and adherence to advice of advice recewas)the same for all participants, | will not
distinguish between the first 10 and last 20 pigdicts in the conditions.

After the introduction of the task, participantsrev¢old that they would start the task with
an initial endowment of 10 euro, they were remintieat their show-up payment was 5 euro,

and that they would receive their final accountibak minus the 10 euro initial endowment as a

2| also assessed the participants’ risk preferécicélolt & Laury, 2002), risk attitudes (cf. Jotums Wilke, &
Weber, 2004; E. U. Weber, Blais, & Betz, 2002), anttkcisiveness after the IGT. As | found no meghih
correlations between these measures and adhereadgite or models’ fits and parameters, | will regtort on
these data.
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variable payment. In case the final account balavae negative, participants still received the

show-up payment (they learned this only after tkpeement).

) bechara Q@@

Round-1

Account
10.5 Euro

Card Decks

——Deck B——

Gain: 0.5 Euro

Loss: 0 Euro

‘ Continue ’

Figure 4.1.Graphical user interface for participants in Expents 1 and 2. Participants chase

decks by clicking on the decks.

Finally, participants were briefly instructed abalé graphical user interface (see Figure
4.1) used to conduct the experiment. After choosirgrd by clicking on it, the display showed
participants the gain (in green) and the loss €it) mssociated with the card. At the same time,
the overall account was updated with the payothefcurrent choice. To continue with the next
trial, participants had to click the “continue” but. The minimum time interval between two
choices was fixed to 3 seconds, no upper limit fixeesl.

Advisors received the same information as indepeindecision makers, plus additional
information about their role as advisors. Spedifigcahey were first informed that they would
choose an advice for another participant, who waealdorm the identical task, after completing
their decision-making task. In order to be ablevaluate if receivers actually follow advice, a
set of feasible advices was predefined. Advisonslcc@hoose among four advice strategies
which were “choose always from deck A” (or “B”, &€”, or “D”). The feasible advices were
presented to advisors before they made their D6t choices. Advisors were not informed that
they would encounter the same task again aftengithhe advice (henceforth the second 100
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choices). Advisor and receiver always participatethe same session. To communicate advice,
an advisor indicated his or her advice on a forrhjctv was then given to the receiver. To
motivate advisors and to make them credible toadweceivers, they received, additionally to
the payoff from their own choices, 50% of the reees’ payoffs.

Receivers received first the instructions of thd J@nd then the form with the feasible
advices, one of which was marked as advice by as@din the same session. Receivers were
informed that the advisor had sufficient experiendth the task to give good advice, and that
the advisor would receive a payment equivalentO®% f the receiver’s variable payment from
the IGT. As in the other conditions, receivers’ighle payment depended on their performance
in the IGT.

Experiments were conducted in sessions with twaixoparticipants. All participants

completed the experiment in separate cubicles,ghexenting any interaction.

4.2.2 Results From Experiment 4.1

4.2.2.1 Choices and Performance

Participants earned, on average, 5.02 euro (SBY) I the IGT. Independent decision
makers chose one of the two good decks, on averag2% (SD = 14%) of all 100 trials, which
is less than the proportion of 73% (SD = 2%) withak advisors chose one of the good decks in
their last 100 trials, [t(29) = 4.13, p < .001, dL©6], and less than receivers with 78% (SD =
17), t(29) = 2.54, p < .001, d = 0.66. Receiverssehone of the good decks across their 100
trials more frequently than advisors in their fit€0 trials, t(29) = 3.11, p =.003, d = 0.8. The
advisors chose one of the good decks in, on aves®&§é (SD = 14) of the first 100 trials and in
73% in the last 100 trials, thus, they increaseir herformance significantly, t(29) = 4.75, p <
.001,d=1.23.

Figure 4.2 shows, for 100 trials of each conditite, proportion of participants who chose
one of the two good decks. This proportion decliaethe beginning (i.e., 10 to 20 trials) for all
groups, with the exception of the advisors at thgifning of their second 100 trials.

Figure 4.2 also shows that receivers at the beggnif the task perform better than
advisors in the beginning of their second 100drialowever, starting at about trial 15, due to a
strong increase of the advisors’ performance, deeivers perform worse than the advisors, and
only at the end of the 100 trials do both groupdqgoe equally well again. In sum, advice
generally improves performance, compared to inegpeed participants, with the advantage of

being especially large in the first trials.

98



The Docile Learner

1 -
09 il __ |
| )
\ 7 S &&\/M
0.8 —~ N S
g / / / L
é 0.7 r ‘\\ /_/ //ﬁ\\vk,\\ e - . \\ N/ //
-8 \\\ /\/ /// /// h A :
g % AL
(%] y ,
(0] \ /
0.5, /
S wﬁ NONSIVERN
e \ -
(8] N /
c 0.4+ o
o
=
g 03
S
D_ 777777 .
0.2+ Advisor 1st 100
Receiver
0.1t Independent DM
—— — Advisor 2nd 100
0 | | 1 1 1
0 20 40 60 80 100
Trial
Figure 4.2.Proportion of participants who chose one of the g@od decks (moving average,
with a window size of 11).

4.2.2.2 Advice-giving and —following

The large majority of 28 participants (93%) in tlode of the advisors gave good advice. From
these 28 advisors, 19 advisors proposed to chbesgood deck with a high payoff variance and
9 proposed to choose the good deck with a low pasfance. The fact that the IGT contains
two options with the same expected payoff allowstaistest the influence of advice. If
participants follow the advice, they will not ontyost likely choose a good deck, as one could
also predict by individual learning, but in addttithey should prefer the advised deck out of the
two good decks.

Receivers chose a good deck with low variance vith@as advised, on average, in 62% of
the trials 8D = 9%), whereas the mean percentage was B (3%) when it was not advised.
The mean percentage for a deck with high varianae 8% $D = 9%) when it was advised,
but 7% GD = 3%) otherwise. Figure 4.3 shows the developméhoice proportions over the
100 trials, and reveals that participants neamyags start by choosing the advised deck, but then
quickly switch to choosing other decks. Howevetermfpproximately 20 trials, the percentage
with which participants choose the advised deckeases again. | refer to this sequence as the
adherence-exploration-adherence pattern. Altogettier results show a strong influence of
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advice on choices because receivers clearly pteéendvised deck to the corresponding deck

with the same expected payoff.

c

ie)

=

o

o

o

o . .

© Low variance advised

o 04 High variance advised

o | |- Low variance not advised
0.3 High variance not advised
0.2}
0.1’1\\//\f,// \\gr/ ST \\// \/\\7\////\/“\

O ! L L L L |
0 20 40 60 80 100
Trial

Figure 4.3. Proportion of participants who chose a deck caomu on advice (moving
average, with a window size of 11). Note that degkk the same expected payoff do not need

to sum up to one because participants can alsesehfomm the two other decks.

The analysis of participants’ choices and advieggests that participants without advice
learn to choose the good decks, receivers follogvativice they received, and advice gives
receivers an advantage especially in the firstad®iThe decline and rebound of the probability
with which receivers chose according to the adwcggests that they combined advice
information with individual experience to determimdiich choices to make. The next section
proposes computational models describing how gpaltif people combine advice and payoff

information.

4.3 Models of Learning in Repeated Choice Tasks

Several types of models have been proposed toibedwow individuals learn to choose
among choice options. As reinforcement learning el®chave been most successful in
describing people’s choices (Busemeyer & Stout22@bdev & Barron, 2005; Gans et al., 2004;

Yechiam & Busemeyer, 2005), | restrict our examorato variants of simple reinforcement
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learning model$? The learning models | propose are similar to tleelets suggested by Erev
and Roth (Erev, 1998; Erev & Roth, 1998) for leagniin normal form games, and by
Busemeyer and colleagues (Busemeyer & Stout, 20@2hiam & Busemeyer, 2005) for
learning in the IGT. Similar models have been useéxplain learning in repeated decisions
(Camerer & Ho, 1999b; Erev & Barron, 2005; Este362). All these models are extensions
following early learning models by Bush and Moge([1955) and Estes (1950).

The decision problem consists of choosing amon@ogt out of a setS={12,...,n} with
n options. Before making a decision, the decisiofkenanight receive an advicA={1,...,m}
which is a subset @& Generally, an advice can consist of one or sée@tions. After choosing

optioni in trial t, the decision maker receives a payeff).

4.3.1 Individual Learning

Models of reinforcement learning assume that ppeits’ choices are determined by the
law-of-effect (Thorndike, 1927), that is, optionkioh produced higher payoffs are chosen with
a higher probability. Recently, reinforcement |leagnmodels have regained prominence to
explain decision making in various domains (Camé&éfio, 1998; Erev, 1998; Rieskamp &
Otto, 2004; Stahl & Haruvy, 2002). Estes (1962) ¥utkan (2000) reviewed the application of
learning models to repeated choice tasks, espggialbability learning.

According to the individual Reinforcement Learnimgdel (RL), the choice options have
initial propensities before any choices are madeerAhoosing an option, the resulting payoff is
used to update the option’s propensity, which dlscays with time. The probability to choose
an option is a function of its propensity.

Formally, the initial propensity of a strategy hefothe first decision igjl(i) = O.
Independent of choices, the propensities of optaetay with time. After choosing an optign
the propensity(i) of an option is updated with the received paysdfthat:

Ga(i) = 1~ ) [, (i) + 1. (i) (4.1)

where@ is a free decay parameter determining the weifltast experiences in the updating
process, and with(i) = (i) for the chosen option amdi) = O for options not chosen.

The probability of choosing an option is defined by

3| also implemented a Bayesian updating modelittetrporates advice and simpler Win-Stay Lose-3éiftning
models. However, both model types performed cossilst worse than the reinforcement models. Bayesian
models have also been outperformed by reinforcefeaming models in other tests (Busemeyer & St2002;
Gans et al., 2004). Hence, in the interest of lyeViomit their description.
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p (i) =0 /30 e (4.2)

To capture the variability in participants’ senstly to differences in propensities, the
choice rule is augmented by a sensitivity paramgtéef. Yechiam & Busemeyer, 2005). |
further assume that participants choose the adwpédn in their first trial. While this brings
some social learning in RL, and makes it a nestedeaiof the more complex social learning
models, it makes it a stronger competitor of th@addearning models.

The proposed learning model is similar to previgysbposed learning models. The model
by Yechiam and Busemeyer (2005) makes use ofigydtihction to transform received payoffs,
which, due to two additional parameters for gaind lsses, makes their model more complex,
and it employs a choice rule which increases seitgiais a function of time. | also tested with a
(one parameter) utility function and time-dependsarisitivity. As these more complex models
did not achieve a better fit, | only report on tesults of the simpler models. The described
reinforcement model differs from Erev and Roth’®98) model by assuming zero initial
propensities, allowing negative propensities, amsthgi an exponential choice rule with a

sensitivity parameter instead of a simple ratide.ru

4.3.2 Social Learning

A model of social learning needs to specify to wieatent the learning process is
influenced by individual experience and by inforimatfrom other people. Hence, the following
social learning models combine information from iadvwith an individual reinforcement
learning process, and are, thereafter, named AdRaeforcement Combination (ARC) models.
The models incorporate advice by assuming thatcadeianges either the initial evaluation of
choice options, the evaluation of payoffs from #uwised options, the decay of propensities, or
the choice rule of advised options. To specifyARC models formally, | change the individual
learning model, RL described above, by adding mashas, so that RL is a special case of the
ARC models (i.e., it is a nested model). All ARC dets assume that advice receivers always
choose the advised option in the first trial. Thetiwation behind this assumption is that advice
receivers will attempt to evaluate the advised awptbefore exploring alternative options.
Formally, the probability to choose an option ie fhst trial isp(i[iCJA) = 1/m andp(i[iCA) = 0.
4.3.2.1 ARC-Initial

One way to introduce social information into theiindual learning process is to assume
that decision makers initially perceive advisedap as more positive, compared to alternative
nonadvised options. Such an assumption is reasortsdause advisors usually have more

knowledge than advice receivers (Jungermann & Eisc005). Decision makers who expect
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higher payoffs from the advised option and trusth@ advisors’ competence should start with
the advised option and only slowly revise theittiahi judgments in the case of conflicting
evidence. To model the assumption of an initiafgmence for the advised option and a slow
revision process, | allow the initial propensitytbé advised option to be higher than for options
that were not advised. In a similar way, Camerer, &hd Chong (2002) and Hanaki, Sethi, Erev,
and Peterhansl (2005) model the own experiencewluch advice can be regarded as a
substitute, with choice options, by defining irlifmopensities as a function of past payoffs from
the options.

Formally, the initial propensities for ARC-Initigre defined agil(i[iJA) = fu|- v and
gl(ijiC A) = 0, wheret is a free parameter determining the additionalahpropensity of the
advised strategy, andis the expected payoff from always choosing th&t bption in the set.
4.3.2.2 ARC-Reinforcement

Social information can also, instead of changingiah evaluations, influence the
continuing evaluation of payoffs from the advisqution, so that the consequences of advised
options are perceived more positively, comparedh#& consequences of nonadvised options.
This assumption is consistent with research onaramtion biases, in the case of social learning
implying that people believe in the judgment of tdvice giver, and overvalue confirming
information and undervalue disconfirming informati¢for a review see Nickerson, 1998).
Empirical evidence suggests that the confirmati@s lban influence choices in repeated choice
tasks. For instance, Betsch, Haberstroh, Glocknaay, and Fiedler (2001) first induced people
to make a particular choice and then changed thieosment so that the induced choice was no
longer the best, and found that people overweigifimoatory information and underweigh
disconfirmatory information after the environmergdhchanged. Moreover, Aronfreed (1969)
has argued that imitating the behavior of othersits own, is sufficient to generate affective
reward. Thus, choosing the advised option mighd keaa positive reinforcement, regardless of
the real consequences of the choice. A generallse rpositive evaluation of outcomes from
advised options can be implemented in the learmindel by adding a constant to every payoff
from the advised option. Formally, reinforcemerds ddvised strategies argi|i[] A) = m(i) +
lu|-p, wherep is a free parameter specifying the additionalfoegement for choosing an advised
option.
4.3.2.3 ARC-Decay

Advice cannot only influence the evaluation of ames from choice options but also the

decay of propensities for options. Specificallycan be assumed that advised options have, due
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to their prominence, stronger memory traces. Expanmial tests of trace dependent theories of
memory showed that memories with stronger traceseasier to retrieve (Lockhart, 2001).
Hence, it should be easier to retrieve informatanout the past performance of the advised
options, which will then have a greater impacthe updating process, compared to the past
performance of nonadvised options. | implement dsisumption by introducing a second decay
parameter for the advised option, which is assutodx® lower than the decay parameter for the
other options. Formallyd is the free decay parameter for the advised optidrle gremains

the decay parameter for the nonadvised strategy.ifportant implication of the ARC-Decay
model is that the accumulation of (negative or fpee) propensities will be faster, and their
reduction slower, for the advised option than ftieraative options. Formally, the different

decay process is implemented by modifying Equadidrto:
@)= li0A = @=aE0)+0)
HTliDA - (@-0)m )+ )
4.3.2.4 ARC-Choice

The social learning models presented so far assbatesocial learning directly influences

(4.3)

the learning mechanism. An alternative possibiitythat learning is not influenced by social
information, but by choices that are made basearis own experience. This reasoning is
based on Festinger's (1954) insight that peoplg mi social information when making
judgments, especially when they are uncertain atba&it own judgment. This argument has also
been used to model the evolution of social learni@nrich and Boyd (1998) and later Kameda
and Nakanishi (2002; 2003) showed that in the @wwilary competition between social learners,
who decide individually when they are certain aogycthe majority when they are uncertain,
and individual learners, a stable proportion ofi@dearners can be maintained. | implement the
intuition that people rely on social information evhthey are uncertain by assuming that
decision makers choose according to propensitieswhe variance of propensities is high and
choose the advised option when the variance ofgmsipes is low. Formally, | model reliance
on the advice contingent on the variance of chpradabilities because this makes the model
parameter independent of the magnitude of paySfiecifically, probabilities are modified, after

they were calculated with Equation 4.2, accordmiptiowing function:

o[p(i)]<z OiOA - 1/m
p(i)=1o[p(i)]<z TiOA - 0 (4.4)
ol p(i)] = - p
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whereao[p(i)] is the standard deviation of the choice prali#ds for Equation 4.2 and is a free
uncertainty parameter, which determines the thiddtelow which the advised option is chosen.
Comparison of social learning mechanisnhshave proposed three different social learning
mechanisms describing how advice could influenckviduals’ learning processes. Formally,
these mechanisms were added to the individual ilgamrmodel, so that three more complex
learning models resulted. To compare the sociahieg models, | consider at which point in
time social learning has its largest influence, hosvsistent the influence is over time, how
learning proceeds if the advised option is notlikst available option, and how the learning
models describe learning in the loss domain. Table summarizes the functions used to
describe the ARC models and the RL model.

Table 4.1 earning and choice mechanisms in ARC.

Mechanism Individual learning (RL)  Difference between indivial and social learning

First choi iy=10A - Im No diff

ISt cholce pl - i0A - 0 O difrerence

Initial oy _ Lo [IOA |yl
attraction q,()=0 ARC-Initial: O“(I)_{iDA o

Rein- N : v JTOA o () #M B
forcement r(i)=r() ARC-Relnforcem..rt(l)—{iDA i)

i0A - q()dd-0)+r,

Updating (i) =q(i)[(1-¢)+r, ARC-Decaqut(i)={iDA S oq()i-g) +r

olp()]<r OiOA - 1U/m
Choice rule p(i):eW"/Z?:leW” ARC-Choicep(i)=4 ofp(i)]<r DiOA - 0
alp(i)]z7 - p

Note. The second column describes the mechanisiting imdividual learning model. The third
column shows how RL is modified for the respectivedel to incorporate social learning.

ARC-Initial assumes that advice mainly has an imhmacthe beginning of the learning
process, and that social influence is not perdisiecause the decay of propensities consistently
reduces the impact of the initial propensities. AR{ial predicts that, in the long run, advice
receivers will learn to deviate from an advisedapivhen a better alternative is available. The
reason is that the impact of the higher initial genosity will diminish over time, so that
individuals will experience that other options acf produce better outcomes than the advised

option (unless the initial propensity and the sy parameters are extremely high). ARC-
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Initial always influences the learning process avdr of the advised option, regardless of
whether decisions are made in the gain or thedossain.

Social learning, according to ARC-Reinforcementp&sistent and accumulates during
learning, so that its impact is relatively smalltie beginning, but increases thereafter. Due to
the continuous additional reinforcement for advieptions, decay does not reduce the influence
of social information as it does for ARC-Initialnstead, the influence of social learning
increases with time. As in ARC-Initial, ARC-Reiné@ment predicts that the choices of the
advised options also increase in the loss domaifferBntly than in ARC-Initial, ARC-
Reinforcement predicts that advice receivers cdrer@dto the advised option in the presence of
better alternatives since the additional reinforepetrfor this option make it appear better than
the alternative options, provided that the advamtaghe dominating option is not too large.

Social learning in ARC-Decay is persistent and @anthe gain domain) explain why
advice receivers adhere to the advised optionarptesence of better alternatives. In the domain
of losses, ARC-Decay predicts that advice receiwglistend to avoid advised options because
the slower decay for propensities of this optiofl miaintain negative propensities longer, thus
strengthening the advantage of alternative optiong/hich negative propensities decay faster.

Social learning in ARC-Choice depends less on tand more on the similarity of two
choice options. Generally, the more similar twoicamptions are, or the higher the variance of
the choice options is, the more influence socifdrmation has. Nevertheless, social information
is persistent because the advised option will bispreferred in later choices when the variance
of choice options is low. ARC-Choice can also peedipreference for the advised option, in the
gain and in the loss domain, when the variancé@bptions is high.

In sum, the comparison of the social learning meddiows that they make different
predictions independent of specific parameter \&llespecially ARC-Reinforcement, ARC-
Decay, and ARC-Choice can explain that decisionaersakeep choosing the advised option in
the presence of a better alternative, and thatadlirectly influences later choices. Only ARC-
Decay is consistent with faster deviation from adwivhen the expected payoff from the advised
option is negative, independent if advice was goobtad. The next section examines how well

the models describe the advice receivers’ learpingess and choices in Experiment 4.1.

4.4 Testing Models of Social Learning
As a first step, | had to estimate the models’ peters. For this purpose, different routes
can be taken. First, model parameters can be dstinb@sed on averaged data or on individual

data. As recent comparisons of these two approashewed that the estimation of model
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parameters based on individual participants idiestitrue parameter values better (Estes &
Maddox, 2005), | estimated model parameters foh gecticipant. A second decision concerns
the question of whether a model’s prediction fqraaticular decision of a participant should be
able to make use of the participants’ actual pastsibns. For instance, the propensities of the
learning models for the second period can be uddbtsed on the payoff from the choice
predicted by the model in the first trial, or basedthe payoff from the choice the participant
actually made in the first trial. When making udeparticipants’ past decisions a model will
obtain a better fit than when the models’ preditsiare completely independent of participants’
decisions since, in the former case, any wrongigtieds will not enter the updating process,
whereas, in the latter case, wrong predictionsefifict subsequent predictions of the model. For
this reason, | choose the more demanding appraaxtthat the models’ parameters were
estimated completely independent of the particgdabehavior, and the models’ predictions
were determined only on the basis of the modelst paedictions? This approach should
provide a more illuminative test of the models heseait required the model to predict choices
and the learning path to achieve a good fit.

Specifically, all models determine the probabiltyth which an individual chooses an
option, based on past choices and parameter valuedied on the maximum likelihood
estimation to find the best parameter values, ihat searched for the parameter values that

maximized the sum of the log likelihood of the alvee behavior. The sum of the log likelihood
is defined asL = ztllln(pt(k)), with T as the number of trials apdk) as the probability with

which the model predicts the actual chdiaaf the participant in trial. As the logarithm of zero

is minus infinity, every parameter combination whigives the chosen option only once a zero
could never be selected as the best parameter patidni. For this reason, | fixed the minimum

choice probabilities in the fitting process to .00b account for the probabilistic nature of the
choice rules, choices were selected randomly aoaptd propensities. In order to generate the
average learning process for a set of parametaesathe models predictions for a particular set
of parameter values were simulated 50 times, aadikklihood of the data, given the model,

was determined based on the average probabildreté choices over the 50 simulations.

%4 For instance, when using participants’ observesiogts to update propensities, the model can acligaod fit
for participants with long streaks of the same cédiy setting the decay parameter to 1. In this,qga®pensities
will always be zero, except for the option chosethi last trial. Accordingly, the model would aliggpredict
that a participant repeats his or her choice ofaketrial (given payoffs are positive) and, herahieve a good
fit without actually describing a learning process.

107



The Docile Learner

The model parameters were constrainedgtd] [0,1] and & O [0,1] for the decay
parameters, to. O [-5,5] for the sensitivity parameter, t@ [0 [0,10] for the additional
reinforcement in ARC-Reinforcement, td] [0,100] for the higher initial attraction in ARC-
Initial, and tot O [0,.5] for the threshold in ARC-Choice, where s5the maximum standard
deviation for a choice set with four options. Tcentify the best parameter values, | first
performed a grid search, and then used the bestplivameter sets of the grid search as start
values for the simplex optimization algorithm (Nmid& Mead, 1965) to determine the best
parameter values.

To evaluate the basic model performance, each madsl compared to a statistical
baseline model. The statistical baseline modeltigee parameter model assuming that decision
makers always choose the same option with the gaoimbility, which is determined as the
proportion of choices a participant made for thptiam over the 100 trials of the IGT. |
accounted for differences in the models’ complexity determining the Akaike Information
Criterion (AIC, see, e.g., Zucchini, 2000) for eatiodel. | compared each model with the
statistical baseline model by computing the difficesof the AIC for the model and the statistical
baseline model:

AAIC = -2[JLL(mode) - LL(baseling] -d 2, (4.5)

with d as the difference in the number of parameters dmtwthe respective models and the
statistical baseline model. TAAIC increases with a model’s fit and decreases tghmodel’s
complexity, estimated by the model’'s number of pwters. The AIC can be used to compare
non-nested models, although this comparison hhs taterpreted cautiously since AIC does not
take the model’s functional form into account.

To evaluate the models, | examined first if theg aetter than the statistical baseline
model, by examining thaAlC measurement. Table 4.2 shows that only théakdearning
models have, on average, positiv8ICs, indicating that they perform better than #tatistical
baseline model (the same holds when one uses tlgesida Information Criterion, which
penalizes stronger for more parameters when T A§)a second step, | examined if the social
learning models perform better than RL. Table &r&] the results of t-tests depicted in Table
4.3, show that all social learning models are, warage, better than the individual reinforcement
learning model. Together with the previous findithgit the advised deck was chosen more
frequently than the corresponding deck, this reslelarly supports the assumption that a social

learning process describes decision-makers’ chdietter than pure individual learning.
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Table 4.2 Means (SD) forlAlICs and parameter values for ARC models.

Parametgr or RL ARC models
model fit Initial Reinforcement Decay Choice
AAIC -75(28.6) 3.73(20.72) 8.7(16.2)  6.52(18.3.) T7§BL.21)
Social learning - 31.66 (36.69)  3.68 (3.48) .16 (.25) 17 (.16)
Decay 12 (.21) .16 (.30) .51 (.38) 34 (.3) 3.

Sensitivity 3.03(2.11 2.16(2.14) 2.86(1.89)  2.55(2.56)  2.85 (2.67)

RMSD
Good deck .062 .052 .056 .059 .062
Adherence 102 .049 .034 .037 .041
All choices .049 .043 .041 .043 .046

Note. Social learning parameters are additiondiainattraction () for ARC-Initial, additional
reinforcement ) for ARC-Reinforcement, separate decd@y for ARC-Decay, and standard
deviation thresholdtj for ARC-Choice. RMSD is the mean over all triaé the squared
deviation between predicted and observed choicegptions on the group level. For “good
choices,” all choices of a good deck were constliei@ “adherence,” all choices in which the
advised or the corresponding deck was chosen veexgdered, and for “all choices,” all choices
were considered.

To examine if one social learning model outperfothesother ARC models, | conducted t-
tests comparing\AICs, for which the results are depicted in Tablg. A comparison of the
social learning models shows that while ARC-Reioémnent seems to be the best model, it is
significantly only when compared to ARC-Initial. @raverage fit of ARC-Reinforcement is
better than for ARC-Decay and ARC-Choice, but thteence has only a small effect size. In
sum, the comparison of the average model fits sti@at social learning explains participants’
choices better than a statistical baseline moddl zetter than the individual reinforcement
learning model. Among the social learning modelRCAReinforcement has the best average
AAIC values and also the best RMSD over all chois=e Table 4.2). However, it is not
significantly better than ARC-Decay or ARC-Choices.
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Table 4.3 .T-tests between models.

ARC-

ARC-Initial Reinforcement

ARC-Decay ARC-Uncertain

t=3.34p=0, t=4.25p=0, t=498p=0, t=3.57p=0,

RL d= 44 d= 66 d= 56 d= 60
Initial t=294p=.01, t=127p=.21, t=138p=.18,
d=.27 d=.14 d=.17
. t=-1.33,p=.19, t=-1.97,p=.06,
Reinforcement d= 13 d= 13
t=.09,p=.93,
Decay d=.01

Note. For all tests df = 29. When t statisticsraggative, the row model is better than the column
model.

Considering the social learning parameterf®r ARC-Initial is 31.66—that is, the initial
attraction for the advised models is approximaBaytimes the average payoff from a good deck
(.125 cents); for ARC-Reinforcement is 3.68—that is, every remckment from an advised
deck received an additional 3.68 times the avepsy®ff from a good deck, andlfor ARC-
Decay is .16, therefore, clearly lower than theageaate of .49 for options that were not advised.
In ARC-Choice, participants chose the advised optam average, when the standard deviation
of the choice probabilities was belaws .17. For instance, the vector of choice proliddsl .55,
.183, .183, .183 or .42, .42, .08, .08 have a stahdeviation of .173.

An alternative way to compare the models is to eremfor how many participants a
specific model is the best model. ARC-Decay dessrimost participants (10) best, followed by
ARC-Reinforcement (7.67), ARC-Initial and ARC-Choice (each 4.67), and RR),(thus
confirming the superiority of ARC-Reinforcement aA&C-Decay. Allocating participants to
the three best models accordingAAICs, ARC-Decay is the best for 14 participants, xR
Reinforcement for 10.33, and ARC-Choice for 4.6/h é&xamination of the raw data also
suggested that participants used advice differepecifically, five participants made all 100
choices according to the advice, a behavior thamsemost in line with ARC-Initial, but can
also be modeled by ARC-Reinforcement and ARC-Choice

Apart from comparing the model fits, one can quesyether the models can predict

characteristic patterns of choices over time. Fgu2 and 3 show that advice receivers first

5 |f n models had the bea®AIC for a participant, I participant was assigned to each.
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follow the advice, thereafter deviate from it (e.tp explore alternative options), and finally
follow the advice again—they show an adherenceesapbn-adherence choice pattern. Can the
ARC models predict this pattern? Figures 5 andrpare the average observed choice patterns
with the average choice patterns predicted by tR& Anodels. The predictions of the ARC
models were calculated by first simulating eachtiggant 100 times with the best parameters
for this participant, and then averaging the r@sglthoice probabilities over all 30 participants.
Figure 4.5 compares with which probability real amdulated participants chose one of the two
good decks in the IGT. To evaluate the correspotel@i simulated and observed choices, |
calculated the root mean square deviation (RMS[®, Bable 4.2) between predicted and
observed average probabilities on the group IeMeé RMSDs for “good decks” in Table 4.2
indicate that all social learning models predi@ groportion of choices of good decks similarly

well (see also Figure 4.4).

0.95+
0.9)|
0.85
0.8

0.757

0.7 |

Proportion choices good decks
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osl\ M £ |- ARC-Initial
---------- ARC-Reinforcem.
0.55| ARC-Decay
ARC-Choice
0.5 ‘ | | ‘ ‘
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Figure 4.4.Proportion of participants choosing a good deckm@arison of observed and

simulated choices.

The picture is different when one adds the inforomtif a deck was advised or not. Figure
4.6 compares with which probability real and sinedaparticipants chose a good or bad deck,
given that it was advised or not. For instance, waearticipant received the advice to choose
the good deck C, | calculated with which probapilihis deck was chosen and with which
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probability the corresponding (equally) good deckv@s chosen. Figure 4.6 and the RMSDs in
Table 4.2 show that only the ARC models that imgatmsocial learning—especially ARC-
Reinforcement, ARC-Decay, and ARC-Choice—can actdan the adherence-exploration-
adherence pattern because they are better ablestwilsk the rebound of choices of advised

options after the exploration phase.

1
m— observed adv.
0.9 =nmm= observed not adv.
RL adv.
osg RL not adv.
0.7+ ARC-Initial adv.
o I g N ——— | ARC-Initial not adv.
S o6 ARC-Reinf. adv.
% | X"/ — e ARC-Reinf. not adv.
s 0.5 ARC-Decay adv.
5 ARC-Decay not adv,
3 Od4r &=/ e ARC-Choice adv.
- 03 e ARC-Choice not adv.
0.2+
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Trial

Figure 4.5.Proportion of participants choosing the adviseckd@adv.) or the corresponding
deck with the same average payoff (not adv.). Coispa of observed and simulated choices.

4.5 Discussion

The aim of Experiment 4.1 was to examine if peopde advice, if advice improves
performance, and which of the ARC models desctiedaarning process. The first question has
to be answered positively because advice receigererally preferred the decks that were
advised to them. However, only few (5) receiveltived the advice for all 100 choices of the
IGT. The majority of receivers started with the i@éd option, then explored other options, and
finally returned to the advised option.

The second question—does advice improve perfornfardeserves a conditional answer.
Advice receivers performed better than independevit® made decisions without receiving or
giving advice, but better than advisors who sttilio give advice. Compared to these groups,
receivers are approximately 10 percentage point® tilkely to choose a good deck. However,

112



The Docile Learner

receivers perform worse than participants withrtlogin experience in the same task (78% vs.
73% choose a good deck). In sum, receivers havadaantage over inexperienced decision
makers.

A finding needing explanation is that advisors du start with the deck they gave as
advice when they made their second 100 trials efI@T. | can only speculate that advisors
either, first, did not believe that they chose frttra same decks again, or, second, that they had
learned that one could choose from the two badslatleast in the first trials.

The third question—which model describes socialnie@ best?—receives a first, but not
final answer. ExaminingAAICs, | found—in agreement to the answer to questle—that
models implementing social learning perform bettem those without. Comparing the social
learning models, | found that ARC-Initial is, onesage, least able to describe participants’
choices. This is reflected in the worse fit, congoato ARC-Reinforcement, ARC-Decay, and
ARC-Choice and, more importantly, in the weakerligbbf ARC-Initial to account for the
characteristic adherence-exploration-adherencecehpattern of most participants. While it
seems clear that RL and ARC-Initial cannot expth&choices of the majority of participants in
a satisfactory manner, a decision between ARC-Raiafnent, ARC-Decay, and ARC-Choice
is more difficult. Even though ARC-Reinforcementsha better fit than its remaining
competitors, the difference is small, comparech® differences to other models. Additionally,
the simulation in Experiment 4.1 showed that ARG@eand ARC-Reinforcement (and partly
also ARC-Choice) explain receivers’ adherence tocadsimilarly well.

An alternative analysis examined, for how many ipga&nts each model was the best
model. This analysis is justified because, alreddg,raw data revealed qualitatively different
learning types. One type of participants descréésarning process that includes no individual
learning, but simply takes the advice and usesrigafi choices—describing 5 participants—and
another, more frequent, type of participants combiboth information: advice and individual
performance feedback. A clear dominance of ARC-Retement over the other models seems
questioned if one considers how often a modelas#tst model for the participants. ARC-Decay
performs best in this regard, and ARC-Reinforcemignsecond-best. In sum, the model
comparison showed that, overall, ARC-Reinforceméescribes participants’ choices best,
closely followed by ARC-Decay, and partly also ARBeice. At the same time, | find that
different people seem to learn differently.

In sum, Experiment 4.1 showed that decision maksis receive advice use it to perform
better than inexperienced decision makers. | fotimakt social learning models describe

individuals’ choices better than the individualnfercement learning model. However, ARC-
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Reinforcement, ARC-Decay, and partly also ARC-Chojgerform similarly well, hence,
Experiment 4.2 will further examine which of thegd models are more appropriate to describe
social learning. A peculiarity of Experiment 4.1sathat participants rarely received bad advice,
therefore, in Experiment 4.2, | will examine howdlzdvice influences learning, and if the social

learning models can describe learning after badcadv

4.6 Experiment 4.2

This experiment compares ARC-Reinforcement, ARCa&ye@and ARC-Choice in two
ways. First, | will test the three models’ predicts based on the estimated parameters of
Experiment 4.1, thus, | will not fit the modelsttee data from Experiment 4.2. This provides a
strong generalization test of the models. In Experit 4.1, | compared the models according to
the AAIC criterion. This approach has been criticizedduese the AIC does not take the models’
functional form into account, so that it might ramtequately reflect the complexity of a model
(Myung & Pitt, 1997). For this reason, alternatiwedel comparison techniques have been
proposed (Pitt, Myung, & Zhang, 2002). | will follothe generalized criterion methodology
(Busemeyer & Wang, 2000). Here, models are evaluayaising one experiment to estimate the
models’ parameters, and thereafter, on the bastheokstimated parameters predictions for a
new situation, are determined to perform the mamehparison test. Thus, Experiment 4.2
represents the crucial generalization test of AREI@rcement and ARC-Decay.

For an illuminative test, it is further desirabtefind a situation in which the models make
different qualitative predictions. For the qualitatprediction, | focused on the two best models
in Experiment 4.1, ARC-Reinforcement and ARC-DecHyese two models make qualitatively
different predictions when individuals encountemalti-armed bandit task in which all decks
have negative expected payoffs. ARC-Reinforcemeedlipts that participants still prefer the
advised deck when expected payoffs are in thedossain. Specifically, ARC-Reinforcement
predicts that the advised deck should be seleciddtihe highest probability, even when the
advised deck has a lower expected payoff thannaltere options, as long as the payoff
difference to the better deck is smaller than tieiteonal reinforcement for the advised deck.
ARC-Decay predicts the opposite, that is, in aasitun in which the options have negative
expected payoffs, individuals should avoid the sedioption. The reason is that, due to the
smaller decay rates for the advised decks, ARC-{Pgradicts a long memory for negative
payoffs, that is, propensities remain for a loniy@e negative longer after losses. Compared to

the advised option, the other options will appeararattractive because the higher decay rate

114



The Docile Learner

implies a short memory for the negative payoffs, that propensities, and thus choice
probabilities, will be higher than for the advisietks.

ARC-Reinforcement and ARC-Choice both predict @dtice receivers should prefer the
advised deck over the corresponding deck. Howewrly ARC-Choice explicitly predicts
stronger adherence to advice when advice recearersnore uncertain about which options are
better. This uncertainty increases as a functiothefdifference between the payoffs from the
options and as a function of the standard deviatiboptions’ payoffs. Uncertainty can be
expressed as the effect size of the payoff diffeedretween good and bad decks. The effect size
of the original IGT isD = 0.24, calculated as the difference in payofféérfryood and bad decks
divided by the standard deviation of the pooledgbi@yfrom all options, so that a smaller effect
size indicates higher uncertainty.

Accordingly, a payoff schedule that allows distirsing between the three remaining
models has predominantly negative payoffs, allowangistinction between ARC-Decay and
ARC-Reinforcement, and a small effect size for plagoff difference between good and bad
decks, allowing a distinction between ARC-Choicd &RC-Reinforcement. In line with these
demands | devised a payoff schedule where payddfsliawn form a normal distribution with a
standard deviation of 20 euro-cents, where the glsmits have an expected payoff of -7 euro-
cents, and the bad decks of -10 euro-cents. Tketedize for this payoff scheduleDs= 0.15.

The computational models allow us to make quantégbredictions for advice receivers’
choices in the new task. To determine the modeisdiptions, | applied a nonparametric
bootstrapping procedure to select model paramétens the first experiment. Specifically, a
participant in Experiment 4.2 was simulated by gsthe parameters of one participant in
Experiment 4.1, simulating the task 100 times, ealdulating the expected choice probabilities
of the simulated participant as the mean over 0@ dimulations. As the influence of social
learning in ARC-Initial and ARC-Reinforcement isfided as a function of the expected payoff
of the best option in the set, the parameters ipeErment 4.1 can be applied without scaling
them. To obtain average choice probabilities fog brirtual experiment,” the parameters of 30
randomly selected participants (with replacemehgxperiment 4.1 were matched with random
advices, which were constrained so that 50% of atieices was good and 50% bad. The
predictions of the models in Experiment 4.2 wereeeined by averaging over 5,000 virtual
experiments. Figure 4.6 displays the predictionthefthree models for adherence to advice in

Experiment 4.2.
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Figure 4.6.Predictions of the social learning models fortdwk in Experiment 2. ARC-Choige
predicts high adherence rates, ARC-Reinforcemesdigis lower adherence rates, and gnly
ARC-Decay predicts that the advised deck will beosam less frequently than the
corresponding deck.

4.6.1 Method
4.6.1.1 Design

Experiment 4.2 used a multi-armed bandit task sintid the IGT in Experiment 4.1. The
key difference to Experiment 4.1 was the payoffesithle. Deviating from the original payoff
schedule from Bechara et al. (1994), average payofExperiment 4.2 were —10 euro-cents for
the bad decks and —7 euro-cents for the good dedlkdecks had a standard deviation of 20
cents. Payoffs were randomly drawn from a normairithution, and mean and standard
deviation of payoffs were maintained in blocks & ttials; | label this the standard payoff
schedule. Participants started with an endowmef2d euro and made 105 choices. Figure 4.6
displays the predictions of the three models fdreaeince to advice in Experiment 4.2, assuming
that 15 receivers had good and 15 receivers haddbade.

One result from Experiment 4.1 was that participamtrely received bad advice. Pilot
tests for Experiment 4.2 revealed that it was diffi to find a payoff schedule for which

approximately half of the participants learn whete the better decks and, hence, give good

116



The Docile Learner

advice. Therefore, | made the task for 20 of the@@sors in Experiment 4.2 more difficult by
manipulating their payoff schedule (henceforth nandard advisors), so that approximately half
of the participants would receive good, respecyiled, advice. The manipulation consisted of
subtracting 5 euro-cents from every payoff of adyoeck in the first 30 trials, and adding 5
euro-cents to 30 randomly selected trials out efl#st 75 trials. As in Experiment 4.1, the task
was performed by advisors, receivers, and indepegsd&ith the latter two always choosing
from the standard payoff schedule.
4.6.1.2 Participants and Procedure

Eighty participants, mostly students from the Rdewversity Berlin (55% women, with a
mean age of 25 years), were randomly assignecetthtiee conditions. Thirty participants were
advisors, 30 were receivers, and 20 independenith YWo exceptions, the experimental
procedure was identical to Experiment 4.1. Firee similarity of decks for advisors and
receivers was expressed as decks having the saregavayoff (instead of describing them as
being identical). Second, participants’ variable/qgfa was calculated without subtracting the

initial endowment because the expected payofflaletks was negative.

4.6.2 Results of Experiment 4.2

Choices and performanc®articipants earned, on average, 3.83 e £ 1.9) in the
IGT. Figure 4.7 depicts the proportion of particitmawho chose one of the two good decks, and
shows that the task in Experiment 4.2 was mordcdiff for most participants because the
average probability to choose a good deck was, aoedpto Experiment 4.1, lower throughout
the task. Ten Standard advisors chose a good dedkiaverage, 60% of all trialSPD = 17%)
in their first and 69%3D = 10%) in their second 100 trials. Twenty non-dtad advisors chose
a good deck in, on average, 39% of all tri@® E 12%) in their first and 42%S50 = 40%) in
their second 100 trials. The worse performanceonfstandard advisors was expected because
their task was more difficult. Thirteen receivenshagood advice chose a good deck, on average,
in 69% ©GD = 15) of their trials, 17 receivers with bad advi:n 48% ED = 20), and
independents in 63%5D = 12). Comparing advisors, receivers, and indepetsd | found that
receivers with good advice performed better thasehwith bad advicé(28) = 3.08p = .005,d
= 1.1, but not better than independet(®]) = 1.25p = .22,d = .45, or advisors in their second
100 trials,t(21) = .03,p = .97, d = .01. Receivers with bad advice performed wotsant
independent learner§35) = 2.73p=.01,d = .9.

To examine if independent participants learnedhoose the good decks, | tested if they

chose a good deck in more than 50% of all trialee Bignificant result indicates that
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independent players, on average, learned to cleogsed decki(19) = 4.71p <.001,d = 1.05.

In 70% D = 9%) of the last 50 trials they chose a good dedhkich suggests the same
conclusion. In sum, participants’ choices show thatmanipulation successfully made the task
more difficult for nonstandard advisors. In the mdtifficult task in Experiment 4.2, the
receivers benefit less from the advice, comparexjperiment 4.1. Nevertheless, the receivers
still profited from receiving good advice, but wemarmed by bad advice. Independents still

learned to choose the good decks.
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Figure 4.7.Proportion of participants who chose a good daskinguished for independents,

advisors, and receivers.

Advice giving and followingThree out of 10 standard advisors and 14 out of 20
nonstandard advisors advised to choose a bad @kikresult was expected because the payoff
schedule for nonstandard advisors made their tasie mifficult. The relative frequencies of
choices of advised decks and corresponding decks thhe same expected payoff show—
equivalent to Experiment 4.1—if advice influencéumbices. Out of 30 receivers, .56% started the
IGT by choosing the advised deck. Figure 4.8 dispthe proportion of receivers who chose the
advised or the corresponding deck (see also Talle 7o test the influence of the quality of
advice, | performed a repeated measurement, ANQVith, the quality of advice (good vs. bad)
as a between-subject factor, advice (advised deckcarresponding deck) as a within-subject
factor, and the choice frequency of decks as arikge variable. The main effect for the quality
of advice was significan§(1,28) = 6.38p = .017,m2 = .19, as was the main effect for advice,
F(1,28) = 47.51,p <.001,n2 =.063). The interaction of advice and qualityd aadvice,
approached the conventional significance lel€l,28) = 3.78p = .063,12 = .12. These results
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show that receivers adhered more to advice whenwilas good, and that the probability to
choose the corresponding deck was not influencatidguality of advice. The larger effect size
for the factor advice, compared to the factor dyalf advice, indicates that participants’ choices

were more influenced by advice than by the paylofis' choosing the decks.
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corresponding decks with the same expected pagmafising average, with window size 11)

Model comparisonA first step to compare the models is to examirartiqualitative
predictions. According to ARC-Reinforcement, papi#nts who received bad advice should
adhere to the bad deck in the presence of betimnative decks more often than participants
who received no advice. This can also be assumedRE-Choice because the variance of
payoffs from decks was high, compared to expectgobffs. In contrast, ARC-Decay predicts
that receiving bad advice should decrease the pillgahat receivers choose the advised bad
deck. Differently than predicted by ARC-Decay, Figd.8 shows that players who received bad
advice choose the good decks less frequently th@dgpendent decision makers. Further, Figure
4.8 shows that—as predicted by ARC-Reinforcememt ARC-Choice—receivers chose the
nonadvised deck less frequently than the adviseif,dEnd not the opposite as predicted by
ARC-Decay.
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Additionally, to compare the models, | examined haowll they predict participants’
choices. To compare the models’ predictive powperformed a generalization test (Busemeyer
& Wang, 2000), that is, | determined the model€dictions based on the estimated parameters
in Experiment 4.1. The predictions of the modelsens@mulated as described above, except that
parameter values from participants in Experimehtwere randomly matched with real advices
from Experiment 4.2. Specifically, | examine howodothe models predict choices of the
advised deck and the corresponding deck with theesaxpected payoff. Figure 4.9 shows the
observed and simulated choice proportions, and shitat ARC-Reinforcement predicts the
preference for the advised decks better than ARCapeand also better than ARC-Choice,
which clearly overestimates the influence of solg@alning in Experiment 4.2. This result is also
supported by the RMSDs illustrated in Table 4.4iclwlshow that ARC-Reinforcement predicts
the likelihood to choose the advised deck bettan tiny other model. Table 4.4 also shows that
ARC-Reinforcement does not only predict mean chopreportion better than ARC-
Reinforcement but also the standard deviations rebedein Experiment 4.2. Thus, the

generalization test supports ARC-Reinforcemenhasest considered learning model.
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Figure 4.9. Observed and predicted probability to choose tlwisad deck or the
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corresponding deck with the same expected payoff.
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Table 4.4 Results of the bootstrapping simulation.

ARC
Advice Deck Data RL Rein-
Initial f Decay  Choice
orcement
Good .7(.15) .56 (.04) .63(.15) .68(.16) .4%).0.83(.18)
Advised 55 (.18) .29 (.02) .42(.23) .5(25) (@) .72(.3)

Corresponding A5 (13) .27 (.02) .21(.09) .18).0.28 (.06) .1 (.11)

Good RMSD
Good deck - 14 .088 .06 .205 127
Adherence - 207 113 .069 .256 129
All choices - A1 .081 .068 137 .086
Good 48 (.2) .55(.04) .46(.13) .37(.18) .5).0.22(.23)
Advised 37(19) .22(.02) .35(.18) .46(.26) (1) .69 (.32)

Corresponding 15 (.08) .22(.02) .19(.06) .18).0.25(.03) .09 (.09)

Bad RMSD
Good deck - .094 077 A2 .084 .263
Adherence - 122 .067 .08 154 231
All choices - 102 .075 A .109 157
Good 58 (.21) .55(.04) .53(.16) .5(.23) .53).0.48(.36)
Advised 45(2) .26 (.03) .38(.21) .48(26) .m) .7(.31)

Good Corresponding .15(1) .24(03) .2(.08) .17).0&6(.04) .1(.1)

and RMSD

bad
Good deck - .041 .046 .073 .049 .095
Adherence - .155 .078 .051 197 .184
All choices - .081 .065 .068 .089 .075

Note. Results of the bootstrapping simulation: Rlolty to choose good decks, advice
following advice for good and bad advice, and RMSDslls depict means (SD), predicted
standard deviations were calculated as the medheostandard deviations over all simulated
experiments.
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Do the models predict receivers’ behavior indepatigeof the quality of advice? To
examine this question, | performed the same bagging procedure as above, separately for
receivers of good and bad advice. Table 4.4 displag results of these simulations and shows
that when advice is good, ARC-Reinforcement predictherence to advice well, whereas ARC-
Decay underestimates adherence as well as theopasti choices of good decks, and ARC-
Choice overestimates both. When advice is bad, ARCay again underestimates adherence to
advice and chooses again—as predicted—the nonadsesek more frequently than the advised
deck. ARC-Choice clearly overestimates adherenceadwice and, hence, predicts low
proportions of choices of the good decks. To aelestegree this is also true for ARC-
Reinforcement, which, nevertheless, still correggdicts stronger adherence to advice when
advice is good, even though the predicted diffezent 4% is smaller than the observed
difference of 18%. In sum, the comparison of thedet® predictions for good and for bad

advice also indicates that ARC-Reinforcement ishiast model.

4.6.3 Discussion of Experiment 4.2

As intended, the second experiment allowed us &mn@xe social learning in a situation in
which the best social learning models in Experimiit made rather different predictions and
under conditions of bad advice. | found again tleaeivers generally use advice. In addition to
the results in Experiment 4.1, | found that advieel a greater impact on receivers’ choices,
compared to the payoffs they received from choosliegoptions. Regarding the effect of advice,
good advice improved performance and bad adviaadiperformance.

Experiment 4.1 showed that advisors did not chdlesalecks that they had advised when
they started with their second 100 trials. In casis, advisors in Experiments choose the deck
they had advised from the beginning on in theiogadcl00 trials. This suggests that participants
did not distrust the instructions, and that addsarExperiment 4.1 had, indeed, learned that one
can choose from the bad decks in the first triateout risking high losses.

Experiment 4.2 compared ARC-Reinforcement, ARC-Deead ARC-Choice by means
of qualitative and quantitative predictions. Thelgative prediction of ARC-Decay has to be
rejected because participants receiving bad adelcese bad decks more frequently than
independent participants. Further, receivers chibeeadvised deck more frequently than the
corresponding deck with the same expected paydfésé& results are only in line with the
prediction from ARC-Reinforcement and ARC-ChoiceéeTsimulated predictions of the models
in Experiment 4.2 also favor ARC-Reinforcement hsea ARC-Choice predicted a too high

adherence to advice. Only ARC-Reinforcement cdygredicts receivers’ adherence to advice,

122



The Docile Learner

and predicts more adherence to good than to badeadwen though the predicted difference is
smaller than the observed difference. Finally, ARE€nforcement also predicted the
experimental variance.

Experiment 4.1 showed that different participants laest modeled by different learning
models. As the models were not fitted to partictpan Experiment 4.2, it is not possible to
classify participants to models. | neverthelessiarttpat ARC-Reinforcement is not only best, on
average, but also best describes most particip@hésreason is the finding that the proportion of
participants with bad advice who chose a bad dscitable throughout the last 70 trials and
consistent with ARC-Reinforcement, whereas ARCidhiand ARC-Decay predict constantly
decreasing choice frequencies. Interestingly, eoptto Experiment 4.1, no participant in
Experiment 4.2 followed the advice in all 100 tiaWhile this can be a coincidence, one might
speculate that participants in Experiment 4.2 erpeed losses in most trials, which might
stimulate a stronger exploration of alternativaap.

In sum, Experiment 4.2 clearly supports ARC-Reicéonent as the best model to describe
the participants’ social learning process becaugeedicts adherence to advice, conditional on

the quality of advice, and also the variance ofdixpent 4.2.

4.7 General Discussion

The aim of this paper was to examine social legrnivhen people make repeated choices
from experience, by answering three questions. Pople use advice? Does advice-taking
improve decision performance? How can social legriie best described? To examine these
questions, | observed choices in two multi-armeddiatasks with four choice options, and
tested one model of individual and three modelsoafal learning.

The first result was that advice receivers usedcadvecause they chose the advised deck
more frequently than other decks, in particular ¢beresponding deck with the same average
payoff. Moreover, in Experiment 4.2, advice recesveven followed the bad advice of choosing
decks with the lowest expected payoff. The infleené advice was also visible in receivers’
performance; as in Experiment 4.1, receivers withody advice performed better than
independent decision makers, who were, in turrtebéban participants receiving bad advice.
The bad performance of receivers who received badtta in Experiment 4.2 shows that social
influence can distract people from learning indejgenly. That participants adhered more to
good advice than to bad advice shows that theyeddcombined individual experience and
social information to make choices.
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To predict how people combine advice and their @xperience, | proposed and tested
four models of social learning, and compared theith \&n individual learning model. All
models are modifications of existing reinforcemégdrning models (Erev, 1998; Yechiam &
Busemeyer, 2005). ARC-Initial assumes that thasadivoptions are initially evaluated more
positively, compared to alternative options, expeelsin the model by higher initial propensities.
ARC-Reinforcement assumes that payoffs from adviggtbns lead to stronger reinforcements.
ARC-Decay assumes that propensities of advisedbmptdecay slower. Finally, ARC-Choice
assumes that people choose the advised options tvbearopensities of options are similar. A
first finding confirming my general modeling appecbais that, in Experiment 4.1, all social
learning models described choices better (in teomMAAICs and RMSDs), compared to the
statistical baseline model and the individual reioément learning model. A comparison of the
social learning models identified ARC-ReinforcemekRC-Decay, and ARC-Choice as the best
social learning models because these models lpgttdicted participants’ choice frequencies of
good decks, the level of adherence to advice, hadypical adherence-exploration-adherence
choice pattern.

Experiment 4.2 tested among ARC-Reinforcement, ARCay, and ARC-Choice by
implementing another version of the multi-armed datask, similar to the IGT, in which
payoffs for all decks were negative. In such aasituin, the two best models identified in
Experiment 4.1 make diverging predictions. Contrarythe prediction of ARC-Decay, and in
agreement with the prediction from ARC-Reinforcemand ARC-Choice, Experiment 4.2
showed that participants kept choosing the advigetebn, which, in the case of bad advice,
implied that the learning process did not allownth® find the best option to choose from.
Whereas ARC-Choice generally overestimated adhereioc advice, ARC-Reinforcement
correctly predicted that adherence to advice ikdrigvhen advice is good, and also predicted the
variance of choice proportions in Experiment 4r2sum, the experiments show that decision
makers adhere to advice, that good advice helpdaddadvice harms learning, and that ARC-
Reinforcement describes the social learning proless

While | implemented the different assumptions ofiablearning separately, one might
argue that individuals are better described by @mgnting (some of) these into the same model.
| refrained from this possibility because this wbiricrease the complexity of the social learning
model, and make it more difficult to understand hthe mechanisms change the learning
process, compared to individual learning. Furt®&RC-Reinforcement alone could already
describe the data well. Nevertheless, future rebeaill have to examine combinations of the

models.
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When social learning is truly different from indiial learning, social information should
influence individual learning differently than osebwn experience. That ARC-Initial did not
adequately model the learning process indicatesstligalearning process of advice receivers
cannot be modeled by assuming that advice onlyeénites the initial preference of decision
makers, as assumed by models of individual leartiag account for decision makers prior
experience (Camerer et al., 2002; Hanaki et al0520The conclusion that advice influences
learning differently than one’s own experiencel@aupported by the finding that advisors in
their second 100 trials behaved differently thami@eal receivers. Figures 2 and 7 show that
advice receivers explore alternative options lortpan advisors in their second 100 choices.
This is particularly clear in Experiment 4.2, whavisors in their second 100 trials choose the
good decks with nearly constant probability ovéchbices.

How does social learning differ from individual teang? When comparing the social
learning models, | highlighted the point in timewvdtich social information is effective, that is,
the persistence of social information and the éftédad advice on learning. The results show
that social information influenced learning in fivet choices and especially after the exploration
phase. This is mostly consistent with the charazgon of ARC-Reinforcement, for which the
influence of social learning increases as the amit reinforcement from choosing the advised
option accumulates. Accordingly, participants’ bebr is also consistent with the second
characterization of the ARC-Reinforcement, thatittilience of social information is persistent
over time. Importantly, bad advice leads to worsgf@ymance compared to choosing without
advice. In sum, social learning as identified ire tBxperiments, and modeled by ARC-
Reinforcement, is characterized by the combinatdnsocial information and individual
experience. Social information determines choicesflip at the beginning and stronger and
persistently after the exploration phase.

As the results in Experiment 4.2 show, sensitivity the quality of advice has the
disadvantage of impairing performance when advicéad. Hence, decision makers should
possess mechanisms to attenuate the effect of ddadea for instance, they should be very
selective when choosing advisors. While the expeminwas arranged so that participants had
every reason to assume that advisors were compateniv and Kleinberger (2000) explicitly
examined how decision makers assess advisors’ ateputand found that decision makers
update appraisals asymmetrically. Specifically,oadyappraisal was quickly downgraded after
bad advice—that is, participants lowered the wedajtgocial information, compared to their own
information—and an appraisal was only slowly upgddafter good advice. In a further

experiment, Yaniv and Kleinberger found that derisinakers can judge advisors’ performance
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accurately, and purchase information only from gaddisors. Luan et al. (2004) also found that
advice receivers can correctly judge the perforreaat different sources of advice. These
results, while obtained in different experimentattings than the experiments reported in this
article, indicate that advice receivers possesharesms allowing them to select good advisors,
thus hedging the sensitivity of their social leaghimechanism to bad advice. Beyond this
argumentation, experiments by Celen, Kariv and 8eh{@005), Kameda and Nakanishi (2003),
and Yaniv (Yaniv, 2004a), show that even naiveigipents tend to give useful advice, and that
social learning generally improves performance.

While the models describe the social learning pesaen the computational level, some
questions remain open due to limitations in theeexpents. One unresolved issue is, if all
decision makers can be described with the same Ipmdié people have qualitatively different
learning processes. Experiment 4.1 suggested iffiatetit participants are best described with
different models, and the analysis of Experime@tguggested than one model is sufficient to
describe all receivers. While the results abouthsierogeneity of participants, beyond different
model parameters, are not conclusive, the goodopesdnce of ARC-Reinforcement in
predicting mean and variance in Experiment 4.2 ssiggthat a single model can predict most
individuals’ behavior.

A second limitation concerns the psychological psses driving the ARC-Reinforcement
model. | motivated ARC-Reinforcement with the itituis that payoffs from the advised option
lead to higher reinforcement, due to a confirmatias in the evaluation of information or due
to the intrinsic value of the adherence to adviakowing. While the experiments could not
examine these assumptions, related research ondudi decision making supports at least the
confirmation bias interpretation. Betsch et al. Q20 found that people who had learned to
choose an option in a repeated decision-making ¢apkressed disconfirming information and
overvalued confirming information when the decisiemvironment changed to favor another
option. While this result was obtained after thef@rence for one option was induced by the
own experience, | assume that the same procedsectiiggered when the preference is induced
by social information. A final test between the fionation bias hypothesis and the reward from
conformity hypothesis could exploit that the tw@egaches make different predictions about the
influence of the source of advice. While the canétion bias hypothesis predicts that the source
of advice plays no role, the reward from conformhigpothesis predicts stronger adherence to
advice from humans than, for instance, from compgute

A third limitation concerns ARC-Reinforcement’s ogstimation of adherence to advice

after bad advice. While this suggests that theviddal learning component of participants’
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behavior in Experiment 4.2 was underestimated,ishobably not due to the general inability
of ARC-Reinforcement to explain participants’ beioavThe reason rather lies in the fact that
all participants in Experiment 4.1 received goodie& so that individual and social learning
usually pointed in the same direction. In this ¢asés likely that one selects relatively high
social learning parameters because it predictslainbehavior expected from individual
learning. The high social learning parameters milggh have suppressed ARC-Reinforcement’s
individual learning component in the simulationsdi$o predict behavior in Experiment 4.2.

The situation in which | examined social learnisgspecific in that players were always
only informed about the payoffs from chosen optjoims that participants received social
information only once, and in that social infornoatiwas given as explicit advice instead of
providing the opportunity to observe others’ cheiceargue that the ARC models, especially
ARC-Reinforcement, can be applied to differentaitbns with minor modifications. First, when
participants are informed about forgone payoffs CAReinforcement could simply be modified
to allow for the updating of nonchosen alternativfes instance, as described by Camerer and
Ho (1999b). Specifically, when forgone payoffs algo used to update propensities, the portion
of social reinforcement on the sum of reinforceraenill be smaller, which implies less
influence of social information. ARC-Reinforcemesduld also be used to model continuous
advice in every trial, by adding a constant to pyavhen reinforcing the currently advised
options, just as | did for a single peace of adviageally, observational learning might also be
modeled in the ARC framework, by assuming thatdpgons chosen by the majority receive
additional reinforcements, or by adding reinforcetm® options proportional to the proportion
of others who were observed choosing these op{fongn implementation of such a model see
McElreath et al., 2004). When decision makers af@ried about others’ choices and payoffs,
choice options could be reinforced by their own agdhe others’ (discounted) payoff. While
the application of ARC-Reinforcement to differegpés of social learning is straightforward,
experimental investigation will have to verify have performance of ARC-Reinforcement
generalizes to different social learning situations

To examine the mechanism of social learning in aigxzk choice tasks, or decisions from
experience, | used the abstract paradigm of theiHammhed bandits. As this paradigm reflects
important characteristics of many choice domainshsas decisions from experience (Barron &
Erev, 2003; Erev & Barron, 2005; Hertwig et al.02})) consumer choice (e.g. Anderson, 2000;
Erdem & Keane, 1996; Meyer & Shi, 1995), choice aghdecision strategies (e.g. Rieskamp &
Otto, 2004; Siegler & Araya, 2005), and interdepariddecision making (e.g. Hanaki et al.,
2005; Stahl & Haruvy, 2002), | expect that ARC-Reinement can be used to model social
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learning in these domains. However, future reseavithneed to examine how well ARC-
Reinforcement actually predicts behavior in thasgagons, which are all more complex than

the abstract multi-armed bandit paradigm.

4.8 Conclusion

The aim of this research was to investigate howicadinfluences learning in repeated
choice tasks. | found that people use advice, gbttie influence of social information is strong
for the first choices, is reduced in the followiegploration phase, and persistently gains
influence when the task continues. Advice receiaeesmore likely to choose the advised option
when it is the best option in the set, compareavihen better alternatives are available. The
model that best accounted for this learning patteas ARC-Reinforcement, a social learning
model that inputs social information in a simplefercement learning process by assuming that

payoffs from advised options lead to higher reioéonents.
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