8 Anhang

8.1 Partialdrücke und Flüsse im MOCVD-Reaktor

MO-Partialdruck im Reaktor:

$$p_{MO} = p_R \frac{Q_s}{Q_{tot}} \frac{p(\vartheta)}{p_{bub} - p(\vartheta)}$$
(8.1)

MO-Partialdruck im Reaktor (Dotierquellen):

$$p_{MODop} = p_R \frac{Q_i}{Q_{tot}} \frac{Q_S}{Q_D + Q_S(1+X)} X, \text{ mit } X = \frac{p(\vartheta)}{p_{bub} - p(\vartheta)}$$
(8.2)

Molarer Fluß:

$$Q_{m}\left[\frac{mol}{\min}\right] = \frac{Q_{s}\left[\frac{ml}{\min}\right]}{22400} \frac{p(\vartheta)}{p_{bub} - p(\vartheta)}$$
(8.3)

verwendete Symbole:

 p_{MO} Partialdruck der Quelle (MO) p_{MODop} Partialdruck der Dotierquelle (MODop) $p(\vartheta)$ Dampfdruck des Quellmaterials bei der Temperatur ϑ p_R Reaktordruck

$p_{\scriptscriptstyle bub}$	Bubblerdruck
Q_{tot}	Gesamtfluß
Q_s	Quellfluß ("source")
Q_i	Einlaßfluß ("inject")
$Q_{\scriptscriptstyle D}$	Verdünnungsfluß ("dilute")
Q_m	molarer Fluß

8.2 Strom-Spannungs-Charakteristik einer Solarzelle

Eine Solarzelle kann mit dem Ersatzschaltbild in Abb. 8.1 über Gl. 8.4 beschrieben werden [Goe94]. Dieses Modell kann für einen nicht-ohmschen Parallelwiderstand abgeändert werden, indem in Reihe mit Diode 2 ein weiterer Serienwiderstand R_{S2} eingeführt wird [Saa95].

Abb. 8.1: Ersatzschaltbild des Zweidiodenmodells.

$$j = j_{01} \left(e^{\left(\frac{q(U-jR_s)}{n_1 kT}\right)} - 1 \right) + j_{02} \left(e^{\left(\frac{q(U-jR_s)}{n_2 kT}\right)} - 1 \right) + \frac{U - jR_s}{R_p} - j_{ph}$$
(8.4)

- $j_{01,2}$ Sperrstromdichten der Dioden 1 und 2
- *n*_{1,2} Diodenqualitätsfaktoren
- *R_s* Serienwiderstand
- *R_P* Parallelwiderstand

8.3 Quantenausbeute

Der Quotient aus Photostrom und eingestrahlter Photonendichte ergibt die äußere Quantenausbeute [Fah93]:

$$QE_a(\lambda) = \frac{j_{ph}}{q\phi(\lambda)}$$
(8.5)

Die Kurzschlußstromdichte der Solarzelle ergibt sich aus einer Faltung der äußeren Quantenausbeute mit dem Sonnenspektrum:

$$j_{ph} = q \int_{AM1.5} QE_a(\lambda) * \phi(\lambda) d\lambda = \frac{q}{hc} \int_{AM1.5} QE_a(\lambda) * \lambda * \Gamma(\lambda) d\lambda$$
(8.6)

- QE_a äußere Quantenausbeute
- $\phi(\lambda)$ auf die Solarzelle auftreffende Photonenstromdichte
- $\Gamma(\lambda)$ eingestrahlte Energiedichte