| 1.1 | Typical symmetric potential energy surface for proton transfer reaction. | 2 | |------|--|----| | 1.2 | Schematics of the proton transfer in liquid water | 3 | | 1.3 | Image of the $H_5O_2^+$ cation solvated by four water molecules in a side pocket of the bacteriorhodopsin molecule. Taken from D. Marx. ¹⁵ | 4 | | 2.1 | Schematic of the electro-spray technique | 10 | | 2.2 | Mass spectrum of $H^+(H_2O)_n$ cations generated with the electro-spray source | 11 | | 2.3 | Typical mass spectrum of vanadium oxide cations $(V_x O_y^+)$ produced with the laser vaporization source | 13 | | 2.4 | A photograph of the electron gun received form D. Neumark, University of California, Berkley, U.S.A | 14 | | 2.5 | Mass spectrum of $Br(D(H)Br)_n^-$ anions produced with the electron impact source | 15 | | 2.6 | Mass spectrum of solvated hydroxyl anions generated with the electron impact source | 16 | | 2.7 | The ion guiding tandem mass spectrometer | 17 | | 2.8 | Photograph of the hexadecapole ion trap | 19 | | 2.9 | Schematics of a multipole with a cylinder ring electrode. The lower part shows a schematic representation of the potential along the axis of the system | 20 | | 2.10 | The trapping process. The upper part of the figure shows the ion trap filled with He buffer gas and the entrance $(TEnL)$ and exit $(TExL)$ electrostatic lenses. In the lower part of the figure, the trapping procedure is presented. The ion trajectory shows how the ions lose kinetic energy during the collision with the He gas atoms | 22 | | 2.11 | Schematic of a free electron laser consisting of an electron gun, an accelerator and a magnetic field structure (undulator), which is placed | 22 | | | in a resonator cavity. Figure received from FOM.) | 23 | | 2.12 | | | | | Netherlands. (Figure received from FOM.) | 24 | | 2.13 | The pulse structure of the free electron laser FELIX. (Figure received | | | | from FOM.) | 25 | | | * | 26 | |------------|---|----------| | 2.13 | Schematics of the measurement procedure | 28 | | 3.1
3.2 | Schematic representation of the Morse potential curve for a two atomic | 33 | | 3.3 | | 34
38 | | 3.4 | The sequential incoherent absorption mechanism | 39 | | 4.1 | 1 | 44 | | 4.2 | 1 | 45
48 | | 4.3
4.4 | 1 | 40
50 | | 4.4 | • | 53 | | 4.6 | • | 54 | | 4.7 | The infrared photodissociation spectrum of $Br(HBr)_2$ | O4 | | 4.1 | - · · · · · · · · · · · · · · · · · · · | 55 | | 4.8 | The infrared photodissociation spectrum of $Br(DBr)_2^-$ (black line) and | 00 | | 1.0 | $Br(HBr)_2^-$ (red line). The IR spectrum of $Br(HBr)_2^-$ was divided by | | | | | 57 | | 4.9 | The infrared photodissociation spectrum of the $Br(HBr)_3^-$ anion recorded | | | | | 58 | | 4.10 | | | | | sured with 50 $mJ/macropulse$ laser pulse energy | 59 | | 4.11 | The C_{2v} structure for $Br(HBr)_2^-$ (above) and the C_{3v} structure for $Br(HBr)_3^-$ (below) (B3LYP/aug-cc-pVTZ method). (calculations per- | | | | | 61 | | 4.12 | Infrared VPD spectrum of $BrHI^- \cdot Ar$ anion | 65 | | 4.13 | Infrared VPD spectrum of $BrDI^- \cdot Ar$ | 66 | | 4.14 | Comparison of the experimental predissociation spectra (black line) with the calculated frequencies and intensities (vertical bars). The upper panel shows $BrDI^-$; the lower panel shows $BrHI^-$. The experimental data are normalized to the background signal and shown on a logarithmic scale. Calculated intensities are normalized to the largest | | | 4 4 5 | | 68 | | | 1 / / | 69 | | 4.16 | Infrared VPD spectrum of $BrDI^- \cdot Ar$ (closed circles, upper trace) and the IRMPD spectrum of $BrDI^-$ (open circles, lower trace). ⁷⁵ | 70 | | 5.1 | IRMPD spectra of the Zundel cation $H_5O_2^+$ and of the deuterated ion $D_5O_2^+$ | 78 | | 5.2 | IRMPD spectra of the deuterated isotopomers $D_x H_{5-x} O_2^+$ (x = 0, | • • | | | | 80 | | 5.3 | VPD spectrum of $H_5O_2^+ \cdot Ar^{97,98}(a)$) and IRMPD spectra of $H_5O_2^+$ measured at FELIX ¹⁰⁰ (b)) and at CLIO ⁹⁶ (c)) | 83 | |------------|--|------| | 5.4 | The structures of the $H_9O_4^+$ cation predicted by Ojamäe et al. ¹⁰⁷ at | 00 | | 9.4 | the MP2/TZ2P level of theory. Oxygen atoms are displayed by dark | | | | spheres; hydrogen atoms by white spheres | 87 | | 5.5 | The harmonic vibrational spectra for the monomers H_3O^+ and H_2O , | 0. | | 0.0 | for $H_5O_2^+$ in C_2 symmetry and for $H_9O_4^+$ in C_2 and C_3 symmetries. | | | | Taken from Ojamäe $et~al.$ ¹¹³ | 88 | | 5.6 | IRMPD spectrum of H_9O_4 ⁺ measured at FELIX energy of 28 mJ/macro | | | 0.0 | at 15 μm | 89 | | 5.7 | IRMPD spectrum of $H_9O_4^+$ measured at FELIX pulse energy of 60 | | | J., | $mJ/macropulse$ at 15 μm . | 90 | | 5.8 | The VPD spectrum of $H_9O_4^+$. Taken from Headrick <i>et al.</i> ¹²³ | 91 | | 5.9 | IRMPD spectrum of the $H_7O_3^+$ cation | 95 | | 5.10 | Potential energy curve of $H_3O_2^-$ along the proton displacement coordi- | | | 0.20 | nate. Taken from Dicken $et~al.^{99}$ | 99 | | 5.11 | Argon predissociation spectrum of the $H_3O_2^- \cdot Ar$ complex. Taken | | | 9 | from Dicken $et~al.^{97}$ | 100 | | 5.12 | The IRMPD spectrum of $H_3O_2^-$ | 101 | | | - | | | 6.1 | CASPT2 / cc-pV5Z structures for VO^+ , $VO^+ \cdot He$ and $VO^+ \cdot Ar$. (O | | | | in blue, V in light gray, He in black and Ar in green) | 111 | | 6.2 | CASPT2 / cc-pVTZ structures for $VO^+ \cdot Ar_2$. (V- light gray sphere, | | | | O - blue sphere, Ar - green spheres.) | 116 | | 6.3 | The gas phase IRMPD spectrum of the $V_4O_{10}^+$ cation | 119 | | 6.4 | The IRMPD spectrum of the $V_4O_{12}^+$ cation | 122 | | 6.5 | The IRMPD spectrum of O_2 and $2O_2$ -loss fragmentation channels of | | | | $V_4O_{12}^+$ | 123 | | 6.6 | The VPD and the IRMPD spectra of $V_3O_8^+$ | 125 | | 6.7 | The IRMPD spectrum of the $V_6O_{15}^+$ cation | 127 | | 6.8 | The IRMPD spectrum of the $V_6O_{13}^+$ cation | 128 | | 7.1 | Schematic representation of the few cycle IR $+$ UV bond selective dissociation scheme for the control of the branching ratio of different dissociation channels when the saddle point is reached by photodetachment. Received from N. Elghobashi. 171 | 135 | | B.1 | Korth Kristalle $GmbH^{172}$ | 158 | | ~ . | TI | 4.00 | | C.1
C.2 | The gas phase IRMPD spectrum of $V_2O_3^+$ | 162 | | Q 2 | $et \ al.^{39} \dots \dots$ | 163 | | C.3 | The IRMPD spectrum of $V_3O_2^+$ | 165 |