
Chapter 3

Theoretical Models

In this chapter, the theoretical concepts necessary for the understanding of the ex-

perimental results presented in this work will be described. First, the basic principles

of molecular vibrations will be introduced, with an emphasis on the anharmonicities

and their effects on the vibrational spectrum. This is followed by a brief description of

the excitation mechanism. The mechanisms underling the infrared photodissociation

(IRPD) technique will be presented.

3.1 Introduction to Infrared Spectroscopy

Infrared spectroscopy is widely used for the identification of molecular vibrations,

which help for the structure determination of molecular systems. Different structural

groups exhibit infrared activity in characteristic regions of the spectrum. By measur-

ing the infrared spectrum of a molecule and by knowing the frequency where these

groups absorb radiation, a molecular structure can be proposed. The fingerprint re-

gion, is the region of the IR spectrum, where, by the absorption of an IR photon, a

molecule produces a unique pattern. For the systems which were investigate in this

thesis, the fingerprint region extends mainly below 2000 cm−1.

3.2 Theoretical Treatment of Molecular Vibrations

Classically, the vibrational motion of the molecules can be treated approximately

considering that the atoms in a molecule are connected with bonds that act like

springs undergoing harmonic oscillations about the equilibrium position. In the case
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of a two atomic system, the frequency ν of the oscillation is given by:

ν =
1

2π

√
k

µ
(3.1)

where k represents the force constant and µ the reduced mass of the molecule. For

two atoms having the masses m1 and m2, the reduced mass is defined as:

µ =
m1m2

m1 +m2

(3.2)

Since the force that acts on the two atoms is the elastic force and it is given by

the negative derivative of the potential energy V , the following expression for the

harmonic potential is obtained:

V = kq2/2 (3.3)

where q = x2 −x1 represents the displacement of the two atoms from the equilibrium

internuclear distance. Equation (3.1) indicates that by changing the reduced mass, the

frequency of the vibration can be shifted. For example, this relation is very useful for

the assignment of vibrations involving the hydrogen atom stretching motion, where

the hydrogen atom can be replaced by deuterium. In this case, a red shift of the

vibrational frequency of
√

2 is expected. This is referred to as the isotope effect and

will be exemplified in Chapter 4.

A better description of the molecular vibrations can be obtained by treating the

systems quantum mechanically. For this, the Schrödinger equation for the system of

interest needs to be solved:

i~
∂

∂t
Ψ(r,R, t) = ĤΨ(r,R, t) (3.4)

Equation 3.4 is referred to as the time-dependent Schrödinger equation, where

ψ(r,R, t) represents the molecular wavefunction, which depends on the electronic

coordinates r, the nuclear coordinates R and time t. Ĥ represents the Hamilton

operator of the system and can be written as the sum of the total kinetic energy of

the electrons T̂e, total kinetic energy of the nuclei T̂n and the potential energy con-

sisting of the electron-electron V̂ee, electron-nuclei V̂ne and nuclei-nuclei V̂nn Coulomb

interactions:

Ĥ = T̂e + T̂n + V̂ee + V̂ne + V̂nn (3.5)

Because in equation (3.5) of the Hamiltonian, the time does not appear explicitly, a

separation of variables according to space and time can be performed. Hence, the

molecular wavefunction of the system takes the form:

Ψ(r,R, t) = ψ(r,R) · ϕ(t) (3.6)
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By substituting equation (3.6) in equation (3.4), two differential equations are ob-

tained, one time-independent and one time-dependent. The time-independent Schrö-

dinger equation for the spatial wavefunction has the form:

Ĥ ψ(r,R) = E ψ(r,R) (3.7)

For the time-dependent differential equation, the following solution is obtained:

ϕ(t) = exp(
−iEt

~
), ~ =

h

2π
(3.8)

where E represents the eigenvalue of the Hamiltonian and h the Planck constant.

The solutions of the time-independent Schrödinger equation are difficult to be

obtained, especially for large systems. Usually it is possible to introduce the Born−
Oppenheimer approximation, which considers that the motion of the heavy nuclei

is much slower than that of the light electrons. As a consequence, the nuclei can

be considered fixed and the wave function can be separated into an electronic and a

nuclear part:

ψ(r,R) = ψel(r,R) ψn(R) (3.9)

where ψel(r,R) represents the electronic wave function for a given configuration of

the nuclei and ψn(R) represents the nuclear wavefunction.

The Hamiltonian from equation (3.5) can be separated into an electronic Ĥel and

a nuclear Ĥn part:

Ĥel = T̂e + V̂ee + V̂ne (3.10)

Ĥn = T̂n + V̂nn (3.11)

By introducing the separated wavefunction (3.9) into the time-independent Schrödinger

equation, and considering the kinetic energy of the nuclei T̂n equal to zero and the

Coulomb interaction between the nuclei V̂nn constant, the electronic equation is ob-

tained:

Ĥel ψel(r,R) = Eel(R) ψel(r,R) (3.12)

Equation (3.12) describes the electronic motion and can be resolved parametrically

with respect to the nuclear set of coordinates R. The solutions give the electronic

energies as a function of the nuclear displacement, defining a potential energy surface

(PES). If the electronic problem is solved, it is subsequently possible to approach the

nuclear problem.

Solutions to the nuclear Schrödinger equation,

(Ĥn + Eel(R)) ψn(R) = E ψn(R) (3.13)
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describe the vibration, rotation and translation of a molecule. E is the Born-Oppenheimer

approximation to the total energy and includes the electronic, vibrational, rotational

and translational energy.

Returning to the harmonic oscillator treated classically at the beginning of the

chapter, now a quantum mechanical explanation can be given. The potential energy V

can be expressed in a general form as a power series expansion about the equilibrium

position. In the case of the harmonic oscillator, only the quadratic term is considered

and the potential energy can be expressed as in equation (3.3). By introducing V

in the time-independent Schrödinger equation (3.7) and solving the equation, the

allowed energy values E for the harmonic oscillator are obtained:

E = ~ω(v +
1

2
), v = 0, 1, 2 · · · (3.14)

where ω represents the angular frequency. For v = 0 the zero point energy E(0) is

obtained. Equation 3.14 indicates that for the harmonic potential the vibrational

levels are equally separated from each other ∆E = Ev+1 − Ev = hν = ~ω.

The description of the vibrational motion for a two atomic system is rather simple,

however polyatomic molecules present a large number of possible vibrations. In some

cases, the displacement of an atom along one cartesian coordinate might lead to com-

plicated motions. The representation of these vibrations in cartesian coordinates will

result in complicated expressions of the kinetic and potential energy, where not only

squared terms but also cross products between the coordinates appear. The choice

of other coordinates, referred to as the normal coordinates, results in a simplified

description of the vibrational motion and allows the description of the kinetic and

potential energy as a sum of square terms. The displacement of the system according

to these coordinates will lead to a simple motion in which all particles move in phase

with the same frequency. The motions along the normal coordinates are referred to

as normal modes. Any vibrational motion of the system can be represented as a su-

perposition of the normal vibrations with suitable amplitudes. For a molecule with

N nuclei there are 3N degrees of freedom from which 3N-6 for nonlinear molecules,

respectively 3N-5 for linear systems are left to describe the vibrational motions of

a molecular systems. Accordingly, there are 3N-6 (3N-5) normal coordinates to de-

scribe the vibrational motion. The other 6 (5) coordinates describe the rotational

and translational motions of the molecule.

Figure 3.1 shows the 3N-5 (4) possible vibrations of a linear three atomic mole-

cule. The symmetric motion is labeled as ν1, ν2 is the bending motion and ν3, the
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Figure 3.1: The vibrations of a linear three atomic molecule. ν1 is the symmetric stretch,

ν2 represent the bending mode, ν3 the antisymmetric stretch. The bending mode presents

two vibrations which are perpendicular to each other and have the same energy (are degen-

erate).

antisymmetric stretch.

According to equation (3.3) the harmonic oscillator is characterized by a par-

abolic potential curve. This is generally true only for small displacements from the

equilibrium distance. The potential energy and the restoring force increase infinitely

when increasing the distance from the equilibrium. However, in real systems, at high

internuclear distances, the attractive force is zero (the molecule dissociates) and the

potential energy has a constant value which represents the dissociation energy. For

larger amplitude vibrational motions, anharmonicities play an important role. The

deviation from the potential curve described by equation (3.3) to the curve of a real

molecule is due to mechanical anharmonicity. The simulation of a potential energy

surface including the anharmonicities is difficult.

An approximate solution for two atomic system which describes well also the

dissociation was given by P. M. Morse.66,67 He proposed a general formula for the

potential energy as:

V = De[1 − e−a(R−Re)]2 (3.15)

In equation (3.15), De represents the dissociation energy, R, the internuclear dis-

tance, Re is the equilibrium bond length and the parameter a determines the width

of the potential well.

a =

√
µ

2De

ωe [cm−1] (3.16)

ωe = 2πνe denotes the harmonic vibrational frequency.

The Morse potential accounts for the anharmonicity, which is defined through

the parameter χe, refered to as the anharmonicity constant. The value of χe can be
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Figure 3.2: Schematic representation of the Morse potential curve for a two atomic mole-

cule. The potential energy is plotted as a function of the bond distance R. Re, De are the

equilibrium bond length and the dissociation energy, respectively. The numbers on the left

side of the potential denote the vibrational levels v=0, 1· · · 7.

determined by the following equation:

χe =
~ωe

4De

(3.17)

The values of the frequency ωv for certain vibrational levels can be determined by con-

sidering the anharmonicity constant of the potential. Their values can be determined

by evaluating the following equation:

ωv = ωe[1 − χe(v +
1

2
)] (3.18)

A similar formula to (3.18) can be obtained for the energy levels:

Eν = ~ωe(v +
1

2
)[1 − χe(ν +

1

2
)] (3.19)

A schematic representation of a Morse potential curve for a two atomic molecule

is shown in Figure 3.2. One of the effects on the anharmonicity can be observed in

this figure, where due to a positive anharmonicity constant the distance between the

energy levels becomes smaller with increasing the energy.

3.2.1 Interaction with Light

Transitions between vibrational levels can be achieved through interactions of elec-

tromagnetic radiation on a molecular system. If the influence of the electromagnetic
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radiation is small, it can be treated as a perturbation. In the dipole approximation

the perturbation is defined as Ĥ
′

= −µ̂ ·E and appears as an additional term to the

Hamilton operator Ĥ.

Ĥ = Ĥ0 + Ĥ
′

(3.20)

where Ĥ0 represents the unperturbed Hamiltonian. In this approximation, the mole-

cule-field interaction is reduced to that of the dipole moment µ̂ of the molecule with

the time-dependent electric field of the laser E.

Within the electric dipole approximation, a molecule is allowed to absorb radiation

at the transition i→ j only if the transition non-diagonal matrix element of its dipole-

moment operator is different from zero:

〈j |µ̂| i〉 6= 0 (3.21)

Considering small vibrations, the vibrational dipole moment of a molecule can be

written as an expansion by the normal coordinates qi. In a first approximation, this

change can be considered linear:

µ = µ0 +
3N−6∑

i=1

(
∂µ

∂qi
)qi + · · · (3.22)

µ0 represents the permanent dipole moment of the studied system associated with

the equilibrium configuration.a

If the second term in equation (3.22) is non-vanishing, the vibration is referred

to as infrared active. In the opposite case, the vibration will be infrared inactive.

For the linear molecule presented in Figure 3.1, the symmetric vibration ν1 is infrared

inactive, since there is no change of the dipole moment as the molecule vibrates. Due

to the same reason, homonuclear diatomic molecules show no infrared activity.

By using the equations (3.22) and (3.21), it can be shown that the selection rule

for infrared transitions in the case of the harmonic oscillator is ∆v = ±1. The line

intensity for vibrational bands is predominantly proportional to the square of the

vibrational dipole moment (( ∂µ

∂qi

)2). The anharmonicity gives rise to a change of the

selection rule to ∆v = ±1,±2,±3 · · · which leads to the appearance of overtones

(nνi). Usually, the anharmonicity is small and the intensity of the overtones is low.

In polyatomic molecules the form of the potential is more complicated. The

power series expansion of the potential energy will contain also higher terms than

aThe appearance in the equation of the Taylor expansion of the dipole moment (3.22) of
higher terms in qi represents another aspect of the anharmonicity. This is referred to as the
electrical anharmonicity.
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the quadratic considered for the harmonic case. By introducing this potential energy

in the time-independent Schrödinger equation (3.7) the following vibrational terms

(G(vi) = E(vi)/hc) for non-degenerate vibrations are obtained:

∑

i

Gvi
=

∑

i

ωi(v +
1

2
) +

∑

i≤j

χij(vi +
1

2
)(vj +

1

2
) + · · · (3.23)

where ωi represents the fundamental vibration wavenumber for infinitely small dis-

placements (analogous to ωe for diatomic molecules) and χij are the anharmonic

constants, which can have positive or negative values. One effect of the anharmonic-

ity in polyatomic molecules is the mixing of vibrational normal modes. This can

lead to the appearance of combination bands (νi ± νj) in the infrared spectrum. The

intensity of these bands is generally small in comparison to the fundamental excita-

tions. An exception arises when two levels with the same symmetry, for example, an

overtone and a fundamental are very close in energy (accidental degeneracy), referred

to as Fermi resonances. Due to the perturbation of the energy levels, the near de-

generacy is lifted and two separate bands with perturbed intensities appear in the

spectrum. For example, an overtone band might ”borrow” intensity from the funda-

mental and it will show up in the spectrum more intense than in the case when no

Fermi resonance occurs. The same effect can be observed in the case of combination

bands. The combination bands can be either summation (νl + νk) or difference bands

(νl−νk). Difference bands appear when the initial state is not the ground state v = 0.

The summation and the difference bands should have the same intensity. However,

due to the Boltzmann distribution, the population in a higher excited state is lower

than in the ground vibrational state and therefore the intensity of the difference bands

will be smaller.

Because of these possible complications in the experimental infrared spectra, the

evaluation and assignment of the vibrational frequencies of polyatomic molecules espe-

cially with high anharmonicities is difficult and, in these cases, high level anharmonic

calculations are necessary.

Due to the mainly low densities of molecules in the gas phase, direct absorption

infrared spectroscopy in the gas phase is known to have a low sensitivity. In the direct

absorption infrared spectroscopy, the amount of absorbed or transmitted radiation is

measured. According to the Lambert-Beer law the absorbance (A) of the sample is

given by:

A = log
I

I0
= ǫcl (3.24)
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I is the intensity of the transmitted light and I0 represents the intensity of the

incident light.

Here, ǫ represents the molar absorption coefficient, c the concentration and l the light

path length. In the experiments presented in this thesis the maximum number of ions

per cm3 is limited by the space-charge limit equal to 108 ions/cm3, l is equal to the

trap length (20 cm) and ǫ = 104 M−1cm−1. Considering the above values, a change

in the light intensity of 3.2 · 10−8 is expected. This value is too low to be detectable.

Therefore, other methods are necessary for the measurement of the infrared spectra

of ions in the gas-phase.

3.3 Excitation Mechanisms

Since for IR investigations of gas phase ions, direct absorption infrared measure-

ments are often not sensitive enough, action spectroscopy methods have been devel-

oped. The action spectroscopy relies on the detection of an effect (”action”) which

was produced by the interaction of the molecules with the radiation.

3.3.1 Infrared Photodissociation Spectroscopy (IRPD)

One possibility of action spectroscopy is the measurement of the photodissociation

yield formed as a consequence of infrared photon absorption as shown schematically

in expression 3.25:

AB+/− nhνIR→ (AB+/−)∗ → A+/− +B;A+B+/− (3.25)

This process is referred to infrared photodissociation (IRPD) and for charged systems

presents a high sensitivity, since detectors are able to detect single ions. IRPD can

proceed by two absorption schemes: a) a coherent stepwise absorption mechanism and

b) an incoherent sequential absorption mechanism. Coherent stepwise IRPD occurs

via ”ladder climbing” up the energy levels of an oscillator. The efficiency of stepwise

absorption depends on the anharmonicity of the potential. At high energies, the

excitation source is non-resonant with the anharmonic levels (anharmonic bottleneck

effect) and the ”ladder climbing” mechanism is prohibited (see Figure 3.3). Thus, for

systems with high dissociation energies of few eV the coherent stepwise absorption

will fail to induce dissociation at the excitation energies and pulse intensities used in

the experiments presented in this thesis.
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X
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Figure 3.3: Schematics of the ”ladder climbing” mechanism. After few transitions, vibra-

tional anharmonicity hinders further resonant absorption of photons.

The most likely mechanism for IRPD with FELIX is the sequential incoherent ab-

sorption mechanism shown in Figure 3.4. This mechanism can be divided into three

regions. The first region is characterized by a low density of states where the energy

levels are well separated. In this region the effect of the anharmonicity is small68

and one or few photons can be resonantly absorbed. This is followed by internal

vibrational redistribution (IVR) which proceeds via anharmonic coupling. The IVR

process de-excites the absorbing vibrational state by redistributing the energy into

the quasicontinuum of ro-vibronic states. The quasicontinuum (Region II) is charac-

terized by a high density of mutually interacting states. The de-excited vibrational

state may absorb new photons followed again by a redistribution of the energy. Fur-

ther photons are absorbed until the photodissociation threshold is reached. In the

last region, which is characterized by a continuum of states, photodissociation occurs

and fragment ions are produced. The photodissociation occurs typically through the

lowest energy dissociation channel. If the laser fluence is high enough, dissociation

through several channels might occur.69,70

The process by which energy flows into and breaks a weak bond after the excitation

of the chromophore, is known as vibrational predissociation (VPD).71 The limitation

of this method is that it is only useful for probing transitions that terminate above the

ion’s dissociation threshold which is mostly a multiphotonic process. In the literature

often the term vibrational predissociation spectroscopy is referred to the messenger

atom technique (see the following subsection), although in both methods dissociation

occurs through vibrational predissociation. Therefore, in this thesis, the experiments
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Figure 3.4: The sequential incoherent absorption mechanism. Resonant absorption of

few infrared photons in region I is followed by internal vibrational redistribution (IVR) of

the energy in other vibrational modes. Region II is characterized by the quasicontinuum,

where there is always a possible resonant transition. Further photons are absorbed until the

photodissociation threshold (Et) is reached. Region III is the characterized by a continuum

of states where photodissociation occurs. Addapted from Mukamel and Jortner.68

performed with the messenger atom technique are referred to as VPD and the exper-

iments on the uncomplexed ions, which generally require multiphoton absorptions,

are referred to as IRMPD (infrared multiphoton photodissociation spectroscopy).

The incoherent multiphoton absorption mechanism depends on the density of

vibrational states. Consequently, it is expected to be more efficient for large systems.72

In small molecules, with a low density of vibrational states, the anharmonic bottleneck

effect is bigger and higher laser intensities are necessary for the same amount of

absorbed laser energy.

After dissociation, most of the excess energy will remain as internal energy in

the fragments, only a small fraction being released as translational energy. For large

molecules the dissociation fragments may already be excited in the quasi-continuum

and dissociate again. Secondary or sequential dissociation is very probable in multi-

photon photodissociation (MPD) experiments at high laser fluence, especially in large

systems. Competing dissociation channels might be opened, if their energy is close

to the lowest dissociation channel.
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Messenger atom technique

The number of absorbed photons can be substantially lowered when a weakly

bound ”spy” atom is attached to the ion. Ideally, this spy atom does not perturb

the structure and the vibrations of the ”core” ion, but it can be detached by the

absorption of one or few photons.71 A second advantage of this method is that the

attachment of a weakly bound atom adds low frequency vibrations which increase the

density of states and promote IVR and dissociation rates.72 This method is referred

to as the messenger (spy) atom technique. The vibrational predissociation mechanism

here relies on the loss of the messenger atom or molecule, after the excitation of the

chromophore vibrational resonance.

The basic concept of the Ar dissociation mechanism is shown in equation 3.26.

AB+/− · Ar hνIR→ (AB+/−)∗ · Ar → AB+/− + Ar (3.26)

The core ion AB+/− is excited by resonant absorption of one or few photons (much

less than required for the uncomplexed ion). The absorbed energy will be eventually

redistributed through IVR leading to thermal heating of the molecule and to the

dissociation of the weakest bond, in this case dissociation of the Ar atom. The

time the energy needs to be redistributed depends on the coupling constants to the

van der Waals mode. Since the coupling to the Ar atom is low, the time that the

energy remains localized in the A−B bond is long. Based on the Heisenberg relation

∆E ≈ h/∆t, the width of the transition is small resulting in sharp features in the IR

spectra.

In this work the predissociation of (BrHBr)− · Ar and (BrDBr)− · Ar as well

as BrHI− · Ar and BrDI− · Ar, was measured. The Ar atom is only weakly bound

to the ion (≈ 300 cm−1) so that only one photon is necessary for dissociation in the

spectral range of our measurements (600 - 1700 cm−1). The structure perturbation

of the chromophore is considered to be negligible.

Irrespectively of which measurement technique is used, infrared multiphoton pho-

todissociation or the messenger atom technique, the assignment of the vibrational

frequencies turns out to be difficult and quantum chemical calculations are generally

required. By using different methods, depending on their efficiency and quality, a

good interpretation of the data can be obtained. In chapters 4, 5 and 6 comparisons

between frequencies calculated with different theoretical methods and experimental

data are presented.




