Appendix A

Semiclassical case of helium at double-ionization threshold

In the following it will be shortly discussed why quantum chaos is expected close to the double-ionization threshold of helium. For this we will consider the Hamiltonian of classical helium, which can be can read as

$$
\begin{equation*}
H=\frac{\mathbf{p}_{1}^{2}+\mathbf{p}_{2}^{2}}{2}-\frac{2}{\mathbf{r}_{1}}-\frac{2}{\mathbf{r}_{2}}+\frac{1}{\mathbf{r}_{1}+\mathbf{r}_{2}}=E, \tag{A.1}
\end{equation*}
$$

where E is the total energy relative to the double-ionization threshold. If E is positive both electrons can escape, which corresponds to the double-ionization of helium. The region $E<0$ is more interesting since it represents the region of the doubly excited states. Taking negative energies E into account, one can scale the coordinates as

$$
\mathbf{r}_{i}=\frac{\tilde{\mathbf{r}}_{i}}{-E} \quad \mathbf{p}_{i}=\sqrt{-E} \tilde{\mathbf{p}}_{i}
$$

and then, the Hamiltonian of classical helium becomes

$$
\begin{equation*}
H=\frac{\tilde{\mathbf{p}}_{1}^{2}+\tilde{\mathbf{p}}_{2}^{2}}{2}-\frac{2}{\tilde{\mathbf{r}}_{1}}-\frac{2}{\tilde{\mathbf{r}}_{2}}+\frac{1}{\tilde{\mathbf{r}}_{1}+\tilde{\mathbf{r}}_{2}}=-1 . \tag{A.2}
\end{equation*}
$$

This transformation shows that the dynamics of classical helium remains invariant under variations of the energy since (A.2) can always be obtained by a simple scaling transformation. Under the scaling, the uncertainty principle can be given by

$$
\begin{equation*}
\tilde{\hbar}=\Delta \tilde{\mathbf{r}}_{i} \cdot \Delta \tilde{\mathbf{p}}_{i}=(-E) \mathbf{r}_{i} \cdot \frac{\mathbf{p}_{i}}{\sqrt{-E}}=\sqrt{-E} \hbar . \tag{A.3}
\end{equation*}
$$

As can be seen from (A.3), Planck constant in the rescaled coordinates, $\tilde{\hbar}$, approaches zero as $E \rightarrow 0$. Therefore, according to Bohr's correspondence, in the region close to the double-ionization threshold, helium can be described as a semiclassical way where quantum chaos is expected because of the non-integrability in classical helium.

Appendix B

Random matrix theory

Random matrix theory [64, 65], developed in the nineteen fifties and sixties, is a quite successful tool to study the level fluctuations in the quantum spectra of a chaotic system. In this theory, the quantum chaos is accounted for by representing the Hamiltonian by a matrix whose elements are randomly chosen; this represents the minimum knowledge about the system. The construction of a Gaussian ensembles will be illustrated by considering real symmetric 2×2 matrices with $O(2)$ symmetry as their group of orthogonal transformations. What we are seeking is a probability density $P(H)$ of three independent matrix elements H_{11}, H_{22} and H_{12} under the normalization condition

$$
\begin{equation*}
\int_{+\infty}^{-\infty} P(H) d H_{11} d H_{22} d H_{12}=1 \tag{B.1}
\end{equation*}
$$

Two requirements, which take into account very principal physical ideas, suffice to determine $P(H)$. First, $P(H)$ must be invariant under the orthogonal transformation of the two-dimensional basis, i.e.

$$
\begin{equation*}
P(H)=P\left(H^{\prime}\right), \quad H^{\prime}=O H O^{T} . \tag{B.2}
\end{equation*}
$$

Second, the three independent matrix elements must be uncorrelated. The probability density $P(H)$ must therefore be the product of the three densities,

$$
\begin{equation*}
P(H)=P_{11}\left(H_{11}\right) P_{22}\left(H_{22}\right) P_{12}\left(H_{12}\right) . \tag{B.3}
\end{equation*}
$$

This assumption can be interpreted as one of minimum-knowledge input or of maximum disorder. The transformation matrix $O(2)$ can be written by

$$
O=\left(\begin{array}{cc}
\cos \Theta & -\sin \Theta \tag{B.4}\\
\sin \Theta & \cos \Theta
\end{array}\right) .
$$

One can consider an infinitesimal $(\Theta \rightarrow 0)$ orthogonal transformation of the basis, and obtains

$$
O=\left(\begin{array}{cc}
1 & -\Theta \tag{B.5}\\
\Theta & 1
\end{array}\right) .
$$

Considering $H^{\prime}=O H O^{T}$, the matrix elements result in

$$
\begin{align*}
H_{11}^{\prime} & =H_{11}-2 \Theta H_{12} \\
H_{22}^{\prime} & =H_{22}+2 \Theta H_{12} \\
H_{12}^{\prime} & =H_{12}+\Theta\left(H_{11}-H_{22}\right) . \tag{B.6}
\end{align*}
$$

According to the invariance given in Eq. (B.2), the factorization and the invariance of $P(H)$ yield

$$
\begin{equation*}
P(H)=P(H)\left\{1-\Theta\left[2 H_{12} \frac{d \ln P_{11}}{d H_{11}}-2 H_{12} \frac{d \ln P_{22}}{d H_{22}}-\left(H_{11}-H_{22}\right) \frac{d \ln P_{12}}{d H_{12}}\right]\right\} . \tag{B.7}
\end{equation*}
$$

Since the infinitesimal angle Θ is arbitrary, its coefficient in Eq. (B.7) should vanish, i.e.

$$
\begin{equation*}
\frac{1}{H_{12}} \frac{d \ln P_{12}}{d H_{12}}-\frac{2}{H_{11}-H_{22}}\left(\frac{d \ln P_{11}}{d H_{11}}-\frac{d \ln P_{22}}{d H_{22}}\right)=0 \tag{B.8}
\end{equation*}
$$

The solution of this equation is given by Gaussian function of the form

$$
\begin{equation*}
P(H)=C \exp \left[-A\left(H_{11}^{2}+H_{22}^{2}+2 H_{12}^{2}\right)-B\left(H_{11}+H_{22}\right)\right] . \tag{B.9}
\end{equation*}
$$

B vanishes if the average energy, $\operatorname{Tr}(H)$, is properly shifted to zero, A fixes the unit of energy, and C is determined by the normalization. Without the loss of generality, $P(H)$ can be written as

$$
\begin{equation*}
P(H)=C \exp \left[-A \operatorname{Tr} H^{2}\right] . \tag{B.10}
\end{equation*}
$$

It can be shown the probability density (Eq. (B.10)) obtained from the 2×2 matrices in fact holds also for $M \times M$ matrices with arbitrary size.

By assuming that Hamiltonian matrix elements are described according to Eq. (B.10) the eigenvalues are given by

$$
\begin{equation*}
E_{ \pm}=\frac{1}{2}\left(H_{11}+H_{22}\right) \pm \frac{1}{2}\left[\left(H_{11}-H_{22}\right)^{2}+4 H_{12}\right]^{1 / 2} . \tag{B.11}
\end{equation*}
$$

With the help of the eigenvalues $E_{ \pm}$, we obtain the diagonal matrix

$$
D=\left(\begin{array}{cc}
E_{+} & 0 \tag{B.12}\\
0 & E_{-}
\end{array}\right)
$$

and by an orthogonal transformation given by Eq. (B.4), one can write the matrix H as

$$
\begin{equation*}
H=O D O^{T} \tag{B.13}
\end{equation*}
$$

This yields the following transformation between the elements H_{11}, H_{22}, H_{12} and the variables E_{+}, E_{-}, Θ :

$$
\begin{align*}
H_{11} & =E_{+} \cos ^{2}(\Theta)+E_{-} \sin ^{2}(\Theta), \\
H_{22} & =E_{-} \cos ^{2}(\Theta)+E_{+} \sin ^{2}(\Theta), \\
H_{12} & =\left(E_{+}-E_{-}\right) \cos \Theta \sin \Theta . \tag{B.14}
\end{align*}
$$

The Jacobian determinant of this orthogonal transformation is given by,

$$
\begin{equation*}
\operatorname{det}(J)=\operatorname{det} \frac{\partial\left(H_{11}, H_{22}, H_{12}\right)}{\partial\left(E_{+}, E_{-}, \Theta\right)}=E_{+}-E_{-} . \tag{B.15}
\end{equation*}
$$

Because of

$$
\begin{equation*}
P\left(E_{+}, E_{-}, \Theta\right)=P(H) \operatorname{det}(J) \tag{B.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Tr} H^{2}=E_{+}^{2}+E_{-}^{2}, \tag{B.17}
\end{equation*}
$$

one obtain the distribution $P\left(E_{+}, E_{-}, \Theta\right)$ in the form:

$$
\begin{equation*}
P\left(E_{+}, E_{-}\right)=C\left|E_{+}-E_{-}\right| \exp \left[-A\left(E_{+}^{2}+E_{-}^{2}\right)\right] . \tag{B.18}
\end{equation*}
$$

Note that this form is independent of Θ. To calculate the distribution of nearest-neighbor-spacing (NNS), we should integrate the variables E_{+}and E_{-}in the equation (B.18)

$$
\begin{equation*}
P\left(E_{+}, E_{)}=C \int d E_{+} \int d E_{-} \delta\left(S-\left|E_{+}-E_{-}\right|\right)\left|E_{+}-E_{-}\right| \exp \left[-A\left(E_{+}^{2}+E_{-}^{2}\right)\right] .\right. \tag{B.19}
\end{equation*}
$$

Setting the variables $S=E_{+}-E_{-}$and the variable $z=\left(E_{+}+E_{-}\right) / 2$, Eq. (B.19) can be written as

$$
\begin{align*}
P(S) & =C^{\prime} \int_{-\infty}^{\infty} d z S \exp \left[-A\left(S^{2} / 2+2 z^{2}\right)\right] \\
& =C^{\prime} \sqrt{\frac{\pi}{2 A}} S \exp \left(-A S^{2} / 2\right) \tag{B.20}
\end{align*}
$$

A and C^{\prime} can be evaluated by the normalization condition

$$
\begin{equation*}
\int_{0}^{\infty} d S P(S)=1 \tag{B.21}
\end{equation*}
$$

and with the unit of energy set such that the mean spacing is unity, namely

$$
\begin{equation*}
\int_{0}^{\infty} d S S P(S)=1 \tag{B.22}
\end{equation*}
$$

In the end, eq. (B.20) yields the Wigner distribution $P_{W}(S)$ given in Eq. (4.1)

$$
\begin{equation*}
P_{W}(S)=\frac{\pi}{2} S \exp \left(-\frac{\pi}{4} S^{2}\right) \tag{B.23}
\end{equation*}
$$

