
Chapter 4

Photoionization cross sections in the

ion yield

Due to its simplicity, the three-body system helium, in its doubly excited states, has

become a highly exciting atom for the study of quantum chaos. Quantum chaos can

be considered as the behavior of a quantum system whose classical counterpart behaves

chaotic. Doubly excited helium approaches the semiclassical limit, i.e. h̄ → 0, in the

region close to the double-ionization threshold (for details see App. A). The classical

counterpart of the helium atom, the classical three-body system, is a nonintegrable sys-

tem, i.e. it can behave chaotic. Therefore, one expects quantum chaos to emerge in

the spectra of doubly excited resonances in He close to the double-ionization threshold.

In other words, close to double-ionization threshold, the signatures of classical mechan-

ics in doubly excited helium will be magnified by the observation of quantum-chaotic

spectra. Richter et al. [28] showed that classical helium exhibits a mixed phase space

with regular and chaotic regions by using the Poincaré section of the Wannier ridge

(explained later). Chaotic dynamic in classical helium is independent of the total en-

ergy. However, the spectra in doubly excited helium carry a transition (reflecting strong

electron correlations) to chaotic behavior while the photon energy is increased close to

the double-ionization threshold. The strong electron correlations in this two-electron

atom are reflected in a set of new approximate quantum numbers N, Kn′ instead of tra-

ditional quantum numbers like l. These approximate quantum numbers work quite well,

particularly in the low energy region. In the region of high doubly excited states, an

increasing number of perturbers render the spectra very complicated and fluctuating.

As a consequence, the approximate quantum numbers N, Kn′ start to dissolve. At the

double-ionization threshold, the helium atom may be described by classical mechanics.

From this point of view, one can assume that there might not be enough good quantum

numbers to describe the spectra close to double-ionization threshold of helium. In the

previous work of our group [18], statistical studies of nearest-neighbor spacings (NNS)

of energy levels carried out, with the results that the onset of a transition to quantum

chaos in the region below the SIT I9 could be identified. From the studies presented in

this dissertation, we shall see that the transition region from integrability to full chaos in
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1P o helium is much larger, in agreement with the recent findings for 1Se doubly excited

helium [19].

So far, most measurements of TCSs of doubly excited resonances in helium were

limited to the energy region below the SIT I9 [18, 30, 62]. Many advanced theoretical

methods [29, 31, 32, 33, 63] have been developed during last 20 years. However, these

theoretical studies were performed only in the region below the SIT I9 as well. In

this chapter, we shall present our recent experimental progress on the TCS up to the

SIT I15. It is worthwhile to mention here that very recently state-of-the-art complex-

rotation calculations for the TCS in three-dimensional helium by our cooperation partner

D. Delande (Universite Pierre et Marie Curie, Paris) have reached the SIT I17 [27];

they are confirmed very well up to I15 by the present measurements. In this part,

we shall first discuss the approximate quantum numbers N, Kn′ by using theoretical

results and then study statistical properties of the energy levels, Fano parameters q, and

linewidths of the resonances in doubly excited helium. Preliminary statistical studies

for this atom displayed interesting precursor quantum signatures of chaos. Note that

detailed statistical studies have to be performed predominantly with theoretical data

due to the extremely low intensities of most of the Rydberg series, which give rise to

the situation that only a small fraction of the doubly excited states can be observed

experimentally.

4.1 Wigner distribution and Poisson distribution for

energy levels

There are two different types of motion in classical mechanics: the regular motion of

integrable systems and the chaotic motion of non-integrable systems. To distinguish

these two motions, one may have a look at a bundle of trajectories in the phase space

originating from a very narrow cloud of starting points. In the chaotic case, the dis-

tances between any of two trajectories in phase space increase exponentially in time. For

a regular motion, these distances may grow in a power of time, but never exponentially.

A simple example for classical integrable system, given in Fig. 4.1, is given by a one-

dimensional accelerated motion with constant accelerations. X and PX represent the

spatial coordinate and the corresponding momentum of a particle, respectively. Using

different values of acceleration for the calculation of the two trajectories, the distances,

d(ti), between two trajectories in phase space increase in t2, as can be seen in Fig. 4.1. In

contrast, the distances between two trajectories grow linearly or remain constant in time

if one varies the initial velocities or the initial positions of the trajectories, respectively.

There are no possibilities to change the initial conditions so that one obtains an exponen-

tial increase of d(ti) in this integrable case. Therefore, the “exponential sensitivity” is the

typical character for a classical chaotic behavior. When turning to quantum mechanics,

the classical description of the exponential sensitivity to the initial conditions cannot be

used any more to characterize quantum chaos. One reason is that one cannot directly

observe quantum chaos in phase space due to the uncertainty principle in quantum me-
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chanics. However, this results in one possibility to study quantum chaos in the phase

space of its classical counterpart. A second reason is given by the fact that the wave

function Ψ(t) in Schrödinger’s wave equation can always be calculated uniquely, and it

is of a simple periodic form in t, i.e. Ψ = Ψ0exp(−i
h̄

Et). This means that the exponential

sensitivity in time is “suppressed” in the wave function of a quantum chaotic system.

Nevertheless, most researchers agree that the deterministic features of quantum chaos

should be manifested in some ways in the quantum observables such as the energy levels,

line widths, and Fano parameters q of resonances in doubly excited helium.
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Figure 4.1: Phase space for one-dimensional accelerated motions with constant accelerations.

Two trajectories that are obtained using different values of acceleration are plotted by filled

circles and filled squares. The solid lines represent the distances between these two trajectories

at three different times.

This raises the question how quantum chaos is manifested in the spectra. One typical

manifestation is the spacing of energy levels, which will be discussed in the following.

According to Heisenberg, the operators of quantum mechanics can be represented by ma-

trices. It is then natural to conjecture that the observables of a chaotic quantum system

should be represented by random matrices, i.e. the energy levels in a chaotic quantum

system can be described as random elements of matrices. Some conditions based on very

basic principles of physics are assumed for matrices, like the invariance of the probability

density for the Hamiltonian under orthogonal transformation. Besides that the matrix

elements described by the Hamiltonian must be uncorrelated. According to the invari-

ance and the uncorrelation of the Hamiltonian, the probabilities of Hamiltonian elements

are of Gaussian form, and the statistical properties of the nearest-neighbor spacings S

(NNS) of energy levels are given by the Wigner distribution

PW (S) =
π

2
S exp(−π

4
S2). (4.1)

The derivation of the Wigner distribution, given in Eq. (4.1), on the basis of random

matrix theory [64, 65] is described in App. B; this theory was developed in the nineteen
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Figure 4.2: Probabilities P(S) (a) and integrated probabilities N(S) (b) as a function of the

nearest-neighbor spacings (NNS) S. Solid lines and dashed lines represent Wigner distribution

and Poisson distribution, respectively. Dotted lines in (a) and (b) represent a δ-function and a

step function, respectively.

fifties and sixties in order to understand the distribution of energy levels in nuclei. Note

that the spacings S are calculated from effective quantum numbers, which are obtained

from the resonant energies Er with the formula

µN(E) =

√

R
IN − Er

, (4.2)

where R is the Rydberg constant. A level density in the scaled spectra is independent

of photon energy.

In the spectra of an integrable system, the most probable spacing between resonances

that belong to different independent Rydberg series can be zero, since these energy levels

are uncorrelated. The probability distribution of the NNSs for this case is predicted to

be a Poisson distribution

PP (S) = exp(−S) (4.3)

and the energy levels exhibit a level clustering, i.e. PP (S) has its maximum at S = 0.

This is because the energy levels from various independent subsystems are decoupled

from each other. In contrast to the level clustering of a Poisson distribution, the energy

levels in a Wigner distribution exhibit a level repulsion

PW (S → 0) ∼ S, (4.4)

as derived from Eq. 4.1. The maximum probability in Wigner distribution appears for a

mean value of S, not at S → 0.

In the present case, we analyzed the statistical properties of the NNSs in helium based

on the theoretical results. Since the number of resonances is limited, we used integrated

Wigner or Poisson distribution for the NNSs in order to reduce statistical fluctuations.

In this way we obtain

NW (S) = 1 − exp(−π

4
S2) (4.5)
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and

NP (S) = 1 − exp(−S) (4.6)

for a Wigner and a Poisson distributions, respectively, with N(S) =
∫ S
0

dS ′P (S ′).

The Wigner and Poisson distributions given by Eqs. (4.1) and (4.3) as well as their

integrated forms given by Eqs. (4.5) and (4.6) are plotted in Fig. 4.2. In order to better

understand the NNS distributions, we additionally added the NNS distribution for one

regular Rydberg series presented by a dotted line in this figure. In classical integrable

systems, the number of constants of motion is equal to the degrees of freedom. A system

with fewer constants of motion than degrees of freedom becomes non-integrable and has

regions in phase space, where the dynamics is chaotic. In a transition from a classical to

a quantum system, the constants of motion become quantum numbers. Therefore, one

could study the chaotic dynamics by the quantum numbers of the system. In Fig. 4.2,

three curves, δ-function or step function, Poisson distribution, and Wigner distribution,

correspond to three different systems taking their quantum numbers into account. δ-

function or step function indicate that the resonances belong to one regular Rydberg

series. The reason is that quantum defect numbers should be equal for all resonances in

a regular Rydberg series, which results in the unity of the NNSs [25] according to the

Rydberg formula. Poisson distribution demonstrates the character of several independent

subsystems. These subsystems can be regular Rydberg series or chaotic subsystems [10].

In this case, one can assume that there are still some good quantum numbers, which

allow to identify separately the independent subsystems, and the corresponding system

is not fully chaotic. In contrast to the δ-function and Poisson distribution, the Wigner

distribution describes a chaotic system without good quantum numbers.

The Wigner distribution of NNS is a typical and universal characteristics of energy

level fluctuations of chaotic quantum spectra, which is called BGS conjecture by Bohigas,

Giannoni, and Schmit [66]. So far, Wigner distributions for the NNSs were observed in a

variety of very different chaotic systems, ranging from atom to microwave billiard. Fig.

4.3 presents a collection of NNS distributions that result from a number of very different

systems, e.g. the NNS distributions for the Sinai billiard1 [66], the hydrogen atom in

a strong magnetic field [67], for the excitation spectrum of a NO2 molecule [68], for

the acoustic resonance spectrum of a Sinai-shaped quartz block [69], for the microwave

spectrum of a three-dimensional chaotic cavity [70], and for the vibration spectrum of

a quarter-stadium shaped plate [71]. For all these examples including quantum and

classical cases, excellent agreement with a Wigner distribution is found. Obviously, the

BGS conjecture is independent of the quantum mechanical systems, but remains valid

in a much more general context. Therefore, the search for a Wigner distribution of

energy levels has become a standard tool to study the manifestation of chaos, i.e. many

researchers regard it as a fundamental signature of quantum chaos [9].

Throughout this part of the dissertation, the Wigner distribution, the Poisson distri-

bution, and the step function will be employed to study the dynamics of doubly excited

1The billiard with a reflecting disk located in the center.
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Figure 4.3: Level spacing distributions for (a) a Sinai billiard [66], (b) a hydrogen atom in a

strong magnetic field [67], (c) the excitation spectrum of a NO2 molecule [68], (d) the acoustic

resonance spectrum of a Sinai-shaped quartz block [69],(e) the microwave spectrum of a three-

dimensional chaotic cavity [70], and (f) the vibration spectrum of a quarter-stadium shaped

plate [71]; (from Stöckmann [9])

resonances in helium in the region close to the double-ionization threshold, where quan-

tum chaos is expected, to occur.

4.2 Ericson fluctuations and autocorrelation func-

tion

As discussed in the previous section, the Wigner distribution of the NNSs of the res-

onances is considered to be a standard characteristic for chaotic quantum spectra. As

an additional characteristic of quantum chaos, the concept of Ericson fluctuations was

developed by Ericson in 1960 [26]; it was originally related to investigations of fluctuat-
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ing nuclear spectra. Nowadays, these Ericson fluctuations are considered to be a general

fingerprint for quantum chaotic scattering rather than only a nuclear phenomenon [10].

Figure 4.4: Simulated spectrum of Ericson fluctuations characterized by Λ = Γ̄/S̄ � 1. The

spectrum convoluted with a Gaussian function of 1.5 meV (FWHM) is plotted as a function

of relative excitation energy. The energy positions of resonances are indicated by the vertical

bars.

The Ericson fluctuations can be observed if the resonances in the spectra are strongly

overlapping and the intensities of these resonances are randomly distributed, i.e. can be

considered to be of the same order of magnitude. The strong overlap means that the

average decay width, Γ̄, of the resonances is much larger than their average energy spac-

ing, S̄. This can be quantified by defining the Ericson parameter, Λ = Γ̄/S̄. The above

described case of Λ = Γ̄/S̄ � 1 is defined as Eriscon regime. If these two prerequisites,

Λ � 1 and a comparable intensity of all resonances, are fulfilled, a spectrum consists

of fluctuations which cannot be identified with single resonances. These Ericson fluctu-

ations can be observed in a simulated spectrum in Fig. 4.4 with an Ericson parameter

of Λ ∼= 25. About 1000 Fano-resonances, with an average width of Γ̄ = 5 meV, are

randomly distributed in an energy region of 200 meV, and this spectrum was convo-

luted with a Gaussian function of 1.5 meV (FWHM). It should be mentioned that the

intensities of all resonances are random, i.e. they are comparable.

Ericson [26] predicted that spectra with Ericson fluctuations display a autocorrelation

function, C(ε),

C(ε) =
1

σ̄2

∫ E2

E1

[σ(E + ε) − σ̄] [σ(E) − σ̄] dE, (4.7)

with a Lorentzian form. Here, σ̄ is the average cross section in the energy interval E1 ≤
E ≤ E2 and ε the displacement. From these autocorrelation function one can estimate

the average width of resonances by a fit analysis. So far, it became a common method

to analyze fluctuating spectra not only in the case of nuclear reactions [72] but also in
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atomic scattering [16, 73]. Finally, we have to emphasize that an autocorrelation function

with a Lorentzian form cannot be considered as an unambiguous evidence for Ericson

fluctuations in a spectra. For a clear confirmation of Ericson fluctuations one has to

ensure that the intensities of the resonances are randomly distributed. By neglecting this,

one can easily to obtain wrong conclusions about the existence of Ericson fluctuations;

this topic will be addressed in more details in combination with our TCS data in the

Sect. 4.5.

4.3 The classical configurations

In the past 30 years, a modern semiclassical theory was developed to understand quan-

tum chaos with the help of classical configurations. From the Bohr-Sommerfeld quan-

tization condition, we know that there exits a strong classical-quantum correspondence

in integrable systems. M. Gutzwiller [7, 8] realized that it is impossible to use a Bohr-

Sommerfeld type of quantization to deal with chaotic systems. He introduced an entirely

new semiclassical approach that abandoned the attempt to find individual chaotic states.

A remarkable result of these considerations is Gutzwiller’s trace formula [7, 8], which es-

tablishes a bridge between quantum states and classical periodic orbits, i.e. this formula

can be utilized to calculate the density of quantum states from classical periodic orbits

in a chaotic system and vice versa. These classical periodic orbits can be identified us-

ing a Fourier transformation of the quantum spectra. So far, one realizes that strong

classical-quantum correspondences exist even in chaotic systems. However, this issue is

beyond the topics in this dissertation. In the following, we shall introduce three classical

configurations, which are necessary to understand the changes of approximate quan-

tum numbers N, Kn′. These quantum numbers will be used to assign doubly excited

resonances in helium as discussed before.

For doubly excited states in helium, the following three configurations in the classical

space are of particular interests:

(A) eZe configuration: θ12 ≡ π; pθ12
≡ 0

(B) Zee configuration: θ12 ≡ 0; pθ12
≡ 0 (4.8)

(C) Wannier ridge: r1 ≡ r2; pr1
≡ pr2

.

r and p are the coordinates and the momenta of electrons, respectively, while 1 and 2

label two different electrons, and θ12 is the angle between two electrons. (A) and (B)

are collinear configurations, i.e. all particles move on one line; this is equivalent to a

one-dimensional helium atom.

In the collinear configuration (A), all three particles move along one axis, with both

electrons on opposite sides of the nucleus. It is called eZe configuration and shown in Fig.

4.5(b). In contrast to the eZe configuration, the Zee configuration, shown in Fig. 4.5(a),

describes a motion with both electrons on the same side of the nucleus. The configuration

(C) is a Wannier ridge, which shows the symmetric electron motion in a symmetry plane.

The resonances corresponding to Wannier classical orbits are expected to appear only
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Figure 4.5: The two collinear configurations: (a) the stable Zee configuration and (b) the eZe

configuration, which is chaotic in radial direction.

in the limit of double excitation very close to the double-ionization threshold [2, 74, 75].

The Wannier ridge, together with the eZe configuration, is predicted to contain the

decay channels for double-ionization [76]. For detailed studies of the dynamics of these

classical configurations, see Ref. [2] and references, therein.

Figure 4.6: Poincaré map of helium for the two collinear configurations at r2 = 0: (a) θ = 0;

(b) θ = π (taken from Ref. [2]).

Choosing r2 = 0, one plots the phase space (Poincaré map) of the two collinear

configurations in Fig. 4.6, i.e. the momentum of the outer electron is given as a function of

its position. In the Zee configuration, surprisingly, the three-body Coulomb interaction

leads to a stabilization of the dynamics in helium, which can be demonstrated well by

a large stable island in the Poincaré map given in Fig. 4.6(a) [77]. The large stable

island indicates that the outer electron in the Zee configuration is frozen at a finite

distance from the nucleus, i.e. the outer electron cannot penetrate the inner electron

and, therefore, cannot hit the nucleus. Due to the electron-electron and electron-nucleus

interactions, the outer electron performs an oscillation at a frozen distance. In contrast,

the inner electron can move between the nucleus and the outer electron. Therefore,

the Zee is a quite stable configuration. In contrast to the stable Zee configuration, no

stable islands can be found in the eZe configuration in the Poincaré map given in Fig.

4.6(b), particularly as r1 → 0, where the Poincaré map is completely structureless. In
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this configuration, triple collision (r1 = r2 = 0) can occur. This, in turn, results in large

momentum transfer among the three bodies (two electrons and the nucleus), and has

been considered as the origin of chaos in the eZe configuration.

In summary, for perturbations in the direction of the electron-nucleus axis, the 1-

dimensional helium is unstable in the eZe configuration but stable in the Zee configura-

tion. Both configurations are stable with respect to perturbations perpendicular to the

collinear phase space, i.e. stable in the angular direction. In this dissertation, the two

classical configurations eZe and Zee will be employed to understand the existence and

loss of the approximated quantum numbers N, Kn′ , where N and n′ (K) describe the

radial (angular) directions.

4.4 Complex-rotation method

As we mentioned before, the statistical studies were performed using the theoretical

results D. Delande obtained with the complex-rotation method. This procedure is due

to the extremely low intensity of most of the Rydberg series which give rise to the fact

that only a very small fraction of doubly excited states can be observed experimentally.

Therefore, the complex-rotation method will be described briefly.

The method of complex-rotation [78, 79] is quite different with other methods in de-

termining the resonant state; normally, these resonances are obtained by diagonalization

of a Hamiltonian matrix. The difference of the complex-rotation method is due to the

complex scalings of the radial coordinates and momenta, r → reiθ and p → pe−iθ. In

this way, the expectation value of the Hamiltonian becomes

〈nθ|H|nθ〉 = En − iΓn/2, (4.9)

where |nθ〉 is the complex scaling wave function for the double-excitation states, and En

and Γn represent the positions and the linewidths of resonances, respectively. The dipole

transition matrix has the complex form

〈i|D|nθ〉 = Bn + iCn, (4.10)

with |i〉 being the ground state. Using the complex parameters Bn and Cn together with

En and Γn, the Fano-shape parameterization of the cross section yields

σT = σ0

T +
∑

n

(qn + εn)2

1 + ε2
n

µ2

n − µ2

n, (4.11)

where

εn = 2
E − En

Γn
,

qn = −Bn

Cn
,

and µ2

n =
2C2

n

πΓn
. (4.12)
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The cross section and Fano parameters can be directly derived from the two matrix

elements given in Eqs. 4.9 and 4.10. This is a substantial advantage of the complex-

rotation method compared to other methods, since the resonant parameters En, Γn, and

qn as well as the expectation value 〈cosθ12〉, can be obtained directly from calculations;

they do not have to be derived by a fit analysis of the calculated cross section, which is

impossible in the present case of strongly overlapping resonances. The value 〈cosθ12〉 is

related to the approximate quantum number K by Eq. (3.16). Therefore, the complex-

rotation method is very well suited to provide data for statistical studies of the resonant

parameters En, Γn, and qn.

In the late 1990’s, complex scaling photoabsorption calculations for helium performed

by Gremaud and Delande [32] covered the energy regime up to the SIT I9 and have been

used by our group to perform statistical studies on the NNSs of energy levels in that

region [18]. Very recently, Delande [27] further extended these calculations up to the

SIT I17, i.e. up to 150 meV below the double-ionization threshold of helium. These

calculated data will be employed for the studies of quantum chaos in the next section of

the dissertation.

4.5 Quantum signatures of chaos in highly excited

states of helium

4.5.1 Experimental total cross sections up to I15

The high-resolution photoionization spectra presented in Fig. 4.7 were measured up to

the SIT I15 using a gas cell described in chapter 2. The experiments were performed

at the high-resolution undulator beamline UE56-2/PGM2 of the Berliner Elektronen-

speicherring für Synchrotronstrahlung (BESSY II) using a photon energy resolution of

Ω ∼= 1.7 meV (FWHM). A pressure of ∼= 1 mbar was used in the gas cell, and an operat-

ing voltage of 100 V was applied to the plates within the gas cell. The spectra were taken

with a step width of 250 µeV, and six scans were recorded for each energy region in order

to ensure reproducibility and to improve the signal-to-noise ratio. The backgrounds of

the spectra were simulated and subtracted from the spectra. The photon energies of the

spectra were calibrated by the result of the calculations of Delande [27].

In Fig. 4.7, the present experimental data, and the results of theoretical calculation

employing the complex-rotation method [27], as well as the results of previous measure-

ments by Püttner et al. [18] for the TCSs are plotted as solid lines in three different

colors. The vertical bars mark the positions of the SITs up to I14. The theoretical data

were convoluted by a Lorentzian function with a FWHM of 1 meV. A comparison of

the recent experimental and theoretical results shows an impressively good agreement

for the entire spectrum. The present spectra show an improved signal-to-noise ratio and

higher resolution than the previous measurements [18]. The present experimental and

theoretical data above 78.28 eV are the first ones in this energy region, i.e. data below

6 new ionization thresholds were obtained. The complex features the spectra indicate
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Figure 4.7: Total cross section of doubly excited helium below the SIT I15. The present experimental data, complex-rotation calculations [27],

and previous measurements [18] are plotted by solid lines in red, blue, and green colors, respectively. The vertical bars indicate the positions

of the SITs up to the I14.
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Figure 4.8: Calculated linewidths of doubly excited states in helium below the SIT I10. The

resonance linewidths are normalized to the mean value of spacings between the resonance energy

positions. Ericson (Γ � S), Wigner (Γ ≈ S), and Rydberg (Γ � S) regimes are indicated.

in the presence of a large number of perturbers in this energy region. These perturbers

render the spectra significantly irregular (see Fig. 3.3) and it is therefore an interesting

question whether or not the spectra can be assigned with isolated resonances. From the

experimental point of view, it is really hard to take spectra in this energy region because

the amplitudes of the resonances amount to only 0.2% to 0.04% of the signal background.

The variations in the pressure and insufficient normalization to the photon flux could

render the observation of these resonances impossible. From the theoretical point of

view, many challenges are also faced due to the calculation model, accuracy, and conver-

gence. The present state-of-the-art measurements and calculations of the TCS make it

possible to study for the first time chaotic behavior in doubly excited helium very close

to double-ionization threshold. The theoretical data obtained by D. Delande [27] are

strongly confirmed by the present measurements and can be used as a reliable basis for

further data analysis. As mentioned before, we have to use theoretical data for these

detailed statistical studies because only a relatively small number of resonances can be

observed in the experiments; this will be further illustrated by our fit results described

in the following section.

Close to the double-ionization threshold, the mean linewidth of the resonances is

much larger than the mean spacing of the resonances, i.e. Γ � S (Ericson regime),

where the resonances are strongly overlapping. In this case, the spectra are assumed

to fluctuate and cannot be identified. Generally, the Ericson regime together with the

comparable intensities of the spectra are assumed to be the conditions for observing

Ericson fluctuations in the spectra as mentioned in Sect. 4.2. In this part, the main aim
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Figure 4.9: Total cross section below the SIT I9: The present experimental data are given by

solid points, the fit result by the solid curve through the data points. The result of the complex-

rotation calculations is given by the dashed curve. The fit components for the principal and

secondary Rydberg series are represented by the dash-dotted and dotted lines. The vertical-bar

diagrams in the upper part of the figure give the assignments of the resonances belonging to

the Rydberg series 9, 7n′ .

of the analysis of the experimental data is to figure out whether Ericson fluctuations are

present in the studied energy region. In Fig. 4.8, the normalized linewidths of doubly

excited states in helium below the SIT I10 are plotted as a function of photon energy.

These linewidths are normalized to the mean value of the spacings between the resonance

energy positions. These data were calculated with the complex-rotation method by

D. Delande [27]. There are three classes of resonances below each SIT, which can be

identified by a comparison of the linewidths and energy level spacings. They are, in the

order of increasing energy, Ericson (Γ � S), Wigner (Γ ≈ S), and Rydberg (Γ � S)

regimes, respectively, which have been identified below I10 and are indicated in Fig.

4.8. Later, the analysis of experimental spectra will focus on the region, where the

corresponding resonances are in the Ericson regime, i.e. Γ � S.

A detailed comparison between the experimental and theoretical TCSs in the region

up to the SIT I14 are given in Figs. 4.9 to 4.14. In these figures, the experimental

TCSs are plotted as solid points and the dashed lines represent the theoretical results.

The fit results are displayed by solid lines through the data points. As an example, the

contributions of individual resonances for the principal and secondary Rydberg series are

plotted by dash-dotted and dotted lines, respectively, in the lower part of Fig. 4.9. The

vertical bars in the upper part of each figure mark the energy positions of the resonances.

In the fit process, we fixed the resonance positions, linewidths, and Fano parameters q to



4.5 Quantum signatures of chaos in highly excited states of helium 56

78.32 78.34 78.36 78.38 78.4

Photon Energy (eV)

10,8
n’13 2114

10,6
13 10,6

16

P
ho

to
io

ni
za

tio
n 

Y
ie

ld

Figure 4.10: Total cross section below the SIT I10. For details, see caption of Fig. 4.9.

78.47 78.48 78.49 78.5 78.51 78.52 78.53

18 27 30
11,9

n’

P
ho

to
io

ni
za

tio
n 

Y
ie

ld

Photon Energy (eV)

Figure 4.11: Total cross section below the SIT I11. For details, see caption of Fig. 4.9.

the values of the calculations by D. Delande [27]. The intensities are treated as the only

free parameters and the obtained relative intensities for most of the resonances agree

with the calculated ones within a factor of 2. Due to possible tiny mechanical problems

of the used monochromator [80], which could lead to small non-linearities, the photon

energies of the individual resonances were allowed to have shift linearly up to 1 meV. The

aim of the fits is to determine the number of resonances that are needed to reasonably

describe the spectra. This is closely related to the question whether Ericson fluctuations

are present in this region of the spectrum or not. Therefore, the spectra are described

by fit routines using the smallest number of resonances, which lead to a sufficiently good

description; such a fit procedure can be called ”describing fit”.

For the spectra below the SITs I9 to I14, 15 to 25 resonances were used in the

describing fits. Most of these resonances can be assigned to members of the principal

series (K = N − 2), while a much smaller fraction belongs to the secondary series (K =
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Figure 4.13: Total cross section below the SIT I13. For details, see caption of Fig. 4.9.

N −4); this can be seen from the fit components shown in Fig. 4.9, as an example. With

these finite numbers of resonances, the experimental spectra can already be described

quite well. Note that there are 17−27 Rydberg series with more than 300 resonances in

the corresponding energy regions below each of the SITs I9 to I14. In addition, we point

out again that Fig. 4.8 gives clear evidence that the spectra studied in this dissertation

are in the Ericson regime, i.e. Γ � S. However, the present describing fits indicate clearly

that the spectra are still dominated by essentially a single Rydberg series, namely the

principal series (N = K − 2); this means that Ericson fluctuations caused by a large

number of overlapping resonances are essentially absent in the spectra. This indicates

that some approximate quantum numbers N, Kn′ should be still valid, a fact that will

be proven later on by analyzing the calculated K values and by a statistical analysis

of energy spacings between the resonances. So far, we can conclude that the Ericson
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Figure 4.14: Total cross section below the SIT I14. For details, see caption of Fig. 4.9.

regime is not a unique condition for observing Ericson fluctuations in the spectra. The

amplitudes of transitions have to be distributed randomly.

We further point out that the agreement between the measurements, the fits, and the

calculations becomes worse with increasing photon energies according to the increasing

noise. On the basis of the describing fits and theoretical data, we assigned for the first

time the experimental spectra up to the SIT I14 . The symbol “?” in Figs. 4.13 and 4.14

implies that a particular resonance could not be identified since its K-value could not be

obtained from the calculations due to convergence problem. The theoretical convergence

problem close to each SIT does not affect the reliability of the TCS [27], however. Due

to missing resonance parameters close to each SIT, it was not possible to analyze the

entire spectrum presented in Figs. 4.7 by the describing fits, which are presented in Figs.

4.9 to 4.14.

Although it has been proven that Ericson fluctuations are absent in the present

spectrum, in the following we want to discuss its autocorrelation function since such a

autoionization function was employed by G. Stania and H. Walther [16] as an evidence

for Ericson fluctuations in the photoionization spectra of 85Rb atom. To this end we

compare the TCS of helium without Ericson fluctuations in Fig. 4.9 with a simulated

spectrum in Fig. 4.4 that clearly displays Ericson fluctuations. We first want to point

out that these two spectra exhibit similar features so that it is not possible to identify

Ericson fluctuations by the variations in the cross section. For these both spectra the au-

tocorrelation functions defined by Eq. (4.7) are calculated and presented in Fig. 4.15(a)

and (b). The dashed lines in this figure are the results of a fit to a Lorentzian function,

which is prediction for Ericson fluctuations. For small displacements, i.e. ε close to 0,

the autocorrelation functions agree quite well with the Lorentzian function. For larger

displacements, oscillations around zero are observed. The average widths of resonances

of ∼= 2 and 5 meV for the spectra in Figs. 4.9 and 4.4, respectively, are in good agree-

ment with the ones of ∼= 3 and ∼= 4 which were derived from the fits. The observed

features of the autocorrelation function are quite similar to that observed by G. Stania
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Figure 4.15: (a) Autocorrelation functions for the spectra given in Fig. 4.9 and (b) in Fig. 4.4.

The dashed lines represent the fit results to a Lorentzian function, and the dotted horizontal

lines indicate the value of zero.

and H. Walther. As stated before, the TCS given in Fig. 4.9 does not exhibit Ericson

fluctuations. This is due to the fact that the spectrum is dominated by the principal

Rydberg series although the Ericson regime (Λ = Γ̄/S̄ ∼= 3) is fulfilled. In addition,

for small ε the autocorrelation function displays a Lorentzian shape (see Fig. 4.15(a)).

Similar autocorrelation functions were also found for the TCSs in the other regions up

to I13 where the Ericson parameter, Λ, has larger values. These considerations show

that Ericson fluctuations in a spectrum can neither be identified by the shape of the

spectral variations nor by the autocorrelation function. It is, therefore, essential to en-

sure that the intensities are also randomly described with a large number of overlapping

resonances. Nevertheless, the average width of the resonances in a fluctuating spectrum

can be estimated by fitting the autocorrelation function to a Lorentzian function; this

can be seen from our simulated chaotic spectrum in Fig. 4.4 as well as its autocorrelation

function in Fig. 4.15(b).

In the work of G. Stania and H. Walther [16] as well as J. Madronero and A. Buch-

leitner [17], an autocorrelation function with a Lorentzian shape for small displacements

was used to prove the observation of Ericson fluctuations. However, the the question of

comparable amplitudes for the transitions was not carefully addressed. The present case

of helium shows that this omission may lead to wrong conclusions if there is – contrary
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to an assumption – an unexpected hierarchy in the intensities of the different resonances.

4.5.2 Calculated K values up to I17

In the last section, we concluded from the describing fits that Ericson fluctuations do

not occur although the conditions for the Ericson regime is fulfilled, as shown in Fig.

4.8; i.e. the spectra are still dominated by the principal series N, Kn′, with K = N − 2,

at least up to the SIT I14. The spectral features in this energy region were assigned

using the approximate quantum numbers N, Kn′. However, this does not mean that

approximate quantum numbers are still valid for all resonances. As mentioned before,

the complex-rotation method has the advantage that the K values for each resonance

can be calculated directly. With this theory, Delande [27] has performed calculations for

K values up to the SIT I17, as well as for the TCS below the SIT I14. The accuracy

of these calculations is confirmed by our recent experimental results as discussed in the

previous section. Here, we shall discuss the approximate quantum numbers N, Kn′ on
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Figure 4.16: Angular correlation quantum numbers K calculated by D. Delande [27] below

the SITs I9 and I10 as a function of effective quantum number. Each point represents one

resonance and the horizontal lines imply Rydberg series specified by individual K values.
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Figure 4.17: Calculated angular correlation quantum numbers K below the SITs I11 and I12

as a function of the effective quantum number. For details, see Fig. 4.16.

the basis of reliable K values. This will help to understand the statistical properties of

the NNSs between the resonances, which will be presented in the next section.

The calculated angular correlation quantum numbers K for the doubly excited reso-

nances from the SITs I8 to I17 as a function of the effective quantum numbers neff are

plotted in Figs. 4.16 to 4.20. Each solid point in these figures represents a resonance

specified by the K-value and the energy given in units of the effective quantum number.

The horizontal lines indicate Rydberg series, which can be identified by individual K

values. The spectra were rescaled to the effective quantum numbers by Eq. (4.2) in

order to study the radial quantum numbers N and n′. According to quantum defect

theory [25], all resonances in a regular Rydberg series, which are specified by various n′,

should have the same quantum defect. This results in the energy level spacings to be

equal to one on the rescaled energy axis, and implies the radial quantum numbers N

and n′ to be good quantum numbers. Otherwise, for irregular level spacings, N and n′

are assumed to be strongly mixed, i.e. N and n′ loose their meanings as the principal

quantum numbers of the inner and outer electron in an independent particle picture.
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Figure 4.18: Calculated angular correlation quantum numbers K below the SITs I13 and I14

as a function of the effective quantum number. For details, see caption of Fig. 4.16.

From these figures it can be clearly seen that−for the resonances with K values

close to Kmax−the angular correlation quantum number K has well-defined value. This

is indicated by horizontal lines in Figs. 4.16 to 4.20 and allows to define independent

Rydberg series. Therefore, in these cases K can be considered to be a good quantum

number. The second top horizontal lines represent the principal series with K = N − 2

below the various SITs, IN . From the expression (3.16), the angle between two electrons

θ12 → 180◦ as K → Kmax, and this corresponds to the classical eZe configuration. As

discussed in Sect. 4.3, this configuration is stable towards a perturbation in the angular

direction, which results in K being a good quantum number. Therefore, theoretical

results for K values agree well with this prediction for the eZe configuration. The energy

level spacings of the resonances, which belong to the Rydberg series with constant K, are

irregular; they are not equal to unity, which indicates that the radial quantum numbers

N and n′ start to dissolve for these Rydberg series. This can also be understood by

the classical eZe configuration, since this configuration is unstable against perturbations

along the axis defined by the two electrons and the nucleus. Interestingly, the number
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Figure 4.19: Calculated angular correlation quantum numbers K below the SITs I15 and I16

as a function of the effective quantum number. For details, see caption of Fig. 4.16.

of Rydberg series with good K values in the region of K → Kmax does not decrease

dramatically up to the SIT I17 as expected before. The basis for this expectation was

the assumption K could break down rather quickly above the SIT I9.

K is also found to be a good quantum number for Rydberg series in the region of

K → Kmin, in particular for the higher photon energy region above the SIT I10 (see

Figs. 4.17 to 4.20). This is indicated by horizontal lines in the lower parts of the figures.

In addition to that, the energy level spacings of these Rydberg series are always close

to one, which proves that the radial quantum numbers N and n′ are good quantum

numbers. θ12 → 0◦ and K → Kmin correspond to the classical Zee configuration. The

Zee configuration is also identified by the frozen planet orbits [2] and is stable with

respect to perturbations in both directions, namely the angular direction and the radial

direction. Therefore, the classical Zee configuration allows us to understand why K and

N are good quantum numbers for Rydberg series in the region of K → Kmin. Note

that the calculations below the SIT I17, shown in Fig. 4.20, were not yet completely

carried out, i.e. only data for the effective quantum number neff < 24 are available
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Figure 4.20: Calculated angular correlation quantum numbers K below the SIT I17 as a function

of the effective quantum number. For details, see caption of Fig. 4.16.

at the moment. From the figures showing data for lower SITs, one can see that the

corresponding Rydberg series with Kmin values start at relatively high effective quantum

numbers. This is the reason why the resonances for K → Kmin are not yet available

below the SIT I17, but we expect them to have good K quantum numbers.

It is obvious from Figs. 4.17 to 4.20 that there is a strong mixing of K in the regions

arround K = 0, i.e. θ12
∼= 90◦. More studies are needed to figure out the behavior

of quantum number N . The present results on changes of the approximate quantum

numbers N, Kn′ are in agreement with the discussion for 1Se doubly excited state of

helium below the SIT I10 given by Bürgers et al. [81], but they explore the energy region

much closer to the double-ionization threshold.

In Fig. 4.21, all calculated 〈cosθ12〉 below the SIT I17, related to K-values by the

expression (3.16), are plotted as a function of photon energy. The principal Rydberg

series is marked by a solid curve through the resonance points. From this figure, one

can clearly conclude that K does not break down as a good quantum number in the

energy regions below the SITs I9 to I17, as expected before; this is particularly true

for the regions K → Kmax. In addition, we note that the K values for the Rydberg

series in the regions K → Kmax increase slowly but constantly. This can be caused by

the influences of perturbers with large K values that belong to Rydberg series below

the next higher threshold. An increase is also observed at each threshold, which can

be understood from the formula given in Eq. (3.16). The same data as in Fig. 4.21 are

plotted in Fig. 4.22 in a polar coordinate representation. From this figure, we can see

that K is a good quantum number for the regions θ12 > 100◦ and θ12 < 50◦, but mixes

strongly in the region from 60◦ < θ12 < 100◦. We note that θ12 for the resonances of

the principal Rydberg series vary from the angles 135◦ to 150◦ in the present energy

region. This energy-dependent angular correlation distribution of the principal Rydberg

series is related to that of doubly ionized states, which will be presented later. The
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Figure 4.21: Calculated 〈cosθ12〉 values as a function of photon energy below the SIT I17. Each point represents one resonance, and the

positions of single photoionization thresholds IN are marked by thick vertical bars in the lower part of the figure. The principal Rydberg series

is indicated by a solid black line.
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Figure 4.22: Calculated θ12 as a function of photon energy below the SIT I17 in a polar coordinate scheme. The principal Rydberg series is

indicated by a solid black curve. This figure displays the same data as Fig. 4.21.
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present discussion on the approximate quantum numbers N, K will be confirmed by the

statistical analysis of the NNSs between resonances presented in the next section.

Under the assumption that all resonances are of comparable intensities, the cross

section cannot be described by individual resonances. Instead, the cross section consists

of fluctuations with a width equal to the typical linewidth, and it is composed of a large

number of individual resonances. For helium, the prerequisite for Ericson fluctuations

to be observed, which is the condition that the mean linewidth is much larger than the

mean level spacing, is already fulfilled below the SIT I9 [32]; this can be seen from an

inspection of the data below the SIT I10 presented in Fig. 4.8. Therefore, the existence of

Ericson fluctuations depends additionally on the condition that all resonances contribute

equally to the spectra. From the previous discussion we know, however, that the spectra

up to the SIT I14 are still dominated by the principal series (K = N − 2), and its

K value is still a good quantum number. This is the reason why Ericson fluctuations

cannot be found in this moment although the region concerned is in the Ericson regime.

As mentioned before, we conclude in this dissertation it is very dangerous to discuss the

Ericson fluctuations by an autocorrelation function fitted by a Lorentizian form before

one is able to really comfirm the prerequisites of the Ericson fluctuations, in particular

for comparable intensities of resonances.

4.5.3 Statistical analysis of nearest-neighbor spacings

In the previous section, we concluded that K is a good quantum number for resonances

with K → Kmax and K → Kmin, but not for resonances with K → 0. In addition,

we found that N and n′ are good quantum numbers only for resonances with K →
Kmin. In this section, we shall employ statistical tools for the analysis of NNSs between

resonances, linewidths, and Fano q parameters of resonances in order to further confirm

these findings.

The integrated NNS distributions from a global analysis of resonances below the

different SITs up to the SIT I16, together with Wigner and Poisson distributions, are

plotted in Fig. 4.23. For a clearer presentation, only curves for N = even are plotted.

Note that the thresholds with N = odd exhibit the same distribution. In this context,

“global” means that all resonances below a given ionization threshold, IN , are taken

into account without any restrictions for K. For example, the dotted line marked with

N = 10 in the text of the figure is extracted from the NNSs between all resonances below

the SIT I10. In order to avoid misleading results from possibly missing resonances caused

in the region close to each SIT, IN , or in the beginning of each threshold, which can be

caused by convergent problems in the calculations, only the resonances in the middle

values of the neff range were considered in the statistical analysis. Below I10, the dotted

line was constructed only from resonances with neff = 11 to 20. An additional reason

could be that the Rydberg series become more and more regular due to a small number

of perturbers in the region extremely close to each SIT. However, the present calculated

data cannot yet reach this region, which can be seen in Fig. 4.8 from the data below

the I10. All global NNS distributions below the SIT I16, presented in Fig. 4.23, reveal a
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Figure 4.23: Integrated nearest-neighbor spacings (NNS) distributions N(s) for the resonances

below the SIT I16 using a global analysis. The global NNS distributions N(s) for the resonances

below the various SIT IN are displayed together with a Wigner and a Poisson distribution

representing a chaotic and a regular system, respectively.

Poisson form, which indicates that there are still independent subsystems, which can be

classified by quantum numbers. From the discussion in the previous section, we know that

K and N do not break down completely; there are some regions where they work quite

well. In this case, the resonances can be considered to constitute several Rydberg series

that are uncorrelated and may be distinguished by different quantum numbers K. Note

that although K is mixed for the resonances with K → 0, all of them can be regarded

as one special ”Rydberg series” equal to the one with a good K value. In summary,

independent and uncorrelated Rydberg series constitute a “regular” system, whose the

NNS distribution has a Poisson form. These independent and uncorrelated Rydberg

series can be regular or chaotic [10]. In this way, the highest probability P (S) for the

NNSs of resonant energy levels occurs at S = 0, and then global NNS distributions exhibit

a Poisson from (for details, see Sect. 4.2). In previous experimental and theoretical

studies for the TCSs, Püttner et al. found a transition towards quantum chaos below

the SIT I9 [18]. The Poisson form of the NNSs up to I16 in the present study indicates

that the transition region from integrability to chaos is much larger, since the quantum

number K seem to dissolve rather slowly. Full chaos in 1P o doubly excited helium may

appear at the double-ionization threshold. The trend approaching chaos is analogous to

the situation in 1Se doubly excited helium [19].

The integrated individual NNS distributions for the resonances with K → Kmax below

the SIT I16 are given in Fig. 4.24. In addition, the curve for the regular Rydberg series
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Figure 4.24: Integrated nearest-neighbor spacings (NNS) distributions for the resonances

K → Kmax below the SIT I16 using an individual analysis. The individual NNS distributions

obtained for the resonances below the various SIT IN , classified by good quantum numbers K,

are shown together with a Wigner distribution representing a chaotic system. For comparison,

the integrated NNS distribution for the regular Rydberg series 13,−12n′ is also shown.

13,−12n′ is also displayed in this figure. In this context, “individual” means that the

NNS distributions were obtained from the resonances below a given ionization threshold

IN that belong to a Rydberg series N, Kn′ with well-defined N and K. In a first step,

the NNS distribution is obtained individually for each Rydberg series with well-defined

K in the region of K → Kmax. In order to improve the statistics, the results obtained

for the different Rydberg series are added, which results in the plots given in Fig. 4.24.

For comparison, the NNS distribution for the regular Rydberg series 13,−12n′ is also

given, which shows a perfect step function. The NNS distributions for the individual

analysis of the Rydberg series with K close to Kmax below the SITs I10 to the I16 exhibit

a form between a step function and a Wigner function. Moreover, the NNS distributions

approach a Wigner-like form with increasing ionization threshold IN , which indicates

that the radial quantum numbers N and n′ dissolve completely in this region and lose

their physics meanings. Since one K-selected Rydberg series, i.e. with the angle between

the two electrons and nucleus fixed, can be considered to be a “1-D” case in 3-D helium,

a Wigner-like form of K-selected NNS distributions for Rydberg series with K → Kmax

values is a quantum signature of chaos for the “1-D” case in real 3-D helium. These “1-

D” cases in 3-D helium agree very well with those obtained from 1-D helium presented

by Püttner et al. [18] and confirm their predictions that full Wigner distribution will be

found around I17.

In the region for K → 0, Rydberg series with well-defined K values cannot be iden-
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Figure 4.25: Integrated nearest-neighbor spacings (NNS) distributions N(s) for the resonances

K → 0 below various thresholds up to the SIT I16. The NNS distributions N(s) for the

resonances with −4 < K < 2 below a given SIT IN are displayed together with a Wigner

distribution and a Poisson distribution representing a chaotic and a regular system, respectively.

tified (see Figs. 4.16 to 4.20). Therefore, one would expect that a perfect Wigner dis-

tribution should be found in a statistical NNS analysis. Fig. 4.25 presents the NNS

distributions for the resonances in the region of K → 0 (−4 < K < 2) below the various

SITs up to the SIT I16. The NNS distribution for resonances below I10 is in quite good

agreement with the Wigner form. Interestingly, the NNS distributions of resonances

below higher ionization thresholds match a Poisson form quite well, see e.g. the curve

obtained for the region below I16. This is not understood at present.

In very recent calculations by Le et. al. [19], statistical studies of the NNSs for 1Se

doubly excited states were performed up to the SIT I19, and the rate approaching a

Wigner distribution was found to be slow, in agreement with the present situation for
1P o doubly excited states; this means that the transition region from integrability to

chaos is much broader than previously expected.

4.5.4 Porter Thomas distribution of linewidths

The wave function of discrete states describing the doubly excited resonances can be

regarded as representing the eigenvector in a Gaussian orthogonal ensemble (GOE), i.e.

it can be described as the random element of matrices. Each eigenvector is of unit norm,

and the statistical properties for the components of the eigenvector display a Porter-

Thomas distribution [64, 82]. Since the widths Γ of the resonances are related to the

eigenvector by Eq. (3.4), one has to assume that the probability N(x) for width Γ exhibits
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Figure 4.26: Statistical distributions N(x) of resonant linewidths as a function of reduced

width in the region below the SIT I16. An integrated Porter-Thomas distribution, representing

a chaotic system, is also plotted (solid line).

also a Porter-Thomas distribution [64, 82, 83] given by

P (x) =
1√
2πx

exp(−x/2), (4.13)

where x = Γ/〈Γ〉 is the reduced linewidth. One can easily see that the smallest widths

have the highest probability. This means that the strong statistical fluctuations in the

random matrix tend to compensate each other, and the most probable value of a matrix

element is zero. In order to improve statistics, we analyze the integrated form N(x) =
∫ x
0 dx′P (x′).

In Fig. 4.26, the statistical probability for the linewidth as a function of reduced

width is displayed for the regions below the SITs I3 and I10 up to I16, together with the

Porter-Thomas distribution that is plotted as a solid line. The shape of the distributions

above I10 are almost identical and exhibit a fair agreement with the Porter-Thomas

curve. Note that−for a clearer presentation−these statistical distributions are given

only for thresholds IN with N = even; the curves for N = odd would show very similar

shapes. The N = 3 region is regular, with five regular Rydberg series and no perturbers.

The statistical probability distribution of the linewidths for the N = 3 region is quite

different from the results below higher SITs. Interestingly, the eigenvector statistics for

a kicked top under conditions that leads to a regular motion in the classical limit, which

was presented in Fig. 4.3 of Ref. [65] shows a similar shape as the results for the N = 3

region of doubly excited helium given in Fig. 4.26. The lithium atom in a magnetic field

was studied in Ref. [83], and the statistical properties of the observed linewidths were

also well described by random matrix theory. So far, there are only rather limited data

available for statistical studies of linewidths.



4.5 Quantum signatures of chaos in highly excited states of helium 72

4.5.5 Lorentzian distribution of Fano q parameters

So far, we have focused on the statistics of level spacings and linewidths. A distribution

of Fano q parameters in a chaotic system had been first derived by W. Ihra in 2002

[84]. According to Ihra’s studies, the distribution of Fano q parameters can be derived

under two prerequisites: First, the classical motion of high double-excitation resonances

has to be chaotic. This ensures that the eigenstates of double-excitation resonances

can be described by matrices taken from a Gaussian orthogonal ensemble in random

matrix theory [84]. The statistical properties of the Fano q parameter are assumed

to be determined by that of the eigenstates. Second, the excitation process and the

coupling between a discrete state and final continuum states are assumed to be separated.

Therefore, x ≡ 〈ν | r | i〉/〈f | r | i〉 and y ≡ π〈ν | V | f〉 can be taken as statistically

independent random variables [84], where q = x/y given in Eq. (3.5) and i, ν, and f

are initial state, discrete state, and final continuum state, respectively. r represents the

dipole operator, and the Coulomb operator V controls the autoionization process. The

probability distribution for q is given by a Lorentz distribution [84]

P (q; w) =
1

π

w

w2 + (q − q)2
, (4.14)

where w ≡ σx/σy is the width of the probability related to the coupling strength V

between the discrete states and the continuum states as well as the ratio of the dipole

transition matrix to the discrete state and the final continuum states. σx(σy) are the

variances of the variables x(y). For a strong coupling to the continuum state, i.e. for σy

being large, the Lorentzian distribution has a small width centered around q. The same

holds if direct photoexcitation dominates over the indirect process because of small σx.

Of course, in most cases the change of w depends on the competition between direct
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Figure 4.27: Statistical distributions of Fano q parameters (a) below I14 and (b) below the SIT

I3. The statistical distribution of q below the SIT I14 is fitted by a Lorentzian function plotted

as a solid line.
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photoexcitation and indirect photoexcitation paths because normally the variations in

both decays follow the same direction.

Table 4.1: Widths w and average value q extracted from Lorentzian fits to the distributions of

Fano q parameters for the various SITs up to I17. The values for the Fano q parameter were

taken from the results of the complex-rotation calculations [27].

SITs w q

I9 2.7 −0.28

I10 2.1 −0.02

I11 2.3 −0.09

I12 2.7 0.10

I13 2.2 0.03

I14 2.5 0.09

I15 2.2 −0.07

I16 2.0 0.15

I17 2.1 −0.05

Statistical distributions of Fano q parameters up to the SIT I17 were performed;

the results obtained for the SIT I14 are shown in Fig. 4.27(a), as an example. The

distribution of q below the SIT I14 can be described quite well by a Lorentzian function,

with q close to 0, as predicted by W. Ihra [84]. The distributions in the region between

I9 and I17 also match quite well a Lorentzian distribution, with q close to 0. In contrast

to the distribution of q in the regions of high doubly excited helium, the distribution of q

below the SIT I3 is plotted in Fig. 4.27(b). This statistical distribution is dominated by

three peaks around q values of −1.5, 1.0, and 1.5, which correspond to the three regular

Rydberg series 3,−2n′ , 3, 0n′, and 3, 1n′, respectively. Normally, all members of a regular

Rydberg series have similar values of q and, therefore, their distributions do not match a

Lorentzian form. The widths w of the statistical distribution for all regions below I9 to

I17 are obtained from the fits, and they are summarized in Tab. 4.1. Due to increasing

coupling strength to continuum states, w slowly decreases with increasing ionization

threshold. These spectra are predicted by Eq. (4.14), while the corresponding classical

system is chaotic. To our knowledge, this is the first confirmation of this prediction, and

further detailed studies have to be done in the near future.

4.6 The angular correlation mechanism around the

double-ionization threshold

The study of electron correlation in the photon-induced double-ionization process of

helium has been a topic of considerable interest in the last couple of decades [85−101].
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In particular in the vicinity of the double ionization threshold (DIT), it is expected that

the double-ionization process is related to a single-ionization process enhanced by the

doubly excited states. In 1999, Qiu and Burgdörfer [97] extended the group-theoretical

approach for a classification of doubly excited states below the DIT, discussed in Sect.

3.2, to two-electron continuum states above this threshold. This extension allows an

extrapolation of angular correlation properties of doubly excited states beyond the DIT,

with the result that they can be used to describe doubly ionized states. The propensity

rules for the A = +1 or −1 symmetries, known for doubly excited resonances, were also

found to be suited to perfectly describe the near-threshold behavior of the photon-induced

double-ionization process [94]; an interpretation of the quantum number A has been given

in Sect. 3.2.2. In this dissertation, we shall show how the angular correlation behavior of

doubly excited states below the DIT is extrapolated to doubly ionized states beyond the

DIT. Here, we first discuss the triple differential cross section (TDCS) patterns for the

double ionization process, from which the angular correlation patterns can be derived.

For linearly polarized light, Huetz et al. [90] first established the TDCSs as

dσ(E1, E2, θ12) = |a+(E1, E2)(cosθ1 + cosθ2) + a−(E2, E1)(cosθ1 − cosθ2)|2 , (4.15)

where θ12 is the angle between the two outgoing electrons. The angles θi (i = 1 and 2)

are the angles of the two electrons with respect to the polarization vector of the light and

E1,2 are their respective kinetic energies. The amplitudes a+ and a− describe transitions

to states with A = +1 and −1, respectively. Note that quantum number A corresponds

to the symmetry of the wave function for doubly excited states under the exchange

r1 ↔ r2, and that it has the same value as for doubly ionized states under the equivalent

exchange E1 ↔ E2 [98]. Here, r1,2 represent the absolute values of the distances between

the two electrons and the nucleus. For equal energy sharing, i.e. E1 = E2 = Eex/2, it

has been observed [92, 93, 96, 99] that the second amplitude in Eq. (4.15) vanishes if

one approaches the DIT , in agreement with the Wannier law [85, 87, 91]. Therefore, for

equal energy sharing the TDCSs, given in Eq. (4.15), are written as

dσ(Eex, θ12) = CEex
(θ12)(cosθ1 + cosθ2)

2. (4.16)

The correlation factor,

CEex
∝ exp(−4ln2(θ12 − 1800)2/θ2

FWHM), with θFWHM = θ0E
1/4

ex , (4.17)

has a Gaussian distribution with a width θFWHM that is related to the excess energy,

Eex. The value of the scaled width parameter, θ0, obtained by different authors, varies

from θ0 = 103 deg (eV)−1/4 [86] to 66.7 deg (eV)−1/4 [88]. Equation (4.16) for the case of

equal energy sharing can also used as a good approximation for unequal energy sharing

if Eex → 0 [98]; this has been confirmed by experimental data [90, 92, 93, 96, 99]. It

implies that in this region the amplitude a− in Eq. (4.15) is much smaller than a+, and

in addition, a+ is insensitive to E1/E2, i.e. a+(E1 = E2) ∼= a+(E1 6= E2). Here, the cases

of equal energy sharing (E1 = E2) and of unequal energy sharing (E1 6= E2) of doubly



4.6 The angular correlation mechanism around the double-ionization threshold 75

0 0.2 0.4 0.6 0.8 1
|hν−Ε    |

130

140

150

160

170

180

θ 12

DIT (eV)

(d
eg

)
I
9

I
10

I
17

Figure 4.28: Angular correlation parameter, θ12, as a function of energy close to the double-

ionization threshold. The filled points represent the calculated doubly excited resonances of

the principal Rydberg series K = N − 2 from the SITs I9 to I17; these were indicated in Figs.

4.21 and 4.22 by solid lines. The solid line represents the angular correlation parameter of

doubly ionized states taken from Eq. (4.16) by setting θ0 = 80 deg (eV)−1/4. Experimental

data for doubly ionized states with Eex = 2E1 = 2E2 = 0.1, 0.6, and 1.0 eV, respectively, are

given by a star [99], an open diamond [93], and an open box [96]; in addition, an open circle

represents the result of theoretical calculations by Qiu and Burgdörfer [97]. The positions of

single photoionization thresholds, IN , are marked by vertical bars in the upper part of this

figure.

ionized states are equivalent to doubly excited states for two electrons with the same

and the different values of the principal quantum numbers N and n′, respectively.

In the previous section, we confirmed that the cross section below the DIT is domi-

nated − at least up to the SIT I14 − by the principal series K = N−2, which corresponds

to the classical collinear eZe configuration. Close to the double-ionization threshold, the

angle θ12 for the principal series K = N − 2 increases strongly and reaches 1800 directly

at the DIT (see Fig. 4.22). Therefore, the collinear eZe configuration can be considered

to be the most likely one in the vicinity of the DIT. We want to point out that the wave

function for the principal series K = N − 2 is of A = +1 symmetry matching perfectly

with the most intense double ionization channels above the DIT, where the amplitude

with A = +1 symmetry dominates the TDCSs resulting in Eq. (4.16).

In the following, We discuss similarities in the angular correlation properties of the

doubly excited states below the DIT and of the doubly ionized states above this threshold.

Figure 4.28 displays the energy-dependent angular distribution near the DIT, i.e. the

value of θ12 as a function of the relative energy, |hν−EDIT |, for an approach from above

and below this threshold. EDIT
∼= 79 eV is the DIT of helium. The filled points represent

the calculated doubly excited resonances of the principal Rydberg series K = N −2 from



4.6 The angular correlation mechanism around the double-ionization threshold 76

below the SITs I9 to I17, which are indicated in Figs. 4.21 and 4.22 by solid lines. The

changes of θ12 for the principal Rydberg series of the doubly excited states are in good

agreement with theoretical values for the doubly ionized states, which is given by the

solid curve taken from Eq. (4.16) by setting θ1 = 900 and θ0 = 80 deg (eV)−1/4. The

value θ0 = 80 deg (eV)−1/4 agrees with the experimental [93] and theoretical [89] values

at Eex
∼= 0.6 eV. The experimental data for Eex = 0.1, 0.6, and 1.0 eV, respectively, are

represented in this figure by a star [99], an open diamond [93], and an open box [96]. The

open circle is taken from the theoretical predictions for the doubly ionized states given

by Qiu and Burgdörfer [97]. We note from Eq. (4.16) that θ12 depends only slightly on

θ1, but shows a strong dependence on Eex. The simulation on the basis of this equation

showed that θ12 has a maximum value at θ1 = 900 for a constant value of Eex. The

experimental TDCSs of Ref. [93] were not measured at θ1 = 900, which have resulted in

smaller values of θ12 as indicated by the open diamond in Fig. 4.28. In fact, the angular

distribution parameter, β, has been confirmed to approach −1 by approaching the DIT

from both above [94, 95] and below [102], i.e. the highest probability for the outgoing

electrons is at θ1 = 900 with respect to the polarization of light.

In addition, the excess energies, Eex, of the two ionized electrons above the DIT

correspond to the binding energies of the doubly excited states below the DIT. Therefore,

the doubly excited resonances close to single ionization, i.e. the ones with n′ � N , can be

regarded as the counterpart of unequal energy sharing in the double-ionization process.

The theoretical results for doubly excited states, presented in Fig. 4.28, show that θ12 does

not change much below one single ionization threshold. This observation corresponds to

the fact that for doubly ionized states close to the DIT θ12 is also insensitive to the ratio

E1/E2 [92, 93]. Considering all these facts, the available experimental results above the

DIT and the theoretical results below the DIT are in agreement with those derived from

the analytical expression given in Eq. (4.16). Figure 4.28 shows clearly that the angular

correlation around the DIT has a mirroring behavior taking the DIT as the mirroring

axis. This mirroring angular correlation dynamics around the DIT further improves

the understanding to the double-ionization dynamics of helium: the preferential double-

ionization path should be the one where the two electrons escape symmetrically and

back-to-back. In order to confirm this prediction on the mirroring angular correlation

dynamics, more experimental and theoretical work on the TDCSs at Eex ≤ 1 eV is

needed, in particular for θ1 = 900.

Because of the 1P o symmetry, θ12 for the equal-energy-sharing case is not equal to

1800, even at the DIT, i.e. the TDCSs have a node at θ12 = 1800 on the basis of stan-

dard quantum mechanics [98]. As mentioned in Append. A, in the limit of the DIT, the

quantum description of helium should lead to a classical mechanical case (Bohr’s corre-

spondence principle). This may be considered to be the signature of classical mechanics

in the quantum helium system, when E approaches the DIT.


