
Chapter 1

Atomic structure and interaction

with the electromagnetic field

1.1 LS–coupling

The electronic structure of an atom is determined by the Coulomb interaction between

the electrons and the nucleus, as well as between different electrons which is commonly

called electron correlation. In the non-relativistic limit, the Hamiltonian H for an atom

with N electrons is given in atomic units by

H =
N
∑

i=1

(

−
1

2
∇2

i −
Z

ri

)

+
N
∑

i<j=1

1

rij
, (1.1)

where ri denotes the relative coordinate of the electron i with respect to the nucleus and

rij = |ri − rj|. By approximating the Coulomb interaction between the electrons with a

mean effective spherical potential V (r), equation (1.1) can be written as

H = Hc + H1 (1.2)

with

Hc =
N
∑

i=1

(

−
1

2
∇2

i −
Z

ri

)

+ V (ri) (1.3)

and

H1 =
N
∑

i<j=1

1

rij
− V (ri). (1.4)

H1 represents the difference between the actual and the averaged Coulomb interactions

of the electrons, and contains electron correlation effects. The term H1 is normally small

compared to the terms Z/ri and 1/rij and can, therefore, be regarded as a perturba-

tion. Due to strong electron-electron correlation in doubly excited two-electron systems,

like helium, the Hamiltonian in Eq. (1.2) cannot simply be solved with the perturbation
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method. However, the mixing of two-electron hydrogenic configurations due to the inter-

action term 1/rij can be described well by group-theoretical techniques [23] but not by

independent electron picture, resulting in new approximated quantum numbers to char-

acterize the doubly excited states instead of the orbital angular momentum quantum

numbers in two-electron systems.

In the relativistic case, other interactions have to be added, of which the spin-orbit

interaction represents the largest contribution, which is given by

H2 =
∑

i

ξ(ri)li · si, (1.5)

where ξ(ri) = 1
2ri

dV (ri)
dri

. li and si are the orbital angular momentum and spin angular

momentum of electron i, respectively. If H1 � H2, the dominating Coulomb interac-

tion preserves the spin and the orbital angular momentum and the vector sums of the

individual angular momenta

L =
∑

li and S =
∑

si. (1.6)

From these, one obtains the total angular momentum J from the coupling

J = L + S. (1.7)

This is called LS-coupling. The opposite case, H1 � H2, is called jj-coupling and requires

that

ji = li + si and J =
∑

ji. (1.8)

The case that both perturbations, H1 and H2, are of the same order of magnitude is

difficult to handle because both terms must then be treated on the same footing. This

situation is called intermediate coupling. As a rough rule, one can use LS-coupling for

the outer shells in low-Z elements, and jj-coupling for inner shells in high-Z elements.

For other cases, intermediate coupling is often required.

From these considerations, LS-coupling is expected for He, however, for the special

case of doubly excited resonances of helium very close to the He+(N = 2) ionization

threshold, recent experimental [41] and theoretical results [42] have confirmed that the

spin-orbit interaction significantly contributes to the total energy of the atom, and results

in a breakdown of LS-coupling. Since this particular energy region is not of interest in

the present work, the discussions on experimental results and theoretical calculations is

based on LS-coupling throughout this dissertation.

1.2 Atomic photoionization process

An atom can be ionized by obtaining extra energy from an incoming photon if the extra

energy is larger than the negative potential of a bound electron. The single photoioniza-

tion process of an atom can be expressed by

A + hν → A+ + e− . (1.9)



1.2 Atomic photoionization process 12

This single photoionization process obeys mainly the dipole selection rule for an electronic

dipole transition (i.e. a change of the total orbital angular momentum ∆L = ±1 and the

parity). In the final state, one electron is free and the others remain in a positive ion

either in the ground state or in the excited state.

The interaction of a photon with an atom resulting in ionization is usually expressed

in terms of a cross section, σ, which is defined as the transition probability per unit time

and per unit target scatterer and per unit flux of incident particles with respect to the

atom. If this photoionization can lead to various channels, i.e. the remaining electrons

in the ion could be in various energy levels, we call the cross section specifying to one

channel a partial cross section (PCS). In doubly excited helium, PCSs σn or σnl describe

satellite cross sections leading to the final states He+(n) or He+(nl), respectively. A

total cross section (TCS), σT , can be regarded to be the sum of all PCSs, σn or σnl. The

parameter β is related to the scattering angle θ in Eq. (1.22), so that it is called angular

distribution parameter (ADP). The ADP together with the TCS and the PCS have

become standard quantities in the study of the interactions between photons and atoms.

In this section, we shall briefly introduce the derivations of the TCSs, the PCSs, and

the ADPs that are employed in this dissertation in order to observe electron correlations

and transitions in doubly excited helium.

1.2.1 Interaction of an atom with a photon

For an electron in the electromagnetic field, the mechanical momentum p has to be

replaced by the canonical momentum, which includes the vector potential A of the field.

The scalar potential Φ of the electromagnetic field is also added, giving

H =
(p− eA)2

2m0
+ Φ (1.10)

for the Hamiltonian. In Coulomb gauge and space-free electromagnetic field, e.g. in the

external field of monochromatized synchrotron radiation, A and Φ can be chosen

∇ · A = 0 and Φ = 0. (1.11)

Under these conditions, the synchrotron radiation field can be described by

A(ω; r, t) = A0ε
{

ei(k·r−ωt) + cc
}

, (1.12)

where ε is the polarization vector, A0 the field intensity, and cc the complex conjugate;

k, r, ω, and t have their normal meanings. One can regard the interaction with the

radiation field as an additional potential energy term, which perturbs the atom with the

vector potential A alone.

The time-dependent Schrödinger equation in an electromagnetic field then reads

ih̄
∂Ψ

∂t
=

[

(p − eA)2

2m0

+ V (r)

]

Ψ, (1.13)
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where p = −ih̄∇ and V (r) is the Coulomb potential. With the conditions given in Eq.

(1.11), this results in

(p − eA)2 Ψ =
(

p2 − 2eA · p + e2A2
)

Ψ. (1.14)

One can therefore write the Schrödinger equation (Eq. (1.13) as

ih̄
∂Ψ

∂t
=

[

Hatom +
ieh̄

m0
A · ∇ +

e2

2m0
A2

]

. (1.15)

From the full Hamiltonian given in Eq. (1.15) with three terms, only one term, namely

A · ∇, is responsible for the photon-atom interaction. For a weak vector potential A, it

can be treated as a perturbation. On the same footing, the contribution of term A2 can

also be neglected. Employing time-dependent perturbation theory and Fermi’s golden

rule for the transition rate w from an initial atomic state |i〉 to a final atomic state |f〉,

one obtains

w =
2π

h̄
|〈f |Hint|i〉|

2 δ(energy conservation), (1.16)

with the time-independent interaction

Hint =
eh̄

2m0

A0e
ik·rε · ∇. (1.17)

1.2.2 Dipole transition approximation

The transition matrix between the initial state |i〉 and the final state |f〉 can be written

according to Eqs. (1.16) and (1.17) as

Dif ∝
〈

f
∣

∣

∣eik·rε · ∇
∣

∣

∣ i
〉

. (1.18)

In many cases of practical interest this matrix can be simplified by expanding the expo-

nential function eik·r as

eik·r = 1 + (ik · r) +
1

2!
(k · r)2 + · · · . (1.19)

Normally in the low-photon-energy region, the k · r term in the expression given in

(1.19) is three orders of magnitude smaller than unity. If one just includes the first term,

unity, in this expansion, it is known as the electric dipole approximation. The electric

quadrupole transitions or magnetic dipole transitions described by the second term of Eq.

(1.19) are weaker by a factor α2 for low energies (< 1000 eV), and under these conditions,

electric dipole approximation works well. Here, α is the fine structure constant. As the

photon energy increases, the electric quadrupole transition strength being proportional

to ω4α2, increases dramatically in comparison to the electric dipole transition strength

being propotential to ω2 and magnetic dipole transition being propotential to ω2α2 (for

details, see Ref. [43]). Therefore, for doubly excited resonances of helium, which all
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have excitation energies below 79 eV, the electric dipole approximation can be employed

safely throughout this dissertation. Since the magnetic dipole term is at least a factor α2

smaller than the electric dipole term, it can be neglected even in the low-energy region.

If one uses linearly polarized light in dipole approximation, the dipole transition

matrix Dif in Eq. (1.18) can be written as 〈f |∇| i〉, which is called the velocity form.

With the help of the general commutation relation

dr

dt
=

∂r

∂t
+

i

h̄
[H, r] =

i

h̄
[H, r] (1.20)

and p = ih̄∇ = m0dr/dt, one finds

〈f |∇| i〉 = m0(Ef − Ei) 〈f |r| i〉 = m0ω 〈f |r| i〉 , (1.21)

which is called the length form of the dipole matrix. These forms of the dipole matrix

are completely equivalent only for exact initial- and final-state wavefunctions since the

relations H|x〉 = Ex|x〉, with x = i and f , are used in Eq. (1.21). Therefore, the

differences of the matrix elements in these two forms are often used to check the quality

of the target wavefunctions used in calculations. In Part III of this dissertation, our

calculations employing R-matrix method will be presented in both forms, velocity form

and length form.

1.2.3 Cross sections and angular distribution parameters

For photoelectrons ejected from atoms by linearly polarized radiation, the differential

cross sections (DCS) can be written, in the electric dipole approximation, as [44, 45, 46]

dσnl

dΩ
=

σnl

4π

[

1 + βnl

(

3cos2θ − 1

2

)]

, (1.22)

where n and l are, respectively, the principal and the orbital angular momentum quantum

numbers of the residual ion, θ is the angle between the momentum of the photoelectron

and the polarization vector of the photon with both directions being in the plane per-

pendicular to the light propagation direction, which is called dipole plane. The PCS σnl,

which leads to the final state |nl〉 of the ion, can be written as

σnl =
1

3(2Li + 1)

∑

l′,Lf

|M(nll′Lf)|
2
. (1.23)

The ADPs βnl can be described by [45, 46]

βnl =
5

σnl(2Li + 1)
(−1)Lil

∑

l′
1
,L1

f

∑

l′
2
,L2

f

[

(2l′1 + 1)(2l′2 + 1)(2L1
f + 1)(2L2

f + 1)
]1/2

×

(

1 1 2

0 0 0

)(

l′1 l′2 2

0 0 0

){

1 1 2

L1
f L2

f Li

}{

l′1 l′2 2

L1
f L2

f l

}

×M(nll′1L
1
f )M(nll′2L

2
f )

∗. (1.24)
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Li and Lf are the orbital angular momenta of initial and final states, respectively, and

l′ is the orbital angular momentum of the photoelectron. M(nll′Lf ) is the transition

amplitude in the electric dipole approximation and includes the Coulomb phase shift

factor. From the experimental side, equations (1.23) and (1.24) for the PCSs, σ, and

the ADPs, β, are too complicated to be employed for profile analysis of the spectra.

Therefore, these expressions have to be parametrized, which will be presented in detail

in Sect. 3.1 together with the parametrization of the resonances in the TCSs, σT .

Figure 1.1: Polar plot of the angular distributions of photoelectrons for the four values β = −1,

0, 1, and 2.

From Eq. (1.22), one can derive that the βns is equal to 2 in LS-coupling. In addition,

the requirement that the DCSs in Eq. (1.22) cannot be negative results implies that the

values of the ADPs β are restricted by the inequality

−1 ≤ β ≤ 2. (1.25)

The angular distributions of photoelectrons for the four values β = −1, 0, 1, and 2 are

plotted in Fig. 1.1. The PCS can be measured directly by mounting the detector at the

magic angle, θ ≈ 54.7, since under this condition the second term in Eq. (1.22) becomes

equal to zero. From Fig. 1.1, one can also see that the photoelectron intensity at the

magic angle is independent of the β values. Due to the two unknown parameters σnl and

βnl in Eq. (1.22) at least two detectors have to be mounted at different angles in order

to obtain the ADPs from the experiment. A larger number of detectors can, however,

provide more precise values for β. Later in this dissertation, two photographs of the

experimental set-up allowing the use of up to 12 TOF spectrometers are shown, which

was used in the ADP measurements of this dissertation.
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In theory, the n-specific ADP βn are related to the nl-specific βnl by

βn =
−8πA2

n

σn
=

−8π
∑

l A
2
nl

σn
=

−8π
∑

l
A2

nl

σnl
· σnl

σn
=

∑

l βnlσnl
∑

l σnl
, (1.26)

where A2, referred to A2 in Ref. [46], is proportional to the real part of the transition

amplitude, ReM(nll′1L
1
f )M(nll′2L

2
f )

∗. Note that, experimentally, the terms
∑

l βnlσnl and
∑

l σnl are averaged over the energies; therefore, in order to compare with experimental

data, the calculated βn should be obtained by the convoluted terms
∑

l βnlσnl and
∑

l σnl,

and not by a convolution of their fraction; this fact was relevant for the present theoretical

work which will be presented in part III.


