
1. THEORETICAL BACKGROUND AND EXPERIMENTAL

TECHNIQUES

The number of transistors per chip grows exponentially in time, a trend now known

as Moore’s law [1]. In the next decades the size of semiconductors devices will

shrink below 20 nm, where it is expected that quantum effects will become impor-

tant. This is the reason why quantum information processing and its experimental

implementation is a hot scientific topic nowadays. Its advantages over the classical

information processing will be briefly reviewed.

Since the experimental technique most used in this work is electron spin resonance

(ESR) its theoretical foundations are given. Additionally some of the basic pulse

ESR and ENDOR experiments are also presented.

1.1 History of Quantum Computation

The idea to use a quantum mechanical system as a Turing machine was first pro-

posed by Paul Benioff in 1980 [2], but his model of computation was purely classical.

In 1982 Richard Feynman [3] suggested that a real physical (quantum) system can-

not be fully simulated by any usual (classical) computer and that another quantum

system might be used for the simulation. This conjecture appears to be valid, as

was shown by Seth Lloyd in 1996 [4]. Meanwhile in 1985 David Deutsch [5] defined

a quantum computer as a set of two level subsystems called quantum bits (qubits).

He defined the universal quantum computer in analogy with the classical computer

as composed of universal Turing machines and showed that the former is exponen-

tially faster for certain problems than the latter because of the so called quantum

parallelism. Later he developed a theory of quantum networks [6] and introduced

quantum gates in analogy to classical logic gates. In 1992 Deutsch and Richard

Jozsa [7] presented a first algorithm that uses quantum parallelism for a specific

problem, but the problem described there has no practical application.

The real breakthrough in theory came in 1994 when Peter Shor introduced his algo-

rithm for factorizing numbers [8, 9], which is exponentially faster than any classical

algorithm for large numbers. This result drew attention to the subject, because

nowadays every protocol for secure communication (e.g. electronic bank transfer)
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relies on the fact that very large numbers cannot be factorized in reasonable time.

For classical computation, the time needed for factorizing grows exponentially with

the number of digits, while Shor’s quantum algorithm is only polynomial in time.

Another important algorithm was found in 1997 by Lov K. Grover [10]. He showed

that for a database with N unsorted entries (like the phone numbers in a phone

book), a quantum computer will find a record of interest with probability 0.5 mak-

ing O(
√

N) accesses, while a classical computer needs N/2 searches. The advantages

of quantum computers became more obvious.

Despite the fast development of theory, experimental implementation of quantum

computation is very difficult and until today there are only proof-of-principle exper-

iments. There are many proposals to build a quantum computer based on different

physical systems like ion traps [11], cavity quantum electrodynamics [12], Joseph-

son junctions and superconducting loops [13, 14], quantum dots [15], nuclear spins

coupled to one electron spin 1/2 (S-Bus concept) [16] and endohedral fullerenes

[17, 18, 19]. The last approach will be discussed later in more detail, as it is con-

nected to this work. The most successful demonstration of quantum computation

until now is based on ensembles of nuclear spins and uses state of the art Nuclear

Magnetic Resonance (NMR) technology [20, 21]. It consists of an application of

Shor’s algorithm to factorize 15 (finding that 15 = 5 × 3) [22]. This result is of

course trivial, but it shows that a quantum computer can really work. Unfortu-

nately the used liquid NMR implementation is not scalable [23], meaning that it

will not work for more then 20-40 qubits (the quantum bits, see section 1.2) while at

least a few hundred are needed in order to gain a significant advantage over classical

computers.

1.2 Qubits

In a classical computer (or any digital electronic device), the information is stored

and processed in binary units called bits. In a computer memory for example the

bits are physically realized as small capacitors - a charged capacitor corresponds

to logical ”one” and an empty one to logical ”zero”. The bit is always in one of

both states (a partially charged capacitor is a faulty bit). In a quantum computer

the information is processed by qubits where zero is denoted by |0〉, one by |1〉.
For a example when the qubits are spin 1/2 particles (electrons or nuclei) then

usually spin-up means zero and spin-down means one (for the definition of ”spin-

up” and ”spin-down” see section (1.4.1)). The peculiar property of the qubits that

distinguishes them from classical bits is that they can be simultaneously ”zero” and
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”one”. Such a superposition state is expressed mathematically as:

|ψ〉 = a|0〉 + b|1〉 (1.1)

where a and b are complex numbers. The probability of the qubit to be measured

in state |0〉 is a2 and in state |1〉 b2, and the normalization condition a2 + b2 = 1

has to be fulfilled. The states |0〉 and |1〉 form a basis in a Hilbert space with 2

dimensions, where the state of the qubit is represented as a vector with components

a and b. For N qubits |ψ〉1, |ψ〉2, ... |ψ〉N (N two level systems) the Hilbert space

is constructed as a tensor product between single qubit spaces |ψ〉1 ⊗ |ψ〉2 ⊗ ...|ψ〉N ,

it has 2N dimensions and correspondingly 2N states basis.

Logic operations on qubits are described by quantum logic gates which correspond

to unitary transformations U in Hilbert space. An important single qubit operation

is the NOT-gate with matrix representation:

UNOT =

(
0 1

1 0

)

If the initial state of the qubit is |0〉, the NOT-gate changes it to |1〉:
(

0 1

0 1

)(
1

0

)
=

(
0

1

)

If the qubit is in a general state as described by equation (1.1), the NOT-gate

exchanges the probabilities a2 and b2 to find the system in the states |0〉 and |1〉:
(

0 1

1 0

)
|ψ〉 =

(
b

a

)
= b|0〉 + a|1〉

The NOT operation is a special case of single qubit rotation (see section 1.5.3) at

angle π. For two qubits there are 22 = 4 basis states in Hilbert space, so the state

of the system is given by:

|ψ〉 = c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉

which is usually written as:

|ψ〉 = c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉 (1.2)
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In case of spins as qubits, equation (1.2) is sometimes written:

|ψ〉 = c0|↑↑〉 + c1|↑↓〉 + c2|↓↑〉 + c3|↓↓〉 (1.3)

where |↑〉 means ”spin-up” and |↓〉 ”spin-down”.

Among all possible two-qubit quantum gates, the controlled-NOT (CNOT) gate

deserves special attention, because it is a universal gate. This means that any (two

qubit) gate can be constructed from a finite number of CNOT gates and single qubit

rotations [24]. The input qubits to which this gate is applied are called control qubit

and target qubit. When the initial state of the control qubit is |0〉, the target qubit

is left unaltered, and when it is |1〉, the target is inverted (a NOT operation is

applied). The matrix form of the CNOT operation is:

UCNOT =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ (1.4)

If we write the basis vectors for the two qubit Hilbert space like this:

|↓↓〉 ≡

⎛
⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎠ ; |↓↑〉 ≡

⎛
⎜⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎠ ; |↑↓〉 ≡

⎛
⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎠ ; |↑↑〉 ≡

⎛
⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎠ ;

and apply UCNOT to the last two states (it does not affect the first two):

UCNOT |↑↓〉 ≡ UCNOT

⎛
⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎠ ≡ |↑↑〉

UCNOT |↑↑〉 ≡ UCNOT

⎛
⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎟⎠ ≡ |↑↓〉

Here the first bit is the control qubit and second one is the target.
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1.3 Entanglement

Two coupled two level systems (spins, photons) have very striking properties which

led Einstein, Podolsky and Rosen (EPR) [25] to claim that the description of quan-

tum mechanics with a wave function is incomplete. In a later paper [26] Niels Bohr

argued that we cannot deny the success of quantum theory and that the authors

should reconsider what they called ”physical reality”. The same argument was

also made by Erwin Schrödinger [27], who introduced the term entanglement (Ver-

schränkung). Despite those discussions there was a lack of mathematical definition

of the problem until it was given by Bell in 1964 [28] who derived what are now

called Bell’s inequalities. The latter were proven experimentally (with photons for

example [29] and protons [30]) to be violated, confirming that quantum mechanics

is correct and all ”local realistic theories” are invalid.

Two spin 1/2 particles as an example will be considered, following [31]. They can

be prepared in the following state:

|ψ〉 =
1√
2
(|↑↓〉 + |↓↑〉) (1.5)

After their preparation the particles are let to move in opposite directions and then

each of them passes a Stern-Gerlach set-up A and B to measure its spin. If set-up

A has the z-axis as quantization axis (Sz is measured) and the passing particle in

measured to be in the ”spin-up” state, then the other one must be in ”spin-down”

state according to eq. (1.5) if Sz is measured. However, if set-up B measures Sx,

then it will give ”spin-up” and ”spin-down” with probability 1/2. So it seems that

the result of the measurement from B depends on which quantization axis in chosen

in A - x or z. The quantum-mechanical interpretation of this paradox is simply that

the two electrons are still one system, even if they are spatially separated. The state

(1.5) is called an entangled or Bell state. It is the ”heart” of all quantum algorithms

and quantum cryptography protocols.

1.4 Electron Spin Resonance (ESR)

The method of Electron Spin Resonance (ESR)1, first discovered by Zavoiskii [32],

has found wide application in biology, chemistry and physics. As this is the experi-

mental method mostly used in this work, its basics will be discussed briefly.

The general spin Hamiltonian for a system consisting of electron and nuclear spins

1 A frequently used term is Electron Paramagnetic Resonance (EPR), but Electron Spin Reso-
nance (ESR) is recently used more often in order not to confuse it with the EPR from section 1.3
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is usually given by:

H = HZI + HZFS + HHI + HNZI + HNQI (1.6)

where HZI , HZFS, HHI , HZI and HNQI are correspondingly the Zeeman interaction,

zero field splitting (fine structure) interaction, hyperfine interaction, nuclear zeeman

interaction and nuclear quadrupole interaction Hamiltonians. The last two terms

in equation (1.6) will be neglected because their contribution to the Hamiltonian is

much smaller in endohedral fullerenes (the systems studied here) than that of the

other terms. The latter will be described in the following sections.

1.4.1 Zeeman Interaction and continuous wave ESR

The Hamiltonian of an electron spin in constant applied magnetic field (Zeeman

interaction) can be written as [33]:

HZI = h̄ω0Sz, ω0 = γeB0 =
gµB

h̄
B0 (1.7)

here h̄ is Planck’s constant divided by 2π, ω0 is the Larmor frequency, B0 is the

constant magnetic field applied parallel to the z-axis, g is the Landé factor (generally

a second-rank tensor, but for the systems investigated in this work it is found to be

always isotropic), µB is the Bohr magneton and Sz is the z electron spin operator:

Sz =

(
1
2

0

0 −1
2

)

The electron is in the ”spin-up” state when its projection onto the z-axis is positive

(parallel to the magnetic field) and ”spin-down” when it is negative (anti-parallel to

B0). Using the states |1
2
〉 (|↑〉) and | − 1

2
〉 (|↓〉) as a basis in Hilbert space, we can

calculate the energies for both orientations:

〈±1

2
|H| ± 1

2
〉 = h̄ω0〈±1

2
|Sz| ± 1

2
〉 = ±1

2
h̄ω0 (1.8)

It is clear that a photon with energy E = h̄ω0 can be absorbed by a spin in the

| − 1/2〉 state and this is basically the phenomenon of ESR. If there is more than

one unpaired electron, the total spin is MS and the quantum number is mS =

−MS,−MS + 1, ..., +MS, i.e. we have 2MS + 1 energy states:

〈m|H|n〉 = h̄ω0〈m|Sz|n〉 = mSh̄ω0δmn (1.9)
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where δmn is Kronecker’s symbol. Applying the selection rule in ESR ∆mS = ±1,

there are 2MS allowed transitions (all with the same energy if there is no ZFS, see

the next section).

The energy of the transitions are in the microwave (MW) region, usually about 9.4

GHz (B0 ≈ 0.336 T for g ≈ 2.002) called X-Band. Other often used frequencies are

L-Band (2 GHz, B0 = 0.071 T ), Q-band (34 GHz, B0 = 1.21 T ) and W-band (94

GHz, B0 = 3.36 T ).

Experimentally it is very difficult to change the MW frequency continuously and

over a wide range. Therefore the latter is held constant and the applied magnetic

field is swept, which can be more easily achieved. This type of experiments are

called continuous wave (CW) ESR and they are more often used than the pulsed

ESR, which will be discussed in more detail in section 1.5.

1.4.2 Zero Field Splitting (Fine Structure)

For a system with an electron spin quantum number MS > 1
2
, an additional splitting

of the ESR spectral lines called zero field splitting (ZFS) or fine structure can occur

if the symmetry of the system is lower than cubic. The ZFS is described by the

second term in the spin Hamiltonian (1.6):

HZFS = St.D.S (1.10)

where

S =

⎛
⎜⎝

Sx

Sy

Sz

⎞
⎟⎠ (1.11)

is the electron spin operator S in vector form with components Sx, Sy and Sz; St

is the transpose of S, and D is a second-rank tensor characterizing the interaction,

which in appropriate basis has the form:

D =

⎛
⎜⎝

−1
3
D + E 0 0

0 −1
3
D − E 0

0 0 2
3
D

⎞
⎟⎠ (1.12)

depending on the two scalar parameters D and E given in MHz or Gaussian units.

The energy levels for MS = 3
2

will be given explicitly, as they are needed for later

discussions. The parameter E will be neglected, because it is absent or much smaller

than D for the systems considered in this work. Now the D matrix (1.12) and the
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Hamiltonian (1.10) are simplified and can be written as [34]:

HZFS = D(S2
z −

1

3
MS(MS + 1)) (1.13)

If the the applied magnetic field is not parallel to the z-axis, but at an angle θ in

the xz-plane, the spin Hamiltonian is:

H = HZI + HZFS = h̄ω0(cos θSz + sin θSx) + D(S2
z −

1

3
MS(MS + 1)) (1.14)

with eigenvalues (for D << h̄ω0):

E± 1
2

= ±1

2
h̄ω0 − 1

2
D(3 cos2(θ) − 1)

E± 3
2

= ±3

2
h̄ω0 +

1

2
D(3 cos2(θ) − 1)

The energy levels are non-degenerate even if there is no magnetic field applied,

which is why this interaction is called zero-field splitting. The resonant fields of the

corresponding allowed transitions are:

B
(+ 3

2
,+ 1

2
)

0 =
hνMW

gµB

− D(3 cos2(θ) − 1) (1.15)

B
(+ 1

2
,− 1

2
)

0 =
hνMW

gµB

(1.16)

B
(− 1

2
,− 3

2
)

0 =
hνMW

gµB

+ D(3 cos2(θ) − 1) (1.17)

where B
3
2

1
2

0 , B
+ 1

2
− 1

2
0 and B

− 1
2
− 3

2
0 are the resonance fields at which each of the lines

appear and νMW is the constant MW frequency. From the equations above it clear

that for a single crystal sample, the position of two of the ESR lines will depend on

the sample orientation with respect to the B0 field as (3 cos2(θ)−1), with maximum

separation 2D for θ = 0. For the ”magic angle” θ ≈ 54.7◦ all lines collapse in one.

1.4.3 Hyperfine Interaction

If there is a nuclear spin with spin quantum number MI coupled to the electron spin,

a hyperfine interaction is present described by the term HHI in the spin Hamiltonian

(1.6):

HHI = S.A.I (1.18)

where S and I are the electron and nuclear spin operators and A is a second-rank

tensor. If the hyperfine interaction is isotropic, as it is for the endohedral fullerenes
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considered in this work, Eq. (1.18) becomes:

HHI = h̄ 2πaS.I = h̄ 2πa(SxIx + SyIy + SzIz) (1.19)

Here, the factor 2π is written explicitly so that the isotropic hyperfine constant

a is expressed in frequency units. The number of spectral lines is (in the general

case of non-vanishing zero-field splitting) 2MS(2MI +1), for example for one electron

(MS = 1
2
) coupled to one nuclear spin with MI = 1

2
there are two allowed transitions

and correspondingly two spectral lines.

1.4.4 Line Shapes

Magnetic resonance does not occur at only one value of the field, but there is a

certain distribution of the MW absorption around it. Experimentally, the absorption

is not directly recorded but its first derivative, as this tremendously increases the

sensitivity. Afterwards the signal has to be integrated to obtain the absorption

spectral line. Usually two absorbtion line shapes are considered - Lorentzian and

Gaussian. The two line shape functions are:

gL(B) =
A0

1 + a2(B0 − B)2

for the Lorentzian and

gG(B) = A0e
−b2(B0−B)2

for the Gaussian. There are two types of line broadening - homogeneous and inho-

mogeneous (see for example [34, 35]). Possible sources for the first type are dipolar

interaction between like spins, spin-lattice relaxation (characterized by T1), interac-

tion with the radiation field and spectral diffusion. The shape of a homogeneously

broadened line is Lorentzian. Multiple homogeneously broadened lines build the

envelope of an inhomogeneously broadened line with Gaussian, Lorentzian or Voigt

line shape. The latter is a combination of the first two types and is often used to

explain experimentally observed line shapes that cannot be described by the for-

mer two. The inhomogeneous broadening can be caused by inhomogeneities of the

applied magnetic field, unresolved fine and hyperfine structure, dipolar interactions

between unlike spins, and crystal defects.

An important property of the spectral line is its width, often defined as full width

at half height (FWHH) ∆B1/2. This is the width of the line at g(B) = A0/2. For a
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Lorentzian line ∆B1/2 = 2/a and for a purely homogeneously broadened line:

∆B1/2 =
2h̄

gµBT2

(1.20)

where T2 is the spin-spin relaxation time. For an inhomogeneously broadened line

instead of T2, a T ∗
2 is defined. The line width is often used to calculate relaxation

times but the latter are more precisely measured with pulsed ESR. This method will

be described in the next section and relaxation is presented later in more detail in

section 1.5.6 and chapter 4.

1.5 Pulsed ESR

In this section the basics of pulsed EPR will be presented briefly, as this is the

experimental technique most widely used in this work.

1.5.1 Classical Picture

When an ensemble of electron spins is put in a constant magnetic field, it possesses a

net magnetization M0 that precesses with the Larmor frequency ω0 eq. (1.7) around

the field axis (z axis). If additionally microwave radiation is applied with magnetic

field magnitude B1 then M0 will precess also around B1. To simplify this complicated

movement, a rotating frame of reference is defined, instead of the laboratory frame,

which rotates with angular frequency ω0 around z and in most experiments B1

is chosen perpendicular to z. If, for example, B1 is parallel to the y axis, then

correspondingly M0 rotates around y, because of the Lorentz force, with the Rabi

frequency:

ω1 =
gµBB1

h̄
(1.21)

Usually the radiation is in form of a pulse with such a length that M0 is rotated by

a given angle according to the formula:

β = ω1tp (1.22)

here β is the rotation angle in radians and tp is the pulse length, typically 10-100

ns.

1.5.2 Pure and Mixed States. Density Matrix

When a quantum system is in a well defined state, as in the cases considered in the

previous sections, then it is in a so-called pure state (e.g. an electron spin in the
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|↑〉 or ”spin-up” state). Usually all experiments are performed using an ensemble

of particles and not a single particle (there are exceptions like quantum dots and

superconducting devices) and this complicates the physical picture. Let us consider

an ensemble of electron spins. If put in a constant magnetic field, some of the

spins will orient themselves with respect to the field direction and the other part

will be aligned in the opposite direction because there is a Boltzmann distribution

of level populations. The population difference gives rise to the net magnetization

M0 defined in the previous section. This is an example of a mixed state. For

the quantum mechanical description of such states the density operator or density

matrix is defined (for details see [36, 37]). For the two possible orientations of the

electron spin as equation (1.1), the density matrix of this mixed state has the form:

ρ = |ψ〉〈ψ| =

(
aa∗ ab∗

a∗b bb∗

)
(1.23)

or:

ρ = aa∗|0〉〈0| + bb∗|1〉〈1| + a∗b|1〉〈0| + ab∗|0〉〈1|

Here the meaning of a and b is like in (1.1) and ∗ is the complex conjugate. The

diagonal elements of the density matrix aa∗ and bb∗ correspond to the probability

of the system to be in state |↑〉 or |↓〉 state respectively. The off-diagonal elements

measure the coherence between |↑〉 and |↓〉. For the density matrix the normalization

condition should be fulfilled:

tr(ρ) = 1 (1.24)

The expectation value of an observable M is:

〈ψ|M |ψ〉 = tr(ρM) (1.25)

If the quantum system is in a pure state, for example |↑〉 then the density matrix 1.23

is simplified to:

ρ =

(
aa∗ 0

0 0

)

All quantum algorithms assume that the qubits are initialized before the calcula-

tion, meaning that the system is in a pure state. However, for the experimental

implementation such a pure state must be specifically prepared and usually this is
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not simple. The concept of pseudo-pure states was introduced [20] for ensemble

quantum computing in NMR.

It can be shown (see for example [37]) that for the density matrix of any mixed state

(for example equation (1.23)) the following inequality holds:

tr(ρ2) < 1 (1.26)

and for a pure state (equation (1.26)):

tr(ρ2) = 1

which can be used to test whether a given state is pure or not, and with what fidelity.

1.5.3 Liouville-von Neumann equation

The dynamics of mixed states described by the density matrix (if relaxation is

neglected) is covered by the Liouville-von Neumann equation:

dρ(t)

dt
= − i

h̄
[H(t), ρ(t)] (1.27)

with i the imaginary unit and [, ] commutator brackets. In pulsed ESR experiments,

it is often possible to divide the time evolution into two segments - free evolution

under time-independent Hamiltonian and evolution under pulse application. For the

former Hamiltonian H the formal solution is:

ρ(t) = Uρ(0)U † = e−
i
h̄

Htρ(0) e
i
h̄

Ht (1.28)

where U is a unitary transformation called propagator.

An ensemble of spins in a magnetic field is in thermal equilibrium according to the

Boltzmann distribution. Its density matrix is:

ρB =
e−

H
kT

Tr(e−
H
kT )

(1.29)

where H is the spin Hamiltonian (1.6). Usually the Zeeman interaction dominates

all other spin interactions and often h̄ω0

kT
<< 1. The exponent can then be expanded

in a series and to first order eq. (1.29) becomes:

ρB =
�− h̄ω0

kT
Sz

Tr
(
�− h̄ω0

kT
Sz

) =
�

Tr (�)
− αSz (1.30)
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Here, � is the identity operator, which is not influenced by unitary transformations.

Proportional constants can be omitted as the experimental signal is in arbitrary units

and must always be compared to a known spin standard. After these simplifications

the Boltzmann density matrix is written in the high temperature approximation

like:

ρ̃B = Sz (1.31)

A pulse applied to the spin ensemble can be described by the spin rotation propa-

gator (eq. 1.28):

Px,y(β) = e−iβSx,y (1.32)

with i the imaginary unit, β the rotating angle and Sx and Sy the x and y electron

spin operators, which for S = 1/2 look like:

Sx =

(
0 1

2
1
2

0

)
Sy =

(
0 − i

2
i
2

0

)
(1.33)

It is now worth noting that for spins as qubits the NOT operation is equivalent to

a rotation about an angle π (π pulse applied).

The spin ensemble evolves when there is no pulse applied (free evolution) according

to eq. 1.28 with the following propagator:

Uevol = e−
i
h̄

Ht (1.34)

where the spin Hamiltonian is given by (1.6).

1.5.4 Liouville space

The Liouville space is a generalization of the n-dimensional Hilbert space and has

n2 dimensions [38, 39, 33]. This new superspace, as it is also called, is spanned by

a basis of operators defined in Hilbert space and not by state vectors. The notation

is simplified, because any observable and the density matrix itself are vectors in

Liouville space, and processes such as relaxation can be described (see chapter 4

for more detail). The operators in the Liouville space are called superoperators

and the propagators superpropagators. The Hilbert space of an electron spin 1/2

has two basis states, namely |↑〉 and |↓〉, while the corresponding superspace has 4

dimensions and a usual basis is given by the three spin operators and the identity

operator. The basis is written as |�), |Sx), |Sy) and |Sz). The spin rotation operator

(1.32) in Liouville space reads:

Py(β) = e−iβ
ˆ̂

Sy (1.35)
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where
ˆ̂
Sy is the superoperator relative to Sy. If the propagator (1.35) is applied to

the thermal equilibrium state ρ̃B = |Sz), then [33]:

e−iβ
ˆ̂

Sy ρ̃Be+iβ
ˆ̂

Sy = |e−iβ
ˆ̂

SySze
+iβ

ˆ̂
Sy) =

= | cos(β)Sz + sin(β)Sx) = cos(β)|Sz) + sin(β)|Sx) (1.36)

For the free evolution of the system in Liouville picture the spin Hamiltonian in

(1.34) should be replaced with
ˆ̂
H:

ˆ̂
Uevol = e−

i
h̄

ˆ̂
Ht (1.37)

The observable in magnetic resonance is the spin operator S+ = Sx + iSy which

corresponds to the quadrature detection in the (x,y) plane. According to equation

(1.25) the signal can be calculated with:

S = Tr(ρS+) (1.38)

1.5.5 Fictitious spin 1/2 operator formalism

For an electron spin S > 1/2 the corresponding spin operators in eq. (1.32) should

be used. In the absence of ZFS, the transition frequencies are equal and the pulses

have to be described with the full spin operators, which for S = 3/2 are written like:

Sz =

⎛
⎜⎜⎜⎜⎝

3
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −3
2

⎞
⎟⎟⎟⎟⎠ (1.39)

Sx =
1

2

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠ (1.40)

Sy =
i

2

⎛
⎜⎜⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0

0 2 0 −√
3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠ (1.41)

If zero-field splitting is present or if there are two or more coupled spins, the spectral

lines can be so well separated that the simultaneous excitation of all of them is

either impossible or undesirable. In this case a MW pulse can selectively excite one
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transition and may not affect the neighboring ones. For a simpler description in

these cases the so called fictitious or effective spin 1/2 operator formalism [40, 41]

is defined. The basic idea is merely to assign to every allowed transition the three

usual spin 1/2 operators Sx, Sy, Sz. For a spin S the matrices of the spin operators

have (2S + 1)(2S + 1) elements. The fictitious operators have the same number

of elements, but all of them are zero except the ones that connect the states of

the corresponding allowed transition. As an example we consider an electron spin

system as the group V endohedral fullerenes with S = 3/2 and Sx,y,z from equation

(1.39) but for simplicity without coupled nuclear spins (I = 0). There are three

allowed transitions: |+3/2〉 ↔ |+1/2〉, |+1/2〉 ↔ |− 1/2〉 and |− 1/2〉 ↔ |− 3/2〉.
For everey one of them a set of the three usual spin operators is introduced. For

example for the transition | + 3/2〉 ↔ | + 1/2〉 the spin operators are:

S
3
2

1
2

x =

⎛
⎜⎜⎜⎜⎝

0 1
2

0 0
1
2

0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ S

3
2

1
2

y =

⎛
⎜⎜⎜⎜⎝

0 − i
2

0 0
i
2

0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ S

3
2

1
2

z =

⎛
⎜⎜⎜⎜⎝

1
2

0 0 0

0 −1
2

0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

A general notation for the fictitious spin 1/2 operators can be defined:

Snm
x Snm

y Snm
z (1.42)

where n and m are the states of the allowed transition. With this formalism the

propagators in equation (1.32) and the corresponding evolution of the density matrix

from equation (1.28) can be calculated. These types of operators will be used in the

last chapter to calculate the pulse sequences for the preparation of pure states and

entanglement.

1.5.6 Basic Pulse Experiments

A π/2 pulse along the x(y) axis rotates the equilibrium magnetization M0 from z to

the +y(−x) axis, where it would stay indefinitely without dephasing or relaxation.

In a real system there are always local inhomogeneities, which cause dephasing of

the individual components of Mx,y and after some time there is no net magnetization

in the xy plane. Usually, the detection of pulsed ESR spectrometers is in this plane,

and one obtains a time trace after the pulse that is called Free Induction Decay

(FID). The Fourier transform of the FID gives the ESR spectrum [39]. The time

trace for an on resonant y pulse of a single line spectrum is depicted in the Fig.

(1.1). Using equation (1.36), the density matrix after a π/2 pulse is just:
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Fig. 1.1: Free Induction Decay (FID) after a π/2 pulse.

ρFID = |Sx) (1.43)

The decay of the signal is proportional to exp (− t
T ∗
2
) where T ∗

2 is the inhomogeneous

spin-spin relaxation time. Comparing with equation (1.20) it is clear that broader

lines will have shorter relaxation times and vice versa. Recalling the properties of

the Fourier transformation, short pulses will also excite a larger spectral range and

long pulses a narrower range.

The magnetization in the xy plane can be recovered (refocused) if an additional π

pulse is applied at time τ after the first π/2 pulse. The magnetization is refocused

at time 2τ (a phenomenon called Hahn echo after Erwin Hahn [42] who discovered

it for nuclear spins). The pulse sequence is shown in Fig. (1.2). If the time between

Fig. 1.2: Pulse sequence of the Hahn echo.

the pulses is increased, the echo signal decreases with exp (− 2τ
T2

) where T2 is the spin-

spin relaxation time (sometimes called coherence time). Quantum mechanically, the

action of the pulse sequence can be written using eqs. (1.35, 1.37) with the following

propagator:
ˆ̂
Uecho = e−

i
h̄

ˆ̂
H(t−τ)e−iπ

ˆ̂
Sye−

i
h̄

ˆ̂
Hτe−i π

2
ˆ̂

Sy (1.44)

The density matrix after the pulse sequence is calculated for
ˆ̂
H = h̄ωi

0
ˆ̂
Sz:

ρ(t) =
ˆ̂
Sy cos ωi

0(t − τ) − ˆ̂
Sx sin ωi

0(t − τ) (1.45)

where ωS is the Larmor frequency of the electron spin i. The echo formation is

governed by the line shape function. If the excited ESR line is symmetric, than the
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first term will lead to an echo echo signal detection on the y-axis since the cosine is

an even function. The odd sine function would not give a rise to an echo along the

x-axis.

M0 can be aligned along the −z axis if a π pulse is applied. According to equation

(1.36) then:

ρπ = −|Sz) (1.46)

The recovery of the magnetization to its equilibrium value is described by exp−(2τ1
T1

)

where T1 is the spin-lattice relaxation time. An often used pulse sequence to measure

T1 is the inversion recovery shown in Fig. (1.3). Note that the Hahn echo pulse

Fig. 1.3: Pulse sequence of the inversion recovery.

sequence is used here as a detector sequence, and that usually τ 
 τ1 is kept

constant throughout this experiment.

1.6 ENDOR

In a system of coupled electron and nuclear spin there will be not only ESR transi-

tions but also ones between the nuclear spins. In order to fully explore the properties

of such a coupled system a new method was developed called Electron Nuclear Dou-

ble Resonance (ENDOR). It was discovered by Feher [43] who first observed nuclear

transitions via electron spin resonance. This method is a very useful technique for

obtaining NMR spectra for paramagnetic samples. Much less spin concentration

is needed for an ESR experiment than for NMR because of the larger gyromag-

netic ratio γ (for a free electron and a proton γe = 1854γP ). Larger γ gives rise to

larger spin polarization which rises the signal since the latter in magnetic resonance

experiments is proportional to the population difference (polarization). The basic

principles of ENDOR spectroscopy will be briefly discussed.

The simplest example is a system consisting of an electron spin 1/2 and a nuclear

spin 1/2 with isotropic hyperfine interaction constant a in constant magnetic field.

The energy diagram is shown in Fig. 1.4. The allowed ESR transitions are |2〉 ↔ |4〉
(solid line) and |1〉 ↔ |3〉 (dotted line), while |1〉 ↔ |2〉 and |3〉 ↔ |4〉 (dashed lines)
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Fig. 1.4: Energy diagram for a system with S = 1/2 and I = 1/2.

are NMR transitions. As there is a Boltzmann distribution, states |1〉 and |2〉 will be

more populated than |3〉 and |4〉. In order to obtain an ENDOR spectrum, first one

of the two ESR transition is saturated. This can be realized either by continuous

MW irradiation or by an application of one π (Davies ENDOR) or two π/2 (Mims

ENDOR) MW pulses. The transition will stay saturated as long as the continu-

ous radiation is on or for a time T1 (the spin-lattice relaxation time) after the MW

pulse(s). During that time a constant or pulsed radio frequency (RF) field is applied

and the ESR signal strength is monitored. The RF frequency is swept around the

resonance frequency of the NMR transition. When the RF is at resonance, there is

a decay of the ESR signal, because there is a decrease in the population difference.

For pulsed ENDOR a detection sequence is applied (after the RF pulse) in the form

Fig. 1.5: Mims ENDOR pulse sequence.

of a π/2 MW pulse (Mims ENDOR) or a Hahn Echo (Davies ENDOR) sequence.

The ENDOR RF frequency for this example can be calculated with:

ν1,2 = νL ± 1

2
a (1.47)
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where ν1,2 are the two ENDOR transition frequencies, νL is the Larmor precession

frequency of the nuclear spin and a is the hyperfine constant given in MHz. For an

electron spin S and nuclear spin 1/2 (1.47) is:

νmS
= νL + msa (1.48)

here ms is the electron spin quantum number.

The pulse sequence for the Mims ENDOR experiment is shown in Fig. 1.5 as it will

be used later in this work. The first two MW pulses invert the population difference

of the desired ESR transition. The stimulated echo signal decreases when the RF

pulse is at resonance. Mims ENDOR is easier to implement than Davies ENDOR,

because for the latter the power of the first inverting MW pulse must be much larger

than for the detection pulses [39].
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