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Zusammenfassung der Dissertation 

Glutathion (GSH) ist die wichtigste niedermolekulare Thiolverbindung in eukaryontischen 

Organismen und Gram-negativen Bakterien, um die Redoxbalance aufrechtzuerhalten 

(Kapitel 1-2). Gram-positive Bakterien produzieren kein GSH, sondern dafür alternative 

Thiolverbindungen. Bacillithiol (BSH) fungiert als alternative Thiolverbindung in Firmicutes, wie 

z.B. in Bacillus subtilis und Staphyloccoccus aureus. Mycothiol kommt dagegen als wichtigste 

Thiolverbindung in allen Actinomycetes vor, wie z.B. in Mycobakterien und Corynebakterien. 

Niedermolekulare Thiolverbindungen spielen eine wichtige Rolle bei post-translationalen 

Modifikationen nach oxidativem Stress, wobei Cysteine zu S-Thiolierungen oxidiert werden 

können. S-Thiolierungen schützen die Thiolgruppe vor irreversibler Oxidation zur Cystein-

Sulfonsäure und fungieren als Redox-Schalter. 

Das Hauptziel dieser Arbeit war es, neue Thiolschalter und S-Thiolierungen im 

Thiolredoxproteom in den pathogenen Bakterien S. aureus and Corynebacterium diphtheriae 

nach HOCl stress zu identifizieren. HOCl ist ein sehr reaktives Oxidant und wird von Neutrophilen 

während der Infektion produziert. HOCl ist deshalb für die Abwehr des angeborenen 

Immunsystems gegen Bakterien von großer Bedeutung. Im Thiolredoxproteom von S. aureus 

USA300 konnten mittels der OxICAT-Methode 58 NaOCl-sensitive Cysteine identifiziert werden, 

die >10% erhöhte Oxidation nach NaOCl-Stress aufwiesen (Kapitel 3-4). Dazu zählten fünf S-

bacillithiolierte Proteine, wie z.B. die Aldehyd-Dehydrogenasen GapDH und AldA, die ca. 29 % 

stärker oxidiert waren in der OxICAT-Analyse. GapDH und AldA sind in ihrem katalytischen 

Zentrum S-bacillithioliert, am Cys151 von GapDH und am Cys279 von AldA. GapDH ist das am 

häufigsten vorkommende S-bacillithiolierte Protein, welches mit 4% zum Gesamt-Cystein-

Proteom in S. aureus beiträgt. Die katalytischen aktiven Zentren von GapDH und AldA sind sehr 

sensitiv gegenüber Überoxidationen und irreversiblen Inaktivierungen durch ROS in vitro. In 

Gegenwart von BSH und ROS kommt es zur S-Bacillithiolierung der aktiven Zentren von GapDH 

und AldA. Die S-Bacillithiolierung dient als Schutz der Thiolgruppe vor Überoxidation und führt 

ebenfalls zur reversiblen Inaktivierung der Enzyme. Durch molekulares Docking konnte weiterhin 

gezeigt werden, dass die S-Bacillithiolierung der Cysteine in den aktiven Zentren von GapDH und 

AldA keine Konformationsänderungen erfordert. 

In C. diphtheriae wurde die glykolytische GapDH als S-mycothioliert nach HOCl-Stress 

identifiziert (Kapitel 5). GapDH ist ebenfalls das am häufigsten vorkommende Protein im Cystein-

Proteom von C. diphtheriae. Nach Exposition von gereinigtem GapDH mit H2O2 und NaOCl kam 

es zur Überoxidation des aktiven Zentrums zur Sulfonsäure, was zur irreversiblen Inaktivierung 

führte. Die Oxidation von GapDH durch H2O2 und NaOCl in Gegenwart von MSH führte zur S-

mycothiolierung und reversiblen GapDH Inaktivierung in vitro. Kinetische Messungen zeigten 
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weiterhin, dass die S-Mycothiolierung schneller ablief als die Überoxidation zur Sulfonsäure. Die 

Reaktivierung von S-mycothiolierten GapDH konnte sowohl durch den Trx-Pathway als auch 

durch Mrx1 katalysiert werden in vitro. Die Reduktion der Mycothiolierungen mittels Mrx1 verlief 

wesentlich schneller im Vergleich zur Reduktion durch Trx. Somit wurde hiermit die glykolytische 

Glyceraldehyd-3-Phosphat-Dehydrogenase GapDH als ein wichtiges S-thioliertes metabolisches 

Enzym in verschiedenen Gram-positiven Bakterien identifiziert und charakterisiert.  

Wir waren weiterhin interessiert, neue HOCl-spezifische redox-sensitive Regulatoren zu 

identifizieren. Dazu wurde eine RNA-seq Transkriptomanalyse nach NaOCl-Stress durchgeführt. 

Wir konnten einen neuen Regulator der Rrf2-Familie identifizieren, der sehr stark durch HOCl-

Stress im Transkriptom induziert wurde (Kapitel 6). HypR wurde als neuer redox-sensitiver 

Repressor charakterisiert, der die Expression des hypR-merA-Operons negativ reguliert. HypR 

wird direkt nach NaOCl und Diamid-Stress über eine reversible Thioloxidation reguliert. Durch 

Mutagenese wurde gezeigt, dass Cys33 und das konservierte Cys99 essential für das Redox-

sensing nach NaOCl-Stress sind. Cys99 ist ebenfalls wichtig für die Repressor-Aktivität von HypR 

in vitro und in vivo. HypR wird nach NaOCl-Stress durch eine intermolekulare 

Disufidbrückenbildung zwischen Cys33 und Cys99' in vitro und in vivo reguliert. HypR reguliert 

die Flavin-Disulfid-Oxidoreduktase MerA. Es konnte gezeigt werden, dass MerA am Schutz von 

S. aureus gegenüber NaOCl-Stress beteiligt ist und zum Überleben in Infektionsassays mit 

Makrophagen beiträgt.  

Unsere weiteren Untersuchungen zielten darauf ab, die Veränderungen im BSH-

Redoxpotential in S. aureus nach oxidativen Stress zu messen. Dafür wurde ein genetisch-

kodierter Bacilliredoxin-fusionierter Brx-roGFP2-Biosensor konstruiert für die Analyse des BSH-

Redoxpotentials in S. aureus während des Wachstums, nach oxidativem Stress und nach 

Antibiotika-Behandlung (Kapitel 7-8). Der Brx-roGFP2-Biosensor zeigte eine spezifische und 

schnelle Oxidation nach Inkubation mit geringen Mengen BSSB in vitro, welche auf das aktive 

Zentrum von Brx zurückzuführen war. Keine Oxidation des Biosensors wurde nach Inkubation mit 

anderen niedermolekularen Thiolverbindungen gemessen. Biosensor-Messungen in zwei MRSA-

Isolaten USA300 und COL zeigten eine schnelle und dynamische Oxidation des Brx-roGFP2 

Biosensors nach NaOCl und H2O2-Stress. Der Biosensor war konstitutiv oxidiert in verschiedenen 

BSH-negativen S. aureus Mutanten. Durch konfokale Laser-Scanning-Mikroskopie konnten die 

Veränderungen im BSH-Redoxpotential in S. aureus auf Einzelzell-Ebene bestätigt werden. Nach 

Infektionsversuchen mit THP-1 Makrophagen wurde eine 87 %-ige Oxidation des Biosensors in 

S. aureus COL gemessen. Jedoch wurden keinen Veränderungen des BSH-Redoxpotentials 

nach Behandlung mit verschiedenen Antibiotika nachgewiesen. Dies weist darauf hin, dass 

Antibiotika in S. aureus keinen oxidativen Stress verursachen.  
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Unsere Untersuchungen zeigten, dass der neue Brx-roGFP2 Biosensor eine spezifische 

Äquilibrierung zwischen den BSH und roGFP2 Redoxpaaren katalysiert. Deshalb kann der 

Biosensor weiterhin in S. aureus angewandt werden für dynamische Messungen des BSH-

Redoxpotentials. In zukünftigen Studien soll der Brx-roGFP2 Biosensor für das Screening des 

BSH-Redoxpotentials in S. aureus-Isolaten verschiedender klonaler Komplexe eingesetzt 

werden. Somit könnten Unterschiede in der Fitness und Entgiftung von ROS zwischen 

verschiedenen S. aureus-Isolaten untersucht werden als Abwehrmechanismen gegen das 

Immunsystem des Wirts. Der Biosensor kann ebenfalls in der Antibiotika-Forschung eingesetzt 

werden, um nach neuen ROS-produzierenden Antibiotika zu screenen, die einen Einfluss auf das 

BSH-Redoxpotential von S. aureus haben. 
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Summary of the dissertation 

Glutathione (GSH) is the major low molecular weight (LMW) thiol of eukaryotic organisms and 

Gram-negative bacteria to maintain the redox balance (chapters 1-2). However, Gram-positive 

bacteria do not produce GSH. Bacillithiol (BSH) is utilized as alternative LMW thiol in Firmicutes, 

such as Bacillus subtilis and Staphyloccoccus aureus. Mycothiol functions instead as major LMW 

thiol in all Actinomycetes, such as Mycobacteria and Corynebacteria. Under oxidative stress, 

LMW thiols form mixed disulfides with proteins thiols, termed as S-thiolations which function as 

thiol-protection and redox-control mechanism.  

The main goal of this work was the identification of novel thiol-switches and S-thiolated 

proteins in the thiol-redox proteome of the human pathogens S. aureus and Corynebacterium 

diphtheriae under hypochlorous acid (HOCl) stress. HOCl is a highly reactive oxidant that is 

produced during neutrophil infections and is the major cause of bacterial killing. Using the thiol-

redox proteomics approach OxICAT, 58 NaOCl-sensitive protein thiols with >10% increased 

oxidations could be identified in S. aureus USA300 (chapters 3-4). Among these are five S-

bacillithiolated proteins, including the two aldehyde dehydrogenases GapDH and AldA which 

showed the highest oxidation increase of ~29 % in the OxICAT analysis. GapDH and AldA were 

S-bacillithiolated at their active site Cys residues, Cys151 in GapDH and Cys279 in AldA. GapDH 

represents the most abundant S-bacillithiolated protein contributing with 4% to the total Cys 

proteome of S. aureus. The catalytic active sites of GapDH and AldA are very sensitive to 

overoxidation and irreversible inactivation by ROS in vitro. In the presence of BSH, S-

bacillithiolation protects the active sites against irreversible oxidation and functions in reversible 

inactivation. Using molecular docking it was further shown that BSH can undergo disulfide 

formation with the GapDH and AldA active site Cys residues without major conformational 

changes. 

In C. diphtheriae, the glycolytic GapDH was identified as main target for S-mycothiolation 

under HOCl stress (chapter 5). In addition, GapDH is also the most abundant protein in the Cys 

proteome of C. diphtheriae. Exposure of purified GapDH to H2O2 and NaOCl resulted in 

irreversible inactivation due to overoxidation of the active site in vitro. Treatment of GapDH with 

H2O2 or NaOCl in the presence of MSH resulted in S-mycothiolation and reversible GapDH 

inactivation in vitro, which was faster compared to the overoxidation pathway. Reactivation of 

S-mycothiolated GapDH was catalyzed by the Trx and the Mrx1 pathways in vitro. De-

mycothiolation by Mrx1 was faster compared to Trx. Thus, it is interesting to note that the glycolytic 

GapDH is a major target for S-thiolation by BSH and MSH across Gram-positive bacteria.  

To identify novel redox-sensing regulators in S. aureus USA300 that could provide 

protection under HOCl stress, we used an RNA-seq transcriptomic approach. We identified the 
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novel Rrf2-family redox-sensing regulator HypR as most strongly induced under NaOCl stress in 

the transcriptome under NaOCl stress (chapter 6). HypR was characterized as redox-sensing 

repressor that negatively controls expression of the hypR-merA operon and directly senses and 

responds to NaOCl and diamide stress by a thiol-based redox switch. Mutational analysis 

identified Cys33 and the conserved Cys99 as essential for NaOCl-sensing while Cys99 is also 

important for repressor activity of HypR in vitro and in vivo. The redox-sensing mechanism of 

HypR involves Cys33-Cys99' intersubunit disulfide formation by NaOCl stress both in vitro and in 

vivo. Moreover, the HypR-controlled flavin disulfide reductase MerA was shown to protect S. 

aureus against NaOCl stress and increased survival in J774A.1 macrophage infection assays.  

We were further interested to investigate the changes in the BSH redox potential under 

NaOCl stress in S. aureus. Thus, we constructed a genetically encoded bacilliredoxin-fused Brx-

roGFP2 redox biosensor for dynamic live-imaging of BSH redox potential changes in S. aureus 

during the growth, oxidative stress and under antibiotics treatment (chapter 7-8). The Brx-roGFP2 

biosensor showed a specific and rapid response to low levels BSSB in vitro which required the 

active-site Cys of Brx. However, the biosensor was unresponsive to other LMW thiol disulfides in 

vitro. Dynamic live-imaging in two MRSA isolates USA300 and COL revealed fast and dynamic 

responses of the Brx-roGFP2 biosensor under NaOCl and H2O2 stress and constitutive oxidation 

of the probe in different BSH-deficient mutants. Using confocal laser scanning microscopy, the 

changes in the BSH redox potential in S. aureus were confirmed at the single cell level. In 

phagocytosis assays with THP-1 macrophages, the biosensor was 87 % oxidized in S. aureus 

COL. However, no changes in the BSH redox potential were measured after treatment with 

different antibiotics classes indicating that antibiotics do not cause oxidative stress in S. aureus.  

Our studies demonstrate that this novel Brx-roGFP2 biosensor catalyzes specific 

equilibration between the BSH and roGFP2 redox couples and can be used for dynamic live 

imaging of the BSH redox potential inside S. aureus. Future studies are directed to apply this Brx-

roGFP2 biosensor for screening of the BSH redox potential across S. aureus isolates of different 

clonal complexes to reveal the differences in pathogen fitness and in their ROS detoxification 

capacities as defense mechanisms against the host immune system. In addition, this biosensor 

can be applied in drug research to screen for new ROS-generating antibiotics that affect the BSH 

redox potential in S. aureus. 

 



 

10 
 

Introduction and general conclusion 

1. Introduction into Staphylococcus aureus as major human pathogen 

Staphylococcus aureus is an opportunistic human pathogen that colonizes the anterior nares and 

the skin of one-quarter of the human population without symptoms of infections (49). However, 

S. aureus is also a serious human pathogen that can cause many infectious diseases ranging 

from local skin abscesses to life-threatening diseases, such as septicaemia, endocarditis and 

pneumonia (73,96).  

The population structure of S. aureus is clonal with several genetic lineages defined as 

clonal complexes (CC) of sequence types (STs). These include ten dominant human lineages of 

S. aureus that are responsible for most infections (CC1, CC5, CC8, CC12, CC15, CC22, CC25, 

CC30, CC45 and CC51). Variation in the core genome is the result of single nucleotide 

polymorphisms (SNPs) which are either silent or result in a change in the amino acid sequence 

(50). The divergence can also occur by the difference in the lengths of repetitive sequences in 

the S. aureus genome (50,66). DNA transfer between lineages is controlled by restriction-

modification systems that are partly encoded on mobile genetic elements (MGE) (50). 

Approximately 15-20% of the S. aureus genome consists of MGE, including bacteriophages, 

pathogenicity islands, plasmids, transposons, integrative conjugative elements (ICEs), integrons, 

and the staphylococcal cassette chromosome mec (SCCmec). These MGE encode many 

virulence factors, immune evasion clusters and antibiotic resistance determinants (50,66,92,134). 

The high variation of the MGE across S. aureus genetic lineages results in a high genome 

diversity and plasticity. Moreover, MGEs lead to spread of antibiotics resistance determinants 

resulting in the prevalence of multiple antibiotic resistant S. aureus isolates in hospitals and in the 

community.  

  

1.1. The prevalence of multiple antibiotics resistant S. aureus isolates  

Previously, ɓ-lactam antibiotics were successful applied for the treatment of S. aureus infections. 

However, over the last years multiple antibiotic resistant strains, such as methicillin-resistant S. 

aureus (MRSA) isolates spread rapidly in hospitals and in the community (18,66). S. aureus with 

its extraordinary adaptive evolution quickly responds to each new challenge by the development 

of a new resistance mechanism (66). Nowadays, S. aureus strains are resistant to the last resort 

of antibiotics, such as vancomycin, daptomycin, and linezolid (94,107,137). Bacteria have evolved 

several antibiotics resistance mechanisms, including limiting uptake of the drug, modification of 

the drug or drug target, inactivation of the drug, and efflux pumps for elimination of the drug (117). 

For example, penicillin binds to the transpeptidases, termed as penicillin binding proteins (PBP), 
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and inhibits the formation of peptide cross-bridges in the peptidoglycan cell wall. As penicillin 

resistance mechanism, ɓ-lactamases were acquired to hydrolyze the peptide bond of the ɓ-lactam 

ring structure for drug inactivation (117). Ampicillin and oxacillin are ɓ-lactamase stable ɓ-lactam 

antibiotics that were later introduced to treat S. aureus infections. However, S. aureus acquired 

an alternative PBP2a encoded by mecA with lower affinity to ɓ-lactam antibiotics that allowed 

continued cell wall biosynthesis. The mecA gene is located on the MGE SCCmec and is 

transfered through horizontal gene transfer (107,140,176). Moreover, another alternative PBP4 

evolved as additional ɓ-lactam resistance mechanism in MRSA strains (107).  

The glycopeptide antibiotic vancomycin binds to the D-Ala-D-Ala moiety of the peptide 

side chain and blocks peptide crosslinks of the peptidoglycan (57,111). There are low and high 

level vancomycin resistant S. aureus strains, termed as vancomycin-intermediate S. aureus 

(VISA) and vancomycin-resistant S. aureus (VRSA) strains (57). VISA strains possess a thicker 

cell wall, which reduces the permeability for vancomycin uptake. VRSA strains have acquired the 

vanA operon, carried by the transposon Tn1546 from vancomycin-resistant Enterococci (57,72). 

The vanA operon catalyzes the synthesis of the modified peptidoglycan precursors with the D-

AlaïD-lactate peptide, which has lower affinity for vancomycin compared to the D-AlaïD-Ala 

moiety (17,72).  

The epoxide antibiotic fosfomycin inhibits bacterial peptidoglycan biosynthesis by 

inactivation of the UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA). In S. aureus, 

FosB functions as a BSH-S-transferase (Bst) to conjugate BSH to the epoxide forming an inactive 

BS-fosfomycin conjugate (136,141). Other fosfomycin resistance mechanisms involve the 

mutation of the glpT or uhpT transporters, which blocks the uptake of fosfomycin (39,136). 

 

1.2. The diversity of virulence factors of S. aureus contributing to pathogenesis  

S. aureus is an important human pathogen that can cause many life-threatening infections in 

humans, especially when it enters the bloodstream. S. aureus produces many different virulence 

factors that participate in pathogenesis, allowing this pathogen to adhere to surfaces and tissues, 

to evade from the innate immune system, and to cause toxic effects in the host (32,37,52,98). 

These virulence factors are often encoded on MGEs, such as prophages or pathogenicity islands 

that can spread resulting in new virulent strains (1,7,93). The virulence factors include cell 

surface-associated proteins, such as adhesins as well as secreted extracellular toxins and 

enzymes (Fig. 1) (32,63,91,183). In addition, immune evasion clusters often encode virulence 

factors that function in neutralization of the complement system, antibodies and other immune 

defense components that are implicated in immune evasion.  
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Figure 1. Staphylococcus aureus virulence factors. S. aureus produces different virulence factors that 
contribute to pathogenesis and immune evasion. The figure is from reference (147). 

S. aureus produces several cell surface factors that have numerous functions, including 

adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm 

formation. The largest class of surface-associated virulence factors are ñmicrobial surface 

components recognizing adhesive matrix moleculesò (MSCRAMMs) (51). Fibronectin-binding 

proteins (FnBP), clumping factors (Clf), proteinA (Spa) and collagen-binding protein (Cna) are the 

major S. aureus MSCRAMMs. These proteins play important roles in microbial adhesion to host 

cells and establish the first steps of an infection. They also prevent S. aureus from recognition by 

the host immune system (51,63,183). Apart from MSCRAMMs, the capsular polysaccharides 

expressed by S. aureus are involved in the pathogenesis of staphylococcal infections. The main 

functions of the capsule are to impede phagocytosis by neutrophils, and to enhance bacterial 

colonization and persistence on mucosal surfaces (91,128). S. aureus produces also 

Staphyloxanthin which is the golden carotenoid pigment from which the species name ñaureusò 

is derived (30). This yellow pigment has antioxidant functions to resist oxidative stress and killing 

by neutrophils after phagocytosis. Non-pigmented S. aureus mutants have increased sensitivity 

toward ROS, RNS and HOCl, and are more vulnerable to neutrophil killing (59,91). 

S. aureus also secretes many virulence factors, such as extracellular enzymes and toxins, 

which play important roles in pathogenesis. They function in host cell lysis, tissue degradation 

and interfere with the host immune system (91). These secreted virulence factors include 

superantigens, cytolytic toxins and various extracelluar enzymes. The enterotoxins are 

superantigens that stimulate 5ï30% of all T-cells for enhanced cytokine secretion causing 
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immune-stimulatory host responses. This allows S. aureus to cause a variety of life-threatening 

systemic infections, such as toxic shock syndrome, atopic dermatitis, pneumonia and endocarditis 

(91,145,154). In addition, S. aureus secretes many cytolytic toxins, including pore-forming Ŭ-, ɓ-, 

and ɔ-hemolysins, leukocidins, and phenol-soluble modulins (Psms). These toxins form barrel-

like pores in the host cell membranes and cause cell lysis and inflammation (91). S. aureus also 

secretes extracellular enzymes, which function in host tissue degradation and inactivation of host 

antimicrobial components, such as lipids, defensins, antibodies and complement mediators. Host 

cell degradation is required for supply of nutrients for bacterial growth and dissemination (37,91). 

S. aureus encodes also several immune evasion factors, including staphylococcal complement 

inhibitor (SCIN), chemotaxis inhibitory protein of S. aureus (CHIPS), extracellular fibrinogen 

binding protein (Efb), and formyl peptide receptor-like-1 inhibitory protein (FLIPr). These proteins 

can have a profound impact on the innate and adaptive immune system (32).  

 

1.3. Regulatory mechanisms of S. aureus virulence factor expression  

The pathogenesis of S. aureus infection is a complex process involving a tight regulation of 

virulence factors during different stages of infections, such as colonization, internalization, 

intracellular growth and dissemination (3,157). S. aureus encodes several interlinked regulatory 

pathways for virulence factors expression, composed of two-component signal transduction 

systems (TCS), global transcriptional regulators, alternative sigma factors and small non-coding 

RNAs. Important virulence gene regulatory systems are the staphylococcal accessory gene 

regulator A (SarA) and other SarA-family proteins (SarA, SarZ, MgrA, SarR, SarS, SarT, SarU, 

Rot), the alternative stationary phase sigma factor SigB, the quorum sensing accessory gene 

regulator TCS (AgrABC) and the staphylococcal accessory element TCS (SaeRS) that are 

induced under infection conditions (32,50). These virulence gene regulators respond to different 

signals in the host, e.g. cell density, nutrient availability, temperature, pH, osmolarity, and oxygen 

tension to up-regulate different virulence factors (157).  

The Agr TCS controls the expression of a large regulon, including many exotoxins and 

exoenzymes as well as surface-associated proteins that are essential for virulence. The Agr 

system is also important for biofilm formation since it responds to quorum sensing cell density 

signals produced in S. aureus after attachment on surfaces (15,83). The major effector of the Agr 

system is the small non-coding RNAIII which regulates post-transcriptionally the expression of 

virulence genes by enhancing mRNA stability of the hla transcript encoding Ŭ-toxin and by 

preventing translation of spa or coa transcipts (50,83). Thus, activation of the Agr TCS leads to 

induction of cytotoxins and exoenzymes as well as down-regulation of surface-associated 

proteins. 
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The SaeRS two-component system is crucial for the survival of S. aureus in vivo and regulates 

the expression of many virulence factors involved in bacterial adhesion, toxicity and immune 

evasion (32,142). The SaeRS regulon includes genes encoding hemolysins and leukocidins 

which promote the destruction of neutrophils by intracellular S. aureus. Other virulence factors 

up-regulated by SaeRS include nucleases, proteases, immune evasion factors and FnBPs. In 

addition, the SaeRS system contributes to virulence in animal models of necrotizing pneumonia 

and skin infection (15,50).  

The regulation of virulence determinants also involves the alternative sigma factor SigB 

which controls a large general stress regulon and is induced under heat, salt, MnCl2 and alkaline 

stress (12,130). SigB has been shown to play an important role under infection conditions and 

controls biofilm formation and several virulence factors, such as adhesins (113,114). SigB 

specifically protects S. aureus against superoxide stress released by neutrophils during the 

oxidative burst (15). The SigB regulon was induced after internalization of S. aureus by bronchial 

epithelial cells. SigB was required for intracellular growth as demonstrated by transcriptomics and 

proteomics (102,110,133). Moreover, SigB has been implicated as central regulator in long-term 

persistence in human osteoblasts and controls the small colony variant (SCV) phenotype of 

persistent S. aureus infections (161,162).  

SCVs are characterized by small colonies of slow growing S. aureus cells with a reduced 

metabolism, resulting in a decreased susceptibility to antibiotics and oxidative stress. S. aureus 

SCVs are able to survive and persist for long time periods inside macrophages and neutrophils 

(87,163). SCVs express a changed pattern of virulence factors to allow intracellular persistence. 

Reduced levels of Ŭ-hemolysin are secreted to ensure intracellular survival and the level of 

fibronectin-binding proteins is increased to promote invasion of epithelial and endothelial cells. 

Furthermore, SCVs are frequently auxotrophic for menadione and heme, which are electron 

carriers of the respiratory chain and its defect leads to growth arrest (58,163). In conclusion, S. 

aureus encodes many virulence factors that are regulated by a compex network of virulence 

regulators and phenotypic switches to SCV allowing its adaptation to different stages of infections, 

such as colonization, internalization, dissemination and long-term persistence.  

 

2. Adaptation of S. aureus to reactive oxygen and chlorine species (ROS and RCS) 

under infection conditions  

In addition to these virulence factors, S. aureus has also efficient protection mechanisms against 

the host immune defense during invasion (94). During infections, S. aureus is exposed to the 

oxidative burst of activated macrophages and neutrophils, including reactive oxygen and nitrogen 

species (ROS, RNS) and the strong oxidant hypochlorous acid (HOCl) (178,179). As defense 
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mechanisms, S. aureus produces detoxification and antioxidant enzymes that are regulated by 

redox-sensing virulence regulators of the SarA/MarR family including SarZ and MgrA as well as 

the novel redox sensing HOCl-specific regulator HypR (59,95) that was discovered as part of this 

PhD thesis. In addition, S. aureus utilizes the low-molecular-weight (LMW) thiol bacillithiol (BSH, 

Cys-GlcNAc-Mal) as defense mechanism against the oxidative burst under infection conditions 

(97). Importantly, S. aureus BSH-deficient mutant showed an increased sensitivity in macrophage 

infection assays indicating the important role of BSH for S. aureus survival and in host-pathogen 

interactions (136,137). The generation of ROS and RCS in bacteria as well as the bacterial 

defense mechanisms against  ROS and RCS are summarized in the following sections.  

 

2.1. Sources of ROS and RCS in bacteria  

Reactive Oxygen Species (ROS) are generated in bacteria during aerobic respiration, intracellular 

redox reactions, and redox-active antibiotics (59,169). Molecular oxygen (O2) is the best terminal 

electron acceptor in aerobic bacteria and is reduced by four electrons to water during respiration. 

The incomplete stepwise electron transfer to O2 leads to generation of ROS, including superoxide 

anion (O2Åī) hydrogen peroxide (H2O2) and the highly reactive hydroxyl radical (HOÅ) (59,97). O2Åī 

and H2O2 can be also generated by accidental autooxidation of flavoproteins (47,75). Superoxide 

dismutases are metalloenzymes that rapidly convert O2Åī to H2O2. In presence of Fe2+, H2O2 is 

converted to the highly reactive HOÅ in the Fenton reaction (97).  

 

Figure 2. Neutrophils produce Reactive Oxygen Species (ROS) and HOCl to kill S. aureus. The 
enzyme NADPH-dependent oxidase (Nox, blue cluster) produces superoxide anion, which is converted to 
H2O2 by SOD. The myeloperoxidase MPO catalyzes the conversion of H2O2 and chloride to the strong 
oxidant HOCl. The figure is from reference (85). 
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Pathogenic bacteria are exposed to ROS and RCS during the oxidative burst of activated 

macrophages and neutrophils. The phagocyte NADPH-dependent oxidase (NOX) transfers 

electrons from cytosolic NADPH to intra-phagosomal molecular oxygen, to generate O2Åī. The 

superoxide anion is converted to H2O2 by the superoxide dismutase (105). Myeloperoxidase 

(MPO) is released during degranulocytosis producing the highly reactive HOCl from H2O2 and Clī 

(Fig. 2) (48,59,85,172). HOCl is a strong two-electron oxidant and the primary killing agent for 

bacteria as first line defense of the innate immune system. HOCl reacts with most cellular 

macromolecules leading to cell death and hence it is important to study the bacterial targets for 

oxidation by HOCl and bacterial defense mechanisms, which avoid pathogen destruction 

(99,178).  

 

2.2. Post-translational thiol-modifications caused by ROS and RCS in bacteria  

ROS and HOCl can damage all cellular macromolecules, including DNA, proteins and lipids. 

Therefore, bacteria are equipped with several defense mechanisms, such as ROS detoxification 

enzymes (catalases, peroxiredoxins and superoxide dismutases) and thiol-disulfide reducing 

systems to neutralize the reactive species or to repair the resulting damage (97,159).  

The cysteine thiol group is the strongest nucleophile and susceptible for oxidation by ROS 

and HOCl. However, most Cys residues are present in its protonated form and have a neutral 

pKa of 8.3~8.6, which are not susceptible for oxidation (41,156,177). In presence of positively 

charged residues surrounding the Cys thiol, the pKa value can decrease leading to a more reactive 

Cys residue. An acidic Cys thiol is mostly present in its deprotonated form as thiolate anion at 

physiological pH values (41,177). Thiolates are highly reactive nucleophiles and can be reversibly 

and irreversibly post-translationally modified by ROS or HOCl (41,69,177). ROS lead first to 

oxidation of protein thiols to Cys sulfenic acids as unstable intermediates (SOH). Sulfenic acids 

react further to form a disulfide bond with another Cys residue or are irreversibly oxidized to 

sulfinic acid (SO2H) and sulfonic acid (SO3H). Among the disulfides, we can differ between 

intramolecular and intermolecular protein disulfides or mixed disulfides between protein thiols and 

LMW thiols, termed as S-thiolations (e.g. S-glutathionylations, S-mycothiolations, and S-

bacillithiolations) (Fig. 3). 

HOCl is a strong two-electron oxidant and chlorinating agent and reacts with Cys thiols 

seven orders of magnitudes faster compared to H2O2 (36,64). Cys residues are oxidized by HOCl 

to the unstable sulfenyl chloride intermediate (SCl), which reacts further to form protein disulfides 

or S-thiolations with LMW thiols. In the absence of proximal thiols, Cys-SCl is quickly overoxidized 

to Cys sulfinic or sulfonic acids (35). In addition, sulfenyl chlorides can react with amines to form 

irreversible sulfonamide linkages (R-SO2-NH-Rǋ) (64,69). Of note, reversible thiol-oxidations 
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including S-thiolations protect thiol groups against irreversible overoxidations and function as 

thiol-redox switches to regulate protein functions. Advances in thiol-redox proteomics methods 

and high-resolution mass spectrometers allow the proteome-wide detection and quantifications 

of redox modifications that are caused by different reactive species. Identification of the protein 

disulfides and protein S-thiolations in bacteria is the basis for the detailed characterization of their 

physiological roles in the adaptation of bacteria to oxidative stress (27-29,70,71,73).  

 

Figure 3. Post-translational thiol-modifications of cysteine residues. The Cys thiol group is oxidized 
by ROS to form an unstable Cys sulfenic acid intermediate (Cys-SOH) that reacts further with proximal 
thiols to form intramolecular and intermolecular disulfides. The Cys-SOH can also undergo mixed disulfide 
formation with LMW thiols (RSH), such as glutathione (GSH), bacillithiol (BSH) or cysteine, termed as S-
thiolations. HOCl leads to chlorination of protein thiols to sulfenylchloride intermediates (Cys-SCl) that react 
further to form disulfides. In the absence of proximal thiols, the chlorinated Cys is overoxidized to Cys 
sulfinic and sulfonic acids. Sulfenyl chlorides can also react with amines to form irreversible sulfonamide 
linkages. Disulfides function as redox switches to control protein activity and to protect thiols against 
irreversible overoxidation. The figure is adapted from references (97,132). 

 

2.3. The low molecular weight (LMW) thiols bacillithiol and mycothiol as bacterial 

defense mechanisms against ROS and RCS  

All cells have to maintain their reduced state of the cytoplasm to ensure proper protein functions 

and cellular survival. To maintain the redox balance, eukaryotic and prokaryotic organisms utilize 

LMW thiols, which are small thiol-containing compounds that are often produced in millimolar 

concentrations (97). LMW thiols play an important role in the defense against ROS, RES, 
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antibiotics, heavy metals and other redox-active compounds (20,104,174). The best-studied LMW 

thiol is the tripeptide glutathione (GSH), that is produced in eukaryotic organisms, most Gram-

negative bacteria and in some Gram-positive bacteria, including Streptococcus agalactiae, 

Listeria monocytogenes, and Clostridium acetobutylicum (42,97). However, Gram-positive 

bacteria do not produce GSH and instead utilize alternative LMW thiols. Bacillus and 

Staphylococcus species utilize bacillithiol (BSH) while Actinomycetes, such as Streptomycetes, 

Mycobacterium and Corynebacterium species produce mycothiol (MSH) as their major LMW thiol 

(Fig. 4) (124,127).  

 

2.3.1. Biosynthesis and functions of bacillithiol in Firmicutes 

2.3.1.1. Biosynthesis of BSH in B. subtilis and S. aureus  

In 2009, bacillithiol (BSH) was discovered as major LMW thiol in many Firmicutes, including 

Bacillus and Staphylococcus species, Deinococcus radiodurans, and Streptococcus agalactiae 

(97,149). BSH is composed of Cys-GlcN-malate and is synthesized in three steps. The 

glycosyltransferase BshA catalyzes the addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to 

L-malate through a metal-independent SN1-like mechanism, forming N-acetylglucosaminyl-

malate (GlcNAc-Mal). This is followed by the deacetylation of GlcNAc-Mal by the N-

acetylhydrolase BshB to generate glucosamine malate (GlcN-Mal). The last step of BSH 

biosynthesis involves the putative cysteine ligase BshC that adds Cys to GlcN-Mal intermediate 

(55).  

 

Figure 4. The main LMW thiols in bacteria. Glutathione (GSH) is utilized as major LMW thiols in 
eukaryotes and Gram-negative bacteria. Mycothiol (MSH) is the major LMW thiol in Actinomycetes and 
bacillithiol (BSH) is utilized by some Firmicutes. The figure is from reference (97).  
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B. subtilis encodes two deacetylases, BshB1 and BshB2. BSH levels can be still detected in the 

bshB1 mutant, but not in bshB1 bshB2 double mutant strain (55). This indicates that both BshB1 

and BshB2 enzymes have overlapping roles for deacetylation to allow BSH synthesis, although 

BshB1 seems to play the major role. In contrast, S. aureus has only a single BshB deacetylase 

which is essential for BSH synthesis. BshB also functions as BSH conjugate amidase (Bca) in 

detoxification of toxic electrophiles analogous to the MSH-S-conjugate amidase Mca 

(20,55,97,138).  

 

2.3.1.2. Functions of BSH in detoxification and metal homeostasis in B. subtilis and 

S. aureus  

BSH plays an important role in detoxification of ROS, RNS, RCS, metal homeostasis and 

antibiotics. BSH deficient mutants are sensitive to various oxidants and electrophiles such as 

hypochlorite, diamide, H2O2, monobromobimane and methylglyoxal (Fig. 5) (20,97). Reactive 

electrophiles and xenobiotics are detoxified by direct conjugation to BSH or by conjugation 

reactions catalyzed by the DinB-family S-transferases. BSH participates in the detoxification of 

antibiotics such as rifamycin and fosfomycin (125,141). B. subtilis and S. aureus encode the BSH-

S-transferase or epoxide hydrolase FosB, which inactivates fosfomycin by catalyzing the 

nucleophilic addition of BSH to the C2 position of the epoxide ring forming an inactive BS-

fosfomycin conjugate (136,141). BSH is involved in methylglyoxal detoxification and functions as 

a cofactor for BSH-dependent glyoxalases (GlxA and GlxB) in B. subtilis (68). Methylglyoxal 

reacts spontaneously with BSH to form BSH-hemithioacetal that is converted to S-lactosyl BSH 

by GlxA. GlxB catalyzes the hydrolysis of S-lactoyl-BSH to lactate as endproduct which is 

secreted (19,20).  

In addition, the function of BSH in metal homeostasis (e.g. Zn, Fe) has been investigated 

recently (20). In B. subtilis, BSH is used as Zn buffer under conditions of Zn2+ excess, allowing 

the cells to avoid zinc intoxication (101). The thiolate and carboxylate groups of BSH can bind 

and store Zn2+ as BSH2: Zn complex under conditions of Zn2+ stress (101). Treatment of BSH 

deficient mutants with Zn2+ resulted in a decreased accumulation of Zn2+ compared to the wild 

type due to increased expression of CadA and CzcD metal efþux systems. BSH also protects 

against Zn2+ toxicity in cells lacking Zn efflux pumps. Moreover, the Zn efflux system that is 

encoded by cadA is induced under thiol-stress conditions, such as diamide (20,97).  

BSH also plays a role in Fe homeostasis and in the transport of FeS clusters to apo-

proteins in B. subtilis and S. aureus (43,144). The BSH deficient mutant has a growth defect in 

media lacking leucine or isoleucine compared to the wild type. The growth defect could be 

compensated after addition of these amino acids or by exogenous Fe2+ (144). In S. aureus, FeS 
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clusters are synthesized by the gene products of the suf operon. The FeS cluster are then 

transferred via carrier proteins (Nfu or SufA) to the apo-proteins (103,144). The bshA nfu double 

mutant showed growth defects in defined medium lacking glutamate or glutamine. In addition, the 

enzyme activities of aconitase and glutamate synthase were lower in the double mutants 

compared to that in the single mutants (144). In addition, growth phenotypes and enzymatic 

defects of the bshA mutant were restored in strains overexpressing nfu or sufA (143,144). These 

results indicate that BSH participates in the biogenesis of FeS cluster proteins independently of 

the Suf and Nfu carrier proteins. However, the details have yet to be explored and may involve 

also bacilliredoxins for the transfer of the FeS clusters.  

 

Figure 5. The main cellular functions of bacillithiol (BSH) in B. subtilis and S. aureus. Bacillithiol 
(BSH) functions in detoxification of ROS, RES, HOCl, and antibiotics (fosfomycin, rifampicin) in B. subtilis 
and S. aureus. BSH is oxidized by ROS to bacillithiol disulfide (BSSB). Electrophiles (RX) are conjugated 
to BSH by the BSH S-transferase BstA to form BS-electrophiles (BSR). BSH S-conjugate amidase Bca or 
BshB2 cleave BSR into CysSR and mercapturic acids (AcCySR) that are exported from the cell. BSH is 
cofactor for the epoxide hydrolase FosB which adds BSH to fosfomycin for its detoxification. BSH functions 
in methylglyoxal detoxification as a cofactor for the glyoxalases GlxA and GlxB in B. subtilis. GlxA converts 
BSH-hemithioacetal to S-lactoyl-BSH that is further detoxified by GlxB to D-lactate. BSH serves as Zn buffer 
under conditions of Zn excess in B. subtilis. In S. aureus, BSH is important under infection-related 
conditions and increased the survival of S. aureus in phagocytosis assays using murine macrophages. 
Under conditions of NaOCl stress, proteins are oxidized to mixed disulfides with BSH, termed as S-
bacillithiolations which is reversed by bacilliredoxins. The figure is adapted from reference (97). 

 

2.3.1.3. Functions of BSH in the virulence of S. aureus  

The role of BSH in stress resistance and under infection conditions in S. aureus was investigated 

in phenotype analyses of bshA mutants. The survival of the bshA mutant was decreased in human 

whole blood phagocytosis assays with neutrophils and macrophages (136). Microarray analyses 
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of the S. aureus COL bshA mutant showed that staphyloxanthin biosynthetic genes (crtMNQ) are 

upregulated (2.08 to 2.63-fold) while the level of staphyloxanthin was strongly decreased in the 

bshA mutant. This suggests lower radical scavenging ability in the absence of BSH (20). 

Staphyloxanthin is an important virulence factor and protects S. aureus against the oxidative burst 

in neutrophil infection assays and enhances the fitness of S. aureus (30). Notably, strains of the 

S. aureus NCTC8325 lineage (e.g. S. aureus SH1000) do not produce BSH due to an 8 bp-

duplication in the bshC gene that catalyzes the last step of the BSH biosynthesis (125,137). In 

phagocytosis assays using murine macrophages or human epithelial cell lines, the survival of 

SH1000 was impaired compared to the bshC complemented S. aureus SH1000 strain (137). 

Hence, BSH provides protection against the host-immune system under infection conditions and 

contributes to virulence and fitness of S. aureus. 

 

2.3.1.4. Physiological role of protein S-bacillithiolations in B. subtilis and S. aureus  

BSH plays an important role in post-translational modifications of proteins under oxidative stress 

in B. subtilis and S. aureus. In response to HOCl stress, protein thiols are oxidized to mixed 

disulfides with BSH, termed as protein S-bacillithiolation (69,97). Protein S-bacillithiolations have 

analogous functions compared to S-glutathionylations in eukaryotes to protect vulnerables Cys 

residues against irreversible overoxidation to Cys sulfinic and sulfonic acids (97). In addition, we 

have shown that protein S-bacillithiolation can regulate the activities of metabolic enzymes and 

redox-sensing regulators. S-bacillithiolation is a widespread redox-modification in Bacillus and 

Staphylococcus species. Eight conserved and 29 unique S-bacillithiolated proteins were identified 

using shotgun proteomics in Bacillus subtilis, B. amyloliquefaciens, B. pumilus, B. megaterium, 

Staphylococcus carnosus and S. aureus (28,29).  

In general, the S-bacillithiolome contains mainly biosynthetic enzymes for amino acids 

(methionine, cysteine, branched chain and aromatic amino acids), cofactors (thiamine), 

nucleotides (GTP) as well as translation factors (Tuf), chaperones (DnaK, GrpE), redox and 

antioxidant proteins, such as peroxiredoxins (YkuU), thiol-disulfide oxidoreductases (YumC) and 

bacilliredoxins (BrxA, BrxB and BrxC) (29). Many conserved S-bacillithiolated proteins are also 

targets for S-mycothiolation in the MSH-producing C. glutamicum, such as TufA, the methionine 

synthase MetE, the inosine monophosphate dehydrogenase GuaB and the inorganic 

pyrophosphatase PpaC (27). The most abundant S-bacillithiolated protein in Bacillus species 

under NaOCl stress is the methionine synthase MetE. MetE is S-bacillithiolated at its Zn-binding 

active site Cys730 and at the surface exposed Cys719 (28). S-bacillithiolation of MetE inactivates 

the enzyme causing a methionine auxotrophy phenotype under NaOCl stress. Since formyl 

methionine is required for initiation of translation, MetE inactivation could stop translation during 
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the time of hypochlorite detoxification (97). The redox-regulatory mechanism of S-bacillithiolation 

in response to NaOCl stress was first studied in B. subtilis (28). S-bacillithiolation controls the 

activity of the redox-sensing OhrR repressor (28,88). The OhrR repressor is inactivated by S-

bacillithiolation under NaOCl and cumene hydroperoxide (CHP) stress resulting in up-regulation 

of the thiol-dependent OhrA peroxiredoxin for detoxification of HOCl and organic peroxides 

(28,53).  

 

Figure 6. (A) Protein S-bacillithiolations function as both redox-regulatory device and in thiol 
protection under NaOCl treatment of B. subtilis and S. aureus. (B) Reduction of protein S-
bacillithiolations by bacilliredoxin pathways. The S-bacillithiolated proteins are reduced by 
bacilliredoxins (Brx) leading to Brx-SSB formation. Brx-SSB is reduced by BSH with the generation of BSSB 
that likely requires the uncharacterized NADPH-dependent BSSB reductase for regeneration of BSH. The 
figure is adapted from (97). 

As part of this PhD thesis, we were interested to identify S-bacillithiolated proteins in the 

human pathogen S. aureus under NaOCl stress (73). Using the thiol-redox proteomics method 

OxICAT, about 58 redox-sensitive proteins with >10% increased thiol-oxidation levels could be 

quantified under NaOCl stress (73). Among these are five S-bacillithiolated proteins which 

showed the highest oxidation increase of ~29% in the OxICAT analysis, including GapDH, AldA, 

GuaB, RpmJ, and PpaC (73).  

The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GapDH) represents the most 

abundant S-bacillithiolated protein in S. aureus contributing 4% to the total Cys proteome. GapDH 

is S-bacillithiolated at the conserved catalytic active site Cys151 resulting in reversible inhibition 

of Gap activity under NaOCl stress (Fig. 6A). The active site Cys of GapDH is highly reactive and 

susceptible for various post-translational thiol-modifications, including S-glutathionylation in many 
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eukaryotes and S-mycothiolation in C. diphtheriae (71). S-bacillithiolation protects the active site 

Cys against irreversible oxidation under both H2O2 and NaOCl treatments. This was shown in 

kinetic GapDH assays with increasing doses of the oxidants in the absence or presence of BSH. 

The S-bacillithiolation pathway was faster compared to the overoxidation pathway indicating that 

S-bacillithiolation can efficiently protect the active site against overoxidation (73). Molecular 

docking of BSH into the GapDH active site revealed that BSH can undergo disulfide formation 

with Cys151 without major conformational changes (73).  

Apart from GapDH, the aldehyde dehydrogenase AldA was S-bacillithiolated under NaOCl 

stress and strongly oxidized at its conserved Cys279 in the OxICAT approach (74). Our recent 

results revealed that aldA is induced under NaOCl and aldehyde stress in a SigB-independent 

manner. Expression of aldA seems to be controlled by an unknown redox-sensing regulator under 

thiol-stress conditions (74). AldA showed broad substrate specificity in vitro for oxidation of 

various aldehyde substrates, including formaldehyde, methylglyoxal, acetaldehyde and 

glycolaldehyde. In survival phenotype assays, the aldA mutant was more sensitive to NaOCl 

stress, but not to aldehyde stress. This indicates that AldA could be involved in detoxification of 

unknown aldehydes that are elevated under HOCl stress. In addition, we could confirm that AldA 

is inactivated by S-bacillithiolation in vitro. Using molecular dynamic simulation, we could show 

that the BSH molecule occupies two different positions in the AldA active site, depending on the 

presence of the NAD+ cofactor. In the apoenzyme, Cys279 is modified in the ñrestingò state 

position, while the holoenzyme forms the covalent BSH complex with Cys279 in the ñattackingò 

state position. The same location of BSH was found for the BSH mixed disulfide in the GapDH 

Cys151 active site, which also depends on the Cys activation state. Moreover, our computational 

chemistry studies revealed that formation of the BSH mixed disulfide does not require structural 

changes for both, GapDH and AldA.  

 

2.3.1.5. Redox-regulation of protein S-bacillithiolation by bacilliredoxins  

The pathways for reduction of disulfide bonds involve the thioredoxin (Trx)/ thioredoxin reductase 

(TrxR) system and the glutaredoxin (Grx)/ GSH/ glutathione reductase (Gor) system in E. coli 

(45). The Trx system is mainly involved in the reduction of inter- and intramolecular protein 

disulfides and the Grx proteins function in de-glutathionylation upon return to non-stress 

conditions (90). Grx proteins have a basic Trx-fold and are structurally classified into the di-thiol 

Grx with the CPTC active site and the monothiol Grx containing a CGPS active site (90). The N-

terminal Cys has a lower pKa value (~3.5) and is present as nucleophilic thiolate anion. The Grx 

thiolate anion attacks the S-glutathionylated protein, resulting in a reduction of the mixed GSH 

disulfide and the formation of a Grx-SSG intermediate. This Grx-SSG intermediate is reduced by 
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GSH, resulting in the formation of glutathione disulfide (GSSG) that is reduced by Gor on expense 

of NADPH (90).  

In Firmicutes, three bacilliredoxins have been identified as glutaredoxin homologs that co-

occur together with the BSH biosynthesis enzymes in BSH producing bacteria as revealed in the 

STRING search (55). The bacilliredoxins BrxA and BrxB are paralogs of the DUF1094 family with 

a conserved Trx-fold and an unusual CGC active site motif (54). The monothiol BrxC (YtxJ) has 

a conserved TCIPS active site motif, but its function is still unknown. Under NaOCl stress, these 

Brx proteins were identified as S-bacillithiolated at their active sites in B. subtilis and S. carnosus 

using mass spectrometry (28,29). The S-bacillithiolations of BrxA and BrxC during NaOCl stress 

could represent intermediates of the bacilliredoxin redox pathway. The function of BrxA and BrxB 

in the reduction of the S-bacillithiolated substrates MetE, OhrR and GapDH were demonstrated 

in vitro (Fig. 6) (54,73). S-bacillithiolated OhrR could be reduced by the BrxBCGA resolving Cys 

mutant to generate the DNA-binding activity of OhrR in vitro, but S-cysteinylated OhrR could not 

be reactivated (54). Both bacilliredoxins BrxA and BrxB can catalyze de-bacillithiolation of MetE-

SSB, but the regeneration of MetE activity was not possible. Our kinetic assays have further 

shown that Brx of S. aureus was able to de-bacillithiolate and reactive GapDH (73). GapDH 

reactivation upon de-bacillithiolation was possible with the Brx resolving Cys mutant, but not with 

the Brx active site mutant. These results provide evidence for the function of bacilliredoxins in de-

bacillithiolation in BSH-producing bacteria (20,73). However, all attempts to find phenotypes of 

brx single and double mutants failed thus far, indicating that the Brx enzymes are not essential. 

Thus, other thiol-disulfide oxidoreductases or the Trx pathway might be alternatively involved in 

reduction of S-bacillithiolated proteins in vivo which remains to be investigated in detailed future 

studies (97). 

 

2.3.2. Functions of mycothiol and its role in protein S-mycothiolation 

Mycothiol (MSH) consists of N-Acetyl-Cys-GlcN-myoinositol and serves as the major LMW thiol 

in most Actinomycetes, such as Mycobacteria, Corynebacteria and Streptomycetes (79,124). 

MSH-deficient mutants are very sensitive to many thiol-reactive species and antibiotics that affect 

the redox balance (79,124). Thus, MSH functions in all Actinomycetes in detoxification of various 

redox-active compounds, including ROS, electrophiles, toxins, heavy metal stress and antibiotics 

(Fig. 7) (97). Under oxidative stress conditions, MSH is oxidized to MSH disulfide (MSSM), which 

is recycled back to MSH by the NADPH-dependent mycothiol disulfide reductase Mtr. The 

MSH/Mtr/NADPH electron pathway provides the reducing power for mycoredoxin-1 (Mrx1) to 

reduce mixed MSH-disulfides (2,173).  
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Figure 7. The functions of mycothiol (MSH) in Mycobacteria and Corynebacteria. Mycothiol (MSH) is 
oxidized by ROS to mycothiol disulfide (MSSM). MSSM is reduced back to MSH by the mycothiol disulfide 
reductase Mtr on expense of NADPH. MSH-dependent peroxidases, such as Mpx, Tpx, and AhpE function 
in peroxide detoxification. Electrophiles (RX) are conjugated to MSH by the MSH S-transferase Mst to form 
MS-electrophiles (MSR) which are cleaved by the MSH S-conjugate amidase Mca to mercapturic acids 
(AcCySR) that are exported from the cell. The Mca-homologs LmbT, LmbV, and LmbE function also in the 
assembly and biosynthesis of the sulfur-containing lincosamide antibiotic lincomycin in Streptomyces 
lincolnensis. MSH serves as a cofactor for the alcohol dehydrogenase AdhE/MscR in Mycobacteria and 
Corynebacteria for detoxification of formaldehyde to formate and MSNO to MSO2H. MSH functions in 
detoxification of maleylpyruvate as a cofactor for maleylpyruvate isomerase (MLPI) in C. glutamicum. 
Arsenate reductases CgArsC1 and CgArsC2 conjugate MSH and arsenate As(V) to form As(V)-SM that is 
reduced to As(III) by Mrx1. In M. tuberculosis, MSH is important under infection conditions and for growth 
and survival. Under conditions of NaOCl stress, proteins are oxidized to mixed disulfides with MSH, termed 
as S-mycothiolations which is reversed by mycoredoxins. The figure is adapted from (97). 

MSH is also a cofactor for MSH-dependent enzymes that are involved in various 

detoxification pathways (97). MSH forms conjugates with xenobiotics and antibiotics either 

spontaneously or by DinB family MSH-S-transferases Mst (126). MS-conjugates are further 

cleaved by the MSH S-conjugate amidase Mca to GlcN-Ins and mercapturic acids (AcCySR). 

GlcN-Ins is used to regenerate MSH. Mercapturic acids are exported from the cell (126). The 

alcohol dehydrogenase MscR (MSNO reductase/formaldehyde dehydrogenase) is another MSH-

dependent enzyme required for detoxification of formaldehyde and S-nitrosyl-mycothiol (MSNO) 
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(124). Formaldehyde reacts with MSH generating MS-CH2OH. MscR is able to convert MS-

CH2OH to formate and MSNO to MSH sulfinamide (MSONH2). In C. glutamicum, MSH functions 

in degradation of maleylpyruvate and acts as a cofactor for maleylyruvate isomerase in the 

isomerization of maleylpyruvate to fumaryl pyruvate (44). In addition, MSH contributes to the 

metal ion resistance. The detoxification of arsenate As-(V) to arsenite As(III) depends on the 

MSH-dependent arsenate reductases ArsC1/C2. These enzymes catalyze the conjugation of 

MSH and arsenate As(V) to form As(V)-SM that is reduced to As(III) by Mrx1.  

MSH functions also in post-translational thiol-modification of proteins by formation of MSH 

mixed disulfides, termed as protein S-mycothiolation (Fig. 7) (71,97). In C. glutamicum, 25 S-

mycothiolated proteins were previously identified (27). These include conserved targets for S-

thiolation across different Gram-positive bacteria, such as the thiol-peroxidase Tpx, the inosine 

monophosphate (IMP) dehydrogenase GuaB and ribosomal proteins. Tpx was S-mycothiolated 

at its active and resolving Cys residues (Cys60 and Cys94) in vivo under NaOCl stress (27). S-

mycothiolation of Tpx inhibits the peroxidase activity, which was restored after its reduction by the 

Mrx1/MSH/Mtr pathway. Thus S-mycothiolation controls Tpx activity and protects the peroxidatic 

Cys against overoxidation (97). The putative MSH peroxidase Mpx and methionine sulfoxide 

reduction MsrA form intramolecular disulfides and S-mycothiolations under H2O2 treatment in vitro 

and require both the Trx and Mrx1 pathways for regeneration (151,158).  

In M. smegmatis, protein S-mycothiolation was more abundant with 58 identifed proteins 

that participate in many different metabolic pathways (70). In the pathogen C. diphtheriae, 26 S-

mycothiolated proteins were identified (71). The glyceraldehyde dehydrogenase GapDH was 

discovered as the main target for S-mycothiolation in. GapDH was S-mycothiolated at the active 

site Cys153 under hypochlorite stress in vivo. Treatment of GapDH with increasing H2O2 and 

NaOCl concentrations in the presence of MSH resulted in S-mycothiolation and reversible 

inactivation of GapDH in vitro. In the absence of MSH, high concentration of H2O2 leads to 

irreversible inactivation of the Gap activity due to overoxidation of the active site. Detailed kinetic 

assays showed that S-mycothiolation occurred faster compared to overoxidation in vitro. The S-

mycothiolated GapDH was re-activated using both, the Trx and the Mrx1 pathway in vitro, while 

the overoxidized GapDH remained inactive (71). However, de-mycothiolation of GapDH using 

Mrx1 occurred much faster compared to reduction by the Trx pathway indicating that Mrx1 is 

probably the major enzyme for de-mycothiolation in vivo (71).  

Interestingly, the comparison of the kinetics for the dose-dependent GapDH inactivation 

suggests that the C. diphtheriae GapDH is more resistant to oxidative inactivation compared to 

S. aureus GapDH. Lower concentration of H2O2 and NaOCl significantly inhibited S. aureus 

GapDH activity, but not GapDH from C. diphtheriae (71). The resistance of C. diphtheriae GapDH 
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to oxidative inactivation may be due to the highly conserved C153TTNC157 motif that was shown 

to form in part intramolecular disulfides under H2O2 stress to prevent overoxidation (71,73). In 

conclusion, the results have shown that S-mycothiolation can function in redox-regulation and 

protection of the GapDH active site against overoxidation in C. diphtheriae and can be reversed 

by both, the Mrx1 and Trx pathway in vitro.  

 

2.4. Thiol-based redox regulators as ROS and RCS defense mechanisms  

Bacteria encode various defensive mechanisms to cope with ROS and HOCl, including 

detoxification and antioxidant enzymes to destroy the reactive compound and mechanisms to 

repair the subsequent damages (41,97). These defense mechanisms are often controlled by 

redox-sensing regulators that use conserved Cys residues to sense the redox-active compounds 

(59). Post-translational thiol modifications of conserved Cys residues often lead to conformational 

changes that activate or inactive redox-sensing transcription factors. The best-studied example 

for a redox-sensitive regulator is the OxyR protein of E. coli that uses a thiol-disulfide switch model 

for redox-sensing of peroxide stress, to activate gene transcription for H2O2 detoxification and 

protein repair (115). Apart from reversible thiol-modifications, many other redox-regulatory 

mechanisms have been described, such sulfenamide formation, histidine oxidation and 

overoxidation to sulfonic acids (84). In the following sections, the current knowledge of redox-

regulatory mechanisms in S. aureus will be summarized.  

 

2.4.1. The SarA-family of virulence, redox and antibiotic resistance regulators in 

S. aureus  

S. aureus has multiple thiol-based redox sensors for oxidative stress and antibiotics resistance 

that are required for virulence and the defense against the host immune system (22). These 

include the staphylococcal accessory regulators SarA and SarZ as well as the multiple gene 

regulator MgrA (Fig. 8).  

SarA is global redox-sensing regulator of virulence gene expression in S. aureus exerting 

both positive and negative transcriptional control (24). The sarA locus positively controls genes 

encoding fibrinogen binding proteins, hemolysins, enterotoxins, TSST-1 toxin, and capsule 

biosynthesis (24). SarA negatively controls expression of proteases, proteinA, and a collagen 

binding protein (15,25). SarA also binds to several regulatory and target gene promoters (e.g., 

agr, sarS, rot, sarV, sarT, hla, fnb, spa, cna, bap, and icaRA) to modulate gene transcription, 

implicating both agr-dependent and agr-independent pathways in SarA-mediated regulation (4). 

Sequence alignment of several SarA homologs reveals that there is a unique cysteine residue in 
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SarA homologs (e.g. SarZ, MgrA). SarA contains a single Cys9 residue at the dimer interface 

required to sense oxidative stress (69). However, SarA seems to be more sensitive to thiol-

alkylation than to oxidation (22).  

 

Figure 8. Schematic overview of regulatory mechanisms involved in the response of S. aureus to oxidative 
stress affecting whole cell physiology. This figure is from reference (59). 

MgrA and SarZ are paralogs that belong to the MarR/OhrR family in S. aureus (22). 

Transcriptional profiling has revealed that MgrA regulates more than 300 genes including those 

encoding a variety of virulence factors, biofilm formation, cell wall biosynthesis, and genes 

involved in autolysis, antibiotic resistance as well as other global regulatory genes (22,100). MgrA 

controls resistance mechanisms to a broad spectrum of antibiotics, like fluoroquinolones, 

vancomycin, tetracycline, and penicillin by regulating transcription of several multidrug efflux 

pumps (e.g. NorA, NorB, NorC, and Tet38) (59). In addition, MgrA is required for virulence in 

murine abscess, septic arthritis and sepsis models (59).  

The dimeric structure of MgrA contains a helix-turn-helix DNA binding domain and a 

dimerization domain in each subunit that are typical for MarR family regulators (21). MgrA has a 

single conserved Cys12 in the dimerization domain that is accessible to oxidizing agents and uses 

a thiol-based oxidation-sensing mechanism to control virulence and antibiotic resistance (21). 
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Thiol-oxidation by different peroxides (CHP, H2O2) leads to dissociation of MgrA from the operator 

DNA in vitro and derepression of antibiotic resistance genes in S. aureus in vivo (21,23).  

S. aureus SarZ is a close homolog of MgrA and controls a variety of genes involved in 

virulence, peroxide and antibiotic resistance (23). Interestingly, SarZ is transcriptionally activated 

by MgrA (4) and may also control the metabolic shift to anaerobic growth conditions (23). SarZ 

regulates transcription of the ohr gene encoding an H2O2-inducible OhrA-like peroxiredoxin. The 

conserved Cys13 of SarZ is the redox-sensing Cys which is oxidized by peroxides to form the 

sulfenic acid that still retains DNA-binding activity. Further oxidation to the mixed disulfide with a 

synthetic benzene thiol leads to repressor inactivation resulting in derepression of transcription of 

the target genes (59,135). In addition, DNA-binding activity of SarZ and MgrA can be reversibly 

regulated by cysteine phosphorylation via the threonine kinase/phosphatase. The threonine 

kinase was required for full virulence and resistance to the antibiotic vancomycin by controlling 

Cys-phosphorylation of MgrA, SarZ and SarA (155). Our recent study showed that Cys12 of MgrA 

and Cys13 of SarZ have increased oxidation levels under NaOCl stress (73), indicating that both 

MgrA and SarZ could be redox controlled by S-bacillithiolation analogous to OhrR of B. subtilis 

(88).  

In addition to these redox sensors, S. aureus has several antioxidant enzymes to cope 

with oxidative stress. These ROS detoxification systems include superoxide dismutases (SodA 

and SodM), the catalase KatA as well as the peroxiredoxins AhpC and Tpx which confer 

protection under infection conditions (Fig. 8) (13, 23,59,180). The superoxide dismutases SodA 

and SodM are Mn-dependent metalloenzymes that prevent the accumulation of O2Åī by converting 

it to H2O2. Catalases and peroxidases are involved in H2O2 detoxification (56,59). Transcription of 

sodA and sodM is regulated by the SarA transcription factor. SodA is the major superoxide 

dismutase presents in all staphylococci whereas SodM is unique to S. aureus (59,168). SodA and 

SodM both contribute to virulence of S. aureus in a mouse abscess model (56,80). In addition, 

SodM is important for resistance of S. aureus to the immune effector Calprotectin which 

comprises 40ï60% of the cytoplasmic proteins in neutrophils (46,56). Transcription of sodM is 

induced during long-term persistence of S. aureus in the airways of cystic fibrosis patients. This 

points to an important role of SodM under chronic S. aureus infections to protect the bacteria 

against neutrophil attack (160). The catalase KatA plays a major role in S. aureus resistance to 

high concentrations of H2O2 while AhpC confers resistance to lower levels of ROS (31,59). KatA 

and AhpC are regulated by the PerR repressor and play important roles in bacterial survival and 

persistence. The ahpC katA double mutant showed a reduced growth rate due to accumulation 

of H2O2 and probably HOÅ that is generated in the Fenton reaction (31).  
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2.4.2. QsrR as MarR/DUF24-family thiol-based redox sensor of quinones  

S. aureus encodes a specific MarR/DUF24-family redox sensor for quinones, termed as QsrR 

(77). QsrR contains a conserved N-terminal Cys5 and two C-terminal Cys30 and Cys33 residues. 

QsrR shares 38% sequence identity with the 2-Cys-type YodB repressor of B. subtilis. Moreover, 

OsrR controls similar genes involved in quinone detoxification in S. aureus (26). The qsrR mutant 

was highly resistant to benzoquinone, indicating that QsrR is involved in quinone detoxification. 

The transcriptomic and qRT-PCR analysis identified QsrR regulon members to be up-regulated 

in the wild type during benzoquinone stress and derepressed in untreated cells of the qsrR 

mutant. The QsrR regulon includes genes encoding for FMN-dependent quinone reductases, 

nitroreductases, glyoxalases/dioxygenases, and riboflavin biosynthesis genes (77). In S. aureus, 

the QsrR regulon has a crucial role in virulence regulation since the qsrR mutant was much more 

resistant to killing by macrophages in a phagocytosis assay compared to the wild type. The QsrR 

regulator is postulated to sense quinones by thiol-S-alkylation at the conserved Cys5. The QsrR 

dimer has winged helix-turn-helix (wHTH) motifs, which bind to the major and minor grooves of 

the DNA double helix (Fig. 9).  

 

Figure 9. Crystal structure of the QsrR-DNA and QsrR-menadione complexes. One subunit of the 
QsrR dimer is colored in rainbow and the other subunit is colored in gray and the C5-menadione is colored 
in orange. (A) Structure of the QsrRïDNA complex depicting interactions between QsrR and the 
palindromic sequence. (B) Crystal structure of the QsrRïmenadione complex. (C) Hydrogen bonds 
between menadione and QsrR. Distances of putative hydrogen bonds are labeled in angstrom units. The 
figure is adapted from (77). 

The menadione-bound QsrR structure was resolved for the QsrRC30, QsrRC33S mutant 

to elucidate the structural changes upon quinone binding at Cys5. Menadione binding at Cys5 

causes a shift in the distance and rotation between the Ŭ4/Ŭ4ǋ DNA recognition helices from 29.9 

Å distance with 106° rotation in reduced QsrR to 39.1 Å distance and 117° rotation in the 

menadione-bound form. These structural changes lead to the dissociation of QsrR from the 

operator DNA (77). The YodB repressor resembles a typical 2-Cys-type regulator and senses 
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diamide and quinones by intermolecular disulfide bond formation. Thus, redox-sensing of QsrR 

under diamide stress in S. aureus could also involve disulfide formation (77).  

 

2.4.3. The Rrf2-family redox sensors CymR, SaiR and HypR in Firmicutes 

The Rrf2-family of transcription factors is widespread in bacteria and controls diverse functions, 

many of those contain FeS-clusters. Among the FeS-cluster containing Rrf2-redox sensors are 

best characterized IscR that controls FeS cluster biogenesis, NsrR as redox sensor for nitric oxide 

(NO) and RsrR (81,108,131,139). In addition, Firmicutes encode Rrf2 redox-regulators that do 

not contain FeS-clusters, such as CymR of S. aureus as central regulator of cysteine metabolism 

and SaiR of Bacillus anthracis as disulphide stress regulator (120,152,153).  

CymR is the cysteine metabolism repressor, which represses transcription of genes 

involved in the uptake of cystine or other sulfur compounds and in the cysteine biosynthesis in S. 

aureus. It also plays an important role in the virulence and oxidative stress resistance of S. aureus 

(152,153). The CymR regulon includes genes and operons encoding for L-cystine transporters 

(tcyP, tcyABC), sulphonate ABC transporter (ssu), sulphate permeases and methionine ABC-

transporters that are derepressed in the cymR mutant (153). Deletion of cymR increases 

sensitivity of S. aureus to oxidative stress, even though the genes for ROS detoxification are 

highly expressed (153). The cymR mutant shows increased transcription of multiple genes 

involved in the oxidative stress response (e.g., ahpC, ahpF, dps, sodA, sodM and perR). In 

addition, genes encoding virulence regulators (sarA, saeR and mgrA) were differentially 

expressed in cymR mutant. Furthermore, the cymR mutant was more resistant under infection 

assays with murine macrophage compared to the wild type. These results suggest that CymR 

inactivation may affect redox-mediated virulence control and adaptation of S. aureus for survival 

inside host cells (152,153).  

CymR forms a homodimer in solution, which consists of a winged helix-turn-helix domain 

and a long dimerization domain in each subunit (78,150). The oxidation-sensing mechanism of 

CymR resembles that of the one-Cys type OhrR repressor. The non-conserved Cys25 of CymR 

is exposed and located in the N-terminal wHTH DNA-binding of CymR. Under H2O2 treatment, 

Cys25 forms a sulfenic acid intermediate which is not sufficient for repressor inactivation (Fig. 

10). In the presence of Cys or CoenzymeA, mixed disulfide formation of CymR inactivates the 

protein resulting in transcriptional derepression of the CymR regulon (78). However, it remains to 

be investigated if CymR can be inactivated by S-bacillithiolation in vivo and in vitro.  
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Figure 10. Crystal structures of the reduced and oxidized CymR at 1.7 Å resolution. The Cys-25 is 

shown in the reduced and oxidized sulfenic acid form. The atoms are colored in green (carbon), dark blue 

(nitrogen), red (oxygen) and yellow (sulfur). Figure is adapted from (78). 

Among the Rrf2-family regulators, the SaiR repressor of B. anthracis (Fig. 11) was further 

shown to be involved in the disulphide stress response and virulence regulation. SaiR directly 

controls transcription of spxA2 and three unknown function genes (120). SpxA2 is a member of 

the ArsC (arsenate reductase) family that responds to NaOCl, diamide and H2O2 stress by thiol-

oxidation. Spx interacts with the a-C-terminal domain of the RNA polymerase to activate 

transcription of a large disulfide stress regulon (121,123,184). SpxA2 together with its paralogue 

SpxA1 were shown to be required for diamide resistance and the saiR mutant conferred a 

peroxide-resistant phenotype (6,120). Thus, SaiR of B. anthracis confers protection under 

oxidative stress conditions via control of SpxA2. In addition, spxA2 is highly induced in B. 

anthracis in infection assays inside macrophages, which suggests an important role in virulence 

(8). Moreover, the SpxA2 paralog SpxA1 was also shown to be involved in the peroxide stress 

response in B. anthracis (5).  

SaiR has two Cys residues in positions Cys89 and Cys96 (Fig. 11). The conserved Cys96 

was shown to be required for SaiR repressor activity in vitro and in vivo (120). Moreover, 

mutational analysis of the spxA2 promoter showed that the inverted repeat in the spxA2 promoter 

is the operator site for SaiR.  
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Figure 11. Multiple protein sequence alignments of the Rrf2 regulators HypR, SaiR, YwnA and NsrR 
(A) and structural modelling of HypR and SaiR in comparison to YwnA and NsrR (B). A) The protein 

sequence alignment was performed with ClustalW2 and is presented in Jalview. The following protein 
sequences were aligned and the % identity to HypR is given in parenthesis: HypR (SACOL0641) of S. 
aureus COL, SaiR (BAS3200) of Bacillus anthracis (20.4 %), YwnA (P71036) of Bacillus subtilis (23.48%) 
and NsrR (Q9L132) of Streptomyces coelicolor (17.86%). Intensity of the blue color gradient is based on 
50% sequence identity. The conserved Cys99 in HypR is labelled in red with an asterisk (*). B) The 
structural models of HypR and SaiR were generated using SWISS-MODEL 
(https://swissmodel.expasy.org/) (10) and visualized with PyMol using the template of Bacillus subtilis YwnA 
(1xd7) that showed 23.5 % and 25.78 % sequence identity to HypR and SaiR, respectively. For comparison, 
we show the structures of YwnA (1xd7) and NsrR (5no7) with labels for the conserved Cys97 in YwnA and 
the 3 Fe-S-cluster coordinating Cys residues (Cys93, Cys99 and Cys105) in NsrR. The FeS-cluster of NsrR 
is displayed in yellow.  

In this PhD thesis, we used an RNA seq transcriptomics approach to identify HypR as 

close SaiR homolog of the Rrf2-family, which specifically senses and responds to NaOCl stress 

in S. aureus (Fig. 11) (95). The hypR-merA operon was most strongly (180-fold) up-regulated 

under NaOCl stress in the RNAseq transcriptome. Northern blot analysis confirmed that HypR is 

a redox-sensing repressor that controls transcription of the hypR-merA operon under NaOCl and 

diamide stress. MerA encodes for the NADPH-dependent flavin disulfide reductase MerA that 

protects S. aureus against NaOCl stress and under macrophage infections in vivo.  

https://swissmodel.expasy.org/
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Figure 12. Redox-sensing mechanism of HypR in response to HOCl stress and during infection in 

S. aureus. HypR controls the NADPH-dependent thiol-disulfide oxidoreductase MerA that is required for 

growth and survival under hypochlorite stress and in macrophage infection assays in S. aureus. Cys33 of 

HypR is required for redox-sensing in vivo. Unter NaOCl stress, HypR is oxidized to Cys33-Cys99ô 

intersubunit disulfides leading to derepression of hypR-merA transcription.  

HypR belongs to the 2-Cys-type redox regulators that directly senses and responds to 

NaOCl stress via a thiol-based mechanism in S. aureus (Fig. 12). HypR has a conserved Cys 

residue (Cys99) and two non-conserved Cys residues in positions 33 and 142 (Fig. 11). 

Mutational analysis identified Cys33 and Cys99 as essential for NaOCl-sensing while Cys99 is 

also important for repressor activity of HypR in vivo. The Cys99Ala mutant was unable to bind to 

the DNA in vitro and in vivo which might be caused by structural changes in the HTH DNA binding 

motifs. Using CD spectroscopy, we confirmed that the mutation of Cys99 did not caused 

conformational changes in the secondary structure elements in HypR. HypR was shown to bind 

specifically to a highly conserved 12-3-12 bp inverted repeat sequence in its upstream promoter 

region to inhibit hypR-merA transcription. Under NaOCl stress, HypR is oxidized to Cys33-Cys99ô 

intersubunit disulfides resulting in dissociation of HypR from its operator and derepression of 

hypR-merA transcription. Of note, HypR responds only to NaOCl and diamide stress, conditions 

that cause disulfide stress in S. aureus, but not to peroxides and aldehydes. Thus, HypR can be 
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regarded as most HOCl-specific transcription factor of S. aureus that is important under infection 

conditions.  

2.4.4. The Rrf2-family transcription factors IscR and NsrR.  

Many previously described Rrf2 family regulators are known to contain FeS-clusters, such as IscR 

and NsrR (139). The IcsR repressor coordinates a [2Fe-2S] cluster. IscR is a sensor of the cellular 

FeS status and a global transcriptional regulator for FeS biogenesis (139). IscR controls the 

expression of the isc and suf operons that encode the machineries for FeS biogenesis (60,61). 

The Isc machinery is considered as housekeeping system for the maturation of a large variety of 

FeS proteins. The expression of the Suf machinery is induced under oxidative stress or iron 

starvation (60,146). IscR occurs as apo-IscR without the FeS cluster and as holo-IscR ligated to 

the FeS cluster. Under conditions unfavorable for FeS cluster formation, apo-IscR is formed 

resulting in derepression of the isc operon transcription. At the same time, apo-IscR activates the 

suf operon to further compensate for the loss of Fe-S clusters (89,181). Once sufficient FeS 

clusters are provided, holo-IscR binds to the iscR promoter leading to repression of the Isc 

pathway. In addition, the sufA operon is switched off in the presence of holo-IscR. The stability of 

the IscR [2Fe-2S] cluster is affected by ROS or under iron limitation resulting in increased 

expression of the isc and suf operons due to inactivation of IscR (108,146,181).  

IscR also controls expression of several other FeS cluster containing anaerobic respiratory 

enzymes as well as the Mn2+-containing superoxide dismutase and ribonucleotide reductase 

(61,108). IscR recognizes two distinct DNA-binding motifs in the promoter regions of its target 

genes including a type-1 and a type-2 binding site. The promoter regions with type-1 sites are 

found in the promoters of the iscR, yadR, and yhgI genes, which are repressed by holo-IscR. The 

sufA, hyaA and ydiU promoter regions contain type-2 binding sites, which are bound by apo-IcsR. 

A molecular-level understanding of the complex processes of FeS cluster biosynthesis in several 

organisms is now emerging. However, these machineries have to be studied in more detail in 

Gram-positive bacteria (108,146,181).  

Another transcriptional regulator of the Rrf2 family is NsrR which senses and responds to 

NO stress in many Gram-negative and Gram-positive bacteria (62,119,164). NsrR controls the 

expression of genes involved in NO detoxification and anaerobic respiration, such as hmp, ytfE 

and nrf in E. coli. The hmp gene encodes for a flavohemoglobin that converts NO to nitrate. The 

ytfE gene is implicated in FeS cluster repair. The nrf gene encodes a periplasmic respiratory nitrite 

reductase that catalyzes the reduction of nitrite to NO and further to NH3 (34,81,86,108,131,165). 

NsrR also regulates genes important for diverse cellular processes, including motility, surface 

attachment, biofilm development, virulence, and symbiosis (81,108,131).  
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NsrR contains three conserved Cys residues that act as ligands for a [2Fe-2S] or [4Fe-4S] cluster 

(108). NsrR from Streptomyces venezuelae and Neisseria gonorrhoeae were shown to contain a 

[2Fe-2S] cluster whereas NsrR from S. coelicolor and B. subtilis accommodate a [4Fe-4S] cluster 

(76,164,182). A possible explanation for the different types of Fe-S clusters in NsrR could be 

aerobic or anaerobic purification methods or the spacing of the conserved Cys residues (108). 

The [4FeȤ4S] cluster is usually O2 labile and rapidly converted to the [2FeȤ2S] cluster under 

aerobic conditions (34).  

NsrR functions as a repressor and requires the FeS cluster for DNA-binding to its target 

promoters. The loss of the FeS cluster disrupts its DNA binding ability, resulting in derepression 

of the NsrR regulon (33,86,108,118,165,175). However, NsrR of B. subtilis can bind to the target 

DNA in its dimeric apo and holo forms (86). Recently, the crystal structure of holo-NsrR of S. 

coelicolor was reported (Fig. 13). The [4FeȤ4S] cluster is coordinated by three conserved Cys 

residues in positions 93, 99 and 105. In addition, an aspartic acid (D8) serves as fourth ligand in 

the adjacent subunit (175). DNA-binding affinity of NsrR was either reduced or abolished when 

D8 was replaced by Cys or alanine residues (175). The crystal structure analyses suggest that 

disruption of the hydrogen bonds between Asp8 and the [4Fe-4S] cluster leads to cluster 

degradation and structural changes. Since Asp8 is connected to the HTH motif and the FeS-

cluster, the Asp8 mutation causes a loss of the DNA binding ability of NsrR (175).  

 

Figure 13. Crystal structure of holo- NsrR. A) S. coelicolor NsrR is a dimer with an elongated fold of the 
dimerization domains. Each subunit contains an NȤterminal DNA binding domain (helices 1Ȥ3), a long 
dimerization helix, and a CȤterminal loop that binds the [4FeȤ4S] cluster. B) The [4FeȤ4S] cluster binding 
loop is shown in more detail. The 3 Cys residues at positions 93, 99, and 105 are shown that coordinate 
the FeS-cluster together with Asp8 in the opposing subunit (PDB: 5N07). The figure is from reference (33). 
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3. Genetically encoded redox biosensor to measure dynamic changes in 

glutathione, mycothiol and bacillithiol redox potentials in the human pathogens 

3. 1. Development of redox-sensitive GFPs (roGFP2) as dynamic biosensors to 

measure real-time changes in the GSH redox potential  

Recent advances in the design of genetically encoded redox biosensors, such as redox-sensitive 

GFP (roGFP) have facilitated the real-time imaging of the cellular redox potential of living cells 

with high sensitivity and at spatiotemporal resolution (65,109,148). The chromophore of GFP is 

formed through intramolecular cyclization of the three amino acids S65, Y66 and G67 (109). 

These amino acids undergo a post-translational cyclization reaction, followed by dehydration and 

oxidation steps, leading to the mature chromophore formation.  

Depending on the protonation state of the Y66, GFP has two different excitation maxima. 

The protonated neutral form of the chromophore shows a high excitation maximum at 395 nm 

while the de-protonated form has the highest excitation maximum at 475 nm (14,40,109). The 

proton is reversibly translocated between Y66 and E222 mediated by a structural water molecule 

and the hydroxyl group of S205. Small structural changes in the proximity of this proton lead to 

significant changes in the protonation of Y66. This causes opposing shifts in the relative intensities 

of the two excitation maxima (148). 

Many redox-sensitive GFP (roGFP) derivatives with different midpoint potentials were 

constructed during the last years (38,67). In the roGFP biosensors, the amino acids S147 and 

Q204 were replaced by Cys residues, which are located on the surface of the ɓ-barrel (38). The 

Cys residues are in close proximity to the chromophore and form a disulfide upon oxidation. 

Oxidation of the roGFP biosensors results in small conformational changes that influence the 

excitation spectrum (Fig. 14A) (38,148). The roGFP2 biosensor has two excitation maxima at 405 

and 488 nm and the intensities of the excitation maxima depend on the redox state of the 

biosensor. In the reduced roGFP2 probe, the fluorescence intensity at the 405 nm excitation 

maximum is low while the intensity of the 488 nm maximum is very high (Fig. 14B). Oxidation of 

roGFP2 leads to an increase in the intensity at the 405 nm excitation maximum and a decrease 

at the 488 nm excitation maximum (38,109). The ratiometric changes in the intensities at both 

excitation maxima are used for calculation of the biosensor oxidation degree and the intracellular 

redox potential changes. The roGFP2 biosensor has a midpoint potential of -280 mV and is the 

most widely used biosensor that allows a ratiometric measurement of the redox changes 

independent of the biosensor concentration. roGFP2 is also brighter in fluorescence and has a 3-

fold higher dynamic range of ~9 compared to roGFP1 (109). Moreover, roGFP2 measurements 

are not pH-sensitive making the biosensor well suited to study redox changes of intracellular 

pathogens that replicate inside the acidic phagosome. 
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Figure 14. Redox-sensitive GFP2 (roGFP2) contains two Cys residues in the ß-barrel structure that form a 
disulfide upon oxidation (A) resulting in a ratiometric change of the excitation maxima at 405 nm and 488nm 
(B) allowing the ratiometric measurements. The figure is adapted from (11,67). 

 

3.2. Monitoring intrabacterial changes in the GSH, BSH and MSH redox potentials 

in Gram-negative and Gram-positive bacteria 

3.2.1. Application of Grx1-roGFP2 biosensors in eukaryotic organisms  

The roGFP2 biosensor was shown to equilibrate with the glutathione redox couple GSH/GSSG 

in eukaryotic cells, which depends on the level of endogenous glutaredoxins (Grx) (109). 

However, the reaction of endogenous Grx with roGFPs is very slow, to allow the detection of rapid 

cellular redox events under oxidative stress. In addition, availability of glutaredoxins varies in 

different tissues, cells and cellular compartments which can influence the kinetic properties of 

roGFP, making observations much less comparable and reliable (109). Moreover, in some 

measurements the endogenous signals and redox pairs of roGFP biosensors were unknown and 

the specificity of roGFP2 biosensors was questioned (116). Thus, unfused roGFP2 had some 

limitations for measurements of the GSH redox potential in eukaryotic cells.  

To overcome these limitations, roGFP was fused to human Grx1 to construct a coupled 

Grx1-roGFP2 biosensor for dynamic and specific measurements of the GSH redox potential 

changes at high sensitivity (65,109). The Grx1-roGFP2 fusion facilitates rapid and specific 

equilibration with the GSH/GSSG redox couple and does not react with other redox pairs of the 

cell (65,109,148). Of note, the steady-state EGSH from cells expressing Grx1-roGFP2 and roGFP2 

does not differ significantly, indicating that the redox potential was not affected by the fused 

glutaredoxin (11). Today, Grx1-roGFP2 is the most widely used biosensor for in vivo imaging of 

GSH redox potential changes in eukaryotic cells and different compartments (148). The Grx1-

roGFP2 biosensor detects nanomolar concentrations of GSSG against a backdrop of millimolar 
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GSH within seconds (11,65,109). The response properties of Grx1-roGFP2 are based on the well-

established monothiol mechanism of glutaredoxins. Under oxidative stress conditions, GSSG 

specifically reacts with the nucleophilic Cys23 of Grx1 to form a Grx1-SSG intermediate, which is 

transferred to roGFP2 and subsequently rearranges to the roGFP2 disulfide (109).  

Recently, roGFP-based biosensors were applied in pathogenic organisms to study EGSH 

changes under infection conditions and antibiotic treatment, including the malaria parasite 

Plasmodium falciparum (82) and the Gram-negative bacterium Salmonella Typhimurium 

(170,171). In malaria parasites, several antimalarial drugs affected the cellular redox metabolism 

and showed differential responses of the Grx-roGFP2 biosensor under short- and long-term 

measurements in vivo. The Grx1-roGFP2 biosensor responds rapidly and strongly to methylene 

blue or pyocyanin in P. falciparum, that are used as antimalarial drugs (82). However, these 

antimalarial drugs showed direct interactions with the Grx1-roGFP2 probe. In contrast, the 

antimalarial compounds quinolone, chloroquine, amodiaquine, quinine, mefloquine and 

artemisinin caused strong effects on EGSH after longer incubation times that were not caused by 

their direct interaction with the probe (82).  

 

Figure 15. The roGFP2 biosensor was fused to glutaredoxin (Grx), mycoredoxin (Mrx) and bacilliredoxin 

(Brx) resulting in rapid equilibration with intracellular GSH/GSSG, MSH/MSSM and BSH/BSSB redox 

couples, respectively. This figure is adapted from (166). 

 

3.2.2. Application of the Mrx1-roGFP2 biosensor in Mycobacterium tuberculosis  

The roGFP2 and Grx1-roGFP2 biosensors were used to detect EGSH changes in many eukaryotic 

organisms with high sensitivity and at spatiotemporal resolution (Fig. 15). In the intracellular 
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pathogen Mycobacterium tuberculosis (Mtb), an analogous Mrx1-roGFP2 biosensor was 

developed for dynamic measurements of the MSH redox potential (EMSH) in drug-resistant and 

drug-sensitive Mtb isolates and inside the acidic phagosome of macrophages during infections 

(Fig. 16) (9). The increasing prevalence of persistent and chronic relapsing Mtb infections as well 

as multiple and extreme drug-resistant (MDR/XDR) Mtb isolates are a major health burden. Thus, 

the development of new drugs against severe tuberculosis infections is an urgent need. The Mrx1-

roGFP2 biosensor was successfully applied to screen for ROS-generating anti-TB drugs and 

combination therapies (e.g. augmentin or isoniazid combinations) that affected EMSH to study drug 

actions linked to the EMSH to combat life-threatening TB infections (9,112,129,167). It was 

revealed that the EMSH inside infected macrophages is heterogeneous with sub-populations that 

have reduced, oxidized and basal levels of EMSH. This redox heterogeneity depends on sub-

vacuolar compartments inside macrophages and the cytoplasmic acidification that requires 

WhiB3 as central redox regulator (9,106). The biosensor has further contributed to elucidate novel 

ROS defense mechanism in Mtb, such as the radical scavenging membrane MRC complex and 

the role of host GSH to regulate the MSH redox balance of Mtb inside macrophages (16,122). 

These results using the Mrx1-roGFP2 biosensor have advanced the understanding how this major 

pathogen copes with anti-TB drug and persists inside macrophages. 

 

Figure 16: The role of EMSH and the WhiB3 transcription factor in M. tuberculosis persistence under 
acidic conditions during infection of macrophages as shown by the Mrx1-roGFP2 biosensor. M. 
tuberculosis is an intracellular pathogen that replicates inside the acidic phagosome of macrophages (pH 
~6.2) preventing phagosomal maturation to phagolysosomes as survival mechanism. During immune 
activation of macrophages, phagosomes are fused with lysosomes resulting in further pH decrease to pH 
4.5. The mild acidification in phagosomes causes a highly reduced EMSH inside M. tuberculosis, while strong 
acidification leads to oxidized EMSH as measured in phagolysosomes. The WhiB3 transcription factor 
senses acidic conditions in the phagosome and activates transcription of WhiB3 regulon genes, such as 
type-VII-secretion system effectors (EspA) and polyketide lipids that inhibit phagosomal maturation. WhiB3 
causes up-regulation of antioxidant systems (MSH, Trx) to restore the redox balance and to promote 
survival and persistence of M. tuberculosis inside the phagosome. The figure is adapted from (166). 
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3.2.3. Application of the Brx-roGFP2 biosensor in Staphylococcus aureus  

In this PhD thesis, we have developed a novel genetically encoded Brx-roGFP2 biosensor to 

measure BSH redox potential changes in the human pathogen S. aureus (96). The bacilliredoxin 

(Brx) was fused to roGFP2 for construction of the Brx-roGFP2 biosensor (Fig. 17). This biosensor 

is able to follow the intracellular BSH redox potential changes in S. aureus with high sensitivity 

and specificity (Fig. 18).  

 

Figure 17. Principle of Brx-roGFP2 biosensor oxidation. (A, B) The Brx-roGFP2 biosensor reacts first 
with BSSB at the active site Cys (C54) of Brx leading to Brx-SSB intermediate formation. Brx-SSB interacts 
with one of the two proximal Cys thiols on roGFP2 and converts it into S-bacillithiolated roGFP2. In the final 
step, S-bacillitholated roGFP2 rearranges to form intermolecular disulfide bridge leading to change of the 
405/488 nm excitation ratio. 

Brx-roGFP2 is highly specific and responds to physiological concentrations of BSSB in vitro. The 

response of the Brx-roGFP2 biosensor to BSSB required the Brx active site Cys. Brx-roGFP2 was 

expressed inside S. aureus cells to study the EBSH changes during exposure of cells to H2O2, 

NaOCl, antibiotics and under infections conditions (96). A fast and strong biosensor oxidation was 

measured in S. aureus after exposure to low doses of 100µM NaOCl. This confirms the high 

reactivity of NaOCl inside S. aureus that requires fast thiol-protection by S-bacillithiolation to avoid 

overoxidation of thiols. In contrast, exposure of S. aureus to high doses of 100mM H2O2 did not 

cause complete oxidation of the Brx-roGFP2 biosensor. This slow reaction of the biosensor to 

H2O2 stress might be caused by the high level of peroxide resistance in S. aureus (96). S. aureus 

BSH-deficient mutants expressing Brx-roGFP2 showed constitutive oxidation of the biosensor 

indicating an impaired redox balance in the absence of BSH (96).  
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Figure 18. Dynamic changes in the BSH redox potential as monitored by the novel Brx-roGFP2 
redox biosensor in S. aureus. A) Increased biosensor oxidation (OxD) was measured under NaOCl stress 
in S. aureus COL wild type by confocal microscopy. (B) The BSH redox potential is increased in S. aureus 
COL and USA300 during the growth in LB medium upon entry into the stationary phase and (C) the 
biosensor is fully oxidized in the BSH-deficient bshA mutant as measured using the microplate reader. 

Due to the controversial debate about the involvement of ROS in the killing mode of antibiotics, 

the Brx-roGFP2 biosensor response was measured after treatment with different antibiotics 

classes in S. aureus, including rifampicin, fosfomycin, ampicillin, oxacillin, vancomycin, 

aminoglycosides and fluoroquinolones. However, exposure to sub-lethal doses of antibiotics did 

not lead to changes in the BSH redox potential inside S. aureus (96). This indicates that antibiotics 

do not cause oxidative stress in S. aureus. However, the Mrx1-roGFP2 biosensor measurements 

revealed an impact of ROS-generation by antibiotics under infection conditions inside the acidic 

phagosome. Moreover, a link between killing by isoniazid and augmentin and the EMSH has been 

revealed in Mtb (129,166,167). Thus, future studies are required also in S. aureus to study the 

susceptibility to antibiotics and its effect on EBSH during internalization in macrophages. Moreover, 

the Brx-roGFP2 biosensor can be further applied in drug-research to screen for novel ROS-

generating antibiotics or combination therapies and their impact on EBSH changes in S. aureus in 

shake-flasks and after internalization (96). Our current studies are further directed to apply this 

Brx-roGFP2 biosensor for screening of the BSH redox potential across S. aureus isolates of 

different clonal complexes to reveal the differences in pathogen fitness and in their ROS 

detoxification capacities as defense mechanisms against the host immune system.  
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4. Conclusion and future perspectives 

In this PhD thesis, we have studied the physiological responses of the major human pathogen S. 

aureus under HOCl stress and identified novel thiol-based redox switches that were characterized 

in detail and are important for virulence. These novel thiol-switches include the glyceraldehyde 

dehydrogenases GapDH and AldA as main metabolic enzymes that are protected and redox-

regulated by protein S-bacillithiolation in S. aureus. We have further identified the Rrf2-family 

regulator HypR as novel thiol-based redox-sensing regulator which senses and responds directly 

to HOCl stress in S. aureus. HypR is oxidized to a Cys33-Cys99ô intersubunit disulfide resulting 

in derepression of hypR-merA operon transcription. HypR negatively controls the NADPH-

dependent flavin enzyme MerA which provides protection under HOCl stress and macrophage 

infection conditions. Finally, we developed a novel redox Brx-roGFP2 biosensor, which catalyzes 

specific equilibration between the BSH and roGFP2 redox couples to monitor dynamic changes 

in the BSH redox potential in S. aureus under oxidative stress and antibiotics treatments. The 

overall results have been published in 6 original publications and 3 review articles that are 

included in the following chapters.  

In conclusion, in this work important novel thiol-switches were characterized that 

contribute to a better understanding of the defense mechanisms of S. aureus against the host 

immune system. Since BSH, AldA and MerA are required for the survival under HOCl stress, 

these could be candidate drug targets for the development of new drugs to combat MRSA 

infections.  
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Redox regulation by reversible
protein S-thiolation in bacteria
Vu Van Loi, Martina Rossius and Haike Antelmann*

Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany

Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced

state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH)

present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including

Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while

Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins

are post-translationally modified to S-glutathionylated proteins under conditions of

oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism

in eukaryotes and protects active site cysteine residues against overoxidation to

sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative

bacteria. Advances in mass spectrometry have further facilitated the identification

of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein

disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively.

In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing

OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium

glutamicum, protein S-mycothiolation was more widespread and affected the functions

of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel

bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to

glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review

the current knowledge about the functions of the bacterial thiol-redox buffers glutathione,

bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol

protection in model and pathogenic bacteria.

Keywords: oxidative stress, protein S-thiolation, thiol-redox buffer, glutathione, bacillithiol, mycothiol

Introduction

The cytoplasm is a reducing environment and protein thiols are maintained in their reduced state
by low molecular weight (LMW) thiol-redox buffers and enzymatic thiol-disulfide oxidoreductases,
including the thioredoxin and glutaredoxin systems (Fahey, 2013; Van Laer et al., 2013). In their
natural environment or during infections, bacteria encounter different reactive species, such as
reactive oxygen, nitrogen, chlorine, and electrophilic species (ROS, RNS, RCS, RES) (Antelmann
and Helmann, 2011; Gray et al., 2013a). These reactive species cause different post-translational
thiol-modifications in proteins and activate or inactivate specific transcription factors resulting
in expression of detoxification pathways. LMW thiol-redox buffers function in detoxification of
different reactive species and are often present in millimolar concentrations in the cytoplasm.

The best studied LMW thiol is glutathione (GSH) present in eukaryotes and Gram-negative bac-
teria (Fahey, 2013). Most Gram-positive bacteria do not produce GSH. Instead, the Actinomycetes
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utilize mycothiol (MSH) as thiol-redox buffer (Jothivasan and
Hamilton, 2008; Newton et al., 2008). In Bacillus megaterium,
Bacillus cereus, and Staphylococcus aureus, coenzyme A (CoASH)
serves as an abundant LMW thiol (Newton et al., 1996). Many
Firmicutes bacteria, including Bacillus and Staphylococcus species
utilize bacillithiol (BSH) and cysteine as major thiol-redox buffers
(Newton et al., 2009). Alternative LMW thiols include also the
betaine-histidine derivative ergothioneine that compensates for
the absence of MSH in Mycobacterium smegmatis mshA mutants
(Ta et al., 2011). Cysteine is used for alternative S-thiolations in
the absence of BSH and MSH in Bacillus subtilis and Corynebac-
terium glutamicum since S-cysteinylated proteins were identified
in bsh and msh mutants (Chi et al., 2011, 2014).

The protozoa Leishmania and Trypanosoma produce
the glutathione-derivative trypanothione (bis-glutathionyl-
spermidine or TSH2). In Escherichia coli, glutathionylspermidine
(GSP) was detected during the stationary phase (Fahey, 2013).
Some microaerophilic γ-proteobacteria utilize glutathione amide
(GASH) which forms a persulfide (GASSH) during photoau-
totrophic growth on high concentrations of sulfide (Bartsch
et al., 1996).

Under conditions of oxidative stress, LMW thiols form
mixed disulfides with protein thiols which is termed pro-
tein S-thiolation. In eukaryotes, protein S-glutathionylation has
emerged as major redox-regulatory mechanism that controls
the activity of redox sensing transcription factors and protects
active site Cys residues against irreversible oxidation to sulfonic
acids (Dalle-Donne et al., 2009). S-glutathionylation controls
numerous physiological processes, such as cellular growth and
differentiation, cell cycle progression, transcriptional activity,
cytoskeletal function, cellular metabolism, and apoptosis (Klatt
and Lamas, 2000; Ghezzi, 2005, 2013; Dalle-Donne et al., 2007,
2009). S-glutathionylation must meet several criteria to function
as redox-control mechanism: (1) reversibility, (2) specificity to
active site Cys, (3) change in protein function/activity, and (4)
induction by ROS or RNS. S-glutathionylation serves as a form
of GSH storage to prevent the export of GSSG under oxida-
tive stress (Dalle-Donne et al., 2009). Many eukaryotic proteins,
like α-ketoglutarate dehydrogenase, glyceraldehyde 3-phosphate
dehydrogenase, ornithine δ-aminotransferase, pyruvate kinase,
heat specific chaperones, and regulatory proteins (c-Jun, NF-
κB) are reversibly inactivated or activated by S-glutathionylation
(Dalle-Donne et al., 2009; Kehr et al., 2011). However, the regula-
tory role of protein S-thiolation for bacterial physiology has only
recently been investigated. Here we review the current knowledge
about the functions of the bacterial redox buffers GSH, MSH, and
BSH and their roles for protein S-thiolations in GSH-, MSH- and
BSH-producing bacteria.

Sources of Reactive Oxygen, Electrophile,
and Chlorine Species (ROS, RES, RCS)

Bacteria encounter ROS during respiration or by the oxidative
burst of activated neutrophils during infections (Imlay, 2003,
2008, 2013). The incomplete stepwise reduction of molecular
oxygen (O2) leads to generation of superoxide anions (O2•

−),

hydrogen peroxide (H2O2) and the highly reactive hydroxyl
radical (OH•) (Figure 1). Superoxide anion and H2O2 are also
produced by autoxidation of flavoenzymes (Mishra and Imlay,
2012; Imlay, 2013). Superoxide dismutases (SOD) convert O2•

−

to H2O2. Several peroxide scavenging enzymes, such as catalases
and peroxidases catalyze the detoxification of H2O2. H2O2 reacts
with ferrous iron (Fe2+) in the Fenton reaction generating the
highly toxic hydroxyl radical (OH•) which can damage all cellular
macromolecules (Imlay, 2003, 2008). H2O2 destroys the Fe-S-
cluster of dehydratases and inactivates single ferrous iron-centers
of redox enzymes (Mishra and Imlay, 2012; Imlay, 2013).

During the oxidative burst, activated neutrophils release O2•
−,

H2O2, nitric oxide (NO), and hypochlorous acid (HOCl) with
the aim to kill invading pathogenic bacteria (Forman and Torres,
2001; Winterbourn and Kettle, 2013). The neutrophil NADPH
oxidase (NOX) shuttles electrons from NADPH to O2 in the
phagosomal lumen and generates around 20 µM superoxide
anion. Myeloperoxidase (MPO) is released upon degranulation
in millimolar concentrations. MPO catalyzes the dismutation of
O2•

− to H2O2 and subsequent conversion of H2O2 and chlo-
ride to HOCl (Figure 1) (Winterbourn and Kettle, 2013). NO is
generated in neutrophils by the inducible nitric oxide synthase
(iNOS) catalyzing the oxidation of L-arginine to L-citrulline. The
reaction of NO with O2•

− leads to formation of peroxynitrite
(ONOO−). Thus, neutrophils release ROS, RNS, and the highly
reactive HOCl as antimicrobial defense mechanism.

Reactive electrophilic species (RES) have electron-deficient
centers and can react with the nucleophilic Cys thiol group
via the thiol-S-alkylation chemistry (Figure 2) (Antelmann and
Helmann, 2011). RES include quinones, aldehydes, epoxides,
diamide and α,β-unsaturated dicarbonyl compounds. RES are
often generated as secondary reactive intermediates from oxi-
dation products of amino acids, lipids or carbohydrates (Mar-
nett et al., 2003; Rudolph and Freeman, 2009). Quinones
are lipid-electron carriers of the respiratory chain, including

FIGURE 1 | Generation of Reactive Oxygen Species (ROS) during

respiration and HOCl production by activated neutrophils during

infections. ROS are generated in bacteria during respiration by stepwise

one-electron transfer to O2 producing superoxide anion, hydrogen peroxide

and hydroxyl radical. The highly reactive hydroxyl radical is also produced from

H2O2 and Fe2+ in the Fenton reaction. During infections, activated neutrophils

generate superoxide anion by the NADPH oxidase (NOX) that is converted to

H2O2 by the superoxide dismutase (SOD). Myeloperoxidase (MPO) is released

upon degranulocytosis producing the highly reactive hypochlorous acids

(HOCl) from H2O2 and Cl− as potent killing agent for pathogenic bacteria.
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FIGURE 2 | Reactive Electrophilic Species (RES) with partial positive

charges (δ+) (A) and the reaction of quinones with thiols via the

S-alkylation and oxidation chemistry (B). (A) In quinones and aldehydes

the electrons are drawn to carbonyl oxygen leaving the partial positive

charges at neighboring carbon atoms that become electrophilic. Diamide is

an electrophilic azocompound that causes disulfide stress. (B) Quinones can

react as electrophiles with the nucleophilic thiol group of Cys residues via

thiol-S-alkylation leading to irreversible thiol-S-adduct formation. In the

oxidative mode, quinones are incompletely reduced to semiquinone radicals

that generate superoxide anions and can oxidize protein thiols to disulfides.

ubiquinone and menaquinone (Farrand and Taber, 1974). Soil
bacteria encounter quinones as redox active components of
humic substances and in dissolved organic matter (Ratasuk and
Nanny, 2007). The toxic dicarbonyl compound methylglyoxal
is produced in all organisms from triose-phosphate intermedi-
ates as byproduct of the glycolysis and can be generated also
from amino acids metabolism (Ferguson et al., 1998; Booth et al.,
2003; Kalapos, 2008). Bacteria also have to cope with the carbonyl
compound formaldehyde. Formaldehyde is an intermediate in
the C1-metabolism of methanotrophic and methylotrophic bac-
teria and is ubiquitously distributed in the environment. Thus,
bacteria have evolved conserved pathways for detoxification of
formaldehyde and methylglyoxal that involve LMW thiols.

In eukaryotic cells, RES are implicated in many pathophysio-
logical processes and modulate signaling pathways (Mackay and
Knock, 2015). Eukaryotic cells produce lipid-derived RES, such
as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE)
(Rudolph and Freeman, 2009). HNE is generated from polyun-
saturated fatty acids in biological membranes by a radical-
based peroxidation chain reaction (Jacobs and Marnett, 2010).
Furthermore, 15-deoxy-112,14-prostaglandin J2 (15d-PGJ2) is
generated from arachidonic acid during inflammation and
2-trans-hexadecenal (2-HD) is produced during sphingolipid
metabolism which promotes apoptosis (Wang et al., 2014). Bac-
terial membrane lipids also contain unsaturated fatty acids which
are synthesized at higher levels during adaptation to cold shock
to maintain the fluidity of the membrane (De Mendoza, 2014).
These unsaturated fatty acids in bacterial membrane lipids could
be the target for ROS leading to lipid peroxidation products in
bacteria. Lipid hydroperoxides, such as linoleic acid hydroperox-
ide are sensed by the redox-sensing MarR-type repressor OhrR.

OhrR regulates the peroxiredoxin OhrA that functions in detoxi-
fication of organic hydroperoxides (Atichartpongkul et al., 2001;
Fuangthong et al., 2001). However, the fatty acid-derived perox-
idation product which is sensed by OhrR in vivo remains to be
identified.

Post-Translational Thiol-Modifications of
Proteins by ROS, RES, and RCS in Bacteria

ROS, RES, and RCS can damage all cellular macromolecules
including proteins, nucleic acids or carbohydrates (Imlay, 2008,
2013; Jacobs and Marnett, 2010; Gray et al., 2013a). However,
in eukaryotes low levels of ROS and RES act also as second
messengers to modulate signal transduction pathways (Rudolph
and Freeman, 2009; Mackay and Knock, 2015). Bacterial tran-
scription factors often use redox-sensitive Cys residues for sens-
ing of ROS, RES, and RCS to control the expression of specific
detoxification pathways (Antelmann and Helmann, 2011; Gray
et al., 2013a). The thiol group of cysteine is subject to reversible
and irreversible post-translational thiol-modifications that lead
to inactivation or activation of the transcription factor. Protein
thiols can be reversibly oxidized to protein disulfides and irre-
versibly overoxidized to sulfinic or sulfonic acids by ROS (Antel-
mann and Helmann, 2011). ROS lead first to oxidation of protein
thiols to Cys sulfenic acids as unstable intermediates (R-SOH)
(Figure 3). Cys sulfenic acid rapidly reacts further with other
thiols to form intramolecular and intermolecular protein disul-
fides or mixed disulfides with LMW thiols, collectively termed
as S-thiolations (e.g., S-cysteinylations, S-glutathionylations, S-
mycothiolations, and S-bacillithiolations). Protein S-thiolations
protect the thiol groups against the irreversible overoxidation to
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FIGURE 3 | Thiol-chemistry of ROS and HOCl with thiol-containing

proteins. The Cys thiol group is oxidized by ROS to an unstable Cys sulfenic

acid intermediate (Cys-SOH) that reacts further with proximal thiols to form

intramolecular and intermolecular disulfides or mixed disulfides with LMW

thiols (RSH), such as glutathione, bacillithiol or cysteine, termed as

S-thiolations. HOCl leads to chlorination of protein thiols to sulfenylchloride

intermediates (Cys-SCl) that react further to form disulfides. In the absence of

proximal thiols, the chlorinated Cys is overoxidized to Cys sulfinic and sulfonic

acids. Disulfides function as redox switches to control protein activity and

protect thiol groups against overoxidation to Cys sulfinic and sulfonic acids.

Cys sulfinic (R-SO2H) and sulfonic acid (R-SO3H). This is par-
ticularly important for essential and abundant proteins whose
overoxidation would lead to loss of cell viability and requires
new protein synthesis to replace inactivated proteins. However,
eukaryotic sulfiredoxins are able to reduce sulfinic acids in 2-
Cys peroxiredoxins, but sulfiredoxins are not present in bacteria
(Lowther and Haynes, 2011).

Hypochloric acid (HOCl) is a strong two-electron oxidant and

chlorinating agent with a high redox potential [E0′

(HOCl/Cl−) =

1.28 mV] (Davies, 2011). HOCl targets most strongly the sulfur-
containing amino acids cysteine and methionine with the
second-order rate constant of k = 3 × 107 M−1 s−1 (Hawkins
et al., 2003). HOCl first chlorinates the thiol group to form the
unstable sulfenylchloride intermediate that reacts further with
another thiol group to disulfides. In the absence of another thiol,
the chlorinated thiol group is overoxidized very rapidly to sulfinic
or sulfonic acids (Hawkins et al., 2003) (Figure 3). We confirmed
that strong disulfide stress responses are caused by HOCl in dif-
ferent Gram-positive bacteria in vivo and detected mixed protein
disulfides with Cys, BSH, and MSH as major oxidation products
(Chi et al., 2011, 2013, 2014).

RNS cause reversible thiol-modifications: nitric oxide (NO)
leads to S-nitrosothiol formation (RS-NO) and peroxinitrite
(ONOO−) causes S-nitrothiol (RS-NO2) formation. Alterna-
tively, S-nitrosothiol (e.g., GSNO or MSNO) can be formed
by direct reaction of NO with LMW thiols (Antelmann and
Helmann, 2011).

RES can react via the thiol-S-alkylation chemistry with Cys
thiols. However, quinones have two modes of action, an oxi-
dation and an alkylation mode. In the oxidation mode, the

one-electron reduction of quinones generates the highly reactive
semiquinone radical leading to generation of superoxide anions
(Figure 2). The electrophilic reaction of quinones involves the
1,4-reductive Michael-type addition of thiols to quinones (Mar-
nett et al., 2003). Quinones lead to irreversible thiol-S-alkylation
and protein aggregation to deplete protein thiols in the pro-
teome in vivo (Liebeke et al., 2008). However, non-toxic quinone
concentrations resulted in reversible thiol-disulfide switches in
RES-sensing redox regulators (e.g., YodB, CatR, QsrR, NemR) to
activate the expression of specific quinone detoxification path-
ways (Antelmann and Helmann, 2011; Gray et al., 2013a; Lee
et al., 2013). Methylglyoxal reacts with nucleophilic centers of the
DNA and with the amino acids arginine, lysine and cysteine caus-
ing advanced glycation end-products (Bourajjaj et al., 2003). The
lipid-derived electrophiles MDA and HNE were shown to alky-
late DNA bases and protein thiols leading to DNA and membrane
damages in eukaryotes (Rudolph and Freeman, 2009).

Biosynthesis and Functions of Major LMW
Thiol-Redox Buffers in Bacteria

Biosynthesis, Uptake, and Functions of
Glutathione in Bacteria
The tripeptide glutathione (γ-glutamylcysteinyl-glycine; GSH) is
utilized as major LMW thiol-redox buffer in Gram-negative bac-
teria and in some Gram-positive Firmicutes bacteria, including
Streptococcus agalactiae, Listeria monocytogenes, and Clostridium
acetobutylicum (Figure 4). In E. coli, GSH biosynthesis occurs
in two steps: The γ-glutamate cysteine ligase (GshA) catalyzes
the formation of γ-glutamylcysteine (γ-Glu-Cys) from glutamate
and cysteine. In the second step, ligation of glycine to γ-Glu-
Cys is catalyzed by glutathione synthase (GshB) (Meister, 1995;
Anderson, 1998). In S. agalactiae and L. monocytogenes, a bifunc-
tional fusion protein GshF is present that exhibits both GshA
and GshB activities (Gopal et al., 2005; Janowiak and Griffith,
2005). Interestingly, Lactococcus lactis, Streptococcus pneumoniae
and Haemophilus influenzae do not synthesize GSH, but encode
GSH-uptake mechanisms. In S. pneumoniae, the GSH-uptake
from the host is mediated by the ABC transporter binding pro-
tein GshT (Potter et al., 2012; Vergauwen et al., 2013). In addition,
the cystine importer TcyBC was shown to be primed for GSH
import by GshT. In H. influenzae, GSH import is mediated by the
ABC-transporter DppBCDF and requires the periplasmic GSH-
binding protein GbpA (Vergauwen et al., 2010). Strikingly, these
pathogens utilize host-derived GSH as protection mechanism
against the host immune defense.

GSH is present in millimolar concentrations in the cyto-
plasm of E. coli (Masip et al., 2006; Fahey, 2013). GSH main-
tains protein thiols in the reduced state and serves as a storage
form of cysteine. In contrast to cysteine, GSH is resistant to
metal-catalyzed autooxidation because of its bound Cys amino
and carboxyl groups that prevent ligation of heavy metal ions
(Fahey, 2013). During the bacterial growth and under oxida-
tive stress, GSH is oxidized to glutathione disulfide (GSSG). The
NADPH-dependent glutathione reductase (Gor) keeps GSH in
its reduced state to maintain a high GSH/GSSG ratio ranging
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FIGURE 4 | Structures of major bacterial low molecular weight

(LMW) thiols. Major LMW thiols are glutathione (GSH) in eukaryotes

and Gram-negative bacteria, mycothiol (MSH) in Actinomycetes and

bacillithiol (BSH) in Firmicutes. Coenzyme A (CoASH) also serves as a

LMW thiol-redox buffer in some bacteria, like in S. aureus and

B. anthracis.

from 30:1 to 100:1 in the cytoplasm. The standard thiol-disulfide
redox potential of the GSH redox couple was calculated as
E0′(GSSG/GSH) = −240 mV at physiological pH values (Hwang
et al., 1995; Van Laer et al., 2013).

The various detoxification functions of GSH have been exten-
sively studied in E. coli gsh mutants. In E. coli, GSH functions
in detoxification of ROS, RES, RCS, RNS, xenobiotics, antibi-
otics, toxic metals, and metalloids (Masip et al., 2006) (Table 1).
Detoxification of xenobiotics, electrophiles and antibiotics by
GSH occurs either spontaneously by S-conjugation or by the
catalytic activity of GSH-S-transferases (Fahey, 2013). The GSH-
S-conjugates are usually excreted from the cell as non-toxic
mercapturic acid derivatives. GSH was shown to function as a
cofactor in methylglyoxal detoxification in E. coli. The major
pathway for methylglyoxal detoxification in E. coli is the GSH-
dependent glyoxalase pathway. The glyoxalase-I (GloA) cata-
lyzes formation of S-lactoyl-GSH from GSH-hemithioacetal and
glyoxalase-II (GloB) converts S-lactoyl-GSH to D-lactate (Fergu-
son et al., 1998; Booth et al., 2003). In addition, glyoxalase-III
operates GSH-independently to convert methylglyoxal to lactate.
The glyoxalase-I encoding gloA gene and the nemRA operon
are redox-regulated by the NemR repressor under methylgly-
oxal, quinone and HOCl stress (Gray et al., 2013b; Lee et al.,

2013; Ozyamak et al., 2013). The glyoxalase GloA and the oxi-
doreductase NemA are important for methylglyoxal survival and
confer resistance to methylglyoxal in E. coli (Ozyamak et al.,
2013). The resistance to methylglyoxal is also linked to the acti-
vation of potassium efflux by the S-lactoyl-GSH intermediate
leading to cytoplasmic acidification (Ferguson et al., 1998; Booth
et al., 2003). The cytoplasmic acidification limits the interaction
of methylglyoxal with DNA bases. Thus, potassium efflux and
detoxification by GloA protect against methylglyoxal toxicity in
E. coli.

Interestingly, expression of the E. coli gshAB genes in
the industrial important Clostridium acetobutylicum enhances
robustness and alcohol production as a promising strategy for
engineering industrial production strains. Thus, GSH protects
also against large-scale ethanol and butanol production in C. ace-
tobutylicum during fermentation (Hou et al., 2013).

Functions of Glutathione in the Virulence of
Pathogenic Bacteria
GSH has many detoxification functions to maintain the redox
balance of the cytoplasm, but only recently the role of GSH
for the control of virulence functions has been explored in
the pathogenic bacteria S. pneumoniae, L. monocytogenes, and
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TABLE 1 | Functions of the bacterial redox buffers glutathione, bacillithiol, and mycothiol.

Redox buffer Organism Functions of thiol-redox buffers and thiol-dependent enzymes References

Glutathione Escherichia coli

Salmonella Typhimurium

GSH functions in detoxification of ROS, RES, RCS, RNS, xenobiotics, antibiotics,

toxic metals, metalloids

Gor: GSSG reductase

Gpx: GSH-dependent peroxidase

Gst: GSH S-transferases required for conjugation of alkylating agents and antibiotics

Grx: Glutaredoxins for reduction of S-glutathionylated proteins

GloA/GloB: glyoxalase-I/II for GSH-dependent conversion of methylglyoxal to lactate

Masip et al., 2006

Potter et al., 2012

Bacillithiol Bacillus subtilis

Staphylococcus aureus

BSH involved in detoxification of hypochlorite, diamide, methylglyoxal, ROS

(paraquat, H2O2), alkylating agents and fosfomycin

BSH provides a Zn buffer for labile Zn pool

YpdA: possible BSSB reductase

FosB: BSH-dependent epoxide hydrolase for fosfomycin detoxification

YfiT/BstA: DinB-family BSH S-transferases required for conjugation of alkylating

agents (monochlorobimane, 1-chloro-2,4-dinitrobenzene and cerulenin)

BrxA/BrxB: Bacilliredoxins for reduction of S-bacillithiolated proteins

GlxA/GlxB: glyoxalase-I/II for BSH-dependent conversion of methylglyoxal to lactate

Gaballa et al., 2010

Chi et al., 2011

Ma et al., 2014

Gaballa et al., 2010

Lamers et al., 2012

Roberts et al., 2013

Thompson et al., 2013, 2014

Newton et al., 2011 Perera et al.,

2014

Gaballa et al., 2014

Chandrangsu et al., 2014

Mycothiol Streptomyces coelicolor

Mycobacterium

tuberculosis

Corynebacterium

glutamicum

MSH protects against ROS, RES, NO, toxins, antibiotics (erythromycin, vancomycin,

rifampicin), heavy metals, maleylpyruvate, ethanol, gentisate, glyphosate, arsenate in

Actinomycetes

Mtr: MSSM reductase

Tpx, AhpE, Mpx: MSH-dependent peroxidases

Mst: DinB-family MSH S-transferases required for conjugation of alkylating agents

and antibiotics (monochlorobimane, DTNB, rifampicin, cerulenin)

LmbT, LmbV and LmbE: MSH S-transferases for biosynthesis of the lincosamide

antibiotic lincomycin in S. lincolnensis

Mca: S-conjugate amidase cleaves MSH-S-conjugates to mercapturic acids

Mrx1: Mycoredoxin-1 for reduction of S-mycothiolations

MscR/AdhE/FadH: MSNO reductase/ formaldehyde dehydrogenase

Cg3349: maleylpyruvate isomerase for maleylpyruvate detoxification

in C. glutamicum

ArsC1/C2: MSH-dependent arsenate reductases

Newton et al., 2008

Fahey, 2013

Liu et al., 2013

Chi et al., 2014

Hugo et al., 2014

Newton et al., 2012

Zhao et al., 2015

Newton et al., 2008, 2011

Van Laer et al., 2012

Newton et al., 2008

Lessmeier et al., 2013

Witthoff et al., 2013

Feng et al., 2006

Ordonez et al., 2009

Salmonella Typhimurium (Potter et al., 2012; Song et al., 2013;
Reniere et al., 2015) (Table 2). In S. pneumoniae, the glutathione
reductase Gor and the GSH-importer GshT were required for
oxidative stress protection and metal ion resistance. Moreover,
the gshT mutant was attenuated in colonization and invasion
in a mouse model of pneumococcal infection (Potter et al.,
2012). Thus, GSH protects against the host immune defense and
contributes to fitness of S. pneumoniae.

The intracellular pathogen L. monocytogenes is able to syn-
thesize GSH via the gshF fusion protein, but GSH can be also
imported from the host (Reniere et al., 2015). The L. monocy-
togenes gshF mutant was two-fold less virulent compared to the
wild type in a mice model. In addition, the gshF mutant was
sensitive to oxidative stress, contains lower levels of ActA and
formed small plaques in tissue culture assays that measure cell-
to-cell spread (Reniere et al., 2015). The Actin assembly-inducing
protein ActA is controlled by the virulence regulator PrfA and
used by L. monocytogenes to move through the host cells (Freitag
et al., 2009). It was shown that the virulence phenotype of the gshF
mutant is caused by the lack of PrfA activation by bacterial and

host-derived GSH (Reniere et al., 2015). Interestingly, activation
of PrfA is mediated by an allosteric binding of GSH to PrfA, but
not by S-glutathionylation. Thus, GSH plays a role as signaling
molecule to activate virulence gene expression in an intracellular
pathogen.

In S. Typhimurium, GSH antagonizes the bacteriostatic effects
of RNS in vivo and gshA mutants were sensitive to ROS and
RNS (Song et al., 2013). Thus, GSH presents a first line defense
against ROS and RNS produced by the host immune system. This
was shown in an acute model of salmonellosis in mice express-
ing the wild-type NRAMP1R allele (natural resistance-associated
macrophage protein 1) which is linked to high NO production
of the macrophages. The gshA and gshB mutants were attenuated
in this acute model of salmonellosis. It was further shown that
GSH protects against ROS and RNS produced by the NADPH
phagocyte oxidase and inducible nitric oxide synthase (iNOS) in
this mice model (Song et al., 2013). These recent studies high-
light the important roles of GSH in the control of virulence func-
tions, expression of virulence factors and pathogen fitness under
infection conditions in S. pneumoniae, L. monocytogenes, and
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TABLE 2 | The role of thiol-redox buffers for virulence in pathogenic bacteria.

Redox

buffer

Organism Genes for biosynthesis or

uptake

Virulence phenotypes of mutants References

Glutathione

(uptake)

Streptococcus pneumoniae gshT

(GSH importer)

gshT mutant attenuated in colonization and invasion in a

mouse model of pneumococcal infection

Potter et al., 2012

Glutathione

(biosynthesis

and uptake)

Listeria monocytogenes gshF

(γ-Glu-Cys ligase/GSH synthase)

Virulence defect of the gshF mutant caused the lack of

PrfA activation and lower actA expression by bacterial and

host GSH

Reniere et al., 2015

Glutathione

(biosynthesis)

Salmonella Typhimurium gshA (γ-Glu-Cys ligase)

gshB (GSH synthase)

gshA and gshB mutants attenuated in acute model of

salmonellosis in NRAMP1R mice;

GSH protects against ROS and RNS produced by NOX in

mice

Song et al., 2013

Bacillithiol

(biosynthesis)

Staphylococcus aureus bshA (glycosyltransferase)

bshB (deacetylase)

bshC (Cys ligase)

COL and USA300 bshA mutants impaired in human

whole-blood survival assays;

SH1000 natural bshC mutant survival defect in

macrophage phagocytosis assays

Posada et al., 2014

Pöther et al., 2013

Mycothiol

(biosynthesis)

Mycobacterium tuberculosis mshA1 (glycosyltransferase)

mshA2(phosphatase)

mshB (deacetylase)

mshC (Cys ligase)

mshD (acetyltransferase)

mshC mutant impaired in growth and survival in mouse

model of infection

Sareen et al., 2003;

Sassetti and Rubin,

2003

S. Typhimurium. As shown for L. monocytogenes, GSH might
play similar roles to activate virulence gene expression by redox
control of virulence gene regulators in other pathogens which
remains to be elucidated.

Redox Proteomic Methods to Study Protein
S-Glutathionylation at a Global Scale
Advances in probe design and mass spectrometry-based thiol-
trapping approaches have facilitated the detection of specific
reversible thiol-modifications, including sulfenylation, nitrosy-
lation, glutathionylation, and sulfhydrations of proteins at a
global scale (Leonard and Carroll, 2011; Pan and Carroll, 2013;
Paulsen and Carroll, 2013; Gupta and Carroll, 2014; Zhang et al.,
2014). Different methods have been applied for specific detec-
tion of S-glutathionylations in eukaryotic cells, including the
use of GSH-specific antibodies and the labeling of S-thiolations
with 35S-cysteine followed by 2D gel electrophoresis and phos-
phoimaging (Fratelli et al., 2002, 2003, 2004). However, the
specificity of the GSH antibodies is questionable and the gel-
based detection of S-thiolations using 35S-cysteine does not
distinguish between S-cysteinylations and S-glutathionylations
or other forms of S-thiolations. Hence, more sensitive mass
spectrometry-based redox proteomics methods have been devel-
oped, including the glutaredoxin-coupled NEM-biotin switch
assay and the treatment of cell extracts with N,N-biotinyl glu-
tathione disulfide (BioGSSG) (Lind et al., 2002; Brennan et al.,
2006; Kehr et al., 2011; Zaffagnini et al., 2012a) (Figure 5).
Both methods make use of the specific streptavidin enrich-
ment of biotinylated peptides that improve the identification
of S-glutathionylated peptides using mass spectrometry. The
NEM biotin-switch assay was successfully applied to detect
protein S-glutathionylation in eukaryotic endothelial cells and

malaria parasites which applies glutaredoxin for reduction of
protein-SSG followed by NEM-biotin alkylation and enrich-
ment using streptavidin columns (Lind et al., 2002; Kehr et al.,
2011). The biotin-GSSG approach has been applied to identify
S-glutathionylated proteins in the green algae Chlamydomonas
reinhardtii (Zaffagnini et al., 2012a) and in the photosynthetic
cyanobacterium Synechocystis sp. PCC6803 (Chardonnet et al.,
2015). In total, 383 S-glutathionylated proteins were identified
in Synechocystis sp. PCC6803 and 125 glutathionylation sites
were mapped by mass spectrometry. In addition, the peroxire-
doxin PrxII (Sll1621) and the 3-phosphoglycerate dehydrogenase
PGDH (Sll1908) could be S-glutathionylated by BioGSSG in vitro
(Chardonnet et al., 2015).

In another approach, biotinyl-spermine (biotine-spm) and
in vivo expressed E. coli GspS have been applied for mammalian
cells to convert GSH to biotin-glutathionylspermidine (biotin-
Gsp) which subsequently modified proteins by Biotin-Gsp-S-
thiolation (Chiang et al., 2012; Lin et al., 2015). The biotine-spm
is removed enzymatically by GspA from the enriched biotin-
Gsp-S-thiolated peptides and the GSS-peptides are identified by
mass spectrometry. This approach allows the identification of S-
glutathionylation sites without the biotin-tag and enhances the
coverage for S-glutathionylated proteins. In mammalian cells,
1409 S-glutathionylated cysteines in 913 proteins were identi-
fied using the Gsp-biotin approach (Chiang et al., 2012; Lin
et al., 2015). This makes the application of this chemoenzymatic
approach using the GspS enzyme attractive for global and specific
studies of S-glutathionylated proteins.

In S. Typhimurium, protein S-glutathionylation has been
studied at a global scale by top-down and bottom-up pro-
teomic approaches (Ansong et al., 2013). Top-down proteomics
uses whole proteins for separation and fragmentation directly
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FIGURE 5 | Redox proteomics methods to study protein

S-glutathionylation at a global scale. Mass spectrometry-based methods

for identification of S-glutathionylations include the glutaredoxin-coupled

NEM-biotin switch assay (A), the biotin-Gsp assay, (B) or the N,N-biotinyl

glutathione disulfide (BioGSSG) assay, (C) (Lind et al., 2002; Brennan et al.,

2006; Kehr et al., 2011; Zaffagnini et al., 2012a). In the biotin-Gsp assay, E.

coli GspS is expressed in mammalian cells and converts GSH and

biotinyl-spermine (biotine-spm) to biotin-glutathionylspermidine (biotin-Gsp).

Proteins in ROS-treated cells are modified by biotin-Gsp-S-thiolation (Chiang

et al., 2012; Lin et al., 2015). The biotin-spm is removed from the enriched

biotin-Gsp-S-thiolated peptides by GspA and the GSS-peptides are

identified by mass spectrometry.

in the mass spectrometer. In bottom-up proteomics approaches
proteins are digested by a protease and the peptide mixtures are
analyzed by mass spectrometry to identify proteins at the peptide
level. The top-down proteomic approach identified 563 proteins
with 1665 post-translational modifications in S. Typhimurium.
The authors identify 25 S-thiolated proteins in cells grown
in complete LB medium including 16 S-glutathionylated pro-
teins and nine S-cysteinylated proteins. Interestingly, a sub-
set of nine S-glutathionylated are modified by S-cysteinylation
in infection-like minimal LPM medium (Table 3). This could
indicate a shift from S-glutathionylation to S-cysteinylation
under infection-like conditions in S. Typhimurium. These S-
thiolated proteins include phosphoglycerate kinase (Pgk), elon-
gation factor (Tuf) and enolase (Eno) that are also targets for
S-glutathionylations in endothelial cells (Fratelli et al., 2002).
The top-down proteomics results were verified by bottom-
up proteomics approaches to identify the specific S-thiolated
Cys peptides (Ansong et al., 2013). Structural analysis revealed
that S-glutathionylation occurred mostly at buried Cys residues
and not at surface-exposed Cys. S-glutathionylation on buried
Cys was also shown for the enolase whose activity is known
to be modified by S-thiolation in human cells (Fratelli et al.,
2002). It is postulated that S. Typhimurium switches from S-
glutathionylation to S-cysteinylation during infection conditions
as novel redox-control mechanism. In agreement with the pro-
teome data, transcriptome results point to an up-regulation
of Cys biosynthesis and down-regulation of GSH biosynthe-
sis under infection-like conditions. However, the physiological
role of this S-thiolation switch for redox control of the identi-
fied protein targets under ROS stress remains to be elucidated.

Furthermore, no blocking of reduced thiols with NEM or IAM
was performed to avoid artificial disulfide formation. Thus, it
remains to be verified that the observed S-thiolations are not
caused by artificial thiol-disulfide exchange. Previous studies
have also shown that L. monocytogenes is able to both import
and synthesize GSH (Reniere et al., 2015). Furthermore, the non-
GSH-utilizing S. aureus was shown to import GSH during growth
in LB medium (Pöther et al., 2013). Thus, the possible uptake of
GSH in S. Typhimurium from LB-medium could contribute to
the observed S-glutathionylations which needs to be investigated.

The Regulatory Potential of Protein
S-Glutathionylation in Gram-negative Bacteria
The role of protein S-glutathionylation for redox control
has been studied in few Gram-negative bacteria, including
E. coli, S. Typhimurium, Neisseria meningitidis, Pseudoal-
teromonas haloplanktis, and Synechocystis sp. PCC6803 (Table 3).
In E. coli, the peroxide-sensing regulator OxyR is activated by S-
glutathionylation at its redox-sensing Cys199 in vitro (Kim et al.,
2002). In addition, the activities of glyceraldehyde-3-phosphate
dehydrogenase, methionine synthase and the PAPS reductase are
inhibited by S-glutathionylation in E. coli (Lillig et al., 2003; Hon-
dorp and Matthews, 2004; Brandes et al., 2009). A recent study
provides a model for the S-glutathionylation of the conserved
active site Cys in GapDH and explains the reactivity of the active
site toward H2O2 (Peralta et al., 2015). Reaction of the active
site Cys with H2O2 is catalyzed by a mechanism which stabi-
lizes the transition state and promotes leaving group departure
by providing a proton relay. This model suggests the conserved
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TABLE 3 | Targets for protein S-thiolation by bacterial thiol-redox buffers.

Redox buffer Organism Functions of S-thiolated proteins S-thiolated Cys References

Glutathione Salmonella Typhimurium 16 protein-SSG and nine

protein-SSCys identified in LB

medium cultures

nine protein-SSG in LB switch to

protein-SSCys in minimal medium:

DnaK (chaperone)

CspD (cold shock protein)

HNS (transcription regulator)

MinE (cell devision factor)

Ndk (nucleoside diphosphate kinase)

GrxC (glutaredoxin)

RplC (50S ribosomal protein)

YifE (unknown function)

YjgF (translation inhibitor)

Cys15

Cys19

Cys21

Cys16

Cys139

Cys66

Cys199

Cys64

Cys107

Ansong et al., 2013

Glutathione Escherichia coli OxyR (peroxide sensor)

Gap (glyceraldehyde-3-phosphate

DH)

MetE (methionine synthase)

PpaC (PAPS reductase)

Cys199 redox-sensing

Cys152 active site

Cys645 not conserved

Cys239 active site

Kim et al., 2002

Brandes et al., 2009

Hondorp and Matthews,

2004

Lillig et al., 2003

Glutathione Neisseria meningitidis EstD (esterase) Cys54 substrate binding Chen et al., 2013

Glutathione Pseudo-alteromonas

haloplanktis

PhSOD (iron-superoxide dismutase) Cys57 conserved Castellano et al., 2008

Glutathione Synechocystis sp.

PCC6803

383 total protein-SSG

125 S-glutathionylation sites:

Inorganic pyrophosphatase

Phosphoribulokinase

PAPS reductase

Triose phosphate isomerase

IMP dehydrogenase

ADP-glucose pyrophosphorylase

RubisCo

MerA (mercury reductase)

AbrB (repressor of hydrogenase

operon)

Cys164

Cys19

Cys230

Cys127

Cys222

Cys55

Cys422, Cys242

Cys78 active site

Cys34 redox-sensing

Chardonnet et al., 2015

Marteyn et al., 2013

Cassier-Chauvat et al.,

2014

Bacillithiol Bacillus subtilis

Bacillus pumilus

Bacillus

amyloliquefaciens

Staphylococcus

carnosus

54 total protein-SSB including eight

conserved protein-SSB:

MetE (methionine synthase)

PpaC (Mn-dependent inorganic

pyrophosphatase)

SerA (D-3-phosphoglycerate DH)

AroA (chorismate mutase)

TufA (Elongation factor Tu)

GuaB (IMP dehydrogenase)

YphP/BrxA (bacilliredoxin)

YumC (Ferredoxin-NADP reductase2)

Cys730 active site

Cys158 active site

Cys410 conserved

Cys126 conserved

Cys83 GTP-binding site

Cys308 active site

Cys53 active site

Cys85 active site

Chi et al., 2011

Chi et al., 2013

Mycothiol Corynebacterium

glutamicum

25 total protein-SSM identified:

MalP (Maltodextrin phosphorylase)

MetE (Methionine synthase)

Hom (Homoserine DH)

Ino-1 (Myo-inositol-1-P-synthase)

Fba (Fructose-bisphosphate aldolase)

SerA (Phosphoglycerate DH)

Pta (Phosphate acetyltransferase)

XylB (pentulose/hexulose kinase

GuaB1/2 (IMP dehydrogenase)

NadC (Nicotinate-nucleotide

pyrophosphorylase)

Cys180 conserved

Cys713 active site

Cys239

Cys79

Cys332

Cys266

Cys367

Cys338

Cys302/Cys317 active site

Cys114

(Continued)
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TABLE 3 | Continued

Redox buffer Organism Functions of S-thiolated proteins S-thiolated Cys References

Mycothiol Corynebacterium

glutamicum

PurL (Phosphoribosyl

formylglycinamidine synthase)

TheD/ThiD2 (Thiamine biosynthesis)

Tpx (Thiol peroxidase)

Mpx (Mycothiol peroxidase)

MsrA (Met-SO reductase)

HmuO (Heme oxygenase)

RpsC/F/M, RplM (ribosomal proteins)

Tuf (translation elongation factor)

PheT (Phe-tRNA synthetase)

Cys716

Cys451 active site/Cys111

Cys60 active site/Cys94 resolving

Cys36 active site

Cys91 conserved

Cys165

Cys153/67/50/86

Cys277 conserved

Cys89 tRNA binding

Chi et al., 2014

redox-regulation of GapDH by S-thiolation of its active site Cys
across all domains of life.

In Neisseria meningitidis, an esterase EstD acts together with
the GSH-dependent alcohol dehydrogenase AdhC in formalde-
hyde detoxification. EstD is inactivated via S-glutathionylation
at its conserved Cys54 by its substrate S-formyl-GSH during
formaldehyde detoxification in vitro (Chen et al., 2013). In
the psychrophilic bacterium Pseudoalteromonas haloplanktis, S-
glutathionylation of the iron-superoxide dismutase PhSOD at the
single Cys57 protected the enzyme from tyrosine nitration and
peroxynitrite inactivation in vitro and in vivo (Castellano et al.,
2008).

In Synechocystis sp. PCC6803, a MerA-like enzyme that func-
tions in mercury and uranium reduction was shown to be redox-
controlled by S-glutathionylation (Marteyn et al., 2013). MerA
was S-glutathionylated at Cys78 that is required for mercury
reduction resulting in inhibition of MerA activity. MerA redox
regulation and reactivation required reduction by glutaredoxin-
1 (Grx1). The active site Cys31 and Cys86 of Grx-1 operate in
MerA interactions and both Cys are required for MerA reacti-
vation. Furthermore, S-glutathionylation was shown to control
the activity of the transcription factor AbrB2 in Synechocystis
sp. PCC6803 (Cassier-Chauvat et al., 2014). AbrB2 is a repres-
sor of the hydrogenase-encoding hoxEFUYH operon and also
down-regulates antioxidant genes, such as cydAB encoding the
cytochrome bd-quinol oxidase and norB encoding the nitric
oxide reductase. The production of hydrogen is thought to
be an antioxidant mechanism to eliminate electrons for oxy-
gen reduction and ROS generation. AbrB2 contains a con-
served single cysteine that is essential for redox-regulation
and oligomerisation of AbrB2 as shown in C34S mutants. S-
glutathionylation of Cys34 affected the binding of AbrB2 to
the hox promoter and the stability of AbrB2 in vitro. In con-
clusion, S-glutathionylation has been shown to function in the
redox-control of two transcriptional regulators, OxyR and AbrB2
in Gram-negative bacteria in vitro. However, compared to the
many targets for S-glutathionylation that have been studied in
eukaryotic organisms, there is much to be discovered about the
regulatory potential of S-glutathionylation in bacteria.

Protein S-glutathionylation is a reversible redox switch mech-
anism. The glutaredoxin (Grx)/GSH/GSH reductase (Gor) sys-
tem catalyzes specific de-glutathionylation of S-glutathionylated
proteins (Fernandes and Holmgren, 2004; Inaba, 2009). Grx

were first discovered in E. coli (Holmgren, 1976) where they
have important functions as electron donors for ribonucleotide
reductase (RNR), adenosine-5′-phosphosulfate (APS) reductase,
3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase and
arsenate reductases (Holmgren, 1981; Aslund et al., 1994). Grx
are structurally classified into the classical di-thiol Grxs with a
CPTC redox active site and the monothiol Grx containing a CGPS
redox active site (Lillig et al., 2008). In E. coli, three di-thiol
Grx proteins (Grx1, Grx2, and Grx3) and one monothiol protein
(Grx4) have been characterized.

The de-glutathionylation by Grx enzymes involves thiol-
disulfide exchange reactions with GSH via nucleophilic double
displacement (ping–pong) mechanisms and occurs via mono- or
di-thiol mechanisms. Most di-thiol Grx use monothiol mecha-
nisms that take place in two steps: In the first step, the nucle-
ophilic thiolate anion attacks the S-glutathionylated substrate
protein, resulting in reduction of the mixed disulfide and the
S-glutathionylated Grx (Grx-SSG) intermediate. This Grx-SSG
intermediate is regenerated by GSH and Gor at expense of
NADPH (Allen and Mieyal, 2012). The di-thiol mechanism
involves a second active site Cys that forms an intramolecu-
lar disulfide to resolve the Grx-SSG intermediate that has been
shown for some plant Grx enzymes (Zaffagnini et al., 2012b).
However, this di-thiol mechanism of Grx is less efficient for pro-
tein de-glutathionylation and more involved in the reduction of
intermolecular protein disulfides (Lillig et al., 2008; Allen and
Mieyal, 2012). Thus far, the knowledge about Grx functions and
substrates in most GSH-producing bacteria is scarce and remains
an important subject for future studies.

Biosynthesis and Regulation of Bacillithiol in
Gram-Positive Firmicutes Bacteria
Bacillithiol (BSH) is composed of Cys-GlcN-malate and serves as
major LMW thiol in many Firmicutes bacteria, including Bacillus
and Staphylococcus species, Deinococcus radiodurans, and Strep-
tococcus agalactiae (Newton et al., 2009) (Figure 4). The BSH
biosynthesis pathway was first identified in B. subtilis. In the
first step, the glycosyltransferase BshA couples UDP-GlcNAc to
L-malic acid for generation GlcNAc-Mal (Ruane et al., 2008;
Gaballa et al., 2010; Parsonage et al., 2010). The deacetylase BshB1
catalyzes deacetylation of GlcNAc-Mal to GlcN-Mal. The last step
involves the putative cysteine ligase YllA (BshC) that presum-
ably adds Cys to GlcN-Mal (Gaballa et al., 2010). BshB1 has a
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paralog BshB2 and both enzymes have deacetylase activity. The
functional redundancy of BshB1 and BshB2 in B. subtilis sug-
gests that BshB2 might function as BSH-S-conjugate amidase Bca
in detoxification of RES similar to the MSH-S-conjugate ami-
dase Mca (Parsonage et al., 2010). The functions of the BshB1/2
homologs of B. anthracis (BA1557 and BA3888) and B. cereus
(BC1534 and BC3461) in the deacetylation of GlcNAc-Mal have
been demonstrated in vitro. In addition, BA3888 was shown to
function as BSH-S-conjugate amidase (Bca) (Fang et al., 2013).
In contrast to BshA and BshB, the activity of the putative cysteine
ligase BshC has never been demonstrated biochemically in vitro.
The structure of BshC was resolved revealing a core Rossmann
fold with connecting peptide motifs (CP1 and CP2) and an α-
helical coiled-coil domain required for dimerization (Vanduinen
et al., 2015). BshC was crystallized with citrate and glycerol in the
canonical active site and ADP bound in a second binding pocket
that is different from the ADP-binding pocket in the related
MshC structure. The active sites are solvent exposed and open
for possible interactions with a protein, substrate or cofactor that
remain to be elucidated to understand the catalytic mechanism of
BshC (Vanduinen et al., 2015).

The regulation of the BSH biosynthesis genes has been studied
in B. subtilis. The bshA and bshB1 genes belong to a large operon
of seven genes including mgsA which encodes a methylglyoxal
synthase. The bshB2 and bshC genes are encoded by two differ-
ent operons. The bshA, bshB, and bshC genes are induced under
conditions of disulfide stress provoked by diamide or NaOCl and
positively controlled by the disulfide stress regulator Spx (Chi
et al., 2011; Rochat et al., 2012; Gaballa et al., 2013). Consistent
with the Spx-dependent control of the BSH biosynthesis genes,
lower BSH levels were detected in the spx mutant using thiol-
metabolomics (Chi et al., 2011; Rochat et al., 2012; Gaballa et al.,
2013). It is interesting to note, that the Trx pathway and BSH
biosynthesis genes are both regulated by the major disulfide stress
regulator Spx in B. subtilis (Zuber, 2004, 2009; Chi et al., 2011;
Rochat et al., 2012; Gaballa et al., 2013).

Functions of Bacillithiol and BSH-Dependent
Detoxification Enzymes
BSH is predominantly present in its reduced form in the cyto-
plasm with BSH/BSSB ratios ranging from 100:1 to 400:1 in
B. subtilis indicating the presence of an efficient bacillithiol disul-
fide reductase (Sharma et al., 2013). The FAD-dependent pyri-
dine nucleotide disulfide oxidoreductase YpdA (IPR023856) was
suggested to function as BSSB reductase because of its phyloge-
netic relationship to the BSH biosynthesis enzymes as revealed by
a STRING search (Gaballa et al., 2010). However, the function of
YpdA has not yet been demonstrated.

The standard thiol-redox potential of BSH was calculated as
E0′

(BSSB/BSH) = −221 mV which is higher than the GSH redox

potential [E0′

(GSSG/GSH) = −240 mV] (Sharma et al., 2013).
The microscopic pKa values of the thiol group of BSH were deter-
mined as pKa = 7.97 when the amino group of the Cys is pro-
tonated and as pKa = 9.55 in the presence of the deprotonated
amino group of Cys (Sharma et al., 2013). Thus, the thiol group in
BSH is more acidic compared to the thiol group in Cys suggest-
ing an enhanced level and reactivity of the BSH thiolate anions

to detoxify reactive species. The BSH concentrations in B. subtilis
vary during the growth in LB medium and increase strongly dur-
ing the stationary phase to 3.5–5.2 mM. In contrast, the cellular
Cys concentration is kept at a relatively low level (0.13–0.28 mM).
Thus, BSH concentrations are ∼17-fold higher compared to the
level of Cys (Sharma et al., 2013). Similar concentrations of BSH
(2 mM) were measured in Bacillus pumilus during growth. In
B. pumilus, BSH levels increased under peroxide stress to 6 mM
which is caused by an increased bshB expression (Handtke et al.,
2014). BSH levels are also two-fold increased under diamide and
NaOCl stress in B. subtilis due to Spx-dependent induction of
bshA, bshB, and bshC (Chi et al., 2013; Gaballa et al., 2013). In
S. aureus, the BSH levels are lower (0.3–1 mM) in the different
clinical isolates (COL, USA300, Mu50, or N315) and BSH levels
are not up-regulated during the stationary phase (Posada et al.,
2014).

The physiological functions of BSH were studied in bsh
mutants of B. subtilis and S. aureus (Table 1). Phenotype analyses
showed increased sensitivities of bsh mutants toward hypochlo-
rite, diamide, methylglyoxal, ROS (paraquat, H2O2), osmotic,
and acidic stress, alkylating agents and fosfomycin in B. subtilis
(Gaballa et al., 2010; Chi et al., 2011). The fosfomycin-sensitive
phenotype of bsh mutants depends on the epoxide hydrolase
FosB that requires BSH as a cofactor to open the ring structure
for fosfomycin detoxification (Lamers et al., 2012; Roberts et al.,
2013; Thompson et al., 2013) (Figure 6). FosB shows a prefer-
ence for BSH as thiol cofactor and does only work poorly with
Cys. The biochemical activity has been demonstrated for vari-
ous Bacillus and Staphylococcus FosB homologs (Lamers et al.,
2012; Roberts et al., 2013; Thompson et al., 2013). In B. subtilis
and S. aureus, both FosB and BSH confer resistance to fosfomycin
treatment in survival assays in vivo (Gaballa et al., 2010; Thomp-
son et al., 2014). Co-crystallization of S. aureus FosB with L-Cys
or BSH revealed a mixed disulfide at the active site Cys9 of FosB
which is unique in FosB from S. aureus (Thompson et al., 2014).

Reactive electrophiles, such as monobromobimane are detox-
ified by direct conjugation to BSH or by conjugation reactions
catalyzed by BSH S-transferases. BSH functions as a cofactor
for DinB-family S-transferases that are widely distributed among
GSH-, BSH-, and MSH-producing bacteria (Newton et al., 2011;
Perera et al., 2014). The B. subtilis DinB-family YfiT protein
was active as S-transferase with BSH to conjugate monochloro-
bimane, but inactive with MSH or GSH (Newton et al., 2011).
The yfiT gene is flanked by yfiS and yfiU encoding putative
efflux transporters for mercapturic acids produced during elec-
trophile detoxification. The YfiT-homolog of S. aureus BstA
catalyzed the conjugation of BSH to monochlorobimane, 1-
chloro-2,4-dinitrobenzene and cerulenin, while rifampicin was
BstA-independently conjugated to BSH (Perera et al., 2014).

BSH is involved in methylglyoxal detoxification and functions
as a cofactor for BSH-dependent glyoxalases in B. subtilis (Chan-
drangsu et al., 2014). Methylglyoxal rapidly depletes BSH leading
to BSH-hemithioacetal formation that is converted to S-lactoyl
BSH by the glyoxalase-I (GlxA). The glyoxalase-II (GlxB) cat-
alyzes conversion of S-lactoyl-BSH to lactate (Figure 6). Pheno-
type studies further indicated that BSH can detoxify heavy metal
ions, such as tellurite and selenite in B. subtilis (Helmann, 2011).
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FIGURE 6 | The functions of bacillithiol (BSH) in B. subtilis and

S. aureus. Bacillithiol functions in detoxification of ROS, RES, HOCl, and

antibiotics (fosfomycin, rifampicin) in B. subtilis and S. aureus. BSH is

oxidized by ROS to bacillithiol disulfide (BSSB). Electrophiles (RX) are

conjugated to BSH by the BSH S-transferase BstA to form

BS-electrophiles (BSR) which are cleaved by the BSH S-conjugate

amidase Bca to CysSR and mercapturic acids (AcCySR) that are

exported from the cell. BSH serves as a cofactor for the epoxide

hydrolase FosB which adds BSH to fosfomycin to open the ring structure

for its detoxification. BSH functions in methylglyoxal detoxification as a

cofactor for the glyoxalases I/II (GlxA and GlxB) in B. subtilis. GlxA

converts BSH-hemithioacetal to S-lactoyl-BSH that is further converted by

GlxB to D-lactate. BSH serves as Zn buffer under conditions of Zn

excess in B. subtilis. In S. aureus, BSH is important under

infection-related conditions and increased the survival of S. aureus in

phagocytosis assays using murine macrophages. Under conditions of

NaOCl stress, proteins are oxidized to mixed disulfides with BSH, termed

as S-bacillithiolations which is reversed by bacilliredoxins.

In addition, BSH functions as Zn buffer in metal ion homeosta-
sis (Ma et al., 2014). The Cys thiol and carboxylate moieties of
BSH can bind and store Zn(II) as BSH2:Zn complex under con-
ditions of Zn(II) stress (Ma et al., 2014). BSH binding to Zn(II)
occurred at much higher affinity compared to GSH. Mutants
lacking BSH are more sensitive to Zn(II) stress and induced the
Zn efflux CadA system at lower Zn levels compared to the wild
type. BSH also protected against Zn(II) toxicity in cells lacking
Zn efflux pumps. In addition, Zn efflux is elevated under condi-
tions of diamide stress when the pool of reduced BSH is depleted.
These results establish a new role of BSH as buffer for the labile
Zn pool that are likely important for related pathogens under
infection conditions.

In conclusion, functional analyses of bsh mutants established
important roles of BSH as GSH surrogate in Firmicutes bacteria,
including similar detoxification functions and BSH-dependent
enzymes, such as DinB-family S-transferases and glyoxalases
that are widely conserved across bacteria. However, the con-
served role of FosB as BSH-dependent fosfomycin hydrolase and
the function of BSH as Zn buffer have been described only in
BSH-producing bacteria.

Functions of Bacillithiol in the Virulence of
Staphylococcus aureus
Phenotype analyses of S. aureus bsh mutants were conducted
for different clinical isolates of methicillin-resistant S. aureus

strains (MRSA) that revealed a role of BSH for stress resis-
tance and under infection conditions (Pöther et al., 2013; Posada
et al., 2014) (Table 2). In survival assays, S. aureus USA300
LAC transposon bsh mutants were more sensitive to alkylat-
ing agents (iodoacetamide and CDNB), methylglyoxal, peroxide
and superoxide stress, diamide, fosfomycin, cerulenin, rifamycin
and metals ions, like copper and cadmium (Rajkarnikar et al.,
2013). In S. aureus COL and USA300 backgrounds, bshA and
fosB mutants with clean deletions showed increased sensitivi-
ties to fosfomycin, diamide and H2O2 and the levels of NADPH
and BSH were decreased in fosB mutants suggesting a func-
tion of FosB as S-transferase in the oxidative stress resistance
(Posada et al., 2014). The S. aureus COL and USA300 bshA
mutants showed a decreased survival in human whole-blood sur-
vival assays (Posada et al., 2014). Microarray analyses of the
bshA mutant further revealed that staphyloxanthin biosynthetic
genes are induced while the level of staphyloxanthin was strongly
decreased in the S. aureus bshA mutant. Interestingly, the widely
used strains of the S. aureus NCTC8325 lineage including SH1000
harbor natural yllA (bshC) null mutations that are caused by a 8
bp duplication in the bshC gene and these strains do not pro-
duce BSH (Gaballa et al., 2010; Newton et al., 2012; Posada et al.,
2014). In contrast, S. aureus Newman encodes a functional bshC
gene and produces BSH as revealed by thiol metabolomics (New-
ton et al., 2012; Pöther et al., 2013). BSH biosynthesis in S. aureus
SH1000 could be restored by plasmid-encoded expression of the
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bshC gene (Pöther et al., 2013; Posada et al., 2014). In phagocy-
tosis assays using murine macrophages and human epithelial cell
lines the survival of the SH1000 strain was decreased compared
to the bshC complemented S. aureus strain (Pöther et al., 2013;
Posada et al., 2014). Thus, BSH is involved in the defense against
the host-immune system and contributes to pathogen fitness in
S. aureus clinical MRSA isolates under infection-related condi-
tions. It will be exciting to unravel the regulatory mechanisms
that contribute to virulence control by BSH in S. aureus.

The Role of Protein S-Bacillithiolation in
Gram-Positive Firmicutes Bacteria
Protein S-bacillithiolation was recently discovered as a
widespread thiol protection and redox-regulatory mecha-
nism in different Firmicutes bacteria (Chi et al., 2011, 2013)
(Figure 7). S-bacillithiolation functions as a redox-switch
mechanism to control the activity of redox-sensing transcription
factors and metabolic enzymes, including OhrR and MetE (Lee
et al., 2007; Chi et al., 2011) (Table 3). S-bacillithiolation of
the OhrR repressor occurs at its lone Cys15 residue leading
to inactivation of OhrR and expression of the thiol-dependent
OhrA peroxiredoxin for detoxification of organic hydroper-
oxides and NaOCl (Fuangthong et al., 2001; Chi et al., 2011).
S-bacillithiolation is also widespread among other Firmicutes

with eight common and 29 unique S-bacillithiolated proteins
identified in B. subtilis, Bacillus amyloliquefaciens, Bacillus
pumilus, B. megaterium, and Staphylococcus carnosus (Chi et al.,
2011, 2013). The S-bacillithiolome contains mainly biosynthetic
enzymes for amino acids (methionine, cysteine, branched chain
and aromatic amino acids), cofactors (thiamine), nucleotides
(GTP), as well as translation factors, chaperones, redox, and
antioxidant proteins. Among the most conserved protein-SSB
were abundant and essential proteins like TufA, MetE, GuaB that
are targets for S-thiolation also in MSH-producing bacteria (Chi
et al., 2014).

The methionine synthase MetE is the most abundant S-
bacillithiolated protein in Bacillus species after NaOCl expo-
sure. S-bacillithiolation of MetE occurs at its Zn-binding active
site Cys730 and at the non-essential surface-exposed Cys719,
leading to methionine starvation in NaOCl-treated cells (Chi
et al., 2011). Similarly, methionine auxotrophy is caused by S-
glutathionylation of MetE in E. coli after diamide stress (Hon-
dorp and Matthews, 2004). The active site Zn center of MetE
is also S-mycothiolated in C. glutamicum (Chi et al., 2014).
Since formyl methionine is required for initiation of transla-
tion, MetE inactivation could stop translation during the time
of hypochlorite detoxification. This translation arrest caused by
S-bacillithiolation is supported by the strong repression of the

FIGURE 7 | Physiological roles of S-bacillithiolations in B. subtilis and

other Firmicutes. NaOCl leads to S-bacillithiolation of OhrR, MetE, YxjG,

PpaC, SerA, AroA, GuaB, YumC, TufA, and YphP in B. subtilis (Chi et al.,

2011). S-bacillithiolation of OhrR inactivates the repressor and causes

induction of the OhrA peroxiredoxin that confers NaOCl resistance.

S-bacillithiolation of the methionine synthase MetE at its active site Cys730

and other enzymes of the Cys and Met biosynthesis pathway (YxjG, PpaC,

SerA, MetI) leads to methionine auxotrophy (Chi et al., 2011, 2013). In

addition, other amino acids biosynthesis enzymes, translation factors and

ribosomal proteins are S-bacillithiolated in Firmicutes bacteria. Thus, we

hypothesize that S-bacillithiolation leads to a transient translation stop during

the time of NaOCl detoxification to prevent further protein damage. NaOCl

stress causes oxidation of BSH to BSSB and a two-fold decreased

BSH/BSSB redox ratio that possibly contributes to S-bacillithiolation. The

reduction of MetE-SSB and OhrR-SSB is catalyzed by bacilliredoxins

(BrxA/B) in B. subtilis.
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stringent response RelA regulon under NaOCl stress, which
includes genes for ribosomal proteins and translation factors (Chi
et al., 2011).

Our studies revealed that S-bacillithiolations were observed
under diamide and NaOCl stress, but not under control con-
ditions. This confirms previous results about the mechanisms
of S-glutathionylations which requires activation of protein thi-
ols by ROS. S-glutathionylation can be caused via thiol-disulfide
exchange with GSSG and by activation of thiols to sulfenic
acid, sulfenylamides, thiyl radicals, thiosulfinate or S-nitrosyl
intermediates (Gallogly and Mieyal, 2007; Mieyal et al., 2008;
Allen and Mieyal, 2012; Mieyal and Chock, 2012). Hypochlorite
leads to chlorination of the thiol group to form sulfenylchlo-
ride that is unstable and rapidly reacts further to form mixed
BSH protein disulfides (Hawkins et al., 2003; Davies, 2011). The
increased BSSB level under NaOCl-stress might also contribute
to S-bacillithiolation via thiol-disulfide exchange.

Among the S-bacillithiolated proteins, the thioredoxin-like
proteins YtxJ, YphP, and YqiW were identified in B. subtilis
and Staphylococcus that occur only in BSH-producing bacte-
ria (Chi et al., 2013). These Trx-like enzymes were suggested
to function as bacilliredoxins (Brx) in the de-bacillithiolation
process. YtxJ could functions as monothiol Brx and contains
a single Cys in the conserved TCPIS motif. YphP (BrxA) and
YqiW (BrxB) are paralogs of the uncharacterized DUF1094 fam-
ily (53% identity) with unusual CGC active sites (Gaballa et al.,
2010). YphP has also weak thiol-disulfide isomerase activity and

a relatively high standard redox potential of E0′

= −130 mV
(Derewenda et al., 2009). It was demonstrated that BrxA and
BrxB function in the reduction of the S-bacillithiolated sub-
strates MetE and OhrR in vitro (Gaballa et al., 2014) (Figure 8).
The BrxBCxA resolving Cys mutant protein was able to reduce

S-bacillithiolated OhrR to restore the DNA-binding activity of
OhrR. However, the BrxBCxA mutant was unable to reduce S-
cysteinylated OhrR. These results provide first evidence for the
function of glutaredoxin-like enzymes in BSH-producing bacte-
ria. However, phenotype analyses revealed that both, BrxA and
BrxB are not essential and rather dispensable for oxidative stress
resistance under conditions of S-bacillithiolations in B. subtilis
(Gaballa et al., 2014). Thus, the bacilliredoxin pathway is redun-
dant with other thiol-disulfide oxidoreductases or the thiore-
doxin pathway in vivo for reduction of BSH mixed disulfides.
In conclusion, the redox regulation of enzymes and transcrip-
tion regulators by S-bacillithiolation and bacilliredoxins has been
studied in detail in the model bacterium B. subtilis. Future studies
should be directed to elucidate if S-bacillithiolation and bacillire-
doxins control virulence functions and pathogen fitness in the
major pathogen S. aureus.

Biosynthesis and Regulation of Mycothiol in
Actinomycetes
Mycothiol (MSH) is composed of N-Acetyl-Cys-GlcN-
myoinositol (Figure 4) and is present in high-GC Gram-positive
Actinomycetes, such as Streptomycetes, Mycobacteria and
Corynebacteria (Jothivasan and Hamilton, 2008; Newton et al.,
2008). The biosynthesis of MSH proceeds from myo-inositol-
1-phosphate, UDP-GlcNAc and cysteine and occurs in five
steps (Jothivasan and Hamilton, 2008; Newton et al., 2008).
The glycosyltransferase MshA conjugates myo-inositol-1-P to
UDP-GlcNAc and produces GlcNAc-Ins-P. Dephosphorylation
of GlcNAc-Ins-P by the phosphatase MshA2 generates GlcNAc-
Ins which is the substrate for the deacetylase MshB. The MshB
enzyme is homologous to the MSH S-conjugate amidase (Mca),
and has both deacetylase and amidase activities. The cysteine

FIGURE 8 | Reduction of protein S-glutathionylations,

S-bacillithiolations and S-mycothiolations by glutaredoxin,

bacilliredoxin and mycoredoxin pathways. The S-glutathionylated

proteins are reduced by glutaredoxins (Grx) leading to a Grx-SSG

intermediate that is reduced by GSH leading to GSSG which is recycled back

to GSH by the NADPH-dependent GSSG reductase (Gor). Analogous

bacilliredoxin and mycoredoxin pathways have been characterized in BSH-

and MSH-utilizing Gram-positive bacteria. The S-bacillithiolated proteins are

reduced by bacilliredoxins (Brx) leading to Brx-SSB formation. Brx-SSB is

reduced by BSH with the generation of BSSB that likely requires the

NADPH-dependent BSSB reductase YpdA for regeneration of BSH. In

Actinomycetes, mycoredoxin1 catalyzes reduction of S-mycothiolated

proteins leading to Mrx1-SSM generation that is recycled by MSH and the

NADPH-dependent MSSM reductase Mtr.
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ligase MshC adds Cys to GlcN-Ins to generate Cys-GlcN-Ins. The
final acetylation of the Cys is catalyzed by the acetyltransferase
MshD to produce MSH (Jothivasan and Hamilton, 2008; Newton
et al., 2008). The structure of MSH is similar to that of BSH and
the glycosyltransferase BshA and deacetylase BshB of B. subtilis
are homologs of the MshA and MshB enzymes of Mycobacteria.

MSH biosynthesis enzymes in Streptomycetes are redox-
controlled under diamide stress by the disulfide stress spe-
cific σR ECF sigma factor/RsrA anti sigma factor system (Kim
et al., 2012). σR is sequestered by its redox-sensitive anti sigma
factor RsrA in non-stressed cells. RsrA is oxidized at redox-
sensing Cys residues in the Zn-binding site under disulfide stress
that leads to relief of σR. Free σR transcribes genes required
to maintain the thiol-redox homeostasis, including the genes
for TrxAB and MSH biosynthesis, such as mshA, mshB, mshC,
mshD, mca (Bae et al., 2004; Newton and Fahey, 2008; Park
and Roe, 2008). In C. glutamicum, the homologous ECF sigma
factor σH/RshA system controls the disulfide stress response
genes for the Trx/TrxR system (trxB, trxB1, trxC) and for MSH
biosynthesis and recycling (mshC, mca, mtr) (Ehira et al., 2009;
Busche et al., 2012). The regulation of the Trx and MSH path-
ways by σR/RsrA or σH/RshA is conserved among Actino-
mycetes (Park and Roe, 2008; Antelmann and Helmann, 2011;
Kim et al., 2012). Thus, it is common in Gram-positive bac-
teria that the genes for BSH and MSH biosynthesis pathways
are under redox-control of the major disulfide stress regulators,
Spx in Firmicutes bacteria and RsrA/RshA in Actinomycetes,
respectively.

Functions of Mycothiol and MSH-Dependent
Enzymes in Actinomycetes
MSH serves as the major thiol-redox buffer in Actinomycetes.
MSH is oxidized to MSH disulfide (MSSM) under oxidative
stress conditions. The mycothiol disulfide reductase Mtr main-
tains MSH in its reduced state at the expense of NADPH. MSH
is involved in protection against oxidative and electrophile stress,
alkylating agents, toxins, antibiotics (erythromycin, vancomycin,
rifampin, azithromycin), heavy metal stress, aromatic com-
pounds, ethanol and glyphosate in Streptomycetes, Mycobac-
teria and Corynebacteria (Buchmeier et al., 2003, 2006; Rawat
et al., 2007; Newton et al., 2008; Liu et al., 2013) (Table 1).
MSH is used as a cofactor for MSH-dependent enzymes during
detoxification of toxins, electrophiles and antibiotics in Actino-
mycetes (Figure 9, Table 1). MSH forms conjugates with xeno-
biotics and antibiotics either spontaneously or by the DinB-
family MSH S-transferases (Newton et al., 2011). The MSH
S-transferase Mst of M. smegmatis was shown to catalyze the
conjugation of monochlorobimane and DTNB to MSH but its
natural substrate is not known (Newton et al., 2011). MSH-S-
conjugates are rapidly cleaved by the MSH-S-conjugate amidase
(Mca) to glucoseamine-myo-inositol (GlcN-Ins) and mercap-
turic acid derivatives (AcCysSR) that are excreted from the cell.
Mca is the major detoxification enzyme for MSH S-conjugates
with antibiotics, including cerulenin and rifamycin in Mycobac-
teria (Newton et al., 2008, 2011). Interestingly, MSH and the
Mca-homologs LmbT, LmbV and LmbE play also a direct role in
the biosynthesis of the sulfur-containing lincosamide antibiotic

lincomycin in Streptomyces lincolnensis (Zhao et al., 2015). MSH
functions as the sulfur donor for incorporation of the methylmer-
capto group into lincomycin after thiol exchange. In addition,
ergothioneine (EGT), that is utilized as another thiol by Actino-
mycetes, acts as a carrier for the assembly of the N-methylated
4-propyl-L-proline (PPL) and lincosamide moieties to form lin-
comycin. EGT and MSH were shown to function in lincomycin
biosynthesis through unusual S-glycosylations documenting a
first biochemical role of LMW thiols in bacteria. Since the biosyn-
thetic pathways for many sulfur-containing natural compounds
include Mca homologs, the involvement of LMW thiols in natu-
ral product biosynthesis might be a common mechanism (Zhao
et al., 2015).

MSH functions as a cofactor for many redox enzymes that
are involved in the detoxification of peroxides, electrophiles
(formaldehyde), NO, aromatic compounds (maleylpyruvate) and
arsenate (Fahey, 2013) (Table 1). There is evidence for a MSH-
peroxidase Mpx involved in peroxide detoxification that was
identified as S-mycothiolated Gpx-homolog under oxidative
stress in C. glutamicum (Chi et al., 2014). The MSH-dependent
alcohol dehydrogenase MscR (MSNO reductase/formaldehyde
dehydrogenase) catalyzes the detoxification of formaldehyde
and S-nitrosyl-mycothiol (MSNO) (Newton et al., 2008). MSH
reacts with formaldehyde to MS-CH2OH that is converted to
formate by MscR. MscR also converts MSNO to MSH sulfi-
namide (MSONH2). In C. glutamicum, a similar MSH-dependent
pathway for formaldehyde oxidation by the MSH-dependent
formaldehyde dehydrogenase AdhE/FadH has been character-
ized (Lessmeier et al., 2013; Witthoff et al., 2013). In C. glutam-
icum, MSH is further involved in degradation of aromatic com-
pounds, including gentisate, 3-hydroxybenzoate, maleylpyruvate,
resorcinol, and naphthalene and msh mutants were unable to
grow on these substrates (Liu et al., 2013). MSH functions as a
cofactor for the maleylpyruvate isomerase in the gentisate ring-
cleavage pathway to catalyze the isomerization of maleylpyru-
vate to fumaryl pyruvate in C. glutamicum (Feng et al., 2006).
Similarly, MSH was suggested as a cofactor for enzymes of
the naphthalene and resorcinol degradation pathway (Liu et al.,
2013).

MSH confers resistance to metal ions, such as Cr(VI), Zn(II),
Cd(II), Co(II), and Mn(II) in C. glutamicum (Liu et al., 2013). The
detoxification of arsenate [As-(V)] to arsenite [As(III)] depends
on the MSH-dependent arsenate reductases ArsC1/C2 (Ordonez
et al., 2009). ArsC1/C2 function similar to S-transferases in arse-
nate detoxification by formation of an arseno-MSH conjugate
that requires the mycoredoxin-1/MSH/Mtr electron pathway for
reduction. In contrast, another arsenate reductase Cg_ArsC1′

detoxifies arsenate with electrons from the Trx pathway (Vil-
ladangos et al., 2011).

MSH enhanced also the robustness of C. glutamicum dur-
ing industrial production of glutamate and L-lysine (Liu et al.,
2014). The overexpression of mshA resulted in increased MSH
biosynthesis and higher resistance of C. glutamicum to per-
oxides, methylglyoxal, antibiotics (erythromycin and strepto-
mycin), metal ions, organic acids, furfural and ethanol (Liu et al.,
2014). Thus, the increased biosynthesis of LMW thiol redox
buffers, as shown for GSH in C. acetobutylicum and MSH in
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FIGURE 9 | The functions of mycothiol (MSH) in Mycobacteria and

Corynebacteria. Mycothiol (MSH) is oxidized by ROS to mycothiol disulfide

(MSSM). MSSM is reduced back to MSH by the mycothiol disulfide

reductase Mtr on expense of NADPH. MSH-dependent peroxidases, such as

Mpx, Tpx, and AhpE function in peroxide detoxification. Electrophiles (RX) are

conjugated to MSH by the MSH S-transferase Mst to form MS-electrophiles

(MSR) which are cleaved by the MSH S-conjugate amidase Mca to

mercapturic acids (AcCySR) that are exported from the cell. The

Mca-homologs LmbT, LmbV, and LmbE function also in the assembly and

biosynthesis of the sulfur-containing lincosamide antibiotic lincomycin in

Streptomyces lincolnensis (Zhao et al., 2015). MSH serves as a cofactor for

the alcohol dehydrogenase AdhE/MscR in Mycobacteria and Corynebacteria

for detoxification of formaldehyde to formate and MSNO to MSO2H. MSH

functions in detoxification of maleylpyruvate as a cofactor for maleylpyruvate

isomerase in C. glutamicum. Arsenate reductases CgArsC1 and CgArsC2

conjugate MSH and arsenate As(V) to form As(V)-SM that is reduced to As(III)

by Mrx1. In M. tuberculosis, MSH is important under infection conditions and

for growth and survival. Under conditions of NaOCl stress, proteins are

oxidized to mixed disulfides with MSH, termed as S-mycothiolations which is

reversed by mycoredoxins.

C. glutamicum, might be a promising strategy to engineer robust
industrial production strains.

In Mycobacterium tuberculosis, MSH is essential for growth
and survival of M. tuberculosis under infection conditions
(Sareen et al., 2003; Sassetti and Rubin, 2003). In addition, MSH
is required to activate the antituberculosis prodrug isoniazid and
hence M. tuberculosis mshA mutants are resistant to isoniazid
(Buchmeier et al., 2003). Tuberculosis (TB) causes still nearly 2
million death each year and multiple and extensive drug resis-
tant strains occur that require new targets for antituberculosis
drugs. Thus, inhibitors of MSH biosynthesis enzymes are promis-
ing candidates for antituberculosis drug developments. Several
MSH biosynthesis inhibitors have been applied that target the
MSH-S-conjugate amidase Mca, the deacetylase MshB, the cys-
teine ligase MshC and the MSSM reductase Mtr that are attractive
antituberculosis drug targets (Nilewar and Kathiravan, 2014).

The Role of Protein S-Mycothiolation in
Gram-Positive Actinomycetes
Protein S-mycothiolation was first studied in C. glutamicum and
25 S-mycothiolated proteins could be identified under NaOCl

stress by mass spectrometry (Chi et al., 2014) (Table 3). The
thiol-peroxidase Tpx and the putative MSH peroxidase Mpx
were S-mycothiolated under control and NaOCl stress condi-
tions at their active site Cys residues. The fragment ion spectra of
the S-mycothiolated Cys-peptides are characterized by diagnostic
myoinositol-loss precursor ions (−180 Da) that serve as markers
for identification. The 25 S-mycothiolated proteins overlap with
16 NaOCl-sensitive proteins identified in the fluorescent-label
thiol-redox proteome. These include Tuf, GuaB1, GuaB2, SerA,
and MetE as conserved abundant targets for S-thiolations across
Gram-positive bacteria (Chi et al., 2013). The S-mycothiolated
proteins are involved in the metabolism of carbohydrates, such
as glycolysis (Fba, Pta, XylB), glycogen and maltodextrin degra-
dation (MalP) and several biosynthesis pathways for serine,
cysteine, methionine (SerA, Hom, MetE), nucleotides and thi-
amine (GuaB1, GuaB2, PurL, NadC, ThiD1, and ThiD2) and
myo-inositol-1-phosphate (Ino-1 or Cg3323) (Figure 10). Fur-
ther protein-SSM function in peroxide detoxification (Tpx, Gpx),
methionine sulfoxide reduction (MsrA), heme degradation for
iron mobilization (HmuO) and protein translation (RpsF, RpsC,
RpsM, RplM, Tuf). The glycogen phosphorylase MalP is one of
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FIGURE 10 | Physiological roles of S-mycothiolations in

Corynebacterium glutamicum. The metabolic pathways for glycolysis,

biosynthesis of methionine, thiamine, GMP, MSH, and glycogen

metabolism are shown including identified S-mycothiolated proteins. The

identified S-mycothiolated or oxidized proteins are labeled with colors

(S-mycothiolated proteins are red; reversibly oxidized proteins are

magenta; both reversibly oxidized and S-mycothiolated are blue). The

selected S-mycothiolated metabolic enzymes include MetE, SerA, Hom

(Met biosynthesis); Fba, Pta (glycolysis); MalP (glycogen utilization); Ino-1

(MSH biosynthesis); ThiD1, ThiD2 (thiamine biosynthesis); GuaB1, GuaB2

(GMP biosynthesis). Further proteins with Cys-SSM sites are involved in

translation (Tuf, PheT, RpsC, RpsF, RpsM, RplM) and antioxidant functions

(Tpx, Bcp, MsrA) that are not shown here. The figure is adapted from

(Chi et al., 2014).

the most abundantly S-mycothiolated proteins in NaOCl-treated
cells (Chi et al., 2014). S-mycothiolation of MalP is important
for oxidative stress resistance in C. glutamicum since the malP
deletion mutant is NaOCl-sensitive in growth assays. MalP func-
tions in glycogen degradation during the stationary phase. S-
mycothiolation of MalP may prevent glycogen degradation under
NaOCl stress since the glycogen content remained stable despite
a strongly decreased glucose uptake rate.

The mycoredoxin-1 (Mrx1) has been characterized as
glutaredoxin-homolog of Actinomycetes in reduction of MSH
mixed disulfides (Van Laer et al., 2012) (Figure 8). Mrx-1 has
a typical Trx-like fold with a CGYC motif and a cis-Pro57 in
a groove that presumable binds MSH. The redox potential of

Mrx-1 was calculated as E0′

= −218 mV and the pKa of the
active site Cys17 was 5.1–5.6. Mrx-1 catalyzed de-mycothiolation
in a hydroxyethyl disulfide (HED) assay and is coupled to the
MSH/Mtr/NADPH pathway. Mrx-1 operates via a monothiol
reaction mechanism in the de-mycothiolation reaction analogous
to most glutaredoxins that are involved in de-glutathionylation.
The first Mrx1 substrate was identified as the thiol-peroxidase
Tpx that was S-mycothiolated at its active site Cys60 and resolv-
ing site Cys94 in C. glutamicum in vivo under hypochlorite stress
(Chi et al., 2014). Tpx showed NADPH-linked peroxidase activ-
ity and reduced H2O2 in a Trx/TrxR-coupled electron assay. S-
mycothiolation of Tpx inhibits the peroxidase activity which was
restored after reduction by the Mrx1/MSH/Mtr pathway. Thus,
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S-mycothiolation controls Tpx activity and protects the perox-
idatic Cys against overoxidation. In M. tuberculosis, Mrx1 has
been shown to reduce the one-Cys peroxiredoxin AhpE (Hugo
et al., 2014). AhpE is a membrane-associated peroxidase that
detoxifies peroxinitrite and fatty acid hydroperoxides as preferred
substrates (Hugo et al., 2009; Reyes et al., 2011). AhpE is oxidized
by peroxides to form a sulfenic acid intermediate (AhpE-SOH)
that can be reduced directly by Mrx1. Alternatively, AhpE-SOH
can react with MSH to S-mycothiolated AhpE-SSM which is
reduced by the Mrx1/MSH/Mtr electron pathway (Hugo et al.,
2014). The direct AhpE-SOH reduction may occur in the mem-
brane when MSH is not available and the formation of AhpE-
SSM and subsequent Mrx1-reduction was suggested to predom-
inate in the cytosol. Interestingly, the reducing mechanism of
AhpE-SSM is similar to the detoxification of arsenate by CgArsC1
and CgArsC2. Arsenate reacts with MSH to an arseno-(V)-MSH
complex that is reduced by Mrx1 releasing As(III) and Mrx1-
SSM that is recycled by the MSH/Mtr/NADPH electron path-
way (Ordonez et al., 2009; Villadangos et al., 2011). It remains
to be shown if AhpE is mycothiolated under oxidative stress in
M. tuberculosis cells in vivo. These results show that Mrx1 func-
tions as glutaredoxin homolog in C. glutamicum and M. tuber-
culosis in the reduction of S-mycothiolated peroxiredoxins (Tpx
and AhpE), when coupled to the MSH/Mtr/NADPH electron
pathway and as electron donor for arsenate reductase in arsenate
detoxification.

Recently, Mrx1 has been coupled to redox sensitive GFP
(roGFP2) to construct a new genetically encoded biosensor for
dynamic measurements of the MSH redox potential in differ-
ent M. tuberculosis strains (Bhaskar et al., 2014). This study

revealed phenotypic redox heterogeneity of E0′

(MSSM/MSH)
within Mycobacteria inside infected macrophages that are caused
by sub-vacuolar compartments. Those sub-populations with

higher E0′

(MSSM/MSH) were more susceptible to clinical rel-
evant antibiotics whereas populations with lower MSH redox
potentials were resistant to antibiotics. The results further show
that several anti-TB drugs induce oxidative stress in M. tuberculo-
sis during infections. In conclusion, this Mrx1-roGFP2 biosensor
is a promising tool to study MSH redox potential changes of
M. tuberculosis under infections and antibiotic treatments. This
is the first example for a genetically encoded redox biosensor
that measures dynamic changes of the mycothiol redox poten-
tial in bacteria. Future studies should be directed to apply similar
biosensors in other pathogenic bacteria to study the dynamics of
redox potential changes during infections.

Conclusion and Perspectives for Future
Research

In this review, we provide an overview about the biosynthesis
pathways and functions of the bacterial redox buffers glutathione,
bacillithiol and mycothiol and their regulatory roles for protein
S-thiolations. Bacterial redox buffers maintain the reduced
state of the cytoplasm and function as cofactors of conserved
enzymes for detoxification of ROS, RES, chlorines, antibi-
otics and xenobiotics. These thiol-dependent enzymes include

NADPH-dependent disulfide reductases (Gor, Mtr, YpdA)
and related glutaredoxin-like enzymes (Grx, Mrx, Brx), DinB-
family S-transferases (Gst, Mst, BstA), S-conjugate amidases
(Mca, Bca) and glyoxalases (GloAB, GlxAB). However, some
detoxification enzymes still need to be characterized in BSH-
utilizing bacteria, including the BSH-dependent formaldehyde
reductase (AdhA), the putative BSH peroxidase (Bpx) or thiol-
dependent dioxygenases (MhqA, MhqE and MhqO) (Antelmann
et al., 2008). The discovery of the biochemical functions of
MSH, EGT and S-transferases in the lincomycin antibiotic
biosynthesis opens perspectives to characterize the roles of
thiol-redox buffers in the biosynthesis of sulfur-containing
co-factors, natural compounds and antibiotics in other
bacteria.

The structures of BSH and MSH are similar and the BSH
biosynthesis enzymes BshA, BshB and BshC are homologous to
the MSH biosynthesis enzymes MshA, MshB, and MshC. How-
ever, the crystal structure of BshC has revealed significant dif-
ferences compared to MshC which requires further studies to
understand the still unknown cysteine ligation mechanism of
BshC (Vanduinen et al., 2015). It is further interesting, that the
levels of BSH and MSH vary strongly between Firmicutes and
Actinomycetes and also during growth and stress conditions.
While Mycobacteria produce up to 20 mM MSH, the levels of
BSH are much lower reaching 1–6 mM in Firmicutes bacteria.
The differences in BSH and MSH levels during growth and under
stress can be explained by the redox control of the BSH and
MSH biosynthesis enzymes by the major thiol-based redox sen-
sors (Spx and RsrA/RshA), presumably to enhance the redox
buffer capacity under certain conditions to keep the reduced
state of the cytoplasm. In contrast, redox regulation of GSH
biosynthesis genes has not been shown. However, the pathogen
L. monocytogenes is able to synthesize GSH and to import host-
derived GSH as adaptation strategy under infection conditions
(Reniere et al., 2015). Importantly, synthesized and host-derived
GSH both contribute to virulence factor regulation in L. mono-
cytogenes, while GSH-import was required for full virulence in
S. pneumoniae (Potter et al., 2012; Reniere et al., 2015). Over-
all, the roles of GSH, BSH and MSH for virulence and pathogen
fitness have been shown for many important human pathogens,
including L. monocytogenes, S. pneumoniae, S. Typhimurium, S.
aureus, and M. tuberculosis. Future studies in the field of infection
biology should be directed to understand the molecular mecha-
nisms of virulence factor regulation by thiol-redox buffers that
might involve also protein S-thiolation mechanisms. The GSH,
BSH and MSH biosynthesis enzymes, GSH uptake systems as
well as S-thiolated proteins could be promising drug targets for
the development of novel anti-infectives against emerging drug
resistant strains of S. pneumoniae, S. aureus and M. tuberculo-
sis. Thus, the large scale identification and quantification of S-
thiolated proteins in pathogens is an important topic for future
research.

Advances in mass spectrometry and chemical probe design
have facilitated the development of more sensitive redox pro-
teomics methods, such as the NEM-biotin switch assay or the
Gsp-biotin assay to study targets for protein S-glutathionylation
at a global scale (Lind et al., 2002; Kehr et al., 2011; Lin et al.,
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2015). In addition, numerous BSH- and MSH-mixed protein
disulfides have been identified recently under disulfide stress con-
ditions, such as NaOCl and diamide. However, more quantitative
MS-based redox proteomics approaches are required to deter-
mine the level of mixed BSH- and MSH-protein disulfides by
combining the direct shotgun approach with OxICAT or the
NEM-biotin switch assay coupled to Brx or Mrx1 (Leichert et al.,
2008; Kehr et al., 2011). In addition, the regulatory roles for only
few S-bacillithiolated and S-mycothiolated proteins have been
studied thus far, including the redox regulator OhrR and the
methionine synthase MetE (Lee et al., 2007; Chi et al., 2011).
However, many interesting metabolic enzymes, redox-sensing
transcription factors or virulence factors might be controlled by

protein S-thiolations in the pathogenic bacteria S. aureus and
M. tuberculosis that remain to be elucidated in future research.
Thus, it is an exciting field for new frontiers of science to unravel
the regulatory potential of emerging protein S-thiolations in
bacteria.
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The Role of Bacillithiol in Gram-Positive Firmicutes

Pete Chandrangsu,1 Vu Van Loi,2 Haike Antelmann,2 and John D. Helmann1

Abstract

Significance: Since the discovery and structural characterization of bacillithiol (BSH), the biochemical func-
tions of BSH-biosynthesis enzymes (BshA/B/C) and BSH-dependent detoxification enzymes (FosB, Bst, GlxA/
B) have been explored in Bacillus and Staphylococcus species. It was shown that BSH plays an important role
in detoxification of reactive oxygen and electrophilic species, alkylating agents, toxins, and antibiotics.
Recent Advances: More recently, new functions of BSH were discovered in metal homeostasis (Zn buffering,
Fe-sulfur cluster, and copper homeostasis) and virulence control in Staphylococcus aureus. Unexpectedly,
strains of the S. aureus NCTC8325 lineage were identified as natural BSH-deficient mutants. Modern mass
spectrometry-based approaches have revealed the global reach of protein S-bacillithiolation in Firmicutes as an
important regulatory redox modification under hypochlorite stress. S-bacillithiolation of OhrR, MetE, and
glyceraldehyde-3-phosphate dehydrogenase (Gap) functions, analogous to S-glutathionylation, as both a redox-
regulatory device and in thiol protection under oxidative stress.
Critical Issues: Although the functions of the bacilliredoxin (Brx) pathways in the reversal of S-bacillithiolations
have been recently addressed, significantly more work is needed to establish the complete Brx reduction pathway,
including the major enzyme(s), for reduction of oxidized BSH (BSSB) and the targets of Brx action in vivo.
Future Directions: Despite the large number of identified S-bacillithiolated proteins, the physiological rele-
vance of this redox modification was shown for only selected targets and should be a subject of future studies. In
addition, many more BSH-dependent detoxification enzymes are evident from previous studies, although their
roles and biochemical mechanisms require further study. This review of BSH research also pin-points these
missing gaps for future research. Antioxid. Redox Signal. 28, 445–462.

Keywords: Bacillus subtilis, Staphylococcus aureus, bacillithiol, BSH biosynthesis, metal homeostasis,
methylglyoxal, S-bacillithiolation, bacilliredoxin

Historical Context: Glutathione and the Discovery
of Alternative Low-Molecular-Weight Thiols

Low-molecular-weight (LMW) thiols serve a critical
protective role in cells by helping maintain cytosolic pro-

teins in their reduced state and as protection against reactive
oxygen species (ROS) and reactive electrophilic species, anti-
biotics, as well as heavy metals. Glutathione (GSH), a tripeptide
with composition c-L-glutamyl-L-cysteinylglycine (Fig. 1), is,
by far, the best studied member from this class of compounds.

Although thiols were detected in tissues in the late 19th
century, the discovery of GSH is appropriately attributed to the

celebrated biochemist Sir Fredrick Hopkins in 1921, co-winner
(with Christiaan Eijkman) of the 1929 Nobel Prize in Phy-
siology or Medicine for his discovery of vitamins. In his
seminal paper on GSH (53), Hopkins begins by giving credit to
the studies of Joseph de Rey-Pailhade (20), several decades
prior (1888), that led to the description of ‘‘philothion’’ as a
cellular reductant. Despite uncertainty regarding the precise
chemical composition, Hopkins proposed the name glutathione
for what he surmised was a dipeptide containing Glu and Cys:

Provisionally, for easy reference, the name Glutathione will
perhaps be admissible. It leaves a link with the historic Phi-
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lothion, has the same termination as Peptone, which has long
served as a name for the simpler peptides, and is a sufficient
reminder that the dipeptide contains glutamic acid linked to a
sulphur compound (53).

Doubts about the proposed chemical composition soon
emerged. Hopkins acknowledged this, and in 1929 published
evidence of the general tripeptide composition of GSH as
well as methods for its large-scale purification (54). These
studies revealed that GSH does not contain a thione (C = S)
moiety, but instead has a thiol (C-SH) (Fig. 1), but the name
glutathione has since been retained.

By the 1950s, the chemistry of thiols had been thoroughly
investigated, and Barron (6) could conclude that GSH, as the
major LMW thiol in cells, ‘‘...protects essential -SH groups
from oxidation, and it protects the tissues from the toxic effects
of heavy metals.’’ By this time, the impression had emerged
that GSH was a universal constituent of cells (6). Despite the
proclaimed ubiquity of GSH, by the mid-1970s, Robert Fa-
hey’s group had developed evidence pointing to the absence of
GSH in several species of bacteria (28).

Following up on this insight, the alternative thiol desig-
nated mycothiol (MSH) was purified and structurally char-
acterized from Streptomyces sp. AJ 9463 in the disulfide form
(119), from Mycobacterium bovis (125) and from Strepto-
myces clavuligerus (94), and shown to be the major LMW
thiol in most actinomycetes (Fig. 1) (92). As discussed later,
the biosynthetic pathways leading to MSH and to bacillithiol
(BSH) are closely related. The discovery and properties of
MSH have been recently reviewed (27, 59).

In addition to MSH, some mycobacteria also produce an-
other LMW thiol, ergothioneine (EGT; 2-mercaptohistidine
trimethylbetaine), originally discovered in the ergot fungus
as reviewed in (26). Chemically, EGT is distinct from other
LMW thiols in that a major fraction exists as the thione tau-
tomer. In addition to MSH, other alternative thiols have also
become appreciated for their roles as alternative LMW thiols.
One of the first to be described, trypanothione [T(SH)2; Bis-

glutathionylspermidine], is found in trypanosomatid para-
sites and consists of two GSH molecules linked by spermidine
(29). Trypanosomes also contain ovothiol A (N1-methyl-4-
mercaptohistidine).

Bacillithiol: Discovery, Structure Determination,
and Biosynthetic Pathway

Although the absence of GSH in many bacteria was ap-
preciated by 1978 (28), nearly 20 years would elapse before
bacillithiol (BSH) would be identified as the major LMW thiol
in many Firmicutes (low GC, Gram-positive bacteria). This
phylum is represented by the model organism Bacillus subtilis
and includes several important human pathogens. BSH has, to
date, been documented in Bacillus and Staphylococcus spp.,
Streptococcus agalactiae, and Deinococcus radiodurans (97).
In the interim, it was speculated that the function of GSH in
these organisms might have been subsumed by Cys (10) or
coenzyme A (CoASH) (21). The presence of a specific CoA-
disulfide reductase in Staphylococcus aureus and Bacillus
anthracis supports the notion that CoASH is reversibly oxi-
dized in vivo and may serve as an LMW thiol (21).

BSH was initially detected by HPLC analysis, together with
CoASH, as an abundant 398 Da LMW thiol during studies of
thiol-dependent enzymes in B. anthracis (99). Independently,
a thiol of this same mass was detected by mass spectrometry as
the major adduct for in vivo oxidized OhrR protein in B.
subtilis (64). OhrR is a DNA-binding protein with a single
redox-active Cys residue in each monomer and responds to
thiol oxidants by formation of mixed disulfides, including, as a
dominant product, the S-bacillithiolated protein.

Following up on this initial discovery, rapid progress was
made in a coordinated multi-laboratory effort that led to the
determination of the chemical structure for BSH, and insights
into its distribution (97) and biosynthetic pathway (40). The
identification of the biosynthetic pathway enabled the gen-
eration of mutant strains lacking BSH, and initial insights into

FIG. 1. Structures of major LMW thiols in bacteria. Glutathione is utilized as the major LMW thiol in eukaryotes and
Gram-negative bacteria, mycothiol in Actinomycetes, and BSH in Firmicutes. Coenzyme A (CoASH) also serves as an
LMW thiol in Staphylococcus aureus and Bacillus anthracis. BSH, bacillithiol; LMW, low molecular weight.
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its physiological role. Working on the general assumption
that BSH has likely supplanted GSH as an enzyme cofactor in
these organisms, it was also possible to predict the presence
of various different types of BSH-dependent enzymes (e.g.,
bacillithiol-S-transferases [BST], analogous to glutathionyl-
S-transferases) and redox partners (e.g., bacilliredoxins
[Brx], analogous to glutaredoxins). Even at this early stage
(only two prior research papers on BSH had appeared), this
enabled the presentation of an early preview of how the BSH
field might evolve, and readers are referred to this prior re-
view for a more detailed discussion of these early steps,
which provides a context for the present review (50).

The structure of BSH was determined, after purification
of the S-bimane derivative from D. radiodurans, to be the
a-anomeric glycoside of L-cysteinyl-D-glucosamine with L-
malic acid (97). Based on the chemical similarities between
MSH and BSH, it was possible to identify candidate genes for
the first two steps in BSH biosynthesis by homology (40).
This led to the identification of a cluster of co-transcribed
genes in B. subtilis that includes bshA (encoding a L-malic
acid glycosyltransferase) and bshB1 (one of two partially
redundant deacetylases for conversion of GlcNAc-Mal to
GlcN-Mal). This same operon also includes mgsA (a me-
thylglyoxal synthase), which is of interest since (as discussed
below) BSH plays a major role in methylglyoxal (MG) de-
toxification (11). This gene cluster is immediately upstream
of and co-directional with the panBCD operon encoding
enzymes in the CoASH biosynthetic pathway.

The bshC gene could not be identified by homology-based
searches, but was revealed by phylogenomic comparisons
(using the EMBL STRINGS web-based tool) as a gene with
a high co-occurrence (and occasional co-localization) with
bshA in bacterial genomes (40). The bshC gene is transcribed
both from its own promoter and also as part of a two-gene
operon with another predicted pantothenate biosynthesis
gene, panE (ylbQ) (37).

The significance of this gene clustering and possible co-
ordinate regulation is not yet understood, but an obvious
suggestion is that the synthesis of CoASH and BSH may be
positively correlated (50). Indeed, in B. subtilis, all of the
genes required for BSH synthesis are upregulated in response
to disulfide stress (e.g., diamide) through the action of the Spx
transcription factor (37). A similar induction has also been
documented in S. aureus (111). More broadly, genes for both
BSH synthesis and BSH-dependent detoxification reactions
are upregulated by several reactive oxidants and reactive
electrophiles, as noted in several studies in B. subtilis, B.
anthracis, and S. aureus [reviewed in Perera et al. (107)].

In addition to providing a candidate gene for the last and
missing step in BSH biosynthesis (bshC), phylogenomic
profiling also provided an intriguing list of genes encoding
proteins that are likely to function in core BSH metabolism.
These included several genes of previously unassigned
function (so-called y-genes). The ypdA gene encodes a pu-
tative thioredoxin reductase (TrxR) homolog and is postu-
lated to function as a bacillithiol disulfide (BSSB) reductase,
although experimental evidence is still lacking. Two others
(yqiW and yphP) encode proteins with DUF1094 domains
(domain of unknown function containing a conserved Cys-x-
Cys motif), and YphP was shown to be active as a disulfide
isomerase (22). This led to the prediction that these proteins
might function as Brx for the reduction of S-bacillithiolated

proteins, as described later. Finally, ytxJ was found to encode
another putative redox-active protein related to Trx that also
presumably functions in BSH metabolism.

Identification of the biosynthetic genes for BSH enabled the
generation of mutants lacking this thiol, confirming that BSH
is non-essential. Mutants lacking the ability to synthesize
BSH are sensitive to a variety of oxidative and electrophilic
stress conditions in B. subtilis and S. aureus (14, 15, 40, 111,
114). Moreover, it quickly became apparent that a previous
suggestion that the B. subtilis FosB fosfomycin resistance
protein might utilize Cys as a cofactor (10) was incorrect.
FosB (as described in more detail later) is a BSH-dependent
enzyme, and cells lacking either fosB or BSH biosynthesis are
equally sensitive to fosfomycin in B. subtilis and S. aureus
(40, 111). In practice, this provides a very convenient (al-
though indirect) assay for BSH levels in B. subtilis (40).

Chemical Properties of BSH

A key challenge for the further investigation of BSH was
the need to obtain quantities that are sufficient for chemical
and biochemical characterization. The development of
methods for the chemical synthesis of BSH ultimately met
this need. Chris Hamilton reported both a complete chemical
synthesis and a hybrid chemoenzymatic route taking advan-
tage of the ability of purified BshA to provide the D-GlcNAc-
L-Mal precursor (121). These approaches provided access to
not only BSH but also BSSB and to the biosynthetic inter-
mediates GlcNAc-Mal and GlcN-Mal (Fig. 2). A complete
chemical synthesis was also reported by Richard Arm-
strong’s laboratory in which BSH could be obtained in 8–9%
yield after 11 chemical steps (62). Purified BSH has facili-
tated the development of a detailed understanding of the re-
dox chemistry and ionization behavior of BSH (120), the
generation of specific BSH antibodies (an important tool for
the study of S-bacillithiolation) (15), and provides a neces-
sary cofactor for the study of BSH-dependent enzymes.

A detailed chemical study of BSH redox and ionization
properties indicates that the BSH thiol is more acidic than
Cys or GSH, with a higher fraction in the reactive thiolate
state at physiological pH (120). For example, at pH 7.7, an
estimated 22% of BSH is in the bacillithiolate (BS-) form
compared with 14.5% for Cys. The standard thiol redox
potential for the BSH, BSSB couple (-221 mV) is much
closer to that of free Cys (-223 mV) compared with GSH
(-240 mV). Considering the relative abundance of Cys,
CoASH, and BSH in the cell, it was concluded that BSH
(which is present at levels near 1 mM during growth in B.
subtilis and S. aureus) is the dominant LMW thiol, with
levels of the BSH thiolate exceeding those of CoASH and
Cys thiolates by *10–100-fold (111, 120).

The chemistry of LMW thiol redox buffers is dominated
by the interconversion of the reduced (thiol) and oxi-
dized (disulfide) forms, and this chemistry accounts for their
role in maintaining proteins in their reduced states in the
cytosol. However, the thiolate anion can also serve as a nu-
cleophile in conjugate addition reactions as commonly em-
ployed in detoxification pathways. For BSH, these reactions
are mediated by BST enzymes, analogous to the well-
characterized GST enzymes (Fig. 3A, B). The best charac-
terized representative for this type of enzyme to date is FosB,
as noted earlier.
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Oxidized disulfides can also react with hydrogen sulfide
(H2S), a metabolite produced by sulfate-reducing bacteria
and also serving as a secondary messenger in mammalian
systems (7). H2S exists predominantly as the hydrosulfide
anion (HS-), which reacts with BSSB to generate BSH and
BSSH (bacillithiol persulfide). S. aureus was recently shown
to contain an inducible system that functions to detoxify re-
active persulfides. The CstB protein, a persulfide dioxygen-
ase sulfurtransferase, oxidizes BSSH (as well as other LMW
thiol persulfides) in the presence of sulfite to generate re-
duced thiols (BSH) and thiosulfate (122). These authors also
suggest that previously noted enzymes with a homology to
CoASH disulfide reductases (CoA disulfide reductase-
rhodanese homology domain protein; CoADR-RHD) may
actually function as reductases for the CoASSH persulfide.
The general prevalence of persulfides in bacterial physiology,
and the various means for their detoxification, is not yet fully
understood.

Biochemical Mechanism of BSH Biosynthesis

Since BSH plays a critical role in antibiotic detoxifica-
tion and oxidative stress responses, the enzymes involved in
BSH biosynthesis are attractive targets for novel antibiotic
development. In fact, S. aureus strains unable to produce
BSH are compromised for survival in the presence of mac-
rophages and neutrophils (111). BshA, BshB, and BshC
catalyze the enzymatic synthesis of BSH (Fig. 2). BshA is
homologous to Mycobacterium tuberculosis MshA and is a
GT-4 class glycosyltransferase that is required for the first
committed step in BSH biosynthesis. BshA catalyzes the
addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to L-
malate through a metal-independent SN1-like mechanism,
forming N-acetylglucosaminyl-malate (GlcNAc-Mal) and
free UDP (130, 133). Structural and functional studies sug-
gest that the release of the UDP-leaving group and nucleo-
philic attack by L-malate occur on the same face of the

hexose sugar and are asynchronous, resulting in the forma-
tion of a short-lived oxocarbenium intermediate (133).

The second step of BSH biosynthesis is catalyzed by BshB,
an N-acetylhydrolase, that generates glucosamine malate
(GlcN-Mal) from GlcNAc-Mal. Genetic studies indicate the
presence of one or more functionally redundant proteins in B.
subtilis, B. anthracis, and B. cereus (31, 40). In B. subtilis,
strains lacking BshB1 still produced detectible levels of BSH
(40). However, BSH is completely absent on inactivation of
both BshB1 and a second deacetylase BshB2, encoded by
bshB2 (40). The same overlapping roles in BSH synthesis
were observed for the two BshB-paralogs BA1557 and
BA3888 in B. anthracis as well as for BC1534 and BC3461
in B. cereus (31). Biochemical evidence was provided that
both BshB-paralogs (BA1557 and BA3888) and the ortho-
logs in B. cereus have BshB activity and catalyze the N-
deacetylation of GlcNAc-Mal (31). In contrast, S. aureus
only encodes a single BshB-like protein that is essential for
BSH synthesis and has a dual function as BSH conjugate
amidase (Bca) (114).

Redundancy has been observed also for MSH biosynthesis,
where the deacetylation can be carried out by either the
BshB-like enzyme MshB or the ‘‘moonlighting’’ enzyme
Mca (mycothiol-S-conjugate amidase). The primary role of
Mca is in detoxification of xenobiotic compounds through the
cleavage of MSH conjugates, resulting in GlcN-myo-inositol
and the Cys-S-conjugate (mercapturic acid) that is exported
from the cell (93).

Biochemical studies of the BshB-paralogs of B. anthracis
and B. cereus identified only BA3888 as a bacillithiol-S-
conjugate amidase (Bca) able to hydrolyze the amide linkage
of bacillithiol-S-bimane (BSmB) to liberate GlcNAc-Mal
(31). The reaction proceeds via a Zn2+ dependent acid-base
catalysis. The active site is highly conserved, the Zn2+ is
coordinated by two histidine residues and one aspartate
(His12, His113, and Asp15), and the residues involved in
catalysis await identification. Bca activity is highly specific to

FIG. 2. Biosynthesis pathway of BSH and BSH-dependent detoxification. In the BSH synthesis pathway of Bacillus
subtilis, the glycosyltransferase BshA first adds GlcNAc to malate-producing GlcNAc-Mal. Then, the paralog N-
deacetylases BshB1 and BshB2 catalyze deacetylation of GlcNAc-Mal, and BshC adds cysteine (presumably in an un-
identified activated form) to GlcN-Mal, producing BSH. Detoxification of toxins, xenobiotics, or electrophiles involves their
conjugation with BSH by the BSH-S-transferase BstA, generating BS-conjugates that are cleaved by the deacetylase BshB2
(Bca) to CysS-conjugates and GlcN-Mal used for BSH recycling. The CysS-conjugates are exported from the cells as
mercapturic acid derivatives. In S. aureus, only one BshB-like enzyme is present that functions both as deacetylase and
amidase and is essential for BSH biosynthesis.
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the methyl aglycone, as suggested by its low enzymatic ac-
tivity when tested with BSH analogs where the methyl agly-
cone was replaced with an uncharged methyl or benzyl
group. The in vivo contribution of Bca to BSH biosynthesis
and the physiological substrates of Bca remain to be identified.

The addition of Cys to GlcN-Mal, the final step in BSH
biosynthesis, is catalyzed by the putative cysteine ligase,
BshC. BshC was identified by a phylogenomic analysis for
genes whose presence was correlated with the presence of
BshA and BshB utilizing the STRING protein interaction
network tool (40). Strains lacking BshC are unable to produce
BSH and accumulate elevated levels of the BSH precursor
GlcN-Mal (40). Interestingly, the reaction catalyzed by BshC
is unknown and has yet to be reconstituted in vitro, possibly
due to the absence of a required cofactor, substrate, or pro-
tein. Structural and functional studies suggest that BshC
forms a dimer in solution through interactions between an
extended coiled-coil domain from each subunit and that the
BshC active sites are solvent exposed, which may allow for
access by an additional protein involved in catalysis (132).

BSH and Detoxification

Fosfomycin and other antibiotics

LMW thiols play an important role in the detoxification
of xenobiotic compounds and antibiotics. The most well
understood LMW-based detoxification mechanism involves
thiol-S-transferases, which catalyse the reaction of LMW
thiols to a variety of substrates. The first characterized BST
was FosB, involved in the detoxification of fosfomycin
(Fig. 3A) (62, 115, 128). Fosfomycin is a broad-spectrum
antibiotic that is also used in clinical practice to treat
methicillin-resistant S. aureus (MRSA) infections (84, 127).
Fosfomycin inhibits the first step in cell wall synthesis
through covalent modification of the active site cysteine of
the MurA enzyme.

To counter the action of this antibiotic, bacteria have
evolved fosfomycin detoxification enzymes. B. subtilis and S.
aureus encode FosB, an Mn2+-dependent BST. FosB inacti-
vates fosfomycin by catalyzing the nucleophilic addition of
BSH to the C2 position of the fosfomycin epoxide ring,

FIG. 3. The functions of BSH-dependent detoxification enzymes in B. subtilis and S. aureus. BSH functions in
detoxification of reactive oxygen and electrophilic species, HOCl, and antibiotics, such as fosfomycin in B. subtilis and S. aureus.
(A) BSH is a cofactor for the thiol S-transferase FosB that adds BSH to fosfomycin for its detoxification. (B) Electrophiles,
xenobiotics, and toxins (RX) are conjugated to BSH by the BSH S-transferase BstA to form BS-conjugates (BSR), which are
cleaved by the BSH S-conjugate amidase BshB2 (Bca) to CysSR and a mercapturic acid (AcCySR) that is exported from the cell.
(C) BSH functions in methylglyoxal detoxification as a cofactor for the glyoxalases I/II (GlxA/B) in B. subtilis. GlxA converts
BS-hemithioacetal to S-lactoyl-BSH that is hydrolyzed by GlxB to D-lactate. (D) AdhA is a thiol-dependent formaldehyde
dehydrogenase that is induced under FA stress (98), likely converting S-hydroxymethyl-BSH to S-formyl-BSH. In the final step,
BSH and formate are released by an unidentified S-formyl-BSH hydrolase. (E) Unknown thiol-dependent peroxidases or
peroxiredoxins (Bpx) might function in peroxide detoxification. Question marks indicate uncharacterized reactions.
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resulting in an inactive BS-fosfomycin complex (115). Strains
lacking FosB or BSH are hypersensitive to fosfomycin and the
increase in sensitivity is comparable to strains lacking both
FosB and BSH, indicating that FosB utilizes BSH as a thiol
substrate (40). In support of this hypothesis, biochemical
studies demonstrated that S. aureus FosB is significantly more
active in the presence of BSH than other LMW thiols (115).

A second class of BSTs comprised members of the DinB/
YfiT superfamily of thiol transferases, which utilize a thiol
cofactor to detoxify reactive electrophiles and xenobiotics
(Fig. 3B). B. subtilis YfiT was identified as a putative BST by
structural homology to the mycothiol-S-transferase (RV0443)
found in M. tuberculosis (96). In vitro studies monitoring the
reaction of the electrophilic compound monochlorobimane
with BSH demonstrated that YfiT (96) and BstA (106), a
structural homolog found in S. aureus, indeed, function as
BSTs and are highly specific for BSH as a thiol substrate. The
relevant compounds detoxified by BSTs in vivo are currently
unknown. The only DinB/YfiT family protein with an iden-
tified function in vivo is the MSH-dependent maleylpyruvate
isomerase (ngcl2918) from Corynebacterium glutamicum,
which is essential for growth on aromatic compounds as a
carbon source (32).

BSTs may also be involved in the detoxification of en-
dogenously produced toxins that are byproducts or interme-
diates during secondary metabolite biosynthesis. In fact, toxic
metabolites that are produced during actinorhodin biosyn-
thesis by Streptomyces coelicolor appear to be detoxified by
formation of an MSH-S-conjugate (126). The formation of
this conjugate may be dependent on a DinB/YfiT-like protein.

Toxic electrophiles

The discovery of BSH as the major LMW thiol in B. subtilis
led us to postulate that BSH may serve a protective function
against the toxic dicarbonyl compound MG in a manner that is
functionally analogous to GSH (Fig. 3C). The first hint came
from the observation that the gene encoding MGS, mgsA, is
co-transcribed with the genes encoding the first two enzymes

in the BSH biosynthetic pathway, bshA and bshB1. In fact,
strains lacking BSH are more sensitive to added MG (40).

MG, an a,b unsaturated aldehyde, is a toxic, endogenous
byproduct of glycolysis, synthesized by MGS under condi-
tions of excess carbon or phosphate limitation due to an
imbalance between the rate of carbon acquisition and the
lower segment of glycolysis (129). The main role of MGS is
to restore inorganic phosphate levels. As an electrophile, MG
can modify guanine bases in DNA, leading to DNA damage
and an increased rate of mutation in surviving cells (33).
Furthermore, MG can react with arginine, lysine, and cyste-
ine residues in proteins, resulting in protein inactivation (72).

The major mechanism of protection from MG in Escher-
ichia coli is the GSH-dependent acidification of the cytoplasm
mediated by the KefGB and KefFC K+ efflux systems (34).
Exposure to MG leads to the spontaneous formation of the
GSH adduct hemithioacetal (HTA). Glyoxalase I (GlxI) cat-
alyzes the formation of S-lactoylglutathione (SLG) from HTA
(77). Subsequently, glyoxalase II converts SLG to D-lactate
and regenerates GSH (102). KefGB and KefFC K+ efflux
systems are directly inhibited by GSH and activated by GSH
adducts. Thus, the SLG intermediate is critical for protection
from MG stress as it is required for the full activation of the
KefGB and KefFC K+ efflux pumps (77, 87). The H+ influx
that accompanies the KefGB and KefFC-mediated K+ efflux
leads to the cytoplasmic acidification that is sufficient to
confer resistance to MG (34). Interestingly, protection from
MG by cytoplasmic acidification does not increase the rate of
MG detoxification (33, 34). Rather, cytoplasmic acidification
likely protects cells from MG and other electrophiles by
protonating nucleophilic residues on DNA, thereby prevent-
ing alkylation of DNA by electrophiles (33).

B. subtilis encodes a BSH-dependent MG-detoxification
pathway (Figs. 3C and 4) (11). Null mutants of the glyoxalase
I and II homologs, GlxA (formerly YwbC) and GlxB (for-
merly YurT), respectively, are more sensitive to MG and
function in the same genetic pathway as BSH and a putative
BSH-gated K+/H+ antiporter, KhtSTU (formerly YhaSTU).
Upon MG stress, intracellular pH decreases *0.4 U, as

FIG. 4. BSH-dependent detoxification of methylglyoxal, leading to cytoplasmic acidification. Methylglyoxal can be
produced as a byproduct of the glycolysis from DHAP. Methylglyoxal reacts spontaneously with BSH, forming BS-
hemithioacetal, which is converted to S-lactoyl-BSH by the glyoxalase-I (GlxA) and to lacatate by the glyoxalase-II (GlxB).
S-lactoyl-BSH activates the potassium proton antiporter KhtSTU for K-efflux and proton import, leading to cytoplasmic
acidification that likely inhibits interaction of methylglyoxal with the DNA to prevent DNA damage. BSH inhibits the
antiporter KhtSTU. DHAP, dihydroxyacetone phosphate.
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measured by an intracellular GFP-based pH reporter (Fig. 4).
This cytoplasmic acidification is sufficient for protection
against MG, since cells treated with the weak membrane-
permeant acid sodium acetate before MG exposure are less
sensitive to MG.

A GSH-independent MG detoxification pathway is also
present in E. coli, in which MG is converted directly to D-
lactate by the glyoxalase III enzyme, HchA. Using the Phyre2
structural homology search tool, a glyoxalase III homolog,
GlxC (formerly YdeA) in B. subtilis was identified (11).
GlxC null mutants are more sensitive to MG than wild-type
cells, although to a lesser extent than a BSH null mutant. The
MG sensitivity of the glcX bshC double mutant was additive
when compared with the glxC and bshC single mutants,
which suggests that GlxC is a BSH-independent glyoxalase
III enzyme and that the major detoxification pathway is BSH
dependent (11).

Methanotrophic and methylotrophic bacteria generate for-
maldehyde (FA) as an intermediate during the oxidation of
methane to carbon dioxide. FA is a toxic carbonyl compound
that, similar to MG, is a reactive electrophile and can react
with nucleophilic groups in proteins and DNA, leading to
protein-protein and protein-DNA crosslinking. In these bac-
teria, FA is either assimilated by the serine or ribose mono-
phosphate pathway (RuMP) to be used as a major source of
cellular carbon or oxidized to generate NADH and formate by
LMW thiol-dependent formaldehyde dehydrogenases (Fdh).

Recently, a metabolomics approach identified a role for
BSH in FA detoxification in Bacillus methanolicus (90)
(Fig. 3D). B. methanolicus is a thermotolerant, facultative
methylotroph, making it a useful strain for the large-scale
production of amino acids from methanol. When grown in the
presence of methanol, an S-formyl-BSH intermediate was
detected in cell lysates by LC-MS. The hydrolysis of related
S-formyl-GSH is usually catalyzed by S-formyl-GSH-
hydrolases that are homologs of human esterases and par-
ticipate in FA oxidation in GSH-producing bacteria (46). The
putative esterase that is specific for hydrolysis of S-formyl-
BSH is unknown in B. subtilis. The BSH-dependent FA ox-
idation pathway appears to be the most important under
conditions where the RuMP and THF pathways are over-
whelmed, such as on a rapid shift in carbon source from
mannitol to methanol. Non-methanotrophs, such as B. sub-
tilis, also use the RuMP pathway to detoxify FA. In addition,
transcriptomic and proteomic characterization of the B.
subtilis response to FA stress led to the identification of AdhA
as a putative LMW thiol-dependent Fdh that is induced under
FA and MG stress, although its precise role has not been
confirmed (Fig. 3D) (98).

BSH and Metal Homeostasis

Metal ions are essential for life, yet many fundamental
questions regarding the size of the cellular metal quota, how it
varies with growth conditions, and how it is modulated in
response to stress still remain. Metal deficiency leads to a
genome-wide response that serves to increase metal import,
decrease metal demand, mobilize stored metals, redistribute
metals from lower-priority enzymes to support higher-priority
needs, and replace metal-dependent enzymes with pathways
that are dependent on other cofactors (82). Conversely, metal
excess induces the expression of metal efflux systems to

prevent the mismetallation of essential enzymes and the
production of ROS (100). Both metal deficiency and excess
are utilized by the host immune system in response to path-
ogens (23, 103).

The chemical speciation of metals within cells is largely
unexplored. Metallation of metalloenzymes, and detection of
cellular metal status by metalloregulatory proteins, is gov-
erned by the labile metal pool, which is defined as those metal
ions that are hydrated or otherwise in a rapidly exchanging
form. LWM thiols in eukaryotic and GSH-producing bacteria
are known to participate in buffering the labile pool and in
detoxifying metal ions. GSH was shown to function together
with glutaredoxins in iron-sulfur (FeS)-cluster trafficking
since an FeS cluster could be assembled and bridged between
the active site Cys of monothiol Grx3/4 and GSH, as dem-
onstrated both in vitro and in vivo in yeast cells (67, 89, 108).

In plants and fungi, GSH is necessary for heavy-metal
sequestration as it is the major substrate for the synthesis of
the heavy metal-binding peptide phytochelatin (44). In yeast,
resistance to cadmium requires GSH (69). In contrast, the
contribution of LWM thiols to metal ion homeostasis is
poorly understood in non-GSH-producing bacteria (45, 48,
49). In the next section, we discuss the emerging role of BSH
as a key player in metal homeostasis.

Zinc buffering

Between 5% and 10% of proteins require Zn2+ as either a
structural or catalytic cofactor (3). Unlike Fe2+, which gener-
ates cell-damaging hydroxyl radicals in the presence of hy-
drogen peroxide (H2O2), Zn2+ is not redox reactive, allowing it
to be adopted as a structural cofactor in a number of proteins.
Zn2+ must be kept at a high enough concentration to ensure that
the Zn2+ quota is sufficient for Zn2+ to perform its essential
roles. However, since Zn2+, in general, binds with higher
avidity than most other metals (except for Cu2+), Zn2+ must not
be present in excess so that proteins utilizing other metals are
not mismetallated (58). Thus, the free steady-state Zn2+ levels
are highly regulated at multiple levels such that they are
buffered in with a total intracellular concentration of *1 mM
and a free Zn2+ concentration in the *pM range (101).

The narrow range of intracellular free Zn2+ is set by Zn2+

sensing transcription factors (101). In B. subtilis, Zur acts as a
sensor of Zn2+ limitation and CzrA is a sensor of Zn2+ excess
(39, 88). These metalloregulators sense the labile Zn(II) pool,
consisting of Zn(II) bound reversibly to small molecules,
nucleotides, and proteins in a rapidly exchanging form. Un-
der conditions of Zn2+ sufficiency, the Zn2+-sensing tran-
scription factor Zur represses transcription of the Zn2+ uptake
systems. When Zn2+ is in excess, CzrA is inactivated, leading
to derepression of transcription of the cadA and czcD efflux
pumps and Zn2+ efflux. Organisms have also evolved Zn2+-
independent paralogs that can functionally replace Zn2+ re-
quiring proteins under Zn2+ starvation conditions (1, 91). In
addition, Zn2+ may be mobilized from a labile Zn2+ pool in
response to stress under non-steady state conditions. Work
from the Maret lab demonstrated that metallothionein (MT),
a cysteine-rich, Zn2+-binding LMW protein, serves as a zinc
‘‘sink’’ in eukaryotes and is able to control the availability of
kinetically available Zn2+ in response to oxidative stress (80).

Since B. subtilis utilizes BSH as the major LMW thiol and
does not produce MT or GSH, BSH could serve a similar
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function in metal buffering. BSH has several potential metal
coordinating ligands, including a sulfur-containing thiolate, a
primary amine, and two carboxylates (97). Genetic, physio-
logical and biochemical evidence suggests that, in B. subtilis
and related low G + C Firmicutes, BSH serves as the major
buffer of the labile Zn2+ pool (Fig. 5) (75). BSH binds Zn2+ as
a (BSH)2:Zn2+ complex with an affinity (Ka) of 1.9 · 1012

M-2 (75). Given that the intracellular concentration of BSH
can range from 1 to 5 mM (120), depending on the growth
phase, it is reasonable to suggest that BSH can account for
*1/3 of the total Zn2+ pool under Zn2+ excess conditions (75).

BSH may also have direct effects on Zn2+ sensing by Zur
and CzrA. In vitro experiments monitoring the binding
of CzrA to its operator site as a proxy for CzrA metallation
status demonstrated that Zn2+ dissociation from holo-CzrA
was much faster in the presence of BSH. This suggests that
BSH can facilitate Zn2+ loading and removal into CzrA,
presumably through a ligand-exchange mechanism that was
analogous to that described for Cu+ chaperones (116). This
may provide a mechanism for rapid re-repression of Zn2+

efflux if cells experience a sudden shift from Zn2+ excess to
starvation. Thus, BSH influences Zn2+ homeostasis at mul-
tiple levels as a significant intracellular Zn2+ buffer under
conditions of Zn2+ excess to prevent intoxication, and as a
facilitator of transcription regulation in response to fluctua-
tions in Zn2+ levels.

Iron-sulfur cluster assembly

The major cytosolic requirements for Fe2+ are for utiliza-
tion in heme-containing enzymes and the assembly of FeS
clusters. FeS cluster-containing proteins are involved in a
wide range of cellular functions (83). Many key enzymes in
amino acid biosynthesis, carbon metabolism, cofactor bio-
synthesis, and antibiotic resistance are dependent on FeS

cluster-containing enzymes. Thus, inactivation of these en-
zymes under conditions of Fe2+ starvation or oxidative stress
is detrimental for proliferation (57).

A broad phenotypic survey of a S. aureus strain lacking
BSH revealed many phenotypes that are consistent with de-
fects in FeS biogenesis (Fig. 5) (30, 118). S. aureus strains
lacking BSH are severely impaired for growth in media
lacking leucine (Leu) or isoleucine (Ile). This growth defect
could be suppressed by supplementation with either amino
acid or Fe2+. The activity of key FeS requiring dehydratase
enzymes in Leu or Ile biosynthesis is decreased in a BSH null
mutant strain. In addition, aconitase activity, an unrelated
FeS-dependent enzyme that catalyzes the conversion of cit-
rate to isocitrate, also decreased, suggestive of an overall
defect in cellular FeS cluster biogenesis.

The FeS biosynthetic machinery in S. aureus is encoded by
the suf operon, which utilizes cysteine as a sulfur source and
an unidentified Fe2+ source. On assembly, the FeS clusters are
transferred to FeS carrier proteins (Nfu and/or SufA) for
delivery to FeS-containing proteins (81). Genetic analysis
suggests that the role of BSH in FeS biogenesis is indepen-
dent of Nfu and SufA (118). Thus BSH, Nfu and SufA per-
form independent, yet overlapping roles in FeS biogenesis.

In yeast, monothiol glutaredoxins together with GSH play
a key role in FeS cluster biogenesis and trafficking (17, 67,
68, 89, 108). Grx3/4 were shown to bind a bridging [2Fe-2S]
cluster in vitro that is coordinated by the active-site Cys
residue of the Grx domain and GSH as ligands (67, 108). The
deficiency of Grx affected the synthesis of Fe/S clusters,
heme, and di-iron centers and thus, this Grx FeS center has a
crucial role in iron trafficking and sensing in yeast cells. It
remains an interesting question for future studies to unravel
whether BSH chelates Fe2+ directly or is involved in FeS
cluster assembly via a BSH-containing Brx FeS center that
perhaps could function in iron trafficking and sensing.

FIG. 5. The functions of BSH in metal homeostasis. A role for BSH in metal homeostasis has been identified for iron,
zinc, and copper. BSH is required for the full activity of FeS requiring proteins in S. aureus, possibly as a key component in
the assembly and delivery of FeS clusters. BSH is believed to function in an independent, yet overlapping role with the FeS
carrier proteins, SufA and Nfu. BSH can also bind zinc with a high affinity and serves as a major cytosolic zinc buffer as
demonstrated in B. subtilis, allowing the cell to avoid zinc intoxication under conditions of excess. Biochemical evidence
also suggests a role for BSH in facilitating the delivery and removal of zinc from the zinc-sensing metalloregulators, Zur
and CzrA. Lastly, BSH may also work in concert with CopZ in interacellular copper buffering and delivery to metallo-
proteins and may protect CopZ from overoxidation through S-bacilliothiolation. FeS, iron-sulfur.
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BSH may also have a role in maintaining the labile Fe2+

pool. In bacteria, Fe2+ sufficiency is sensed by the Fe2+-specific
metalloregulator, Fur (63). On Fe2+ sufficiency, B. subtilis Fur
binds Fe2+ at two different sensing sites, leading to DNA
binding and repression of its regulon (76). Fur controls a large
and complex regulon, including many iron uptake systems and
an iron efflux pump (PfeT) (4). In addition, Fur indirectly
regulates many more genes by repression of a small noncoding
RNA (FsrA) and putative RNA chaperones (FbpABC) that are
analogous in function to Hfq from enterobacteria, which to-
gether mediate an Fe2+-sparing response (36, 123, 124). A S.
aureus BSH null strain contains lower levels of Fur-accessible
Fe2+, as judged by slower transcriptional repression on Fe2+

sufficiency of the Fur-regulated isdB promoter, which is in-
volved in Fe2+ acquisition from heme (118).

Copper trafficking

Copper plays a critical role in many cellular processes, yet
Cu+ is highly toxic in excess due to enzyme mismetallation
(78, 79). Thus, bacteria have evolved mechanisms to limit
intracellular Cu+ toxicity by keeping it tightly bound to
proteins, thereby limiting deleterious side reactions. Delivery
of Cu+ into Cu+-containing proteins is often mediated by Cu+

chaperones, such as Atx1 in yeast (70) or possibly CopZ in B.
subtilis (5). CopZ is a Atx1-like protein that may sequester
excess intracellular Cu+ and deliver Cu+ to the CopA CPx-
type ATP-ase for efflux. Recent in vitro studies identified S-
bacillithiolated forms of apo-CopZ as well as CopZ loaded
with BSH:Cu+ adducts (Fig. 5) (60). Further biochemical
analysis revealed that BSH binds Cu+ with a relatively high
affinity of b2(BSH) = 4 · 1017 M-2 and a stoichiometry of 2
BSH to 1 Cu+, indicating a possible role for BSH in intracellular
Cu+ buffering. Cells lacking BSH are no more sensitive to Cu+

than wild-type cells. Interestingly, expression of the CsoR-
regulated, Cu+-responsive copZA operon is induced in the ab-
sence of BSH, suggesting elevated levels of labile Cu+ and a role
for BSH in Cu+ buffering (75). However, the precise in vivo role
of BSH in Cu+ homeostasis remains to be determined.

Functions of BSH in S. aureus Virulence

BSH also plays an important role under infection-like
conditions in the S. aureus clinical isolates, as shown in two
phenotype studies using macrophage infection assays (111,
112). BSH-deficient mutants in clinical MRSA strains COL
and USA300 showed a decreased survival in human whole-
blood survival assays (111). In microarray analyses, the bio-
synthetic operon for staphyloxanthin was upregulated and the
staphyloxanthin level was strongly decreased in the bshA
mutant, suggesting lower radical scavenging ability in the
absence of BSH. Staphyloxanthin is a carotenoid pigment that
is produced by some S. aureus strains and is responsible for
the yellow color from which the species name is derived.
Staphyloxanthin provides protection against oxidative stress
in neutrophil-infection assays and enhances the fitness of S.
aureus (16).

Among the various S. aureus clonal complexes, it was
found that natural BSH-deficient S. aureus strains have
evolved that belong to the S. aureus NCTC8325 lineage (e.g.,
strain SH1000). They carry a bshC null mutation due to an
8 bp duplication in the bshC gene as a possible remnant of a
transposon insertion (95, 111, 112). The natural S. aureus

SH1000 bshC mutant was compromised in survival during in-
fection assays using murine macrophages and human epithelial
cell lines in comparison to the repaired and bshC-complemented
S. aureus SH1000 strain (111, 112). Thus, BSH is an important
virulence factor contributing to pathogen fitness and provides
protection against the host-immune system in S. aureus clinical
MRSA isolates under infection-related conditions.

This makes the BSH biosynthesis enzymes attractive drug
targets for the treatment of emerging MRSA infections. In
particular, BshB inhibitors would be good candidates for
anti-infectives that block biosynthesis and salvage of BSH.
Future studies should be directed toward unraveling the
mechanisms of virulence control by BSH in S. aureus, which
could involve S-bacillithiolation of key enzymes or regulators.

Protein S-Bacillithiolation and Its Reversal by Brx

Targets of protein S-bacillithiolation in B. subtilis
and S. aureus

In eukaryotes, protein S-glutathionylation functions as an
important thiol-protection and redox-regulatory mechanism
and is implicated in many physiological and pathophys-
iological processes, such as neurodegenerative and car-
diovascular diseases, cancer, and diabetes (18, 42, 43). In
Firmicutes, BSH plays a related role in a redox modification
termed protein S-bacillithiolation (Fig. 6) (74). Protein S-
bacillithiolation was first discovered as redox modification of
the organic hydroperoxide repressor OhrR under cumene
hydroperoxide (CHP) stress (Fig. 7). OhrR is inactivated due
to S-bacillithiolation at its lone Cys15 residue under CHP
stress, leading to upregulation of the OhrA peroxiredoxin that
is involved in CHP detoxification (35, 64). However, OhrR is
also involved in redox sensing of hypochloric acid and is
inactivated by S-bacillithiolation under NaOCl stress, leading
to ohrA derepression that confers resistance against NaOCl
stress in B. subtilis (14). Thus, S-bacillithiolation functions as
a redox-switch mechanism to control the activity of the
redox-sensing transcription factor OhrR in B. subtilis in re-
sponse to both CHP and NaOCl treatment.

Although the role of the OhrA peroxiredoxin in the de-
toxification of organic hydroperoxides to their corresponding
alcohols is well known in several bacteria (24), the function
of OhrA in NaOCl detoxification has still to be demonstrated
in vitro. Moreover, there are two OhrR homologs encoded in
the genomes of S. aureus, SarZ and MgrA, controlling ohrA
homologs and large regulons for antibiotics resistance de-
terminants and virulence factors (12). Evidence for the redox
control and structural changes of SarZ and MgrA at the
conserved single Cys by S-thiolation was demonstrated by
using a synthetic thiol, benzene thiol in vitro (110). Recently,
the quantitative redox proteomics approach OxICAT re-
vealed increased oxidation of both SarZ and MgrA under
NaOCl stress in S. aureus USA300, suggesting their redox
regulation by S-bacillithiolation in vivo (56).

Apart from OhrR, the methionine synthase MetE was iden-
tified as the most abundant S-bacillithiolated protein in
Bacillus species under NaOCl stress (Fig. 7). S-bacillithiolation
of MetE was observed when cells were grown in minimal me-
dium under NaOCl stress and MetE-SSB could be visualized
as a major band in BSH-specific Western blots under NaOCl
and diamide stress. MetE was S-bacillithiolated at its Zn-
binding active site Cys730 and at the non-essential surface-
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exposed Cys719, causing a methionine auxotrophy phenotype
under NaOCl stress (12). MetE is also a main target for
S-glutathionylation and the most susceptible protein for thiol-
oxidation in E. coli under diamide treatment (52, 66). S-
glutathionylation of MetE occurs at a non-conserved Cys645
that is located at the entrance to the active site, also leading
to methionine auxotrophy in E. coli (52).

We have shown that the conserved Zn-binding active site
forms the mixed disulfide with BSH in B. subtilis, which is
also target for S-mycothiolation in C. glutamicum under
NaOCl stress (13). Inactivation of MetE under NaOCl stress
in B. subtilis is accompanied by an increased transcription of
the S-box regulon controlling genes for methionine biosyn-
thesis. It is hypothesized that MetE inactivation could lead to a
translation arrest to enable detoxification of hypochlorite and
to avoid further protein damage. Further support for this pos-
tulated translation stop is provided by the observation that
other amino acid biosynthesis enzymes (AroA), protein
translation factors (Tuf), and ribosomal proteins (RpsM) are
also targets for S-thiolation across Gram-positive bacteria (14).

In S. aureus, S-bacillithiolation was recently shown to
control the activity of the glycolytic enzyme glyceraldehyde-
3-phosphate dehydrogenase (Gap) of S. aureus under NaOCl
stress (Fig. 7) (56). Gap is S-bacillithiolated at the conserved
active site Cys151, which is a well-known target for vari-
ous post-translational thiol-modifications, also including S-
glutathionylation in eukaryotes. The reactivity of the Gap
active site was shown to depend on a specific H2O2-binding
pocket, transition state stabilization, and a proton relay
mechanism promoting leaving-group departure (51, 105).

In S. aureus, Gap contributes as the most abundant Cys
protein in the proteome, with 4% to the total Cys proteome of
S. aureus and the S-bacillithiolated Gap was observed as a
major band in NaOCl-treated cells using BSH-specific
Western blots (56). Using OxICAT, Gap showed the
highest oxidation increase of 29% at the S-bacillithiolated
active site Cys151 under NaOCl stress. Detailed Gap activity
assays in the presence of H2O2 and NaOCl with or without
BSH revealed that Gap inactivation is faster due to S-
bacillithiolation compared with overoxidation. These results
lead to the conclusion that S-bacillithiolation of the Gap ac-
tive site can efficiently prevent its irreversible overoxidation
under both H2O2 and NaOCl treatments. Molecular docking
of BSH into the Gap active site was used to model the structure
of the S-bacillithiolated active site. The model of the Gap-SSB
structure suggests that BSH can undergo disulfide formation
with Cys151 without major conformational changes. This may
explain why the most abundant Cys-protein Gap is the pre-
ferred and dominant target for S-bacillithiolation inside S.
aureus cells (56).

Protein S-bacillithiolation is a widespread thiol-protection
and redox-regulatory mechanism in different Firmicutes under
hypochlorite stress, including industrially important Bacillus
and Staphylococcus species, such as B. subtilis, Bacillus
amyloliquefaciens, Bacillus megaterium, Bacillus pumilus,
and the meat-starter culture Staphylococcus carnosus (8, 14,
74). Eight common and 29 unique S-bacillithiolated proteins
were identified in the different Firmicutes using shotgun pro-
teomics based on the mass increase of 396 Da at Cys residues
(14, 15). The complete set of S-bacillithiolated proteins (the
S-bacillithiolome) includes antioxidant function proteins, such
as peroxiredoxins (YkuU), thiol-disulfide oxidoreductases
(YumC) and Brx (YphP YqiW, YtxJ), translation factors
(Tuf), chaperones (DnaK, GrpE), and several metabolic en-
zymes involved in the biosynthesis of amino acids, cofactors,
and nucleotides. The translation elongation factor TufA,
the methionine synthase MetE and its homolog YxjG, the in-
osine monophosphate dehydrogenase GuaB, and the inorganic
pyrophosphatase PpaC belong to the conserved targets for S-
bacillithiolation across Firmicutes bacteria that are also mod-
ified by S-mycothiolation in Actinomycetes (13).

Surprisingly, the glycolytic Gap is the major target for
S-bacillithiolation in S. aureus (56), but Gap is not S-
bacillithiolated in Bacillus species. Instead, the Gap enzyme
of B. subtilis is oxidized to an intramolecular disulfide in its
highly conserved CTTNC motif under NaOCl stress, as
confirmed by mass spectrometry (14). This intracellular
disulfide was also shown for the E. coli Gap homolog under
NaOCl stress, since both Cys residues showed increased
oxidations in the OxICAT analysis (65). However, in S. au-
reus Gap, the second Cys in this CTTNC motif is replaced by
a serine explaining the preference of Cys151 for S-
-bacillithiolation under NaOCl stress.

All global S-bacillithiolome studies to date identified S-
bacillithiolated proteins in Firmicutes bacteria by mass spec-
trometry and non-reducing BSH-Western blot analyses under
NaOCl and diamide stress, but not under H2O2 stress in vivo
(15). Previously, strongly increased S-thiolations were also
observed at the global level under diamide stress in B. subtilis
and S. aureus (113). S-glutathionylation requires activation of
thiols to sulfenic acid, sulfenylamides, thiyl radicals, thio-
sulfinate, or S-nitrosyl intermediates that, subsequently, react

FIG. 6. Mechanisms of S-bacillithiolation and its re-
versal. Proteins are S-bacillithiolated under CHP, HOCl,
and diamide stress in Bacillus and Staphylococcus species.
Diamide is a reactive electrophile species leading directly to
the formation of mixed BSH disulfides. CHP and HOCl
activate thiols to a sulfenic acid (-SOH) and sulfenylchloride
(-SCl) intermediates, respectively, that react further with
BSH to form S-bacillithiolated proteins. In the absence of
proximal thiols, -SOH and -SCl are overoxidized to sulfinic
or sulfonic acids. Thus, S-bacillithiolation serves to protect
vulnerable thiols against irreversible overoxidation. The
asterisk indicates that often active site Cys residues are tar-
gets for S-bacillithiolation. The reversal of S-bacillithiolation
is catalyzed by the BrxA/B. Brx, bacilliredoxin; CHP, cu-
mene hydroperoxide.
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further with GSH to the mixed disulfide (2, 41, 85, 86). Hy-
pochlorite activates the thiol group via chlorination, leading
to an unstable sulfenylchloride intermediate that quickly re-
acts further to generate S-bacillithiolations (Fig. 6) (19, 47).
Diamide is a reactive electrophile known to form mixed
disulfides, including S-thiolations in several organisms (113).
The second-order rate constant of the reaction of HOCl with
thiols is seven orders of magnitude higher compared with
H2O2 (19, 104), explaining why S-bacillithiolation was not
observed under H2O2 stress in vivo. Moreover, the pathogen
S. aureus exhibits a remarkable resistance to 200 mM H2O2

due to efficient detoxification mechanisms that allow the
survival under infection conditions (55, 73).

Apart from H2O2, S. aureus encounters HOCl during in-
fections by activated neutrophils that is produced by mye-
loperoxidase (134), and hence, S-bacillithiolation serves as a
major thiol-protection mechanism of essential enzymes, such
as Gap under infection-related HOCl stress conditions. It will
be interesting to uncover the targets for S-bacillithiolation

during infections, or in the anterior nares as the natural niche
of S. aureus in future studies.

The BrxA and BrxB function
in protein de-bacillithiolation

The Trx-fold proteins YtxJ, BrxA (YphP), and BrxB
(YqiW) were identified as S-bacillithiolated in B. subtilis and
S. carnosus that co-occur with the BSH biosynthesis enzymes
(BshA, BshB, BshC) only in BSH-producing Firmicutes
bacteria and were suggested to function as Brx in the reversal
of S-bacillithiolations (Fig. 8A, B) (15). YtxJ is suggested as
a monothiol Brx with the active site Cys located in a con-
served TCPIS motif.

BrxA (YphP) and BrxB (YqiW) are DUF1094-family
proteins with unusual CGC active site motifs, rather than the
more common CxxC spacing seen in glutaredoxin (38, 40).
BrxA was originally suggested to function as a thiol-disulfide
isomerase based on its high standard redox potential of

FIG. 7. Physiological roles of S-bacillithiolations for OhrR and MetE in B. subtilis and for Gap of S. aureus. NaOCl
leads to S-bacillithiolation of OhrR and MetE as main targets in B. subtilis that have regulatory roles under NaOCl stress. S-
bacillithiolation inactivates the OhrR repressor, leading to induction of the OhrA peroxiredoxin that confers resistance to
NaOCl and OHP. S-bacillithiolation of the methionine synthase MetE at its active site Cys730 and of other enzymes of the
Cys and Met biosynthesis pathway (YxjG, PpaC, SerA, MetI) leads to methionine auxotrophy. In S. aureus, the glycolytic
Gap is the main target for S-bacillithiolation under NaOCl stress. S-bacillithiolation of the Gap active site Cys151 leads to
reversible Gap inactivation and prevents its overoxidation to Cys sulfonic acid. Gap inactivation under oxidative stress
might redirect the glycolytic flux into the PPP for NADPH regeneration, as shown in yeast cells. Gap, glyceraldehyde-3-
phosphate dehydrogenase; OHP, organic hydroperoxide; PPP, pentose phosphate pathway.
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E0¢ = -130 mV (22). However, both BrxA and BrxB function
in the reduction of the S-bacillithiolated MetE and OhrR
in vitro, thereby demonstrating Brx activity (38). The BrxBCGA-
resolving Cys mutant could regenerate DNA-binding activity of
S-bacillithiolated OhrR in vitro, but S-cysteinylated OhrR could
not be reactivated. MetE de-bacillithiolation was catalyzed
by the BrxBCGA mutant as revealed by non-reducing BSH-
specific Western blot analysis and mass spectrometry, but
MetE reactivation could not be demonstrated in vitro. In S.
aureus, Gap is the major S-bacillithiolated protein under
NaOCl stress and Gap activity could be fully restored by using
the BrxA (YphP) homolog SAUSA300_1321 (Brx) and the
BrxCGA-resolving Cys mutant in vitro (56).

In conclusion, the BrxA and BrxB have been characterized
to catalyze the de-bacillithiolation of two essential metabolic
enzymes (MetE and Gap) and of the redox-sensing regulator
OhrR in B. subtilis or S. aureus. These results provide evi-
dence for the function of glutaredoxin-like Brx in industrially
and medically important BSH-producing bacteria. However,
phenotypic analyses of brxA and brxB single and double
mutants revealed no significant growth phenotypes under
NaOCl stress in B. subtilis (38). Thus, the Brx pathway is not
essential and the Trx pathway might be alternatively involved
in the de-bacillithiolation in B. subtilis.

A Brx-roGFP2 biosensor monitors dynamic changes
in the BSH redox potential in S. aureus

Recently, Brx (YphP) was fused to redox-sensitive GFP
(roGFP2) to construct a genetically encoded Brx-roGFP2

biosensor to monitor dynamic changes in the BSH redox
potential in S. aureus (Fig. 8C, D) (73). Brx-roGFP2 responds
specifically only to physiological concentrations of BSSB
in vitro, but it does not react with other thiol disulfides
(cystine, GSSG, MSSM, CoASH disulfides). This further
confirms the specificity of Brx for the reduction of BSH
mixed disulfides in S. aureus.

The specificity of the Brx-roGFP2 biosensor to low doses
of BSSB was shown to depend on the Brx active site in vitro,
whereas direct responses of the roGFP2 to the oxidants
in vivo could not be excluded. Brx-roGFP2 was shown to
react very fast in S. aureus COL to low doses of 20–100 lM
NaOCl in vivo, but high doses of a maximum of 100 mM
H2O2 did not lead to complete biosensor oxidation. This
confirms the high reactivity of NaOCl inside S. aureus that
requires fast thiol protection by S-bacillithiolation to avoid
the overoxidation of thiols. The weak biosensor response to
H2O2 can be explained by the high level of peroxide resis-
tance in S. aureus.

This Brx-roGFP2 biosensor was further applied to investi-
gate the involvement of oxidative stress in the killing mode of
antibiotics in S. aureus (73). The role of ROS in the mecha-
nism of action of bactericidal antibiotics has been a subject of
controversy (61, 71). Antibiotics that are commonly used to
treat S. aureus infections were selected that target the RNA
polymerase (rifampicin), cell-wall biosynthesis (fosfomycin,
ampicillin, oxacillin, and vancomycin), protein biosynthesis
(gentamycin, lincomycin, erythromycin, and linezolid), and
DNA replication (ciprofloxacin). These different antibiotics
classes did not lead to changes in the BSH redox potential at

FIG. 8. Structure of the BrxA (YphP) of B. subtilis (A), Brx redox pathway (B), principle of Brx-roGFP2 biosensor
oxidation (C), and ratiometric change of excitation spectra of Brx-roGFP2 by BSSB in vitro (D). (A) The structure of
the BrxA (YphP) with the CGC active site motif was generated by using the software Phyre2 and PyMol. (B) BrxA reduces
S-bacillithiolated proteins, resulting in Brx-SSB formation. Recycling of BrxA may require BSH and an NADPH-dependent
BSSB reductase that could be YpdA. (C) The Brx-roGFP2 biosensor reacts first with BSSB at the active site Cys of Brx,
leading to Brx-SSB formation, subsequent transfer of the BSH moiety to the coupled roGFP2, and re-arrangement to the
roGFP2 disulfide. The roGFP2 disulfide causes a change of the 405/488 nm excitation ratio. (D) Brx-roGFP2 reacts very fast
with purified 100 lM BSSB, as shown by the ratiometric change in the excitation maxima at 405 and 488 nm. For fully
oxidized and reduced probes, Brx-roGFP2 was treated with 5 mM diamide and 10 mM DTT, respectively. The Brx-roGFP2
fluorescence excitation spectra were monitored by using the Clariostar microplate reader. Adapted from a previous pub-
lication (73). BSSB, oxidized bacillithiol disulfide.
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sub-lethal concentrations, indicating that these antibiotics do
not impose strong oxidative stress in S. aureus.

These results are consistent with roGFP2 biosensor results
obtained in Salmonella under antibiotic treatment (131).
However, due to its high peroxide resistance, S. aureus might
be able to quickly detoxify ROS generated during antibiotic
treatment. In the case of fosfomycin, BSH is directly required
as a cofactor for FosB for detoxification in S. aureus (111).
However, previous studies found no correlation between the
level of fosfomycin resistance and BSH levels in different S.
aureus clinical isolates, and no increased BSH redox potential
was measured under fosfomycin treatment in S. aureus COL.

The Brx-roGFP2 biosensor was further expressed in two
MRSA isolates, S. aureus COL and USA300, and the latter is
highly virulent community-acquired MRSA. An increased
BSH redox potential was measured during the entry into sta-
tionary phase in both strains, ranging from -300 to -270 mV in
COL and from -300 to -235 mV in USA300 along the growth
curve. Our future studies are directed to apply this Brx-roGFP2
biosensor for screening of the BSH redox potential across S.
aureus isolates of different clonal complexes to reveal the
differences in pathogen fitness and in their ROS detoxification
capacities as defense mechanisms against the host immune
system.

Concluding Remarks

In a previous review in this journal (50), written soon after the
discovery of BSH, readers were introduced to this novel thiol
and given a preview of how the field might develop, guided by
analogy with the prior extensive work on GSH and, to a lesser
extent, MSH. Many of the predictions made at that time have
held true, but there have also been many surprises as well as
frustrations. Here, we briefly highlight some of the pressing
questions in the field that have not yet been resolved, although
ongoing efforts will surely work to address these challenges.

Although the biosynthetic pathway of BSH is now well
established, and extensive structural and biochemical studies
have led to a detailed understanding of this process, the actual
reaction catalyzed by BshC is still undetermined. The analo-
gous enzyme for MSH synthesis uses aminoacylated tRNACys

as an activated form of Cys. We assume that BshC also re-
quires an activated form of Cys, but the identity of this last
substrate is unknown. Another key ‘‘missing’’ activity for our
understanding of BSH biology is the BSSB reductase. Cer-
tainly, the B. subtilis YpdA protein (a TrxR homolog) is an
attractive candidate, but attempts to demonstrate BSSB ac-
tivity biochemically have been unsuccessful.

Although many of the proteins involved in the core me-
tabolism of BSH are, by now, known, including the biosyn-
thesis pathway and Brx, many BSH-utilizing enzymes and
accessory functions are yet to be discovered. There are sev-
eral peroxidases annotated as Gpx, thiol-peroxidase, or thiol-
dependent peroxiredoxin in Bacillus and Staphylococcus
species that could use BSH as a thiol cofactor for peroxide
detoxification (Fig. 3E). It is also unclear as to whether BSH
(or perhaps BSSB) is imported or exported from cells. In E.
coli, GSH is exported to the periplasm (109), but an analogous
process for BSH is not established. It is worth noting that B.
subtilis has multiple importers assigned as having a role in
cystine uptake (9), but it is not known as to whether one or
more may, in addition, or instead, use BSSB as a substrate.

Although the role of BSH in thiol redox chemistry is well
established, there are also other aspects that are still largely
unexplored. As noted earlier, in some cases, BSH may play a
key role in protecting cells against H2S stress (122), and by
analogy with GSH a role in protection against reactive ni-
trogen species can be predicted. Although BSH has already
been investigated for its role in buffering of Zn2+ (25, 75) and
in the assembly of FeS clusters (30, 117, 118), many details
remain to be discovered, such as the possible roles of BSH and
other thiols together with Brx (glutaredoxin-like enzymes) in
bridging FeS clusters, analogous to the role of GSH and Grx
proteins in iron trafficking and sensing in GSH-producing
eukaryotic organisms.

Similarly, proteomics studies have documented an
abundance of protein S-bacillithiolation as a major post-
translational modification under oxidative stress conditions
(14, 15, 56, 64, 74, 107), but the pathways that reverse this
modification (Brx) and the consequences for enzyme activity
are still only now emerging. On a broader level, a clear pic-
ture has not yet emerged as to which bacteria synthesize BSH
instead of GSH (or MSH), and whether one offers specific
advantages over the other. We look forward to the continued
rapid progress in this area and the resolution of these ques-
tions, and others not yet even imagined.
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Bca ¼ BSH S-conjugate amidase
Brx ¼ bacilliredoxin

BSH ¼ bacillithiol
BshA ¼ glycosyltransferase for GlcNAc-Mal

biosynthesis
BshB ¼ deacetylase-producing GlcN-Mal
BshC ¼ cysteine ligase for BSH biosynthesis
BSSB ¼ oxidized bacillithiol disulfide

Bst ¼ BSH-S-transferases
CA-MRSA ¼ community-acquired MRSA

CHP ¼ cumene hydroperoxide
CoASH ¼ coenzymeA

Cys ¼ cysteine
DHAP ¼ dihydroxyacetone phosphate

EGT ¼ ergothioneine
FA ¼ formaldehyde

Fdh ¼ formaldehyde dehydrogenases
FeS ¼ iron-sulfur
Gap ¼ glycolytic glyceraldehyde -3-phosphate

dehydrogenase
GlcNAc ¼ N-acetyl glucoseamine
GlxA/B ¼ glyoxalases A and B

Grx ¼ glutaredoxin
GSH ¼ glutathione

GSSG ¼ oxidized glutathione disulfide
Gst ¼ GSH-S-transferases

H2O2 ¼ hydrogen peroxide
H2S ¼ hydrogen sulfide

HTA ¼ hemithioacetal
LC-MS/MS ¼ liquid chromatography tandem mass

spectrometry
LMW ¼ low molecular weight

Mal ¼ malate
Met ¼ methionine
MG ¼ methylglyoxal

MgsA ¼ methylglyoxal synthase
MRSA ¼ methicillin-resistant Staphylococcus

aureus
Mrx1 ¼ mycoredoxin1
MSH ¼ mycothiol

MT ¼ metallothionein
NADH ¼ nicotinamide adenine dinucleotide

NADPH ¼ nicotinamide adenine dinucleotide
phosphate

NaOCl ¼ sodium hypochlorite
OHP ¼ organic hydroperoxide
OhrR ¼ organic hydroperoxide repressor

PPP ¼ pentose phosphate pathway
protein-SSB ¼ BSH protein mixed disulfide

roGFP2 ¼ redox-sensitive green fluorescent protein
ROH ¼ organic alcohol
ROS ¼ reactive oxygen species

RuMP ¼ ribose monophosphate pathway
SLG ¼ S-lactoylglutathione

T(SH)2 ¼ trypanothione
Trx ¼ thioredoxin

TrxR ¼ thioredoxin reductase
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Protein S-Bacillithiolation Functions in Thiol Protection
and Redox Regulation of the Glyceraldehyde-3-Phosphate
Dehydrogenase Gap in Staphylococcus aureus
Under Hypochlorite Stress
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Abstract

Aims: Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus.
In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in
S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation.
Results: The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus
USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox
proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated
proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap rep-
resents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site
Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or
NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to
S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular
docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed
disulfide does not require major structural changes.
Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the
pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as
major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently
functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus.
Antioxid. Redox Signal. 28, 410–430.
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Introduction

Staphylococcus aureus is a common commensal bac-
terium that colonizes the anterior nares and the skin of one

quarter of the human population without causing symptoms of
infections (22). However, S. aureus can also cause infections
ranging from local skin or soft tissue infections to life-
threatening diseases, such as septicemia, endocarditis, and
necrotizing pneumonia, when the pathogen enters the blood-
stream (2, 8, 53). Many nosocomial infections are caused by
multiple antibiotic-resistant strains, such as methicillin-resistant
S. aureus (MRSA) isolates (50). Moreover, new community-
acquired MRSA strains are emerging quickly with other strains
that are resistant to the last resort of antibiotics, such as van-
comycin (22). Thus, to understand the adaptation of the path-
ogen to the host defense, it is of utmost importance to identify
new drug targets for the treatment of MRSA infections.

The success of S. aureus as a leading pathogen is caused by
high diversity of different virulence factors, such as toxins,
proteases, lipases, and superantigens, as well as efficient
protection mechanisms against the host immune defense
during invasion. During infections, S. aureus has to cope with
the oxidative burst of activated macrophages and neutrophils,
including reactive oxygen and nitrogen species (ROS, RNS)
and the strong oxidant hypochlorous acid (HOCl) (75, 76).
HOCl is produced in neutrophils by the enzyme myeloper-
oxidase (MPO) from hydrogen peroxide (H2O2) and chloride
(44). The involvement of HOCl as prime mechanism for
oxidative killing of S. aureus by neutrophils has been shown
using MPO inhibitors (29). Moreover, killing of many bac-
teria by isolated neutrophils is strongly inhibited in the ab-
sence of MPO (44).

S. aureus uses several redox-sensing virulence regulators,
such as SarA and the MarR/OhrR-type regulators, MgrA and
SarZ, for defense against oxidative stress. These control large
regulons of virulence factors, antibiotic resistance determi-
nants, and ROS detoxification enzymes (11–13, 35). MgrA
and SarZ are both single Cys MarR/OhrR-type repressors that
sense and respond to ROS via thiol-based redox switches and
by Cys phosphorylation (63, 70). In addition, S. aureus uses
the low-molecular-weight (LMW) thiol bacillithiol (BSH,
Cys-GlcNAc-Mal) to maintain the reduced state of the
cytoplasm. BSH plays an important role in detoxification
of redox-active compounds in S. aureus since bshA mu-
tants displayed increased sensitivities to ROS, hypochlorite,

electrophiles, and the antibiotic fosfomycin (52, 64, 65).
Moreover, BSH mediates protection under infection-like
conditions as shown in phagocytosis assays using human
macrophages (64, 65). Apart from BSH, also CoenzymeA
(CoASH) and cysteine are found as abundant alternative
LMW thiols in S. aureus cells (58).

Under hypochlorite stress, we have shown that BSH is
also used for S-thiolation of redox-sensitive Cys residues
and forms mixed disulfides with proteins that are termed
as S-bacillithiolation. S-bacillithiolation protects protein
thiols against overoxidation to sulfonic acids and is an im-
portant redox regulatory device in Firmicutes analogous to S-
glutathionylation in eukaryotes (15, 16, 47, 52). The presence
of CoASH and cysteine as LMW thiols suggests that alter-
native S-thiolations are also possible in S. aureus, such as S-
cysteinylation or CoASH mixed disulfides. In support of this
notion, S. aureus encodes a CoASH disulfide reductase
(Cdr) that functions in reduction of CoASH mixed protein
disulfides (55).

Using shotgun proteomics, we have previously identified 54
S-bacillithiolated proteins in different Bacillus species and
Staphylococcus carnosus (16). Among these are eight con-
served S-bacillithiolated proteins, such as the methionine
synthase MetE, the inorganic pyrophosphatase PpaC, and the
inosine-5¢-monophosphate (IMP) dehydrogenase GuaB. The
glutaredoxin-like YphP protein of the UPF0403 family was
also S-bacillithiolated in Bacillus subtilis in vivo at its CGC
active site motif (15). YphP and its paralog YqiW were re-
named as BrxA and BrxB based on their function as bacilli-
redoxins in the reduction of S-bacillithiolated OhrR and MetE
in vitro (24). Reduction of S-bacillithiolated proteins leads to
Brx-SSB formation, which requires BSH and a still unknown
BSSB reductase for recycling (24, 25, 31, 52). We have re-
cently fused the YphP homolog (Brx) of S. aureus USA300
(SAUSA300_1321) to roGFP2 to construct a dynamic bio-
sensor to monitor BSH redox potential changes in vivo (51).
Brx-roGFP2 was highly specific to recognize BSSB, which
confirms the role of Brx as bacilliredoxin also in S. aureus.

The physiological role of S-bacillithiolation in redox
regulation has been demonstrated for the redox-sensing
OhrR repressor and the methionine synthase MetE under
hypochlorite stress in B. subtilis. S-bacillithiolation of MetE
in its active site Zn center leads to its inactivation and sub-
sequent methionine auxotrophy (15). The DNA-binding
activity of the organic hydroperoxide repressor, OhrR, is
inhibited by S-bacillithiolation under sodium hypochlorite
(NaOCl) and cumene hydroperoxide stress, which results in
the expression of the OhrA peroxiredoxin as ROS protection
mechanism (15, 47).

However, the targets for S-bacillithiolation or reversible
thiol oxidation under hypochlorite stress are unknown in the
major pathogen S. aureus, which could provide leads in drug
design to treat MRSA infections. In this study, we have com-
bined the quantitative redox proteomic approach OxICAT (9,
48, 49) and shotgun proteomics to quantify NaOCl-sensitive
proteins and to identify S-bacillithiolated proteins in S. aureus
USA300. We found that 25% protein thiols showed >10%
increased oxidation under NaOCl stress. The glycolytic Gap
was identified as the most abundant S-bacillithiolated protein in
S. aureus. Our results document that S-bacillithiolation pro-
tects the active site against overoxidation and inhibits Gap
activity in vitro.

Innovation

Using quantitative redox proteomics, 58 redox-
sensitive protein thiols were identified in the methicillin-
resistant Staphylococcus aureus strain USA300 that
showed >10% increased oxidation under NaOCl stress.
The glyceraldehyde-3-phosphate dehydrogenase Gap
was identified as most abundant target for thiol oxidation
and represents the major S-bacillithiolated protein in S.
aureus cells. Molecular docking of bacillithiol (BSH)
into the active site suggests that S-bacillithiolation does
not require major structural changes. Finally, our bio-
chemical assays confirm that S-bacillithiolation effi-
ciently protects the Gap active site against overoxidation
by H2O2 and NaOCl and inhibits Gap activity, which can
be reversed by the bacilliredoxin Brx in vitro.
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Results

Identification of 58 NaOCl-sensitive proteins
using the quantitative redox proteomic approach
OxICAT in S. aureus USA300

We were interested to study the role of BSH for S-
bacillithiolation and the global thiol oxidation state under
hypochlorite stress in the major pathogen S. aureus. Thus, we
performed a quantitative thiol redox proteomic approach
based on OxICAT (48, 49) and analyzed the percentages of
thiol oxidation levels in S. aureus USA300 in response to
150 lM NaOCl stress, as determined previously (51). OxICAT
is based on the differential thiol labeling of reduced Cys res-
idues with light isotope-coded affinity tag (12C-ICAT), fol-
lowed by reduction of reversible thiol oxidation (e.g., protein
disulfides and S-thiolation) with Tris (2-carboxyethyl) phos-
phine (TCEP) and subsequent labeling of previously oxidized
thiols with heavy 13C-ICAT reagent (48). Light and heavy
ICAT-labeled peptide pairs show a mass difference of 9 Da

after separation using mass spectrometry (MS). The quantifi-
cation of the percentage of thiol oxidation for each Cys peptide
is based on the calculation of the intensity of the heavy ICAT-
labeled Cys peptide in relation to the total intensity of the light
and heavy ICAT-labeled Cys peptides.

The OxICAT analysis enabled the quantification of the
percentages of reversible thiol oxidation for 228 Cys peptides
in the thiol redox proteome of S. aureus USA300 (Supple-
mentary Table S1; Supplementary Data; Supplementary Data
are available online at www.liebertpub.com/ars). The per-
centages of thiol oxidation were color coded and visualized in
Voronoi redox treemaps according to the TIGRfam classifi-
cation of S. aureus USA300 (Fig. 1).

In untreated S. aureus cells, we identified 193 Cys residues
(84.6%) with a thiol oxidation level of <25%, including 107
Cys residues (46.9%) with <10% oxidation, indicating that
the majority of thiols are in a reduced state (Tables 1 and 2;
Supplementary Table S1). Only 35 Cys residues (15.3%)
showed basal-level oxidation of >25% in the control. These

FIG. 1. Percentages of thiol oxidation for 228 Cys peptides that are identified in Staphylococcus aureus USA300 and
visualized using Voronoi redox treemaps. The percentages of thiol oxidation of 228 Cys residues that are identified using
OxICAT in S. aureus USA300 in the control (A) and 30 min after exposure to 150 lM NaOCl stress (B) are visualized using
Voronoi redox treemaps. The gray–red color gradient denotes 0–100% oxidation. The Voronoi redox treemap in (C) shows
the percentages of oxidation changes under NaOCl stress using a blue–red color gradient ranging from -75% to +75%
oxidation. The treemap in (D) serves as the legend showing the functional classifications of proteins. The treemaps are
generated using the Paver software (Decodon) based on the OxICAT data presented in Supplementary Tables S1 and
proteins were classified according to the S. aureus USA300 TIGRfam annotation. NaOCl, sodium hypochlorite.
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basal-level oxidized proteins include predicted redox-sensitive
proteins (21), such as the thiol peroxidase Tpx, the alkyl hy-
droperoxide reductase large subunit AhpF, the arsenate re-
ductase ArsC1, and the thioredoxin reductase TrxB1. Tpx and
AhpCF were previously found as basal-level oxidized in the
redox proteomes of Escherichia coli and Bacillus species (16,
48). Tpx was also S-mycothiolated in Corynebacterium glu-
tamicum at the conserved active site Cys60 (14). In addition,
the topoisomerase TopA and the DnaJ chaperone are basal-
level oxidized at their Zn-binding Cys residues.

To discover novel NaOCl-sensitive proteins, we analyzed
the percentages of thiol oxidation levels under NaOCl
stress and its oxidation increase using OxICAT (Fig. 1 and
Tables 2; Supplementary Table S1). The OxICAT approach
enabled the identification of 58 NaOCl-sensitive Cys residues
(25.4%) with >10% increased oxidation, including 19 Cys
residues with 20–30% oxidation change under NaOCl stress
(Tables 1 and 2 and Supplementary Table S1). Several
NaOCl-sensitive proteins have antioxidant functions, such as
the AhpCF peroxiredoxins, the thioredoxin reductase TrxB1,
and the arsenate reductase ArsC. Furthermore, interesting
proteins are the nitric oxide synthase (USA300HOU_1916)
and the CoASH disulfide reductase Cdr (USA300HOU_
0929), the latter is oxidized at the conserved Cys16. Apart
from Cdr, the putative BSH disulfide reductase YpdA
(USA300GOU_1417) was oxidized at the same conserved
Cys14, but its oxidation is not increased under NaOCl stress
(Supplementary Table S1). Moreover, we observed a slightly
increased oxidation of the deacetylase BshB2 involved BSH
biosynthesis and of the bacilliredoxin YqiW (BrxB) under
NaOCl stress. The oxidation of Cdr, YpdA, BshB2, and BrxB
could indicate increased S-bacillithiolation and CoASH
mixed protein disulfides under NaOCl stress.

NaOCl-sensitive proteins are often oxidized in CxxC
motifs and at conserved Zn-binding sites. Examples for Zn
redox switches are the Zn-containing alcohol dehydrogenase
Adh (USA300HOU_0610), the ribosomal proteins RpmG3

(USA300HOU_1553), and RpmJ (USA300HOU_2218). Zn-
containing ribosomal proteins share three to four Cys residues
that are suggested to serve as reservoir for Zn storage (54). As
another Zn redox switch, we identified the ferric uptake
repressor Fur that showed 16.6% increased oxidation at its
Zn-binding site at Cys 140 and Cys143 under NaOCl stress
(Tables 2; Supplementary Table S1; Figs. 1–2). Fur contains
two CxxC motifs that form a structural Cys4:Zn site and are
required for stability. In addition, two regulatory iron-
binding sites are present in Fur (32). FurA of Anabaena was
described as redox switch under oxidative stress and Cys101
in the CxxC motif is essential for iron-sensing and DNA-
binding activity (7).

The copper chaperone CopZ was 19.8% oxidized in its
CxxC motif that is required for Cu binding (67). The inter-
action of the B. subtilis CopZ homolog with BSH has been
recently studied leading to the formation of S-bacillithiolated
apo-CopZ and Cu(i)-bound forms of CopZ (42). In addition,
NaOCl-sensitive Cys residues often coordinate FeS clusters
or function in FeS cluster biogenesis. The FeS cluster scaf-
fold protein NifU showed 26% increased oxidation at Cys41
that binds the FeS cluster during the assembly. The cysteine
desulfurase NifS exhibits 20.6% higher oxidation levels at
the catalytic Cys371 that forms the persulfide with the sulfur
released during cysteine desulfuration (5). In addition, the
FeS cluster assembly protein SufB is oxidized in its FeS
cluster binding Cys302. It is interesting to note that the nifS-
nifU-sufB genes are cotranscribed in an operon.

As NaOCl-sensing redox regulators, the MarR/OhrR
family repressors, MgrA and SarZ (USA300HOU_0709 and
USA300HOU_2368), were identified that showed 10.5% and
6.5% increased oxidation levels under NaOCl stress at their
redox-sensing single Cys (Fig. 2). The DNA-binding activity
of MgrA and SarZ was inhibited by S-thiolation using a
synthetic thiol in vitro (11, 13, 35). In this study, increased
oxidation of MgrA and SarZ was found in S. aureus under
NaOCl stress, indicating that both could be redox controlled
by S-bacillithiolation analogous to OhrR of B. subtilis (47).
OhrR and SarZ both control a homologous ohrA peroxir-
edoxin gene that confers resistance to organic hydroperox-
ides and NaOCl in B. subtilis (13). Northern blot analyses
revealed increased transcription of ohrA under NaOCl stress,
indicating that SarZ oxidation leads to its inactivation and
derepression of ohrA transcription (Fig. 3). We further noted
the 15% increased oxidation of the virulence factor and se-
cretory antigen SsaA2 at its conserved single Cys171 under
NaOCl stress. The homologous SceB precursor (Sca_1790)
of S. carnosus was previously S-bacillithiolated at the con-
served Cys in NaOCl-treated cells (16). Thus, SsaA2 is most
likely also S-bacillithiolated in S. aureus.

The NaOCl-sensitive proteins of S. aureus include many
metabolic enzymes that function in energy metabolism and
in different biosynthesis pathways for amino acids, fatty
acids, nucleotides, and cofactors. NaOCl-sensitive en-
zymes involved in energy metabolism include the glyco-
lytic glyceraldehyde-3-phosphate (G3P) dehydrogenase
Gap and phosphofructokinase PfkA (USA300HOU_1685),
the alcohol dehydrogenase Adh, the aldehyde dehydrogenase
AldA (USA300HOU_2110), the formate dehydrogenase FdhA
(USA300HOU_2291), and the malate dehydrogenase Mqo
(USA300HOU_2348). Gap and AldA both showed the highest
oxidation increase of 29% and 26% under NaOCl stress at their

Table 1. Overview of % Thiol Oxidation

of 228 Cys Residues in the Redox Proteome

of Staphylococcus aureus

228 Cys residues <25% (<10%) >25% (>40%)

% Thiol oxidation
Control

193 (107) 35 (15)
84.6% (46.9%) 15.3% (6.6%)

% Thiol oxidation
NaOCl

159 (35) 69 (27)
69.7% (15.3%) 30.2% (11.8%)

<10% >10% (20–30%)

% Thiol oxidation
increase
(NaOCl/Control)

170 58 (19)
74.6% 25.4% (8.3%)

Overview of % thiol oxidation of 228 Cys peptides identified in the
redox proteome of the S. aureus USA300 under control and NaOCl
stress, as revealed by OxICAT. All reduced Cys peptides have an
oxidation degree of <25% that include those with <10% oxidation,
shown in parenthesis. Oxidized Cys peptides have an oxidation degree
of >25%. The % thiol oxidation increase includes Cys peptides with
no significant increased oxidation (<10%) and those with >10%
increased oxidation in response to NaOCl stress compared with the
control. The % thiol-oxidation and % thiol-oxidation increase and
related Cys numbers are shown in bold-faced. The percentage of Cys
numbers in relation to all Cys residues is shown in non-bold faced.

NaOCl, sodium hypochlorite.
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Table 2. Quantification of 58 Cys Peptides with Reversible Thiol Oxidation That Showed >10% Increased Oxidation

in Staphylococcus aureus USA300 Under NaOCl Stress Using the OxICAT Approach

Locus tag Gene name Protein function Cys
Buried/
Exposed

RSA
(%)

% Diff
NaOCl/Co

Mean %
oxidation
control CV

Mean %
oxidation
NaOCl CV

Cell envelope function
USA300HOU_2065 alr2 Alanine racemase Cys311a B 3.7 14.56 8.22 0.16 22.79 0.14

USA300HOU_2065 alr2 Alanine racemase Cys304 B 8.7 13.89 9.86 0.11 23.75 0.08

USA300HOU_2112 murZ UDP-N-acetylglucosamine
1-carboxyvinyltransferase

Cys110 B 7.7 10.03 16.57 0.10 26.60 0.16

USA300HOU_2112 murZ UDP-N-acetylglucosamine
1-carboxyvinyltransferase

Cys118a E 56.2 10.03 16.57 0.10 26.60 0.16

USA300HOU_2280 SsaA2 Secretory antigen SsaA2 Cys171a B 1.3 14.94 71.35 0.14 86.29 0.02

Protein quality control (Chaperones and proteases)
USA300HOU_1580 dnaJ Chaperone DnaJ Cys149a B 8.3 13.44 21.81 0.43 35.24 0.10

USA300HOU_1580 dnaJ Chaperone DnaJ Cys152a B 24.7 13.44 21.81 0.43 35.24 0.10

Detoxification and adaptation to atypical environments
USA300HOU_1700 tpx# Thiol peroxidase Cys60a B 2.6 14.48 62.73 0.05 77.21 0.02

USA300HOU_0403 ahpF# Peroxiredoxin subunit F Cys335a B 3.3 12.54 56.65 0.08 69.19 0.05

USA300HOU_0403 ahpF# Peroxiredoxin subunit F Cys338a B 7.5 12.54 56.65 0.08 69.19 0.05

USA300HOU_0839 arsC1# Arsenate reductase Cys10a B 10.1 24.59 38.55 0.11 63.14 0.12

USA300HOU_0839 arsC1# Arsenate reductase Cys13a B 8.9 24.59 38.55 0.11 63.14 0.12

USA300HOU_1916 nos Nitric oxide synthase Cys131 B 10.9 15.52 9.34 0.03 24.85 0.53

DNA replication, recombination, and repair
USA300HOU_2714 mnmG Glucose-inhibited division protein A Cys274a B 13.4 20.86 13.36 0.41 34.22 0.18

USA300HOU_2481 mutT Mutator protein mutT Cys87 B 1.5 14.82 4.45 0.25 19.26 0.19

Transcription and transcriptional regulators
USA300HOU_1499 fur Fur repressor Cys140a B 3.1 16.63 22.73 0.51 39.36 0.30

USA300HOU_1499 fur Fur repressor Cys143a B 7.5 16.63 22.73 0.51 39.36 0.30

USA300HOU_0709 mgrA MarR/OhrR transcriptional regulator MgrA Cys12 B 5.0 10.46 6.62 0.11 17.08 0.02

USA300HOU_2368 sarZ MarR/OhrR transcriptional regulator SarZ Cys13 B 4.2 6.31 8.43 0.29 14.73 0.07
USA300HOU_1199 USA300HOU

_1199
Nucleic acid-binding, transcription

termination
Cys11a B 2.8 13.33 8.21 0.35 21.54 0.38

USA300HOU_0537 rpoC RNA polymerase subunit beta’ Cys75a B 4.3 13.00 37.68 0.11 50.69 0.08

(continued)
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Table 2. (Continued)

Locus tag Gene name Protein function Cys
Buried/
Exposed

RSA
(%)

% Diff
NaOCl/Co

Mean %
oxidation
control CV

Mean %
oxidation
NaOCl CV

Translation (Aminacyl tRNA synthetases, translation factors, and ribosomal proteins)
Amino acyl tRNA synthetases

USA300HOU_1629 hisS Histidine-tRNA ligase Cys191 B 8.5 24.59 29.40 0.25 53.99 0.10

USA300HOU_1629 hisS Histidine-tRNA ligase Cys194 B 4.3 24.59 29.40 0.25 53.99 0.10

USA300HOU_1130 ileS Isoleucine-tRNA ligase Cys124a B 0.9 10.77 23.74 0.18 34.51 0.03
USA300HOU_1732 pheT2 Phenylalanine-tRNA ligase beta subunit Cys126a B 4.0 18.48 11.13 0.74 29.61 0.01

USA300HOU_1732 pheT2 Phenylalanine-tRNA ligase beta subunit Cys167a B 2.0 13.79 12.38 0.29 26.17 0.05

USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys12a B 15.2 12.73 9.32 0.07 22.04 0.42

USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys281a B 2.5 18.74 13.36 0.25 32.10 0.14

USA300HOU_1638 tgt Queuine tRNA-ribosyltransferase Cys174a B 1.5 11.40 8.79 0.00 20.19 0.34

Ribosomal proteins: synthesis and modification
USA300HOU_1553 rpmG3 Ribosomal protein L33 Cys9a B 3.9 21.76 29.30 0.02 51.06 0.04

USA300HOU_1553 rpmG3 Ribosomal protein L33 Cys12a B 25.6 21.76 29.30 0.02 51.06 0.04

USA300HOU_1553 rpmG3 Ribosomal protein L33 Cys36a B 6.6 9.46 5.76 0.10 15.22 0.12
USA300HOU_2218 rpmJ Ribosomal protein L36 Cys11a (-SSB) B 4.5 16.93 21.38 0.17 38.32 0.11

USA300HOU_2218 rpmJ Ribosomal protein L36 Cys27a B 3.1 16.52 6.69 0.43 23.21 0.10

Transport and binding proteins
USA300HOU_2553 copZ# Copper chaperone Cys13a B 6.2 19.85 30.60 0.28 50.45 0.13

USA300HOU_2553 copZ# Copper chaperone Cys16a B 3.3 19.85 30.60 0.28 50.45 0.13

Energy metabolism (ATP synthesis, central carbon metabolism)
Glycolysis

USA300HOU_0802 gap Glyceraldehyde-3-phosphate DH Cys151a (-SSB) B 10.5 29.46 8.28 0.13 37.74 0.04

USA300HOU_1685 pfkA 6-phosphofructokinase Cys73a B 24.1 10.90 7.00 0.52 17.90 0.04
USA300HOU_1685 pfkA 6-phosphofructokinase Cys226 B 17.4 23.24 18.46 0.11 41.70 0.18

USA300HOU_1685 pfkA 6-phosphofructokinase Cys232 B 2.8 23.24 18.46 0.11 41.70 0.18

USA300HOU_1684 pykA Pyruvate kinase Cys266a B 1.7 10.52 11.24 0.31 21.76 0.11
Fermentation

USA300HOU_0610 adh Alcohol DH Cys34 B 4.1 25.18 11.02 0.35 36.20 0.28

USA300HOU_0610 adh Alcohol DH Cys37a B 2.3 25.18 11.02 0.35 36.20 0.28

USA300HOU_2110 aldA Aldehyde DH Cys279a (-SSB) B 1.4 26.29 11.14 0.14 37.43 0.06

USA300HOU_2291 fdhA Formate DH alpha subunit Cys386a B 15.8 13.68 47.82 0.07 61.50 0.09

Tricarboxyclic acid cycle
USA300HOU_2348 mqo1 Malate:quinone oxidoreductase Cys97 B 7.6 20.95 18.56 0.51 39.50 0.12

(continued)
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Table 2. (Continued)

Locus tag Gene name Protein function Cys
Buried/
Exposed

RSA
(%)

% Diff
NaOCl/Co

Mean %
oxidation
control CV

Mean %
oxidation
NaOCl CV

Other energy metabolism
USA300HOU_0964 nadK NAD(+) kinase Cys208a B 1.8 11.00 18.36 0.17 29.35 0.15

USA300HOU_0563 nagB Glucosamine-6-phosphate deaminase Cys239 B 3.9 16.40 9.49 0.07 25.89 0.11

USA300HOU_0902 ndh NADH dehydrogenase Cys199 B 2.6 10.23 15.39 0.19 25.62 0.08

Amino acid biosynthesis
USA300HOU_1536 gcvPB Glycine DH (decarboxylating) subunit 2 Cys80a B 4.0 20.24 7.86 0.81 28.10 0.48

USA300HOU_1240 glnA Glutamate—ammonia ligase Cys291 B 4.1 10.52 14.77 0.05 25.29 0.33

Fatty acid, phospholipid and sterol metabolism
USA300HOU_0942 fabH2 3-oxoacyl-[acyl-carrier-protein] synthase Cys220 B 7.2 11.15 11.09 0.35 22.24 0.06

Nucleotide biosynthesis
USA300HOU_0413 guaB Inosine-5¢-monophosphate DH Cys326 B 1.4 25.09 7.49 0.28 32.58 0.06

USA300HOU_2115 pyrG CTP synthase Cys439a B 2.1 12.29 8.25 0.47 20.54 0.09

USA300HOU_2265 USA300HOU
_2265

Inosine-adenosine-guanosine-nucleoside
hydrolase

Cys284 B 10.8 24.99 8.80 0.43 33.79 0.14

Biosynthesis of cofactors, prosthetic groups, and carriers
USA300HOU_0929 cdr Coenzyme A disulfide reductase Cys16a B 2.1 12.44 9.59 0.26 22.03 0.79

USA300HOU_0561 bshB2 Bacillithiol biosynthesis deacetylase Cys72a B 7.3 3.39 10.81 0.02 14.19 0.14
USA300HOU_1417 ypdA Putative bacillithiol disulfide reductase Cys14a B 5.9 3.20 8.39 0.58 11.59 0.08
USA300HOU_1365 brxB Bacilliredoxin, YphP/YqiW family Cys144a B 14.7 7.39 17.90 0.32 25.29 0.28
USA300HOU_1824 hemH Ferrochelatase Cys276 B 2.9 12.51 14.25 0.38 26.76 0.05

USA300HOU_0873 nifS SufS subfamily cysteine desulfurase Cys371a B 3.4 20.64 26.61 0.31 47.25 0.15

USA300HOU_0874 nifU Iron–sulfur (Fe-S) cluster formation protein IscU Cys41a B 11.1 26.30 17.85 0.09 44.15 0.15

USA300HOU_0875 sufB Iron–sulfur (Fe-S) cluster formation protein SufB Cys302 B 3.7 6.48 13.74 0.19 20.22 0.08
USA300HOU_2257 moaB Molybdopterin cofactor biosynthesis protein MoaB Cys34 B 20.8 13.81 9.42 0.06 23.23 0.13

Quantification of 58 Cys peptides with reversible thiol-oxidations in S. aureus USA300 that showed >10% increased oxidation under NaOCl stress using the OxICAT method. S. aureus USA300 was
harvested before (control) and 30 min after exposure to 150 lM NaOCl. Reduced and reversibly oxidized Cys residues were labeled with light and heavy ICAT reagents, respectively, using the
OxICAT method. Quantification of % thiol oxidation was performed using the MaxQuant software (http://141.61.102.17/maxquant_doku/doku.php?id=start&#maxquant). The table includes locus
tags, protein names, functions, Cys peptide sequences, surface access abilities, and % oxidation of the Cys residues under control and NaOCl stress conditions. Conserved Cys and their functions were
marked with a and identified by searching the Conserved Domain Database (CDD) (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). S-bacillithiolated Cys residues are marked with (+BSH) that are
listed in Supplementary Figure S1. Cys functions were identified from the CDD and UniprotKB database and predicted proteins with redox-sensitive Cys residues are marked with # that were identified
using the THIOREDOXOME database (http://gladyshevlab.org/THIOREDOXOME/tdb.html).The relative surface accessibility (RSA) for buried (B) or exposed (E) Cys residues was calculated using
the NetSurfP ver. 1.1 (www.cbs.dtu.dk/services/NetSurfP/). The % thiol oxidation of each identified Cys peptide was calculated using the intensity values provided by MaxQuant software. Based on
the % thiol oxidation of each Cys under control and NaOCl stress conditions, the % oxidation increase under NaOCl treatment was then calculated for each experiment. The CV is calculated as relative
variability that equals the standard deviation divided by the mean of biological replicates for control and NaOCl stress samples, respectively. NaOCl-sensitive peptides with >10% increased thiol
oxidation under NaOCl stress are highlighted using a gray shading gradient.

BSH, bacillithiol; CV, coefficient of variation; NADH, nicotinamide adenine dinucleotide; ICAT, isotope-coded affinity tag; RSA, relative surface accessibility; DH, dehydrogenase.
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catalytic active sites at Cys151 and Cys279, respectively.
Furthermore, the IMP dehydrogenase GuaB and the purine
nucleosidase USA300HOU_2265 both displayed 25% in-
creased oxidation under NaOCl stress (Tables 2; Supplemen-
tary Table S1).

Among the cell wall biosynthesis enzymes, the alanine
racemase Alr2 (USA300HOU_2065) and the UDP-N-
acetylglucosamine 1-carboxyvinyltransferase MurZ (USA
300HOU_2112) were identified as NaOCl-sensitive pro-
teins. The glucose-inhibited division protein MnmG showed
20.8% increased oxidation under NaOCl stress. Many
aminoacyl-tRNA synthetases were strongly oxidized under
NaOCl stress. We detected 18–24% higher oxidation levels
for the histidine- and phenylalanine tRNA ligases (HisS and
PheT2) and for the queuine tRNA ribosyltransferase (Tgt)
under NaOCl stress.

Five S-bacillithiolated proteins were identified
using shotgun proteomics in S. aureus, including
the glycolytic Gap as major target

We used the previously applied shotgun proteomic ap-
proach for identification of S-bacillithiolated proteins under
nonreducing conditions based on the 396 Da mass increase at
Cys residues (16). Five S-bacillithiolated proteins were
identified in NaOCl-treated cells of S. aureus USA300, in-
cluding Gap, AldA, GuaB, RpmJ, and the manganese-
dependent inorganic pyrophosphatase PpaC (Table 3; Sup-
plementary Fig. S1). GuaB was S-bacillithiolated at its active

site Cys307, which forms the thioimidate intermediate with
the substrate and is S-thiolated also in other gram-positive
bacteria (Table 3; Supplementary Fig. S1).

Gap and AldA were S-bacillithiolated at their catalytic
active sites at Cys151 and Cys279, respectively (Fig. 2 and
Table 3; Supplementary Fig. S1). The AldA homolog of S.
carnosus was previously found S-bacillithiolated at Cys279
(16). The active site Cys of Gap is a conserved target for S-
glutathionylation in eukaryotic Gap homologs. Cys151 of
Gap showed 29.5% oxidation increase under NaOCl stress in
the OxICAT analysis, which is reflected also by the mass
spectra of the ICAT-labeled Cys151-peptides (Fig. 4A).
Nonreducing BSH-specific Western blots further identified
that Gap is the most abundant S-bacillithiolated protein under
hypochlorite stress based on the size and supported by the MS
results (Fig. 4B; Supplementary Fig. S1). Gap-SSB was de-
tected in the S. aureus USA300 and COL strains, but is absent
in the bshA mutant as expected.

Gap contributes as most abundant Cys protein
with 4% to the total Cys proteome

We were further interested in the contribution of Gap and
other S-bacillithiolated proteins to the total Cys proteome of
S. aureus. S. aureus USA300 encodes for 2694 proteins.
These include 1864 proteins with 4935 Cys residues, indi-
cating that the Cys content is 0.64% in the theoretical pro-
teome (Supplementary Fig. S2A, B). Using shotgun
proteomics, the spectral protein abundance for 600 proteins,

FIG. 2. Close-ups of the redox treemaps of S. aureus USA300 showing S-bacillithiolated enzymes and redox
regulators (SarZ, MgrA, and Fur). Enlarged sections of the redox treemaps are shown that include the identified S-
bacillithiolated proteins (Gap, AldA, GuaB, RpmJ) and NaOCl-sensitive redox-sensing regulators (MgrA, SarZ, and Fur).
The close-ups show the percentages of thiol oxidation under control, NaOCl stress, and the percentage of oxidation change
under NaOCl stress versus control as revealed in Figure 1 using the same color gradient. The symbol * denotes conserved Cys.

FIG. 3. Northern blot analysis showing transcriptional induction of the SarZ-regulated ohrA gene (USA300-
HOU_0835) under NaOCl stress. RNA was isolated from S. aureus USA300 grown in Belitsky minimal medium under
control and NaOCl stress conditions and subjected to Northern blot analysis for ohrA (USA300HOU_0835) transcription.
Transcription of ohrA is upregulated due to SarZ thiol oxidation and inactivation under NaOCl stress as revealed by
OxICAT analysis in vivo.
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including 398 Cys-containing proteins, was determined in the
proteome of S. aureus USA300 (Supplementary Table S2 and
Supplementary Fig. S2C). The protein abundance in the
proteome is visualized using Voronoi treemaps (Fig. 5). The
cell size corresponds to the spectral protein abundance and
the color code denotes the numbers of Cys residues. The
majority of 226 Cys proteins identified in the proteome
possess only 1–2 Cys residues. However, there are also six
proteins with >10 Cys residues. The most Cys-rich protein
was identified as the formate dehydrogenase FdhA that
contains 26 Cys residues coordinating several FeS clusters.
Based on their spectral abundance, we identified 50 abundant
Cys-containing proteins that contribute to 60% of the total S.
aureus Cys proteome (Supplementary Fig. S2C). The redox
state for the majority of these Cys peptides was quantified
using the OxICAT approach (Supplementary Table S1). The
Cys abundance treemap also shows that many ribosomal
proteins and the pyruvate dehydrogenase do not possess Cys
residues (Fig. 5).

The S-bacillithiolated Gap was identified among the most
abundant Cys-containing proteins and contributes with 4% of
the total Cys proteome (Supplementary Fig. S2C). This
indicates that Gap makes the major contribution to the
S-bacillithiolome of S. aureus as visualized also by the BSH
Western blots. The other S-bacillithiolated proteins, AldA,
RpmJ, GuaB, and PpaC, are less abundant and make with
0.1–0.7% of Cys abundance only a minor contribution to the
total Cys proteome (Supplementary Table S2).

H2O2 and NaOCl-induced inactivation pathways
of Gap in S. aureus due to overoxidation
and S-bacillithiolation in vitro

The active site of Gap is usually present in a highly con-
served CTTNC motif in different organisms (Supplementary
Fig. S3). However, in the S. aureus Gap, the second cysteine
is replaced by a serine. The identification of S-bacillithiolated
Gap under hypochlorite stress was intriguing since a previous
proteomic study has shown that Gap of S. aureus is very
sensitive to overoxidation to the sulfonic acid form in the
presence of 100 mM H2O2 in vivo (73). In another proteomic
study, Gap was identified as reversibly oxidized by 10 mM
H2O2 in S. aureus (19). Thus, we were interested to study the
inhibition of Gap activity in vitro due to overoxidation and
S-bacillithiolation under both H2O2 and NaOCl stresses.

Gap of S. aureus was purified as His-tagged protein from
E. coli. The inhibition of Gap activity by increasing H2O2

concentrations was monitored spectrophotometrically with
G3P as substrate in the presence of NAD+. The remaining
Gap activity was determined by nicotinamide adenine dinu-
cleotide (NADH) generation as absorbance change at 340 nm
during the slope in the reaction, as described previously (61).
Treatment of Gap with 100 lM H2O2 leads to a 50% decrease
in Gap activity, while exposure to 1–10 mM H2O2 resulted in
complete enzyme inactivation (Fig. 6A). Inactivation of Gap
with 1–10 mM H2O2 alone was irreversible due to over-
oxidation since Gap activity could be not restored with
10 mM dithiothreitol (DTT) (Fig. 6C). To investigate whether
S-bacillithiolation can protect the enzyme against irreversible
overoxidation, Gap was pretreated with 10-fold molar excess
of BSH before H2O2 exposure. Gap activity was already 90%
inhibited after oxidation with 100 lM H2O2 in the presence of

T
a
b
l
e

3
.

I
d
e
n

t
i
fi

c
a
t
i
o
n

o
f

t
h

e
S
-
b
a
c
i
l
l
i
t
h

i
o
l
a
t
e
d

G
a
p
,

A
l
d
A

,
P
p
a
C

,
R

p
m

J
,

a
n

d
G

u
a
B

i
n

S
t
a
p
h

y
l
o
c
o
c
c
u

s
a
u

r
e
u

s
U

S
A

3
0
0

U
s
i
n

g
S
h

o
t
g
u

n
L

C
-
M

S
/
M

S
A

n
a
l
y
s
i
s

P
ro

te
in

A
cc

es
si

o
n

F
u
n
ct

io
n

C
ys

-S
S
B

p
ep

ti
d
es

P
ro

b
(%

)
S
E

Q
U

E
S
T

X
C

o
rr

S
E

Q
U

E
S
T

D
C

n
C

ys
-

M
o
d
.

O
b
se

rv
ed

m
a
ss

A
ct

u
a
l

m
a
ss

C
h
a
rg

e
D

D
a

D
P

P
M

G
ap

A
8
Z

1
A

0
_

S
T

A
A

T
G

ly
ce

ra
ld

eh
y
d
e-

3
-p

h
o
sp

h
at

e
d
eh

y
d
ro

g
en

as
e

(K
)T

IV
F
N

T
N

H
Q

E
L

D
G

S
E

T
V

V
S
G

A
S
C

1
5
1

(1
B

S
H

)T
T

N
S
L

A
P

V
A

K
(V

)

9
9

4
.8

8
1
3

0
.7

1
1
9

(+
3
9
6
)

1
.2

6
2
.9

2
3
.7

8
5
.7

3
3

0
.0

0
9
8
9

2
.6

A
ld

A
A

8
Y

Y
8
7
_

S
T

A
A

T
A

ld
eh

y
d
e

d
eh

y
d
ro

g
en

as
e

(K
)V

V
N

N
T

G
Q

V
C

2
7
9

(1
B

S
H

)T
A

G
T

R
(V

)
9
9

2
.9

0
3
8

0
.7

8
2
7

(+
3
9
6
)

6
0
5
.9

3
2
8

1
.8

1
4
.7

8
3

-0
.0

0
0
4
1

-0
.2

P
p
aC

P
P
A

C
_

S
T

A
A

T
M

n
-d

ep
en

d
en

t
in

o
rg

an
ic

p
y
ro

p
h
o
sp

h
at

as
e

(R
)I

A
N

F
E

T
A

G
P
L

C
1
1
0
(1

B
S
H

)Y
R

(A
)

9
9

3
.2

9
0
7

0
.6

7
4
7

(+
3
9
6
)

9
2
5
.9

0
0
6

1
.8

4
9
.7

9
2

0
.0

0
0
8
1

0
.4

R
p
m

J
R

L
3
6
_

S
T

A
A

T
5
0
S

ri
b
o
so

m
al

p
ro

te
in

L
3
6

(K
)V

R
P
S
V

K
P
IC

1
1

(1
B

S
H

)E
K

(C
)

9
9

2
.0

4
5
8

0
.5

9
2
6

(+
3
9
6
)

8
2
6
.4

0
4
7

1
.6

5
0
.7

9
2

-0
.0

0
0
5
1

-0
.3

G
u
aB

A
8
Z

0
R

0
_

S
T

A
A

T
In

o
si

n
e-

5
¢-m

o
n
o
p
h
o
sp

h
at

e
d
eh

y
d
ro

g
en

as
e

(K
)V

G
IG

P
G

S
IC

3
0
7

(1
B

S
H

)T
T

R
(V

)
9
9

2
.2

8
3
5

0
.6

7
5
9

(+
3
9
6
)

7
7
8
.8

5
0
4

1
.5

5
5
.6

9
2

0
.0

0
0
7
7

0
.5

Id
en

ti
fi
ca

ti
o
n

o
f

S
-b

ac
il

li
th

io
la

te
d

p
ep

ti
d
es

in
th

e
S
.
a
u
re

u
s

U
S
A

3
0
0

w
il

d
ty

p
e

u
si

n
g

sh
o
tg

u
n

L
C

-M
S
/M

S
an

al
y
si

s
an

d
th

ei
r

S
eq

u
es

t
X

co
rr

s,
D

C
n

sc
o
re

s,
an

d
m

as
s

d
ev

ia
ti

o
n
s.

T
h
e

S
.
a
u
re

u
s

U
S
A

3
0
0

w
il

d
ty

p
e

w
as

ex
p
o
se

d
to

1
5
0

lM
N

aO
C

l
fo

r
3
0

m
in

an
d

S
-b

ac
il

li
th

io
la

te
d

p
ro

te
in

s
w

er
e

id
en

ti
fi
ed

u
si

n
g

sh
o
tg

u
n

L
C

-M
S
/M

S
an

al
y
si

s
an

d
th

e
S
ca

ff
o
ld

p
ro

te
o
m

e
so

ft
w

ar
e

b
as

ed
o
n

th
e

m
as

s
in

cr
ea

se
o
f

3
9
6

D
a

(+
B

S
H

)
at

C
y
s

p
ep

ti
d
es

.
T

h
e

ta
b
le

li
st

s
th

e
U

n
ip

ro
t

ac
ce

ss
io

n
n
u
m

b
er

,
p
ro

te
in

n
am

e,
fu

n
ct

io
n

an
d

m
o
le

cu
la

r
w

ei
g
h
t,

th
e

S
-b

ac
il

li
th

io
la

te
d

C
y
s

p
ep

ti
d
e

se
q
u
en

ce
,
an

d
th

e
q
u
al

it
y

co
n
tr

o
l

cr
it

er
ia

fo
r

th
e

p
ep

ti
d
e-

S
S
B

as
o
b
ta

in
ed

fr
o
m

th
e

L
C

-M
S
/M

S
an

al
y
si

s
an

d
th

e
S
ca

ff
o
ld

so
ft

w
ar

e
(X

co
rr

,
D

C
n

sc
o
re

s,
m

as
s

d
ev

ia
ti

o
n
s

D
p
p
m

,
an

d
D

D
a,

o
b
se

rv
ed

an
d

th
eo

re
ti

ca
l

p
ep

ti
d
e

m
as

se
s,

an
d

ch
ar

g
es

o
f

th
e

m
o
d
ifi

ed
p
ep

ti
d
e)

.
T

h
e

S
-b

ac
il

li
th

io
la

te
d

C
y
s

is
sh

o
w

n
in

b
o
ld

-f
a
ce

d
.

L
C

-M
S
/M

S
,

li
q
u
id

ch
ro

m
at

o
g
ra

p
h
y

ta
n
d
em

m
as

s
sp

ec
tr

y
.

418 IMBER ET AL.



FIG. 4. OxICAT analysis revealed a 29% increased oxidation of the Gap Cys151 peptide (A) and Gap was identified as most
abundant S-bacillithiolated protein in S. aureus under NaOCl stress as shown by BSH-specific Western blot analysis (B). (A)
The OxICAT mass spectrometry results are shown for the Gap Cys151 peptide in S. aureus USA300 under control and 30 min after
NaOCl stress. The reduced Gap Cys151 peptides in the cell extract are labeled with light 12C-ICAT, followed by reduction of all
reversible thiol oxidation, including the S-bacillithiolated Cys151 peptides and subsequent labeling of previously oxidized Cys151
peptide by heavy 13C-ICAT reagent. According to the quantification by the MaxQuant software, the Cys151 peptide was 8.3%
oxidized in the control and its oxidation level increased to 37.7% under NaOCl stress. (B) Nonreducing BSH-specific Western blot
analysis identified Gap as most abundant S-bacillithiolated protein in S. aureus USA300 and COL strains under NaOCl stress. Two
independent biological replicates are shown for S. aureus COL denoted as COL-1 and COL-2. Gap is S-bacillithiolated at the active
site Cys151 under NaOCl stress as revealed by subsequent LC-MS/MS analysis (Supplementary Fig. S1A). BSH, bacillithiol;
LC-MS/MS, liquid chromatography tandem mass spectry.

FIG. 5. Voronoi treemaps visualize Gap as the most abundant Cys protein in the total Cys proteome of S. aureus
USA300. The treemap legend (left) indicates the classification of the S. aureus USA300 proteome into functional categories
according to TIGRfam annotations. The cell size corresponds to the spectral counts of each protein identified in the proteome of
S. aureus USA300 and classified according to TIGRfam. The Cys-containing proteins are color coded using a yellow–red color
gradient based on their numbers of Cys residues (Supplementary Table S2). Proteins without Cys residues are displayed in gray.
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BSH, while treatment with 100 lM H2O2 alone only led to 50%
decreased activity (Fig. 6A, B). Gap inactivation with H2O2 and
BSH was caused by reversible S-bacillithiolation since DTT
reduction resulted in recovery of Gap activity (Fig. 6C–E;
Supplementary Fig. S9). These results support that the Gap ac-
tive site is highly sensitive to overoxidation, which can be pre-
vented by S-bacillithiolation in the presence of H2O2 and BSH.

Next, we determined the time-dependent Gap inactivation by
both H2O2-dependent oxidation pathways (Supplementary

Fig. S4). Gap was treated with 1 mM H2O2 on ice with or
without BSH and the remaining Gap activity was determined
after different times of H2O2-dependent overoxidation and
S-bacillithiolation. The Gap activity assays revealed that both
S-bacillithiolation and overoxidation lead to 80% enzyme in-
hibition after 7.5 min of H2O2 treatment (Supplementary
Fig. S4A). In addition, we analyzed the time course for the
detection of Gap-SSB or the overoxidized Cys151 under H2O2

treatment with or without BSH using BSH-specific Western

FIG. 6. Inactivation of Gap of S. aureus in response to H2O2 in vitro. (A, B) Reduced Gap (40 lM) was oxidized with
100 lM, 1, and 10 mM H2O2 for 5 min in the absence (A) or presence of 10-molar excess of BSH (400 lM) (B) in reaction
buffer (100 mM Tris HCl, 1.35 mM EDTA, pH 8.0). The remaining Gap activity was measured in the presence of G3P and
NAD+ spectrophotometrically, following NADH production at 340 nm. The Gap activity was calculated as absorbance
change from the slope of the reaction in the first 80 s, as described in the Materials and Methods section. (C) To assess the
reversibility of Gap inactivation by H2O2, Gap was treated with 1 and 10 mM H2O2 alone or with H2O2 and BSH, followed
by reduction with 10 mM DTT. (D) Schematic showing the irreversible inhibition of Gap activity due to overoxidation of
the active site Cys with H2O2 alone, while Gap activity was reversibly inhibited with H2O2 and BSH due to S-
bacillithiolation. (E) S-bacillithiolation of Gap in the presence of 10 mM H2O2 and BSH was confirmed using a BSH-
specific Western blot analysis before and after subsequent DTT reduction. DTT, dithiothreitol; EDTA, ethylenediamine-
tetraacetic acid; G3P, glyceraldehyde-3-phosphate; H2O2, hydrogen peroxide.
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blots or MS, respectively. The MS results identified the over-
oxidized Cys151 sulfonic acid (Cys151-SO3H) after 1 min of
H2O2 treatment (Supplementary Fig. S5). The S-bacillithiolated
Gap could be also detected after 1 min of treatment with BSH
and H2O2 (Supplementary Figs. S4B and S9). These results
suggest that overoxidation and S-bacillithiolation occur at
similar rates under H2O2 treatment in vitro. However, the Gap
activity assays after treatment with different H2O2 concentra-
tions indicate that Gap inhibition is faster with 100 lM H2O2 in
the presence of BSH compared with 100 lM H2O2 alone, which
only leads to 50% enzyme inhibition (Fig. 6A, B). Thus, S-
bacillithiolation of Cys151 by H2O2 in the presence of BSH
serves to protect the active site against overoxidation.

Since S-bacillithiolation of Gap was observed under
NaOCl stress in vivo, we studied the dose-dependent Gap
inactivation by NaOCl with or without prior exposure to BSH
(Fig. 7). Treatment of Gap with 100–500 lM NaOCl led to

50–75% inhibition of Gap activity. Pretreatment of Gap with
BSH before exposure to 100 lM NaOCl resulted in 70% ac-
tivity decrease. Gap was fully inactivated with 1 mM NaOCl
in the absence or presence of BSH. Treatment of Gap with
1 mM NaOCl alone resulted in irreversible inactivation due to
overoxidation since Gap activity could be not restored using
DTT. In the presence of BSH, Gap inactivation by NaOCl was
caused by reversible S-bacillithiolation since 85% Gap ac-
tivity could be restored by DTT reduction (Fig. 7C, D). Next,
we studied the time course for NaOCl-induced overoxidation
and S-bacillithiolation pathways in the presence of 1 mM
NaOCl. The Gap activity assays with or without BSH showed
that Gap inhibition is faster with BSH and NaOCl compared
with NaOCl alone (Supplementary Fig. S6). These results
indicate that S-bacillithiolation can efficiently prevent over-
oxidation of the Gap active site under NaOCl in vitro, sup-
porting our in vivo finding.

FIG. 7. Inactivation of Gap of S. aureus
in response to NaOCl in vitro. (A, B) Re-
duced Gap was treated with 0.1–1 mM NaOCl
for 5 min without (A) or with 10-molar excess
of BSH (B) in reaction buffer (100 mM Tris
HCl, 1.35 mM EDTA, pH 8.0). The remain-
ing Gap activity was measured spectropho-
tometrically, following NADH production at
340 nm. The Gap activity was calculated as
absorbance change from the slope of the re-
action in the first 80 s, as described in the
Materials and Methods section. (C) To ana-
lyze the reversibility of Gap inactivation
by NaOCl, Gap was inactivated with 1 mM
NaOCl in the absence or presence of BSH,
followed by DTT reduction. Gap activity
was irreversibly inhibited after treatment
with NaOCl due to overoxidation since Gap
activity could be not restored by DTT. In the
presence of NaOCl and BSH, Gap was re-
versibly inactivated due to S-bacillithiolation
since DTT reduction resulted in 85% recovery
of Gap activity. (D) Schematic showing that
NaOCl leads to the transient sulfenylchloride
formation as unstable intermediate that reacts
further with BSH to form S-bacillithiolated
Gap. In the absence of BSH, Gap-SCl is quickly
overoxidized resulting in irreversible inhibition
of Gap activity in vitro.
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Regeneration of S-bacillithiolated Gap
using the bacilliredoxin Brx (SAUSA300_1321) in vitro

The reversal of S-bacillithiolation was shown to require the
glutaredoxin-like bacilliredoxins, YphP (BrxA) and YqiW
(BrxB), in B. subtilis (24). Using a Brx-roGFP2 biosensor, we
demonstrated recently that the YphP homolog of S. aureus
(SAUSA300_1321 or Brx) is highly specific as bacilliredoxin
to recognize BSSB (51). Thus, Gap activity was measured
after debacillithiolation of Gap-SSB with Brx and Brx Cys
mutant proteins (BrxCGA, BrxAGC) and G3P oxidation was
followed by NADH production as absorbance change at
340 nm (Fig. 8A). Gap activity could be restored to 70% and
60% during debacillithiolation with Brx and the BrxCGA re-
solving Cys mutant in vitro, respectively. However, Gap ac-
tivity was only 25% recovered with the BrxAGC active site
mutant protein supporting the specificity of the Brx active site
for the attack of BSH mixed disulfide. Debacillithiolation of

Gap-SSB by Brx and the BrxCGA mutant was verified in
BSH-specific Western blots (Fig. 8B; Supplementary Fig. S9).
These results indicate that S-bacillithiolation of Gap functions
in protection and redox regulation of the active site Cys and
can be reversed by the bacilliredoxin Brx in vitro (Fig. 8C).

Structural features of the Gap active site
during overoxidation and S-bacillithiolation

We were interested in structural changes of Gap after
overoxidation and S-bacillithiolation. The crystals of H2O2-
treated overoxidized Gap diffracted X-rays to 2.6 Å resolu-
tion and belonged to the P212121 space group. Previously,
several crystal structures of the Gap holo- and apoenzyme
have been reported with the protein always crystallized in the
P21 space group (57). The structure of the overoxidized Gap
contains four monomers in an asymmetric unit, each con-
sisting of the NAD+-binding domain (residues 1–150) and the

FIG. 8. Recycling of S-bacillithiolated Gap requires the bacilliredoxin Brx in vitro. (A) Gap activity is reversibly
inhibited by S-bacillithiolation in vitro and can be restored by reduction using the bacilliredoxin Brx (SAUSA300_1321).
Debacillithiolation required the Brx active site Cys. The BrxAGC mutant showed weak activity to reduce Gap-SSB, while
the Brx resolving Cys mutant (BrxCGA) could restore Gap activity similar to the wild-type Brx protein. S-bacillithiolated
Gap was generated in vitro by treatment of 25 lM Gap with 2.5 mM H2O2 in the presence of 250 lM BSH. For deba-
cillithiolation, 2.5 lM Gap-SSB was incubated with 12.5 lM Brx, BrxAGC, and BrxAGC proteins for 30 min. Gap activity
was measured after addition of G3P and NAD+ by spectrophotometric monitoring of NADH generation at 340 nm. (B) The
level of debacillithiolation of Gap-SSB in vitro by Brx and BrxCys mutant proteins was monitored using nonreducing BSH-
specific Western blot analysis. The SDS-PAGE is shown as loading control (right). The numbers 1–5 shown in the BSH
Western blot and in the SDS-PAGE refer to the legend shown in (A). (C) Schematic for the reduction of S-bacillithiolated
Gap using the bacilliredoxin Brx. SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis.
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catalytic domain (residues 151–336) (57) (Supplementary
Fig. S7A). The overall fold of overoxidized Gap is almost
identical to previously reported reduced Gap structures, with
only slight conformational differences observed in the loop
regions comprising residues 59–72, 75–90, and 111–118. The
root-mean square deviation after global superposition of
overoxidized Gap with the holo- (PDB code: 3LVF) or
apoenzyme (PDB code: 3LC7) was 1.01 and 1.11 Å, re-
spectively. Interestingly, during previous structural analyses,
Gap always copurified with NAD+, which had to be removed
via activated charcoal to obtain the apoenzyme (57). In
contrast, the present Gap structure does not contain NAD+,
thus representing an apo form of the enzyme. Thus, H2O2

treatment seems to have led to loss of the coenzyme.
According to our MS results and previous publications (73),

the Gap sulfonic acid was identified by MS as overoxidized
form. In the structure of overoxidized Gap, the sulfonic acid
form could be modeled into the electron density of the active

site Cys151 in each monomer (Supplementary Fig. S7B, C).
Overoxidation of Cys151 results in enzyme inhibition as sup-
ported by our activity assays. During catalysis, the sulfhydryl
group of Cys151 attacks the nucleophilic carbon of the G3P
substrate to form a covalent intermediate, thiohemiacetal (72).
In the active enzyme, His178 forms an ion pair with Cys151,
which increases the acidity and nucleophilicity of the thiol
group. During G3P oxidation, His178 hydrogen bonds with the
acyl carbonyl of the substrate and stabilizes the hemithioacetal
intermediate (57). Apart from interfering with the function of
Cys151, the sulfonyl moiety of the hyperoxidized Cys151 also
interacts with the main chain carbonyl of Asn316 and the im-
idazole ring of His178 (Fig. 9A; Supplementary Fig. S7D).
Thus, hyperoxidation of Cys151 affects the function of two key
catalytic residues of Gap, Cys151, and His178, leading to ir-
reversible inactivation of the enzyme.

To obtain insights into the structural changes upon S-
bacillithiolation, BSH was modeled into the active site of the

FIG. 9. Structural insights into the Gap active site after overoxidation and S-bacillithiolation. (A) Crystal structure
of the overoxidized active site Cys151 (Cys-SO3H, oC151) of Gap. (B, C) Computational model of BSH docked into the
active site of the Gap apoenzyme (B) and holoenzyme with the NAD+ coenzyme (C) using a covalent docking algorithm
that takes into account the possibility of bond formation between ligand and receptor. Shown is the best pose of 10 best
poses of the S-bacillithiolated active site. (D) Superposition of Gap-SO3H with the S-bacillithiolated apo- and holoenzyme
active sites. (E, F) The S-bacillithiolated active site pocket of the apoenzyme (E) and holoenzyme (F) structures rotated
by 25� over y axis in respect to (B, C). (G, H) Surface representation of apoenzyme (G) and holoenzyme (H) with
docked BSH.
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apo- and holoenzyme structures using molecular docking
(Fig. 9B, C). We used a covalent docking algorithm that takes
into account the possibility of bond formation between ligand
and receptor. Docking of BSH into the apo- or holoenzyme
structure resulted in a set of covalent complexes (10 best po-
ses), in which the disulfide bond can readily form and which
are structurally very similar at least in the vicinity of the dis-
ulfide bond, suggesting a high confidence in the docking pose
(Supplementary Fig. S8). In the holoenzyme structure, the
NAD+ cofactor partially occludes the binding pocket and
narrows the space available for BSH binding. As a result, in the
holo-Gap active site, where NAD+ is present, BSH takes up
conformations, which differ significantly less compared with
the ones in the apoenzyme. When superimposing the two best
binding poses, BSH in the apoenzyme structure partially oc-
cupies the part of the pocket where NAD+ would be present
(Fig. 9D). However, in both cases, S-bacillithiolation of the
active site does not require major conformational changes of
the protein (Fig. 9E–H). In addition, previous molecular dy-
namic simulations of human GAPDH (61) suggested little
fluctuations of the protein. Taken together, we suggest that
BSH can undergo disulfide formation with the active site at
little energetic or entropic costs. This may further explain why
Gap as the most abundant redox-sensitive protein in the pro-
teome of S. aureus is also the most abundant S-bacillithiolated
protein under NaOCl stress.

Discussion

Dynamic thiol redox switches are the hallmarks of oxi-
dative stress response and the major principle of redox sig-
naling mechanism in prokaryotes and eukaryotes (33).
Quantitative redox proteomic methods such as OxICAT al-
low to determine the redox state of proteins thiols and to
dissect redox-sensitive thiols at high resolution (9, 48). To
date, global thiol redox proteomics in the major pathogen S.
aureus identified only few targets for oxidation under H2O2

stress (19, 77). However, S. aureus shows remarkable resis-
tance to 100 mM H2O2, which is attributed to the constitutive
expression of the catalase KatA indicating that S. aureus is
well adapted to peroxide stress during infections (36).

In this study, we used OxICAT to monitor the redox state
of 228 Cys residues in S. aureus USA300 under more severe
infection-like conditions as provoked by hypochlorite. In
untreated cells, the majority of thiols (84.6%) are reduced
with an oxidation degree <25%, which is in agreement with
previous studies in E. coli and yeast cells (9, 48). Under
NaOCl stress, 58 NaOCl-sensitive proteins showed >10%
increased oxidation, indicating that 25% of all identified
protein thiols are redox sensitive in S. aureus. To analyze
whether these NaOCl-sensitive Cys residues are buried or
surface exposed, we calculated their relative surface acces-
sibilities (RSAs) using NetSurfP (www.cbs.dtu.dk/services/
NetSurfP/). However, only 9 of 228 Cys residues have RSA
values of >30% and are predicted as solvent exposed (Table 2
and Supplementary Table S1). The RSA calculations clearly
indicate that NaOCl-sensitive Cys residues are often the ac-
tive site centers that are not surface exposed and buried in the
predicted secondary protein structure.

Among the NaOCl-sensitive proteins with the highest
oxidation increase of 20–30%, we identified Gap, AldA, and
GuaB as S-bacillithiolated at their conserved substrate-

binding active sites. Only a few S-bacillithiolated proteins
were found by the shotgun proteomic approach due to the
instability and low abundance of the BSH-modified peptides.
Thus, we assume that many more NaOCl-sensitive proteins
of our OxICAT dataset are modified by S-bacillithiolation,
but failed to be identified using the shotgun method.

Apart from S-bacillithiolation, also alternative S-thiolations
are possible in S. aureus under NaOCl stress such as S-
cysteinylation or CoASH mixed disulfides since cysteine and
CoASH are also present in the thiol metabolome of S. aureus
(58, 64). Moreover, the Cdr displayed an increased oxidation
level under NaOCl stress at its conserved Cys16 in our OxI-
CAT analyses and was previously shown to function in re-
duction of CoASH disulfides in S. aureus (18, 55). However,
S-cysteinylation and CoASH mixed disulfides were not de-
tected by MS due to their low abundance or instability.

Many Zn-containing NaOCl-sensitive proteins were iden-
tified, such as the Fur repressor, which is oxidized in its
Zn-binding site. Zn-binding sites are common redox switch
motifs (37). The best-studied example is the oxidation-
sensitive Hsp33 chaperone that responds to hypochlorite by a
redox switch in its Zn motif and protects E. coli proteins
against oxidative aggregation (26, 38, 46). NaOCl-sensitive
Zn-containing proteins include the alcohol dehydrogenase
Adh and the ribosomal proteins, RpmG3 and RpmJ. Several
previously predicted redox-sensitive Cys residues are found in
CxxC motifs, such as the copper chaperone, CopZ, and the
antioxidant proteins, AhpC, TrxB, and ArsC (21). These re-
sults are in agreement with previous redox proteomic results in
E. coli under NaOCl stress (48). Increased oxidation levels
were detected for both MarR/OhrR family regulators MgrA
and SarZ that are oxidized at their single Cys residues. Using
Northern blot analyses, we confirmed that SarZ oxidation leads
to derepression of transcription of the ohrA gene (USA300-
HOU_0835) in S. aureus. Thus, the OxICAT approach iden-
tified increased oxidation of both major thiol redox regulators
under NaOCl stress in S. aureus.

The most abundant S-bacillithiolated protein was the gly-
colytic Gap enzyme in S. aureus under NaOCl stress, which
was S-bacillithiolated at the active site Cys151. Gap is the
most abundant Cys-containing protein contributing 4% to the
total Cys proteome. The active site Cys is used for the nu-
cleophilic attack at the aldehyde group of the G3P substrate to
catalyze the substrate-level phosphorylation of G3P to 1,3-
bisphosphoglycerate with production of NADH (34). Gap
homologs are common targets for oxidation in eukaryotes and
prokaryotes and subject of different post-translational thiol
modifications, including S-sulfenylation, S-glutathionylation,
S-nitrosylation, and S-sulfhydration, resulting in reversible en-
zyme inactivation (10, 34). Inactivation of Gap has been shown
to redirect the glycolytic flux into the pentose phosphate path-
way to supply nicotinamide adenine dinucleotide phosphate
(NADPH) as reducing power under oxidative stress (10, 66).

Gap of S. aureus was previously identified as oxidation-
sensitive target for reversible thiol modification (19) and was
also found to be overoxidized at its active site Cys151 under
H2O2 stress (73). Using biochemistry, MS, and X-ray crys-
tallography, we confirmed previous findings that the glyco-
lytic Gap enzyme from S. aureus is highly sensitive to
overoxidation to Cys sulfonic acid in vitro in the presence of
H2O2 alone. In this work, we found that Gap is the most
abundant S-bacillithiolated protein under NaOCl stress
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in vivo. We further demonstrate that S-bacillithiolation func-
tions in reversible inhibition of Gap activity under H2O2 and
NaOCl treatment in vitro and protects the active site Cys
against overoxidation to ensure fast regeneration of this es-
sential glycolytic enzyme during recovery of cells. Our Gap
activity assays suggest that both pathways, the overoxidation
and S-bacillithiolation, operate at similar kinetics under H2O2

treatment, while inactivation due to S-bacillithiolation was
faster under NaOCl stress. Together, our results confirm the
preference for formation of S-thiolation in the presence of
LMW thiols as observed in many eukaryotic Gap homologs
(34, 43, 78).

The reactivity of the active site cysteine toward H2O2 and
the substrate G3P was recently shown to depend on two
different mechanisms (34, 61). The catalytic Cys is in close
proximity with His178 in the structure of Gap of S. aureus
that attracts the thiol proton, leading to deprotonation and
increased acidity of the catalytic Cys. The acidic nature
explains the reactivity of catalytic Cys toward the substrate
G3P that covalently reacts with the nucleophilic thiolate
during the catalytic cycle (34, 62). However, the increased
acidity of Cys151 does not explain its strong reactivity to-
ward H2O2. Instead, the reactivity of the active site thiolate
depends on a specific H2O2-binding pocket, transition state
stabilization, and a proton relay mechanism promoting
leaving group departure (34, 61).

This proton relay mechanism also determines the preferred
modification by S-bacillithiolation of Gap in S. aureus under
H2O2 in vitro, which requires the initial formation of a sul-
fenic acid, followed by reaction to the BSH mixed disulfide.
HOCl shows very fast reaction rates with thiols (3 · 107

M-1s-1) that are several orders of magnitude higher com-
pared with H2O2 (17, 27, 30, 60, 74). HOCl first leads to
chlorination of thiols resulting in an unstable sulfenylchloride
intermediate that reacts further to form disulfides in the
presence of another thiol. In the absence of proximal thiols,
the sulfenylchloride quickly leads to irreversible oxidation
stages (17, 30, 52). We have shown in S. aureus that S-
bacillithiolation functions in protection and redox regulation
of the Gap active site against overoxidation under NaOCl
stress in vitro and in vivo. Molecular docking of BSH into the
active site of the Gap apo- and holoenzyme was used to
model the S-bacillithiolated active site at high confidence.
The model of Gap-SSB structure suggests that BSH can un-
dergo disulfide formation with Cys151 without major con-
formational changes. This may explain why the most
abundant Cys protein Gap is the preferred and dominant
target for S-bacillithiolation inside S. aureus cells.

S-glutathionylation of the active site Cys of Gap was
found in many eukaryotic organisms, such as Arabidopsis
thaliana, the malaria parasite Plasmodium falciparum, or in
human endothelial cells, leading to reversible inhibition of
Gap activity (3, 43, 69). Reactivation of Gap was catalyzed
by glutaredoxins and thioredoxins in plants and malaria
parasites (3, 43). In B. subtilis, the bacilliredoxins, BrxA
and BrxB, were shown to catalyze the reduction of S-
bacillithiolated OhrR and MetE in vitro (24). In this study,
we showed that S-bacillithiolated Gap is also a substrate for
the bacilliredoxin Brx (SAUSA300_1321) in S. aureus,
which requires the active site Cys for debacillithiolation
in vitro. Thus, the bacilliredoxin pathway is also involved in
regeneration of Gap activity in S. aureus.

Materials and Methods

Bacterial strains and growth conditions

Bacterial strains used were S. aureus COL and USA300 and
its isogenic bshA mutants as described previously (64). For
cloning and genetic manipulation, E. coli DH5a and BL21
(DE3) plysS were cultivated in Luria Bertani (LB) medium.
For NaOCl stress experiments, S. aureus USA300 and COL
strains were cultivated in LB medium until an optical density
at 540 nm (OD540) of 2.0, transferred to Belitsky minimal
medium, and treated with 150 lM NaOCl stress as described
(51). NaOCl, diamide, DTT, N-ethylmaleimide (NEM), and
H2O2 (35% w/v) were purchased from Sigma-Aldrich.

MS-based thiol redox proteomics
using the OxICAT approach

S. aureus USA300 was harvested before and after exposure
to 150 lM NaOCl for 30 min, respectively. The OxICAT
method was performed according to the protocol of Linde-
mann and Leichert (49) with the modification that cells were
disrupted using a ribolyzer. The ICAT-labeled peptides were
dissolved in 0.1% (v/v) acetic acid and loaded onto self-
packed LC columns with 10 ll of buffer A (0.1% (v/v) acetic
acid) at a constant pressure of 220 bar without trapping.
Peptides were eluted using a nonlinear 85-min gradient from
1% to 99% buffer B (0.1% (v/v) acetic acid in acetonitrile)
with a constant flow rate of 300 nl/min and measured using
Orbitrap MS as described (6). The S. aureus USA300 se-
quence database was extracted from Uniprot and used by the
search engine Andromeda and the MaxQuant software (ver-
sion 1.5.1.2) to quantify the ICAT-labeled Cys peptides. Two
miscleavages were allowed, the parent ion mass tolerance
was 10 ppm and the fragment ion mass tolerance was 1.00
Da. The average percentage of oxidation of each Cys peptide
and the percentage change under NaOCl stress were calcu-
lated from 2 to 3 biological replicates using the intensity
values provided by MaxQuant. Voronoi treemaps were
generated using the Paver software to visualize the percent-
age oxidation of all identified ICAT-labeled peptide pairs.
The OxICAT proteomic data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner re-
pository with the dataset identifier PXD004918.

Identification of S-bacillithiolated and overoxidized
Cys peptides using LTQ-Orbitrap MS

For identification of S-bacillithiolated peptides, NEM-
alkylated protein extracts were prepared from S. aureus
USA300 cells after exposure to 150 lM NaOCl for 30 min as
described (15). The protein extracts were separated by 15%
nonreducing sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE), followed by tryptic in-gel di-
gestion and LTQ-Orbitrap-Velos MS, as described (15). Post-
translational thiol modifications of proteins were identified
by searching all tandem mass spectrometry (MS/MS) spectra
in dta format against the S. aureus USA300 target–decoy
protein sequence database extracted from UniprotKB release
12.7 (UniProt Consortium, Nucleic acids research 2007, 35,
D193-197) using Sorcerer�-SEQUEST� (Sequest v. 2.7 rev.
11, Thermo Electron, including Scaffold 4.0; Proteome
Software, Inc., Portland, OR). The SEQUEST search para-
meters and thiol modifications were used as described (15).
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The scores and mass deviations of the S-bacillithiolated
peptides are shown in detail in Supplementary Figure S1,
including their fragmentation spectrum and ion tables.

MS of the H2O2-treated overoxidized Gap was performed
after in-gel tryptic digestion using nLC-MS/MS by Orbitrap
fusion, as described previously (45). For Cys151-SO3H
peptide identification and quantification, MS1 data were fil-
tered to the precursor target masses applying an m/z window
of 3 ppm. Isotopic distribution and fragmentation spectra
were inspected manually in different charge states in suc-
cessive MS2 scans in different overoxidized Gap samples.

Cloning, expression, and purification of the S. aureus
Gap, Brx, and Brx Cys-Ala mutant proteins in E. coli

The previously constructed plasmids, pET11b-Brx-roGFP2,
pET11b-BrxAGC-roGFP2, and pET11b-BrxCGA-roGFP2 (51),
were used as template to amplify S. aureus brx (SAUSA300_
1321), brxAGC, and brxCGA by PCR using primer pairs 1321-
roGFP2-For-NheI (5¢-CTAGCTAGCATGAATGCATATGAT
GCTTATATGAAAG-3¢) and roGFP2-1321-Rev-BamHI (5¢-
CGCGGATCCTTAGTGATGGTGATGGTGATGTTTACAA
TTT TCGTCAAAGGC-3¢). The reverse primer also encodes the
C-terminal His6-tag. The PCR products were digested with NheI
and BamHI and inserted into plasmid pET11b (Novagen) that
was digested using the same restriction enzymes to generate
plasmids pET11b-brx, pET11b-brxAGC, and pET11b-brxCGA.
The primer pairs gap-For-NdeI (5¢-GGAATTCCATATGGCA
GTAAAAGTAGCAATTAATG-3¢) and gap-Rev-BamHI (5¢-
CGCGGATCCTTAGTGATGGTGATGGTGATGTTTAGAA
AGTTCAGCTAAGTATGC-3¢) were used to amplify the
S. aureus gap gene (SAUSA300_0756) by PCR. Chromo-
somal DNA of S. aureus USA300 was used as template. The
PCR products were digested with the restriction enzymes,
NdeI and BamHI, and inserted into plasmid pET11b that
was digested with the same enzymes to generate plasmids
pET11b-gap. The correct sequences of the cloned genes
were confirmed by sequencing. The plasmids were trans-
formed into E. coli BL21 (DE3) plysS (Novagen).

For protein expression, E. coli BL21(DE3) plysS strains
with the plasmids, pET11b-gap, pET11-brx, pET11b-brxAGC,
and pET11b-brxCGA, were grown in 1 liter LB medium and
1 mM isopropyl-b-D-thiogalactopyranoside (IPTG) was added
at the exponential phase (OD600 of 0.8) for 3 h at 37�C. His-
tagged proteins were purified using His Trap� HP Ni-NTA
columns and the ÄKTA purifier liquid chromatography system
(Amersham Bioscience). The proteins were further concen-
trated to 2–6 mg/ml using Amicon Ultra concentrators (Mil-
lipore). Before the activity assays, Gap and Brx proteins were
reduced with 10 mM DTT for 30 min, followed by DTT re-
moval using Micro Biospin 6 columns (Biorad).

Gap activity assay

Gap activity was monitored spectrophotometrically at
340 nm and 25�C by the production of NADH. The oxidation
of G3P to 1,3-bisphosphoglycerate (1,3-BPG) was measured
in an assay mixture containing 1.25 mM NAD+ and 0.25 lM
Gap in argon-flushed 20 mM Tris-HCl, pH 8.7, with 1.25 mM
ethylenediaminetetraacetic acid and 15 mM sodium arsenate.
After preincubation, the reaction was started by addition of
0.25 mM D,L-G3P. Sodium arsenate was used as a cosub-
strate to form unstable 1-arseno-3-phosphoglycerate, as de-

scribed previously (61). Degradation of the product allows a
favorable equilibrium for measuring the rate of Gap activity
in the glycolytic forward reaction. Initial rates were deter-
mined by calculation of the slope in the linear part of the
curve during the first 80 seconds at the beginning of the
reaction (linear regression function, GraphPad) as described
previously (61). Percentage of Gap activity was calculated as
(Rateinactivated/Rateuntreated x 100%). The results are presented
as mean – SEM from at least three separate experiments.

S-bacillithiolation of Gap in vitro and reduction
by the bacilliredoxin Brx

About 25 lM of purified Gap was S-bacillithiolated with
250 lM BSH in the presence of 2.5 mM H2O2 for 5 min.
Excess of BSH and H2O2 was removed with Micro Biospin 6
columns (Biorad). For the Brx debacillithiolation assay, Gap-
SSB was incubated with Brx, BrxCGA, and BrxAGC at 37�C
for 30 min, followed by Gap activity assays and nonreducing
BSH-specific Western blot analysis, as described (16).

Western blot analysis

The S-bacillithiolated proteins were harvested from S.
aureus USA300 wild-type and bshA mutant cells after ex-
posure to 150 lM NaOCl, separated by nonreducing SDS-
PAGE, and subjected to BSH-specific Western blot analysis
using the polyclonal rabbit anti-BSH antiserum, as described
previously (16).

Northern blot experiments

Northern blot analyses were performed as described before
(15) using RNA isolated from S. aureus USA300 wild type
under control conditions and after treatment with 150 lM
NaOCl. Hybridization specific for ohrA (USA300HOU_0835)
was performed with the digoxigenin-labeled RNA probe syn-
thesized in vitro using T7 RNA polymerase from T7 promoter
containing internal PCR products using the primer pairs
ohrA-for, 5¢ TGGCAATACATTATGAAACTAAAGC 3¢,
and ohrA-T7-rev, 5¢ CTAATACGACTCACTATAGGGAGA
TTTAAATCGACATTAATATTTCCTTGA 3¢.

Crystallographic procedures

Before crystallization, H2O2-treated overoxidized Gap
was concentrated to 11 mg/ml. Crystals of overoxidized Gap
were grown at 18�C using the hanging drop vapor diffusion
technique and 30% (w/v) PEG 3350, 0.1 M Tris, pH 8.5, as
the reservoir solution. Crystals were cryoprotected by trans-
fer into mother liquor mixed with 50% (v/v) PEG 400 in a 1:1
ratio and flash-cooled in liquid nitrogen. X-ray diffraction
data were collected from a single crystal at 100 K on beam-
line 14.1 of the BESSY II storage ring (Berlin, Germany) (56)
equipped with a PILATUS 6M detector (Company-REF),
with a 0.1 � oscillation and exposure time of 0.3 s per frame.
Diffraction images were processed using XDS (41). Crystal
parameters and data collection statistics are given in Sup-
plementary Table S3. The Gap-SO3H structure was solved
by molecular replacement with Molrep (71) using the struc-
ture of the Gap apoenzyme (PDB entry 3LC7; [57]) as a
model. The final model of the Gap-SO3H was generated by
iterative rounds of manual model building using Coot (20)
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and automated refinement using the phenix.refine package in
PHENIX (1) with the inclusion of TLS parameters generated
by the TLSMD server (59). Coordinates and structure factor
amplitudes have been deposited in the Protein Data Bank (4)
under the accession code 5T73 and will be released upon
publication.

Molecular docking of BSH into the Gap active site

To model a covalent complex between BSH and the S.
aureus Gap active site Cys151, docking experiments were
performed with the holo form containing NAD [PDB code:
3LVF chain R, (57)] as well as the apo form [PDB code: 3LC7
chain O, (57)] of the enzyme. Before molecular docking, both
protein structures were prepared using the protein preparation
wizard (68) in the Schrodinger software (Release 2016–1)
graphical user interface Maestro. Hydrogen was added ac-
cording to the protonation states at pH of 7.0 as predicted by
PROPKA, bond orders were assigned, and disulfide bonds
were allocated. Water with less than three hydrogen bonds to
nonwater residues was removed and minimization of heavy
atoms was performed using OPLS3. The BSH structure was
obtained from Pubchem (ID: CID 42614123) and processed
with the ligand preparation wizard. The ligand was protonated
at pH of 7.0 – 2.0 using Epik (28). Covalent molecular docking
was performed using CovDock (79), which combines the two
programs Glide (23) for docking and Prime (39, 40) for min-
imization. Cysteine 151 was set as reactive residue, and the
reaction type was disulfide formation. All atom positions were
fixed, except for the targeted residue and the ligand. Covalent
docking was performed with default options and the poses
were ranked according to the Prime energy.
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Abbreviations Used

1,3-BPG ¼ 1,3-bis-phosphoglycerate
BrxAGC ¼ bacilliredoxin active site mutant
BrxCGA ¼ bacilliredoxin resolving Cys mutant

BSH ¼ bacillithiol
bshA ¼ gene for BSH glycosyltransferase

BSSB ¼ oxidized bacillithiol disulfide
Cdr ¼ CoASH disulfide reductase

CoASH ¼ coenzymeA
CV ¼ coefficient of variation
Cys ¼ cysteine

DTT ¼ dithiothreitol
EDTA ¼ ethylenediaminetetraacetic acid

G3P ¼ glyceraldehyde-3-phosphate
Gap ¼ glyceraldehyde-3-phosphate

dehydrogenase
Gap-SO3H ¼ Gap sulfonic acid

Gap-SSB ¼ S-bacillithiolated Gap
GlcNAc ¼ N-acetyl glucoseamine

H2O2 ¼ hydrogen peroxide
HOCl ¼ hypochlorous acid
ICAT ¼ isotope-coded affinity tag

IMP ¼ inosine 5¢-monophosphate
IPTG ¼ isopropyl-b-D-thiogalactopyranoside

LB ¼ Luria bertani
LC ¼ liquid chromatography

LMW ¼ low-molecular-weight
LTQ ¼ linear trap quadrupole
Mal ¼ malate

Met ¼ methionine
MPO ¼ myeloperoxidase

MRSA ¼ methicillin-resistant
Staphylococcus aureus

Mrx1 ¼ mycoredoxin1
MS ¼ mass spectrometry

MS/MS ¼ tandem mass spectrometry
NADH ¼ nicotinamide adenine dinucleotide

NADPH ¼ nicotinamide adenine dinucleotide
phosphate

NaOCl ¼ sodium hypochlorite
NEM ¼ N-ethylmaleimide

OxICAT ¼ thiol redox proteomic methods based
on the differential labeling of reduced
Cys residues with light ICAT and
of reversibly oxidized Cys residues
with heavy ICAT after reduction
using TCEP

protein-SSB ¼ BSH protein mixed disulfide
RNS ¼ reactive nitrogen species

roGFP2 ¼ redox-sensitive green fluorescent
protein

ROS ¼ reactive oxygen species
RSA ¼ relative surface accessibility

SDS-PAGE ¼ sodium dodecyl sulfate–polyacrylamide
gel electrophoresis

TCEP ¼ Tris (2-carboxyethyl) phosphine
Trx ¼ thioredoxin

TrxR ¼ thioredoxin reductase
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A B S T R A C T

Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in
thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde
dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus.
Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus.
Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern
blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal,
diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, sug-
gesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity
for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde.
Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress.
Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to over-
oxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in
reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western
blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies
two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show
here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress
and functions in protection under hypochlorite stress.

1. Introduction

Staphylococcus aureus is a major human pathogen that causes local
wound infections, but also life-threatening systemic and chronic

infections, such as septicemia, endocarditis, necrotizing pneumonia and
osteomyelitis [1–3]. Moreover, there is an increasing prevalence of
hospital- and community-acquired methicillin-resistant S. aureus
(MRSA) isolates that are often resistant to multiple antibiotics [4]. S.
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aureus quickly escapes to bactericidal action of new antibiotics and is
therefore classified as ESKAPE pathogen by the “European Center of
Disease Prevention and Control” [5]. The successful infection of S.
aureus is mediated by a high diversity of virulence factors, such as
toxins, proteases, lipases, superantigens, as well as efficient protection
mechanisms against the host immune defense during invasion [6,7].
During infections, S. aureus has to cope with the oxidative burst of
activated macrophages and neutrophils, including reactive oxygen and
chlorine species (ROS, RCS), such as hydrogen peroxide (H2O2) and the
strong oxidant hypochloric acid (HOCl) [8–11]. HOCl is generated in
neutrophils from H2O2 and chloride by the myeloperoxidase (MPO)
which is the main cause of bacterial killing [12,13].

Apart from ROS and RCS, S. aureus is frequently exposed to reactive
electrophile species (RES), such as quinones and aldehydes that origi-
nate from cellular metabolism, as secondary oxidation products from
ROS and RCS as well as from external sources, such as antibiotics and
host-defense components [11,14–17]. RES are α,β-unsaturated di-
carbonyl compounds that have electron-deficient centers and can react
with protein thiols via oxidation or thiol-S-alkylation chemistries
[16,17]. Methylglyoxal is an example for a highly toxic and reactive
aldehyde produced as by-product from triose-phosphate intermediates
during glycolysis [14,15]. Methylglyoxal detoxification pathways and
their regulatory mechanisms have been widely studied in E. coli and B.
subtilis. E. coli utilises a glutathione (GSH)-dependent glyoxalase
pathway and a GSH-independent pathway for methylglyoxal detox-
ification. In the glyoxalase pathway, methylglyoxal reacts sponta-
neously with GSH to form hemithioacetal which is converted by
glyoxalase-I to S-lactoylglutathione. S-lactoylglutathione is the sub-
strate for glyoxalase-II leading to lactate production [14,18]. The
glyoxalase gloA and the nemRA operon are induced by quinones, alde-
hydes and HOCl and regulated by the TetR-family NemR repressor in E.
coli [19–22]. GloA functions as glyoxalase in methylglyoxal detox-
ification and NemA is an FMN-dependent oxidoreductase involved in
detoxification of quinones and aldehydes. Moreover, it was shown that
methylglyoxal is produced as consequence of hypochlorite stress and
that NemR confers protection to methylglyoxal and HOCl via control of
the gloA-nemRA operon [20].

Gram-positive Firmicutes, such as Bacillus subtilis and S. aureus
produce bacillithiol (BSH) as GSH surrogate which functions as pro-
tection mechanism against redox-active compounds and co-factor for
thiol-dependent enzymes [23,24]. Methylglyoxal detoxification in B.
subtilis involves BSH-dependent and BSH-independent pathways
[23,25]. In the BSH-dependent glyoxalase pathway, BSH reacts with
methylglyoxal to form BS-hemithioacetal which is converted to S-lac-
toyl-BSH by Glx-I and further by Glx-II to lactate [23,25]. In addition,
the thiol-dependent formaldehyde dehydrogenase AdhA confers pro-
tection under formaldehyde and methylglyoxal stress in B. subtilis
which is controlled by the MerR/NmlR-like regulator AdhR [35].
However, the enzymatic pathways involved in detoxification of reactive
aldehydes are unknown in S. aureus.

Recently, we identified the glycolytic glyceraldehyde-3-phosphate
dehydrogenase GapDH as major S-bacillithiolated protein in S. aureus
under NaOCl stress [26]. Apart from GapDH, the aldehyde dehy-
drogenase AldA was S-bacillithiolated at its active site Cys279 under
NaOCl stress, which could function in detoxification of methylglyoxal
or other aldehyde substrates. Here, we have studied the expression and
function of AldA of S. aureus under formaldehyde, methylglyoxal and
NaOCl stress. Transcriptional studies revealed an increased aldA tran-
scription under aldehyde, NaOCl and diamide stress in S. aureus. In
survival phenotype assays, the aldA mutant was more sensitive to
NaOCl stress. Using biochemical activity assays, we provide evidence
that S-bacillithiolation functions in redox-regulation of AldA activity.
All-atom molecular dynamics (MD) simulations suggest that the loca-
tion of BSH in the AldA active site depends on the Cys activation state in
the apo- and holoenzyme structures. In conclusion, our results indicate
that AldA plays an important role in the NaOCl stress defense and is

redox-regulated by S-bacillithiolation in S. aureus.

2. Materials and methods

2.1. Bacterial strains, growth and survival assays

Bacterial strains, plasmids and primers are listed in Tables S1 and
S2. For cloning and genetic manipulation, E. coli was cultivated in Luria
Bertani (LB) medium. S. aureus COL was cultivated either in LB or RPMI
medium as described previously [26]. For survival phenotype assays, S.
aureus COL was grown in RPMI medium until an OD500 of 0.5, exposed
to 2 mM formaldehyde, 4 mM methylglyoxal and 3.5 mM NaOCl stress
and 10 µl of serial dilutions were spotted onto LB agar plates for 24 h to
observe colonies. All complemented aldA deletion mutants with
plasmid pRB473 were grown in the presence of 1% xylose and 10 µg/ml
chloramphenicol. Sodium hypochlorite, diamide, dithiothreitol (DTT),
hydrogen peroxide (H2O2, 35% w/v), formaldehyde, methylglyoxal and
2-methylhydroquinone (MHQ) were purchased from Sigma Aldrich.

2.2. RNA isolation and Northern blot analysis

For RNA isolation, S. aureus COL was cultivated in RPMI medium
and treated with sub-lethal doses of 1 mM NaOCl, 0.75 mM for-
maldehyde (FA), 0.5 mM methylglyoxal (MG), 10 mM H2O2 and 50 µM
MHQ for different times as described previously [26]. S. aureus COL
cells were harvested before and after stress exposure and disrupted in
lysis buffer [10 mM Tris-HCl, pH 8.0; 200 mM sodium chloride (NaCl);
3 mM ethylene diamine tetra acetic acid (EDTA)] with a Precellys24
ribolyzer. RNA was isolated using acid phenol extraction as described
[26] and RNA quality was assessed using the Nanodrop. Northern blot
hybridizations were performed with the digoxigenin-labelled aldA-
specific antisense RNA probe synthesized in vitro using T7 RNA poly-
merase and the primer pairs aldA-for and aldA-rev (Table S2) as de-
scribed [26,27].

2.3. Cloning, expression and purification of His-tagged AldA and AldC279S
mutant proteins in E. coli

The aldA gene was amplified from chromosomal DNA of S. aureus
COL by PCR using primers aldA-for-NheI and aldA-rev-BamHI (Table
S2), digested with NheI and BamHI and inserted into plasmid pET11b
(Novagen) that was digested using the same enzymes to generate
plasmid pET11b-aldA. For construction of pET11b expressing Al-
dAC279S mutant protein, Cys279 was replaced by serine using PCR
mutagenesis. Two first-round PCR reactions were performed using
primer pairs aldA-for-NheI and aldA-C279S-Rev as well as primer pairs
aldA-C279S-for and aldA-rev-BamHI (Table S2). The two first round
PCR products were hybridized and subsequently amplified by a second
round of PCR using primers aldA-for-NheI and aldA-rev-BamHI. The
second-round PCR products were digested with NheI and BamHI and
inserted into plasmid pET11b digested with the same enzymes to gen-
erate plasmid pET11b-aldAC279S. The correct aldA and aldAC279S
sequences of the plasmids were confirmed by DNA sequencing. Plasmid
pET11b-aldAC279S was also used for construction of the aldAC279S
mutant in vivo and subcloned into the E. coli/S. aureus shuttle vector
pRB473 as described below.

For expression and purification of His-tagged AldA and AldAC279S
mutant protein, E. coli BL21(DE3) plysS was used expressing plasmids
pET11b-aldA and pET11b-aldAC279S, respectively. Cultivation was
performed in 1 l LB medium until the exponential growth phase at
OD600 of 0.8 followed by addition of 1 mM isopropyl-β-D-thiogalacto-
pyranoside (IPTG) for 3.5 h at 37 °C. Recombinant His-AldA and His-
AldAC279S mutant proteins were purified after sonication of the E. coli
cells in binding buffer (20 mM NaH2PO4, 500 mM NaCl, 20 mM imi-
dazole, pH 7.4). Lysates were cleared from cell debris by repeated
centrifugation and purification of the His-AldA and His-AldAC279S
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mutant proteins was performed by application of an imidazole gradient
(0–500 mM) using His Trap™ HP Ni-NTA columns (5 ml; GE Healthcare,
Chalfont St. Giles, UK) and the ÄKTA purifier liquid chromatography
system (GE Healthcare) according to the instructions of the manu-
facturer. Purified proteins were extensively dialyzed against 10 mM
Tris-HCl (pH 8.0), 100 mM NaCl, and stored on ice until usage.

2.4. Construction of the S. aureus COL aldA deletion mutant and the
complemented aldA and aldAC279S mutant strains

The S. aureus COL ΔaldA deletion mutant was constructed by allelic
replacement via the temperature-sensitive shuttle vector pMAD as de-
scribed [28]. Briefly, for construction of the plasmids pMAD-ΔaldA, the
500 bp up- and downstream flanking gene regions of aldA were am-
plified using the primers aldA-pMAD-up-for/rev and aldA-pMAD-do-
for/rev from S. aureus COL genomic DNA (Table S2). The aldA up- and
downstream flanking regions were fused by overlap extension PCR and
ligated into the BglII and SalI sites of plasmid pMAD. The pMAD con-
structs were electroporated into the restriction-negative and methyla-
tion-positive intermediate S. aureus RN4220 strain and further trans-
ferred to S. aureus COL by phage transduction using phage 80 [29].
Transductants were streaked out on LB agar with 10 µg/ml ery-
thromycin and 40 µg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactopyr-
anoside (X-gal) at 30 °C. Blue transductants with pMAD integrations
were selected for plasmid excision by a heat shock as described [30].
Erythromycin-sensitive white colonies were selected on X-gal plates and
screened for aldA deletions by PCR and DNA sequencing.

The complemented aldA and aldAC279S mutant strains were con-
structed using the pRB473 plasmid as described [31]. Briefly, aldA and
aldAC279S sequences were amplified from plasmids pET11b-aldA and
pET11b-aldAC279S using the primers aldA-pRB-for-BamHI and aldA-
pRB-rev-KpnI. The PCR products were digested with BamHI and KpnI
and inserted into the pRB473 plasmid that was digested using the same
enzymes resulting in plasmids pRB473-aldA and pRB473-aldAC279S.
The plasmids were transferred to the ΔaldA mutant via phage trans-
duction as described [31].

2.5. AldA activity assays

AldA activity was monitored spectrophotometrically at 340 nm and
30 °C with the substrate and NAD+ as cofactor by the production of
NADH using a CLARIOstar (BMG Labtech) spectrophotometer. The
oxidation of different aldehyde substrates (formaldehyde, methyl-
glyoxal, acetaldehyde and glycol aldehyde) was measured in an assay
mixture containing 1.25 mM NAD+ and 2.5 µM AldA in reaction buffer
(100 mM Tris-HCl, 1.25 mM EDTA, pH 7.5). After pre-incubation, the
reaction was started by addition of the aldehyde substrates and NADH
production was measured at 340 nm. The kinetic curves are presented
as mean ± SEM from at least three independent experiments.

2.6. Western blot analysis

The purified His-AldA protein was separated using 12% SDS-PAGE
and subjected to BSH-specific Western blot analysis using the poly-
clonal rabbit anti-BSH antiserum as described previously [32].

2.7. Molecular docking of the S-bacillithiolated AldA Cys279 active site

To model a covalent complex between BSH and the AldA Cys279
active site by molecular docking, the crystal structure of AldA from S.
aureus was used as a receptor (PDB code 3TY7). The missing loop (re-
sidues 438-459) was modelled and fitted using MODELLER [33]. To
identify the potential BSH binding site, FTMap solvent mapping cal-
culations were performed [34] and two highest-occupancy binding sites
were considered in the further calculations (Fig. 7EF). In the Q1 site,
the NAD+ molecule has been fitted using crystal structures of the

Pseudomonas fluorescens pfAMSDH co-crystallised with NAD+ (PDB
code 4I1W). Then, the hydrogen atoms were added, and the charges for
NAD+ molecule were assigned using AM1-BCC method [35]. The
Cys279 thiol group was considered deprotonated. The BSH molecule
was built, energy minimised (5000 cycles of steepest-descent mini-
misation), and the partial atomic charges were generated using AM1-
BCC [35].

Molecular docking was performed using the University of
California, San Francisco DOCK 6.8 suite [36] with grid scoring in an
implicit solvent. The grid spacing was 0.25 Å, and the grid included
12 Å beyond the NAD+ modelled, which was subsequently removed for
the pose Q2. The energy score was the sum of electrostatic and van der
Waals contributions. To check the suitability of the methodology, the
NAD+ was removed from the binding site, its translational and rota-
tional degrees of freedom were altered and the molecule has been re-
docked to the protein, in order to check whether the docking procedure
was able to reproduce the native binding mode, as observed in related
crystal structures. After the positive verification, the BSH molecule was
docked to both Q1 (holo-enzyme with NAD+) and Q2 (apo-enzyme
without NAD+) sites detected by FTMap [34].

During the docking calculations, the BSH molecule was subjected to
5000 cycles of molecular-mechanical energy minimisation at the pro-
tein-binding site. The number of maximum ligand orientations was
50,000. The constraint was the distance between sulfur atoms from the
Cys279 thiol and the sulfur of BSH. The 25 best-scoring poses (BSH-
protein complexes) were further analyzed by means of secondary re-
scoring using SeeSAR https://www.biosolveit.de/SeeSAR/ package
with more accurate HYDE scoring function [37]. The best-scoring poses
in Q1 and Q2 putative binding sites were subjected to all-atom MD
simulations.

2.8. Molecular dynamics (MD) simulation of S-bacillithiolation

All simulations for the 5 studied systems: apo-enzyme, holo-enzyme
(protein-NAD+), BSH-holo-enzyme (Q1), BSH-apo-enzyme (Q1), and
BSH-apo-enzyme (Q2) were carried out using GROMACS2016.2 code
[38], with Amber99SB-ILDN [39] force field for the duplexes and the
TIP3P water model. Parameters for NAD+ and BSH were assigned by
ACPYPE [40]. Obtained partial atomic charges were derived using the
RESP methodology [41] and validated with the Gaussian09 programme
[42] using HF/6-31G∗ basis set.

The temperature was kept constant at T = 300 K by using velocity
rescaling with a coupling time of 0.1 ps. The pressure was kept constant
at 1 bar using an isotropic coupling to Parrinello-Rahman barostat with
a coupling time of 0.1 ps [43]. A cut-off of 1 nm was used for all non-
bonded interactions. Long-range electrostatic interactions were treated
with the particle-mesh Ewald [44] method using a grid spacing of
0.1 nm with cubic interpolation. All bonds between hydrogens and
heavy atoms were constrained using the LINCS algorithm [45]. Each of
the systems were immersed in a cubic TIP3P water box containing ∼
115,000 atoms. Simulation units were maintained neutral by adding
sodium and chloride counter ions (0.1 M concentration).

Prior to MD simulations, the systems undergone 50,000 steps of
molecular mechanical energy minimisation. This was followed by
100 ps MD simulations, during which position constraints were used on
all backbone atoms, heavy atoms of BSH and NAD+. After the following
unrestrained equilibration phase (10 ns) the production runs were
carried out for 50 ns, with an integration time step of 2 fs. The cut-off

for non-bonded interactions was 0.1 nm. The atomic coordinates were
saved every 100 ps. For the visual inspection of the results we used
xmgrace [46] and UCSF Chimera [47] packages. Free binding energy
calculations have been performed using the MMPBSA.py program from
AmberTools package [48]. Binding energies have been calculated be-
tween BSH and the protein at the two different binding sites, as in Q1
and Q2, for the last 25 ns of the simulation.
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3. Results

3.1. The aldehyde dehydrogenase AldA is strongly oxidized at its active site
Cys279 due to S-bacillithiolation under NaOCl stress in S. aureus

The aldehyde dehydrogenase AldA was previously identified as S-
bacillithiolated at its catalytic active site Cys279 in S. aureus and
Staphylococcus carnosus [26,32]. In addition, both aldehyde dehy-
drogenases, GapDH and AldA displayed the highest oxidation increase
of 29% under NaOCl stress in S. aureus using the thiol-redox proteomics
approach OxICAT [26]. The OxICAT method is based on thiol-labelling
of the reduced AldA Cys279 peptide with light 12C-ICAT reagent, fol-
lowed by reduction of the Cys279-SSB peptide and its labelling with
heavy 13C-ICAT reagent [49]. The percentage oxidation of the Cys279
peptide of AldA under control and NaOCl stress is reflected by the mass
spectra of the ICAT-labelled peptide pair as quantified in the previous
study [26] (Fig. 1A). The strong 29% oxidation increase of the active
site Cys279 is shown here again which is caused by S-bacillithiolation
[26]. To confirm that AldA can be S-bacillithiolated also in vitro, we
expressed and purified His-tagged AldA from E. coli extracts. Purified
AldA was treated with H2O2 after pre-exposure to 10-fold excess of BSH
and the reversible S-bacillithiolation of AldA was verified using BSH-
specific Western blot analyses in the absence and presence of DTT
(Fig. 1B). The S-bacillithiolated AldA band is denoted with AldA-SSB.
Next, we were interested to study the expression, function, redox-reg-
ulation and structural changes of AldA under NaOCl and aldehyde
stress.

3.2. Transcription of aldA is induced SigmaB-independently under thiol-
specific stress conditions by formaldehyde, NaOCl and diamide in S. aureus
COL

We used Northern blot analysis to study aldA transcription in S.
aureus COL under different thiol-specific stress conditions, including
sub-lethal doses of 1 mM NaOCl, 2 mM diamide, 0.75 mM for-
maldehyde, 0.5 mM methylglyoxal, 50 µM methylhydroquinone (MHQ)
and 10 mM H2O2 (Fig. 2A). The Northern blot results revealed that aldA
transcription is strongly induced in S. aureus COL wild type after ex-
posure to formaldehyde, diamide and NaOCl stress, but less strongly

under methylglyoxal stress (Fig. 2A). No significant induction of aldA
was detected under MHQ and H2O2 treatment. These transcriptional
results indicate that AldA could be involved in the hypochlorite stress
defense or in detoxification of aldehydes. In previous microarray ex-
periments, aldA was identified as member of the SigmaB general stress
regulon, which responds to heat and salt stress (NaCl), MnCl2 and al-
kaline stress conditions in S. aureus [50,51]. The sigB-dependent pro-
moter sequence was mapped in the aldA regulatory upstream region
(GTTTAT-N14-GGATAA) as promoter U1137.SigB.M2 previously
(Fig. 2B) [52]. In the condition-dependent transcriptome of S. aureus
NCTC8325-4 [53], the strongest aldA transcription was monitored
during the stationary phase in rich LB and TSB medium as well as
during plasma stress as visualized by the Aureowiki Expression data
browser (http://genome.jouy.inra.fr/cgi-bin/aeb/viewdetail.py?id=
NA_2184537_2185964_-1) [52].

To investigate whether the thiol-specific induction of aldA tran-
scription by formaldehyde, diamide and NaOCl requires SigmaB, we
performed Northern blot analysis with RNA isolated from a sigB dele-
tion mutant in comparison to the wild type (Fig. 2B). The Northern blot
results showed similar aldA transcriptional induction in the sigB mutant
under NaOCl, diamide and formaldehyde stress compared to the wild
type. Even a higher aldA transcription occurred under methylglyoxal
stress in the sigB mutant. These results indicate that aldA transcription is
subject to SigmaB-independent control mechanisms under thiol-specific
stress conditions by an unknown thiol-specific transcription factor that
remains to be elucidated. No additional SigA promoter was identified
upstream of aldA previously [52], presumably because the conditions
were different compared to our thiol-stress conditions. In previous
studies, a refined consensus for SigA- and SigB-dependent promoter
sequences was revealed based on 93% of S. aureus transcriptional units
[52]. In the aldA regulatory region, a putative SigA-dependent pro-
moter was identified upstream of the SigB promoter, which could drive
the thiol-specific expression of aldA (Fig. 2B).

3.3. AldA plays important roles in the defense against NaOCl stress in S.
aureus COL

Next, we analyzed the role of AldA in protection under NaOCl and
aldehyde stress in S. aureus. It was previously shown that methylglyoxal

Fig. 1. OxICAT analysis revealed a 29% increased oxidation of the AldA Cys279-peptide (A) and S-bacillithiolation of the AldA protein in vitro is shown by BSH-specific
Western blot analysis (B). (A) The OxICAT mass spectrometry results from the previous study [26] are shown for the AldA-Cys279-peptide in S. aureus under control and 30 min after
NaOCl stress. The reduced Cys279-peptides is labelled with light 12C-ICAT, followed by reduction of the S-bacillithiolated Cys279-peptide and labelling with heavy 13C-ICAT reagent. The
Cys279-peptide was 10% oxidized in the control and 38% oxidized in the NaOCl stress sample indicating a 29% oxidation increase. (B) AldA is S-bacillithiolated in vitro by H2O2 in the
presence of BSH as revealed by BSH-specific Western blots. Reduced purified AldA (40 µM) is pretreated with 10-fold molar excess of BSH (400 µM) and incubated with 10 mM H2O2 for
5 min. The S-bacillithiolated AldA was detected using non-reducing BSH-specific Western blot analysis. The loading control of AldA and S-bacillithiolated AldA (AldA-SSB) is shown as
SDS-PAGE stained with Coomassie below the anti-BSH blot.
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is produced in E. coli cells treated with HOCl [20]. Thus, AldA could
function in methylglyoxal detoxification under HOCl stress also in S.
aureus. AldA harbors a conserved active site Cys279 which is essential
for its catalytic activity [54–56]. The function of AldA and the con-
served Cys279 under methylglyoxal, formaldehyde and HOCl stress was
analyzed in growth and survival assays of an aldA deletion mutant and
its aldA and aldAC279S complemented strains (Figs. 3, 4, S1 and S2).
The growth of the aldA mutant was not affected under sub-lethal for-
maldehyde and methylglyoxal stress in comparison to the wild type
(Fig. S1). In addition, no significant phenotypes of the aldA mutant and
the aldA complemented strains were detected in survival assays after
exposure to 4 mM methylglyoxal (Fig. 3AB) and 2 mM formaldehyde

stress (Fig. S2). However, the aldA mutant was significantly impaired in
growth after exposure to sub-lethal concentrations of 1.5 mM NaOCl
stress (Fig. 4A). In survival assays, the aldA mutant showed also a
strongly decreased survival after treatment with 3.5 mM NaOCl
(Fig. 4C). This survival defect of the ΔaldA mutant could be restored
back to wild type level in the aldA complemented strain, but not in the
aldAC279S mutant (Fig. 4D). This indicates that AldA is involved in
protection of S. aureus against NaOCl stress and that Cys279 is essential
for AldA activity in vivo.

Fig. 2. Transcriptional induction of aldA under formaldehyde, methylglyoxal, NaOCl and diamide stress in S. aureus COL wild type (A) and in the sigB mutant (B). (A) RNA
was isolated from S. aureus COL wild type under control conditions as well as after treatment with sub-lethal doses of 0.75 mM formaldehyde, 0.5 mM methylglyoxal, 1 mM NaOCl, 2 mM
diamide, 10 mM H2O2 and 50 µM methylhydroquinone (MHQ) for 15 and 30 min and subjected to Northern blot analysis for aldA (SACOL2114) transcription. (B) For comparison of
Northern blot analysis of aldA transcription between the wild type and the sigB mutant, RNA was isolated from S. aureus COL wild type and the sigB mutant after exposure to 0.75 mM
formaldehyde, 0.5 mM methylglyoxal, 1 mM NaOCl and 2 mM diamide for 15 min. Transcription of aldA is similarly up-regulated under formaldehyde, NaOCl and diamide stress in the
wild type (A) and in the sigB mutant (B) indicating a SigmaB-independent thiol-stress regulatory mechanism of aldA transcription. The known SigmaB-dependent promoter sequence and
a putative SigA-dependent promoter in the aldA upstream regulatory region are shown below the Northern blot in (B). The methylene blue stain is the RNA loading control showing the
abundant 16S and 23S rRNAs. The experiments were performed in 3 biological replicates.

Fig. 3. AldA is not essential for the survival of S.
aureus under methylglyoxal stress. For the sur-
vival phenotype assays, S. aureus COL wild-type
(WT), the ΔaldA deletion mutant (A) and the aldA
and aldAC279S complemented ΔaldA mutants (ΔaldA
pRB473-aldA and ΔaldA pRB473-aldAC279S) (B)
were grown in RPMI until an OD500 of 0.5 and
treated with 4 mM methylglyoxal. Survival assays
were performed by spotting 10 µl of serial dilutions
after 1–3 h of NaOCl exposure onto LB agar plates.
The experiments were performed in 3 biological re-
plicates.
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3.4. AldA shows broad substrate specificity for oxidation of various
aldehyde substrates, including formaldehyde and methylglyoxal in vitro

To study the function and substrate specificity of AldA in vitro, the
catalytic activity was measured using different aldehyde substrates,
including formaldehyde, methylglyoxal, glycol aldehyde and acet-
aldehyde in concentrations ranging from 0.5 to 100 mM. AldA activity
was measured in a spectrophotometric assay in the presence of NAD+

as a cofactor with the different aldehyde substrates by monitoring the
NADH production as absorbance increase at 340 nm. The AldA activity
assays revealed increasing NADH production with increasing con-
centrations of all aldehyde substrates indicating that AldA has broad
substrate specificities (Fig. 5). AldA showed the highest activities with
55 mM formaldehyde and 20 mM methylglyoxal, which could be pos-
sible substrates of AldA. Formaldehyde and methylglyoxal are oxidized
to formate and lactate by AldA, resulting in NADH generation.

To further confirm that Cys279 is the active site residue and es-
sential for AldA activity, we used the purified AldAC279S mutant
protein which was analyzed for formaldehyde and methylglyoxal oxi-
dation in the AldA activity assays. However, the AldAC279S mutant
protein did not show significant activity for formaldehyde and me-
thylglyoxal oxidation in our activity assays (Fig. S4). This indicates that
the conserved Cys279 is the active site residue and required for AldA
activity as shown also for other homologs previously [54,55,57].

3.5. AldA is redox-regulated and protected by protein S-bacillithiolation
under H2O2 stress in vitro

We were interested whether S-bacillithiolation inhibits AldA ac-
tivity and protects the active site Cys279 against overoxidation in vitro.
Using the spectrophotometric assay, AldA activity was measured after
oxidative stress with 15 mM methylglyoxal as substrate and NAD+ as
coenzyme by monitoring NADH generation at 340 nm. Treatment of

AldA with 0.5–1 mM H2O2 resulted in a strong inactivation of its en-
zymatic activity (Fig. 6A). Inactivation of AldA with H2O2 alone was
irreversible since AldA activity could not be restored after treatment
with 10 mM DTT (Fig. 6B). These results indicate that the active site
Cys279 of AldA is very sensitive to overoxidation by H2O2 in the ab-
sence of BSH. To assess the effect of S-bacillithiolation on AldA activity,
the enzyme was pre-exposed to 0.3–0.5 mM BSH prior to oxidation with
0.3–1 mM H2O2 and the remaining AldA activity was measured in the
spectrophotometric assay with 15 mM methylgyoxal as substrate. AldA
activity was inhibited with 0.3–1 mM H2O2 after pre-treatment with
0.3–0.5 mM BSH (Fig. 6C). In this case, however, the activity of the
oxidized AldA protein could be restored to 66% by DTT reduction in-
dicating that AldA is subject to reversible S-bacillithiolation in the
presence of BSH and H2O2 (Fig. 6D). S-bacillithiolation of AldA and its
reversibility with DTT was further confirmed in BSH-specific Western
blots (Fig. 1B). These results suggest that S-bacillithiolation protects the
AldA active site Cys279 against overoxidation and functions in redox-
regulation of AldA activity in vitro.

3.6. Structural comparison of AldA with other aldehyde dehydrogenases

We were further interested in the structure and the structural
changes of AldA upon S-bacillithiolation. A crystal structure of S. aureus
AldA (denoted as saAldA) has been determined by the Midwest Center
for Structural Genomics (PDB 3TY7). For understanding the enzyme's
catalytic mechanism, we performed structural homology searches for
saAldA with the DALI server [58] (http://ekhidna.biocenter.helsinki.fi/
dali_server/) and the PDBeFold (SSM) server (http://www.ebi.ac.uk/
msd-srv/ssm/). SaAldA shows high homology to many other aldehyde
dehydrogenases (ADHs) from bacteria, plants and humans. The root-
mean-square deviations (r.m.s.d.’s) and sequence similarities of AldA's
closest homologs are listed in Table S3.

In contrast to the tetrameric bacterial ADHs (pfAMSDH, saBADH,

Fig. 4. AldA is required for growth and survival
under NaOCl stress in S. aureus. (A, B) Growth
curves of S. aureus COL wild type and the aldA de-
letion mutant in RPMI medium after exposure to
sublethal concentrations of 1.5 mM and 2 mM NaOCl
stress at an OD540 of 0.5. The growth differences of
the aldA mutant are significantly different compared
to the wild type at 1.5 mM NaOCl. (C, D) For the
survival phenotype assays, S. aureus COL wild-type
(WT), the ΔaldA deletion mutant (C) and the aldA
and aldAC279S complemented ΔaldA mutants
(ΔaldApRB473-aldA and ΔaldA pRB473-aldAC279S)
(D) were grown in RPMI until an OD500 of 0.5 and
treated with 3.5 mM NaOCl. Survival assays were
performed by spotting 10 µl of serial dilutions after
1–3 h of NaOCl exposure onto LB agar plates.
Colonies were observed after overnight incubation of
the LB plates at 37 °C. The active site Cys279 of AldA
is required for NaOCl stress survival. The results for
the growth curves and survival assays are from 5
biological replicate experiments. For the growth
curves in Fig. 4AB, error bars represent the SEM and
the statistics was calculated using a Student's un-
paired two-tailed t-test by the graph prism software.
Symbols are defined as follows: nsp > 0.05;
*p ≤ 0.05; **p ≤ 0.01 and ***p ≤ 0.001.
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ecADH, paBADH), saAldA is a dimeric enzyme and thus more similar to
plant ADHs that are also active as dimer (Fig. 7A). Regardless of the
oligomerization state, the overall fold of a subunit is highly conserved
among all ADH enzymes. Similarly as in other ADHs, a saAldA subunit
is composed of a coenzyme (NAD+)-binding domain (Co-BD; residues

1-122, 137-244 and 439-464), a catalytic domain (CD; residues 245-
438) and a subunit interaction domain (SID; residues 123-136 and 465-
475; Fig. 7A).

In all ADHs, the active site harbors conserved Cys (C279 in saAldA)
and glutamate (E245 in saAldA) residues (Fig. S5). The Cys residue can

Fig. 5. Purified AldA shows broad substrate spe-
cificity towards various aldehydes in vitro. The
catalytic activity of the aldehyde dehydrogenase
AldA was analyzed with increasing concentrations of
different aldehyde substrates, including (A) for-
maldehyde (FA), (B) methylglyoxal (MG), (C) acet-
aldehyde (AA) and (D) glycol aldehyde (GA).
Reduced AldA (2.5 µM) was incubated with different
concentrations of aldehyde substrates ranging from
10 to 100 µM in reaction buffer (100 mM Tris HCl,
1.25 mM EDTA, pH 7.5). The oxidation of the alde-
hydes was measured in the presence of NAD+ as
coenzyme and NADH generation was monitored at
340 nm using a spectrophotometer. The results are
from 3 replicate experiments. Error bars represent
the SEM.

Fig. 6. Inactivation of AldA of S. aureus in re-
sponse to H2O2 in the absence and presence of
BSH in vitro. Reduced AldA (30 µM) was oxidized
with 0.3–1 mM H2O2 for 5 min in the absence (A, B)
or presence of BSH (C, D) in reaction buffer (100 mM
Tris HCl, 1.25 mM EDTA, pH 7.5). The AldA activ-
ities were measured with 15 mM methylglyoxal as
substrate and NAD+ as coenzyme by monitoring
NADH production at 340 nm using a spectro-
photometer. To analyze the irreversible inactivation
of AldA by H2O2 alone, AldA was treated with 1 mM
H2O2 without BSH followed by reduction with
10 mM DTT (C). The reversibility of AldA S-ba-
cillithiolation with 0.3 mM H2O2 and 0.3 mM BSH is
shown after DTT-reduction resulting in 66% of re-
generation of AldA activity (D). The S-bacilllithio-
lation of AldA and its reduction using DTT was fur-
ther confirmed in BSH-specific Western blot analysis
as shown in Fig. 1B. P-values were calculated as
follows: p = 0,0012, p = 0,0001 for AldA control/
0.5 mM H2O2 at 6.63 and 8 min, respectively
(Fig. 6A); p = 0,0012, p = 0,0002 for AldA control/
1 mM H2O2 at 6.63 and 8 min and p = 0,074,
p = 0,069 for 1 mM H2O2/1 mM H2O2 + DTT at
6.63 and 8 min, respectively (Fig. 6B); p = 0,0021,
p = 0,0008 for AldA control/0.5 mM H2O2 + BSH at
6.63 and 8 min, respectively (Fig. 6C); p = 0.003,
p = 0.011 for 0.3 mM H2O2 + BSH/0.3 mM H2O2 +
BSH + DTT at 6.63 and 8 min; p = 0.150, p = 0.128
for AldA control/0.3 mM H2O2 + BSH + DTT at
6.63 and 8 min, respectively (Fig. 6D). Symbols are
defined as follows: nsp > 0.05; *p ≤ 0.05;

**p ≤ 0.01; ***p ≤ 0.001; and ****p ≤ 0.0001. The results are from 3 replicate experiments. In all graphs, mean values are shown, error bars represent the SEM and p-values are
calculated using a Student's unpaired two-tailed t-test by the graph prism software.
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adopt two alternative conformations, a “resting” and “attacking”
(Fig. 7C), depending on the enzyme activation state. In the apo-enzyme
structure, the Cys residue is in the resting conformation, whereas upon
NAD+ binding the Cys thiol moiety rotates away from the nicotinamide
part of NAD+ and is closer to the substrate-binding pocket [54–56]. The
Cys residue serves as a nucleophile during catalysis, leading to a
covalent thioester-enzyme adduct with the substrate via a nucleophilic
addition [54,55,57]. The conserved glutamate residue then serves as a
base to activate a water molecule for hydrolysis of the thioester-enzyme
intermediate [55,59]. In addition to the Cys and glutamate residues,

there are two other conserved residues, a lysine (K156 in saAldA) and a
glutamate (E455 in saAldA), that are involved in a proton relay that
allows the deprotonation of E245, and, as a consequence, proton ab-
straction from the hydrolytic water [56].

Another common feature of the ADHs is the presence of a cation-
binding site located in the Co-BD (Fig. 7B, D). Co-BD is formed by the
three main chain carbonyl groups of an isoleucine/valine (I25 in
saAldA), a glutamate/aspartate (E91 in saAldA) and a glutamate re-
sidue (E173 in saAldA) [60–62]. The cation bound at this site is usually
sodium or potassium, and it was reported that the enzyme activity is

Fig. 7. Structural insights into the S-bacillithiolated saAldA active site. (A) Structural overviews of dimeric saAldA (PDB ID: 3TY7), dimeric zmAMADH (PDB ID: 4I8P) and
tetrameric pfAMSDH (PDB ID: 4I26). Dimers formed by chains A (colored by domain; coenzyme-binding domain [Co-BD] – blue; subunit interaction domain [SID] – green; catalytic
domain [CD] – magenta) and B (grey) are oriented in the same way. The other dimer of the pfAMSDH tetramer (chains C and D) is shown in different shades of grey. (B) Model for NAD+

binding by saAldA obtained by superimposing a subunit of NAD+-bound pfAMSDH (PDB ID: 4I1W) on apo-saAldA. The modelled NAD+ (colored by atom type; carbon – yellow; oxygen –
red; nitrogen – blue; phosphorus – orange) and a bound Mg2+ ion (lime green) are shown as spheres, the active site cysteine (C279) is shown as sticks (carbon – magenta; sulfur – yellow).
(C) Active sites and NAD+-binding cavities of ADHs. A subunit of saAldA (colored as in A) was structurally aligned with subunits of apo-pfAMSDH (Co-BD – violet; CD – light pink) and of
NAD+-bound pfAMSDH (Co-BD – cyan; CD – orange). NAD+ is shown as sticks (colored by atom type as in B). The catalytic cysteine residue is in the resting state in the apo-structures and
in the attacking state in NAD+-bound pfAMSDH. (D) Interactions at the cation-binding site of saAldA. Red sphere – water oxygen. (E, F) The S-bacillithiolated active site pocket of the
apo-saAldA (E) and holo-saAldA (F). A subunit of saAldA colored as in A, view as in C, NAD+ and BSH are shown as sticks, NAD+ is colored as in B, BSH colored by atom type (carbon –
aquamarine; oxygen – red; nitrogen – blue; sulfur – yellow). The loop composed of residues 438-459 that is not present in saAldA structure (PDB ID: 3TY7) was modelled and is shown in
white.
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slightly higher in the presence of sodium [60]. In the saAldA structure,
a magnesium ion is present at this site, most likely because magnesium
was the only cation present in the crystallization solution. The role of
the cation-binding site is to maintain the structural integrity of the
protein and to stabilize a loop involved in binding of NAD+ [60–62].

The available saAldA structure represents the apo-enzyme. In con-
trast, the structures of plant ADHs and of paBADH contain the coen-
zyme NAD+. In the case of pfAMSDH, the structures of pfAMSDH/
NAD+/intermediate complexes are also available [55]. Comparison of
the apo, NAD+, NAD+/intermediate states shows that binding of the
coenzyme or the formation of the intermediate does not influence the
secondary structure elements within the enzyme, while rearrangements
are observed in the side chains of residues involved in catalysis [54,55].
In the ADHs, the NAD+ is bound in the hydrophobic pocket of the Co-
BD. Only the nicotinamide nucleotide moiety is turned towards a ne-
gatively charged pocket, in which the catalytic cysteine residue is lo-
cated (Fig. 7B). NAD+ is engaged in only few polar contacts with the
enzyme [54,62].

Although the overall structure, the active site and the cation-
binding site are highly conserved among the ADHs, these enzymes show
broad substrate specificities and the amino acid residues involved in
substrate binding are different among the ADHs. Nevertheless, even a
single ADH is able to use many different aldehydes as substrates. For
example, slAMADH can oxidize many different aminoaldehydes [62].
Thus, differences in the substrate-binding residues determine differ-
ences in the still comparatively broad substrate spectra of the enzymes.

3.7. S-bacillithiolation of the AldA active site depends on the Cys activation
state as revealed by molecular dynamics simulation

Next, we analyzed the structural changes of AldA upon S-ba-
cillithiolation and used molecular docking and molecular dynamics si-
mulations to model BSH into the active site of the apo- and holoenzyme
structures (Fig. 7EF). The structure of saAldA apo-enzyme (PDB 3TY7)
was superimposed with the NAD+ binding structure from Pseudomonas
fluorescens pfAMSDH (PDB 4I1W) to model the NAD+ cofactor into the
AldA active site pocket (Fig. 7C). We further noticed that in the saAldA
dimeric structure, the loop composed of residues 438-459 is not present
which was modelled into the saAldA holo-enzyme structure based on
the structure of pfAMSDH (Fig. 7F). This loop in the saAldA holo-en-
zyme structure may interfere with the location of BSH at the active site.
To model the S-bacillithiolated active site Cys279 in the saAldA apo-
and holoenzyme structures, we applied an adapted molecular docking
algorithm based on Steric Clashes-Alleviated Receptor (SCAR) ap-
proaches [63], which takes into account the possibility of bond for-
mation between ligand and receptor. Molecular docking and atomistic
molecular dynamics simulation of the covalent BSH enzyme complex
resulted in two best-scoring poses for BSH in the apo-enzyme (Q2) or
holo-enzyme complex (Q1) (Fig. 7EF). However, no overlap between
BSH and the loop (aa438-459) in the holo-enzyme structure was found
and there was still room for an aldehyde substrate. Interestingly, these
two different BSH positions in the AldA active site depend on the
Cys279 activation state in the presence or absence of the NAD+ co-
factor (Fig. 7EF). In the apo-enzyme structure, Cys279 bound to BSH is
still in "resting" position (Q2), while Cys279 is in the "attacking" posi-
tion in the holo-enzyme (Q1). Thus, the location of BSH in the active
site pocket depends on the Cys279 activation state in the presence or
absence of NAD+. The Q2 pose of BSH at the apo-enzyme without
NAD+ seems to be energetically more favorable since Q2 had much
better energy score (-50.2 kJ/mol), while the Q1 position of the holo-
enzyme had a lower energy score (-38.1 kJ/mol). This results were
quantitatively supported by our all-atom MD simulation of the com-
plexes and the follow-up MM-PBSA calculations: the interaction energy
in the apo-enzyme complex with BSH in Q2 position was -24.8 +/-
15.4 kJ/mol, while the holo-enzyme complex with BSH in Q1 position
had interaction energy of -19.7 +/- 10.0 kJ/mol.

We have further plotted the dihedral distribution of N-CA-CB-SG
dihedral (rotation around the CA-CB bond) of Cys279 and the dihedral
angle at the function of simulation time (Fig. S6). The results showed
that Cys279 in the apo-enzyme has very different dihedral propensity
than in the holo-enzyme in complex with NAD+. These data support
that the apo-enzyme prefers the resting state position of Cys279 with
BSH while the holo-enzyme favors the BSH complex with the thiol in
the attacking state position.

In agreement with our previous GapDH results [26], S-bacillithio-
lation of the AldA apo- and holoenzyme active site does not require
major structural changes. After 50 ns of MD simulations there was very
little change in the backbone flexibility of the protein between different
binding positions of BSH in the apo-enzyme (Q2) or the holo-enzyme
(Q1) compared to the apo-enzyme without BSH (Fig. S7). This further
confirms that BSH can undergo disulfide formation with the active site
Cys279 at different positions without major conformational changes.

4. Discussion

S. aureus is a major human pathogen of hospital and community-
acquired infections, ranging from local skin infections to life-threa-
tening systemic and chronic infections. During infections, S. aureus is
exposed to ROS, RCS and RES that are produced as first line of defense
by activated macrophages and neutrophils or can be also encountered
as consequence of antibiotics treatment [10,11,64]. Thus, the under-
standing of the adaptation mechanisms of S. aureus to infection con-
ditions to avoid killing by ROS, RCS and RES is important for the dis-
covery of new drug targets to combat multi-resistant S. aureus
infections.

In our previous work, we have identified the aldehyde dehy-
drogenase AldA as one of the most strongly oxidized proteins in the
thiol-redox proteome in S. aureus, which showed a 29% oxidation in-
crease under NaOCl stress using the OxICAT analysis [26]. AldA uses a
conserved active site Cys279 that was modified by S-bacillithiolation
under NaOCl stress. Apart from AldA, the glyceraldehyde-3-phosphate
dehydrogenase Gap was identified as S-bacillithiolated at its active site
Cys151 under NaOCl stress. Thus, it is interesting to note that two
functionally related aldehyde dehydrogenases are targets for oxidation
at their active site Cys residues that both function in aldehyde oxida-
tion. In this study, we demonstrated that AldA is specifically induced
under thiol-specific stress conditions, such as NaOCl, diamide and for-
maldehyde stress. Expression of aldA was previously shown to be
regulated by the alternative sigma factor SigmaB in response to heat
shock, salt stress caused by NaCl and Mn2Cl as well as alkaline shock
[50,51]. Here, we have shown that the thiol-specific expression of aldA
occurs SigmaB-independently. Thus, aldA seems to be double-con-
trolled by SigmaB and another thiol-stress sensing regulator to allow
adaptation to general stress and starvation as well as thiol-stress con-
ditions.

SigmaB has been previously shown to play an important role under
infection conditions and controls biofilm formation and several viru-
lence factors, such as adhesins [65,66]. The SigmaB regulon was in-
duced after internalization of S. aureus by bronchial epithelial cells and
required for intracellular growth as demonstrated by transcriptomics
and proteomics [53,67,68]. Moreover, SigmaB has been implicated as
central regulator in long-term persistence in human osteoblasts and
controls the small colony variant (SCV) phenotype of persistent S.
aureus infections [69,70]. Thus, it might be possible that adaptation of
S. aureus from acute to chronic and persistent infections requires
SigmaB and AldA to cope and adapt to the stationary phase and thiol-
specific stress conditions inside macrophages and neutrophils. This
adaptation to thiol-stress conditions is particularly important for S.
aureus to survive under conditions of long-term persistent and chronic
infections.

In this work, we have shown that AldA is an important member of
the SigmaB regulon that provides protection under NaOCl stress
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conditions as shown in survival assays. However, the thiol-specific in-
duction of aldA transcription seems to be SigA-dependently since the
same induction level was observed in the sigB mutant under thiol-stress.
A putative SigA-promoter was observed upstream of the SigB-promoter
indicating that aldA transcription might be controlled by SigB and SigA
containing RNA polymerase (RNAP) from adjacent promoters. The
stronger aldA induction in the sigB mutant under methylglyoxal stress
could be explained by a higher affinity of SigA for the RNAP core en-
zyme compared to SigB and the lack of sigma factor competition in the
sigB mutant [71]. Moreover, the thiol-stress-specific induction of aldA
transcription might require additional transcriptional regulators that
remain to be elucidated. In future studies, we also aim to investigate if
AldA plays a role for the intracellular growth as well as persistence or
chronic infections in S. aureus, which could require detoxification of
toxic aldehydes to allow long-term survival.

To study the function of AldA and its redox-regulation under NaOCl
stress in vitro, we purified the enzyme and determined its catalytic ac-
tivities towards oxidation of various aldehydes. We could show that
AldA has broad substrate specificities to oxidize formaldehyde, me-
thylglyoxal, glycol aldehyde and acetaldehyde to their respective acids.
The question arises about the physiological aldehyde substrate for AldA
under in vivo conditions that are produced under infection conditions,
such as under hypochlorite stress. Methylglyoxal was previously shown
to be produced at higher levels under HOCl stress in E. coli [20].
Moreover, the gloA-nemRA operon was induced under methylglyoxal
and HOCl stress, which functions as important HOCl and methylglyoxal
defense mechanism [19–22]. The FMN-dependent oxidoreductase
NemA functions in detoxification of various electrophiles, such as al-
dehydes, N-ethylmaleimide and quinones and its up-regulation under
HOCl stress indicates the link between HOCl and aldehyde stress. In our
work, we could also show that AldA responds to aldehydes, diamide
and NaOCl and hence could be involved in methylglyoxal detoxification
in S. aureus as well. However, in growth and survival assays, no phe-
notypes of the aldA mutant were detected under formaldehyde and
methylglyoxal stress. Since AldA showed broad substrate specificity
towards various aldehydes in vitro, its natural substrates could be dif-
ferent aldehydes that remain to be elucidated.

Of note, AldA shares strong 57% sequence similarity to betaine al-
dehyde dehydrogenases from S. aureus, Pseudomonas aeruginosa and
Spinacia oleracea. These enzymes function in oxidation of the toxic
betaine aldehyde to glycine betaine which is a well-known compatible
solute and accumulates in bacteria under osmotic stress conditions as
osmoprotectant [72,73]. Glycine betaine can be either taken up upon
osmostress or synthesized from exogenously provided choline in a two
oxidation steps via choline dehydrogenase (BetA) and betaine dehy-
drogenase (BetB) which are conserved in B. subtilis [72,73] and S.
aureus [54]. The human tissues are rich sources of choline and betaine
and thus, S. aureus encounters toxic aldehydes produced from choline
during colonization and internalization. For some bacteria, the im-
portance of the choline oxidation pathway for survival and virulence
has been already demonstrated [73,74]. Of note, AldA is also induced
under high osmolarity conditions provoked by NaCl stress in a SigmaB-
dependent manner [50]. This could point to a possible function in the
osmostress and thiol-stress response in S. aureus which remains to be
elucidated. However, we could not detect AldA activity for oxidation of
betaine aldehyde as substrate in vitro, indicating a different function of
AldA in S. aureus (data not shown).

The catalytic activity of AldA depends on a highly conserved Cys279
active site which we identified as S-bacillithiolated under NaOCl stress
in S. aureus [26]. Interestingly, this nucleophilic active site Cys residue
was previously found oxidized to a mixed disulfide with beta-mercap-
toethanol during protein crystallization of related betaine aldehyde
dehydrogenases [54,74]. These results confirm the redox-sensitivity of
the active site Cys of AldA as shown in this work. Our results have
further demonstrated that S-bacillithiolation functions in redox-reg-
ulation and inactivation of AldA activity under H2O2 stress. In the

absence of BSH, the active site Cys279 was very sensitive to over-
oxidation as shown by its irreversible inactivation. In the presence of
BSH, Cys279 was protected against overoxidation by the S-bacillithio-
lation as shown for the glyceraldehyde-3-phosphate dehydrogenase
GapDH in S. aureus [26]. Both enzymes use a similar catalytic me-
chanism for the NAD+-dependent oxidation of the aldehyde substrate
to generate the acid product [54,55,57]. In the catalytic mechanism of
aldehyde dehydrogenase, the active site Cys was shown to adopt two
conformations: the “attacking” or “resting” conformation depending on
the presence or absence of the NAD+ cofactor. We used molecular
docking and molecular dynamic simulations to model the S-ba-
cillithiolated active site in the presence and absence of NAD+. In the
apo-enzyme structure, BSH was bound to Cys279 in the resting state
(Q2) position and occupied the cofactor-binding pocket. In the presence
of NAD+, Cys279 was modified in the attacking state position (Q1) and
BSH was repositioned close to the substrate-binding site.

In our previous docking approach with BSH at the Cys151 active site
of GapDH, we found similar locations of BSH in the apo-enzyme and
holo-enzyme structures related to the resting and attacking state. Thus,
the highly flexible active site and the redox-sensitivity of the nucleo-
philic Cys residues facilitate their fast oxidation to the mixed disulfides
with BSH. In both structural models, S-bacillithiolation of GapDH and
AldA did not require major structural changes, which further explains
their preferred formation of the BSH mixed disulfides. This flexible BSH
position may ensure that catalytic active and resting AldA and GapDH
enzymes can both be protected against overoxidation under NaOCl
stress to ensure fast regeneration and reactivation of the enzymes.
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4ÈÅ ÇÌÙÃÅÒÁÌÄÅÈÙÄÅȤχȤÐÈÏÓÐÈÁÔÅ 
ÄÅÈÙÄÒÏÇÅÎÁÓÅ 'ÁÐ$( ÏÆ 
Corynebacterium diphtheriae ÉÓ 
ÒÅÄÏØȤÃÏÎÔÒÏÌÌÅÄ ÂÙ ÐÒÏÔÅÉÎ S-
ÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÕÎÄÅÒ ÏØÉÄÁÔÉÖÅ 
ÓÔÒÅÓÓ
-ÅÌÁÎÉÅ (ÉÌÌÉÏÎ  υ, Marcel IÍÂÅÒυȟ "ÒÁÎÄÜÎ Pedreφȟχȟψ, Jörg "ÅÒÎÈÁÒÄÔω, Malek Salehυȟ 6Õ 6ÁÎ 
,ÏÉυȟ 3ÁÎÄÒÁ Maaßωȟ $ĘÒÔÅ Becherωȟ ,ÅÏÎÁÒÄÏ !ÓÔÏÌǢ 2ÏÓÁÄÏφȟχȟψȟ ,ÏÒÅÎÚ AdriaÎϊȟ #ÈÒÉÓÔÏÐÈ 
7ÅÉÓÅϋȟ 2İÄÉÇÅÒ (ÅÌÌόȟ -ÁÒËÕÓ WÉÒÔÚ  όȟ *ÏÒÉÓ -ÅÓÓÅÎÓφȟχȟψ Ǫ (ÁÉËÅ !ÎÔÅÌÍÁÎÎυ

-ÙÃÏÔÈÉÏÌ ɉ-3(Ɋ ÉÓ ÔÈÅ ÍÁÊÏÒ ÌÏ× ÍÏÌÅÃÕÌÁÒ ×ÅÉÇÈÔ ɉ,-7Ɋ ÔÈÉÏÌ ÉÎ !ÃÔÉÎÏÍÙÃÅÔÅÓ ÁÎÄ ÆÕÎÃÔÉÏÎÓ ÉÎ 
ÐÏÓÔȤÔÒÁÎÓÌÁÔÉÏÎÁÌ ÔÈÉÏÌȤÍÏÄÉǢÃÁÔÉÏÎ ÂÙ ÐÒÏÔÅÉÎ SȤÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÁÓ ÅÍÅÒÇÉÎÇ ÔÈÉÏÌȤÐÒÏÔÅÃÔÉÏÎ ÁÎÄ 
ÒÅÄÏØȤÒÅÇÕÌÁÔÏÒÙ ÍÅÃÈÁÎÉÓÍȢ (ÅÒÅȟ ×Å ÈÁÖÅ ÕÓÅÄ ÓÈÏÔÇÕÎȤÐÒÏÔÅÏÍÉÃÓ ÔÏ ÉÄÅÎÔÉÆÙ φϊ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ 
ÐÒÏÔÅÉÎÓ ÉÎ ÔÈÅ ÐÁÔÈÏÇÅÎ Corynebacterium diphtheriae $3-ψχύόύ ÕÎÄÅÒ ÈÙÐÏÃÈÌÏÒÉÔÅ ÓÔÒÅÓÓ ÔÈÁÔ ÁÒÅ 
ÉÎÖÏÌÖÅÄ ÉÎ ÅÎÅÒÇÙ ÍÅÔÁÂÏÌÉÓÍȟ ÁÍÉÎÏ ÁÃÉÄ ÁÎÄ ÎÕÃÌÅÏÔÉÄÅ ÂÉÏÓÙÎÔÈÅÓÉÓȟ ÁÎÔÉÏØÉÄÁÎÔ ÆÕÎÃÔÉÏÎÓ ÁÎÄ 
ÔÒÁÎÓÌÁÔÉÏÎȢ 4ÈÅ ÇÌÙÃÅÒÁÌÄÅÈÙÄÅȤχȤÐÈÏÓÐÈÁÔÅ ÄÅÈÙÄÒÏÇÅÎÁÓÅ ɉ'ÁÐ$(Ɋ ÒÅÐÒÅÓÅÎÔÓ ÔÈÅ ÍÏÓÔ ÁÂÕÎÄÁÎÔ 
SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ ÐÒÏÔÅÉÎ ÔÈÁÔ ×ÁÓ ÍÏÄÉǢÅÄ ÁÔ ÉÔÓ ÁÃÔÉÖÅ ÓÉÔÅ #ÙÓυωχ in vivoȢ %ØÐÏÓÕÒÅ ÏÆ ÐÕÒÉǢÅÄ 
'ÁÐ$( ÔÏ (φOφ ÁÎÄ .Á/#Ì ÒÅÓÕÌÔÅÄ ÉÎ ÉÒÒÅÖÅÒÓÉÂÌÅ ÉÎÁÃÔÉÖÁÔÉÏÎ ÄÕÅ ÔÏ ÏÖÅÒÏØÉÄÁÔÉÏÎ ÏÆ ÔÈÅ ÁÃÔÉÖÅ ÓÉÔÅ 
in vitroȢ 4ÒÅÁÔÍÅÎÔ ÏÆ 'ÁÐ$( ×ÉÔÈ (φOφ ÏÒ .Á/#Ì ÉÎ ÔÈÅ ÐÒÅÓÅÎÃÅ ÏÆ -3( ÒÅÓÕÌÔÅÄ ÉÎ SȤÍÙÃÏÔÈÉÏÌÁÔÉÏÎ 
ÁÎÄ ÒÅÖÅÒÓÉÂÌÅ 'ÁÐ$( ÉÎÁÃÔÉÖÁÔÉÏÎ in vitro ×ÈÉÃÈ ×ÁÓ ÆÁÓÔÅÒ ÃÏÍÐÁÒÅÄ ÔÏ ÔÈÅ ÏÖÅÒÏØÉÄÁÔÉÏÎ ÐÁÔÈ×ÁÙȢ 
2ÅÁÃÔÉÖÁÔÉÏÎ ÏÆ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ 'ÁÐ$( ÃÏÕÌÄ ÂÅ ÃÁÔÁÌÙÚÅÄ ÂÙ ÂÏÔÈȟ ÔÈÅ 4ÒØ ÁÎÄ ÔÈÅ -ÒØυ ÐÁÔÈ×ÁÙÓ 
in vitroȟ ÂÕÔ ÄÅÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÂÙ -ÒØυ ×ÁÓ ÆÁÓÔÅÒ ÃÏÍÐÁÒÅÄ ÔÏ 4ÒØȢ )Î ÓÕÍÍÁÒÙȟ ×Å ÓÈÏ× ÈÅÒÅ ÔÈÁÔ 
SȤÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÃÁÎ ÆÕÎÃÔÉÏÎ ÉÎ ÒÅÄÏØȤÒÅÇÕÌÁÔÉÏÎ ÁÎÄ ÐÒÏÔÅÃÔÉÏÎ ÏÆ ÔÈÅ 'ÁÐ$( ÁÃÔÉÖÅ ÓÉÔÅ ÁÇÁÉÎÓÔ 
ÏÖÅÒÏØÉÄÁÔÉÏÎ ÉÎ CȢ diphtheriae ×ÈÉÃÈ ÃÁÎ ÂÅ ÒÅÖÅÒÓÅÄ ÂÙ ÂÏÔÈȟ ÔÈÅ -ÒØυ ÁÎÄ 4ÒØ ÐÁÔÈ×ÁÙÓȢ

Bacteria are exposed to various redox-active compounds, such as reactive oxygen species (ROS) in their nat-
ural habitat or during infections and are equipped with speci�c protection mechanisms1. To cope with ROS, 
bacteria use different antioxidant enzymes, such as catalases, peroxiredoxins, superoxide dismutase and 
low molecular weight (LMW) thiols to maintain the reduced state of the cytoplasm and to survive oxidative 
stress2–4. Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol, but GSH is absent in most 
Gram-positive bacteria. Instead, the Actinomycetes that include streptomycetes, corynebacteria and myco-
bacteria produce mycothiol (MSH) as their major LMW thiol5. MSH functions in detoxi�cation of various 
redox-active compounds, including ROS, electrophiles and antibiotics in all Actinomycetes6–8. Apart from its 

υ)ÎÓÔÉÔÕÔÅ ÆÏÒ "ÉÏÌÏÇÙȤ-ÉÃÒÏÂÉÏÌÏÇÙȟ &ÒÅÉÅ 5ÎÉÖÅÒÓÉÔßÔ "ÅÒÌÉÎȟ $Ȥυψυύωȟ "ÅÒÌÉÎȟ 'ÅÒÍÁÎÙȢ φ#ÅÎÔÅÒ ÆÏÒ 3ÔÒÕÃÔÕÒÁÌ 
"ÉÏÌÏÇÙȟ 6)"ȟ "Ȥυτωτȟ "ÒÕÓÓÅÌÓȟ "ÅÌÇÉÕÍȢ χ"ÒÕÓÓÅÌÓ #ÅÎÔÅÒ ÆÏÒ 2ÅÄÏØ "ÉÏÌÏÇÙȟ "Ȥυτωτȟ "ÒÕÓÓÅÌÓȟ "ÅÌÇÉÕÍȢ ψ3ÔÒÕÃÔÕÒÁÌ 
"ÉÏÌÏÇÙ "ÒÕÓÓÅÌÓȟ 6ÒÉÊÅ 5ÎÉÖÅÒÓÉÔÅÉÔ "ÒÕÓÓÅÌȟ "Ȥυτωτȟ "ÒÕÓÓÅÌÓȟ "ÅÌÇÉÕÍȢ ωInstitute for Microbiology, Ernst-Moritz-
!ÒÎÄÔȤ5ÎÉÖÅÒÓÉÔÙ ÏÆ 'ÒÅÉÆÓ×ÁÌÄȟ $Ȥυϋψόϋȟ 'ÒÅÉÆÓ×ÁÌÄȟ 'ÅÒÍÁÎÙȢ ϊ$ÅÐÁÒÔÍÅÎÔ )ÓÏÔÏÐÅ "ÉÏÇÅÏÃÈÅÍÉÓÔÒÙȟ (ÅÌÍÈÏÌÔÚ 
#ÅÎÔÒÅ ÆÏÒ %ÎÖÉÒÏÎÍÅÎÔÁÌ 2ÅÓÅÁÒÃÈȤ5&:ȟ ,ÅÉÐÚÉÇȟ 'ÅÒÍÁÎÙȢ ϋ)ÎÓÔÉÔÕÔÅ ÆÏÒ #ÈÅÍÉÓÔÒÙ ÁÎÄ "ÉÏÃÈÅÍÉÓÔÒÙȟ &ÒÅÉÅ 
5ÎÉÖÅÒÓÉÔßÔ "ÅÒÌÉÎȟ $Ȥυψυύωȟ "ÅÒÌÉÎȟ 'ÅÒÍÁÎÙȢ ό0ÌÁÎÔ -ÏÌÅÃÕÌÁÒ "ÉÏÌÏÇÙȟ #ÅÎÔÒÅ ÆÏÒ /ÒÇÁÎÉÓÍÁÌ 3ÔÕÄÉÅÓ (ÅÉÄÅÌÂÅÒÇȟ 
5ÎÉÖÅÒÓÉÔÙ ÏÆ (ÅÉÄÅÌÂÅÒÇȟ (ÅÉÄÅÌÂÅÒÇȟ 'ÅÒÍÁÎÙȢ -ÅÌÁÎÉÅ (ÉÌÌÉÏÎȟ -ÁÒÃÅÌ )ÍÂÅÒȟ "ÒÁÎÄÜÎ 0ÅÄÒÅ ÁÎÄ *ĘÒÇ "ÅÒÎÈÁÒÄÔ 
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detoxi�cation functions, MSH is also involved in post-translational thiol-modi�cation and forms mixed disul�des 
with protein thiols under hypochlorite stress9, 10. Protein S-mycothiolation is an emerging thiol-protection 
and redox-regulatory mechanism in Actinomycetes. In Corynebacterium glutamicum, we identified 25 
S-mycothiolated proteins using shotgun LC-MS/MS analysis10. �ese include conserved targets for S-thiolation 
across di�erent Gram-positive bacteria, such as the thiol-peroxidase Tpx, the inosine monophosphate (IMP) 
dehydrogenase GuaB and ribosomal proteins10, 11. In Mycobacterium smegmatis, protein S-mycothiolation was 
more abundant with 58 identi�ed proteins, which correlates with the 20-fold higher MSH content in mycobacte-
ria compared to corynebacteria9.

�e redox-regulatory mechanisms of S-mycothiolated proteins have been studied thus far for several antiox-
idant enzymes, such as thiol peroxidases (Tpx, Mpx, AhpE) and methionine sulfoxide reductases (MsrA)10, 12–15.  
Moreover, Tpx has been shown to function as a peroxidase and as oligomeric chaperone in response to di�er-
ent levels of H2O2

15. Regeneration of peroxidase and methionine sulfoxide reductase activities requires both 
the mycoredoxin (Mrx1) and thioredoxin pathways in vitro10, 12, 13, 16, 17. Apart from its redox-regulatory role 
for antioxidant enzymes, MSH also functions in thiol-protection of the methionine synthase MetE by protein 
S-mycothiolation under acid stress conditions18.

In this work, we have used shotgun proteomics to identify 26 S-mycothiolated proteins in the path-
ogen Corynebacterium diphtheriae. As major redox-controlled metabolic enzyme, the glycolytic 
glyceraldehyde-3-phosphate dehydrogenase DIP1310 (GapDH) was S-mycothiolated under NaOCl stress at the 
active site Cys in C. diphtheriae in vivo. GapDH is a conserved target for redox-regulation and post-translational 
thiol-modifications including S-glutathionylations across all domains of life19, 20. In Staphylococcus aureus, 
the glycolytic GapDH was recently shown as major target for S-bacillithiolation which contributes with 4% to 
the total Cys proteome21. GapDH uses the active site Cys for the nucleophilic attack at the aldehyde group of 
glyceraldehyde-3-phosphate (G3P) to catalyze its phosphorylation to 1,3-bisphosphoglycerate, generating NADH 
in this process20. �e relatively high reactivity of the active site thiolate towards H2O2 depends on the stabiliza-
tion of the transition state and a dedicated proton relay mechanism that promotes leaving group departure20, 22.  
S-glutathionylation of GapDH from the plant Arabidopsis thaliana resulted in enzyme inactivation which could 
be faster regenerated by glutaredoxins compared to thioredoxins23. Here, we studied the redox-regulation of 
GapDH of C. diphtheriae in response to oxidative stress by protein S-mycothiolation in vitro. We show that 
S-mycothiolation functions in redox regulation and e�ciently protects the active site against overoxidation by 
H2O2 and NaOCl which can be reversed by both, the Mrx1 and Trx pathways. �us, striking similarities exist 
in the redox-control mechanisms of GapDH homologs from prokaryotic and eukaryotic organisms that involve 
protein S-thiolations using di�erent thiol-redox systems for recycling, and as such for controlling central glyco-
lytic activities.

2ÅÓÕÌÔÓ
)ÄÅÎÔÉǢÃÁÔÉÏÎ ÏÆ φϊ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ ÐÒÏÔÅÉÎÓ in CȢ diphtheriae ÕÎÄÅÒ .Á/#Ì ÓÔÒÅÓÓ ÕÓÉÎÇ ÓÈÏÔ-
ÇÕÎ ,#Ȥ-3Ⱦ-3 ÁÎÁÌÙÓÉÓȢ �e role of protein S-mycothiolation in thiol-protection and redox regulation has 
been studied previously in C. glutamicum10 and M. smegmatis9. In this study, we were interested to identify the 
targets for protein S-mycothiolation in the pathogen C. diphtheriae under NaOCl stress. Cells of C. diphtheriae 
DSM43989 were grown in heart-infusion broth (HIB) and transferred at an OD580 of 0.8 into a minimal medium 
(BMM) for NaOCl stress exposure to avoid the quenching of NaOCl by the rich HIB medium. Treatment of cells 
with 300 µM and 400 µM NaOCl resulted in a delay of growth with slow recovery a�er overnight growth (Fig. 1A). 
Using MSH-speci�c non-reducing Western blots, a strongly increased protein S-mycothiolation pattern could be 
detected a�er 30 min of 300–400 µM NaOCl stress (Fig. 1B). We further analysed the MSH level in C. diphtheriae 
under NaOCl stress using thiol-metabolomics. �e MSH level was determined as 0.3 ± 0.03 µmol/g raw dry 
weight (rdw) under control conditions which decreased 4-fold a�er 30 min of NaOCl treatment (Fig. 1C). �us, 
the depletion of MSH correlates with increased protein S-mycothiolation under NaOCl stress. �is con�rms our 
previous results in M. smegmatis where strong MSH depletion was also observed under NaOCl stress9.

Using LTQ-Orbitrap LC-MS/MS analysis, we identified 26 S-mycothiolated proteins in C. diphtheriae 
in NaOCl-treated cells based on the 484 Da mass increase of MSH at cysteine residues (Tables 1, S1 and S2). 
These S-mycothiolated proteins are displayed in a Voronoi treemap where the spectral protein abundance 
determines the cell size of each protein that is present in the proteome and the S-mycothiolated proteins are 
marked in red (Fig. 2). �e 26 S-mycothiolated proteins of C. diphtheriae include only 5 conserved targets for 
S-thiolation, such as the peroxiredoxin AhpC, the ribosomal proteins RplC and RpsM, the glycolytic enzyme 
glyceraldehyde-3-phosphate dehydrogenase (GapDH) and the IMP dehydrogenase GuaB (Tables 1, S1 and S2). 
�e ribose 5-phosphate isomerase DIP1796 was identi�ed as S-mycothiolated in C. diphtheriae which functions 
in the pentose phosphate pathway and was previously found S-glutathionylated in the photosynthetic organ-
ism Chlamydomonas reinhardtii24. In Leishmania, this enzyme is essential for replication of the intracellular 
form of the parasite, and in Trypanosoma brucei the knockout mutant has a reduced infectivity in mice25. Other 
S-mycothiolated proteins are involved in energy metabolism (Ndh, GlpD, DIP1726), amino acid biosynthesis 
pathways (�rA, LeuB, DapA, GlnA), purine biosynthesis (PurA), iron sulfur cluster biosynthesis (DIP1631) 
and cell wall biosynthesis (GlmS). �e NADH dehydrogenase (Ndh) is an abundant enzyme that plays a role in 
the respiratory chain. S-mycothiolation of Ndh was found at the non-conserved Cys159. Some S-mycothiolated 
proteins are Cys-rich proteins including the glutamine synthetase GlnA1, the 4-alpha-glucanotransferase MalQ 
(DIP1726), and PurA, which possess 4 to 8 Cys residues. GlnA1 catalyzes the condensation of glutamate and 
ammonia to form glutamine and plays a major role in the survival of Mycobacterium tuberculosis under infec-
tion inside macrophages26. In conclusion, the identi�ed S-mycothiolated proteins are mainly involved in cellular 
metabolism, and share as main and conserved targets for S-thiolations: GapDH, GuaB, AhpC and the ribosomal 
proteins RplC and RpsM.

http://S2
http://S1
http://S1
http://S2


3

#ÏÎÔÒÉÂÕÔÉÏÎ ÏÆ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ ÐÒÏÔÅÉÎÓ ÔÏ ÔÈÅ ÔÏÔÁÌ #ÙÓ ÐÒÏÔÅÏÍÅȢ  It was interesting to note 
that GapDH was S-mycothiolated at the active site Cys153 in C. diphtheriae. Previously, we found that GapDH 
is the major target for S-bacillithiolation in S. aureus contributing with 4% Cys abundance to the total Cys pro-
teome21. �us, we calculated the percentages of Cys contributions of GapDH and other S-mycothiolated proteins 
to the total Cys proteome in C. diphtheriae (Figs 3 and S1, Table S4). In total, 2266 proteins are encoded in the 
genome of C. diphtheriae DSM43989 that include 1847 Cys proteins with 6156 Cys residues. �e theoretical Cys 
content in the proteome of C. diphtheriae is 0.85% con�rming that Cys is the rarest amino acid in the C. diphthe-
riae proteome (Figure S1). Next, we calculated the percentages of Cys abundances of all Cys proteins expressed 
in the proteome based on their spectral counts that are multiplied by the numbers of Cys residues. �e spec-
tral counts of the 1030 expressed proteins are visualized in a Cys proteome treemap including 805 Cys proteins 
(Fig. 3, Tables S3 and S4). �e cell size indicates the spectral protein abundance and the color-code denotes the 
Cys content. About 395 Cys proteins contain only 1–2 Cys residues while the remaining 410 proteins have 3 or 
more Cys residues. �ese include 11 proteins with more than 10 Cys residues and the FeS-cluster oxidoreductase 
DIP2133 was identi�ed as the most Cys-rich protein with 18 Cys residues. Of note, 83 Cys proteins were found to 
contribute to 60% of the total Cys abundances in the proteome including 55 Cys-rich proteins with more than 3 
Cys residues (Figure S1). �e RNA polymerase subunit beta’ (RpoC) and two translation elongation factors (Tuf 
and FusA) account for 2.5–4.5% of the total Cys abundance in the proteome. Furthermore, the Cys abundance 
treemap also visualizes that many ribosomal proteins and abundant chaperones and proteases (GroES, GroL1, 
GroL2, DnaK and ClpB) are devoid of Cys residues (Fig. 3).

Of the 26 S-mycothiolated proteins, 24 proteins were quanti�ed based on their total spectral counts (Tables S3 
and S4). Eleven S-mycothiolated proteins were found to contribute with 0.2–0.75% to the total Cys abundance, 
including the glycolytic GapDH on the top with 0.75%. �us, in C. diphtheriae, GapDH is also the most abun-
dant target for S-mycothiolation in comparison to all other identi�ed S-mycothiolated proteins. Apart from 
GapDH, the AhpC homolog DirA, the IMP dehydrogenase GuaB, the glucanotransferase MalQ (DIP1726) and 
the glutamine synthetase GlnA1 contributed with 0.4–0.6% to the total Cys abundance in the proteome (Fig. 3; 
Table S4). As noted already, many S-mycothiolated proteins are Cys-rich proteins with more than 4 Cys resi-
dues which might explain why they are susceptible to S-mycothiolation under NaOCl stress. In conclusion, the 
comparison of the S-mycothiolated proteins with their Cys abundances in the total Cys proteome indicates that 
GapDH makes a major contribution to the S-mycothiolome in C. diphtheriae under NaOCl stress.

'ÁÐ$( ÉÓ ÒÅÖÅÒÓÉÂÌÙ ÉÎÈÉÂÉÔÅÄ ÁÎÄ ÐÒÏÔÅÃÔÅÄ ÁÇÁÉÎÓÔ ÏÖÅÒÏØÉÄÁÔÉÏÎ ÂÙ SȤÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÕÎÄÅÒ 
(φOφ ÁÎÄ .Á/#Ì ÓÔÒÅÓÓ in vitroȢ GapDH was identi�ed as S-mycothiolated at its active site Cys153 that 
is highly sensitive to oxidation by H2O2 and located in a conserved C153TTNC157 motif present in prokaryotic 
and eukaryotic GapDH homologs (Figure S2). Under peroxide stress, the active site Cys is initially oxidized to a 
sulfenic acid that reacts further with LMW thiols, such as GSH, leading to S-glutathionylation22, 27. In the absence 
of thiol-redox systems or adjacent thiols, Cys-SOH can react further to irreversible oxidation forms, such as 
sul�nic or sulfonic acids1, 28. S-glutathionylation functions in redox control and protects catalytic and vulnerable 
Cys residues against overoxidation22, 29–31.

We were interested to investigate if S-mycothiolation controls GapDH activity and functions in 
thiol-protection against overoxidation in vitro. �e His-tagged enzyme was cloned in Escherichia coli, puri�ed 

Figure 1. Protein S-mycothiolation pattern and MSH depletion in C. diphtheriae under NaOCl stress. C. 
diphtheriae was grown in HIB medium to an OD580 of 0.75–0.8, transferred to BMM and treated with 300 and 
400 µM NaOCl which resulted in growth delay (A) and strongly increased protein S-mycothiolation as revealed 
by non-reducing MSH-speci�c Western blots (B). �e level of reduced MSH was 0.3 µmol/g rdw in the control 
and strongly depleted under NaOCl stress in the thiol-metabolome indicating that MSH is used for protein 
S-mycothiolation (C). All data represent mean values of three independent biological replicates and the error 
bars given were calculated as standard error of the mean (SEM).
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and subjected to GapDH activity assays a�er exposure to H2O2 and NaOCl in the absence and presence of MSH in 
vitro. �e inhibition of glycolytic GapDH activity by H2O2 and NaOCl was measured spectrophotometrically with 
G3P as substrate in the presence of NAD+ as coenzyme. NADH production was monitored in function of time as 
an absorbance increase at 340 nm10. �e remaining GapDH activity was calculated from the slope in the kinetic 
curves as described previously22. Treatment with 200 µM H2O2 alone did not a�ect GapDH activity, but 500 µM 
H2O2 resulted in a 60% GapDH activity decrease. �e enzyme was fully inactivated with 1 mM H2O2 (Fig. 4A). 
GapDH inactivation with 1 mM H2O2 was 65% irreversible while 35% activity could be recovered with 10 mM 
DTT (Fig. 4C). �is suggests that the GapDH active site was rapidly overoxidized to Cys sulfonic acid by H2O2, 
but part of the enzyme was also reversible inactivated perhaps due to an intramolecular disul�de between Cys153 
and Cys157 (Fig. 4D). �is intramolecular disul�de has been detected also in other GapDH homologs of E. coli 
and Bacillus subtilis under oxidative stress32, 33. Using Orbitrap mass spectrometry, we could con�rm the forma-
tion of the Cys153-sulfonic acid and of the intramolecular disul�de between Cys153 and Cys157 a�er exposure 
to 1 mM H2O2 (Figure S3A). In agreement with the activity assays, the overoxidized Cys153-peptide was detected 
at higher abundance compared to the intramolecular disul�de peptide.

Next, we analyzed whether S-mycothiolation can prevent overoxidation of the GapDH active site. �us, the 
inhibition of GapDH activity and its reversibility was analyzed in the presence of H2O2 and MSH. GapDH was 

Protein Locus Tag Function Cys-SSM Cys-SSM peptide sequence

Ortholog and 
conservation* of 
Cys with -SSM 
in Mtb

Antioxidant enzymes

DirA (AhpC) DIP1420 2-Cys peroxiredoxin Cys61*# active site (K)DFTFVC61PTEIAAFGK(L) Rv2428*

Protein synthesis

RplC DIP0473 50S ribosomal protein L3 Cys154*# (R)VGGIGAC154ATPGR(V) Rv0701*

RpsM DIP0546 30S ribosomal protein S13 Cys86*# (K)IEIGC86YQGLR(H) Rv3460c*

Pth DIP0897 Peptidyl-tRNA hydrolase Cys49 (K)ASGAVIEVGGC49R(V) Rv1014c

DIP1398 DIP1398 RNA methyltransferase Cys376* nucleophile (R)AIAQSGPQAAIHIGC376DPATFAR(D) Rv2689c*

Energy metabolism

DIP1726 DIP1726 Putative glucanotransferase Cys45 (R)SLGVC45FGNEDEPATDHEPLTGPMPSEDQIR(Y) Rv1781c

Gap DIP1310 Glyceraldehyde 3-phosphate DH Cys153*# active site (K)HNIISNASC153TTNCLAPMAK(V) Rv1436*

DIP1796 DIP1796 Putative ribose/galactose isomerase Cys143 (R)RIDILC143EYER(T) Rv2465c

DIP0655 DIP0655 Putative ribokinase Cys171 (R)GTVVVNLAPVIDVDRDC171LLR(A) —

GlpD DIP2237 Putative glycerol-3-phosphate DH Cys10 (K)SHC10TFNPDYYQDVWQR(F) Rv2249c

Ndh DIP1217 NADH dehydrogenase Cys159 (R)AEmC159EDPKER(E) Rv1854c

Biosynthesis of amino acids

�rA DIP1036 Homoserine dehydrogenase Cys243 (R)VTYADVYC243EGISK(I) Rv1294

DIP0511 DIP0511 4-hydroxy-tetrahydrodipicolinate synthase Cys141 (R)AVAAATSLPVIAYDIPVC141VHTK(L) —

DapA DIP1464 4-hydroxy-tetrahydrodipicolinate synthase Cys161 (R)SVVPIAPDTLC161R(L) Rv2753c

DIP0974 DIP0974 Putative aminotransferase Cys138 (R)C138DAPHELPNDDIDLVFINSPSNPTGR(V) Rv1178

GlnA1 DIP1644 Glutamine synthetase Cys220 (R)QHPEC220GTGSQQEINYR(F) —

LeuB DIP1105 3-isopropylmalate dehydrogenase Cys130 (R)EGTEGLYC130GNGGTLR(E) Rv2995c

Biosynthesis of nucleotides

DIP1631 DIP1631 Uncharacterized protein Cys43* (R)IAVQPGGC43SGLR(Y) Rv2204c*

GuaB DIP0580 Inosine-5′-monophosphate DH Cys317*# active site (K)VGIGPGSIC317TTR(V) Rv3410c*

PurA DIP2063 Adenylosuccinate synthetase Cys423 (R)DQTIVC423HDVMEA(-) Rv0357c

Other functions

DIP0913 DIP0913 Uncharacterized protein Cys22 (K)ERPTAGPQLYPVTC22EAVVSAIR(A) —

DIP1026 DIP1026 Conserved ATP-binding protein Cys75 (R)IC75LEADLGPVR(F) Rv1278

DIP1102 DIP1102 Putative uncharacterized protein Cys441 (R)LLSAC441PESGLYK(G) —

DIP1250 DIP1250 M18 family aminopeptidase Cys401* (K)AGSSHQVFVGNNSVPC401GSTIGPITATR(L) Rv0800*

DIP1287 DIP1287 UPF0210 protein DIP1287 Cys324 (K)GGMMAC324SR(V) —

GlmS DIP1700 Glutamine-fructose-6-P aminotransferase Cys74 (K)VQALEQELETSPMPQSC74LGIGHTR(W) Rv3436c

Table 1. Identi�cation of 26 S-mycothiolated proteins in C. diptheriae DSM43989 using shotgun LC-MS/
MS analysis a�er exposure to 400 µM NaOCl for 30 min. �e S-mycothiolated proteins were identi�ed using 
shotgun LC-MS/MS analysis and the Sca�old proteome so�ware based on the mass increase of 484 Da (for 
-SSM) at Cys peptides. �e table lists the Uniprot-accession number, protein name, conservation of the protein 
and the S-mycothiolated Cys residue in M. tuberculosis (Mtb) and the Cys-SSM peptide sequence. Conserved 
Cys residues are indicated with (*) and are shown in bold-face. Cys residues that were previously identi�ed S-
mycothiolated or S-bacillithiolated in C. glutamicum, M. smegmatis or S. aureus are indicated with (#).
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pre-treated with a 10-molar excess of MSH before it was subjected to 200 µM, 500 µM and 1 mM H2O2. Of note, 
GapDH inactivation by H2O2 and MSH was faster compared to H2O2 alone since 200–500 µM H2O2 resulted 
in a 40–75% GapDH activity decrease in the presence of MSH (Fig. 4B). �e treatment with 1 mM H2O2 and 
MSH lead to a complete enzyme inactivation which was comparable to the inactivation by H2O2 alone. However, 

Figure 2. Voronoi treemaps show total protein abundance and 26 S-mycothiolated proteins identi�ed in 
C. diphtheriae under NaOCl stress using shotgun LC-MS/MS analysis. (A) �e treemap legend shows the 
classi�cation of the C. diphtheriae proteome into functional categories as revealed by TIGRfam annotations. 
(B) �e spectral protein abundance determines the cell size of each protein identi�ed in the total proteome 
(Table S3). �e 26 identi�ed S-mycothiolated proteins under NaOCl stress are red-colored in the proteome 
treemap. �e protein abundance treemap indicates that Gap, DirA (AhpC), Ndh and GuaB belong to the most 
abundant S-mycothiolated proteins in the total proteome.

Figure 3. �e total Cys abundance treemap of C. diphtheriae with proteins color-coded according to their 
number of Cys residues. (A) �e treemap legend shows the functional classi�cation of 1030 proteins detected in 
the proteome of C. diphtheriae as revealed by their TIGRfam annotations. (B) �e spectral protein abundance 
determines the cell size of each protein identi�ed in the total proteome (Table S3). �e 805 Cys proteins were 
color-coded using a yellow-red color gradient based on their numbers of Cys residues. Non-Cys proteins are 
displayed in grey. �e Cys abundance treemap visualizes that C. diphtheriae contains many Cys-rich proteins 
with >4 Cys residues in the proteome. �e most abundant S-mycothiolated proteins Gap, DirA (AhpC), Ndh 
and GuaB contribute with 0.4–0.8% to the total Cys proteome. �e values of calculated Cys abundances are 
shown in Table S4.
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Figure 4. S-mycothiolation protects GapDH against overoxidation under H2O2 stress in vitro. (A,B) �e 
NAD+-dependent GapDH activity was determined in a spectrophotometric assay by monitoring NADH 
generation during G3P oxidation at 340 nm. Inactivation of GapDH activity was performed using 200 µM, 
500 µM and 1 mM H2O2 (A) in the absence and (B) in the presence of 1 mM MSH. (A,C) GapDH is 65% 
irreversibly inactivated with 1 mM H2O2 alone due to overoxidation of the active site Cys. (B,C) GapDH activity 
is reversibly inhibited due to S-mycothiolation with 1 mM H2O2 and MSH and could be reactivated by 10 mM 
DTT. (E) Non-reducing MSH speci�c Western blot analysis con�rmed the S-mycothiolation of GapDH under 
H2O2 and MSH treatment and its reduction by DTT. (D) �ese results suggest that the GapDH active site Cys 
forms a sulfenic acid that reacts further to form Cys sulfonic acid and intramolecular disul�des in the presence 
of 1 mM H2O2 alone. GapDH is protected against this irreversible overoxidation by S-mycothiolation of the 
active site Cys in the presence of MSH and H2O2. All data represent mean values of three independent replicate 
experiments and the error bars given were calculated as standard error of the mean (SEM).
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GapDH inactivation by H2O2 and MSH was 80% reversible with 10 mM DTT, which indicates that Cys153 is 
S-mycothiolated in the presence of MSH and H2O2. �e S-mycothiolated Cys153 peptide could be veri�ed by 
mass spectrometry and by non-reducing MSH-speci�c Western blot analysis (Figs 4E, S3B and S4A). In addition, 
the intramolecular Cys153-SS-Cys157 disul�de peptide was also detected by mass spectrometry (Figure S3B). 
�ese results provide evidence for the high reactivity of the nucleophilic active site Cys153 towards H2O2, its vul-
nerability to overoxidation and the protection from overoxidation by S-mycothiolation (Fig. 4E). Moreover, our 
results support that GapDH inactivation by S-mycothiolation occurs faster compared to overoxidation by H2O2 
alone which was observed in the activity assays with 200 and 500 µM H2O2 (Fig. 4A,B). �us, S-mycothiolation 
can e�ciently prevent the overoxidation of the GapDH active site.

However, S-mycothiolation of the GapDH active site Cys153 was observed in vivo under conditions of NaOCl 
stress. �us, we analyzed GapDH inactivation with di�erent NaOCl concentrations in the absence or presence 
of MSH. �e incubation of GapDH with 100 µM NaOCl did not a�ect its activity and concentrations of 200–
500 µM led to a 40% activity decrease (Fig. 5A). GapDH was fully inactivated with 1 mM NaOCl. Interestingly, 
the treatment of GapDH with 1 mM NaOCl was also partly (30%) reversible with 10 mM DTT (Figure 5C). �is 
suggests that GapDH inactivation must be caused by both, irreversible overoxidation of Cys153 and reversible 
Cys153-SS-Cys157 intramolecular disul�de bond formation under NaOCl stress (Fig. 5D). Using Orbitrap mass 
spectrometry, we could con�rm the overoxidation of GapDH as main modi�cation which occurred in this case 
at Cys153 and Cys157. �e intramolecular disul�de between Cys153 and Cys157 was also detected under NaOCl 
stress, but at lower abundance (Figure S3C). In conclusion, GapDH is subject to overoxidation and intramolecular 
disul�de formation under both, H2O2 and NaOCl treatment in vitro.

To investigate whether S-mycothiolation can prevent the overoxidation of the active site by NaOCl, we 
repeated the GapDH activity assays above and pretreated the enzyme with 10-fold molar excess of MSH prior 
to NaOCl exposure. Exposure of GapDH to 100 µM NaOCl resulted in 35% activity decrease while 200–500 µM 
NaOCl caused 50% enzyme inactivation (Fig. 5B). Treatment with 1 mM NaOCl in the presence of MSH led 
to 90% inactivation. Thus, it appears that GapDH inactivation with 100–500 µM NaOCl and MSH is faster 
compared to inactivation with NaOCl alone. GapDH inactivation by 1 mM NaOCl and MSH was almost com-
pletely reversible, since about 75% GapDH activity could be recovered with DTT. �ese results indicate that 
the GapDH active site should be protected against overoxidation by S-mycothiolation under NaOCl treatment 
in the presence of MSH. �e S-mycothiolation of GapDH a�er NaOCl treatment was veri�ed by MSH-speci�c 
Western blots and both S-mycothiolated Cys153 and Cys157 peptides were identi�ed by mass spectrometry 
(Figures S3D and S4B). Apart from S-mycothiolation, we identi�ed less abundant Cys153-SS-Cys157 intramo-
lecular disul�des under NaOCl stress in the presence of MSH. In conclusion, our activity assays provide evidence 
that the S-mycothiolation pathway occurs faster compared to the overoxidation under both, H2O2 and NaOCl 
treatment in vitro. �us, S-mycothiolation can e�ciently protect the active site against overoxidation and irrevers-
ible inactivation under H2O2 and NaOCl stress in vitro (Figs 4D and 5D). In addition, intramolecular disul�des 
were detected under both, H2O2 and NaOCl treatment in the presence and absence of MSH as an additional 
redox-regulatory mechanism of GapDH.

2ÅÁÃÔÉÖÁÔÉÏÎ ÏÆ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ 'ÁÐ$( ÒÅÑÕÉÒÅÓ ÔÈÅ -ÒØυȾ-3(Ⱦ-ÔÒ ÁÎÄ 4ÒØȾ4ÒØ2 ÅÌÅÃÔÒÏÎ 
ÔÒÁÎÓÆÅÒ ÐÁÔÈ×ÁÙÓȢ Previous studies have demonstrated that both, the Mrx1 and Trx electron transfer path-
ways can function in reduction of the S-mycothiolated peroxidase Mpx in vitro13, 34. Moreover, de-mycothiolation 
by Mrx1 was shown to operate faster via a monothiol reaction mechanism compared to the reduction via Trx 
using a dithiol mechanism. �us, we were interested to see if the Mrx1 and/or Trx electron transfer pathways 
could function in the reduction of S-mycothiolated GapDH resulting in recovery of its glycolytic activity in vitro. 
Regeneration of GapDH activity using Mrx1 and/or Trx should work only with the S-mycothiolated protein, 
but not with the overoxidized GapDH protein. �us, the GapDH activity assay was performed a�er treatment 
of S-mycothiolated and overoxidized GapDH with the Mrx1 and Trx pathways (Fig. 6A,B). �e regeneration of 
GapDH activity a�er Mrx1 and Trx reduction was followed by monitoring the NADH production at 340 nm. �e 
results showed that both, Mrx1 and Trx can catalyze the reduction of S-mycothiolated GADPH to regenerate 
GapDH activity in vitro (Fig. 6A,B). In contrast, Mrx1 and Trx could not restore the activity of overoxidized 
GapDH that was irreversibly inactivated using 10 mM H2O2 alone (Fig. 6A,B). To verify the de-mycothiolation 
of S-mycothiolated GapDH by Mrx1 and Trx, we performed a MSH-speci�c Western blot analysis (Fig. 6D). �e 
results showed that Mrx1 and the Mrx1 resolving Cys mutant (Mrx1C15S) could reduce the GapDH MSH-mixed 
disul�de in this de-mycothiolation assay as shown by a decreased intensity of the S-mycothiolated GapDH band. 
Similarly, the reduction of GapDH-SSM by Trx and the Trx resolving Cys mutant (TrxC35S) are shown using the 
MSH-speci�c Western bot analysis. Here, the transfer of MSH to the Trx active site was clearly visible (Fig. 6D).

Next, we analyzed whether there is a catalytically relevant reduction mechanism of GapDH by the Mrx1 and 
Trx electron pathways which can be monitored by NADPH consumption. �e Mrx1/MSH/Mtr/NADPH and 
Trx/TrxR/NADPH pathways were reconstituted in vitro using S-mycothiolated GapDH as substrate and NADPH 
consumption was followed over time in progress curves. First, we analyzed reduction of S-mycothiolated GapDH 
with the Mrx1/MSH/Mtr pathway at 340 nm. However, we failed to see any higher NADPH consumption rate 
using the Mrx1 electron transfer pathway. We concluded that reduction of S-mycothiolated GapDH with the 
Mrx1 pathway might be too fast and already �nished before we started the measurement. �erefore, we decided 
to shi� to a stopped �ow device with a 2 ms mixing time. Under the same conditions, we found that most NADPH 
was already consumed within 5 seconds (Fig. 6E). In contrast, de-mycothiolation of S-mycothiolated GapDH 
could be measured in the Trx-coupled assay using a spectrophotometer. Here, NADPH is much slower con-
sumed within 100 to 400 seconds. �e NADPH consumption rate using Trx was higher for S-mycothiolated 
GapDH compared to the reduced GapDH control, indicating that Trx is able to reduce S-mycothiolated GapDH 
(Fig. 6F). In conclusion, our results demonstrate that both Mrx1 and Trx can provide electrons for GapDH 
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Figure 5. S-mycothiolation protects GapDH against overoxidation under NaOCl stress in vitro. (A,B) �e 
NAD+-dependent GapDH activity was determined in a spectrophotometric assay by monitoring NADH 
generation during G3P oxidation at 340 nm. Inactivation of the GapDH activity was performed with 100, 200, 
500 µM and 1 mM NaOCl (A) without or (B) with MSH pre-treatment. (A,C) GapDH inactivation with 1 mM 
NaOCl alone is mostly irreversible due to the overoxidation of the active site to Cys sulfonic acid. (B,C) GapDH 
activity is reversibly inhibited due to S-mycothiolation with 1 mM NaOCl and MSH and could be reactivated by 
10 mM DTT. �e S-mycothiolation of Gap was con�rmed by MSH-speci�c Western blots (Figure S4). (D) �ese 
results suggest that the GapDH active site Cys is chlorinated by NaOCl alone to form Cys-sulfenylchloride 
(-SCl) that reacts further to form Cys sulfonic acid and intramolecular disul�des in the absence of MSH. 
GapDH is protected against overoxidation by S-mycothiolation of the active site Cys in the presence of MSH. All 
data represent mean values of three independent replicate experiments and the error bars given were calculated 
as standard error of the mean (SEM).
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Figure 6. Re-activation of S-mycothiolated GapDH by the Trx/TrxR and Mrx/MSH/Mtr electron transfer 
pathways. (A,B) GapDH activity could be restored a�er demycothiolation of S-mycothiolated GapDH with 
Mrx1 and Trx as shown by NADH production in the G3P oxidation assay. In contrast, overoxidized GapDH 
that was treated with 10 mM H2O2 alone could not be reactivated by the Mrx1 and Trx pathways. (C,D) 
MSH-speci�c non-reducing Western blot analysis con�rmed the S-mycothiolation of GapDH in vitro and 
its demycothiolation by the Mrx1 and Trx pathways. �e transfer of MSH to the Trx resolving Cys mutant 
TrxC35S is shown. (E,F) �e Mrx1/MSH/Mtr and Trx/TrxR electron transfer pathways both reduce S-
mycothiolated GapDH with di�erent reaction rates as revealed by progress curves of NADPH consumption. 
�e demycothiolation of GapDH by the Mrx1-pathway was faster compared to the Trx-pathway. All data 
represent mean values of three independent replicate experiments and the error bars given were calculated as 
standard error of the mean (SEM).
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de-mycothiolation. However, Mrx1 reduces the MSH mixed disul�de of GapDH much faster compared to Trx. 
�us, our results show that S-mycothiolation of GapDH can e�ciently function in protection of the active site 
against overoxidation and can be reversed using both, the Mrx1 and Trx pathways in vitro.

$ÉÓÃÕÓÓÉÏÎ
Protein S-mycothiolation is a widespread and emerging redox modi�cation in Actinomycetes and functions in redox 
regulation and thiol-protection against overoxidation to Cys sulfonic acids under conditions of NaOCl stress9, 10.  
Hypochloric acid (HOCl) is encountered by the pathogens C. diphtheriae and M. tuberculosis particularly during 
infections. HOCl is generated in neutrophils by the enzyme myeloperoxidase (MPO) with the aim to kill pathogenic 
bacteria35, 36. HOCl is a strong thiol-oxidant and chlorinating agent that reacts with Cys residues to sulfenylchlorides 
(-SCl) and further to protein disul�des37, 38, such as S-thiolations as we observed in Gram-positive bacteria4.

We identi�ed 25 S-mycothiolated proteins in C. glutamicum10 and 26 proteins in C. diphtheriae while protein 
S-mycothiolation was more abundant in M. smegmatis9 with 58 identi�ed proteins under NaOCl stress. �e dif-
ferent numbers of S-mycothiolated proteins might be related to the di�erent MSH contents between corynebac-
teria and mycobacteria39. Mycobacteria produce high levels of up-to 20 mM MSH5 and we recently estimated 6 
µmol/g rdw MSH in M. smegmatis9. However, the MSH-levels determined in C. diphtheriae are 20-fold lower 
with 0.3 µmol/g rdw according to this work and previous studies5. Due to the low MSH-content, the number of 
S-mycothiolated proteins might be lower in C. diphtheriae and C. glutamicum compared to mycobacteria. �is 
indicates that in addition to MSH, unknown alternative LMW thiols might function in corynebacteria to main-
tain the thiol-redox homeostasis and to protect proteins by alternative S-thiolations. Recent studies further sug-
gest that overexpression of the mycothiol disul�de reductase (Mtr) under oxidative stress conditions could play 
an important role in the maintenance of the redox homeostasis by increasing the levels of reduced MSH40. In M. 
tuberculosis, MSH and the alternative LMW thiol ergothioneine (EGT) have been shown to be critical for redox 
homeostasis, energy metabolism and virulence and mutants de�cient in MSH or EGT biosynthesis showed over-
lapping responses in the transcriptome41, 42. �e EGT levels were also elevated in a M. smegmatis mshA mutant43. 
�us, it remains to be elucidated whether EGT plays also a role as alternative LMW thiol in corynebacteria. In 
addition, it is also possible that the lower intracellular MSH level and the lower level of protein S-mycothiolation 
in corynebacteria is related to their 2–3-fold smaller genome size compared to mycobacteria.

The comparison of the functions and conservation of all identified S-mycothiolated proteins across 
Actinomycetes indicates that these are involved in a variety of cellular pathways. S-mycothiolated proteins partic-
ipate in energy metabolism, fatty acid and mycolic acid biosynthesis, nucleotide, cofactor, mycothiol and amino 
acid biosynthesis, redox regulation, detoxi�cation, transcription and translation. Some S-mycothiolated proteins 
are conserved and essential targets for S-thiolation across Gram-positive bacteria, such as thiol-peroxidases 
and peroxiredoxins (Tpx, AhpC), ribosomal proteins (RpsM, RplC), the IMP dehydrogenase (GuaB), the 
myo-inositol-1-phosphate synthase (Ino1), the methionine synthase (MetE), and the conserved glycolytic GapDH.

�ese conserved targets for S-mycothiolations overlap also with conserved S-bacillithiolated proteins in 
Firmicutes, such as Bacillus and Staphylococcus species11, 44. Of note, the methionine synthase MetE is the most 
abundant S-bacillithiolated metabolic enzyme in B. subtilis, while GapDH represents the major S-bacillithiolated 
protein in S. aureus21, 33. GapDH of S. aureus contributes with 4% Cys abundance to the total Cys proteome and 
is the most abundant Cys protein in the proteome. In C. diphtheriae, GapDH represents also the most abundant 
S-mycothiolated protein, but contributes only with 0.75% Cys abundance to the total Cys proteome. In C. glutami-
cum, the major targets for S-mycothiolation are the maltodextrin phosphorylase MalP and the thiol-peroxidase 
Tpx and it was shown that S-mycothiolation inhibited the activities of MalP and Tpx10, 15. �us, it seems that abun-
dant redox-sensitive metabolic enzymes are the main targets for inactivation by S-thiolations in di�erent bacteria. 
�e di�erent abundances of the S-mycothiolated MetE, MalP and GapDH in corynebacteria most likely depend 
on the di�erent minimal growth media used for bacterial cultivations.

In addition, we found that many S-mycothiolated proteins of C. diphtheriae contain a high number of Cys 
residues explaining their susceptibility to oxidative inactivation. �e glycolytic GapDH was S-mycothiolated at 
its active Cys153 residue that is known to be highly susceptible to oxidation by H2O2

45–48. GapDH is a well-known 
and conserved target for redox-regulation and S-glutathionylation in response to oxidative stress in several 
prokaryotic and eukaryotic organisms, including bacteria, malaria parasites, yeast, plants and human cell19, 20, 49.  
GapDH inactivation in response to oxidative stress has been shown to reprogram central carbon metabolism 
and to re-direct the glycolytic �ux into the pentose phosphate pathway (PPP) to increase NADPH production 
under conditions of high demands for reducing equivalents50, 51. �us, the goal of the GapDH inactivation by 
S-thiolation could be metabolic adaptation to provide more NADPH as reducing power in the cell under oxidative 
stress. In fact, a change of the global carbon �ux was shown in E. coli under superoxide and H2O2 stress leading 
to an increased NADPH/NADH ratio52, 53. Post-translational thiol-modi�cations play a key role in this metabolic 
adaptation to oxidative stress in di�erent organisms and can change enzyme functions to re-con�gurate central 
carbon metabolism which confers high metabolic plasticity50, 51.

In this study, we have asked the question whether S-mycothiolation can function in thiol-protection and 
redox-regulation of GapDH activity in C. diphtheriae under H2O2- and NaOCl stress. To address this ques-
tion, GapDH was inactivated with H2O2 and NaOCl in the absence and presence of MSH to analyze the kinet-
ics of the irreversible overoxidation and S-mycothiolation pathways in vitro. The kinetic curves of H2O2 and 
NaOCl-dependent GapDH inactivation showed that the majority (65%) of the glycolytic activity is rapidly irrevers-
ibly inhibited with 1 mM H2O2 and NaOCl without pre-exposure to MSH. �e mass spectrometry data con�rmed 
the overoxidation of the active site Cys153 with H2O2 and NaOCl alone. In addition, 35% of GapDH activity was 
reversibly inhibited by 1 mM H2O2 and NaOCl alone due to an intramolecular Cys153-SS-Cys157 disul�de that was 
identi�ed using mass spectrometry. In presence of MSH, GapDH inactivation by H2O2 and NaOCl was faster due to 
S-mycothiolation which was fully reversible with DTT and con�rmed also by MSH-speci�c Western blot analysis. 
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�is indicates that the GapDH overoxidation can be prevented by the faster S-mycothiolation. �ese results are 
in agreement with kinetic measurements performed for the related GapDH homolog of S. aureus21. �e S. aureus 
GapDH was highly susceptible to overoxidation in the presence of H2O2 and NaOCl which could be prevented by 
S-bacillithiolation21. Interestingly, the comparison of the kinetics for the dose-dependent inactivation suggests that 
the S. aureus GapDH enzyme is more sensitive to oxidative inactivation compared to GapDH of C. diphtheriae since 
lower H2O2 and NaOCl doses inhibited S. aureus GapDH activity. �is higher sensitivity of S. aureus GapDH may 
be due to the fact that Cys157 is replaced by a serine in the otherwise highly conserved C153TTNC157 motif21, so 
there is no possibility of intramolecular disul�de formation to prevent overoxidation (Figure S2). �e active site Cys 
in Homo sapiens GapDH was demonstrated to provide a proton relay mechanism that determines H2O2-sensitivity 
of GapDH for oxidation22. On the other hand, S. aureus GapDH contains a threonine in position 243 instead of 
the otherwise conserved valine, which compensates for the disappearance of the oxidation sensitivity in the C157S 
mutant. �is was demonstrated with the Homo sapiens GapDH C156S mutant, where an additional V243T muta-
tion restores the oxidation sensitivity22. Our results strongly suggest that the second conserved cysteine might play 
an important role for oxidation sensitivity of GapDH and prevents overoxidation through intramolecular disul�de 
formation. Further studies are required to con�rm whether Cys157 or other structural features make a di�erence in 
the sensitivity of GapDH to overoxidation and S-mycothiolation.

�e strong H2O2 reactivity of the GapDH active site thiolate was recently shown to depend on a speci�c H2O2 bind-
ing pocket, transition state stabilization, and a dedicated proton relay mechanism promoting hydroxyl leaving-group 
departure20, 22. �is proton relay also determines the preferred modi�cation by S-glutathionylation in eukaryotic organ-
isms which requires the initial formation of a sulfenic acid at Cys153 followed by reaction with GSH to form the mixed 
disul�de. �is proton relay explains why GapDH of C. diphtheriae is a preferred target for S-mycothiolation under H2O2 
and NaOCl. Our results con�rmed the reactivity of the GapDH active site Cys towards H2O2- and NaOCl-dependent 
oxidation and the preference for formation of S-thiolations as observed in other GapDH homologs.

�e reduction of S-mycothiolated proteins was previously shown to require both, the Mrx1 and Trx pathways 
for the regeneration of the activities of Mpx and MsrA in vitro12, 13, 16, 34, 54. Mpx and MsrA form intramolecu-
lar disul�des and S-mycothiolations under H2O2 treatment in vitro that are reduced by the Trx and Mrx1 path-
ways. Here, we have shown that reduction and re-activation of S-mycothiolated GapDH also requires both, the 
Mrx1 and the Trx pathway in vitro. We have further shown that Mrx1 is much faster than Trx in reduction of 
S-mycothiolated GapDH. �us, Mrx1 can take over the role of Trx, especially when Trx, as a ubiquitous disul�de 
reductase, is busy with reducing other non-native disul�des upon recovery from oxidative stress. Mrx1 e�ciently 
functions in regeneration of GapDH activity to restore cellular growth and survival. �e overlapping roles of Mrx1 
and Trx in demycothiolation at di�erent reaction rates were recently shown for Mpx recycling13. In agreement 
with our GapDH results, Mpx de-mycothiolation was also about two orders of magnitude more e�cient with the 
Mrx1 system. De-mycothiolation of Mpx by Mrx1 occurs via a monothiol mechanism, which generates MSSM, and 
de-mycothiolation by Trx occurs via a dithiol-mechanism, generating oxidized Trx and reduced MSH. Both results 
suggest Mrx1 is the primary de-mycothiolating enzyme in Actinomycetes, with Trx having only a residual contri-
bution. Under these premises, Trx would only be able to take over the role of Mrx1 if the concentration of reduced 
MSH is limiting, or if Trx is present at a much higher concentration than Mrx1 inside the cell. In conclusion, 
de-mycothiolation using the Mrx1 and Trx pathways may be a common mechanism to recover a�er oxidative stress 
when the pentose pathway has again produced enough NADPH to ensure the regeneration of oxidized Cys residues.

Similar to our studies, the de-glutathionylating activity of Trx was shown for GapDH isoform 1 
(AtGapC1) from A. thaliana that could be reactivated by glutaredoxin C and less e�ciently by thioredoxin 
in vitro23. De-glutathionylation using Trx1 and Grx1 was also demonstrated for other GapDH homologs and 
S-glutathionylated enzymes in the malaria parasite, Plasmodium falciparum and in yeast cells49, 55, 56. In C. glutami-
cum, overexpression of the MSH disul�de reductase Mtr resulted in a higher reduced level of MSH and increased 
activities of several redox-enzymes, including Mpx, MsrA, Trx, and Mrx140. �us, future research should be 
directed to explore the cross-talk of the Mrx1 and Trx systems in regenerating S-mycothiolated proteins and MSH 
itself to restore the redox balance during the recovery from oxidative stress.

-ÁÔÅÒÉÁÌ ÁÎÄ -ÅÔÈÏÄÓ
"ÁÃÔÅÒÉÁÌ ÓÔÒÁÉÎÓ ÁÎÄ ÇÒÏ×ÔÈ ÃÏÎÄÉÔÉÏÎÓȢ C. diphtheriae DSM43989 was grown under vigorous agitation 
in Heart Infusion broth (HIB) (Difco) at 37 °C to an optical density at 580 nm (OD580) of 0.75–0.8. For NaOCl stress 
exposure, the cells were harvested, washed and re-suspended into Belitsky Minimal Medium (BMM) and further 
cultivated until cells have reached an OD500 of ~1. E. coli strains used were DH5α and BL21(DE3)plysS which were 
cultivated in Luria-Bertani (LB) medium at 37 °C in the presence of the appropriate antibiotics, such as ampicillin 
(100 µg/ml) and chloramphenicol (25 µg/ml). Sodium hypochlorite (NaOCl, 15% stock solution) was purchased 
from Sigma Aldrich. For stress experiments, C. diphtheriae cells were treated with 400 µM NaOCl for 30 min.

)ÄÅÎÔÉÆÉÃÁÔÉÏÎ ÏÆ SȤÍÙÃÏÔÈÉÏÌÁÔÅÄ ÐÅÐÔÉÄÅÓ ÕÓÉÎÇ ,41Ȥ/ÒÂÉÔÒÁÐ 6ÅÌÏÓ ÍÁÓÓ ÓÐÅÃÔÒÏÍÅ-
ÔÒÙȢ N-ethylmaleimide (NEM)-alkylated protein extracts were prepared from C. diphtheriae cells exposed to 
400 µM NaOCl for 30 min and separated by 15% non-reducing SDS-PAGE followed by tryptic in-gel digestion 
and LTQ-Orbitrap-Velos mass spectrometry as described10. Post-translational thiol-modi�cations of proteins 
were identi�ed by searching all MS/MS spectra in “dta” format against the C. diphtheriae target-decoy protein 
sequence database extracted from UniprotKB release 12.7 (UniProt Consortium, Nucleic acids research 2007, 
35, D193-197) using Sorcerer™-SEQUEST® (Sequest v. 2.7 rev. 11, �ermo Electron including Sca�old 4.0, 
Proteome So�ware Inc., Portland, OR). �e SEQUEST search parameters and thiol-modi�cations were used 
as described10 using the following parameters: parent ion mass tolerance 10 ppm and fragment ion mass tol-
erance 1.00 Da. Two tryptic miscleavages were allowed. Methionine oxidation (+15.994915 Da), cysteine alky-
lation (+125.04767 Da for NEM), S-cysteinylations (+119.004099 Da for C3H7NO2S) and S-mycothiolations 
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(+484.13627 Da for MSH) were set as variable post-translational modi�cations in the Sequest search. Sequest 
identi�cations required ∆Cn scores of >0.10 and XCorr scores of >2.2, 3.3 and 3.75 for doubly, triply and quad-
ruply charged peptides. Neutral loss precursor ions characteristic for the loss of myo-inositol (−180 Da) served 
for veri�cation of the S-mycothiolated peptides. �e mass spectrometry (MS) proteomics datasets (MS raw �les 
and Sca�old �les) are deposited into the ProteomeXchange database via the PRIDE partner repository with the 
dataset identi�er PXD003321.

Mass spectrometry of the H2O2-treated overoxidized GapDH was performed a�er in-gel tryptic digestion 
using nLC-MS/MS by an Orbitrap fusion as described previously57.

-ÏÎÏÂÒÏÍÏÂÉÍÁÎÅȤÌÁÂÅÌÌÉÎÇ ÁÎÄ (0,#ȤÔÈÉÏÌ ÍÅÔÁÂÏÌÏÍÉÃÓ ÁÎÁÌÙÓÉÓȢ Cells were cultivated 
in HIB medium and transferred to BMM medium for the NaOCl stress experiments as described above. 
�iol-labelling using monobromobimane (mBBr) was performed as described previously11. �e mBBr-labelled 
thiols were separated by reverse phase chromatography and quanti�ed by �uorescence detection using the same 
HPLC system as described58. �e following gradient method was applied: 10 min 92% bu�er A (10% methanol, 
0.25% acetic acid, pH 3,9) supplemented with 8% bu�er B (90% methanol, 0.25% acetic acid, pH 3,9), linear 
increase to 40% bu�er B in 10 min, constant �ow of 40% bu�er B for 5 min, linear increase to 90% bu�er B in 
5 min, washing with 100% bu�er B for 2 min followed by re-equilibration with 8% bu�er B for 8 min. �e �ow rate 
was constantly set to 1.5 ml min−1.

%ØÐÒÅÓÓÉÏÎȟ ÃÌÏÎÉÎÇ ÁÎÄ ÐÕÒÉǢÃÁÔÉÏÎ ÏÆ ÒÅÃÏÍÂÉÎÁÎÔ (ÉÓϊȤÔÁÇÇÅÄ 'ÁÐ$( ÐÒÏÔÅÉÎȢ �e DIP1310  
gene encoding GapDH was ampli�ed by PCR using the primer pairs Gap-for (5′-GGAATTCCATATGGTG 
ACGATTCGCGTAGGTATCA-3′) and Gap-rev (5′-CTAGCTAGCTTAGTGATGGTGATGGTGATGGAGACG 
CTCACCGACGTATTC-3′) with C. diphtheriae DSM43989 chromosomal DNA as template. �e PCR product 
was digested with NheI and NdeI restriction enzymes and cloned into a similarly digested pET11b expression 
vector resulting in pET11b-gapDH that was transformed into E. coli BL21(DE3)plysS. �e gapDH sequence 
was con�rmed by DNA sequencing. For GapDH overproduction, the E. coli BL21(DE3)plysS strain with plas-
mid pET11b-gap was cultured in LB broth medium to an OD600 of 0.5 to 0.7 at 37 °C. Protein expression was 
induced with 1 mM IPTG (Isopropyl-β-D-1-thiogalactopyranoside) and cultivation was continued for 4 hours. 
Recombinant His6-tagged GapDH was puri�ed by a�nity chromatography using His Trap™ HP Ni-NTA col-
umns (5 ml; GE Healthcare, Chalfont St Giles, UK) and the ÄKTA puri�er liquid chromatography system (GE 
Healthcare) according to the instructions of the manufacturers. Puri�ed GapDH was dialyzed against 20 mM 
Tris-HCl, pH 8.0 and concentrated to 20 mg/ml using Vivaspin Ultra concentrators (Sartorius, Göttingen, 
Germany). �e cloning and puri�cations of recombinant His6-tagged proteins Mrx1, Mtr, Trx and TrxR were 
performed as described previously59.

0ÒÏÄÕÃÔÉÏÎ ÁÎÄ ÐÕÒÉǢÃÁÔÉÏÎ ÏÆ ÍÙÃÏÔÈÉÏÌȢ MSH was puri�ed from M. smegmatis mc2155 that was 
grown to the late exponential phase in Middlebrook 7H9 broth with 0.05% Tween 80 and 10% oleic albumin 
dextrose catalase (OADC) at 37 °C as described13. �e cells were harvested by centrifugation and disrupted using 
a French press (Constant Systems). �e puri�ed MSH was reduced with TCEP following several additional chro-
matographic steps. �e concentration of MSH was determined by HPLC by correlating the MSH mBBr conjugate 
elution peak of an ACE 5 C18 column (Achrom) with a known standard. �e sample purity was checked with 
Proton Nuclear Magnetic Resonance (1H NMR).

.ÏÎȤÒÅÄÕÃÉÎÇ 7ÅÓÔÅÒÎ ÂÌÏÔ ÁÎÁÌÙÓÉÓȢ MSH-speci�c Western blot analysis of the GapDH MSH-mixed 
disul�des were carried out using rabbit anti-MSH speci�c antiserum (1:1000-dilution) as described previously13.

'ÌÙÃÏÌÙÔÉÃ 'ÁÐ$( ÁÃÔÉÖÉÔÙ ÁÓÓÁÙȢ GapDH was reduced before the activity assays with 10 mM DTT 
for 30 minutes at room temperature. Excess of DTT was removed by desalting with Micro Biospin 6 columns 
(Biorad). Glycolytic GapDH activity was monitored spectrophotometric at 340 nm and 25 °C by the production 
of NADH. �e oxidation of G3P to 1,3-bisphosphoglycerate (1,3 BPG) was measured in an assay mixture con-
taining 1.25 mM NAD+ and 0.25 µM GapDH in argon-�ushed 20 mM Tris/HCl with 1.25 mM EDTA and 15 mM 
sodium arsenate as described previously22. A�er pre-incubation, the reaction was started by addition of 0.25 mM 
D,L-G3P. Sodium arsenate was used as a co-substrate to form unstable 1-arseno,3-phosphoglycerate. Degradation 
of the product allows a favorable equilibrium for measuring the rate of GapDH activity in the glycolytic forward 
reaction.

)ÎÁÃÔÉÖÁÔÉÏÎ ÏÆ 'ÁÐ$( ÂÙ (φOφ ÁÎÄ .Á/#Ì ÔÒÅÁÔÍÅÎÔȢ Pre-reduced GapDH (25 µM) was incubated 
with di�erent concentrations of H2O2 and NaOCl (100, 200, 500 µM, 1 mM) in the absence or presence of 1 mM 
MSH for 5 min at 37 °C in an assay mixture containing 1.25 mM NAD+ and 0.25 µM GapDH in argon-�ushed 
20 mM Tris-HCl with 1.25 mM EDTA and 15 mM sodium arsenate. A�er the removal of excess H2O2 and MSH, 
0.25 mM D,L-G3P was added as substrate, GapDH activity was measured spectrophotometric by the production 
of NADH. �e reversibility of the reaction was analyzed by measuring the GapDH activity a�er reduction with 
10 mM DTT for 30 min.

$ÅȤÍÙÃÏÔÈÉÏÌÁÔÉÏÎ ÏÆ 'ÁÐ$( ÂÙ ÔÈÅ -ÒØυȾ-3(Ⱦ-ÔÒ ÁÎÄ 4ÒØȾ4ÒØ2 ÐÁÔÈ×ÁÙÓȢ GapDH, Mrx1 
and Trx were reduced before the assays with 10 mM DTT for 30 minutes at room temperature. Excess of DTT 
was removed by desalting with Micro Biospin 6 columns. Pre-reduced GapDH (25 µM) was pre-incubated with 
10-molar excess of MSH at 37 °C for 5 min, then 100-fold molar excess of H2O2 was added and the mixture 
was incubated at 37 °C for 5 min. Excess of H2O2 and MSH were removed on a PD-10 desalting column (GE 
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Healthcare). �e NADPH consumption during the de-mycothiolation reactions was monitored spectrophoto-
metrically at 340 nm and 37 °C, using argon-�ushed 50 mM Hepes/NaOH, pH 8, 500 mM NaCl, 1 mM EDTA. For 
the reduction of S-mycothiolated GapDH by the Trx pathway, we used 2 µM Trx, 5 µM Trx-reductase and 250 µM 
NADPH in a Spectramax 340PC plate reader (Molecular Devices). For the reduction of S-mycothiolated GapDH 
by the Mrx1 pathway, we used 20 nM Mrx1, 5 µM MSH, 5 µM MSSM reductase and 250 µM NADPH in SX-20 
stopped �ow (Applied PhotoPhysics). A�er 5 min pre-incubation of this mixture at 37 °C, 60 µM mycothiolated 
GapDH was added to initiate the reaction. �ree technical and experimental replicates were performed.
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Redox-Sensing Under Hypochlorite Stress
and Infection Conditions by the Rrf2-Family
Repressor HypR in Staphylococcus aureus

Vu Van Loi,1 Tobias Busche,1,2 Karsten Tedin,3 Jörg Bernhardt,4 Jan Wollenhaupt,5 Nguyen Thi Thu Huyen,1

Christoph Weise,6 Jörn Kalinowski,2 Markus C. Wahl,5 Marcus Fulde,3 and Haike Antelmann1

Abstract

Aims: Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species
(ROS, RCS) during infections, which requires efficient protection mechanisms to avoid destruction. Here, we have
investigated the changes in the RNA-seq transcriptome by the strong oxidant sodium hypochlorite (NaOCl) in
S. aureus USA300 to identify novel redox-sensing mechanisms that provide protection under infection conditions.
Results: NaOCl stress caused an oxidative stress response in S. aureus as indicated by the induction of the PerR,
QsrR, HrcA, and SigmaB regulons in the RNA-seq transcriptome. The hypR-merA (USA300HOU_0588-87)
operon was most strongly upregulated under NaOCl stress, which encodes for the Rrf2-family regulator HypR
and the pyridine nucleotide disulfide reductase MerA. We have characterized HypR as a novel redox-sensitive
repressor that controls MerA expression and directly senses and responds to NaOCl and diamide stress via a
thiol-based mechanism in S. aureus. Mutational analysis identified Cys33 and the conserved Cys99 as essential
for NaOCl sensing, while Cys99 is also important for repressor activity of HypR in vivo. The redox-sensing
mechanism of HypR involves Cys33-Cys99 intersubunit disulfide formation by NaOCl stress both in vitro and
in vivo. Moreover, the HypR-controlled flavin disulfide reductase MerA was shown to protect S. aureus against
NaOCl stress and increased survival in J774A.1 macrophage infection assays.
Conclusion and Innovation: Here, we identified a new member of the widespread Rrf2 family as redox sensor
of NaOCl stress in S. aureus that uses a thiol/disulfide switch to regulate defense mechanisms against the
oxidative burst under infections in S. aureus. Antioxid. Redox Signal. 00, 000–000.

Keywords: Staphylococcus aureus, Rrf2, redox-sensing regulator, hypochlorite stress

Introduction

Staphylococcus aureus is not only a common com-
mensal bacterium but also a major pathogen that accounts

for 40% of nosocomial infections in humans (31). S. aureus can
cause local wound infections and also severe life-threatening
infections, such as septicemia, endocarditis, necrotizing pneu-

monia, catheter-associated infections, and osteomyelitis (3,
12, 60). A major problem to combat S. aureus infections is
the increasing prevalence of multiple antibiotic-resistant
isolates, such as methicillin-resistant S. aureus (MRSA)
strains that arise in hospitals as well as in the community
(57). S. aureus USA300 is a highly virulent community-
acquired MRSA strain that encodes many virulence factors,
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including the pore forming toxin Panton–Valentine leuko-
cidin, the pyrogenic toxin superantigens (Sek and Seq), the
plasminogen-activator staphylokinase (Sak), the staphylo-
coccal complement inhibitor, and the chemotaxis inhibitory
protein (Chp) contributing to the pathogenicity, immune
evasion, and resistance to host defenses (24, 25, 85). The
pathogen is classified by the ‘‘European Center of Disease
Prevention and Control’’ as ESKAPE pathogen because of its
fast ability to escape the bactericidal action of antibiotics (76).
Thus, to understand the adaptation of the pathogen to the host
defense is of utmost importance to identify new drug targets
for the treatment of MRSA infections.

During infections, S. aureus has to defend against reactive
oxygen and chlorine species (ROS, RCS), such as hydrogen
peroxide (H2O2) and the strong oxidant hypochlorous acid
(HOCl) that are produced as first-line defense by activated
macrophages and neutrophils with the aim to kill invading
pathogens (8, 43, 96, 97). HOCl is generated in neutrophils
from H2O2 and chloride by the myeloperoxidase (MPO),
which is the main mechanism of bacterial killing (39, 48).

As ROS protection mechanism, S. aureus uses the low-
molecular-weight (LMW) thiol bacillithiol (BSH) that en-
hances survival in macrophage infection assays. In addition,
various redox-sensing regulators of the SarA/MarR-family,
such as MgrA and SarZ and the Staphylococcal accessory
regulator (SarA), regulate ROS and antibiotic resistance de-
terminants, as well as virulence factors (13–16, 43). MgrA
controls the expression of several efflux pumps, which confer
resistance toward fluoroquinolone, tetracycline, vancomycin,
and penicillin. SarZ regulates the ohrA peroxiredoxin and
genes involved in virulence, autolysis, cell wall biosynthe-
sis, antibiotic resistance, and energy metabolism. The OhrA
peroxiredoxin reduces organic hydroperoxides that are de-
rived from fatty acid oxidation to their organic alcohols
(26). Both SarZ and MgrA use a thiol-based redox-sensing
mechanism in response to organic hydroperoxides (78, 88).
The single Cys residue of SarZ and MgrA can be regulated by
S-thiolation with a synthetic LMW thiol leading to allosteric
changes in the DNA-binding domains and derepression of
transcription of the target genes (1, 15, 43).

To identify novel sodium hypochlorite (NaOCl)-sensitive
proteins, we have recently applied the OxICAT method and
studied the quantitative thiol-redox proteome of S. aureus
USA300 under NaOCl stress (46). The redox state of 228 Cys

residues in S. aureus could be quantified and 58 NaOCl-
sensitive Cys residues were identified with >10% increased
oxidations under NaOCl treatment. Of note, the redox-
sensing Cys residues of both MarR/OhrR-family regulators
MgrA and SarZ showed increased oxidation levels under
NaOCl stress. The NaOCl-sensitive proteins include also
many antioxidant proteins, detoxification and metabolic
enzymes, ribosomal proteins, several Zn-containing proteins,
and virulence factors. Moreover, five S-bacillithiolated pro-
teins were identified under NaOCl stress, including Gap,
AldA, GuaB, and RpmJ that showed the highest oxidation
increase of >20% in the OxICAT analysis. Gap contributes as
most abundant S-bacillithiolated protein in the proteome with
4% to the total Cys proteome of S. aureus. We have further
shown that S-bacillithiolation of Gap functions in redox con-
trol and thiol protection under H2O2 and NaOCl stress in vitro
(46). However, while our redox proteomics studies identified
many new targets for redox regulation, no HOCl-specific
transcription factor was identified that could be specifically
involved in sensing of NaOCl stress.

In this study, we applied RNA-seq transcriptomics to
identify new redox-sensing regulators in S. aureus USA300
that could specifically sense and respond to NaOCl stress and
thereby regulate target genes that confer protection under
infection conditions. The hypR-merA operon was most
strongly upregulated under NaOCl in the transcriptome that
encodes for the novel redox-sensing regulator HypR and the
pyridine nucleotide disulfide reductase mercuric ion reductase
(MerA). HypR belongs to the widespread Rrf2 family of
transcriptional regulators that include iron/sulfur (FeS)-cluster
redox sensors for nitric oxide (NsrR) (23, 90, 98), the iron/
sulfur status of the cell (IscR) (82, 83), iron metabolism (RirA)
(40), or other signals (67). Other Rrf2 family regulators do not
contain FeS clusters, such as the cysteine metabolism repressor
(CymR) (28, 47, 84) and the redox-sensing SaiR repressor
of Bacillus anthracis that controls spxA2 under disulfide stress
conditions and is a close homologue of HypR (68). Using
biochemical and genetic approaches, we have characterized
HypR as a novel thiol-based redox sensor that senses HOCl
stress by intersubunit disulfide formation and protects
S. aureus under macrophage infection conditions.

Results

NaOCl stress causes an oxidative stress response
in the transcriptome and upregulates most strongly
the hypR-merA operon (USA300HOU_0588-87)
in S. aureus USA300

We were interested to identify novel redox-sensing regu-
lators in S. aureus that could be specifically involved in the
hypochlorite defense under infection conditions. Thus, we
studied the changes in the RNA-seq transcriptome in S. au-
reus USA300 after exposure to sublethal 150 lM NaOCl
stress compared to untreated control cells. The NaOCl stress
experiments were performed in Belitsky minimal medium
(BMM) to avoid quenching by rich medium components
as described in our previous studies (46, 58). Three biologi-
cal replicate experiments were performed and the samples for
RNA isolation were taken before (control) and 30 min after
NaOCl stress and subjected to RNA-seq analysis as described
(44). For significant expression changes, the log2 fold change
(m-value) cutoff (log2-fold change NaOCl vs. control)

Innovation

Staphylococcus aureus is an important human patho-
gen that has to cope with the oxidative burst of the host
innate immune system under infection conditions to en-
sure survival. Here, we have characterized the novel
NaOCl-sensing transcription factor HypR that belongs to
the Rrf2-family and controls the flavin disulfide reductase
MerA under infection conditions. HypR senses and re-
sponds to NaOCl via the formation of Cys33-Cys99 in-
tersubunit disulfides resulting in dissociation from its
operator and derepression of hypR-merA transcription.
The hypR-merA operon was required for growth and
survival under NaOCl stress and in macrophage infection
assays and was identified as an important defense mech-
anism under hypochlorite stress.
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of –1.98 was chosen (95% confidence, p £ 0.05). In total, 89
transcripts were significantly at least fourfold upregulated
and 9 were fourfold downregulated under NaOCl stress in the
transcriptome data set (Fig. 1 and Supplementary Table S1;
Supplementary Data are available online at www.liebertpub.
com/ars). In addition, 1442 genes are differentially tran-
scribed below the m-value cutoff under NaOCl stress in the
RNA-seq transcriptome of S. aureus USA300. All induced and
repressed genes above and below the m-value cutoff were sorted
into regulons, and a subset of the most interesting upregulated
regulons is displayed in Voronoi treemaps (Fig. 2 and Supple-
mentary Table S2).

Previous transcriptome analysis in Bacillus subtilis showed
that NaOCl stress induces an oxidative stress response as re-
vealed by the induction of the oxidative stress-specific PerR,
OhrR, and Spx regulons, as well as by the CtsR regulon in-
dicative of oxidative protein unfolding (20). Furthermore,
NaOCl stress resulted in increased expression of the YodB,
CatR, HypR, and HxlR regulons in B. subtilis that sense re-
active electrophilic species (RES), such as quinones and al-
dehydes (18, 20, 21, 52, 73). In S. aureus, we could confirm a
similar expression profile under NaOCl stress as revealed by
the strong upregulation of the PerR, HrcA, and QsrR (YodB)
regulons indicating ROS and RES responses in S. aureus. In
addition, we noticed the weak two- to threefold induction of
few members of the Fur and Zur regulons. Fur and Zur oxi-
dation in their Zn-redox switch motifs was observed under
NaOCl stress in our recent OxICAT analyses in S. aureus (46)
and Mycobacterium smegmatis (44). Similarly, the Fur family
protein PerR was oxidized to an intramolecular disulfide in
B. subtilis under NaOCl stress (20). Since Zn-redox switch

motifs are known sensors for HOCl stress also in E. coli (45,
95), redox regulation of PerR, Fur, and Zur could involve also
thiol oxidation in their Zn-motifs.

The SigmaB regulon was also induced under NaOCl stress
in S. aureus and B. subtilis, which might be indicative for an
acid stress response and contributes to virulence (20) (Fig. 2).
The induction of the SigmaB regulon was previously shown
after internalization of S. aureus in human epithelial cells and
SigmaB was essential for intracellular growth (77). Of note is
further induction of GraRS cell wall stress regulon under
NaOCl stress in S. aureus. GraRS controls resistance to anti-
microbial peptides and cell wall-active antibiotics, such as
vancomycin, but contributes also to the oxidative stress re-
sistance of S. aureus explaining its upregulation under NaOCl
stress (29). The oxidative stress response is further indicated
by induction of genes that encode for BSH biosynthesis en-
zymes and bacilliredoxins, such as bshA, bshB, bshC, and brxB
in S. aureus. The BSH biosynthesis genes are under control of
Spx in B. subtilis (33) and perhaps also in S. aureus.

Apart from the stress regulons, the SaeRS regulon was most
strongly induced under NaOCl stress in S. aureus. The SaeRS
two-component system controls many important toxins, such
as a-, b-, and c-hemolysins, leukocidins, superantigens, sur-
face proteins, proteases, nuclease, coagulase, and immune
evasion proteins (7, 38, 56) that exhibit the highest fold change
between 20- and 160-fold under NaOCl stress (Supplementary
Tables S1 and S2, Figs. 1 and 2). Previous studies established
important roles of SaeRS in pathogenicity and biofilm for-
mation in a variety of disease models of infections (56). The
SaeRS regulon was most strongly upregulated by neutrophil
stress in S. aureus as shown in previous microarrays (91). The

FIG. 1. RNA-seq transcriptomics of Staphylococcus aureus USA300 after 30 min of NaOCl stress. For RNA-seq
transcriptome profiling, S. aureus USA300 was grown in BMM and treated with 150 lM NaOCl stress for 30 min. The gene
expression profile under NaOCl stress is shown as ratio/intensity scatter plot (M/A-plot), which is based on the differential
gene expression analysis using DeSeq2. Colored symbols indicate significantly induced (red, magenta, yellow) or repressed
(green) transcripts (M-value ‡1.98 or £ -1.98; p-value £0.05). Black symbols indicate differential transcribed genes below
the M-value cutoff of 1.98>M>-1.98 ( p £ 0.05). Gray symbols denote transcripts with no fold changes after NaOCl stress
( p > 0.05). The SaeRS, HypR, MgrA, ArgR, CodY, and QsrR regulons are most strongly upregulated under NaOCl stress.
The transcriptome analysis was performed from three biological replicates. The RNA-seq expression data of all genes after
NaOCl stress and their regulon classifications are listed in Supplementary Tables S1 and S2. BMM, Belitsky minimal
medium; NaOCl, sodium hypochlorite.
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SaeRS-controlled virulence factors are essential for innate
immune evasion since the survival of the saeRS mutant was
impaired in neutrophil phagocytosis assays (92). Reduction
of ROS production by SaeRS-regulated virulence factors
inside neutrophils was recently shown as mechanism to avoid
pathogen killing (37). Thus, the strong induction of the SaeRS

virulence regulon under NaOCl stress in our transcriptome
is reflecting adaptation to infection conditions, such as neu-
trophil stress.

Among the genes involved in energy metabolism, the ex-
pression of the glycolytic cggR-gap-pgk-tpiA-pgm-eno-operon
and the pyruvate dehydrogenase pdhABCD operon was two- to

FIG. 2. The transcriptome treemap of S. aureus USA300 under NaOCl stress indicates an oxidative stress response
and the strong upregulation of the HypR and SaeRS regulons. The transcriptome treemap shows the differential gene
expression of S. aureus after exposure to 150 lM NaOCl stress as log2 fold changes (m-values). The genes are classified into
operons and regulons based on the RegPrecise database (http://regprecise.lbl.gov/RegPrecise/index.jsp) and previous
publications (61). Differential gene expression is visualized using a red-blue color code where red indicates log2 fold
induction and blue repression of transcription under NaOCl stress. The HypR and SaeRS regulons are most strongly
upregulated under NaOCl stress in S. aureus USA300. The induction of the PerR, HrcA, SigmaB, and QsrR regulons reveals
an oxidative stress response in S. aureus. The RNA-seq expression data of the selected highly transcribed genes after NaOCl
stress and their regulon classifications are listed in Supplementary Table S2.
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fourfold elevated. Since the glycolytic Gap is the main thiol
switch that is redox controlled and inhibited under NaOCl
stress by S-bacillithiolation (46), the lack of energy production
due to inhibited glycolysis could result in upregulation of
the glycolysis enzymes. Furthermore, the two- to threefold
induction of the ATP synthase atpCDGAHFEB operon un-
der NaOCl stress may indicate ATP depletion. Of note is the
further enhanced expression of the CodY regulon under
NaOCl that includes the ilv-leu and lysC-asd-dapABD operons
involved in leucine, isoleucine, and lysine biosynthesis, as well
as the riboflavin biosynthesis ribHBAED operon. Increased
demand of riboflavin might be caused by the requirement of
flavin cofactors for thiol/disulfide reductases. Moreover, the
ArgR regulon genes for biosynthesis of arginine and the ArcR-
controlled arginine deiminase operon are strongly induced
under NaOCl, which could indicate increased ammonium
production to compensate for an acid stress response caused by
NaOCl stress.

Most interesting was the 180-fold induction of the
USA300HOU_0588-0587 operon under NaOCl treatment
(Figs. 2 and 3). USA300HOU_0588 encodes for an un-
characterized Rrf2 family regulator, termed as HypR, and
USA300HOU_0587 encodes for the flavin disulfide reductase
(FDR) MerA. The strong expression of the hypR-merA op-
eron was previously observed in S. aureus isolates during
phagocytosis with polymorphonuclear leukocytes (PMNs
or neutrophils) (91). Thus, our expression profile under
NaOCl stress highly resembles that of infection conditions
due to the production of ROS and RCS in activated neu-
trophils. Accordingly, HypR could specify a novel NaOCl-
specific transcription factor and defense mechanism of
S. aureus to avoid destruction by neutrophils. Thus, we studied
the redox-sensing regulatory mechanism of HypR and the
function of MerA in more detail under NaOCl stress con-
ditions. For the detailed HypR functional analysis, we have

chosen S. aureus COL, which is our model strain for func-
tional genomics, and protocols for genetic manipulation are
best established in our laboratory for COL, which has less
resistance determinants compared to USA300.

Northern blot analysis revealed the specific induction
of the hypR-merA operon under NaOCl and diamide
stress and its negative regulation by the Rrf2 family
repressor HypR

We used Northern blot analysis to study the expression of
the hypR-merA operon under different thiol-specific stress
conditions in S. aureus COL, including 1 mM NaOCl, 2 mM
diamide, 10 mM H2O2, 0.75 mM formaldehyde, and 0.5 mM
methylglyoxal (Fig. 4A). These experiments were performed
in RPMI medium, which resembles infection conditions and
allows faster growth of S. aureus, but requires higher suble-
thal doses of 1 mM NaOCl. The strong upregulation of the
hypR-merA-specific 1.8 kb mRNA under 1 mM NaOCl and
2 mM diamide stress was confirmed, but no significant in-
creased transcription was found with 10 mM H2O2 and al-
dehyde stress. This indicates that the hypR-merA operon
responds specifically to disulfide stress, but not to H2O2 and
aldehydes in S. aureus.

Next, we studied the role of HypR in transcriptional reg-
ulation of the hypR-merA operon in S. aureus COL. Using the
temperature-sensitive plasmid pMAD, a clean hypR deletion
mutant was constructed lacking 364 bp of the hypR open
reading frame. The truncated hypR-merA transcript of 1.5 kb
(denoted as TR-merA) was constitutively expressed in the
hypR deletion mutant under nonstress conditions, indicating
full derepression of hypR-merA transcription (Fig. 4B). These
results identify HypR as transcriptional repressor of the
hypR-merA operon that is inactivated under disulfide stress
conditions in S. aureus.

FIG. 3. The hypR-merA-operon is most strongly upregulated in the RNA-seq transcriptome of S. aureus USA300
under NaOCl stress. The mapped reads for the gene expression profile of the hypR-merA locus under control and NaOCl
stress are shown as displayed using the Read-Explorer software. Transcription of the hypR-merA-operon is 180-fold induced
under NaOCl stress in S. aureus USA300. The hypR gene encodes for an Rrf2 transcriptional regulator and merA encodes
for a pyridine nucleotide disulfide reductase.
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Cys99 is required for HypR repressor activity
and Cys33 and Cys99 are the NaOCl-sensing
Cys residues in vivo

The HypR repressor belongs to the Rrf2 family that in-
cludes FeS cluster containing redox sensors for nitric oxide
(NsrR) (23, 90, 98), and also SaiR of B. anthracis as the
closest HypR homologue that does not contain an FeS cluster
(68) (Fig. 5A). Three conserved Cys residues (Cys93, Cys99,
and Cys105) and Asp8 are essential for FeS cluster coordi-
nation in NsrR (90), but only Cys99 is conserved in HypR and
SaiR. Instead, HypR has two other Cys residues at the non-
conserved positions 33 and 142. The crystal structure of the
HypR and SaiR homologue YwnA of B. subtilis is available
(PDB code 1xd7), which showed 23.5% sequence identity
to HypR and shares also the conserved Cys97 (Fig. 5B).
Based on the structure of YwnA as template, the HypR and
SaiR structures were modeled with SWISS-MODEL (https://
swissmodel.expasy.org) (10). The HypR structural model
indicates that Cys33 is located in the turn between the a2
and a3 DNA recognition helices, while Cys99 is at the N-
terminus of the long a6 helix that forms the dimer interface
(Fig. 5B). The position of Cys142 could not be modeled since
the C-terminal a8 helix is not present in the YwnA structure
that was used as template.

To study the role of the three Cys residues for HypR re-
pressor activity and redox sensing, we analyzed transcription
of the hypR-merA operon in hypRC33A, hypRC99A, and
hypRC142A mutants in vivo. The successful complementation
of the hypR mutant using the pRB473-based expression of
hypR, hypRC33A, hypRC99A, and hypRC142A under control,
NaOCl and diamide stress was confirmed using Northern blots
with a hypR-specific mRNA probe (Supplementary Fig. S1A,
B). Additional Western blot analysis confirmed that the com-
plemented strains expressed HypR, Cys33A, Cys99A, and
Cys142A mutant proteins at the same protein levels (Sup-
plementary Fig. S6A, B). Transcriptional analysis of hypR-
merA expression revealed that the hypRC33A mutation did
not affect the DNA binding activity of HypR, but impaired
its redox sensing since transcription was abolished under
NaOCl and diamide stress (Fig. 4C, D). In contrast, the
hypRC99A mutant was impaired in DNA binding as shown
by full derepression of the hypR-merA operon under control
conditions. The hypRC142A mutant behaved similar as the
wild type and was not impaired in DNA binding and redox
sensing under NaOCl and diamide stress. In conclusion, our
Northern blot results revealed that Cys33 is important for
redox sensing under NaOCl and diamide stress and Cys99 is
required for HypR repressor activity in vivo.

FIG. 4. Northern blot analysis of hypR-merA transcription in S. aureus COL under NaOCl, diamide, H2O2, and
aldehyde stress and in hypR Cys-Ala mutants. (A) Northern blot analysis was performed using RNA isolated from S.
aureus COL wild type before (co) and 15 and 30 min after exposure to 1 mM NaOCl, 2 mM diamide, 10 mM H2O2, 0.75 mM
formaldehyde, and 0.5 mM methylglyoxal stress. (B) Transcription of the hypR-merA operon was analyzed in the COL wild-
type and in the DhypR mutant under 1 mM NaOCl stress indicating strong derepression of hypR-merA transcription under
control conditions in the absence of HypR. (C, D) Northern blot analysis of hypR-merA operon transcription in the DhypR
deletion mutant and in DhypR mutants complemented with hypR, hypRC33A, hypRC99A, and hypRC142A before and 15
and 30 min after exposure to 1 mM NaOCl (C) or 2 mM diamide stress (D). The results indicate that Cys33 is required for
redox sensing of HypR in vivo. For stress experiments, S. aureus cells were grown in RPMI medium and treated with thiol-
reactive compounds at an OD500 of 0.5. The arrows point toward the hypR-merA bicistronic mRNA (1.8 kb) in the wild type
or the truncated hypR-merA transcript (TR-merA) (1.5 kb) in the hypR mutant. The methylene blue stain is the RNA loading
control indicating the 16S and 23S rRNAs. OD500, optical density at 500 nms.
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HypR binds specifically to the hypR-merA operator
and DNA binding is reversibly inhibited under
NaOCl and diamide stress in vitro

The results above suggested that HypR binds directly to the
hypR-merA promoter region and that Cys33 is the redox-
sensing Cys residue that is oxidized under NaOCl and diamide
stress. Rrf2 regulators are known to bind as homodimers to
operator sequences with dyad symmetry (84). Based on the
RNA-seq data, we used the MEME software to identify the
putative promoter sequence and a conserved inverted repeat in
the upstream region of the hypR-merA operon (Fig. 6A). The
12-3-12 bp inverted repeat sequence TAATTGTAACTA-N3-
CAGTTACAATTA was detected in the hypR-merA upstream
region as possible HypR binding site that overlapped with the
putative -10 region. Similar inverted repeats are characteristic
as full-length binding sites for other Rrf2 regulators, such as
SaiR, CymR, IscR, and RsrR (67, 68, 82, 84). We searched for
the conservation of the putative HypR operator sequence up-

stream of homologous hypR-merA operons in the genomes of
other Staphylococcus species. The multiple-sequence align-
ment showed that the 12-3-12 bp inverted repeat sequence is
highly conserved in the hypR-merA upstream promoter regions
across Staphylococci (Fig. 6B).

To investigate whether HypR binds directly and specifically
to the HypR operator sequence under reduced conditions with
dithiothreitol (DTT), we used electrophoretic mobility shift
assays (EMSAs). The gel shift results revealed that purified
reduced HypR protein binds with high affinity to the hypR-
merA upstream region in vitro (Fig. 7A). To analyze the spe-
cific binding of HypR to the 12-3-12 inverted repeat sequence,
we exchanged two nucleotides in each half of the inverted
repeat by G-T and A-C (IR-m1 probe) or T-G and C-A (IR-m2
probe) and analyzed the DNA-binding activity of HypR to
these mutated DNA probes (Supplementary Fig. S2). HypR
was unable to bind to the mutated inverted repeats IR-m1 and
IR-m2 in vitro supporting the specific binding of HypR to the
identified operator sequence. Furthermore, HypR was also

FIG. 5. Multiple protein sequence alignments of the Rrf2 regulators HypR, SaiR, YwnA, and NsrR (A) and
structural modeling of HypR and SaiR in comparison to YwnA and NsrR (B). (A) The protein sequence alignment was
performed with ClustalO2 and is presented in Jalview. The following protein sequences were aligned and the % identity to
HypR is given in parenthesis: HypR (SACOL0641) of S. aureus COL, SaiR (BAS3200) of Bacillus anthracis (20.4%),
YwnA (P71036) of Bacillus subtilis (23.48%), and NsrR (Q9L132) of Streptomyces coelicolor (17.86%). Intensity of the
blue color gradient is based on 50% sequence identity. The conserved Cys99 in HypR is labeled in red with an asterisk (*).
(B) The structural models of HypR and SaiR were generated using SWISS-MODEL (https://swissmodel.expasy.org/) (10)
and visualized with PyMOL using the template of Bacillus subtilis YwnA (1xd7) that showed 23.5% and 25.78% sequence
identity to HypR and SaiR, respectively. For comparison, we show the structures of YwnA (1xd7) and NsrR (5no7) with
labels for the conserved Cys97 in YwnA and the 3 FeS cluster coordinating Cys residues (Cys93, Cys99, and Cys105) in
NsrR. The FeS cluster of NsrR is displayed in yellow. FeS, iron/sulfur.
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unable to bind to nonspecific DNA probes (trxA and RNAIII
genes) (Supplementary Fig. S2B).

Next, the effects of Cys-Ala mutations in Cys33, Cys99,
and Cys142 on the DNA-binding activity of HypR were in-
vestigated using gel shift experiments. The reduced HypR-
C33A and HypRC142A mutant proteins showed similar
DNA-binding affinities compared with the HypR wild-type
protein (Fig. 7A). However, the reduced HypRC99A and
HypRC99S mutant proteins were unable to bind to the hypR-
merA promoter, which confirms our in vivo results. Next, we
analyzed the effect of thiol oxidation of the HypR, HypR-
C33A, and HypRC142A proteins on DNA-binding activity
in vitro. Treatment of HypR, HypRC33A, and HypRC142A
mutant proteins with 1–20 lM NaOCl or 10–20 lM diamide
resulted in their fast dissociation from the hypR operator
DNA (Fig. 7B, C). This indicates that HypR as well as the
HypRC33A and HypRC142A mutant proteins respond sim-
ilar to NaOCl and diamide stress in vitro. The reduction of the
oxidized HypR proteins with DTT restored the DNA-binding
ability indicating that HypR responds to NaOCl stress by
reversible thiol oxidation. The responsiveness of the HypR-
C33A mutant to NaOCl stress in vitro is in contrast to lack of
NaOCl response and hypR-merA transcription in the hypR-
C33A mutant in vivo. Cys33 was identified as redox-sensing

Cys in vivo, but the C33A mutant was not impaired in redox
sensing under NaOCl and diamide in vitro. It might be pos-
sible that the purified C33A mutant protein is oxidized to the
‘‘wrong’’ disulfides under disulfide stress in vitro, which are
not stabilized inside S. aureus. In summary, our results show
that HypR is a redox-sensing regulator that controls expres-
sion of the hypR-merA operon and is inactivated due to re-
versible thiol oxidation under NaOCl and diamide stress
leading to release from the promoter DNA.

HypR responds to NaOCl and diamide stress
by intermolecular disulfide formation that involves
the redox-sensing Cys33 and Cys99

The EMSA results and Northern blots revealed that the
DNA-binding activity of HypR is redox regulated by revers-
ible thiol oxidation under NaOCl and diamide stress. Thus, we
were interested to elucidate the thiol switch mechanism lead-
ing to release of HypR from the target DNA. HypR can be
classified as 2-Cys-type redox regulator, such as OhrR from
Xanthomonas campestris and YodB from B. subtilis that sense
different thiol reactive compounds by intermolecular disulfide
formation between the opposing subunits in the homodimer (2,
27, 43, 74). Thus, HypR most likely also senses and responds

FIG. 6. Alignment of the hypR-merA upstream promoter regions with the 12-3-12 bp inverted repeat in Staphy-
lococcus species. The upstream promoter region of the hypR-merA operon includes a 12-3-12 bp inverted repeat sequence
that is highly conserved upstream of other hypR-merA homologues across Staphylococci, including S. aureus (SACOL0641),
Staphylococcus saprophyticus (SSP2349), Staphylococcus equorum (SE1039_01590), Staphylococcus lugdunensis
(SLGD_02231), Staphylococcus haemolyticus (SH2331), and Staphylococcus epidermidis (SE0366). (A) Upper panel shows
the reads mapped for the hypR-merA transcript as visualized using ReadExplorer. The putative -10 and -35 promoter
sequences are labeled and the 12-3-12 bp conserved inverted repeat is boxed and indicated by arrows. (B) All upstream
promoter sequences of hypR-merA homologues were aligned using ClustalO2 and presented in Jalview. Intensity of the blue
color gradient is based on 50% nucleotide sequence identity. (C) Bottom panel represents the 12-3-12 bp conserved inverted
repeat created with WebLogo as HypR operator sequence.
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to NaOCl via intersubunit disulfide bonds. Indeed, when we
exposed purified HypR to NaOCl or diamide stress, it was
quickly oxidized to the disulfide-linked dimer that migrates at
the size of 35 kDa in the nonreducing SDS-PAGE (Fig. 8A and
Supplementary Fig. S4A). The oxidation of HypR to the in-
tersubunit disulfide was reversible with DTT as shown in the
reducing SDS-PAGE (Supplementary Figs. S3A and S4C). Of
note, two bands migrated closely together at the size of the
HypR disulfide-linked dimer, labeled as 1 and 2 (Fig. 8A). We
hypothesized that these two dimers harbor either one or two
disulfide bonds between the opposing HypR subunits. The
reversible oxidation to the intermolecular disulfide was also
observed for the HypRC33A and HypRC142A mutant pro-
teins under NaOCl and diamide stress, but not for the HypR-
C99A mutant (Fig. 8A, B, Supplementary Figs. S3 and S4).
These results are in agreement with the in vitro DNA binding
assays where the HypRC33A and HypRC142A mutants still
responded to NaOCl and diamide stress leading to the relief of
repression, while the HypRC99A mutant was impaired in
DNA binding. However, the Cys33A mutant was less oxidized
to intermolecular disulfides under diamide stress compared to
NaOCl, supporting that Cys33 is required for disulfide for-
mation. In conclusion, our results show that HypR is oxidized
to intermolecular disulfides under NaOCl and diamide stress,

most likely involving Cys33 and Cys99 as the redox-sensing
Cys residues in vitro.

We were interested to identify the Cys residues oxidized to
the intermolecular disulfide in wild-type HypR under disulfide
stress. The bands 1 and 2 of both oxidized HypR disulfi-
des (Fig. 8A) were tryptic digested and subjected to matrix-
assisted laser desorption ionization-time of flight mass spec-
trometry (MALDI-TOF-MS) (Fig. 9). In the overview MS1
scan, a peptide was identified with the size of 3522.74 Da
corresponding to the size of the Cys33-SS-Cys99 intermo-
lecular disulfide peptide (Fig. 9A). During fragmentation of
this Cys33-SS-Cys99 peptide, the parent ion immediately
disappeared and the disulfide bond fragmented into both single
Cys33 and Cys99 peptides with the sizes of 1534.72 and
1992.90 Da (Fig. 9B). Moreover, fragment ions of both Cys
peptides were observed without the sulfur and with the second
sulfur atom that was engaged in the disulfide linkage in the
parent ion. Thus, the fragmentation spectrum of this 3522.74
Da peptide is characteristic for the disulfide bond between the
Cys33 and Cys99 peptides in oxidized wild-type HypR. Of
note, the two oxidized HypR bands 1 and 2 in Figure 8A ex-
hibited the same MS1 spectrum, supporting the idea of either
one or two disulfide bonds between the HypR subunits (data
not shown).

FIG. 7. DNA binding of HypR is inhibited by reversible thiol oxidation under NaOCl and diamide stress in vitro
and the effect of HypR Cys mutations on DNA binding and redox sensing. (A) EMSAs were used to analyze the DNA-
binding activity of purified HypR, HypRC33A, HypRC99A, and HypRC142A proteins to the hypR-merA upstream pro-
moter region in vitro. Increasing concentrations (0.05–1.25 lM) of HypR were used in the DNA-binding reactions with
0.75 ng of template DNA ranging from -128 to +70 relative to the transcription start site of the hypR-merA operon. (B, C)
DNA-binding activity of HypR, HypRC33A, and HypRC142A proteins was inhibited by 1.3–20 lM NaOCl (B) or 10–
20 lM diamide (C) and could be restored with 1 mM DTT. This indicates that HypR resembles a redox-sensing regulator
that is inactivated due to reversible thiol oxidation. The HypRC99A and HypRC99S mutants were unable to bind to the
hypR-merA target promoter. ‘‘P’’ indicates the free probe, ‘‘C’’ is the HypR-DNA complex in the presence of DTT, and ‘‘0’’
indicates the control of HypR-DNA complex after DTT removal before exposure to NaOCl. DTT, dithiothreitol; EMSA,
electrophoretic mobility shift assay.
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In addition, we aimed to identify the disulfide crosslinked
Cys residues in the Cys33A mutant that formed under NaOCl
stress in vitro (Fig. 8A). MALDI-TOF-MS analysis revealed
that Cys99 is fully reduced in the oxidized Cys33A mutant
protein as shown by the iodoacetamide (IAM)-alkylated Cys99
peptide that was not detected in the oxidized HypR protein
(Supplementary Fig. S5C, D). However, Cys142 could be
not detected in the Cys33A mutant protein sample. These
results suggest that HypR could be oxidized to the wrong
Cys142-Cys142 disulfide that may crosslink two HypR di-
mers in vitro. The large peptide size of this putative Cys142-
Cys142 disulfide peptide excludes detection by MS.

Next, we used nonreducing Western blot analysis with
polyclonal HypR antibodies to confirm the intermolecular
disulfides between Cys33 and Cys99 in HypR under NaOCl
stress in vivo. Protein extracts were prepared from the S.

aureus COL wild type, the DhypR mutant, and the hypR,
hypRC33A, hypRC99A, and hypRC142A complemented
strains under control and NaOCl stress, and the redox state of
HypR was analyzed using nonreducing Western blots
(Fig. 8C, D). Unfortunately, the HypR polyclonal antibodies
showed cross-reactivity with other proteins of S. aureus
which could be not be eliminated after preincubation of the
antiserum with Western blots of the hypR mutant. However,
the HypR specific bands could be clearly distinguished by
using protein extracts from hypR mutant cells (Fig. 8C). The
HypR protein was reduced in all controls of the hypR,
hypRC33A, hypRC99A, and hypRC142A complemented
strains (Fig. 8C, D). Under NaOCl stress, the oxidized HypR
and HypRC142A mutant proteins migrated at the size of the
intermolecular disulfide at 30 kDa, which was reversible with
DTT as shown in the reducing SDS-PAGE (Supplementary

FIG. 8. HypR senses NaOCl stress by intermolecular disulfides, which requires Cys33 and Cys99 in vitro and
in vivo. (A, B) The purified HypR wild-type and Cys mutant proteins were treated with increasing NaOCl concentrations
in vitro and subjected to nonreducing SDS-PAGE analysis. The reduction of the HypR disulfides after DTT treatment is
shown in the reducing SDS-PAGE analysis in Supplementary Figure S3. The HypR intermolecular disulfides (bands 1 and
2) were cut, tryptic digested, and subjected to MALDI-TOF MS/MS analysis as shown in Figure 9 to verify the Cys33-
Cys99 disulfide. The bands of the C33A mutant protein that were used for tryptic digestion and MS are boxed and labeled
with 3 and 4. The MALDI-TOF results of the C33A mutant tryptic peptides are shown in Supplementary Figure S5B, C. (C,
D) For the analysis of HypR disulfides in vivo, we used S. aureus COL with plasmid pRB473-hypR, the DhypR deletion
mutant and DhypR mutant strains complemented with hypR, hypRC33A, hypRC99A, and hypRC142A. S. aureus strains were
exposed to NaOCl stress, alkylated with NEM, and protein extracts were subjected to nonreducing Western blot analysis
using polyclonal rabbit anti-HypR antibodies. The reducing Western blot analysis of the HypR disulfides and loading
controls is shown in Supplementary Figure S6. (E) Nonreducing/reducing diagonal SDS-PAGE and HypR-specific Western
blot analysis of alkylated protein extracts were performed to verify the intersubunit disulfides for HypR and the HypR-
C142A mutant protein under NaOCl stress in vivo, but not in the HypRC33A and HypRC99A mutants. Additional diagonal
assays using the HypR immunoprecipitates are shown in Supplementary Figure S7. MALDI-TOF-MS, matrix-assisted laser
desorption ionization-time of flight mass spectrometry.
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Fig. S6A, B). However, both Cys33A and Cys99A mutants
did not form intermolecular disulfides under NaOCl exposure
and failed to respond to NaOCl stress in vivo (Fig. 8D). These
results are in agreement with the transcriptional data of hypR-
merA expression and indicate that HypR responds to NaOCl
stress by the formation of intersubunit disulfides between
Cys33 and Cys99 in vivo and in vitro. To confirm the for-
mation of the intermolecular disulfide in HypR and the in-
volvement of Cys33 and Cys99 in the disulfide crosslink
in vivo, diagonal nonreducing/reducing SDS-PAGE analyses
were performed using the crude protein extracts and im-
munoprecipitated HypR. The diagonal assays clearly showed
that HypR and the HypRC142A mutant protein migrate at the
right side of the diagonal in NaOCl-treated cells indicating
intermolecular disulfide formation in vivo (Fig. 8E). In con-
trast, no HypR intermolecular disulfide was detected in the
HypRC33A and HypRC99A mutant proteins in the diagonal
assays (Fig. 8E and Supplementary Fig. S7). These data re-
veal that Cys33 and Cys99 are the redox-sensing Cys residues
of HypR, required for disulfide bond formation both in vitro
and in vivo.

Analysis of the oligomerization states by size exclusion
multiangle light scattering and circular dichroism
spectroscopy of HypR and HypR Cys mutant proteins

Cys99 is located at the end of the long a6 helix that forms
the dimer interface in the HypR structure (Fig. 5B). The

differences in the DNA-binding properties between HypR
and the HypRC99A mutant protein raised the question
whether the Cys99A mutation affects dimerization of HypR.
Thus, we analyzed the oligomerization states of reduced HypR
and HypR Cys-Ala mutant proteins using size exclusion
chromatography/multiangle light scattering (SEC-MALS)
(Supplementary Fig. S8). The results showed that all re-
duced proteins eluted mostly as dimers with a molecular
weight of *32–34 – 2 kDa. Due to the redox sensitivity of
Cys33 and Cys99, we observed higher molecular weight
oligomeric species with molecular masses ranging from 67
to 78 kDa. The oligomer amounts differed between each Cys
mutant (15–17%) and might be related to disulfide cross-
links of two HypR dimers due to incomplete reduction of the
proteins. Overall, the SEC-MALS results indicate that
HypR and the three Cys-Ala mutant proteins are mostly
present as dimers in solution.

Next, we used circular dichroism (CD) spectroscopy to
compare the secondary structures between reduced HypR and
the three Cys-Ala mutants to see whether the Cys99A mu-
tation causes a conformational change. The far UV-CD
spectra of HypR and the three Cys-Ala mutants revealed a
significant a-helical content in all proteins (Supplementary
Fig. S9). The calculation of secondary structure elements
using the program DichroWeb (http://dichroweb.cryst.bbk.
ac.uk) (86, 94) showed that reduced HypR and all three Cys-
Ala mutants contain similar contents of a-helices (34–37%),
b-sheets (11–13%), and b-turns (18–19%), confirming our

FIG. 9. HypR is oxidized to C33-C99’ intermolecular disulfides in vitro as revealed by MALDI-TOF-TOF MS. The
intermolecular disulfide band of the oxidized HypR wild-type protein of the SDS-PAGE in Figure 8A (band 1) was tryptic
digested. The HypR peptides were measured by MALDI-TOF-TOF MS. (A) The upper panel indicates the MS1 overview
scan of all peptides and (B) the lower panel shows the fragmentation of the C33-C99 disulfide peptide (3522.74 Da peak)
into the Cys33 (1992.90 Da) and Cys99 peptides (1534.72 Da) in the MS2 scan. The parent ion of the disulfide peptide
disappeared in the MS2 scan.
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structural model (Fig. 5B). Thus, under reduced conditions,
the dimerization and secondary structure elements of HypR
are retained in all three HypR Cys-Ala mutant proteins.

HypR and MerA play important roles in the defense
of S. aureus against NaOCl stress

Next, we analyzed the role of MerA in protection un-
der NaOCl stress in S. aureus COL. MerA is annotated as
nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent FDR, which contains an active site Cys43 in
a highly conserved C43XXXXC48 motif (Supplementary
Fig. S10) (4). The active site Cys43 of MerA was also
predicted in the THIOREDOXOME database (30). We
hypothesized that MerA could be involved in reduction of
cellular disulfides formed under oxidative stress and in-
fection conditions. Thus, we analyzed the growth and sur-
vival of the S. aureus merA and hypR mutants and the
complemented strains under NaOCl stress. The growth of
the merA mutant was significantly impaired under sublethal
1.5 mM NaOCl treatment in RPMI medium indicating that
the merA mutant is more sensitive compared with the wild
type (Fig. 10A). The NaOCl-sensitive growth defect of the
merA mutant could be restored after complementation with
merA expressed from plasmid pRB473 (Fig. 10B), but not
when the active site Cys43 of MerA was replaced by a
serine. This indicates that MerA confers resistance to
NaOCl and likely functions as defense mechanism under
infection conditions in S. aureus. However, the hypR mu-
tant was also slightly more sensitive to 1.75 mM NaOCl

stress compared with the wild type suggesting that consti-
tutive MerA expression does not confer a resistance phe-
notype (Fig. 10C, D).

We further studied the survival of the merA and hypR
mutants and their complemented strains under NaOCl stress.
Both merA and hypR mutants were impaired in their survival
after exposure to lethal concentrations of 3.5 mM NaOCl
(Fig. 11). The survival defect of the merA and hypR mutants
could be restored back to wild-type level after complemen-
tation with merA and hypR, respectively. In agreement with
the growth curves, Cys43 of MerA was important for the
function of MerA in the NaOCl stress defense in the survival
assay. Moreover, the role of Cys33 for redox sensing of HypR
was confirmed also in our survival phenotype assays.

MerA and HypR are important for the survival
of S. aureus in macrophage infection assays

Since the hypR-merA operon was most strongly induced
in infection assays (91), we determined the survival of merA
and hypR mutants inside murine macrophages in phagocy-
tosis assays using the cell line J-774A.1. The macrophages
were infected with S. aureus wild-type and mutant strains
and the uptake of bacteria was stopped after 1 h with gen-
tamycin to kill extracellular bacteria. The colony forming
units (CFUs) of intracellular S. aureus were determined
after 2, 4, and 24 h postinfection by plating serial dilutions
of the host cell lysates.

After 4 h of infection, the CFUs of intracellular S. aureus
cells were determined as approximately 106 cells for the wild-

FIG. 10. The flavin dis-
ulfide reductase MerA is in-
volved in the defense of S.
aureus against hypochlorite
stress. Growth phenotype an-
alyses of the S. aureus wild-
type (WT), the DmerA mutant
(A), the merA and merAC43S
complemented DmerA mu-
tant strains (B) and the hypR
mutant (C, D) before and after
exposure to sublethal concen-
trations of 1.5 and 1.75 mM
NaOCl stress at an OD500 of
0.5. The NaOCl-sensitive
growth phenotype of the merA
mutant could be restored
by complementation with
plasmid-encoded merA and
requires Cys43 in the MerA-
active site. The results are
from four biological replicate
experiments. MerA, mercuric
ion reductase.
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type, hypR, and merA mutants. However, 24 h after phagocy-
tosis, the viable counts of intracellular S. aureus cells were
decreased to 22.8% for the wild-type mutant and to 11.2% and
13.4% for the hypR and merA mutants, respectively (Fig. 12A).
This indicates that merA and hypR mutants showed 40% and
50% decreased survival inside macrophages compared with
the wild type after 24 h postinfection (Fig. 12C). This survival
phenotype could be restored to 75–86% of wild-type level in
both mutants after complementation with plasmid-encoded
hypR and merA, respectively (Fig. 12B). These observations
strongly indicate that MerA is required for the protection of
S. aureus against the host innate immune defense under in-
fection conditions. However, our results also show that con-
stitutive expression of MerA in the hypR mutant does not
increase intramacrophage survival. In conclusion, our in vitro
growth and survival assays under NaOCl stress and the mac-
rophage infection assays support that MerA is a major NaOCl
defense mechanism enhancing survival of S. aureus in infec-
tion assays.

Discussion

During infections, S. aureus has to cope with the oxidative
burst of activated macrophages and neutrophils, requiring a
complex regulatory network of virulence and antibiotic reg-
ulators, for example, of the SarA/MarR family that senses
ROS, RES, and RCS (8, 17, 43). However, the redox-sensing
mechanisms of S. aureus in response to strong bactericidal
oxidants, such as hypochloric acid, are largely unknown. It is
of utmost importance to understand the mechanisms of in-
tracellular survival of S. aureus inside macrophages and
neutrophils and the escape from destruction by oxidants to
discover new drug targets to combat emerging drug-resistant
S. aureus infections.

In this work, we have characterized the novel NaOCl-
sensing transcription regulator HypR that belongs to the
widely distributed Rrf2 family and controls the NADPH-

dependent FDR MerA in S. aureus. The hypR-merA operon
was previously highly induced during phagocytosis with
neutrophils (91). In this work, we have used a global RNA-
seq analysis and identified the hypR-merA operon as most
strongly upregulated under NaOCl stress. Detailed Northern
blot analysis revealed that NaOCl and diamide stress spe-
cifically upregulates the hypR-merA operon, while sublethal
concentrations of H2O2 and aldehydes do not lead to signif-
icant induction. Thus, HypR responds strongly to disulfide
stress, but not to H2O2 and RES via intermolecular disulfide
formation between Cys33 and Cys99. The sensitivity of
S. aureus HypR to disulfide stress resembles the redox-
sensing mechanisms of the MarR family regulators HypR and
OhrR characterized in B. subtilis (20, 32, 73) and of the TetR
family regulator NemR from Escherichia coli (35, 36). These
thiol-based regulators sense HOCl, diamide, organic hydro-
peroxides, or electrophiles, such as N-ethylmaleimide (NEM)
and methylglyoxal, and provide protection under HOCl stress.
Since diamide is a very unspecific oxidant (49) that is not
physiological relevant for S. aureus, we regard the Rrf2 reg-
ulator HypR as the most specific hypochlorite defense mech-
anism for S. aureus.

Some Rrf2 family transcriptional regulators contain FeS
clusters, such as NsrR (23, 90, 98) and IcsR (82, 83), while
others do not, such as CymR (28, 47, 84) and the HypR
homolog SaiR of B. anthracis (68). NsrR and IscR coordinate
[4Fe-4S] clusters with three conserved Cys residues (Cys93,
Cys99, and Cys106 in Sc-NsrR) present in the C-terminal
domain (Fig. 5A, B) (90). However, only Cys99 in this C-
terminal domain is conserved in HypR, while two other Cys
residues are located in nonconserved positions at Cys33 and
Cys142 (Fig. 5A). Our results support a model that HypR
senses and responds to NaOCl stress by intersubunit disulfide
bond formation between Cys33 and Cys99 of the opposing
subunits of the HypR dimer in vivo (Fig. 13). HypR oxidation
leads to inactivation of its repressor function and upregula-
tion of the FDR MerA. Thus, the S. aureus HypR repressor

FIG. 11. MerA and HypR are both required for NaOCl stress survival in S. aureus. S. aureus COL wild-type (WT),
DhypR and DmerA mutants (A), and their complemented strains and Cys mutants (DmerA merA, DmerA merAC43S, DhypR
hypR, DhypR hypRC33A) (B, C) were grown in RPMI until an OD500 of 0.5 and treated with 3.5 mM NaOCl. Survival
assays were performed by spotting 10 ll of serial dilutions after 3 and 4 h of NaOCl exposure onto LB agar plates. The
active site Cys43 of MerA and the redox-sensing Cys33 of HypR are important for NaOCl stress survival.
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can be classified as typical two-Cys-type regulator since its
mechanism of repressor inactivation resembles that of the
two-Cys-type MarR/DUF24 family repressors HypR and
YodB of B. subtilis that are redox sensors of NaOCl, diamide,
and quinones and inactivated via intersubunit disulfide for-
mation (18, 73). The NemR repressor of E. coli was shown to
sense HOCl and electrophiles, such as NEM and methyl-
glyoxal, by intermolecular disulfide as well as sulfenamide
formation (34, 36, 50, 72). Thiol oxidation of these repres-
sors leads to conformational changes and dissociation of the
repressors from their operator sites leading to derepression of
their target genes.

The structural changes on oxidation have been first
studied for the 2-Cys-type MarR/OhrR repressor of Xan-
thomonas campestris that senses organic hydroperoxides by
Cys22-Cys127 intersubunit disulfide formation (51). OhrR
oxidation breaks a conserved Cys22 hydrogen-bonding
network and causes large structural rearrangements in the
dimer interface and rigid body rotation of the DNA-binding
domains causing dissociation from the DNA (51). Using
mutational analysis, we showed that Cys33 and Cys99 of the

S. aureus HypR repressor are important for redox sensing of
NaOCl and diamide stress in vivo, while Cys99 is required
for repressor activity of HypR. Both Cys33 and Cys99
mutants did not form intermolecular disulfides in vivo as
shown by nonreducing SDS-PAGE analysis. These results
clearly support the two-Cys-type oxidation model of HypR
for Cys33-Cys99 intermolecular disulfide bond formation.
Thus, both Cys33 and Cys99 are required for redox sensing
of NaOCl and are oxidized to the intersubunit disulfide
in vitro and in vivo.

In comparison to other Rrf2 transcription factors, HypR
shows the highest sequence identity to SaiR of B. anthracis
(20.4%) and YwnA of B. subtilis (23.5%) (Fig. 5A). More-
over, HypR and SaiR show common responses to disulfide
stress (diamide, NaOCl) and in infection assays inside mac-
rophages in B. anthracis and S. aureus (9, 68). YwnA also
responds to diamide stress (71) and probably controls
the adjacent ywnB gene encoding for an NADPH-binding
reductase. SaiR of B. anthracis may play a related role like
HypR of S. aureus in the protection against oxidative burst
of activated macrophages and neutrophils under infection

FIG. 12. MerA and HypR are required for survival of S. aureus COL in murine macrophages. The survival of S.
aureus strains was analyzed 2, 4, and 24 h postinfection (p.i.) of the murine macrophage cell line J-774A.1 and the CFUs
were determined. (A, B) The percentages in survival of the DhypR and DmerA mutants and complemented strains were
calculated in 5–6 biological replicate experiments and the survival at the 2-h time point was set to 100%. (C) The average
percentage in survival was calculated for each mutant and complemented strain in relation to the wild type (WT), which was
set to 100%. Results of 5–6 biological replicates are presented as scatter dots in (A, B) and mean values of percentage
survival in comparison to the wild type (C). Error bars represent the SEM and the statistics was calculated using one-way
ANOVA and Tukey’s multiple comparisons post hoc test using the GraphPad Prism software. The p-values were deter-
mined as follows for the scatter dots (A, B): p = 0.0078 for WT/DhypR; p = 0.0303 for WT/DmerA; p = 0.0461 for
WTpRB473/DhypRhypR; and p = 0.1234 for WTpRB473/DmerAmerA. For the percentage survival (C), the p-values were
determined as p < 0.0001 for WT/DhypR, p = 0.0012 for WT/DmerA, p = 0.0511 for WTpRB473/DhypRhypR, p = 0.4684 for
WTpRB473/DmerAmerA, p = 0.0459 for DhypR/DhypRhypR, and p = 0.0725 for DmerA/DmerAmerA. Symbols are defined
as follows: nsp > 0.05; *p £ 0.05; **p £ 0.01; and ****p £ 0.0001. CFU, colony-forming unit.
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conditions. SaiR controls a five-gene operon that includes
spxA2, saiR, and 3 unknown function genes (68). SpxA2 is
a member of the ArsC (arsenate reductase) family that re-
sponds to NaOCl and diamide stress by thiol oxidation and
interacts with the a-C-terminal domain of the RNA poly-
merase to activate transcription of a large disulfide stress
regulon (69, 70, 99). SpxA2 together with its paralogue
SpxA1 was shown to be required for diamide resistance and
the saiR mutant conferred a peroxide-resistant phenotype (6,
68). Thus, SaiR of B. anthracis and HypR of S. aureus both
confer protection under oxidative stress conditions in these
pathogens via control of SpxA2 and MerA, respectively.

SaiR and HypR both share the conserved Cys96 and Cys99,
respectively, which is required for repressor activity in vitro
and in vivo as well as for redox sensing in vitro (68). To
explain, why Cys99 is required for DNA binding, the HypR
structure was modeled based on the template of B. subtilis
YwnA (1xd7) (Fig. 5A, B). The structural model suggests that
Cys33 is located in the turn between the DNA recognition a2
and a3 helices, while the conserved Cys99 is at the N-terminus
of the long a6 helix that forms the highly hydrophobic di-
mer interface required for the elongated fold of Rrf2 family
regulators (Fig. 5B). Recently, the structure of Streptomyces
coelicolor NsrR was resolved with its [4Fe-4S] cluster in
comparison to the three-Cys-Ala (3CA) mutant (90). Inter-
estingly, the FeS cluster ligand Cys99 is in close proximity to
Gly37 of the a3 DNA recognition helix of the opposing sub-
unit. In holo-NsrR, Gly37 forms a hydrogen bond with Asn97,
which is interrupted in the 3CA mutant resulting in a shift of
the a3 DNA binding helix (90). Gly37 of NsrR is the coun-
terpart of Cys33 in HypR, suggesting that the Cys99A mutant
also could break hydrogen bonds of Cys33 leading to structural
changes in the DNA-binding helices. This is supported by our
mutational results since the C99A and Cys99S mutants are
unable to bind DNA both in vitro and in vivo. The possible
proximity of Cys33 and Cys99 in the structural model (based

on the YwnA template) (Fig. 5B) further explains that both are
involved in redox sensing of NaOCl and well positioned to
form intersubunit disulfides as we confirmed by MS.

Our CD results further showed that HypR contains the
predicted high a-helical content. However, we could not
show major structural changes in the secondary structure
elements between HypR and the three Cys-Ala mutants. It
will be interesting to further investigate the crystal structures
of reduced and oxidized HypR proteins and the structural
changes of the DNA-binding helices on oxidation.

Our gel shift assays and nonreducing SDS-PAGE and
Western blot results further revealed that the Cys33 mutant
was impaired in redox sensing in vivo, but still responsive to
NaOCl and diamide stress in vitro. However, compared to the
wild type HypR protein, the Cys33A mutant showed a lower
oxidation under diamide stress in the nonreducing SDS-PAGE
in vitro. Since we could only detect reduced (alkylated) Cys99
and not the Cys142 peptide in the mass spectrum of the in-
tersubunit disulfide of the Cys33A mutant, the Cys33 mutant
protein should be oxidized to the ‘‘wrong’’ ‘‘Cys142-Cys142’’
intersubunit disulfides, crosslinking two HypR dimers in vitro
that also lead to HypR inactivation. However, this alternative
oxidation was not observed in vivo, and thus, Cys33-Cys99
intersubunit disulfide formation is the physiologically relevant
HOCl-sensing mechanism of HypR. Exposure of the purified
Cys33 mutant protein to low doses of NaOCl stress might have
much stronger effects in vitro and this wrong disulfide might
be not stabilized in vivo.

Another unanswered question is why merA and hypR mu-
tants display both sensitivity to NaOCl stress and macrophage
infections, significant phenotypes that could be restored by
complementation with MerA and HypR. Our unpublished
RNA-seq data of the wild-type and the hypR mutant identified
only the hypR-merA operon as upregulated in the hypR mutant.
Thus, the deficiency of MerA impaired the growth and survival
under infections, and also its constitutive overproduction did
not confer resistance. It might be possible that overproduction
of MerA causes deficiency in the NADPH level, causing in
turn a redox poise. The transcriptional results revealed a very
low basal level of hypR-merA expression indicating that MerA
expression is tightly regulated and its constitutive over-
expression perhaps toxic for S. aureus explaining the NaOCl-
sensitive phenotype of the hypR mutant.

However, our results clearly identify the NADPH-dependent
disulfide reductase MerA as the major HOCl-defense mecha-
nism of S. aureus. MerA also enhances the survival of
S. aureus in J774A.1 murine macrophages during infection
assays. The J774A.1 cell line was shown to produce NADPH
oxidase and MPO during infections and on activation by drug
treatment in vitro (55, 65). Increased ROS levels significantly
contributed to the antimicrobial activity and killing of in-
tracellular pathogens by the J774A.1 macrophage cell line
(54). Thus, MerA could be involved in the defense of S. aureus
against ROS and HOCl also during macrophage infections. Of
note, there is a striking 49.2% sequence identity between
MerA of S. aureus and the FDR RclA of E. coli that is con-
trolled by the RCS-specific transcriptional activator RclR (75)
(Supplementary Fig. S10). These conserved flavoenzymes
may function as major defense mechanisms under hypo-
chlorite stress in bacteria and are controlled by different
redox regulators, the Rrf2 repressor HypR in S. aureus and
the AraC activator RclR in E. coli (75).

FIG. 13. Redox-sensing mechanism of HypR under hy-
pochlorite stress during infection conditions in S. aureus.
HypR controls the flavin disulfide reductase MerA, essential
for growth and survival under hypochlorite stress and in
macrophage infection assays in S. aureus. Cys33 and Cys99
of HypR are required for redox sensing in vivo. Under NaOCl
stress, HypR is oxidized to Cys33-Cys99 intersubunit dis-
ulfides leading to derepression of hypR-merA transcription.
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MerA is annotated as mercuric reductase, but it lacks the
auxiliary C-terminal Cys residues that are important for
Hg(II) reduction to elemental Hg0 in mercuric ion reductases
(4, 63, 64). Instead, MerA belongs to group-I FDR that uses a
redox-active disulfide in the highly conserved C43XXXXC48

motif to transfer electrons from NADPH via an FAD cofactor
to an unknown disulfide substrate (4). Our results have shown
that the MerA-active site Cys43 is important for NaOCl
survival since the merAC43S mutant was unable to comple-
ment the NaOCl-sensitive phenotype of the merA mutant.
The group-I FDR enzymes with known structures include
glutathione disulfide reductase (Gor), thioredoxin reductase
(TrxR), and mycothiol disulfide reductase (Mtr). We specu-
late that MerA could be involved in reduction of cellular
LMW thiol/disulfides, such as oxidized bacillithiol disulfide
(BSSB) or oxidized coenzymeA disulfide (CoAS2), that are
increased under NaOCl stress. Our previous results showed
an increased BSH redox potential using the genetically en-
coded Bacilliredoxin-redox-sensitive green fluorescent pro-
tein biosensor (58) and increased protein thiol oxidation
under NaOCl stress in S. aureus indicating an increased
BSSB level (46). Thus, it could be possible that MerA helps
to reduce BSSB and CoAS2 to restore the redox balance. On
the contrary, expression of MerA and HypR is coregulated,
suggesting that both could constitute a redox couple and
MerA could be involved in HypR reduction to regenerate the
DNA-binding activity of HypR during recovery from HOCl
stress. Our future studies are directed to identify the physi-
ological disulfide substrate of MerA to understand the im-
portant role of this flavoenzyme in the defense against
oxidative burst under macrophage and neutrophil infections.

Experimental procedures

Bacterial strains, growth, and survival assays. Bacterial
strains, plasmids, and primers are listed in Supplementary
Tables S3–S5. For cloning and genetic manipulation, E. coli
was cultivated in Luria Bertani (LB) medium. For stress
experiments, S. aureus USA300 and COL strains were cul-
tivated in LB, RPMI, or BMM as described previously (58).
Depending on the growth medium, different concentrations
of NaOCl were applied due to the quenching effect of rich
medium components, which affected the effective sublethal
NaOCl doses. Thus, we applied sublethal 150 lM NaOCl
in BMM as described before (58) for RNA-seq analysis and
1–1.75 mM sublethal NaOCl in rich RPMI medium to ana-
lyze the expression and growth phenotype. For survival
phenotype assays, S. aureus was grown in RPMI medium
until an optical density at 500 nm (OD500) of 0.5, exposed
to a lethal dose of 3.5 mM NaOCl for 2–4 h, and 10 ll of
serial dilutions were spotted onto LB agar plates for 24 h.
Complemented mutants that carried the pRB473 plasmid
were grown in the presence of 1% xylose and 10 lg/ml
chloramphenicol. Sodium hypochlorite, diamide, DTT,
Tris(2-carboxyethyl)phosphine (TCEP), H2O2 (35% w/v),
formaldehyde, and methylglyoxal were purchased from
Sigma Aldrich.

RNA isolation, library preparation, and next-generation cDNA
sequencing. S. aureus USA300 was cultivated in BMM and
treated with 150 lM NaOCl stress as described previously
(58). S. aureus cells were harvested before (as untreated

control) and 30 min after exposure to 150 lM NaOCl and
disrupted in 3 mM ethylenediaminetetraacetic acid (EDTA)/
200 mM NaCl lysis buffer with a Precellys24 ribolyzer. RNA
isolation was performed using the acid phenol extraction
protocol as described (19). The RNA quality was checked by
Trinean Xpose (Gentbrugge, Belgium) and the Agilent RNA
Nano 6000 kit using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Böblingen, Germany). Ribo-Zero rRNA Re-
moval Kit (Bacteria) from Illumina (San Diego, CA) was
used to remove the rRNA. TruSeq Stranded mRNA Library
Prep Kit from Illumina was applied to prepare the cDNA
libraries. The cDNAs were sequenced paired end on an Il-
lumina HiSeq 1500 and MiSeq system (San Diego, CA) using
50 and 70 bp read length. The transcriptome sequencing raw
data files are available in the ArrayExpress database (www.
ebi.ac.uk/arrayexpress) under accession number: E-MTAB-
5666.

Bioinformatics data analysis, read mapping, data visualiza-
tion, and analysis of differential gene expression. Trimmed
reads (26 nt) were mapped to the S. aureus USA300_TCH1516
genome sequence (accession number CP000730) (41) using
SARUMAN (11), allowing one error per read. The forward
and reverse reads, if both present and with a maximum dis-
tance of 1 kb, were combined to one read containing the ref-
erence sequence as insert. Paired mappings with a distance
>1 kb were discarded, and paired reads with either only the
forward or the reverse read mapping were retained as single
mapping reads. For the visualization and counting of short read
alignments, ReadXplorer v2.2 (42) was used.

Differential gene expression analysis, including normali-
zation, was performed using Bioconductor package DESeq2
(59) included in the ReadXplorer v2.2 software (42). The
signal intensity value (a-value) was calculated by log2 mean
of normalized read counts and the signal intensity ratio
(m-value) by log2 fold change. The evaluation of the dif-
ferential RNA-seq data was performed using an adjusted
p-value cutoff of p £ 0.05 and a signal intensity ratio (m-value)
cutoff of ‡1.98 or £ -1.98. The latter was determined by
applying a significance level of 5% to the experiment with the
assumption that the majority of genes are not differentially
transcribed. Thus, 95% of all m-values should fall in this
range. Therefore, the standard deviation (STDEV) for all
m-values was calculated and the cutoff was set to m = 1.96 *
STDEV. Genes with an m-value outside this range and
p £ 0.05 were considered as differentially transcribed.

Construction of Voronoi treemaps. The software Paver
(DECODON GmbH, Greifswald, Germany) was used to gen-
erate the regulon treemap showing log2 fold changes
(m-values) of selective genes sorted into operons and reg-
ulons that are upregulated under NaOCl stress compared to
the untreated control. The treemap construction is based on
a model of competing particle swarms for the layout opti-
mization as described (62). The hierarchical structure of the
treemap is defined by the regulons (on the first level—bold
white labels), genes, and operons (second level—small con-
trast optimized labels). Cell sizes are defined as absolute log2
fold changes of expression levels after NaOCl stress divided
by the untreated control. Colors are defined by a symmetric
divergent color gradient (negative values—blue and positive
values orange—red) of NaOCl versus control log2 fold ratios.

16 LOI ET AL.



Cloning, expression, and purification of His-tagged HypR
and HypR Cys mutant proteins in E. coli. The hypR gene
(SACOL0641) was amplified from chromosomal DNA of
S. aureus COL by PCR using primers 0641-pET-for-NheI
and 0641-pET-rev-BamHI (Supplementary Table S5), di-
gested with NheI and BamHI and inserted into plasmid
pET11b (Novagen) that was digested using the same re-
striction enzymes to generate plasmid pET11b-hypR.

For construction of HypR Cys-to-Ala and Cys-to-Ser vari-
ants, the Cys residues of HypR were replaced by alanine or
serine, respectively, using PCR mutagenesis. For the hypR-
C33A mutant, two first-round PCRs were performed using
primers 0641-pET-for-NheI and 0641-pET-C33A-Rev and
primers 0641-pET-C33A-for and 0641-pET-rev-BamHI
(Supplementary Table S5). For the hypRC99A mutant, two
first-round PCRs were performed using primers 0641-pET-
for-NheI and 0641-pET-C99A-rev and primers 0641-pET-
C99A-for and 0641-pET-rev-BamHI. For the hypRC99S mu-
tant, two first-round PCRs were performed using primers
0641-pET-for-NheI and 0641-pET-C99S-rev and primers
0641-pET-C99S-for and 0641-pET-rev-BamHI. The two PCR
products of each first-round PCR were hybridized and subse-
quently amplified by a second round of PCRs using primers
0641-pET-for-NheI and 0641-pET-rev-BamHI. The PCR
products from the second-round PCRs were digested with
NheI and BamHI and inserted into plasmid pET11b digested
with the same enzymes to generate plasmids pET11b-hypR-
C33A, pET11b-hypRC99A, and pET11b-hypRC99S. The
hypRC142A gene was amplified from chromosomal DNA of
S. aureus COL by PCR using primers 0641-pET-for-NheI and
0641-pET-C142A-rev-BamHI, digested with NheI and BamHI
and inserted into plasmid pET11b that was digested using the
same restriction enzymes to generate plasmid pET11b-hypR-
C142A. The correct sequences of all inserts were confirmed by
PCR and DNA sequencing.

For expression and purification of His6-tagged HypR wild-
type and Cys mutant proteins, E. coli BL21(DE3) plysS was
used that contains the plasmids pET11b-hypR, pET11b-
hypRC33A, pET11b-hypRC99A, pET11b-hypRC99S, and
pET11b-hypRC142A. These E. coli expression strains were
cultivated in 1 l LB medium until the exponential growth
phase at OD600 of 0.8 followed by addition of 1 mM isopropyl-
b-D-thiogalactopyranoside for 3.5 h at 37�C. E. coli strains
expressing recombinant His6-tagged HypR and the HypR Cys
mutant proteins were disrupted by sonication in binding buffer
(20 mM NaH2PO4, 500 mM NaCl, 20 mM imidazole, pH 7.4).
Lysates were cleared from cell debris by repeated centrifu-
gation, and purification of the His-tagged proteins was per-
formed using His Trap� HP Ni-NTA columns (5 ml; GE
Healthcare, Chalfont St Giles, United Kingdom) and the
ÄKTA purifier liquid chromatography system (GE Health-
care) according to the instructions of the manufacturer. Sup-
plementary Figure S11 shows the HypR purification profile in
the Äkta chromatography. A gradient from 0 to 500 mM im-
idazole was applied in elution buffer (20 mM NaH2PO4,
500 mM NaCl, 500 mM imidazole, pH 7.4) and HypR eluted at
*240 mM imidazole. The purity of eluted and pooled frac-
tions was analyzed by reducing SDS-PAGE (Supplementary
Fig. S11, inset). The purified proteins were extensively dia-
lyzed against 10 mM Tris-HCl (pH 8.0), 100 mM NaCl, and
30% glycerol and stored at -80�C. The HypR protein con-
centrations were determined by UV absorbance using a

Thermo Nanodrop 2000c spectrophotometer (Thermo Scien-
tific, Germany). The final HypR protein concentration after
dialysis was 2.8 mg/ml (158.7 lM) with a threefold enrichment
after dialysis. Before further usage, HypR proteins were
freshly reduced with 10 mM DTT or 10 mM TCEP or as oth-
erwise stated in the methods and figure legends.

Construction of S. aureus COL hypR and merA deletion
mutants and complemented Cys-Ala mutant strains. S.
aureus COL mutants with clean deletions of hypR (SA-
COL0641) and merA (SACOL0640) were constructed by al-
lelic replacement via the temperature-sensitive shuttle vector
pMAD as described previously (5). Briefly, for construction
of the plasmids, pMAD-DhypR and pMAD-DmerA, the
flanking gene regions, including 500 bp upstream and
downstream of hypR and merA of S. aureus COL, were
amplified using the primers SACOL0641-pMAD and
SACOL0640-pMAD (Supplementary Table S5). The up-
and downstream flanking regions of hypR and merA were
each fused by overlap extension PCR and ligated into the
BglII and SalI sites of plasmid pMAD. The pMAD con-
structs were electroporated into the restriction-negative and
methylation-positive intermediate S. aureus RN4220 strain
and further transferred to S. aureus COL by phage trans-
duction using phage 80 (81). Transductants were streaked
out on LB agar with 10 lg/ml erythromycin and 40 lg/ml
5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-gal) at
30�C. Blue transductants with pMAD integrations were used
for plasmid excision by a heat shock and screened for
erythromycin-sensitive white colonies on X-gal plates as de-
scribed (66). The clean deletions of internal gene regions of
hypR or merA were confirmed by PCR and sequencing.

The complemented hypR and merA deletion mutants and
Cys mutant strains were constructed using the pRB473-XylR
plasmid as described previously (58). Briefly, hypR, hypR-
C33A, hypRC99A, hypRC142A, merA, and merAC43S se-
quences were amplified from the E. coli expression plasmids
pET11b-hypR, pET11b-hypRC33A, pET11b-hypRC99A,
pET11b-hypRC142A, pET11b-merA, and pET11b-mer-
AC43S using the following primers. Primers 0641-pRB-for-
BamHI and 0641-pRB-REV-KpnI were used to construct
plasmids pRB473-XylR-hypR, pRB473-XylR-hypRC33A,
and pRB473-XylR-hypRC99A. Primers 0641-pRB-for-
BamHI and 0641-pRB-REV-KpnI-C2-3A were used to
construct pRB473-XylR-hypRC142A. Primers 0640-pRB-
for-BamHI and 0640-pRB-rev-KpnI were used to construct
pRB473-XylR-merA and pRB473-XylR-merAC43S. Each
forward primer also includes the shine-dalgarno sequence of
hypR or merA, respectively. The PCR product was digested
with BamHI and KpnI and inserted into the pRB473-XylR
shuttle vector that was digested using the same enzymes. The
recombinant plasmids were introduced into the DhypR or
DmerA deletion mutants via phage transduction as described
previously (58).

Northern blot experiments. Northern blot analyses were
performed as described previously (93) using RNA isolated
from the S. aureus COL strains that were exposed to 1 mM
NaOCl, 2 mM diamide, 10 mM H2O2, 0.75 mM formalde-
hyde, and 0.5 mM methylglyoxal (MG) for 15 and 30 min
as indicated. Hybridizations were performed with the
digoxigenin-labeled hypR- and merA-specific antisense RNA
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probes synthesized in vitro using T7 RNA polymerase as
described previously (89). The primer pairs SACOL0641-for
and SACOL0641-rev or SACOL0640-for and SACOL0640-
rev were each used for generation of the digoxygenin-labeled
hypR and merA antisense RNA probes, respectively.

EMSAs of HypR. For EMSAs, we amplified a DNA
fragment containing the hypR-merA upstream region that
covered the region from -128 to +70 relative to the transcrip-
tional start site using PCR with the primer set emsa0641-for
and emsa0641-rev (Supplementary Table S5). Approximately
0.75 ng of purified PCR products was incubated with different
amounts of purified His-HypR and His-HypR Cys mutant
proteins for 45 min at room temperature in EMSA binding
buffer (10 mM Tris-HCl [pH 7.5], 100 mM KCl, 5% glycerol,
50 lg/ml bovine serum albumin (BSA), and 5 lg/ml salmon
sperm DNA) in the presence of 10 mM DTT. To study the
effect of NaOCl and diamide on the DNA-binding activity
in vitro, the purified proteins were reduced with 10 mM DTT
for 20 min, desalted with Micro-Bio spin columns (Biorad), and
diluted to 0.6 lM in 10 mM Tris-HCl, pH 7.5. Reduced HypR
and Cys mutant proteins were oxidized with 1.25–20 lM
NaOCl or 2.5–20 lM diamide for 10 min at room temperature
and incubated with the DNA fragment (0.75 ng) containing the
hypR-merA promoter. DNA-binding reactions were separated
by 4% native polyacrylamide gel electrophoresis in 10 mM
Tris, 1 mM EDTA buffer, pH 8, containing 2.5% glycerol at
room temperature and constant voltage (180 V) for 30 min.
Gels were stained with SYBR green (Thermo Fisher Scientific)
for 30 min in the dark and fluorescence was visualized using a
Typhoon scanner (Typhoon FLA 9500; GE Healthcare Life
Sciences).

CD spectroscopy. CD spectra of DTT-reduced HypR and
HypR Cys mutant proteins were obtained using a Jasco J-810
spectropolarimeter with a HAAKE WKL recirculating chiller
(D-76227, Karlsruhe). The DTT-reduced proteins were mea-
sured at 10 lM in 20 mM potassium phosphate buffer, pH 7.5,
with 1 mM DTT. The quartz cuvettes (2 mm path length, Su-
prasil Hellma) were set at a constant temperature of 25�C with
a Jasco PTC-423S Peltier-type thermocouple. Secondary
structure elements were calculated using the program Di-
chroWeb (http://dichroweb.cryst.bbk.ac.uk) (86, 94).

SEC-MALS analysis. HypR proteins were diluted in SEC
buffer (10 mM HEPES, 500 mM NaCl, pH 7.4, 1 mM TCEP)
and reduced with 10 mM TCEP at 25�C for 1 h. The molec-
ular weights and oligomerization states of HypR and the
HypR Cys mutants were determined using SEC-MALS
analysis at 20�C running in SEC buffer. The reduced HypR
protein samples (170 lM each) were passed over a Superdex
75 10/300 size-exclusion column (GE Healthcare) coupled to
a miniDAWN TREOS three-angle light scattering detector
(Wyatt Technology) and a RefractoMax520 refractive index
detector (ERC). Detectors were aligned, corrected for band
broadening, and the photodiodes of the miniDAWN TREOS
were normalized with BSA as a reference. Data were ana-
lyzed with ASTRA 6.1.4.25 (Wyatt Technology). For cal-
culation of the molecular masses, protein concentrations
were determined from the differential refractive index with a
specific refractive index increment (dn/dc) of 0.185 ml/g.

Nonreducing/reducing diagonal SDS-PAGE analysis. S.
aureus COL strains were cultivated in BMM, treated with
150 lM NaOCl for 30 min as described (58), harvested, and
washed in TE-buffer (10 mM Tris-HCl, pH 8; 1 mM EDTA)
with 50 mM NEM to alkylate reduced thiols. Cells were
disrupted using the ribolyzer, and the protein extracts were
obtained after repeated centrifugation. Immunoprecipitation
of HypR proteins was performed using HypR-polyclonal
antibodies and S. aureus protein extracts with Dynabeads
protein A (Invitrogen) according to the instructions of the
manufacturer. The precipitated HypR proteins were eluted in
nonreducing SDS sample buffer (2% SDS, 62.5 mM Tris-HCl
[pH 8.0]). The protein extracts and immunoprecipitated
HypR proteins were separated by 15% nonreducing/reducing
SDS-PAGE as described previously (53). In the first SDS-
PAGE, proteins were separated in nonreducing SDS-PAGE
sample buffer. The lanes were cut and incubated in reducing
SDS sample buffer (with 50 mM DTT) followed by thiol al-
kylation with 50 mM iodoacetamide (IAM) for each 15 min.
The bands were positioned horizontally on an SDS-PAGE
gel, separated using reducing SDS-PAGE, and subjected to
HypR-specific Western blot analysis as described previously
(22). HypR forms intermolecular disulfides between two
subunits that run at the right side of the diagonal.

Western blot analysis. S. aureus COL cells were har-
vested, washed in TE buffer (pH 8.0) with 50 mM NEM, dis-
rupted using the ribolyzer, and the protein extract was cleared
from cell debris by repeated centrifugation as described above.
Protein amounts of 25 lg were diluted in nonreducing or re-
ducing SDS sample buffer (as above), separated using 15%
SDS–PAGE, and the Western blot analysis was performed as
described previously (22). Anti-HypR polyclonal rabbit anti-
serum was generated using purified His-HypR protein and
used at a dilution of 1:500 for Western blot analyses.

MALDI-TOF-MS of in vitro oxidized HypR protein. The
purified HypR and HypRC33A proteins were oxidized with
NaOCl and all reduced thiols were blocked with 50 mM IAM
resulting in the mass increase of 57 Da at Cys residues. The
oxidized HypR and HypRC33A intermolecular disulfides were
separated by nonreducing SDS–PAGE, followed by tryptic
digestion of the HypR and HypRC33A disulfide bands as de-
scribed (21). The peptides were measured using a MALDI-
TOF-MS using an Ultraflex-II TOF/TOF instrument (Bruker
Daltonics, Bremen, Germany) equipped with a 200 Hz solid-
state Smart beam� laser. The mass spectrometer was operated
in the positive reflector mode. Mass spectra were acquired over
an m/z range of 600–4000. MS/MS spectra of selected peptides
were acquired in the LIFT mode as described previously (87).

Infection assays with murine macrophage cell line J-
774A.1. Murine macrophage cell line J-774A.1 (80) was
cultivated in Iscove’s modified Dulbecco’s medium (Bio-
chrom) with 10% heat-inactivated fetal bovine serum (FBS)
and seeded in cell culture dishes for 2 days under 5% CO2 at
37�C as described (79). Before the infection assay, S. aureus
COL strains were plated overnight on LB agar and re-
suspended in eukaryotic growth medium. Macrophages were
infected with S. aureus cells at a multiplicity of infection
(MOI) of 1:25. One hour after infection, the cell culture
medium was replaced and 150 lg/ml gentamycin was added
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for 1 h to kill extracellular bacteria and to stop the uptake of S.
aureus. The intracellular survival was determined at 2, 4, and
24 h after phagocytosis. Infected macrophages were lysed
with 0.1% Triton X-100 and the supernatant with internalized
intracellular bacteria was plated on agar plates for CFUs.
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Real-Time Imaging of the Bacillithiol Redox Potential
in the Human Pathogen Staphylococcus aureus Using a
Genetically Encoded Bacilliredoxin-Fused Redox Biosensor

Vu Van Loi,1 Manuela Harms,2 Marret Müller,3 Nguyen Thi Thu Huyen,1 Chris J. Hamilton,4

Falko Hochgräfe,2 Jan Pané-Farré,3 and Haike Antelmann1

Abstract

Aims: Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus.
Under oxidative stress, BSH forms mixed disulfides with proteins, termed asS-bacillithiolation, which can be reversed
by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live
imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused
redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus.
Results: The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide
(BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus
(MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under
hypochlorite and hydrogen peroxide (H2O2) stress and constitutive oxidation of the probe in different BSH-deficient
mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus
COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87%
oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with
different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus.
Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and
roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other
BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835–848.

Keywords: Staphylococcus aureus, bacillithiol, bacilliredoxin, redox biosensor, roGFP, oxidative stress

Introduction

Staphylococcus aureus is an opportunistic human
pathogen causing not only local skin infections but also

life-threatening diseases such as septicemia, endocarditis,
and necrotizing pneumoniae (1, 3, 21). The success of the
pathogen is mediated by virulence factors and the develop-
ment of multiple antibiotic-resistant S. aureus strains, such as
methicillin-resistant isolates (MRSA) (19). S. aureus has to
cope with oxidative stress by reactive oxygen species (ROS),

such as hydrogen peroxide (H2O2) and the strong oxidant
hypochloric acid by the oxidative burst of macrophages and
neutrophils under infection conditions (41).

As defense mechanisms, S. aureus uses various redox-
sensing virulence regulators and the thiol-redox buffer ba-
cillithiol (BSH) (5, 13, 20, 28, 30, 32–34). BSH functions in
detoxification of ROS, hypochlorite, diamide, methylglyoxal,
electrophiles, and antibiotics, such as rifampicin and fosfo-
mycin or heavy metal ions, and protects S. aureus against the
oxidative burst by activated macrophages in phagocytosis
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assays (10, 20, 32, 33). Under hypochlorite stress, BSH forms
mixed disulfides with proteins (S-bacillithiolations) as a
widespread thiol protection and a redox-switch mecha-
nism that is analogous to S-glutathionylation in eukaryotes
(6, 7, 17, 20).

In Bacillus subtilis, two glutaredoxin-like enzymes YphP
(BrxA) and YqiW (BrxB) with unusual CGC motifs were
characterized as bacilliredoxins (Fig. 1A and Supplementary
Fig. S1; Supplementary Data are available online at www.
liebertpub.com/ars) that catalyze the reduction of S-
bacillithiolated proteins, leading to formation of bacillithio-
lated Brx (Brx-SSB) as an intermediate of this bacilliredoxin
electron pathway (9). Reduction of Brx-SSB requires BSH,
resulting in bacillithiol disulfide (BSSB) formation that could
be recycled by the putative BSSB reductase YpdA at the
expense of nicotinamide adenine dinucleotide phosphate
(NADPH) (Fig. 1B) (9, 10, 12, 20).

Innovation

In eukaryotes, glutaredoxin-fused roGFP2 biosensors
have been successfully applied for dynamic live imaging
of the glutathione redox potential. Here, we have con-
structed the first genetically encoded bacilliredoxin-fused
redox biosensor (Brx-roGFP2) that is specific to measure
dynamic changes in the bacillithiol redox potential in the
human pathogen Staphylococcus aureus under oxidative
stress and infection conditions in vivo. Using this bio-
sensor, we could confirm that different antibiotics do not
cause oxidative stress in S. aureus. This Brx-roGFP2
biosensor can be applied to measure redox potential
changes across clinical S. aureus isolates and to screen for
new redox-active antibiotics to treat methicillin-resistant
S. aureus infections.

FIG. 1. Structure of the bacilliredoxin (Brx) SAUSA300_1321, Brx electron pathway, principle of the Brx-roGFP2
redox pathway, and excitation spectra of Brx-roGFP2 and roGFP2. (A) Bacilliredoxins are Trx-fold proteins of the
UPF0403 family with an unusual CGC active-site motif. The structure of Brx (SAUSA300_1321) was generated using the
software Phyre2 and PyMol. (B) The S-bacillithiolated proteins are reduced by bacilliredoxins (Brx), leading to Brx-SSB
formation. Regeneration of Brx requires BSH and the putative NADPH-dependent BSSB reductase YpdA. (C) In the Brx-
roGFP2 fusion, Brx reacts with BSSB, leading to Brx-SSB formation, subsequent transfer of the BSH moiety to the coupled
roGFP2, and re-arrangement to the roGFP2 disulfide. The roGFP2 disulfide causes a change of the 405/488 nm excitation
ratio. (D, E) Purified roGFP2 and Brx-roGFP2 were fully oxidized and reduced with 5 mM diamide and 10 mM DTT,
respectively, and the fluorescence excitation spectra were monitored using the microplate reader (n = 7–9, p < 0.0001 in all
samples). In all graphs, mean values are shown, error bars represent the SEM, and p-values are calculated using a Student’s
unpaired two-tailed t-test by the graph prism software. BSH, bacillithiol; BSSB, bacillithiol disulfide; DTT, dithiothreitol;
NADPH, nicotinamide adenine dinucleotide phosphate; SEM, standard error of the mean; Trx, thioredoxin. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

836 LOI ET AL.



The standard thiol-redox potential of BSH was calculated
as E0¢(BSSB/BSH) = -221 mV, which is higher than the
glutathione redox potential [E0¢(GSSG/GSH) = -240 mV]
(30, 36). To date, all previous studies have used fluorescent
bimane labeling of thiols for quantification of BSH and BSSB
levels by high-pressure liquid chromatography under control
and stress conditions as an indicator of the changes in the
BSH redox potential. According to this method, the BSH/
BSSB ratios range from 100:1 to 400:1 in B. subtilis, sug-
gesting that BSH is mostly present in its reduced form (36).
Under conditions of S-bacillithiolation provoked by sodium
hypochlorite (NaOCl) stress, the level of BSSB increases,
indicating a more oxidized BSH redox potential (7). How-
ever, the applied methods require disruption of cells and do
not allow dynamic measurements of the changes in the BSH
redox potential (25, 35).

Thus, recent advances in the design of genetically encoded
redox biosensors, such as redox-sensitive green fluorescent
proteins (roGFPs), have facilitated the real-time imaging of
the cellular redox potential without cell disruption and at high
sensitivity under in vivo conditions (11, 24, 35). These roGFP
biosensors allow the ratiometric measurements based on two
excitation maxima at 405 and 488 nm that change on oxida-
tion (24, 25). RoGFP2 was fused to human glutaredoxin to
construct the Grx-roGFP2 biosensor for real-time measure-
ments of dynamic changes in the GSH redox potential (EGSH)
in different compartments and different eukaryotic organ-
isms. Grx-roGFP2 detects nanomolar concentrations of
GSSG against a backdrop of millimolar GSH within seconds
(11, 24).

Recently, roGFP-based biosensors were applied in patho-
genic organisms to study EGSH changes under infection
conditions and antibiotic treatment, including the malaria
parasite Plasmodium falciparum (15) and the Gram-negative
bacterium Salmonella Typhimurium (38, 39). In malaria
parasites, several antimalarial drugs affected the cellular re-
dox metabolism and showed differential responses of the
Grx-roGFP2 biosensor under short- and long-term measure-
ments in vivo (15). In Mycobacterium tuberculosis, an anal-
ogous Mrx1-roGFP2 biosensor was developed for dynamic
measurements of the mycothiol redox potential (EMSH) in
drug-resistant isolates and inside macrophages (2, 24). The
Mrx1-roGFP2 biosensor was applied to screen for new ROS-
generating anti-TB drugs that affected EMSH (37).

In this study, we have constructed the first bacilliredoxin-
fused roGFP biosensor that is highly specific to measure
changes of the BSH redox potential in MRSA strains
USA300 and COL under oxidative stress and after infection
of THP-1 human macrophage-like cells.

Results

Construction of a Brx-roGFP2 biosensor that is highly
specific for BSSB

The thioredoxin-fold proteins of the UPF0403 family YphP
and YqiW were characterized as bacilliredoxins (BrxA
and BrxB) in B. subtilis that function in reduction of S-
bacillithiolated proteins and share an unusual CGC active-site
motif (Fig. 1A) (9). Both Brx were S-bacillithiolated at their
active-site Cys in vivo and in vitro to form Brx-SSB during their
catalytic cycle (9). Blast searches identified two bacilliredoxin
homologs in S. aureus USA300 (SAUSA300_1321 and SAU-

SA300_1463). SAUSA300_1321 showed 54% sequence iden-
tity with YphP, whereas SAUSA300_1463 shared a stronger
sequence identity (68%) with YqiW of B. subtilis (Supple-
mentary Fig. S1). We selected the YphP-homolog SAU-
SA300_1321 (renamed Brx) for construction of a Brx-roGFP2
fusion protein. S. aureus Brx and Brx Cys-Ala-mutant pro-
teins (BrxA54GC56, BrxC54GA56, and BrxA54GA56) were
each fused via the 30aa glycine-serine linker (11) to the N-
terminus of roGFP2 to construct the Brx-roGFP2 biosensor
variants. Analogous to the reaction of Grx1-roGFP2 and
Mrx1-roGFP2 with GSSG or mycothiol disulfide (MSSM)
(2, 24), oxidation of the Brx-roGFP2 biosensor should occur
specifically by BSSB that targets the active-site Cys54 of
Brx to form Brx-SSB. This leads to the transfer of the BSH
moiety to the coupled roGFP2, forming S-bacillithiolated
roGFP2, which re-arranges to the roGFP2 disulfide and re-
sults in ratiometric changes of the excitation maxima at 405
and 488 nm (Fig. 1C).

The His-tagged Brx-roGFP2 protein was expressed in
Escherichia coli, purified, and compared with roGFP2 for
its ratiometric changes in the fully reduced and oxidized
forms using the microplate reader. The thiol-reactive oxi-
dant diamide was used for complete oxidation, and the thiol-
reducing compound dithiothreitol (DTT) was applied for
complete reduction of the biosensor. Similar to roGFP2,
Brx-roGFP2 exhibits two excitation maxima at 405 and
488 nm and responds in a ratiometric manner to 5 mM di-
amide and 10 mM DTT (2, 24) (Fig. 1D, E). The degree of
oxidation (OxD) was calculated according to the fluores-
cence excitation intensities at 405 and 488 nm of fully ox-
idized and reduced Brx-roGFP2 probes as previously
described (11). For all following measurements, the OxD
values of fully reduced and oxidized probes were calibrated
as 0 and 1 and the OxD values of the actual measurements
were related to these controls.

Furthermore, it was analyzed whether the Brx-roGFP2
response is sensitive to pH changes that could occur during
infections. The Brx-roGFP2 probe was diluted into phosphate
buffer solutions at different pH values ranging from 5.8 to 8.0
and treated with diamide and DTT (Supplementary Fig. S2).
The 405/488 nm excitations ratios were not affected by dif-
ferent pH values, indicating that the probe is insensitive to pH
changes.

Purified Brx-roGFP2 showed a very fast and specific re-
sponse to physiological BSSB levels (10–100 lM), but not to
other thiol disulfides (GSSG, MSSM, cystine, and CoAS
disulfide) (Fig. 2A, B). In contrast, roGFP2 did not respond to
10–100 lM BSSB, confirming that Brx-roGFP2 is specific to
detect EBSH changes (Fig. 2C). Furthermore, Grx-roGFP2
was oxidized specifically by 100 lM GSSG, but it was un-
responsive to BSSB, indicating that Grx is not specific for the
BSH/BSSB redox couple (11) (Fig. 2D).

The specificity of Brx for BSSB should be determined by
the C54GC56 active-site motif. Hence, the response of Brx-
roGFP2 was compared with that of Brx Cys mutant roGFP2
fusions, where the active-site Cys54 and the resolving Cys56
of Brx are each replaced by an alanine (BrxAGC, BrxCGA,
and BrxAGA). Brx-roGFP2 and the resolving Brx Cys56
mutant (BrxCGA-roGFP2) showed very fast oxidation by
10–100 lM BSSB, whereas the BrxAGC-roGFP2 and
BrxAGA-roGFP2 active-site mutant proteins failed to re-
spond to 10 lM BSSB and showed weaker responses to
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100 lM BSSB (Fig. 2E, F). In previous studies, the BSH
content was determined as 0.5–1.6 lmol/g raw dry weight in
BSH-producing S. aureus strains (36). This equates to 0.5–
1.6 mM intracellular BSH, assuming a 50% water content of
the cellular biomass as determined for related bacteria (4).

The BSH/BSSB ratio was estimated as 1:20–1:40 (28, 32),
indicating that the physiological BSSB content should be
below 100 lM in S. aureus. Thus, the Brx-roGFP2 biosensor
is highly specific to detect physiological levels of 10–100 lM
BSSB in vitro.

FIG. 2. Responses of purified Brx-roGFP2, Grx1-roGFP2, and roGFP2 in vitro to BSSB, GSSG, MSSM, cystine,
and CoAS-disulfide. (A, B) Brx-roGFP2 responds specifically to 10 and 100 lM BSSB in vitro but is nonresponsive to
GSSG, MSSM, cystine, and CoAS disulfide (n = 3; p < 0.0045 for 10 lM and p < 0.01 for 100 lM in all samples). (C) The
roGFP2 probe does not respond to 100 lM thiol disulfides (n = 3; p < 0.0001 for BSSB, GSSG, and MSSM; p = 0.93 for
cystine). (D) The Grx1-roGFP2 fusion shows a specific response to 100 lM GSSG, but not to other thiol disulfides (n = 3;
p < 0.0033 for all samples). (E, F) The response of Brx-roGFP2 to 10 lM (E) and 100 lM BSSB (F) was compared with the
Brx-Cys mutant proteins BrxAGC-roGFP2, BrxCGA-roGFP2, BrxAGA-roGFP2, and roGFP2 (n = 3; p = 0.27 for 10 lM
BSSB BrxAGA; p < 0.0001 for all others). Arrows denote the time point of oxidant exposure. The results showed that the
Brx-roGFP2 response depends on the active-site Cys54 of Brx. The thiol disulfides were injected into the microplate wells
90 s after the start of measurements, and the biosensor response and OxD were analyzed using the CLARIOstar microplate
reader. In all graphs, mean values are shown, error bars represent the SEM, and p-values are calculated using a Student’s
unpaired two-tailed t-test by the graph prism software. GSSG, oxidized glutathione disulfide; MSSM, mycothiol disulfide;
OxD, oxidation degree.

838 LOI ET AL.



Response of Brx-roGFP2 in S. aureus MRSA strains
COL and USA300 along the growth curve and effect
of BSH deficiency on the biosensor response

To monitor the changes in EBSH inside S. aureus, Brx-
roGFP2 was expressed ectopically from plasmid pRB473

under control of a xylose-inducible promoter in two MRSA
isolates COL and USA300. The S. aureus wild-type strains
were grown in Luria Bertani (LB) medium overnight with
xylose, and the strong roGFP2 fluorescence could be monitored
using the microplate reader and fluorescence microscopy. First,
we confirmed the ratiometric response of the Brx-roGFP2

FIG. 3. Comparison of the Brx-roGFP2 response and expression in S. aureus COL and USA300 wild type and bshA
mutants during the growth. (A, B) Ratiometric response of Brx-roGFP2 in S. aureus COL and USA300 after oxidation of
cells by 5 mM diamide and reduction by 10 mM DTT (n = 7–8; p < 0.0001 in all samples). (C, D) Expression of Brx-roGFP2
is higher in S. aureus COL compared with USA300 during the log phase (n = 3; p < 0.0001 at OD1–1.5), and (E) the OxD is
the most strongly increased during the stationary phase in USA300 (n = 3; p = 0.0009 at 6 h). (F) The dynamic range of Brx-
roGFP2 is higher in S. aureus COL compared with USA300 (n = 3; p = 0.0159 DTT; p = 0.0436 diamide). (G, H) The Brx-
roGFP2 biosensor is constitutively oxidized in the S. aureus COL and USA300 bshA mutants in comparison to the wild-type
strains (n = 3; p < 0.0001 in COL at all time points; p < 0.01 in USA300 at 4–5.5 h). Symbols are defined as follows:
nsp > 0.05; *p £ 0.05; **p £ 0.01; ***p £ 0.001; and ****p £ 0.0001. The OxD was calculated based on 405/488 nm exci-
tation ratios with emission at 510 nm and related to the fully oxidized and reduced controls as described in the Materials and
Methods section. In all graphs, mean values are shown, error bars represent the SEM, and p-values are calculated using a
Student’s unpaired two-tailed t-test by the graph prism software.
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biosensor inside S. aureus cells in the fully oxidized and re-
duced state after treatment with 5 mM diamide and 10 mM
DTT, respectively, and monitored the changes at the 405 and
488 nm excitation maxima (Fig. 3A, B). Western blot analyses
confirmed that Brx-roGFP2 is expressed as a full-length pro-
tein and is not degraded during the growth in S. aureus (Sup-
plementary Fig. S3).

Next, the changes of the BSH redox potential were mon-
itored during different stages of growth in LB medium in S.
aureus (Fig. 3C–E). In fact, the expression and fluorescence
intensity of Brx-roGFP2 varied between the S. aureus COL
and USA300 wild-type strains along the growth. Although a
significant Brx-roGFP2 fluorescence signal was detected in S.
aureus COL already during the exponential growth, the ex-
pression and fluorescence of Brx-roGFP2 were much weaker
in S. aureus USA300 during the log phase (Fig. 3C, D and
Supplementary Fig. S4A, B). In both strains, the OxD of the
Brx-roGFP2 increased during the stationary phase, reflecting
growth-dependent redox changes (Fig. 3E). Furthermore, we
observed that the dynamic range of the 405/488 nm ratios of
fully reduced and oxidized Brx-roGFP2 was higher in COL
(3.77 – 0.65) compared with USA300 (2.37 – 0.98) (Fig. 3F).

However, we confirmed that the level of Brx-roGFP2 did
not affect the OxD, since serial dilutions of S. aureus cells
that were harvested at an optical density (OD) of 4.0 showed
the same OxD level (Supplementary Fig. S4C, D). Based on
the OxD of the biosensor, the intracellular BSH redox po-
tential was calculated using the Nernst’ equation, ranging
from -300 to -270 mV in COL and from -300 to -235 mV in
USA300 during exponential growth until transition into the
stationary phase (Supplementary Table S5).

We further compared biosensor oxidations between COL
and USA300 wild types and isogenic BSH-deficient mutants.
The biosensor was fully oxidized in the COL and USA300bshA
mutants, indicating an impaired redox balance and increased
oxidative stress in the bshA mutant (Fig. 3G, H). This consti-
tutive biosensor oxidation was also observed in strain RN4220,
which is a natural bshC mutant of the S. aureus NCTC8325
lineage (27, 32, 33) (Supplementary Fig. S5). Western blot
analyses confirmed that the biosensor is similarly expressed in
the COL wild type and bshA mutant (Supplementary Fig. S6).

Response of Brx-roGFP2 in S. aureus COL
to oxidative stress

The changes in EBSH were further investigated in S. aureus
COL wild type in response to oxidative stress, provoked by
H2O2 and NaOCl. Previous studies have shown that NaOCl
stress leads to S-bacillithiolation of proteins and a decreased
BSH/BSSB redox ratio (7). Since S. aureus is extremely re-
sistant to H2O2 (14, 40), the physiological sub-lethal con-
centrations of oxidants were determined (Fig. 4A, B). In
addition, the role of BSH in the resistance to NaOCl and
H2O2 was analyzed in survival assays. The bshA mutant was
more sensitive than the wild type to 150 lM NaOCl and
300 mM H2O2, indicating that BSH contributes to oxidative
stress resistance.

The change in EBSH after exposure to 1–100 mM H2O2 and
10–100 lM NaOCl and the time for detoxification of oxidants
and recovery of the reduced state were investigated. The
biosensor was rapidly and reversibly oxidized by 10–50 mM
H2O2, and cells approached a more reduced state within

70 min (Fig. 4C). Remarkably, 100 mM H2O2 did not result in
complete oxidation of the biosensor (e.g., OxD = 1), although
S. aureus cells were unable to restore their reduced state.
Treatment of cells with low doses of 10–20 lM NaOCl re-
sulted in reversible biosensor oxidation and required 200 min
for regeneration of the reduced state. The biosensor was fully
oxidized by 100 lM NaOCl, but cells were unable to recover
(Fig. 4D). Using nonreducing BSH-specific Western blot
analysis, we further confirmed that 100 lM NaOCl stress
leads to the same increase of S-bacillithiolated proteins in S.
aureus COL and COL Brx-roGFP2 strains, indicating that
Brx-roGFP2 expression did not affect the S-bacillithiolation
pattern (Supplementary Fig. S7).

To analyze the impact of Brx in the biosensor response to
the oxidants in vivo, attempts were made to express unfused
roGFP2 in S. aureus COL. However, in contrast to the Brx-
roGFP2 fusion, expression of unfused roGFP2 failed in S.
aureus COL containing the pRB473-roGFP2 plasmid. Thus,
we compared the biosensor responses of the various Brx Cys
mutant fusions (BrxAGC, BrxCGA, and BrxAGA) with the
different oxidants in vivo. The response of Brx-roGFP2 and
BrxCGA-roGFP2 to 50 mM H2O2 was fast and reversible,
with recovery of the reduced state after 120 min. In contrast,
oxidation of the Brx active-site Cys mutant fusions (BrxAGC
and BrxAGA) by H2O2 was slower and not fully reversible
(Fig. 4E). We further analyzed the responses of the BrxAGC,
BrxCGA, and BrxAGA Cys mutant fusions to 20 lM NaOCl.
All Brx Cys mutants responded similarly to NaOCl, whereas
the BrxAGA double-Cys mutant was unable to recover after
120 min (Fig. 4F). This indicates that a direct response of
Brx-roGFP2 to high doses of 50 mM H2O2 and to the strong
oxidant NaOCl could, in part, account for the oxidant re-
sponses in the absence of the CGC motif of Brx.

To monitor the direct biosensor response to the oxidants,
both purified roGFP2 and Brx-roGFP2 proteins were treated
with different concentrations of H2O2 and NaOCl (Supple-
mentary Fig. S8). The results showed that both roGFP2 and
Brx-roGFP2 respond strongly to 1–10 mM H2O2 and 50–
100 lM NaOCl, leading to complete biosensor oxidation.
This confirms that the Brx-roGFP2 biosensor could also di-
rectly respond to high H2O2 doses and the strong oxidant
NaOCl in vivo in the absence of the Brx CGC motif. Another
possibility could be that the third conserved Cys of Brx at the
C-terminus (Cys144) is S-bacillithiolated by BSSB in vivo in
the absence of the CGC motif, leading to subsequent bio-
sensor oxidation.

Confocal laser scanning microscopy of Brx-roGFP2
fluorescence in S. aureus COL wild type and DbshA
mutant cells

The redox-dependent changes of Brx-roGFP2 fluorescence
in S. aureus COL wild type and bshA mutant cells were
analyzed using confocal laser scanning microscopy (CLSM)
both before and after NaOCl stress. The biosensor fluores-
cence intensities were measured after excitation at 405 and
488 nm and false-colored in red and green, respectively
(Fig. 5). The oxidation state of the biosensor is visualized by
an overlay of both red and green images. Confocal imaging
showed that Brx-roGFP2 is reduced in nontreated wild-type
cells and resembles that of DTT-treated reduced cells with
bright fluorescence at the 488 nm excitation wavelength
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(Fig. 5). NaOCl stress leads to a decreased fluorescence inten-
sity at the 488 nm excitation maximum and a strongly increased
fluorescence at the 405 nm excitation maximum, as shown in the
histograms. Thus, NaOCl-treated wild-type cells are visualized
as red cells in the overlay images similar to the fully oxidized
wild-type control. In the S. aureus COL bshA mutant, the Brx-
roGFP2 biosensor was fully oxidized under control conditions
as shown by the strong fluorescence in the 405 nm (red) channel
that resembles the NaOCl-treated sample. The redox states of
wild type and bshA mutant cells were calculated from five
representative single cells and also using measurements in the
microplate reader for comparison (Fig. 5C, D).

Response of Brx-roGFP2 in S. aureus
after internalization by THP-1 macrophages

Next, we measured the changes in EBSH of S. aureus
under infection-like conditions during phagocytosis

assays with activated THP-1 macrophages. Infection as-
says were performed with S. aureus COL cells at a
multiplicity of infection (MOI) of 25, and fluorescence
excitation intensities were monitored at 405 and 488 nm.
After 1 h of infection with S. aureus COL, about 70–80%
of THP-1 cells showed a green fluorescence. As fully
oxidized and reduced controls, infected macrophages
were treated with 150 lM NaOCl and 20 mM DTT, re-
spectively, and the mean fluorescence intensity (MFI) at
405 and 488 nm was analyzed using flow cytometry
(Supplementary Table S7). The 405/488 nm ratio of the
MFI of fully reduced and oxidized THP-1 controls was
calibrated to 0% and 100% oxidation and related to the
405/488 nm ratio of the MFI of infected macrophages. In
comparison to these fully reduced and oxidized THP-1
controls, the biosensor was 87% oxidized in S. aureus
COL during infection after uptake by macrophage-like
cells (Supplementary Table S7).

FIG. 4. Effect of NaOCl
and H2O2 on the survival of
S. aureus wild type and bshA
mutants and oxidative stress
responses of Brx-roGFP2
and Brx Cys-mutant fusions
in S. aureus COL. (A, B) The
S. aureus COL and USA300
bshA mutants are more sensi-
tive to NaOCl and H2O2 stress
compared with the wild type as
revealed by survival assays
(n = 3; p = 0.07 at 450 mM
H2O2; p = 0.0126 at 150 lM
NaOCl). (C, D) The Brx-
roGFP2 biosensor in S. aureus
COL is rapidly and reversibly
oxidized by sub-lethal concen-
trations of 1–50 mM H2O2 and
10–20 lM NaOCl, whereas
higher doses result in constitu-
tive biosensor oxidation (n = 4;
p = 0.3186 at 1 mM H2O2;
p < 0.0001 in all other sam-
ples). (E, F) The response of
Brx-roGFP2 and BrxCGA-
roGFP2 to H2O2 and NaOCl is
reversible compared with the
active Cys Brx mutant fusions
in S. aureus COL, which is not
reversible (n = 5; p < 0.0001 in
all samples). Arrows denote
the time point of oxidant ex-
posure. In all graphs, mean
values are shown, error bars
represent the SEM, and p-
values are calculated using a
Student’s unpaired two-tailed
t-test by the graph prism
software. H2O2, hydrogen
peroxide; NaOCl, sodium
hypochlorite.
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FIG. 5. Live-imaging of
S. aureus COL Brx-roGFP2
in the wild type and the
bshA mutant during NaOCl
stress. (A, B) S. aureus COL
Brx-roGFP2 wild type and
bshA mutant strains were ex-
posed to 150 lM NaOCl,
blocked with NEM, and ana-
lyzed using CLSM. Cells
treated with 10 mM DTT and
5 mM diamide were used as
fully reduced and oxidized
controls, respectively. Fluor-
escence emission was mea-
sured at 505–550 nm after
excitation at 405 and 488 nm.
Fluorescence intensities at the
488 and 405 nm excitation
maxima are false-colored in
green and red, respectively,
and are shown in the overlay
images and histograms for
single cells. The NaOCl-
induced oxidation in the wild
type and constitutive oxida-
tion of the biosensor in the
DbshA mutant are visualized
by the overlay images, and
the cells are encircled based
on the transmitted light im-
age. The histograms show
average fluorescence intensi-
ties at 405 and 488 nm calcu-
lated from five representative
single cells. (C) The average
405/488 nm ratios of the wild
type and bshA mutant sam-
ples were calculated from five
representative single cells
each for the wild type and
bshA mutant that are marked
with bold circles (n = 5;
p = 0.001 for control WT/
bshA). (D) For comparison,
the 405/488 nm ratios were
also calculated from the same
S. aureus samples using the
microplate reader (n = 3;
p = 0.0009 for control WT/
bshA). Symbols are defined as
follows: ***p < 0.001. In all
graphs, mean values are
shown, error bars represent
the SEM, and p-values are
calculated using a Student’s
unpaired two-tailed t-test by
the graph prism software.
CLSM, confocal laser scan-
ning microscopy; NEM, N-
ethylmaleimide. To see this
illustration in color, the reader
is referred to the web version
of this article at www.liebert
pub.com/ars
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Effects of antibiotics on the Brx-roGFP2 biosensor
response in S. aureus COL

We were interested in the changes of the BSH redox po-
tential in response to sub-lethal antibiotics that are commonly
used to treat MRSA infections. The aim was to clarify a long
debate about the involvement of oxidative stress in the killing
mode of antibiotics (16, 18). We have chosen antibiotics with
different cellular target sites, including RNA polymerase
inhibitors (rifampicin), cell-wall biosynthesis inhibitors
(fosfomycin, ampicillin, oxacillin, and vancomycin), ami-
noglycosides as protein biosynthesis inhibitors that target the
ribosome (gentamycin, lincomycin, erythromycin, and line-
zolid), and fluoroquinolones (ciprofloxacin) that inhibit the
DNA gyrase and topoisomerase IV to block DNA replication.

S. aureus COL with Brx-roGFP2 was treated with sub-
lethal concentrations of antibiotics and analyzed for its bio-
sensor response. The sub-lethal antibiotics doses that caused
a reduced growth rate were determined as 0.1 lM erythro-
mycin, 0.1 lM rifampicin, 5 lM vancomycin, 30 lM cipro-
floxacin, 0.5 lg/ml gentamicin, 10 lM ampicillin, 50 mM
fosfomycin, 5 lM lincomycin, 2 lg/ml linezolid, and 2 mM
oxacillin. The measurement of the Brx-roGFP2 response
revealed no increased biosensor oxidation by any of these
antibiotics compared with the untreated control (Fig. 6 and
Supplementary Table S6). These results document that sub-
lethal antibiotics do not cause changes in the BSH redox
potential in S. aureus.

Discussion

Redox-sensitive GFPs have been recently fused to glu-
taredoxin and mycoredoxin for dynamic measurements of the
intracellular redox potential in eukaryotes and mycobacteria
in real time and at high sensitivity and spatiotemporal reso-
lution (35). Here, we coupled the bacilliredoxin (Brx) to
roGFP2 to measure the intracellular BSH redox potential in S.
aureus cells under infection conditions, ROS, and antibiotics
treatments. This Brx-roGFP2 biosensor is highly sensitive
and specific for physiological levels of BSSB, whereas un-
fused roGFP2 and the BrxAGC active-site mutant roGFP2
fusion are much lower responsive to BSSB in vitro.

The role of the active-site Cys of Brx for reduction of S-
bacillithiolated OhrR and MetE has been previously shown
for B. subtilis BrxA and BrxB (9). The specific reaction of the
active site Cys54 with BSSB was verified here for the S.
aureus Brx homolog SAUSA300_1321 in the Brx-roGFP2
fusion. Thus, coupling of roGFP2 with the Brx facilitates
rapid equilibration of the biosensor with the BSH/BSSB re-
dox pair to selectively measure changes in the BSH redox
potential. However, weaker responses of the BrxAGC and
BrxAGA active site and double mutants were observed by
100 lM BSSB, which could depend on the third C-terminal
Cys144 residue that is also conserved across the UPF0403
family of Brx-homologs (Supplementary Fig. S1).

The Brx-roGFP2 biosensor was applied to monitor the
changes in the BSH redox potential inside the archaic
hospital-acquired MRSA isolate COL and the community-
acquired MRSA strain USA300. In both MRSA strains, BSH
is required for survival under oxidative stress and infection-
related conditions during phagocytosis with macrophages
(32, 33). Here, we confirmed that BSH-deficient mutants of S.
aureus COL and USA300 are more sensitive to H2O2 and

NaOCl compared with the wild types. We further monitored
the perturbations in the BSH redox potential during growth,
oxidative challenge, and infection assays with THP-1 mac-
rophages. Increases in EBSH were observed in S. aureus COL
and USA300 strains during the stationary phase in LB me-
dium compared with the log phase. However, we confirmed
that the expression level of Brx-roGFP2 did not affect the
OxD (Supplementary Fig. S4C, D).

The dynamic range of Brx-roGFP2 was lower in USA300
compared with COL, which could depend on the 1.6-fold
higher BSH levels in USA300 (32). Differences in the basal
level oxidation and dynamic range were also observed be-
tween drug-sensitive (3D7) and -resistant (Dd2) P. falci-
parum parasites (15). In P. falciparum 3D7, the lower basal
OxD of the biosensor could be explained by the higher GSH
levels. Thus, the higher BSH levels in USA300 could result in
a higher reducing capacity and a lower biosensor response to
diamide.

We further showed that the Brx-roGFP2 biosensor in S.
aureus COL responds rapidly to ROS, such as H2O2 and
NaOCl. However, S. aureus is resistant to high levels of
300 mM H2O2 (40). Thus, treatment of S. aureus with 1–
10 mM H2O2 resulted in only a slightly increased biosensor
oxidation with rapid regeneration of the reduced state. Ex-
posure to 50–100 lM NaOCl stress caused the complete and
constitutive oxidation of the biosensor and correlates with the
observed S-bacillithiolation of proteins and increased levels of
BSSB under NaOCl stress in S. aureus (7). The comparison of
the biosensor response of Brx-roGFP2 with that of the Brx Cys
mutant fusion revealed a similar response but changes in the
recovery after H2O2 and NaOCl stress, which was impaired in
the Brx active-site mutants. Thus, the biosensor could also
directly respond to the high H2O2 levels and the strong oxidant
NaOCl in vivo.

The changes in BSH redox potential were also measured
inside S. aureus COL during phagocytosis assays in THP-1
macrophage cell lines. The flow cytometric data showed that
the Brx-roGFP2 biosensor was 87% oxidized in S. aureus
COL under infection conditions.

The comparison of the biosensor response in S. aureus
COL and USA300 wild types and the isogenic bshA mutants
as well as in the natural bshC-deficient strain RN4220 re-
vealed a constitutive oxidation of the probe in the absence of
BSH. This high biosensor oxidation in BSH-deficient strains
is also visualized by confocal imaging at the cellular level.
These results are in agreement with the constitutive oxidation
of the Grx-roGFP2 biosensor on GSH depletion in Arabi-
dopsis thaliana seeds (23). Thus, our data clearly document
the impaired redox balance in the absence of BSH and the
major role of BSH in keeping the reduced state of the cyto-
plasm in S. aureus cells. In addition to BSH depletion, much
lower NADPH levels were previously measured in the DbshA
mutant, which could contribute to the impaired thiol-redox
balance (32).

In S. aureus, coenzyme A and Cys were suggested to
function as alternative thiol-redox buffers and S. aureus also
encodes a CoAS disulfide reductase to keep CoASH in the
reduced state (22). However, based on the microscopic and
macroscopic pKa values of BSH, the level of the reactive
thiolate anion is much higher in BSH compared with CoASH
and Cys at physiological pH values (36). Thus, BSH is the
only available nucleophilic thiol that reacts with protein
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disulfides that are formed under oxidative stress in S. aureus
(29, 30, 36). Consistent with this notion, neither cystine nor
CoAS disulfide were recognized by Brx at physiological
concentrations to oxidize the biosensor in vitro.

Previous studies identified the OhrR repressor as redox
controlled under organic peroxide and NaOCl stress by S-
cysteinylation and S-bacillithiolation (6, 17). BrxA and BrxB

were specific for reduction and reactivation of S-bacillithiolated
OhrR, but they could not regenerate S-cysteinylated OhrR (9).
These results further support our findings about the specificity of
Brx of S. aureus for BSSB.

Finally, we studied the changes in the BSH redox potential
in S. aureus after treatment with sub-lethal doses of different
antibiotics to clarify the role of oxidative stress as a killing

FIG. 6. Growth curves and
OxD of S. aureus COL Brx-
roGFP2 after exposure to
sub-lethal concentrations of
antibiotics that decreased
the growth rate. S. aureus
was exposed to sub-lethal
concentrations of antibiotics at
an OD500 of 0.5, and the OxD
of Brx-roGFP2 was monitored
in treated and untreated cells
(n = 4; p > 0.05 for OxD con-
trol/antibiotics treatment in all
samples). The following sub-
lethal antibiotics were used:
(A) 0.1 lM erythromycin, (B)
0.1 lM rifampicin, (C) 5 lM
vancomycin, (D) 30 lM ci-
profloxacin, (E) 0.1 lM gen-
tamycin, (F) 10 lM ampicillin,
(G) 50 mM fosfomycin, (H)
5 lM lincomycin, (I) 2 lg/ml
linezolid, and (J) 2 mM oxa-
cillin. There was no increased
oxidation by antibiotics in
S. aureus. In all graphs, mean
values are shown, error bars
represent the SEM, and p-
values are calculated using a
Student’s unpaired two-tailed
t-test by the graph prism soft-
ware.
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mode for antibiotics, a controversial debate among micro-
biologists (16, 18). However, we could not detect changes in
the BSH redox potential after treatment with rifampicin,
fosfomycin, ampicillin, oxacillin, vancomycin, aminoglyco-
sides, and fluoroquinolones. Similar to our results, no roGFP2
response was detected by any of these antibiotics in Salmo-
nella (39). However, S. aureus is resistant to 100 mM H2O2

without the killing effect. Thus, S. aureus might be resistant
to ROS produced under antibiotics treatment.

In conclusion, we have constructed a novel Brx-roGFP2
biosensor that is highly specific to sense the reduced pool of
BSH inside S. aureus cells and that responds to oxidative
stress under infection-like conditions inside macrophages.
Using this novel tool, we could demonstrate that commonly
used antibiotics do not cause oxidative stress when applied to
S. aureus and that BSH-deficient mutants have an impaired
redox balance and reduced virulence. S. aureus is an im-
portant human pathogen with new MRSA strains and other
multiple antibiotic-resistant isolates emerging quickly. This
novel probe can be applied in drug research to screen for new
redox-active antibiotics that affect the BSH redox potential in
S. aureus. In addition, the difference in the ROS detoxifica-
tion capacity and resistance to host defenses can be moni-
tored across emerging MRSA isolates to understand the
connection between virulence factor expression, antibiotics
resistance, and the BSH redox potential in S. aureus.

Materials and Methods

Bacterial strains, growth conditions, stress,
and antibiotics treatments

Bacterial strains, plasmids, and primers are listed in Sup-
plementary Tables S1–S3. For cloning and genetic manipu-
lation, E. coli was cultivated in LB medium. S. aureus strains
with the pRB473-XylR-Brx-roGFP2 plasmids were cultivated
in LB medium with 1% xylose to ensure constitutive expres-
sion of the biosensor. For stress experiments, S. aureus cells
were grown in LB until an optical density at 540 nm (OD540) of
1.0 and were transferred to Belitsky minimal medium (BMM)
with 1% xylose. The fully reduced control cells were treated
with 10 mM DTT and the fully oxidized control was treated
with 5 mM diamide for 20 min each, harvested with 10 mM N-
ethylmaleimide (NEM) to block the biosensor redox state, and
transferred to the microplate wells. The samples for stress
exposure were transferred to the microplates, and different
oxidants were injected into the wells of microplates. The Brx-
roGFP2 biosensor fluorescence emission was measured at
510 nm after excitation at 405 and 488 nm using the CLAR-
IOstar microplate reader (BMG Labtech) as described next for
the in vitro measurements. Three biological tests were per-
formed for each stress experiment.

For the survival assays, S. aureus COL wild type and the
bshA mutant were treated with NaOCl and H2O2 at an OD500

of 1.0 in BMM and serial dilutions were plated on LB agar
plates and counted for colony-forming units. The survival
assays were performed in three biological replicates for each
strain.

For the determination of the growth-inhibitory and sub-
lethal antibiotics concentrations, S. aureus was cultivated
in RPMI medium and the antibiotics erythromycin, rifampi-
cin, vancomycin, ciprofloxacin, gentamicin, ampicillin, fos-
fomycin, lincomycin, linezolid, or oxacillin were added at an

OD500 of 0.5 to monitor the reduction in growth as previously
described (8). The measurements of the biosensor responses
after antibiotics treatment were performed in S. aureus Brx-
roGFP2 cells that were grown in RPMI medium and treated
with sub-lethal antibiotics doses that reduced the growth rate.
Cells were harvested after different times of antibiotics treat-
ment, washed with phosphate-buffered saline (PBS), and
blocked with NEM before the microplate reader measure-
ments. Four biological replicates were performed for each
antibiotics stress experiment. Sodium hypochlorite, diamide,
DTT, H2O2 (35% w/v), and antibiotics (erythromycin, rifam-
picin, vancomycin, ciprofloxacin, gentamicin, ampicillin,
fosfomycin, lincomycin, linezolid, and oxacillin) were pur-
chased from Sigma-Aldrich.

Construction, expression, and purification
of Brx-roGFP2 in E. coli

The Grx-roGFP2 containing plasmid pQE60-Grx1-roGFP2
was obtained from Tobias Dick and colleagues (11) and used
as a template for construction of the Brx-roGFP2 fusion. The
brx gene (SAUSA300_1321) was amplified from chromosomal
DNA of S. aureus USA300 by polymerase chain reaction
(PCR) using primers SAUSA300-1321yphP-FOR-BamHI-
NcoI and SAUSA300-1321yphP-REV-SpeI (Supplementary
Table S3), digested with BamHI and SpeI, and inserted into
plasmid pQE60-Grx1-roGFP2 that was digested using the
same restriction enzymes to generate plasmid pQE60-Brx-
roGFP2. The brx-roGFP2 sequence was amplified from
plasmid pQE60-Brx-roGFP2 by PCR using primers 1321-
roGFP2-FOR-NheI and roGFP2-REV-BamHI, digested with
NheI and BamHI, and sub-cloned into pET11b (Novagen) after
digestion by the same enzymes to generate plasmid pET11b-
Brx-roGFP2.

For construction of the roGFP2 fusions with the Brx-Cys-to-
Ala variants, the Cys residues of the C54GC56 active site were
replaced by alanine using PCR mutagenesis. For the brxC54A
mutant, two first-round PCR reactions were performed us-
ing primers SAUSA300-1321yphP-FOR-BamHI-NcoI and
SAUSA300-1321-yphP-C56A-REV and primers SAUSA300-
1321-yphP-C54A-FOR and SAUSA300-1321yphP-REV-
SpeI. For the brxC56A mutant, two first-round PCR reactions
were performed using primers SAUSA300-1321yphP-FOR-
BamHI-NcoI and SAUSA300-1321-yphP-C56A-REV and
primers SAUSA300-1321-yphP-C56A-FOR and SAUSA300-
1321yphP-REV-SpeI. The two PCR products of each first-
round PCR reaction were hybridized and, subsequently,
amplified by a second-round PCR reaction using primers
SAUSA300-1321yphP-FOR-BamHI-NcoI and SAUSA300-
1321yphP-REV-SpeI. The PCR products from the second-
round PCRs were then digested with BamHI and SpeI and
inserted into plasmid pQE60-Grx1-roGFP2 that was digested
with the same enzymes. Sub-cloning of the Brx-Cys-to-Ala
mutant roGFP2 fusions into pET11b was performed as de-
scribed earlier.

To construct the brxC54A-C56A double mutant, first-round
PCR was performed using primers 1321-roGFP2-FOR-
NheI and 1321-brx-C54A56A-REV and primers 1321-brx-
C54A56A-FOR and SAUSA300-1321yphP-REV-SpeI. Then,
the PCR products from first-round PCR reactions were fused by
PCR using primers 1321-roGFP2-FOR-NheI and SAUSA300-
1321yphP-REV-SpeI. The PCR product from the second-round
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PCR was then digested with NheI and SpeI and inserted into
plasmid pET11b-Brx-roGFP2 that was digested with the same
enzymes.

To construct plasmid pET11b-roGFP2, primers roGFP2-
FOR-NheI and roGFP2-REV-BamHI were used to amplify
roGFP2 from plasmid pQE60-Grx1-roGFP2. The PCR
product was digested with NheI and BamHI and inserted into
plasmid pET11b that was digested with the same enzymes.
The correct sequences of all plasmid inserts were confirmed
by PCR amplification and sequencing.

For Brx-roGFP2 expression, E. coli BL21(DE3) plysS con-
taining the pET11-Brx-roGFP2 plasmids was grown in 1 L LB
medium and 1 mM IPTG (isopropyl-b-d-thiogalactopyranoside)
was added at the exponential phase (OD600 of 0.8) for 16 h at
25�C. Recombinant His-Brx-roGFP2 and the Brx-Cys-to-Ala
mutant roGFP2 fusion proteins were purified using PrepEase
His-tagged high-yield purification resin (USB) under native
conditions according to the manufacturer’s instructions (USB).
The purified proteins were extensively dialyzed against 10 mM
Tris-HCl (pH 8.0), 100 mM NaCl, and 50% glycerol and stored
at -80�C.

Microplate reader measurements of Brx-roGFP2
and calculation of OxD and EBSH

To study the Brx-roGFP2 response in vitro, the purified
proteins were reduced with 10 mM DTT for 20 min, desalted
with Micro-Bio spin columns (Bio-Rad), and diluted to
1 lM in 100 mM potassium phosphate buffer, pH 7.0.
Fluorescence excitation spectra of Brx-roGFP2 were ana-
lyzed both before and after exposure to the oxidants using
the CLARIOstar microplate reader (BMG Labtech) with the
Control software version 5.20 R5. Fluorescence excitation
spectra were scanned from 360 to 500 nm with a bandwidth of
10 nm, and emission was measured at 510 nm. Gain setting
was adjusted for each excitation maximum. The data were
analyzed using the MARS software version 3.10 and exported
to Excel. Each in vitro measurement was performed in tripli-
cate, as indicated in the figure legend. The OxD of the bio-
sensor was calculated using Equation (1), as previously
described (24, 25).

OxD ¼
1405 · 1488red � 1405red · 1488

1405 · 1488red � 1405 · 1488ox þ 1405ox · 1488 � 1405red · 1488

(1)

The values I405 and I488 are the observed fluorescence
excitation intensities at 405 and 488 nm, respectively. The
values I405red, I488red, I405ox, and I488ox are the fluo-
rescence excitation intensities at 405 and 488 nm of fully
reduced and oxidized probes, respectively.

The biosensor redox potential EroGFP2 was calculated
according to the Nernst Equation (2), as previously de-
scribed (25).

EroGFP2 ¼ EO¢
roGFP2 � RT

2F

� �
�ln

(1 � OxDroGFP2

OxDroGFP2

� �
(2)

Because the biosensor equilibrates with the BSH/BSSB
redox couple, EBSH = EroGFP2.

Construction of Brx-roGFP2 fusions in S. aureus

The brx-roGFP2 sequence was amplified with primers
SAUSA300-1321-FOR-BamHI-2 and roGFP2-REV-KpnI-3,
and the forward primer also includes the Shine-Dalgarno
sequence of the brx gene. The PCR product was digested with
BamHI and KpnI and inserted into the pRB473-XylR shuttle
vector that was digested using the same enzymes to generate
pRB473-XylR-Brx-roGFP2. The plasmids were cloned in E.
coli DH5a and electroporated into competent cells of S. au-
reus RN4220. The plasmids were transferred into the S. au-
reus target strains COL and USA300 by phage transduction
using bacteriophage 80 as previously described (26). S. au-
reus transductants were selected on LB agar with chloram-
phenicol. The plasmids were isolated and confirmed by PCR
and sequencing of the brx-roGFP2 fusion.

Western blot analyses for Brx-roGFP2 expression
and BSH-mixed disulfides in S. aureus

S. aureus strains with Brx-roGFP2 were grown in LB with
1% xylose and harvested at different times during the growth.
Cells were washed in Tris-buffer (pH 8.0) with 10 mM NEM,
disrupted using the ribolyzer and the protein extract was
cleared from cell debris by repeated centrifugation. Protein
amounts of 25 lg were analyzed by Western blot analysis
using mouse-anti-GFP monoclonal antibodies (Cat. No.
12616810949; Tebu Biosciences) as previously described
(11). Quantification was performed using the ImageJ soft-
ware (ver. 1.48, http://imagej.nih.gov) based on a standard
curve with purified Brx-roGFP2. The BSH-mixed disulfides
were analyzed after exposure of S. aureus cells to 100 lM
NaOCl using nonreducing SDS-PAGE and BSH-specific
Western blot analysis with polyclonal rabbit BSH-antibodies
as previously described (7).

CLSM of S. aureus Brx-roGFP2 strains

S. aureus strains with Brx-roGFP2 were exposed to 150 lM
NaOCl, harvested both before and after the stress, blocked with
NEM,andanalyzedbyCLSMusingaZEISSLSM510meta.The
microscope was equipped with a 100 · 1.3 M27 EC plan-
neofluar oil objective. Fluorescence excitation was performed at
405 and 488 nm, and emission was measured using the 505–
550 nm band pass filter. Cells treated with 10 mM DTT and
5 mM diamide were used as fully reduced and oxidized controls,
respectively. The argon/2 and 405 nm laser power were set to
20% and 8%, respectively. The smart gain was 948 V. All setting
parameters for the CLSM are listed in Supplementary Table S4.
The microscope was calibrated with fully oxidized and reduced
S. aureus Brx-roGFP2 controls. Quantification of the OxD val-
ues was performed from five cells each from each sample, and
the experiments were performed in two biological replicates.

Flow cytometry of S. aureus Brx-roGFP2 strains
during infection of THP-1 macrophage cell lines

For the infection assays, we used the human monocytic
leukemia cell line THP-1, which was purchased from the
DSMZ strain collection in Heidelberg (DSMZ-No. ACC-16).
The cell line was authenticated by multiplex PCR of mini-
satellite markers, which revealed a unique DNA profile, and
the expression of fusion gene MLL-MLLT3 (MLL-AF9) was
confirmed by real-time PCR. Cell cultures were checked for
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absence of mycoplasma contaminations by PCR on a regular
basis. This cell line is not included in the database of com-
monly misidentified cell lines as maintained by ICLAC.
THP-1 cells were cultivated in RPMI-1640 medium with
10% heat-inactivated fetal bovine serum (FBS) and seeded in
60 mm cell culture dishes at a density of 4.5 · 106 cells.
Differentiation was induced by 100 nM phorbol 12-myristate
13-acetate (PMA) for 24 h, followed by washing of cells with
Hanks’ balanced salts solution and the addition of fresh
medium without PMA.

After 24 h of incubation, infection assays of THP-1 mac-
rophages with S. aureus were performed as follows. First, S.
aureus COL cells expressing Brx-roGFP2 were grown in LB
with 1% xylose until OD540 of 0.5 was reached. Bacterial
cells were harvested, washed twice, and incubated in RPMI-
1640 medium. Infection of THP-1 cells with S. aureus Brx-
roGFP2 was performed at an MOI of 25 for 1 h. The infected
THP-1 cells were washed twice in PBS buffer, detached with
0.05% trypsin and 0.02% EDTA, centrifuged, and re-
suspended in PBS buffer with 1% FBS.

Measurement by flow cytometry was performed on an
Attune Acoustic Focusing Cytometer (Life Technologies)
with excitation at 405 and 488 nm and emission at 515–
545 nm. Ten thousand events were gated, and the MFI was
determined with Attune software V2.1.0 or FlowJo V10.07
(Tree Star). For reduced and oxidized controls, infected THP-
1 cells were treated with 20 mM DTT and 150 lM NaOCl,
respectively. Infection experiments were performed in three
biological replicates.
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K, Hecker M, Engelmann S, and Pane-Farre J. Deletion of
membrane-associated Asp23 leads to upregulation of cell
wall stress genes in Staphylococcus aureus. Mol Microbiol
93: 1259–1268, 2014.

27. Newton GL, Fahey RC, and Rawat M. Detoxification of
toxins by bacillithiol in Staphylococcus aureus. Micro-
biology 158: 1117–1126, 2012.

28. Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Bu-
diarto T, Hamilton CJ, Claiborne A, Helmann JD, and
Fahey RC. Bacillithiol is an antioxidant thiol produced in
Bacilli. Nat Chem Biol 5: 625–627, 2009.

29. Perera VR, Newton GL, Parnell JM, Komives EA, and
Pogliano K. Purification and characterization of the Sta-
phylococcus aureus bacillithiol transferase BstA. Biochim
Biophys Acta 1840: 2851–2861, 2014.

30. Perera VR, Newton GL, and Pogliano K. Bacillithiol: a key
protective thiol in Staphylococcus aureus. Expert Rev Anti
Infect Ther 13: 1089–1107, 2015.

31. This reference has been deleted.
32. Posada AC, Kolar SL, Dusi RG, Francois P, Roberts AA,

Hamilton CJ, Liu GY, and Cheung A. Importance of ba-
cillithiol in the oxidative stress response of Staphylococcus
aureus. Infect Immun 82: 316–332, 2014.
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A B S T R A C T

Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive
bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as
bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of
Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in
virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis,
Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection condi-
tions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under
antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered
in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the
GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to
measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-
negative and Gram-positive bacteria.

In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in
pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically en-
coded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and
antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the in-
tracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and
M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link
between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications
should be directed to compare the redox potentials among different clinical isolates of these pathogens in re-
lation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat
antimicrobial resistance.

1. Functions of low molecular weight thiols in pathogenic bacteria

1.1. Functions of glutathione in virulence and protein S-glutathionylation in
pathogenic bacteria

Low molecular weight (LMW) thiols play important roles to main-
tain the reduced state of the cytoplasm in all organisms [1,2]. Glu-
tathione (GSH) functions as major LMW thiol in Gram-negative bacteria
and in few Gram-positives, such as Streptococci, Listeria, Lactobacilli and
Clostridia (Fig. 1). However, some Gram-positive pathogens also use
ABC transporters to import GSH either from host cells or from the
growth medium, as shown for Streptococcus pneumoniae and Listeria

monocytogenes [3,4]. The biosynthesis and functions of GSH have been
widely studied in Escherichia coli, which produces millimolar con-
centrations of GSH [2,5]. GSH maintains protein thiols in its reduced
state, functions as a storage form of cysteine and is resistant to metal-
catalyzed autooxidation [2]. GSH undergoes autooxidation 7 times
slower compared to free Cys. Under oxidative stress, GSH is oxidized to
glutathione disulfide (GSSG) which is reduced by the glutathione re-
ductase (Gor) on expense of NADPH (Fig. 2). The GSH/GSSG ratio
ranges from 30:1 to 100:1 and the standard thiol-disulfide redox po-
tential of GSH was determined as E0'(GSSG/GSH) = − 240 mV at
physiological pH values in the cytoplasm of E. coli [1,6]. Many detox-
ification functions of GSH have been studied in E. coli. GSH is important
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for the defense against redox active compounds, xenobiotics, anti-
biotics, toxic metals and metalloids as reviewed previously [5]. Of note,
GSH is an important cofactor of glyoxalases involved in detoxification
of the toxic electrophile methyglyoxal as natural byproduct of the
glycolysis in E. coli [7–10].

Apart from its well-studied detoxification functions, GSH con-
tributes to the virulence of important human pathogens. The involve-
ment of GSH in virulence has been studied in the extracellular fa-
cultative anaerobic pathogen S. pneumoniae as well as for the
intracellular food-borne pathogens L. monocytogenes and Salmonella
enterica subsp. Typhimurium (S. Typhimurium) [3,4,11–14]. The glu-
tathione reductase Gor and the GSH-uptake system GshT protect S.
pneumoniae against oxidative stress and toxic metal ions and are re-
quired for colonization and invasion in a mice model of infection [3]. L.
monocytogenes is a facultative intracellular pathogen that has a sapro-
phytic lifestyle in the soil and a parasitic in the host [15]. Specific
evasion strategies enable to escape the phagolysosome and to pro-
liferate inside the host cell cytosol. L. monocytogenes utilizes host-de-
rived GSH, but can also synthesize bacterial GSH via the GshF fusion
protein [14]. Bacterial and host-derived GSH are both important for
virulence and expression of virulence factors in L. monocytogenes. The
virulence mechanism involves activation of the positive regulatory
factor A (PrfA) by allerosteric binding of GSH as cofactor to PrfA
[13,14] (Fig. 3). PrfA is a member of the CRP/FNR family and the
master regulator for many virulence factors including the actin as-
sembly factor ActA. ActA mediates actin polymerization and is essential
for intracellular spread of the pathogen across host cells [15]. The
structure of the PrfA-GSH complex has been recently determined to
investigate the mechanisms for activation of PrfA upon GSH binding.
GSH binding to a specific tunnel site of PrfA induces conformational
changes in the tunnel site of PrfA that stabilizes the helix-turn-helix
(HTH) motifs and primes PrfA for binding to the operator DNA [13].
Another structural study of the PrfA-GSH complex suggested that GSH

binding induces local conformational changes in PrfA, allowing DNA
binding and activation of gene transcription [16]. The GSH level and
the reduced cytosol of the host cells further influence the virulence of L.
monocytogenes [17]. Bacteria cultivated under reducing growth condi-
tions in minimal medium with GSH had a higher PrfA activation state
and virulence factor expression resulting in higher virulence in a
murine infection model [17]. PrfA controls also listeriolysin O (LLO) as
cholesterol-dependent cytolysin (CDC) required for host-cell lysis [15].
Interestingly, LLO was shown to be regulated by S-glutathionylation at
a conserved Cys residue by host and bacterial derived GSH which in-
hibits its hemolytic activity to lyse red blood cells [18]. These two
examples of PrfA and LLO highlight the important roles of GSH in ac-
tivation of virulence factors expression and redox regulation in an im-
portant intracellular pathogen.

The intracellular pathogen S. Typhimurium, which causes gastro-
enteritis, resides inside a Salmonella-containing vacuole (SCV) and in-
jects Salmonella pathogenicity island 2 effectors (SP-2) via a type-III-
secretion system (T3SS) directly into the host cell. S. Typhimurium
encounters oxidative stress by the phagocyte NADPH oxidase (Nox) that
produces Reactive Oxygen Species (ROS) as oxidative burst. Reactive
Nitrogen Species (RNS) are generated by the inducible NO synthase
(iNOS) inside macrophages and neutrophils (Fig. 3). In S. Typhi-
murium, GSH-deficient mutants displayed an increased sensitivity to
ROS and RNS and were attenuated in an acute model of salmonellosis in
NRAMPR mice that produces a high NO level [11]. Thus, GSH is im-
portant for the defense against ROS and RNS produced by Nox and
iNOS as shown in the model of salmonellosis [11]. In addition, GSH was
shown to be required for efficient transcription of the Spi-2 targets
under NO stress. The Spi-2 system interferes with lysosomal trafficking
and promotes intracellular replication inside the SCV [19,20]. Spi-2
reduces the contact between Salmonella-containing vacuoles (SCV) and
NADPH phagocyte oxidase vesicles. Thus, Spi-2 protects S. Typhi-
murium against the oxidative burst inside macrophages by maintaining

Fig. 1. Structures of major bacterial low mole-
cular weight (LMW) thiols. The major LMW thiols
are glutathione (GSH) present in Gram-negative
bacteria and few Gram-positive bacteria. Bacillithiol
(BSH) is the major LMW thiol in Firmicutes, such as
Bacillus and Staphylococcus species. Mycothiol (MSH)
is utilized in all Actinomycetes, including myco-
bacteria, corynebacteria and streptomycetes.
Coenzyme A (CoASH) also serves as alternative LMW
thiol-redox buffer in S. aureus and B. anthracis.
Ergothioneine (EGT) is a histidine-derived alter-
native LMW thiol in mycobacteria.
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Fig. 2. Reduction of S-glutathionylations, S-bacillithiolations and S-mycothiolations by glutaredoxin, bacilliredoxin and mycoredoxin pathways and design of genetically
encoded Grx1-roGFP2, Brx-roGFP2 and Mrx1-roGFP2 biosensors. The S-glutathionylated proteins are reduced by glutaredoxins (Grx) leading to a Grx-SSG intermediate that is
reduced by GSH and the NADPH-dependent GSSG reductase (Gor). These pathways for reduction of S-glutathionylated proteins are present in E. coli, S. Typhimurium and other Gram-
negative bacteria. Analogous bacilliredoxin and mycoredoxin pathways are present in BSH- and MSH-producing Gram-positive bacteria, such as S. aureus and B. subtilis as BSH producer
and M. tuberculosis and C. glutamicum that utilize MSH. The S-bacillithiolated proteins are reduced by bacilliredoxins (Brx) leading to Brx-SSB formation. The regeneration of Brx-SSB
could require BSH and perhaps the NADPH-dependent pyridine nucleotide oxidoreductase YpdA. In Actinomycetes, mycoredoxin1 (Mrx1) catalyzes reduction of S-mycothiolated proteins
leading to Mrx1-SSM generation that is recycled by MSH and the NADPH-dependent MSSM reductase Mtr. The genetically-encoded biosensors were used to measure the dynamic changes
of the intracellular redox potentials in eukaryotes and Gram-negative bacteria, such as E. coli and S. Typhimurium (Grx1-roGFP2) as well as in the Gram-positive bacteria S. aureus (Brx-
roGFP2) and M. tuberculosis (Mrx1-roGFP2), respectively.

Fig. 3. Functions of GSH in PrfA activation for virulence
factor expression in the intracellular pathogen Listeria
monocytogenes. After phagocytosis by macrophages, the inter-
cellular pathogen L. monocytogenes resides in an oxidizing vacuole
(red), containing ROS and RNS that are produced by Nox and
iNOS. L. monocytogenes has the ability to synthesize GSH, but can
utilize GSH from host cells. In the oxidizing vacuole, GSH pro-
duced by L. monocytogenes is oxidized to GSSG, which does not
bind the PrfA transcription factor [14]. L. monocytogenes escapes
into the reducing host cell cytosol, leading to GSH regeneration
and uptake of GSH from host cells. PrfA binds GSH and activates
transcription of PrfA regulon genes, such as actA. ActA expression
leads to Actin polymerization that allows movement of L. mono-
cytogenes through host cells.
This figure is adapted from Ref. [14].
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the intracellular thiol-redox balance [12,21]. The importance of this
T3SS Spi-2 for ROS evasion was demonstrated using the roGFP2 bio-
sensor as outlined in the biosensor section [12].

In Yersinia pestis, host-derived GSH functions in S-glutathionylation
of the T3SS effector protein LcrV. Y. pestis causes bubonic plaques as
extraordinary virulence mechanism and employs a T3SS for secretion of
Yop effectors directly into the host cell cytoplasm [22]. These effectors
function in pathogen evasion and neutralization of the host immune
defense. The T3SS first secretes the LcrV protein, a plaque-protecting
antigen that forms the needle cap protein of the T3SS and is essential
for plaque pathogenesis [23,24]. LcrV is S-glutathionylated at Cys273
by host-derived GSH after its translocation and S-glutathionylation of
LcrV is important for virulence of Y. pestis [25]. S-glutathionylated LcrV
binds to host ribosomal protein S3 (RPS3), promotes effector secretion
and macrophage killing. In addition, S-glutathionylation of LcrV con-
tributes to bubonic plague pathogenesis in mice and rat models of in-
fections [25]. In conclusion, GSH was shown to control expression and
modification of virulence factors that are secreted by the T3SS in bac-
terial pathogens. Moreover, GSH is essential for survival under infection
conditions in different pathogens, such as S. pneumoniae, L. mono-
cytogenes and S. Typhimurium.

1.2. Functions of bacillithiol in the virulence and protein S-bacillithiolation
in Gram-positive Firmicutes

The Gram-positive Firmicutes bacteria, such as Bacillus and
Staphylococcus species utilize bacillithiol (BSH, Cys-GlcN-malate) as
their major LMW thiol (Fig. 1) [26,27]. In B. subtilis and S. aureus, BSH
is important for detoxification of many redox-active compounds. BSH-
deficient mutants showed growth and survival defects after treatment
with ROS, electrophiles, HOCl, toxins, alkylating agents, heavy metals
and redox-active antibiotics, such as fosfomycin and rifampicin
[28–30]. BSH functions as cofactor for thiol-dependent detoxification
enzymes, such as thiol-S-transferases (FosB) and glyoxalases (GlxA/B).
These thiol-dependent enzymes conjugate BSH to toxic electrophiles,
fosfomycin and methylglyoxal for its detoxification [28,31]. BSH has
also an impact on metal homeostasis and functions in Zn2+-storage, FeS
cluster assembly and copper buffering [32–35]. The standard thiol-
redox potential of BSH was calculated as E0'(BSSB/BSH) = − 221 mV
and the BSH/BSSB ratios were determined as 100:1–400:1 under con-
trol conditions in B. subtilis cells [35–37]. Under NaOCl stress, the BSSB
level is increased indicating a more oxidized BSH redox potential [38].
The NADPH-dependent pyridine nucleotide disulfide reductase YpdA is
supposed to functions as BSSB reductase (Fig. 2), but its role in re-
generation of BSH has not been demonstrated.

Of note, BSH has an important role for virulence in the major pa-
thogen S. aureus. BSH protects S. aureus under infection-like conditions
in phagocytosis assays using human and murine macrophages [29,30].
The survival of BSH-minus clinical MRSA strains was strongly impaired
in human whole-blood survival assays [29]. The exact protective role of
BSH inside the host is unknown, but the yellow antioxidant pigment
staphyloxanthin was present at lower amounts in the absence of BSH
[29]. S. aureus isolates carry many mobile genetic elements, such as
prophages, pathogenicity islands, transposons and plasmids explaining
their high genome diversity. Due to a former transposon or other in-
sertion element, S. aureus NCTC8325 derivatives (e.g. SH1000) are bshC
mutants and do not produce BSH [29,30,39]. Thus, also S. aureus
SH1000 was impaired in survival inside murine macrophages and
human epithelial cells and the phenotype could be restored by com-
plementation with plasmid-encoded bshC [29,30]. Thus, BSH functions
as virulence mechanism in the defense against the host immune system
in S. aureus clinical isolates. Macrophages and neutrophils produce
large quantities of ROS and HOCl as well as bactericidal ammonium
chloramines during the oxidative burst [40–42]. Thus, the defense
mechanism of BSH could involve regulatory mechanisms by formation
of BSH mixed protein disulfides (S-bacillithiolations) in S. aureus inside

neutrophils and macrophages.
To get insights into the targets for S-bacillithiolations in S. aureus

under infection-like conditions, we have studied the quantitative thiol-
redox proteome of S. aureus USA300 under NaOCl stress using the
OxICAT approach [43]. In total, 58 Cys residues with > 10% increased
thiol-oxidation could be quantified under NaOCl stress. In addition, five
S-bacillithiolated were identified in S. aureus under NaOCl stress by
shotgun proteomics. These S-bacillithiolated proteins showed the
highest oxidation increase of > 29% in the OxiCAT analysis. The gly-
ceraldehyde-3-phosphate dehydrogenase Gap was identified as most
abundant S-bacillithiolated protein representing 4% of the total Cys
abundance in the proteome. Protein S-bacillithiolation functions in
redox regulation and protects the active site Cys151 of S. aureus Gap
under H2O2 and NaOCl stress against overoxidation in vitro [43]. Future
studies should reveal whether S-bacillithiolation of Gap or other pro-
teins could provide protection of S. aureus under infection conditions
inside macrophages and neutrophils. This adaptation to infection con-
ditions in S. aureus could involve the metabolic re-configuration of
central carbon metabolism as shown in eukaryotic organisms [44,45].
In yeast cells, Gap oxidation has been linked to the re-direction of the
glycolytic flux into the pentose phosphate pathway (PPP) to increase
NADPH levels. NADPH is used as electron donor for thioredoxin and
glutathione reductases to recover from oxidative stress [44,45]. Similar
mechanisms could be relevant also for S. aureus to enhance survival
under infection conditions.

Apart from BSH, S. aureus produces also coenzymeA (CoASH) as
abundant alternative LMW thiols and essential cofactor in cellular
metabolism. Moreover, a CoASH disulfide oxidoreductase (Cdr) is en-
coded in the genome of S. aureus that could be involved in reduction of
CoAS disulfides [27]. However, the functions of CoASH and Cdr for the
redox regulation of proteins by CoA-thiolations are unknown in S.
aureus. Recently, CoA-thiolation was shown in mammalian cells as a
widespread post-translational redox modification under oxidative stress
[46]. Numerous Cys peptides with CoA-thiolation sites were detected in
H2O2-treated heart cells and in the mitochondria of liver cells from
starved rats [46]. The authors developed a monoclonal antibody for
enrichment of CoA-thiolated proteins and identified 80 CoA mixed
disulfides (58 proteins) in heart cells and 43 CoA-thiolated Cys peptides
(33 proteins) in liver cells using mass spectrometry. Many CoA-thio-
lated proteins function in main metabolic pathways, like the TCA cycle
and the beta-oxidation pathway of fatty acids. These pathways involve
activated CoA-derivatives, such as acetyl-CoA indicating that CoA me-
tabolism and CoA-thiolation are functionally connected. It was also
demonstrated that CoA-thiolation can inactivate enzymes and function
in redox regulation of the glycolytic GapDH, the isocitrate dehy-
drogenase IDH and other metabolic enzymes [46]. Thus, it will be in-
teresting to reveal if GapDH and other S-bacillithiolated proteins are
also targets for CoA-thiolation in S. aureus under NaOCl stress.

The reduction of S-bacillithiolated proteins is catalyzed by ba-
cilliredoxins (BrxA and BrxB) that belong to DUF1094 family. Brx
proteins possess an unusual CGC motif, but function similar like glu-
taredoxins in B. subtilis and S. aureus (Fig. 2) [43,47]. Thus, Brx of S.
aureus has been used to construct the first Brx-roGFP2-fused biosensor
to measure changes in the BSH redox potential in S. aureus under oxi-
dative stress and infection conditions inside human macrophages as
outlined in the biosensor section.

1.3. Functions of mycothiol in the virulence and protein S-mycothiolation in
Actinomycetes

Mycothiol (MSH; NAc-Cys-GlcNAc-myoinositol) is the major LMW
thiol in high-GC Gram-positive Actinomycetes, including Streptomycetes,
Mycobacterium and Corynebacterium species (Fig. 1) [48,49]. Under
oxidative stress, MSH is oxidized to MSH disulfide (MSSM) and main-
tained in a reduced state by the mycothiol disulfide reductase Mtr. MSH
is involved in detoxification of numerous compounds, such as ROS,

Q.N. Tung et al.



RES, alkylating agents, toxins, antibiotics (erythromycin, vancomycin,
rifampin, azithromycin), heavy metals and toxic metalloids, aromatic
compounds, ethanol and glyphosate as studied in different Actinomy-
cetes [48,50–53]. In Streptomyces lincolnensis, MSH participates in the
biosynthesis of the sulfur-containing antibiotics lincomycin [54]. For
more details of these many detoxification functions of MSH and MSH-
dependent enzymes, the reader is referred to previous and recent re-
views [28,55].

Under hypochlorite stress, MSH was shown to form mixed disulfides
with protein thiols, termed as protein S-mycothiolation [56–58]. Pro-
tein S-mycothiolation protects protein thiols against the formation of
sulfinic and sulfonic acids and regulates protein activities, as demon-
strated in Corynebacterium glutamicum, Corynebacterium diphtheriae and
Mycobacterium smegmatis. About 25 S-mycothiolated proteins were
identified in C. glutamicum [56], 26 proteins in C. diphtheriae [58] and
58 in M. smegmatis under NaOCl stress [57]. Among the S-mycothio-
lated proteins, several are conserved S-thiolated at their active sites Cys
residues in different Gram-positive bacteria, including thiol-perox-
idases/peroxiredoxins (Tpx, AhpC), ribosomal proteins (RpsM, RplC),
the IMP dehydrogenase (GuaB), the myo-inositol-1-phosphate synthase
(Ino1), the methionine synthase (MetE) and the glycolytic GapDH
[38,56]. The extend of protein S-mycothiolation correlates with the
different MSH levels in corynebacteria and mycobacteria [59]. While
M. smegmatis contains 6 µmol/g raw dry weight (rdw) MSH [57], only
0.3 µmol/g rdw were determined in C. diphtheriae [58]. Thus, cor-
ynebacteria most likely utilize also alternative LMW thiols which re-
mains to be investigated.

Mycobacteria utilize the histidine-derivative ergothioneine (EGT) as
another alternative LMW thiol. MSH and EGT are both required for full
virulence and redox homeostasis of Mycobacterium tuberculosis (Mtb)
[60,61]. Both LMW thiols contribute also to full peroxide resistance of
M. smegmatis [62]. EGT levels are even increased in the mshA mutant
confirming that EGT can compensate for the absence of MSH [63]. Our
redox proteomics studies revealed an increased thiol-oxidation level in
the M. smegmatis mshC mutant which could involve alternative S-er-
gothionylation which remains to be elucidated [57]. However, in con-
trast to MSH, EGT is actively secreted into the supernatant [62]. Future
studies should be directed to study the role of EGT secretion in reg-
ulation of EGT levels, modulation of host ROS levels and S-thiolation of
bacterial and host proteins during infections.

Protein S-mycothiolation is redox-regulated by both, the mycor-
edoxin and thioredoxin pathways as demonstrated for thiol peroxidases
(Tpx, Mpx, AhpE), the methionine sulfoxide reductase (MsrA) and the
glycolytic GapDH in vitro [56,58,64–66]. Reduction of S-mycothiolated
GapDH occurred much faster by Mrx1 compared to Trx in vitro in-
dicating that Mrx1 is probably the main de-mycothiolating enzyme in
vivo [58]. In addition, S-mycothiolation of GapDH is faster compared to
its overoxidation in vitro. The methionine synthase MetE was further
protected by S-mycothiolation under acid stress conditions in C. gluta-
micum [67]. These results indicate that S-mycothiolation can efficiently
protect the active site Cys residues against overoxidation to sulfinic or
sulfonic acids and can be reversed by both, the Mrx1 and Trx pathways.
Mrx1 was used to construct the first MSH specific genetically encoded
biosensor Mrx1-roGFP2 to measure changes in the MSH redox poten-
tial.

Apart from S-mycothiolation, MSH plays also an important role for
growth, survival and antibiotics resistance under infection conditions in
the major pathogen Mtb [61,68]. Mtb is the etiologic agent of tu-
berculosis (TB) disease resulting in about 2 million human death each
year [69]. Due to the slow intracellular growth of Mtb inside the pha-
gosomes of macrophages, TB patients have to be treated with anti-
biotics for several months, resulting in multiple and extreme drug re-
sistant Mtb isolates (MDR/XDR) as a major health burden. MSH is
involved in the activation of the first-line anti-TB drug isoniazid (INH)
in Mtb [70]. INH is a pro-drug that is activated by the catalase KatG and
MSH resulting in a NAD-INH adduct that finally inhibits InhA of the

mycolic acid biosynthesis pathway [71]. Thus, the evolved INH re-
sistant Mtb isolates often carry spontaneous mutations in katG, mshA
and in the target gene inhA [51]. This requires alternative drug devel-
opments to treat emerging resistant Mtb isolates. Since MSH is im-
portant for virulence of Mtb, inhibitors of MSH biosynthesis and re-
cycling have been successfully applied in combination therapies that
target MshB, MshC, Mtr and the MSH-S-conjugate amidase Mca as new
anti-TB drugs [72]. Moreover, ROS-producing compounds have been
designed and may have a great potential to tackle anti-tuberculosis
drug resistance. In the later sections, we will highlight recent work in
drug research showing the power of the genetically encoded Mrx1-
roGFP2 biosensor to study the role of MSH in antibiotics resistance, to
reveal the involvement of ROS in the killing mode of antibiotics under
infection conditions and to develop new combination therapies invol-
ving ROS-producing compounds.

2. Dynamic redox potential measurements using roGFP2-based
biosensors in pathogens

The development of redox-sensitive green fluorescent proteins
(roGFPs) has enabled the ratiometric measurement of the cellular redox
potential at high sensitivity and spatiotemporal resolution using live-
imaging approaches [73–76]. For construction of roGFPs, two redox-
active Cys residues (Cys147 and Cys204) were introduced in the GFP
molecule that form a disulfide bond upon oxidation resulting in con-
formational changes of the chromophore and fluorescence changes
[76]. The roGFP2 biosensor has two excitation maxima at 405 and
488 nm, which change upon oxidation resulting in a ratiomeric bio-
sensor response [74,77]. The Cys pair in roGFPs has been shown to
equilibrate with the GSH/GSSG redox couple and the probes are widely
used to measure the changes in the GSH redox potential in living eu-
karyotic cells [76]. However, the equilibration of endogenously ex-
pressed roGFPs with the GSH/GSSG pair is too slow and limited by the
Grx expression levels. The Grx levels vary also in different compart-
ments and are rate-limiting factors in the thiol-disulfide exchange re-
actions between the probe and the GSH pool.

To facilitate the specific response of roGFP2 with the GSH/GSSG
redox couple, human glutaredoxin was fused to roGFP2 to construct the
Grx1-roGFP2 biosensor for real-time measurements of the dynamic
changes in the GSH redox potential (EGSH) in eukaryotic organisms
[75]. The Grx1-roGFP2 biosensor responds much faster within seconds
to nanomolar concentrations of GSSG compared to unfused roGFP2
[74,75]. Thus, the Grx1-roGFP2 probe is highly specific and detects
small changes in the GSH redox potential in living eukaryotic cells. To
date, roGFP2 and Grx1-roGFP2 biosensors have been applied in many
eukaryotic organisms and pathogens to study intracellular redox
changes in Arabidopsis thaliana, Caenorhabditis elegans [75,78,79], yeast
cells and the malaria parasite Plasmodium falciparum [80]. In particu-
larly, pathogens are well suited to analyze the effect of drugs on the
cellular redox metabolism and hence, the biosensors can help to screen
for novel ROS-producing drugs. In this part of the review, we will
present an overview about the application of roGFP2 biosensors in
major human pathogens, including the foodborne intracellular pa-
thogen S. Typhimurium, the extracellular Gram-positive pathogen S.
aureus and in the intracellular major pathogen M. tuberculosis. Alto-
gether, the biosensor results have advanced our understanding of the
mechanisms of survival and intracellular replication, ROS evasion and
persistence as well as antibiotics resistance in many important human
pathogens.

2.1. Dynamic roGFP2-based biosensors to measure redox changes in Gram-
negative bacteria

The roGFP2 biosensors were first applied in Gram-negative bacteria
to measure the redox changes during growth, under oxidant and anti-
biotics treatment as well as infection conditions. In E. coli, plasmid-
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encoded roGFP2 was used to observe cellular oxidation in response to
different oxidants, toxic heavy metals and metalloids [81,82]. Toxic
biocides, pollutants and metalloids are often found as environmental
contaminants and originate from anthropogenic and natural sources.
Thus, roGFP2 served as diagnostic tool to measure oxidative stress in E.
coli by toxic environmental contaminants. Low levels of 0.1–1 mM H2O2

resulted in a rapid roGFP2 biosensor response. The roGFP2 biosensor
showed also a fast response to heavy metals, such as Cd2+, Zn2+, Cu2+,
Pb2+, arsenite and selenite as well as biocides and redox-cycling agents
(menadione, naphthalene). However, quantification of the biosensor
response using the microplate reader was not possible after exposure to
toxic heavy metals or metalloids due to instability of the roGFP2 bio-
sensor [81]. To increase roGFP2 stability, E. coli cells expressing the
roGFP2 biosensor were immobilized in a transparent k-carrageenan
(KC) matrix for further toxicity measurements [83]. The detection limit
to measure a biosensor response was defined as 0.2 µg/l for arsenite and
5.8 ng/l for selenite. These immobilized roGFP2 expressing E. coli cells
were applied to screen for bioavailability and toxic effects of pollutants
[83].

2.1.1. The T3SS Spi-2 contributes to ROS evasion in S. Typhimurium
The first physiological studies in pathogenic Gram-negative bacteria

using roGFP2 biosensors were performed in the intracellular pathogen
S. Typhimurium that replicates inside the SCV [12]. S. Typhimurium
escapes ROS by the T3SS Spi-2 that injects effectors directly into the
host cell cytoplasm (Fig. 4). Thus, the biosensor was used to elucidate
whether the T3SS Spi-2 contributes to evasion from the host innate
immune defense to escape ROS and RNS. The intrabacterial redox
changes were measured in S. Typhimurium after infection of HeLa cells
and THP-1 cells that produce different ROS levels. In addition, the in-
fluences of the Spi-2 system and its effector SifA on ROS evasion stra-
tegies were investigated using ssaR and sifA mutants which are re-
viewed in this part.

S. Typhimurium encounters an acidic environment inside macro-
phages. Thus, it was first confirmed that the purified roGFP2 probe is
not pH-sensitive in vitro. Next, the biosensor response inside S.
Typhimurium cells was measured after treatment with H2O2 and the
NO donor SpermineNONOate since S. Typhimurium has to cope with
ROS and RNS that are produced by Nox and iNOS after phagocytosis.
The roGFP2 biosensor responds very fast and reversible to 50–500 µM
H2O2, but only high concentrations of 25 mM H2O2 lead to full oxida-
tion of the probe inside S. Typhimurium. However, due to the

detoxification by catalases and peroxidases, cells could quickly re-
generate the reduced state even after treatment with high H2O2 levels.
In contrast, exposure to 5–20 mM of the NO-donor resulted in a strongly
increased biosensor oxidation with no recovery of the reduced state.
These experiments verified that the probe detects intrabacterial redox
changes under physiological micromolar ROS and RNS challenge.

To analyze the redox changes in S. Typhimurium after infection of
host cells, epithelium-like HeLa cells and macrophages-like THP-1 cells
were used. Interestingly, S. Typhimurium replicating inside THP-1 cells
experienced higher levels of redox stress compared to bacteria infected
in HeLa cells. The THP-1 cell line is known to produce higher ROS le-
vels and is able to kill the majority of S. Typhimurium cells [12].
Moreover, redox stress heterogeneity was observed between different S.
Typhimurium cells that maybe important to understand persistence and
antibiotic resistance mechanisms.

In human and murine macrophages it was further shown that S.
Typhimurium cells experience more redox stress in the cytosol com-
pared to that residing in the SCV indicating that replication inside the
vacuole contributes to ROS evasion. Thus, the role of the T3SS Spi-2 as
ROS evasion strategy inside the SCV was investigated in the ssaR mu-
tant that lacks the functional Spi-2 system (Fig. 4) [12]. The ssaR mu-
tant displayed a higher oxidation level in THP-1 cells compared to the
wild type indicating that the Spi-2 system contributes to ROS evasion.
Previous studies revealed that Spi-2 effectors affect co-localization of
SCV and phagocyte Nox vesicles, which contributes to ROS evasion
[12,21]. Among the Spi-2 effectors, SifA was shown to control vacuole
integrity as ROS evasion strategy. The biosensor measurements re-
vealed that ROS evasion by the Spi-2 system requires an intact SCV
since the sifA mutant experienced a higher redox stress [12]. Thus, the
Spi-2 system functions via its effector SifA in ROS evasion to maintain
the reduced state of the cytoplasm and to allow intracellular survival of
S. Typhimurium [12].

2.1.2. Regulation of H2O2 detoxification and ROS-generation by antibiotics
and toxic metals

Bacteria have evolved different antioxidant enzymes for ROS de-
toxification, such as catalases, thiol-dependent peroxidases, peroxir-
edoxins and superoxide dismutase [84]. The role of many H2O2

scavenging enzymes is often unknown in bacteria [85] and hence
roGFP2 biosensors can contribute to study the dynamics and activity of
ROS-degradation by the different bacterial enzymes. Thus, the roGFP2
biosensor was applied to measure redox changes and the ROS

Fig. 4. Mechanisms of ROS evasion allowing intracellular
replication of Salmonella Typhimurium inside the SCV to es-
cape the host immune defense as revealed by the roGFP2
biosensor. The intracellular pathogen S. Typhimurium produces
GSH and replicates inside macrophages in a Salmonella-containing
vacuole (SCV). S. Typhimurium escapes ROS in the SCV by the
type-III-secretion system Spi-2 that injects effectors directly into
the host cell cytoplasm. GSH is required for transcription of the
Spi-2 targets under NO stress. S. Typhimurium cells are highly
reduced (green) inside in the SCV, while those that escape into
host cells cytoplasm are oxidized [12]. The Spi-2 effector SifA
affects co-localization of SCV and Nox vesicles and controls the
vacuole integrity via microtubuli formation, which contributes to
ROS evasion [12]. The Spi-2 effectors also interfere with lyso-
somal trafficking, promoting intracellular replication inside the
SCV [19,20]. Thus, the Spi-2 system via its effector SifA functions
in ROS evasion, controls vacuole integrity and maintains the in-
tracellular redox balance of S. Typhimurium inside the SCV to
allow intracellular replication [12].
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detoxification capacity after treatment with H2O2, toxic heavy metals
and antibiotics across different Gram-negative bacteria, including non-
pathogenic and pathogenic E. coli, Citrobacter rodentium, Yersinia pseu-
dotuberculosis, Salmonella enterica serovar Typhi and S. Typhimurium
[86]. Using specific mutants in catalases and peroxidases, the kinetics
of H2O2 detoxification was monitored for each antioxidant enzyme in
different bacteria. Although the bacterial species were evolutionary
related, the activities of their H2O2 detoxification enzymes showed
strong variations. This enabled also to measure the ROS detoxification
capacity of S. Typhimurium during priming with sub-lethal doses of
500 µM H2O2 and subsequent challenge with higher doses of 1 mM
H2O2 compared to naïve cells. The primed bacteria could faster detoxify
1 mM H2O2 and recover to the reduced state compared to naïve bacteria
[86].

In S. Typhimurium, the biosensor further allowed to measure en-
dogenous ROS production in a catalase/peroxidase-negative hpxf mu-
tant during different growth phases, media and temperatures. The en-
dogenous ROS levels were highest during the later exponential growth
at 37 °C in rich media compared to minimal medium. Thus, optimal
growth conditions that allow a maximum growth rate correlate with
high oxygen consumption and increased ROS generation. Similar as in
the first E. coli roGFP2 approach [83], the toxicity of metals was as-
sessed due to ROS production using the biosensor in S. Typhimurium
[86]. While certain metal ions are required for H2O2 detoxification,
exposure of S. Typhimurium to zinc and nickel contributed to ROS
generation by inhibition of ROS detoxification enzymes (zinc) or
spontaneous thiol-oxidation (nickel).

Next, biosensor measurements were performed under antibiotics
treatment to validate whether ROS are involved in the killing mode of
antibiotics, a continuous and controversial debate among micro-
biologists [87–89]. The oxidation-sensitive S. Typhimurium hpxf mu-
tant was exposed to different antibiotics classes, including aminogly-
cosides, quinolones, cephalosporine and β-lactam antibiotics, but no
increased biosensor oxidation could be monitored. This indicates that
these antibiotics classes do not enhance endogenous ROS as killing
mode in the S. Typhimurium hpxf mutant [86]. In contrast, Shukla and
coworkers [90] showed that exposure to ampicillin, amikacin and ci-
profloxacin leads to an impaired redox balance and increased biosensor
oxidation in E. coli. Moreover, hydrogen persulfide (H2S) was shown to
protect E. coli against oxidative stress triggered by bactericidal anti-
biotics which is controlled by two mechanisms. H2S mediated antibiotic
tolerance involves rerouting of the electron flow from the energy-effi-
cient cytochrome bo oxidase (Cyo) to the less-energy efficient cyto-
chrome bd oxidase (CydBD) to maintain the respiratory flux and the
redox balance. In addition, H2S enhances the activities of the anti-
oxidant enzymes catalase and superoxide dismutase which contributes
to ROS detoxification under antibiotics treatments [90].

In S. Typhimurium, the roGFP2 biosensor was further applied to
determine the real-time H2O2-influx [91]. The H2O2-influx was calcu-
lated by multiplication of the membrane permeability coefficient (P),
the membrane surface area (A) and the difference between the inner
and outer H2O2 concentrations (ΔC) as revealed by the degree of bio-
sensor oxidation. The results showed that H2O2 first enters the cells by
passive diffusion which is suddenly stopped, also termed as “switching
point”. This stop in the H2O2 influx was caused by changes in the outer
membrane permeability, as verified by spheroplasts lacking an outer
membrane. The spheroplasts exhibited a significantly faster H2O2-influx
without the “switching point”. The outer membrane proteins OmpA and
OmpC were shown to regulate the H2O2 influx by opening and closing
of their beta barrel structures [91].

Altogether, the roGFP2 biosensor has been widely used to measure
the intrabacterial redox changes in several Gram-negative bacteria
during the growth and under treatment with ROS and redox-active
compounds, such as toxic metals and antibiotics as well as during in-
fection and intracellular replication. The results revealed surprising
differences in the H2O2 detoxification kinetics by antioxidant enzymes,

such as catalases and peroxidases across closely related bacteria.
Different antibiotics did not caused increased ROS-formation in a S.
Typhimurium ROS-sensitive mutant [86], while Shukla and coworkers
[90] revealed enhanced roGFP2 oxidation by antibiotics in E. coli cells.
These different studies using the same roGFP2 biosensors further con-
tribute to the controversial debate about the involvement of ROS in the
killing mode of antibiotics. Moreover, roGFP2 biosensor measurements
revealed that H2O2-influx is regulated by switching point due to OMPs
that can open and close their beta-barrel. Of particular importance are
further the roGFP2 biosensor measurements of S. Typhimurium inside
the SCV. It was shown that the type-III-secretion system Spi-2 is re-
quired for ROS evasion and this depends on an intact vacuole. The
bacteria were protected against ROS inside the SCV while bacteria that
escaped into the host cell cytoplasm were more oxidized by ROS.

However, as critical remark, it has to be mentioned that the authors
used only uncoupled roGFP2 for all measurements of the intrabacterial
redox potential in S. Typhimurium. The unfused roGFP2 biosensor
suffers from its low specificity for the GSH/GSSG redox couple and the
limited availability of endogenous Grx. Thus, whether the roGFP2
probe specifically responds to GSH redox potential changes or other
redox signals is not known. Future studies should be performed using
the Grx1-roGFP2 biosensor which is highly specific to measure ratio-
metric changes in the GSH redox potential [75]. It will be also inter-
esting to apply the Grx1-roGFP2 biosensor to study the mechanisms of
ROS evasion in other GSH-utilizing intracellular pathogens, such as L.
monocytogenes and Legionella pneumophila.

2.2. Dynamic measurement of the BSH redox potential (EBSH) using the
Brx-roGFP2 biosensor in the human pathogen S. aureus

We have recently fused bacilliredoxin (Brx) of S. aureus to roGFP2 to
construct the first genetically encoded Brx-roGFP2 biosensor for dy-
namic measurement of the intracellular BSH redox potential (EBSH) in S.
aureus [92]. The BSH redox potential changes were determined during
the growth, under ROS and NaOCl stress, during infection inside THP-1
macrophages and antibiotics treatments in two clinical MRSA isolates
COL and USA300. In both MRSA strains, BSH enhances the survival
during phagocytosis with human and murine macrophage-like cell lines
[29,30]. Brx-roGFP2 is highly specific for physiological levels of
10–100 µM BSSB which depends on the Brx active site Cys in vitro. Thus,
Brx-roGFP2 facilitates rapid equilibration of the biosensor with the
BSH/BSSB couple to determine the changes in the BSH redox potential
inside S. aureus.

First, an increased biosensor oxidation was measured in S. aureus
COL and USA300 in rich medium during the stationary phase compared
to the log phase. The dynamic range of Brx-roGFP2 was higher in COL
compared to USA300, which may depends on their different BSH levels
[29]. USA300 is a highly virulent CA-MRSA strain, which produces
many unique virulence factors encoded on prophages, pathogenicity
islands and other mobile genetic elements [93]. In addition, USA300
has a higher level of BSH compared to COL. Thus, the biosensor re-
sponse of USA300 could be lower under diamide stress resulting in a
lower dynamic range of fully reduced versus oxidized probes. In addi-
tion, strain USA300 could be less permeable or more resistant to dia-
mide compared to COL, leading only to partial biosensor oxidation.
Future studies should involve other strong oxidants, such as cumene
hydroperoxide or redox cycling agents for full oxidation of the bio-
sensor to increase the dynamic range in USA300.

Treatment of S. aureus COL with different oxidants resulted in a fast
biosensor response, but at different oxidation degrees. While doses of
50–100 µM NaOCl stress lead to the fully oxidation of the biosensor,
exposure of S. aureus to 1–10 mM H2O2 revealed only a slightly in-
creased oxidation degree with rapid regeneration of the reduced state.
This lower biosensor response under H2O2 stress might be due to the
high H2O2 resistance of S. aureus which is able to survive up to 300 mM
H2O2 [94]. We further measured the changes in BSH redox potential
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inside S. aureus COL after infection of THP-1 macrophages using flow
cytometry. The Brx-roGFP2 biosensor was 87% oxidized in S. aureus
COL inside macrophages indicating that S. aureus experiences oxidative
stress after internalization. In future studies, the redox dynamics of
persister cells inside macrophages should be investigated to reveal the
BSH redox dynamics during internalization, which is often the cause of
chronic S. aureus infections.

The biosensor response was also measured in S. aureus COL and
USA300 bshA mutants and in RN4220, which is a natural bshC mutant
of the NCTC8325-4 lineage. Brx-roGFP2 was fully oxidized in the BSH-
deficient mutants indicating an impaired redox balance in the absence
of BSH. In previous studies, a lower NADPH level was found in the bshA
mutant perhaps explaining its impaired redox balance [29]. To clarify
whether ROS generation contributes to the killing mode of antibiotics,
S. aureus was exposed to sub-lethal doses of different antibiotics classes,
including rifampicin, fosfomycin, ampicillin, oxacillin, vancomycin,
aminoglycosides and fluoroquinolones. However, no increased oxida-
tion degree of the Brx-roGFP2 biosensor was measured under anti-
biotics treatment, which confirms the findings in S. Typhimurium [86].
However, the biosensor responds fast to oxidants and could be a valu-
able tool in drug-research to screen for new ROS-generating antibiotics
that affect the BSH redox potential in S. aureus. Future studies should be
directed to measure the ROS detoxification capacity in mutants lacking
antioxidant systems and in MRSA-isolates of various genetic lineages to
unravel the link between ROS resistance and the BSH redox potential in
S. aureus.

2.3. Dynamic measurements of the MSH redox potential (EMSH) in
Mycobacterium tuberculosis using the Mrx1-roGFP2 biosensor

In Mtb, an analogous Mrx1-roGFP2 biosensor was developed for
dynamic measurements of the MSH redox potential (EMSH) in drug-re-
sistant isolates and inside the acidic phagosomes of macrophages
[74,95,96]. The increasing prevalence of persistent and chronic relap-
sing Mtb infections as well as multiple and extreme drug-resistant
(MDR/XDR) Mtb isolates are a major health burden. Thus, the devel-
opment of new drugs against severe tuberculosis infections is an urgent
need. The new biosensor was successfully applied to screen for ROS-
generating anti-TB drugs and combination therapies (e.g. augmentin or
isoniazid combinations) that affected EMSH to study drug actions linked

to the EMSH to combat life-threatening TB infections [95,97–99]. It was
revealed that the EMSH inside infected macrophages is heterogeneous
with sub-populations that have reduced, oxidized and basal levels of
EMSH. This redox heterogeneity depends on sub-vacuolar compartments
inside macrophages and the cytoplasmic acidification that requires
WhiB3 as central redox regulator [95,96]. These results using the Mrx1-
roGFP2 biosensor have advanced the understanding how this major
pathogen copes with anti-TB drug and persists inside macrophages. The
major results obtained with Mrx1-roGFP2 are summarized in this part
of the review.

After construction of the Mrx1-roGFP2 biosensor, it was demon-
strated that the Mrx1-roGFP2 fusion is specific to measure MSSM, but
does not respond to other LMW thiol-disulfides [95]. It was further
controlled that overexpression of Mrx1-roGFP2 does not affect cellular
metabolism, stress resistance and the basal level of EMSH in Mtb [95].
Importantly, differences were observed in the biosensor response be-
tween slow growing Mtb strains and fast growing M. smegmatis resulting
in a delayed response to H2O2 in Mtb and a rapid H2O2 response in M.
smegmatis [95]. However, there was only little variation between the
basal EMSH in various drug-resistant (MDR/XDR) and drug-sensitive
clinical Mtb isolates during laboratory growth, where the intracellular
EMSH was calculated as highly reduced with values of − 273 mV to
− 280 mV [95]. However, in slow growing Mtb strains the EMSH is more
oxidizing compared to fast growing M. smegmatis. In M. smegmatis, a
basal EMSH of − 300 mV was calculated which is consistent with the
higher MSH/MSSM ratio (200:1) in M. smegmatis compared to that in
Mtb (50:1) [100].

2.3.1. EMSH redox heterogeneity in Mtb sub-populations depends on specific
vacuole compartments

In general, different Mtb strains did not show strong variations in
their intracellular EMSH when grown under in vitro conditions in growth
media. However, this was completely different under in vivo infection
conditions. Different Mtb sub-populations with reduced (− 300 mV),
oxidized (− 240 mV) and basal EMSH (− 270 mV) could be observed
and quantified by flow cytometry under infection conditions inside
THP-1 macrophages [95]. It was further shown that the reduced EMSH

sub-population is decreased and the oxidized EMSH sub-population is
increased at later time points of macrophage infections which correlates
with a decreased MSH/MSSM ratio [95]. Thus, the intramacrophage

Fig. 5. The role of EMSH and the WhiB3 transcription factor in
M. tuberculosis persistence under acidic conditions during
infection of macrophages as shown by the Mrx1-roGFP2
biosensor. M. tuberculosis is an intracellular pathogen that re-
plicates inside the acidic phagosome of macrophages (pH ~ 6.2)
preventing phagosomal maturation to phagolysosomes as survival
mechanism. During immune activation of macrophages, phago-
somes are fused with lysosomes resulting in further pH decrease
to pH 4.5. The mild acidification in phagosomes causes a highly
reduced EMSH inside M. tuberculosis, while strong acidification
leads to oxidized EMSH as measured in phagolysosomes [96]. The
WhiB3 transcription factor senses acidic conditions in the pha-
gosome and activates transcription of WhiB3 regulon genes, such
as type-VII-secretion system effectors (EspA) and polyketide lipids
that inhibit phagosomal maturation. WhiB3 causes up-regulation
of antioxidant systems (MSH, Trx) to restore the redox balance
and to promote survival and persistence of M. tuberculosis inside
the phagosome.
This figure is adapted from Ref. [96].
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environment induces redox heterogeneity with different EMSH sub-po-
pulations in Mtb. Of note, the sub-populations with reduced, oxidized
and basal EMSH were different during the time course of infections and
also between various MDR/XDR Mtb isolates indicating a strongly
varying redox balance between Mtb isolates. Immune activation further
leads to an oxidative shift of Mtb sub-populations, which resulted from
NO stress as part of host innate immune defense [95].

Mtb is an intracellular pathogen, that is engulfed by macrophages
and trapped in an organelle, called the phagosome (Fig. 5). Phagosomal
maturation occurs by the interaction of phagosomes with endosomes
and fusion with lysosomes to phagolysosomes, a highly acidic and mi-
crobicidal compartment that finally degrades invading bacteria [101].
However, Mtb successfully restricts phagosomal maturation by pre-
venting fusion of phagosomes with lysosomes. This enables Mtb to
persist and replicate inside the phagosome to cause chronic and re-
lapsing Mtb infections [102,103]. It was suggested, that the different
sub-vacuolar compartments might induce this EMSH redox heterogeneity
in Mtb [95]. The Mtb sub-populations were investigated in different
vacuolar compartments including early endosomes, autophagosomes
and lysosomes. Interestingly, the Mtb sub-population located in autop-
hagosome showed almost oxidized EMSH, while those residing in lyso-
somes were 58% oxidized and the sub-population in early endosomes
showed mostly (54%) reduced EMSH. Thus, the biosensor identified the
sources of redox heterogeneity as the specific compartments in which
Mtb resides inside macrophages.

2.3.2. Mechanisms of antibiotics-mediated ROS generation as strategy to
combat drug resistance in Mtb

Due to the controversial debate about the role of ROS in antibiotic-
mediated bacterial killing, the changes in intramycobacterial EMSH were
investigated after exposure to anti-TB drugs. In agreement with the
biosensor responses under antibiotics stress in S. Typhimurium and S.
aureus [86,92], no oxidative shift in EMSH was reported in shake-flask
experiments with Mtb populations that were exposed to sub-lethal anti-
TB-drugs, e.g. isoniazide, ethambutol and rifampicin [95]. The only
exception was the redox-cycling drug clofazimine, which caused an
oxidative shift in EMSH in Mtb shake-flask cultures. However, under
macrophage infections, different antibiotics classes caused oxidative
stress as shown by an oxidative shift in the EMSH sub-populations, which
was accompanied by increased killing of bacteria. Moreover, the redox
heterogeneous sub-populations vary in their susceptibilities to anti-
biotics. The more oxidized population in autophagosomes and lyso-
somes was more susceptible to antibiotics killing, while the reduced
population in endosomes displayed resistance to anti-TB drugs. Thus,
immune activation inside macrophages potentiates drug killing while
populations with reduced EMSH promote antibiotics tolerance. Together
these results showed important novel insights into the redox hetero-
geneity of Mtb sub-populations in different macrophage compartments,
their susceptibility to antibiotics and the mechanisms of persistence
[95].

In subsequent studies, several efforts were undertaken to under-
stand the mechanisms of drug resistance and to develop new ROS-
producing anti-TB drugs. These ROS-generating drug were used alone
and in combination therapies as promising strategy to counteract the
increasing problem of antimicrobial resistance and to combat XDR/
MDR Mtb isolates [97–99]. First, hydroquinone-based antibiotics were
synthesized, including ATD-3169 which was shown to cause superoxide
production in Mtb isolates and increases the irreversible oxidized Mtb
sub-population [99]. Next, combination therapies of isoniazid (INH)
and inhibitors of antioxidant responses were found as promising
strategy to threat drug resistant Mtb isolates [98]. Such inhibitors of
antioxidant responses were ebselen, vancomycin and phenylarsine
oxide that were highly effective in combination with INH to kill drug
resistant Mtb isolates.

INH is a pro-drug that is activated by the catalase KatG and con-
verted to a NAD-INH-adduct, that subsequently inhibits the enoyl-ACP

reductase (InhA) in the mycolic acid biosynthesis pathway [98]. To
identify the mechanisms of drug resistant Mtb strains, isoniazid re-
sistance was studied in more detail in laboratory evolved INH-resistant
M. smegmatis strains [98]. Genome sequencing revealed that INH re-
sistant strains carried point mutations in genes for NADH dehy-
drogenase (ndh), catalase (katG) or the 3-dehydroquinate synthase
(aroB). Transcriptomics identified antioxidant responses as dominating
in the differentially transcribed genes in the INH resistant M. smegmatis
strains. Moreover, the INH resistant strain was more sensitive to com-
pounds that block antioxidant responses and disturb EMSH. In agree-
ment with this finding, the Mrx1-roGFP2 biosensor measurements re-
vealed an oxidized shift in basal EMSH and a higher sensitivity to
oxidative stress by H2O2 in the INH-resistant M. smegmatis strain [98].
This higher ROS-sensitivity was not only observed in the INH-resistant
M. smegmatis strain, but also in clinical MDR and XDR Mtb patient
isolates. Thus, the evolution of drug resistance is associated with
changes in the basal EMSH and shifted to the oxidized redox state in
multiple resistant Mtb isolates. Finally, it was shown that antibiotics
that produce ROS or block antioxidant responses are in combination
with INH more potent to induce oxidative shift in EMSH during infec-
tions. These drugs should be promising strategies to tackle tuberculosis
disease and to combat drug resistant isolates [98].

2.3.3. EMSH regulates the redox state of WhiB4 mediating augmentin
resistance and tolerance

In another study, the mode of action for combination therapy of β-
lactam antibiotics (amoxicillin) with β-lactamase inhibitors (clavula-
nate), termed as augmentin, has been studied. The Mrx1-roGFP2 bio-
sensor revealed a role of EMSH and the WhiB4 redox sensor in aug-
mentin resistance (Fig. 6) [97]. To study the mode of action of
augmentin, a transcriptomics approach was used and identified cell
wall and oxidative stress responses, respiration and carbon metabolism
induced under augmentin treatment. Using biosensor measurements, an
increase in the oxidized EMSH sub-population was observed by aug-
mentin over time during Mtb infections inside macrophages. Thus,
augmentin effects the redox balance in Mtb, which potentiates its my-
cobactericidal effect and contributes to augmentin killing [97]. Fur-
thermore, MSH was shown to protect Mtb from toxicity under aug-
mentin treatment in survival assays. In further analysis, the FeS-cluster
redox sensor WhiB4 was identified which regulates the shift to the
oxidized EMSH sub-population after augmentin treatment. Moreover,
this oxidized shift modulates expression of the β-lactamase BlaC, which
is regulated by WhiB4 in a redox-dependent manner. Specifically, BlaC
is overexpressed in the whiB4 mutant which increases resistance to β-
lactam antibiotics (Fig. 6). In contrast, overexpression of oxidized
WhiB4 under augmentin treatment resulted in strong blaC repression
and increased killing by β-lactams potentiating drug action. Thus,
WhiB4 was identified as central regulator of β-lactam antibiotics re-
sistance and the oxidative shift in EMSH after augmentin combination
therapy [97].

2.3.4. EMSH regulates the redox state of WhiB3 mediating acid resistance
and inhibition of phagosomal maturation

WhiB3 is another FeS cluster redox sensor that is also regulated by
EMSH and is essential for acid resistance of Mtb which allows survival of
Mtb inside the acidic phagosome upon immune-stimulation
[60,104,105]. WhiB3 was shown to play a protective role together with
MSH under acidic stress conditions inside the phagosome of activated
macrophages (Fig. 5) [96]. WhiB3 mediates acid resistance and inhibits
phagosomal maturation, which is linked to changes in EMSH under in-
fection conditions. WhiB3 controls genes for lipid biosynthesis, secre-
tion of the type-VII-secretion effectors as well as MSH biosynthesis and
recycling under acidic stress. The limited decreased pH upon acid-
ification of the phagosome (pH ~ 6.2) results in a reductive shift of
EMSH sub-populations and WhiB3 as well as MSH were found as key
regulators for this reductive shift in EMSH. WhiB3 was further required
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for survival under acidic conditions and protects Mtb from acid stress by
controlling genes that restrict phagosomal maturation to subvert acid-
ification and by down-regulation of the innate immune response. The
whiB3 mutant was also attenuated in the lung of guinea pigs. These
results revealed a link between phagosome acidification, the reductive
shift in EMSH and virulence of Mtb that is controlled by WhiB3 med-
iating acid resistance and inhibiting phagosomal maturation as me-
chanism of persistent and chronic Mtb infections [96].

2.3.5. EMSH is controlled by the sulfur assimilation pathway, the membrane
SodA/DoxX/SseA complex and macrophage GSH production that are
required for survival of Mtb

For the treatment of persistent Mtb infections, the sulfur assimila-
tion pathway was selected as promising target that is required for
biosynthesis of sulfur-containing amino acids and thiol-cofactors, such
as cysteine and MSH [106]. The sulfur assimilation pathway, including
the enzyme 5’ adenosine phosphosulfate (APS) reductase (CysH), was
especially important for virulence and survival of Mtb during chronic
and persistent infections in mice and macrophage models [107,108].
Thus, a high-throughput drug screening approach was used to identify
three inhibitors of the APS reductase as potent anti-TB compounds that
decreased the levels of sulfur-containing metabolites, including MSH
[106]. Using the Mrx1-roGFP2 biosensor, an oxidative shift in EMSH was
measured in response to these APS reductase inhibitors indicating the
link between persistence, antibiotic tolerance and the sulfate assimila-
tion pathway in Mtb.

In another study, the Mrx1-roGFP2 biosensor was used to identify
the link between a novel membrane-associated oxidoreductase complex
(MRC) and the MSH redox potential [109]. Using a Tn-seq approach,
the authors screened for interactions of pathways required in Mtb for
detoxification of radicals from the phagocyte oxidative burst. The su-
peroxide dismutase (SodA), an integral membrane protein (DoxX) and
the conserved thiol oxidoreductase SseA were identified as functionally
linked MRC and the electron transfer was verified in vivo. Single mu-
tants in each MRC component are similar sensitive to radical stress and
exhibited an oxidized EMSH as revealed by Mrx1-roGFP2 biosensor

measurements. This study established a link between a novel oxidative
stress resistance network with the EMSH in Mtb to overcome the oxi-
dative burst during infections [109].

An interaction between macrophage-derived GSH and EMSH during
Mtb infection has been revealed using the Mrx1-roGFP2 biosensor in a
mice model of tuberculosis [110]. The GSH pool of macrophages de-
pends on the xCT cystine-glutamate transporter, which is induced
during Mtb infection. The deletion of xCT resulted in protection against
TB and decreased pulmonary pathology in the mice lung. Mrx1-roGFP2
biosensor measurement revealed an oxidized EMSH of Mtb in the in-
fected mice xCT mutant. The increased EMSH is caused by a decreased
GSH production in the macrophages indicating a link between host GSH
and bacterial MSH redox homeostasis. This study has further identified
inhibitors of the xCT transporter as host-directed drugs for TB treatment
[110].

Finally, the Mrx1-roGFP2 biosensor was applied in a mycobacterial
biofilms under hypoxic conditions [111]. In the absence of oxygen as
terminal electron acceptor, novel polyketide quinones were produced
as alternative electron carriers in the respiratory chain to maintain
bioenergetics and the membrane potential. About 70% of mycobacterial
cells showed alterations in EMSH under hypoxic biofilm conditions
compared to planktonic cells, including 53% of cells with more reduced
EMSH and 16% with oxidative shift in EMSH. Thus, the different oxygen
levels across the biofilm affect the membrane potential and the MSH
redox balance [111].

In summary, the Mrx1-roGFP2 biosensor was approved as valuable
tool to study the mechanisms of redox heterogeneity, persistence and
survival of Mtb under acidic conditions inside macrophage vacuolar
compartments and the evolution and changes in EMSH in drug resistant
Mtb isolates. The biosensor has further contributed to elucidate novel
ROS defense mechanisms in Mtb, such as the radical scavenging
membrane MRC complex and the role of host GSH to regulate the MSH
redox balance of Mtb inside macrophages. In drug research, the bio-
sensor was used to study the regulation and mode of action of combi-
nation therapies (INH and augmentin) involving ROS-generating anti-
biotics as well as novel inhibitors of the sulfate-assimilation pathway as

Fig. 6. The augmentin combination therapy of β-lactam an-
tibiotics and β-lactamase inhibitor (clavulanate) causes ROS
formation and changes in EMSH in Mtb that affect WhiB4-
mediated expression of β-lactamase expression. β-lactam an-
tibiotics inhibit penicillin-binding proteins that cross-link the
peptide side chains of the peptidoglycan (PG). Clavulanate in-
hibits the β-lactamase BlaC in Mtb that is controlled by the BlaI
repressor and WhiB4. The combination therapy of β-lactam and
Clavulanate (Augmentin) causes cell wall stress and ROS pro-
duction in Mtb due to the re-direction of aerobic respiration via
the Ndh2 and CyBD routes [97]. Increased ROS leads to the oxi-
dative shift of EMSH and oxidation of WhiB4 that represses tran-
scription of blaC and the blaI-blaR operon resulting in down-reg-
ulation of the β-lactamase BlaC and killing by augmentin [97].
Tolerance to augmentin is induced by down-regulation or re-
duction of WhiB4 presumable in the reduced EMSH sub-population
resulting in derepression of the β-lactamase-encoding blaC gene
directly or indirectly via derepression of the blaIR operon and
proteolytic degradation of the BlaI repressor by the protease BlaR.
This figure is adapted from Ref. [97]. Abbreviations: CM: cyto-
plasmic membrane, PG: peptidoglycan, Ndh2: NADH dehy-
drogenase 2, CyBD: cytochrome BD oxidase, PBP: penicillin-
binding protein.
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promising future anti-TB drugs to treat MDR/XDR, persistent and
chronic Mtb infections. These main results revealed thus far using Mrx1-
roGFP2 biosensor measurements in Mtb are summarized in the sche-
matics of Fig. 7. Similar mechanisms might be relevant for other in-
tracellular pathogens and persistent bacterial infections. As revealed in
Mtb using the Mrx1-roGFP2 biosensor, redox heterogeneity of the in-
tracellular pathogen S. Typhimurium could be also dependent on sub-
vacuolar compartments. Inside the SCV, S. Typhimurium could be more
tolerant to antibiotics due to a more reduced intrabacterial redox po-
tential, which facilitates the persistent state. In contrast, cytosolic
bacteria should have a more oxidized redox state and should be sus-
ceptible to clinical relevant antibiotics. The mechanisms of persistence
and antibiotics resistance as result of redox heterogeneity remain in-
teresting subject for future studies in redox infection biology.
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