
Appendix B

Algorithmic details

B.1 Even/odd preconditioning

In this appendix we describe how even/odd [106, 170] preconditioning can be used

in the HMC algorithm in presence of a twisted mass term. By setting the twisted

mass parameter to zero, even/odd preconditioning for the Wilson-Dirac operator

can easily be recovered from the formulae presented in the following.

We start with the lattice fermion action in the hopping parameter representation

in the χ-basis written as

S[χ, χ̄, U ] =
∑

x

{

χ̄(x)[1 + 2iκµγ5τ
3]χ(x)

− κχ̄(x)
4
∑

µ=1

[

U(x, µ)(r + γµ)χ(x+ aµ̂)

+ U †(x− aµ̂, µ)(r − γµ)χ(x− aµ̂)
]

}

≡
∑

x,y

χ̄(x)Mxyχ(y) .

(B-1)

similar to Eq. (1-46) in section 1.2.4. For convenience we define µ̃ = 2κµ. Using the

matrix M one can define the hermitian (two flavor) operator.

Q ≡ γ5M =

(

Q+

Q−

)

(B-2)
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where the sub-matrices Q± can be factorized as follows:

Q± = γ5

(

1± iµ̃γ5 Meo

Moe 1± iµ̃γ5

)

= γ5

(

M±
ee Meo

Moe M±
oo

)

=

(

γ5M
±
ee 0

γ5Moe 1

)(

1 (M±
ee)

−1Meo

0 γ5(M
±
oo −Moe(M

±
ee)

−1Meo)

)

.

(B-3)

Note that (M±
ee)

−1 can be computed to be

(1± iµ̃γ5)
−1 =

1∓ iµ̃γ5

1 + µ̃2
. (B-4)

Using det(Q) = det(Q+) det(Q−) the following relation can be derived

det(Q±) ∝ det(Q̂±)

Q̂± = γ5(M
±
oo −Moe(M

±
ee)

−1Meo) ,
(B-5)

where Q̂± is only defined on the odd sites of the lattice. In the HMC algorithm the

determinant is stochastically estimated using pseudo fermion field φo: Now we write

the determinant with pseudo fermion fields:

det(Q̂+Q̂−) =

∫

DφoDφ†
o exp(−SPF)

SPF ≡ φ†
o

(

Q̂+Q̂−
)−1

φo ,

(B-6)

where the fields φo are defined only on the odd sites of the lattice. In order to

compute the force corresponding to the effective action SPF we need the variation

of SPF with respect to the gauge fields (using δ(A−1) = −A−1δAA−1):

δSPF = −[φ†
o(Q̂

+Q̂−)−1δQ̂+(Q̂+)−1φo + φ†
o(Q̂

−)−1δQ̂−(Q̂+Q̂−)−1φo]

= −[X†
oδQ̂

+Yo + Y †
o δQ̂

−Xo]
(B-7)

with Xo and Yo defined on the odd sides as

Xo = (Q̂+Q̂−)−1φo, Yo = (Q̂+)−1φo = Q̂−Xo , (B-8)

where (Q̂±)† = Q̂∓ has been used. The variation of Q̂± reads

δQ̂± = γ5

(

−δMoe(M
±
ee)

−1Meo −Moe(M
±
ee)

−1δMeo

)

, (B-9)

and one finds

δSPF = −(X†δQ+Y + Y †δQ−X)

= −(X†δQ+Y + (X†δQ+Y )†)
(B-10)
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where X and Y are now defined over the full lattice as

X =

(

−(M−
ee)

−1MeoXo

Xo

)

, Y =

(

−(M+
ee)

−1MeoYo
Yo

)

. (B-11)

In addition δQ+ = δQ−,M †
eo = γ5Moeγ5 and M †

oe = γ5Meoγ5 has been used. Since

the bosonic part is quadratic in the φo fields, the φo are generated at the beginning

of each molecular dynamics trajectory with

φo = Q̂+R, (B-12)

where R is a random spinor field taken from a Gaussian distribution with norm one.

Inversion

In addition to even/odd preconditioning in the HMC algorithm as described above,

it can also be used to speed up the inversion of the fermion matrix.

Due to the factorization (B-3) the full fermion matrix can be inverted by inverting

the two matrices appearing in the factorization

(

M±
ee Meo

Moe M±
oo

)−1

=

(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
M±

ee 0

Moe 1

)−1

.

The two factors can be simplified as follows:

(

M±
ee 0

Moe 1

)−1

=

(

(M±
ee)

−1 0

−Moe(M
±
ee)

−1 1

)

and
(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1

=

(

1 −(M±
ee)

−1Meo(M
±
oo −Moe(M

±
ee)

−1Meo)
−1

0 (M±
oo −Moe(M

±
ee)

−1Meo)
−1

)

.

The complete inversion is now performed in two separate steps: First we compute

for a given source field φ = (φe, φo) an intermediate result ϕ = (ϕe, ϕo) by:

(

ϕe
ϕo

)

=

(

M±
ee 0

Moe 1

)−1(
φe
φo

)

=

(

(M±
ee)

−1φe
−Moe(M

±
ee)

−1φe + φo

)

.

This step requires only the application of Moe and (M±
ee)

−1, the latter of which is

given by Eq (B-4). The final solution ψ = (ψe, ψo) can then be computed with

(

ψe
ψo

)

=

(

1 (M±
ee)

−1Meo

0 (M±
oo −Moe(M

±
ee)

−1Meo)

)−1(
ϕe
ϕo

)

=

(

ϕe − (M±
ee)

−1Meoψo
ψo

)

,
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where we defined

ψo = (M±
oo −Moe(M

±
ee)

−1Meo)
−1ϕo .

Therefore the only inversion that has to be performed numerically is the one to

generate ψo from ϕo and this inversion involves only an operator that is better

conditioned than the original fermion operator.

B.2 Multiple mass solver

for twisted mass fermions

In this appendix we show that within the Wilson twisted mass fermion formulation

it is possible to apply the multi mass solver (MMS) [171, 172, 173] method to the

conjugate gradient (CG) algorithm. We will call this algorithm CG-M and give here

the details of the implementation.

The advantage of the MMS is that it allows the computation of the solution of

the following linear system

(A+ σ) x− b = 0 (B-13)

for several values of σ simultaneously, using only as many matrix-vector operations

as the solution of a single value of σ requires.

We want to invert the Wilson twisted mass operator at a certain value of the

twisted mass µ0 obtaining automatically all the solutions for other values µk (with

|µk| ≥ |µ0|). We use the twisted mass operator Dtm as defined in Eq. (1-47) and

denote the number of additional twisted mass values with Nm. The operator can be

split up as

Dtm = D
(0)
tm + i(µk − µ0)γ5τ

3, D
(0)
tm = DW +m0 + iµ0γ5τ

3 . (B-14)

The trivial observation is that

DtmD
†
tm = D

(0)
tmD

(0)†
tm + µ2

k − µ2
0 , (B-15)

where we have used γ5DWγ5 = D†
W . Now clearly we have a shifted linear system

(A+σk)x−b = 0 with A = D
(0)
tmD

(0)†
tm and σk = µ2

k−µ2
0. In the following we describe

the CG-M algorithm in order to solve the problem (A + σk)x − b = 0. The lower

index indicates the iteration steps of the solver, while the upper index k refers to

the shifted problem with σk.
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CG−M Algorithm

xk0 = 0, r0 = pk0 = b, α−1 = ζk−1 = ζk0 = 1, βk0 = β0 = 0

for i = 0, 1, 2, · · ·

αn =
(rn, rn)

(pn, Apn)

ζkn+1 =
ζknαn−1

αnβn(1− ζk
n

ζk
n−1

) + αn−1(1− σkαn)

αkn = αn
ζkn+1

ζkn

xkn+1 = xkn + αknp
k
n

xn+1 = xn + αnpn

rn+1 = rn − αnApn
convergence check

βn+1 =
(rn+1, rn+1)

(rn, rn)

pn+1 = rn+1 + βn+1pn

βkn+1 = βn+1

ζkn+1α
k
n

ζknαn

pkn+1 = ζkn+1rn+1 + βkn+1p
k
n

end for

We give here the algorithm explicitly again, since it has a different definition of ζkn+1

compared to the one of Ref. [173]. This version allows to avoid roundoff errors when

σk = µ2
k − µ2

0 becomes too large.

We remind that when using a MMS the eventual preconditioning has to retain

the shifted structure of the linear system. This means for example that it is not

compatible with even/odd preconditioning.
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