Appendix B

Algorithmic details

B. 1 Even/odd preconditioning

In this appendix we describe how even/odd [106, 170] preconditioning can be used in the HMC algorithm in presence of a twisted mass term. By setting the twisted mass parameter to zero, even/odd preconditioning for the Wilson-Dirac operator can easily be recovered from the formulae presented in the following.

We start with the lattice fermion action in the hopping parameter representation in the χ-basis written as

$$
\begin{align*}
S[\chi, \bar{\chi}, U]=\sum_{x} & \left\{\bar{\chi}(x)\left[1+2 i \kappa \mu \gamma_{5} \tau^{3}\right] \chi(x)\right. \\
& -\kappa \bar{\chi}(x) \sum_{\mu=1}^{4}\left[U(x, \mu)\left(r+\gamma_{\mu}\right) \chi(x+a \hat{\mu})\right. \tag{B-1}\\
& \left.\left.+U^{\dagger}(x-a \hat{\mu}, \mu)\left(r-\gamma_{\mu}\right) \chi(x-a \hat{\mu})\right]\right\} \\
\equiv & \sum_{x, y} \bar{\chi}(x) M_{x y} \chi(y)
\end{align*}
$$

similar to Eq. (1-46) in section 1.2.4. For convenience we define $\tilde{\mu}=2 \kappa \mu$. Using the matrix M one can define the hermitian (two flavor) operator.

$$
Q \equiv \gamma_{5} M=\left(\begin{array}{ll}
Q^{+} & \tag{B-2}\\
& Q^{-}
\end{array}\right)
$$

Appendix B Algorithmic details

where the sub-matrices $Q^{ \pm}$can be factorized as follows:

$$
\begin{align*}
Q^{ \pm} & =\gamma_{5}\left(\begin{array}{cc}
1 \pm i \tilde{\mu} \gamma_{5} & M_{e o} \\
M_{o e} & 1 \pm i \tilde{\mu} \gamma_{5}
\end{array}\right)=\gamma_{5}\left(\begin{array}{ll}
M_{e e}^{ \pm} & M_{e o} \\
M_{o e} & M_{o o}^{ \pm}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma_{5} M_{e e}^{ \pm} & 0 \\
\gamma_{5} M_{o e} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \left(M_{e e}^{ \pm}\right)^{-1} M_{e o} \\
0 & \gamma_{5}\left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)
\end{array}\right) . \tag{B-3}
\end{align*}
$$

Note that $\left(M_{e e}^{ \pm}\right)^{-1}$ can be computed to be

$$
\begin{equation*}
\left(1 \pm i \tilde{\mu} \gamma_{5}\right)^{-1}=\frac{1 \mp i \tilde{\mu} \gamma_{5}}{1+\tilde{\mu}^{2}} \tag{B-4}
\end{equation*}
$$

Using $\operatorname{det}(Q)=\operatorname{det}\left(Q^{+}\right) \operatorname{det}\left(Q^{-}\right)$the following relation can be derived

$$
\begin{align*}
\operatorname{det}\left(Q^{ \pm}\right) & \propto \operatorname{det}\left(\hat{Q}^{ \pm}\right) \\
\hat{Q}^{ \pm} & =\gamma_{5}\left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right) \tag{B-5}
\end{align*}
$$

where $\hat{Q}^{ \pm}$is only defined on the odd sites of the lattice. In the HMC algorithm the determinant is stochastically estimated using pseudo fermion field ϕ_{0} : Now we write the determinant with pseudo fermion fields:

$$
\begin{align*}
\operatorname{det}\left(\hat{Q}^{+} \hat{Q}^{-}\right) & =\int \mathcal{D} \phi_{o} \mathcal{D} \phi_{o}^{\dagger} \exp \left(-S_{\mathrm{PF}}\right) \tag{B-6}\\
S_{\mathrm{PF}} & \equiv \phi_{o}^{\dagger}\left(\hat{Q}^{+} \hat{Q}^{-}\right)^{-1} \phi_{o},
\end{align*}
$$

where the fields ϕ_{o} are defined only on the odd sites of the lattice. In order to compute the force corresponding to the effective action S_{PF} we need the variation of S_{PF} with respect to the gauge fields (using $\delta\left(A^{-1}\right)=-A^{-1} \delta A A^{-1}$):

$$
\begin{align*}
\delta S_{\mathrm{PF}} & =-\left[\phi_{o}^{\dagger}\left(\hat{Q}^{+} \hat{Q}^{-}\right)^{-1} \delta \hat{Q}^{+}\left(\hat{Q}^{+}\right)^{-1} \phi_{o}+\phi_{o}^{\dagger}\left(\hat{Q}^{-}\right)^{-1} \delta \hat{Q}^{-}\left(\hat{Q}^{+} \hat{Q}^{-}\right)^{-1} \phi_{o}\right] \\
& =-\left[X_{o}^{\dagger} \delta \hat{Q}^{+} Y_{o}+Y_{o}^{\dagger} \delta \hat{Q}^{-} X_{o}\right] \tag{B-7}
\end{align*}
$$

with X_{o} and Y_{o} defined on the odd sides as

$$
\begin{equation*}
X_{o}=\left(\hat{Q}^{+} \hat{Q}^{-}\right)^{-1} \phi_{o}, \quad Y_{o}=\left(\hat{Q}^{+}\right)^{-1} \phi_{o}=\hat{Q^{-}} X_{o} \tag{B-8}
\end{equation*}
$$

where $\left(\hat{Q}^{ \pm}\right)^{\dagger}=\hat{Q}^{\mp}$ has been used. The variation of $\hat{Q}^{ \pm}$reads

$$
\begin{equation*}
\delta \hat{Q}^{ \pm}=\gamma_{5}\left(-\delta M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} \delta M_{e o}\right), \tag{B-9}
\end{equation*}
$$

and one finds

$$
\begin{align*}
\delta S_{\mathrm{PF}} & =-\left(X^{\dagger} \delta Q^{+} Y+Y^{\dagger} \delta Q^{-} X\right) \\
& =-\left(X^{\dagger} \delta Q^{+} Y+\left(X^{\dagger} \delta Q^{+} Y\right)^{\dagger}\right) \tag{B-10}
\end{align*}
$$

B.1. EVEN/ODD PRECONDITIONING

where X and Y are now defined over the full lattice as

$$
\begin{equation*}
X=\binom{-\left(M_{e e}^{-}\right)^{-1} M_{e o} X_{o}}{X_{o}}, \quad Y=\binom{-\left(M_{e e}^{+}\right)^{-1} M_{e o} Y_{o}}{Y_{o}} . \tag{B-11}
\end{equation*}
$$

In addition $\delta Q^{+}=\delta Q^{-}, M_{e o}^{\dagger}=\gamma_{5} M_{o e} \gamma_{5}$ and $M_{o e}^{\dagger}=\gamma_{5} M_{e o} \gamma_{5}$ has been used. Since the bosonic part is quadratic in the ϕ_{o} fields, the ϕ_{o} are generated at the beginning of each molecular dynamics trajectory with

$$
\begin{equation*}
\phi_{o}=\hat{Q}^{+} R, \tag{B-12}
\end{equation*}
$$

where R is a random spinor field taken from a Gaussian distribution with norm one.

Inversion

In addition to even/odd preconditioning in the HMC algorithm as described above, it can also be used to speed up the inversion of the fermion matrix.

Due to the factorization (B-3) the full fermion matrix can be inverted by inverting the two matrices appearing in the factorization

$$
\left(\begin{array}{ll}
M_{e e}^{ \pm} & M_{e o} \\
M_{o e} & M_{o o}^{ \pm}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & \left(M_{e e}^{ \pm}\right)^{-1} M_{e o} \\
0 & \left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)
\end{array}\right)^{-1}\left(\begin{array}{cc}
M_{e e}^{ \pm} & 0 \\
M_{o e} & 1
\end{array}\right)^{-1} .
$$

The two factors can be simplified as follows:

$$
\left(\begin{array}{cc}
M_{e e}^{ \pm} & 0 \\
M_{o e} & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(M_{e e}^{ \pm}\right)^{-1} & 0 \\
-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} & 1
\end{array}\right)
$$

and

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & \left(M_{e e}^{ \pm}\right)^{-1} M_{e o} \\
0 & \left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)
\end{array}\right)^{-1} \\
= & \left(\begin{array}{cc}
1 & -\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)^{-1} \\
0 & \left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)^{-1}
\end{array}\right) .
\end{aligned}
$$

The complete inversion is now performed in two separate steps: First we compute for a given source field $\phi=\left(\phi_{e}, \phi_{o}\right)$ an intermediate result $\varphi=\left(\varphi_{e}, \varphi_{o}\right)$ by:

$$
\binom{\varphi_{e}}{\varphi_{o}}=\left(\begin{array}{cc}
M_{e e}^{ \pm} & 0 \\
M_{o e} & 1
\end{array}\right)^{-1}\binom{\phi_{e}}{\phi_{o}}=\binom{\left(M_{e e}^{ \pm}\right)^{-1} \phi_{e}}{-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} \phi_{e}+\phi_{o}} .
$$

This step requires only the application of $M_{o e}$ and $\left(M_{e e}^{ \pm}\right)^{-1}$, the latter of which is given by $\mathrm{Eq}(\mathrm{B}-4)$. The final solution $\psi=\left(\psi_{e}, \psi_{o}\right)$ can then be computed with

$$
\binom{\psi_{e}}{\psi_{o}}=\left(\begin{array}{cc}
1 & \left(M_{e e}^{ \pm}\right)^{-1} M_{e o} \\
0 & \left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)
\end{array}\right)^{-1}\binom{\varphi_{e}}{\varphi_{o}}=\binom{\varphi_{e}-\left(M_{e e}^{ \pm}\right)^{-1} M_{e o} \psi_{o}}{\psi_{o}}
$$

where we defined

$$
\psi_{o}=\left(M_{o o}^{ \pm}-M_{o e}\left(M_{e e}^{ \pm}\right)^{-1} M_{e o}\right)^{-1} \varphi_{o}
$$

Therefore the only inversion that has to be performed numerically is the one to generate ψ_{o} from φ_{o} and this inversion involves only an operator that is better conditioned than the original fermion operator.

B. 2 Multiple mass solver for twisted mass fermions

In this appendix we show that within the Wilson twisted mass fermion formulation it is possible to apply the multi mass solver (MMS) [171, 172, 173] method to the conjugate gradient (CG) algorithm. We will call this algorithm CG-M and give here the details of the implementation.

The advantage of the MMS is that it allows the computation of the solution of the following linear system

$$
\begin{equation*}
(A+\sigma) x-b=0 \tag{B-13}
\end{equation*}
$$

for several values of σ simultaneously, using only as many matrix-vector operations as the solution of a single value of σ requires.

We want to invert the Wilson twisted mass operator at a certain value of the twisted mass μ_{0} obtaining automatically all the solutions for other values μ_{k} (with $\left.\left|\mu_{k}\right| \geq\left|\mu_{0}\right|\right)$. We use the twisted mass operator D_{tm} as defined in Eq. (1-47) and denote the number of additional twisted mass values with N_{m}. The operator can be split up as

$$
\begin{equation*}
D_{\mathrm{tm}}=D_{\mathrm{tm}}^{(0)}+i\left(\mu_{k}-\mu_{0}\right) \gamma_{5} \tau^{3}, \quad D_{\mathrm{tm}}^{(0)}=D_{\mathrm{W}}+m_{0}+i \mu_{0} \gamma_{5} \tau^{3} \tag{B-14}
\end{equation*}
$$

The trivial observation is that

$$
\begin{equation*}
D_{\mathrm{tm}} D_{\mathrm{tm}}^{\dagger}=D_{\mathrm{tm}}^{(0)} D_{\mathrm{tm}}^{(0) \dagger}+\mu_{k}^{2}-\mu_{0}^{2} \tag{B-15}
\end{equation*}
$$

where we have used $\gamma_{5} D_{W} \gamma_{5}=D_{W}^{\dagger}$. Now clearly we have a shifted linear system $\left(A+\sigma_{k}\right) x-b=0$ with $A=D_{\mathrm{tm}}^{(0)} D_{\mathrm{tm}}^{(0) \dagger}$ and $\sigma_{k}=\mu_{k}^{2}-\mu_{0}^{2}$. In the following we describe the CG-M algorithm in order to solve the problem $\left(A+\sigma_{k}\right) x-b=0$. The lower index indicates the iteration steps of the solver, while the upper index k refers to the shifted problem with σ_{k}.

B.2. MULTIPLE MASS SOLVER FOR TWISTED MASS FERMIONS

CG - M Algorithm

$$
\begin{aligned}
& x_{0}^{k}=0, r_{0}=p_{0}^{k}=b, \alpha_{-1}=\zeta_{-1}^{k}=\zeta_{0}^{k}=1, \beta_{0}^{k}=\beta_{0}=0 \\
& \text { for } i=0,1,2, \cdots \\
& \alpha_{n}=\frac{\left(r_{n}, r_{n}\right)}{\left(p_{n}, A p_{n}\right)} \\
& \qquad \begin{aligned}
& \zeta_{n+1}^{k}=\frac{\zeta_{n}^{k} \alpha_{n-1}}{\alpha_{n} \beta_{n}\left(1-\frac{\zeta_{n}^{k}}{\zeta_{n-1}^{k}}\right)+\alpha_{n-1}\left(1-\sigma_{k} \alpha_{n}\right)} \\
& \alpha_{n}^{k}=\alpha_{n} \frac{\zeta_{n+1}^{k}}{\zeta_{n}^{k}} \\
& x_{n+1}^{k}=x_{n}^{k}+\alpha_{n}^{k} p_{n}^{k} \\
& x_{n+1}=x_{n}+\alpha_{n} p_{n} \\
& r_{n+1}=r_{n}-\alpha_{n} A p_{n}
\end{aligned}
\end{aligned}
$$

convergence check

$$
\begin{aligned}
& \beta_{n+1}=\frac{\left(r_{n+1}, r_{n+1}\right)}{\left(r_{n}, r_{n}\right)} \\
& p_{n+1}=r_{n+1}+\beta_{n+1} p_{n} \\
& \beta_{n+1}^{k}=\beta_{n+1} \frac{\zeta_{n+1}^{k} \alpha_{n}^{k}}{\zeta_{n}^{k} \alpha_{n}} \\
& p_{n+1}^{k}=\zeta_{n+1}^{k} r_{n+1}+\beta_{n+1}^{k} p_{n}^{k}
\end{aligned}
$$

end for
We give here the algorithm explicitly again, since it has a different definition of ζ_{n+1}^{k} compared to the one of Ref. [173]. This version allows to avoid roundoff errors when $\sigma_{k}=\mu_{k}^{2}-\mu_{0}^{2}$ becomes too large.

We remind that when using a MMS the eventual preconditioning has to retain the shifted structure of the linear system. This means for example that it is not compatible with even/odd preconditioning.

