
Chapter 2

Scaling test in the quenched

approximation

In this chapter we will derive a result that was thought to be almost impossible to

reach using the standard Wilson formulation of lattice QCD: we will give continuum

results (in the quenched approximation) for the pseudo scalar mass mPS, the pseudo

scalar decay constant fPS and the vector mass mV down to values of the pseudo

scalar mass of mPS = 270 MeV, a value that is almost a factor of 2 smaller than

what could be reached with Wilson fermions so far. This result is visualized in figure

2.1, which we will discuss later in detail. But we mention already now that, while

simulations with Wilson fermions [79] – represented by open squares – had to be

stopped∗ at values of mPS ≈ 600 MeV, our data – represented by open squares –

reach with controllable errors down to significantly smaller values of mPS. Thus,

we can finally enter a region of mass values, where contact to chiral perturbation

theory (χPT) can be made, without worrying about lattice artifacts and convergence

problems of χPT. The tool that made this possible is mtmQCD, as introduced in

section 1.2.4.

However, mtmQCD is still a rather new formulation of lattice QCD and hence we

had to ascertain and scrutinize this approach. Most important for our understanding

of mtmQCD has been a detailed scaling test, which we performed in a wide range of

lattice spacings and quark masses in the quenched approximation. In particular, the

range of mPS values has been between 270 and 1200 MeV and the range of lattice

spacings between 0.048 and 0.17 fm. We show that indeed lattice artifacts linear in

a are absent in physical observables and that residual lattice spacing artifacts are

small at all these values of mPS. We perform then continuum extrapolations for

the pseudo scalar decay constant and the vector mass finding full agreement with

∗In the literature one can find also simulations with Wilson fermions and smaller values of

the pseudo scalar mass (cf. for instance [80]). However, in those simulations single, so-called

exceptional configurations had to be removed from the ensemble “by hand”.
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Figure 2.1: Continuum values of fPS [GeV] (a) and mV [GeV] (b) as a function of

m2
PS [GeV2] and the chiral extrapolation of our data. In addition to our results, repre-

sented by squares, we also plot continuum results extracted from data published in [79]

where non-perturbatively O(a) improved Wilson fermions were used. For the chiral extrap-

olation we used only our results and we indicate the linear extrapolation by the dashed

lines. The dotted vertical lines roughly mark the value of mPS where simulations with

Wilson fermions had to be stopped.

results available in the literature. In addition we address the important question

about size and scaling behavior of flavor breaking effects in mtmQCD, which vanish

as a2, while being non-negligible of size.

Moreover, we compare at one value of the lattice spacing mtmQCD with the

overlap formulation of lattice QCD, the latter of which has exact chiral symmetry

at finite values of the lattice spacing a, as explained in section 1.2.2. We show that

for all the quantities investigated here both formulations reveal consistent results.

In particular, it is possible to simulate with both formulations pseudo scalar masses

lower than 300 MeV without practical problems. However, a cost comparison yields

that the overlap formulation is a factor of 20 to 70 more expensive than mtmQCD.

2.1 The definition of the critical mass

Naturally, when a new formulation is under investigation there are a lot of subtleties

to understand and to learn. One of those in case of mtmQCD is the definition of the

critical mass, whose potential influence on the cut-off effects will be discussed in the

following section. However, beforehand we would like to stress the following remarks:
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the proof of O(a) improvement for mtmQCD is based on the Symanzik effective

theory [12, 13, 14], implying that the proof is only valid if the Symanzik expansion

itself is valid. In particular, the lattice spacing should be sufficiently smaller than the

physical scale. Moreover, since the Symanzik expansion is a perturbative concept,

it is assumed that the dependence of quantities under investigation on the lattice

spacing is smooth. Especially, in the vicinity of a dis-continuous phase transition

– as we will find in the case of dynamical twisted mass fermions in chapter 4 – we

cannot expect the expansion to hold.

The only parameter that needs to be tuned in tmQCD in order to obtain O(a)

improvement is the twist angle. Maximal twist is achieved by tuning the angle to a

value of π/2, which is equivalent to setting the value of κ to its critical value κcrit

(1-30), or equivalently the value of the (untwisted) bare quark mass m0 to its critical

value mcrit. In other words, we are interested in a situation where the renormalized

quark mass is determined only by the twisted mass mR ∼ µ, i.e. the twisted mass

term determines physics. However, any lattice determination of κcrit is affected by

errors, which in turn means that the (untwisted) bare quark mass is zero only up

to an error: mq = 0 + δ. This error can have significant consequences for the O(a)

improvement, which we exemplify in the following. Consider again the renormalized

quark mass mR at finite lattice spacing. Neglecting the renormalization factors for

a moment, which are of order one, this quantity can be estimated by a combination

of the twisted mass parameter µ and the untwisted quark mass mq to be

mR ∼
√

µ2 +m2
q = µ

(

1 +
m2
q

2µ2
+O(m4

q/µ
4)

)

, (2-1)

where the expansion is only valid if mq = δ ≪ µ. It is evident from Eq. (2-1) that

if δ ≪ µ is fulfilled the residual value of mq contributes only as a small quadratical

correction. On the other hand, if δ ≪ µ is not fulfilled physics is no longer dominated

by the twisted mass term as it should be at maximal twist. Hence, it is important

for O(a) improvement to use a κcrit determination with δ as small as possible.

Note that if δ ≈ ∆a+O(a2) with a coefficient ∆ one can always find a value of

a keeping µ fixed in physical units, where δ ≪ µ is fulfilled.

In practice, there are at least two ways to determine the value of κcrit: the first

is to determine the value of κ where the value of amPS vanishes with pure Wilson

fermions, i.e. µ = 0. We will refer to this determination method as the pion defini-

tion of κcrit and denote it with κpion
crit . This determination involves an extrapolation

of (amPS)
2 in κ to the κ value where amPS vanishes. The extrapolation contains

usually a large uncertainty because simulations with pure Wilson fermions and small

pseudo scalar masses are hardly possible and therefore, one has to extrapolate from

rather large masses. Unfortunately, the size of the extrapolation error is unknown

and cannot easily be parameterized in terms of the lattice spacing.
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β 5.7 5.85 6.0 6.1 6.2 6.45

r0/a 2.924 4.067 5.368 6.324 7.360 10.41

L3 × T 143 × 28 163 × 32 163 × 32 203 × 40 243 × 48 323 × 64

Npion
meas 600 378 387 300 260 182

NPCAC
meas 600 500 400 - 300 -

Table 2.1: For the six values of β this table contains the vlaue for r0/a, the lattice size and

the number of measurements Npion
meas with the pion definition and NPCAC

meas with the PCAC

definition of κcrit.

The second definition of κcrit we consider here makes use of the PCAC relation:

At fixed non-zero value of the twisted mass parameter µ the value of κ needs to be

determined where the value of mPCAC
χ vanishes. The resulting value κcrit(aµ) is still

depending on the value of µ. This dependence can be removed by extrapolating

κcrit(aµ) to aµ = 0. The extrapolation is only short in µ since simulations with

a twisted mass parameter can be safely performed also with small values of aµ

and therefore the extrapolation error is assumed to be small. We will refer to this

definition of κcrit as the PCAC definition and denote it with κPCAC
crit . Note that one

main difference between the two definitions is that for κpion
crit pure Wilson fermions

are used, while for κPCAC
crit the tmQCD regularization is used.

In this chapter we will use both of the two definitions for κcrit and compare the

residual lattice artifacts in physical observables between the pion definition and the

PCAC definition for various values of the quark mass and the lattice spacing.

We remark here that the “optimal” definition of κcrit with respect to O(a) im-

provement with mtmQCD is theoretically not yet clarified. Nevertheless, a detailed

discussion of lattice artifacts of mtmQCD can be found in Ref. [45]. In fact, it was

shown in this reference that in the Symanzik expansion of an operator O at max-

imal twist there appear at order a2 terms proportional to 1/m4
PS, which are called

leading “infra-red divergent” cut-off effects. These terms will be strongly visible as

large O(a2) cut-off effects in the limit of vanishing pseudo scalar masses. In the

same reference it was shown that with the PCAC definition of κcrit the coefficients

multiplying the (a/m2
PS)

2 terms vanish faster in the chiral limit than 1/m4
PS curing

such the problem of those large cut-off effects. Note that in Refs. [81, 82] the same

proposal was made, including also arguments from χPT. For a recent discussion see

also Refs. [83, 84].
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2.2 Scaling test set-up

In order to verify the prediction of Ref. [42] of O(a) improvement at ω = π/2 we

have chosen up to six values of the bare coupling constant β in a range of lattice

spacing between 0.048 fm and 0.17 fm. We used the Wilson plaquette gauge action

(1-25) and periodic boundary conditions for gauge and fermion fields. The β values

can be found together with the values for r0/a and the lattice sizes in table 2.1.

The number of measurements Nmeas for the two κcrit definitions can also be found

in table 2.1. We have set the Wilson parameter to r = 1 and used r0 = 0.5 fm to

set the scale throughout this chapter.

In order to fix the physical situation in our scaling test, we decided to study

physical quantities as a function of β (i.e. as a function of a) for fixed values of

r0mPS. For this purpose we roughly fixed the values of r0µ at each β value to

r0µ ≈ 0.02, 0.04, 0.08, 0.16, 0.24, 0.32, 0.40. For the PCAC definition we have two

additional intermediate values r0µ ≈ 0.059 and r0µ ≈ 0.123. Note that at β = 6.45

we have simulated only the two lightest quark masses with the pion definition in

order to check our continuum extrapolations.

Due to the wide range of twisted mass values at each β value we could then

interpolate the results when necessary to match a desired value of r0mPS. For

the quantities we considered here it was sufficient to perform a linear interpolation

in (r0mPS)
2 between the two closest points. We used the ROOT and MINUIT

packages from CERN (cf. [85, 86]) for these interpolations. Since we do not want

to extrapolate to mass values where we have no data available, the lowest value of

the pseudo scalar mass was 298 MeV with the pion definition of κcrit and 270 MeV

with the PCAC definition.

Since in this chapter we work in the quenched approximation the gauge config-

urations do not depend on the bare quark masses. We produced at each value of

β an ensemble of gauge configurations using a combination of the over-relaxation

and the heat-bath algorithm. One heat-bath sweep was always followed by L/2 + 1

over-relaxation sweeps, where L is the spatial lattice size. We skipped as many inter-

mediate configurations as needed to obtain completely independent configurations.

Again, because the configuration at each β value are quark mass independent,

we could make use of a multi mass conjugate gradient (CG-M) iterative solver as

explained in appendix B.2. Such a solver allows one to invert on the lowest mass and

get within the same inversion also the result for all the other masses. At β = 6.45,

however, we used even/odd preconditioning, since we simulated only the two lowest

values of r0µ. This preconditioning accelerates the solvers, but prevents us to use a

multi mass solver.

In order to compute the quark propagators needed in the contraction of the

correlation functions, the Dirac operator needs to be inverted on a given source.
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amPS

aµ 123 × 24 142 × 32 163 × 32 amPSL|(L=16)

0.005 - - 0.1700(25) 2.7

0.01 0.2327(70) 0.2301(37) 0.2254(19) 3.6

0.02 0.3193(48) 0.3175(30) 0.3122(16) 5.0

0.04 0.4520(40) 0.4506(23) 0.4452(14) 7.1

0.06 0.5596(35) 0.5575(19) 0.5535(12) 8.9

0.08 0.6541(31) 0.6510(17) 0.6488(11) 10.4

0.10 0.7417(26) 0.7378(16) 0.7359(11) 11.8

Table 2.2: Values of amPS at β = 5.85 for three different lattice Volumes: 123×24, 142×32

and 163 × 32. In the last column we also give the value of amPSL for the 163 × 32 lattice.

The simplest choice here is to use a point source located at x = 0 and for every

combination of color and spinor indices. Therefore, 12 inversions are needed per

configuration. We used a point source for all the results with the pion definition of

κcrit. However, it is known that the overlap with the ground state can be improved

if (sink) smearing techniques are applied, which turned out to be crucial in order to

determine a reliable estimate for the vector meson mass mV. We used Jacobi sink

smearing [87] for the determination of mV with the PCAC definition of κcrit. Since

we did not use smearing techniques with the pion definition, we were not able to

reliably extract values for amV in this case.

2.2.1 Finite volume effects

Before presenting the results of the scaling test, we show in this subsection results

at one value of β = 5.85 for three different lattice volumes in order to check for

finite volume effects. At this value of β we have performed 140 measurements on

a 123 × 24 lattice, 140 measurements on a 143 × 32 lattice and 380 measurements

on a 163 × 32 lattice, corresponding to physical spatial extends of about 1.48 fm,

1.72 fm and 1.96 fm, respectively. The hopping parameter was set to its critical

value κpion
crit = 0.161662(17) obtained with the pion definition of κcrit. We measured

the values of the pseudo scalar mass for all three volumes and collected the data in

table 2.2.

Aiming for an analysis along the lines of Ref. [88], we first extrapolated the

pseudo scalar masses to L =∞ by fitting a functional form

amPS(L) = amPS(L =∞) +
a1

L3/2
exp {−a2amPS(L =∞)L} (2-2)

with coefficient a1 and a2 to our data. For the three values of aµ between 0.01 and

0.04 we show the data points together with the fits in figure 2.2(a). From this figure
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Figure 2.2: Finite volume effects in mPS at β = 5.85. In (a) amPS is plotted as a function

of (1/L) together with exponential fits to the data (see text). In (b) the relative finite

volume effects are plotted as a function of amPSL. In both graphs we plot only data for the

three lowest values of aµ. Note that in our notation L is dimensionless.

it is already evident that finite volume effects, at least for the quantity amPS are

small. An analysis of (mPS(L) − mPS(L = ∞))/mPS(L = ∞) (see figure 2.2(b))

shows that for the simulation points corresponding to the smallest values of aµ

the finite volume effects are within 2− 3 percent and at most within two standard

deviations from the extrapolated infinite volume limit. In practice they are thus not

relevant for the following discussion.

Other quantities than mPS are affected by finite volume artifacts of qualitatively

the same form as Eq. (2-2) with, of course, in general different coefficients. However,

since for the following scaling test we will stay at almost constant physical volume

for all values of β under investigation, the scaling test itself should not be affected

by finite volume effects.

2.3 Scaling test of mtmQCD

In this section we present the numerical results of the scaling test. We first compare

the scaling behavior for the two definitions of κcrit, present then continuum results

for fPS and mV and investigate the flavor breaking effects. Finally, we compare the

twisted mass and the overlap formulation.
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β κpion
crit κPCAC

crit

5.7 0.169198(48) 0.171013(160)

5.85 0.161662(17) 0.162379(93)

6.0 0.156911(35) 0.157409(72)

6.1 0.154876(10) -

6.2 0.153199(16) 0.153447(32)

6.45 0.150009(11) -

Table 2.3: Values of κpion
crit and κPCAC

crit for all values of β.

2.3.1 Scaling of the pseudo scalar decay constant with the

pion definition of κcrit

At all the β values of our simulations we made our own determination of the value

of κpion
crit from the intercept in κ at zero pseudo scalar mass. The values of κpion

crit are

given in table 2.3. In a first step we then computed the values of amPS at each of

our simulation points. The values can be found in table C.1 in appendix C.

Since we work at maximal twist at each value of β we can extract the pseudo

scalar decay constant fPS as explained in section 1.3 Eq. (1-84). This prescription

allows the extraction of fPS without the need to compute renormalization constants.

The results are collected in table C.2 and they are visualized in figure 2.3, where we

show r0fPS as a function of (a/r0)
2. The different symbols correspond from top to

bottom to about mPS = 720 MeV, 515 MeV, 380 MeV and 300 MeV. In addition to

our data represented by the open symbols we also plot our continuum extrapolation

represented by filled symbols (for better visibility some points are slightly displaced).

For the continuum extrapolations we used only the data for β ≥ 6.0.

For the interpretation of figure 2.3 it is important to remind that – since we

use a multi mass solver – the results at one lattice spacing for different masses

are strongly correlated, which explains the similar fluctuations at fixed a/r0 for the

different values of r0mPS. First of all it is evident from figure 2.3 that for all values of

r0mPS plotted the cut-off effects are linear in (a/r0)
2 for lattice spacings lower than

a given bound. From figure 2.3 we can estimate this bound to be (a/r0)
2 < 0.04.

The slope of the continuum extrapolation, however, is strongly mass dependent: it

becomes steeper the lower the pseudo scalar mass value becomes. This can only be

explained with a dependence of the O(a2) cut-off effects on the mass as described

in Ref. [45]. The size of these cut-off effects can be significantly reduced by using

the PCAC definition of κcrit, as will be shown in the following subsections.

42



2.3. SCALING TEST OF MTMQCD

298 MeV

379 MeV

515 MeV

718 MeVr0fPS

(a/r0)
2

0.050

0.6

0.5

0.4

0.3

0.2

Figure 2.3: Scaling plot for r0fPS as a function of (a/r0)
2 for four different values of r0mPS.

The different symbols correspond from top to bottom to 718 MeV, 515 MeV, 379 MeV

and 298 MeV. Our data points are represented by open symbols while the continuum

extrapolations are plotted with filled symbols

2.3.2 Critical mass from the PCAC relation

With the PCAC definition we considered only the β values 5.7, 5.85, 6.0 and 6.2.

At each of these β values we first determined the values of κPCAC
crit with the method

explained above and collected them in table 2.3. An example for this determination

at β = 5.7 can be found in figure 2.4, where we show in the left panel the interpola-

tion in 1/κ to the point where mPCAC
χ = 0 and in the right panel the extrapolation

of κcrit(aµ) to aµ = 0. With the straight line we indicate the linear extrapolation

to aµ = 0 and in addition we included the value of κcrit determined by the pion

definition in the figure. The difference is supposed to be of O(a). The errors on the

values of κPCAC
crit in table 2.3 stem from the necessary inter- and extrapolation.

The first quantity we investigated was again the pseudo scalar meson mass mPS.

The data are collected in table C.3 in appendix C. In figure 2.5(a) (amPS)
2 is plotted

as a function of aµ at β = 6.0 for the two definitions of κcrit. The data points for

the PCAC definition show a linear behavior in aµ down to very small bare quark

masses, which is not observed with the pion definition of κcrit. This effect is better
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Figure 2.4: Determination of the critical hopping parameter from the PCAC definition at

β = 5.7: (a) interpolation of amPCAC
χ (1/κ) to mPCAC

χ = 0 for one value of the twisted mass

parameter aµ = 0.028 (b) 1/κcrit versus aµ, extrapolation to aµ = 0, the triangle indicates

the 1/κcrit value determined by (amPS)2 → 0 at µ = 0 for unimproved Wilson fermions.

visible in figure 2.5(b), where we plot (amPS)
2/(aµ) as function of aµ. The same

behavior is observed for the other β values. This shows that the GMOR relation

[89] on the lattice

m2
PS = µ

2|〈0|P |π〉|2
Σ

+O(a2) , (2-3)

is not affected by large cut-off effects (see Ref. [45]) when the PCAC definition is used

for the determination of κcrit. Relation (2-3) can be derived from a vector variation

of the charged pseudo scalar density, similar to the pure Wilson case [90]. It allows

the extraction of the scalar condensate Σ with the need of only the renormalization

factor ZP = 1/Zµ. Our determination of ZP and Σ is ongoing [91].

2.3.3 Scaling of fPS with the PCAC definition of κcrit

As a next quantity we determined fPS from the data with the PCAC definition of

κcrit. The values can be found in table C.4 in appendix C. In order to compare to

the results obtained with the pion definition we had to match the values of r0mPS

by interpolating our results.

First of all, for all our values of r0mPS the observed cut-off effects in fPS are

linear in (a/r0)
2. Moreover, if we consider at several values of r0mPS the size of

the O(a2) cut-off effects, we find that with the PCAC definition of κcrit their size is

significantly reduced for small values of r0mPS when compared to the pion definition.
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Figure 2.5: (a) Pseudo scalar mass squared as a function of aµ both, for the pion definition

and the PCAC definition of κcrit at β = 6.0. (b) (amPS)2/(aµ) for both κcrit definitions as

function of aµ at the same value of β. The pion definition data are in (a) and (b) slightly

displaced for better visibility.

For the values of mPS = 298 MeV and mPS = 515 MeV we have plotted fPS in figure

2.6 as a function of (a/r0)
2 for both definitions of κcrit. It is evident that down to

a pseudo scalar mass of 298 MeV the extrapolation of the PCAC definition data

is essentially flat. Moreover, the continuum values extrapolated separately for the

pion definition and the PCAC definition data agree very well within the errors.

As expected, at small values of the pseudo scalar mass the size of the residual

cut-off effects is significantly smaller if the PCAC definition is used instead of the

pion definition.

2.3.4 Scaling of the vector meson mass with the PCAC def-

inition of κcrit

The second quantity we used to check the prediction of automaticO(a) improvement

is the vector mass mV. At maximal twist this mass can be extracted from the

exponential fall of the two point correlation function CAA or CTT in the twisted

basis as explained in section 1.3. The extraction of a value for mV is difficult

without smearing techniques, which is in particular the case for small quark masses.

Therefore, we used local source and Jacobi smeared sinks to extract the vector meson

mass. In addition it turned out that the tensor correlator systematically shows

smaller statistical fluctuations and thus, we used exclusively the tensor correlator

for the determination of values for amV. As explained above we have for mV only
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Figure 2.6: Scaling plot for r0fPS as a function of (a/r0)
2 for mPS = 298 MeV (open circles

and open squares) and mPS = 515 MeV (open triangles and open inversed triangles). The

data points are represented by open symbols while the continuum extrapolations are plotted

with filled symbols. Open squares and open triangles represent data obtained with the pion

definition of κcrit, while the open circles and the open reversed triangles represent data

obtained with the PCAC definition. The PCAC definition continuum points are slightly

displaced for better visibility.

results obtained with the PCAC definition of κcrit.

The values for amV for all our simulation points with the PCAC definition can

be found in table C.5. In fig. 2.7 we show our results for the vector meson mass

as a function of (a/r0)
2 for values of mPS = 900 MeV, 730 MeV and 270 MeV. As

observed for fPS, the continuum extrapolations for mV are essentially flat down to

pseudo scalar masses of 270 MeV for (a/r0)
2 ≤ 0.06, confirming again the expected

O(a) improvement with mtmQCD.

2.3.5 Continuum extrapolation

The continuum extrapolated values of the pseudo scalar decay constant and the vec-

tor mass for nine values ofmPS are summarized in table C.6. The values quoted there

have been extracted only from the data obtained with the PCAC definition, because
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Figure 2.7: r0mV as a function of (a/r0)
2 for three values of r0mPS with the PCAC

definition of κcrit.

they show much less residual lattice artifacts and the continuum extrapolations are

thus more reliable.

In the figures 2.1(a) and 2.1(b), which can be found at the beginning of this

chapter, we plot the continuum values of fPS and mV as functions of m2
PS in physical

units. As a comparison we also plot continuum values that we extracted from the

data presented in Ref. [79] where non-perturbativelyO(a) improved Wilson fermions

have been used. Both quantities show a linear behavior in the pseudo scalar mass

squared without signs of artifacts as predicted from quenched chiral perturbation

theory (proportional to log a). Moreover, our results fully agree with the results

extracted from Ref. [79], at least for the large values of mPS where a comparison is

possible. We extrapolated our results linearly to the chiral limit which is indicated

by the dashed lines in the two panels of figure 2.1. The values for fPS and mV in the

chiral limit are collected in table 2.4 together with the values of fπ, mρ, fK and mK∗

(the last two in the SU(3) symmetric limit). They were obtained either through the

extrapolation to the chiral point (chiral limit, fπ, mρ), or by an interpolation (fK,

mK∗).

The ratio fK/fπ = 1.11(5) is 10% smaller than the experimentally obtained
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mPS [GeV] fPS [GeV] mV [GeV]

0.0 0.144(4) 0.873(32) chiral limit

0.137 0.145(4) 0.880(32) (fπ,mρ)

0.495 0.162(5) 0.971(34) (fK,mK∗)

Table 2.4: fPS and mV in the continuum (PCAC definition). The values are obtained from

a linear fit on the smallest 4 masses (5 in the case of mV) and correspond to: the values in

the chiral limit (first row); fπ and mρ (second row); fK and mK∗ in the SU(3) symmetric

limit (third row).

values. This deviation is, however, consistent with what was observed in previous

quenched calculations [92, 80]. Moreover, the values of mρ and mK∗ turn out to be

10− 15% larger than the experimental values again consistent with other quenched

calculations [80].

2.3.6 Flavor breaking effects

As mentioned in section 1.2.4 the flavor chiral rotation to the twisted basis is in the

continuum only a formal transformation that leaves the theory invariant. Therefore,

even if flavor symmetry seems to be broken in the twisted basis, in the continuum

it is only replaced by a modified, but equivalent flavor symmetry. This is not longer

true at finite lattice spacing where the flavor symmetry is explicitly broken and only

restored in the continuum limit. This manifests itself for instance as a non-vanishing

difference of the charged mPS+ and the neutral mPS0 pseudo scalar masses, which

is expected to vanish towards the continuum as a2. It is an important question

whether this expectation proves true in practice.

If we consider the local bilinears P± = χ̄γ5
τ±

2
χ and P 0 = χ̄χ similar to what

we explained in section 1.3, we can extract values for amPS+ and amPS0 from the

following correlation functions:

CmPS+ (t) = a3
∑

x

〈[P+(x)P−(0)]con〉 ,

CmPS0 (t) = a3
∑

x

〈[P 0(x)P 0(0)]con + [P 0(x)P 0(0)]disc〉 .
(2-4)

Here we denote with [.] the fermionic contractions only and indicate with the sub-

scripts “con” and “disc” the connected and the disconnected pieces of the correlation

function, respectively. For the neutral pseudo scalar mass it is thus in general needed

to evaluate the disconnected contribution

[P 0(x)P 0(0)]disc = Tr
{

D−1
tm

}

(x) Tr
{

D−1
tm

}

(0) . (2-5)
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(b) Absolute pseudo scalar mass splitting

with mPS+ = 382 MeV.

Figure 2.8: Absolute pseudo scalar mass difference as a function of (a/r0)
2 for mPS+ =

298 MeV and mPS+ = 382 MeV employing the pion definition and the PCAC definition for

the critical point.

with the vacuum contribution to Tr
{

D−1
tm

}

being subtracted and the trace is taken

over color and Dirac indices. There are several techniques available to compute those

contributions on the lattice, which are mostly based on stochastic estimators and

usually rather computer time demanding (see for instance Refs. [93, 94]). However,

since we work in the quenched approximation there is a possibility to investigate

the aforementioned mass splitting from the connected piece in CmPS0 only, by rein-

terpreting the connected piece with the help of the Osterwalder-Seiler (OS) action

[95, 96].

The Osterwalder-Seiler action is identical to the twisted mass action, only the τ3
matrix acting in flavor space is replaced with the unit matrix. Thus, mPS+ = mPS0

because flavor symmetry is un-broken and

COS
mPS+

(t) = COS
mPS0

(t) . (2-6)

The key observation is now that in the quenched approximation, and only in the

quenched approximation

COS
mPS0

(t) =
(

Ctm
mPS0

(t)
)

con
, (2-7)

allowing us to interpret (Ctm
mPS0

(t))con as the correlation function of a local operator.

Hence, (Ctm
mPS0

(t))con has a standard transfer matrix decomposition and the neutral

pseudo scalar mass can be extracted from its exponential decay with good precision.
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We have extracted values for amPS0 for β = 5.85, β = 6.0 and β = 6.2 with

the pion definition and the PCAC definition of κcrit. They can be found in the

tables of Ref. [96]. In figure 2.8 we show the mass difference r2
0(m

2
PS0 −m2

PS+) as a

function of (a/r0)
2 for both definitions of κcrit and for values of mPS+ = 298 MeV and

387 MeV. As expected, the difference vanishes proportional to a2 and the continuum

extrapolated values are consistent with zero. However, the mass splitting is not small

and in addition its size differs significantly for the two definition of κcrit: the results

obtained with the PCAC definition show larger flavor breaking effects. This is at

first unexpected, because for all the other quantities used in this scaling test the

O(a2) artifacts are smaller for the PCAC definition when compared to the pion

definition.

Our interpretation for this phenomenon is again based on the symmetries of the

twisted mass formulation. With the PCAC definition parity is maximally restored

at finite lattice spacing, but at the same time flavor symmetry is maximally broken,

which is expressed in chiral perturbation theory in the fact that the mass splitting is

proportional to sin(ω) [97, 82]. We also remark that the mass splitting (mPS0−mPS+)

comes out to be positive which is consistent with the realization of an Aoki phase

scenario in the quenched approximation (see chapter 4 for more details).

2.4 Overlap versus twisted mass fermions

In the last section we have demonstrated that with mtmQCD O(a) improvement

can be obtained without the need of any improvement coefficient, which is indeed a

big advantage of this lattice QCD formulation. We mentioned in section 1.2.4 that

tmQCD has a further advantage compared to the original Wilson formulation: the

twisted mass parameter serves as an infra-red regulator for the low lying eigenvalues

of the lattice Dirac operator [43]. Therefore, it is possible to perform simulations

with pseudo scalar mass of about 270 MeV as we have also shown in the last section.

The tmQCD formulation shares these two properties with the overlap formula-

tion, while the latter has the additional property of exact chiral symmetry on the

lattice. All this makes a comparison between the two formulations rather interest-

ing. Unfortunately, as also discussed in section 1.2.2, the overlap formulation is

much more computer time demanding than the twisted mass formulation making it

impossible for us to repeat the scaling test as presented in the last section with the

overlap operator. We could only afford for simulations with the overlap formulation

at one value of β = 5.85 on lattices of size 123×24 (for a first scaling study see [98]).

We used the overlap operator as defined in Eq. (1-38) with the parameter ρ = 1.6

fixed and bare masses of amov = 0.01, 0.02, 0.04, 0.06, 0.08, 0.10 matching six values

for aµ for the twisted mass simulations at β = 5.85. We approximated the inverse
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amov amPP−SS
PS aLmPP−SS

PS afPS amV

0.01 0.140(20) 1.6 0.0934(90) 0.632(34)

0.02 0.196(14) 2.3 0.1012(53) 0.638(26)

0.04 0.280(10) 3.4 0.1060(34) 0.653(16)

0.06 0.346(8) 4.2 0.1106(25) 0.666(12)

0.08 0.401(7) 4.8 0.1157(22) 0.683(09)

0.10 0.451(6) 5.4 0.1209(21) 0.702(08)

Table 2.5: Values for the pseudo scalar mass with the overlap formulation at β = 5.85

on 123 × 24 lattices. In addition we provide values for aLmPP−SS
PS , the pseudo scalar decay

constant and vector mass for overlap at β = 5.85.

square root by means of Chebyshev polynomials to an absolute accuracy of 10−15.

In the construction of the polynomial we also project out the lowest 20 eigenvalues

of Q2 = (γ5DW)2. For details on the numerical treatment of the overlap operator

see Ref. [99]. With the overlap operator we performed measurements on 140 gauge

configurations and extracted values for amPS, afPS and amV.

The pseudo scalar mass has been extracted from Cov
PP−SS (cf. Eq. 1-88). The

scalar meson state did not affect the extraction, presumably because the quark

masses are small enough to let the pseudo scalar state be dominant at sufficiently

small values of t/a. The values for amPS can be found in table 2.5. In addition to

these values we provide values for aLmPP−SS
PS which we used to estimate the finite

volume effects. Given these values of aLmPP−SS
PS and the experience from tmQCD,

we expect very small finite volume effects for the five heaviest quark masses (again

at a level of a few percent). For the lowest mass finite volume effects can be more

relevant and therefore we usually do not include the corresponding data points in

fits. However, the analysis of the quantities presented below suggests that also for

this value of the quark mass amov = 0.01 finite volume effects are not larger than

our statistical error.

In figure 2.9 we show the pseudo scalar mass squared as a function of the bare

mass ambare for the overlap and the twisted mass formulation at β = 5.85. For

the overlap formulation the bare mass corresponds to amov while for twisted mass

fermions to aµ. For the twisted mass data we took solely the results obtained with

the PCAC definition of κcrit. In addition to our twisted mass and overlap data we

show data points obtained with standard O(a) improved Wilson fermions [100, 101].

From figure 2.9 one can see that at equal value of the bare quark mass the value

of amPS is smaller for overlap fermions than for twisted mass fermions. This suggests

that the renormalization factor Zµ of the quark mass is larger for Wilson twisted

mass fermions compared to the corresponding factor for overlap fermions. Neverthe-

less, it is evident that with both formulations values of about mPS = 270 MeV can
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Figure 2.9: Comparison of am2
PS as a function of the bare quark mass between overlap

and twisted mass formulation at β = 5.85. The overlap data are represented by open circles

and the twisted mass data by open squares. In addition we plot data from simulations with

O(a) improved Wilson fermions [100, 101]. mbare labels the quark mass corresponding to

µ for tmQCD and to mov the overlap. The solid lines are fits to the twisted mass and the

overlap data. While for the fit we used in case of the overlap all the data points, for the

twisted mass data we used only the four data points corresponding to the lowest pseudo

scalar masses.

be reached without suffering from exceptional configurations. Moreover, for both

formulations the squared pseudo scalar mass can be well approximated by a linear

function of the bare quark mass down to the smallest mass values. In fact a linear

extrapolation to the chiral limit gives in both cases a value for the intercept which

is zero within the errors. For the twisted mass data we included only the lowest five

masses in the fit, which was not necessary in case of overlap fermions.

In table 2.5 we have also collected the results for afPS and amV for the over-

lap operator at β = 5.85. The values for afPS were determined using Eq. (1-93)

and hence, do not require any renormalization constant. The vector mass mV was

extracted from Cov
V V (1-90).

Since we could perform the continuum extrapolation for these two quantities

with the twisted mass formulation, we can compare the overlap results at β = 5.85

on the one hand to twisted mass results at the same β value and on the other hand

to the continuum results. The result of this comparison can be found in the four

panels of figure 2.10.

In this figure we plot r0fPS and r0mV as functions of (r0mPS)
2. For the twisted

mass results at β = 5.85 we use solely the data obtained with the PCAC definition

52



2.4. OVERLAP VERSUS TWISTED MASS FERMIONS
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(c) r0mV from overlap (β = 5.85) com-

pared to twisted mass (β = 5.85) versus
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(d) r0mV from overlap (β = 5.85) com-

pared to the (twisted mass) continuum ex-

trapolated values versus (r0mPS)2.

Figure 2.10: Comparison overlap and twisted mass formulation for fPS and mV.

of κcrit. For both quantities a difference between the overlap results and the twisted

mass results at finite values of the lattice spacing are visible, as well as between the

overlap results and the continuum results. This suggests that the results obtained

with the overlap operator are affected by small, but visible O(a2) lattice artifacts.

Comparing 2.10(a) with 2.10(b) and 2.10(c) with 2.10(d) it is visible, that the

data points for twisted mass at β = 5.85 and the continuum points are very close to
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mPS [MeV] aµ amov

230 0.004 0.01

390 0.0125 0.03

555 0.025 0.06

720 0.042 0.10

Table 2.6: Bare quark masses for the cost comparison between overlap and twisted mass

formulation at β = 5.85.

each other. This indicates again that the O(a2) lattice artifacts in these quantities

are very small.

2.4.1 Cost comparison

So far we have concentrated in this section on the comparison between the overlap

and the twisted mass formulation of lattice QCD on the basis of physical results. We

have seen that both the formulations are capable of simulations with pseudo scalar

masses lower than 300 MeV. Despite the fact that the overlap formalism provides

exact chiral symmetry on the lattice and is thus theoretically best founded for lattice

simulations, it seems that twisted mass fermions can serve for many quantities as

an equivalent alternative. This becomes even clearer by noting that with dynamical

twisted mass fermions and a clever choice of the valence quark discretization mixing

of operators with wrong chirality can often be avoided [46]. Thus we are eventually

left to decide between the two formulations by means of a cost comparison.

In order to perform a cost comparison between twisted mass and overlap for-

mulation we have chosen a set-up consisting of two quenched ensembles of 20 con-

figurations with L = T = 12 and L = T = 16, respectively. Both were generated

with the Wilson gauge action at β = 5.85 corresponding to a lattice spacing of

a = 0.12 fm. We have tuned the bare twisted mass parameter aµ and the overlap

bare quark mass amov such that the values of the pseudo scalar masses are matched.

The actual values can be found in table 2.6.

We then invert the twisted mass and the overlap operator separately on two

point-like sources η requiring a stopping criterion of ‖Ax − η‖ < 10−14. We are

working in the chiral basis (see appendix A.1) and have chosen the two sources

to correspond to the two different chiral sectors. The inversions are usually per-

formed with iterative solvers. In order to test the performance of different available

solvers, we have implemented the minimal residual (MR), the conjugate gradient

normal equation (CG(NE)), the conjugate gradient squared (CGS), the stabilized

Bi-conjugate gradient (BiCGstab), the generalized minimal residual (GMRES) (see

Ref. [102] for all of them) and the shifted minimal residual (SUMR) (cf. Ref. [103])
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iterative solvers. The SUMR method is not applicable to the twisted mass operator,

because it requires a shifted unitary operator. Moreover, some of the solvers fail to

invert the twisted mass operator or converge only if Dtm is multiplied with γ5.

The computationally most expensive part in the inversion of the overlap operator

is the approximation of (A†A)−1/2 in Eq. (1-37), where we use the hermitian Wilson-

Dirac operator as kernel A ≡ Q = γ5DW. As mentioned before the square-root is

approximated by means of Chebyshev polynomials, which have an degree of the

order 200 − 300 in our particular set-up, if we project out the lowest 20 and 40

eigenvectors of Q on the 124 and 164 lattices, respectively. Hence, per application

of the overlap operator the Wilson-Dirac operator must be applied order 400− 600

times.

One strategy to reduce the number of Q application during the inversion of Dov

is to adapt the accuracy of the Chebyshev approximation. This can speed up the

inversion by large factors since a reduction in the order of the polynomial enters

multiplicatively in the total cost of the inversion. We denote the usage of adaptive

precision by a subscript ap to the solver name. Depending on the solver the adaptive

precision was applied in different ways. In case of the CGap we cut the polynomial

as soon as the contribution to the resulting vector are smaller than the desired

residuum by a factor 10−2. This requires the full polynomial only at the beginning

of the CG-search while towards the end polynomials of O(10) are sufficient. In the

case of the MRap or the GMRESap on the other hand it is possible to start with a

O(10) polynomial right at the beginning. From time to time the introduced error

is corrected for by calculating the residuum to full precision. This corresponds to a

restart of the solver, which is for these two particular solvers a natural procedure.

In the special case of the CG(NM) solver an additional factor of two can be

saved when the overlap operator is inverted. Since in the CG(NM) the squared

operator γ5Dovγ5Dov - which is real and positive - is inverted, one can make use of

the property of Dov that P±DovP± ∝ P±D
†
ovDovP±, where P± = (1 ± γ5)/2 denote

the projectors on the positive and negative chiral sector. Therefore, if the sources

are chiral half of the applications of Dov can be saved. We denote this algorithm by

CGχ, which can also be combined with adaptive precision CGap,χ.

A further way to speed up the inversion of the overlap operator is the so called

low mode preconditioning [104], which is supposed to help in the regime of quark

masses lighter than what we have used. Therefore, in this chapter we did not

include low mode preconditioning in the comparison. While for the overlap operator

even/odd preconditioning cannot be applied due to the polynomial approximation

of (Q†Q)−1/2, it can be used for the twisted mass operator to reduce the inversion

cost. See appendix B.1 for details on how to implement the inversion with even/odd

preconditioning.
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Figure 2.11: MVov/MVtm of the fastest available solver versus m2
PS[GeV2] for the two

volumes V = 124 and V = 164.

We are left to define which quantity we use in the comparison of the different

solvers and then also the two different operators. One application of Dtm is as

expensive as one application of its even/odd preconditioned version as well as one

application of the kernel of the overlap operator. Hence, it is natural to use the

number of those applications for the comparison. Of course, the different iterative

solvers have in general a different amount of additional linear algebra operations,

which could be included in the comparison by measuring the wall clock time needed

for the inversions. However, the latter measure is highly machine dependent and in

addition our experience shows that the number of operator applications (which we

will denote by matrix vector (MV) multiplications) is a sufficient criterion.

Our results clearly reveal that in case of the twisted mass operator the CG in

combination with even/odd preconditioning is the best choice in the whole range

of masses and for both the volumes we investigated here. For the overlap operator

the GMRESap is the fastest algorithm of the iterative solvers we considered, apart

from the simulation point with a 124 lattice volume and mPS = 230 MeV where the

CGχ,ap is the fastest.

For the fastest available solvers we plot in figure 2.11 the ratio of overlap kernel

applications MVov and applications the preconditioned twisted mass operator MVtm

versusm2
PS in physical units. Depending on the mass and the volume, the inversion of

the twisted mass operator is a factor 20 to 70 faster than the inversion of the overlap

operator at matched values of the pseudo scalar mass from 230 MeV to 720 MeV.

When the two different volumes are compared the overlap operator performs slightly
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better on the larger volume when compared to the twisted mass operator. But, of

course, for a definite conclusion we would need at least one additional volume.

2.5 Conclusion

In this chapter we presented a detailed scaling test in the quenched approximation

of the twisted mass lattice QCD formulation at maximal twist. To this end we have

computed several physical quantities in a range of lattice spacings between 0.17 fm

and 0.048 fm and pseudo scalar masses between 270 MeV and 1.2 GeV. In order

to work at full twist (ω = π/2) it is necessary to determine the critical value of

the hopping parameter κcrit. We have explored the pion definition and the PCAC

definition for this parameter in order to investigate the influence of these particular

choices on the lattice artifacts.

The results of our – quenched – study for the vector meson mass mV and the

pseudo scalar decay constant fPS are very encouraging. Our data strongly suggest

that in this setup the lattice spacing effects are substantially reduced with respect to

standard Wilson fermions and consistent with vanishing O(a) discretization errors.

This holds for both the pion definition and the PCAC definition of κcrit. Using the

PCAC definition of the critical mass the scaling region is found to start already at

(a/r0)
2 ≤ 0.06 for the observables investigated here, while for the pion definition this

region starts only at (a/r0)
2 ≤ 0.04. Moreover, the O(a2) artifacts remain small for

pseudo scalar masses down to 270 MeV when the PCAC definition is used, which is

not the case for the pion definition. However, at the two smallest quark masses, we

had to include for the pion definition a point at β = 6.45 in order to safely control

the continuum limit extrapolation.

In the case of fPS we have explicitly checked that both definitions of the critical

mass lead independently to consistent values in the continuum limit. Nevertheless,

for further simulations the PCAC definition of κc is clearly preferable as it leads to

considerably smaller lattice artifacts at small quark masses, allowing at the same

time for an enlargement of the scaling region.

We also investigated the flavor breaking effects in the twisted mass formulation.

Flavor symmetry is explicitly broken by the twisted mass term at finite values of the

lattice spacing. We have shown that the mass splitting between the neutral and the

charged pseudo scalar state is not small. But, as expected, the splitting vanishes

like a2 in the continuum limit.

In addition we confronted at one value of the bare coupling constant β = 5.85

results obtained with the overlap formulation with corresponding results obtained

with the twisted mass formulation of lattice QCD. We find that for the quanti-

ties investigated in this chapter the two formulations are compatible, in particular
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pseudo scalar masses smaller than 300 MeV can be reached with both formulations.

However, with a detailed test of various iterative solvers for both formulations we

could show that (quenched) simulations with the twisted mass formulation are a

factor of 20 to 70 faster than with the overlap formulation, depending on the mass

under consideration.

Therefore, the results of this chapter clearly reveal that mtmQCD allows for reli-

able simulations at pseudo scalar meson masses of about 270 MeV without running

into problems with exceptionally small eigenvalues. In addition lattice artifacts lin-

ear in a are absent and, when the PCAC definition of the critical mass is used, also

the residual lattice artifacts are small in the whole range of masses investigated here.

At the same time the costs are significantly less than what is needed for the overlap

formulation. In view of future dynamical simulations with light quark masses this

is, we think, a very important lesson.
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