
Chapter 1

Theoretical basis

This chapter is devoted to give a summary of the basic theoretical concepts used for

this work. We start with shortly introducing quantum chromodynamics (QCD) as

the theory of strong interactions followed by a description of its regularization by the

standard Wilson lattice QCD approach, as it can be found in textbooks such as [15,

16, 17, 18, 19, 20]. Then we discuss in more detail several more recent formulations

of lattice QCD and compare their properties. Aiming at computer simulations of

lattice QCD we finally present methods and algorithms for this purpose.

1.1 QCD in Euclidean space-time

In this section we shortly derive the SU(3) gauge invariant QCD Lagrangian, describe

its quantization by means of the path integral formalism and the transition from

Minkowski to Euclidean space-time. The QCD Lagrangian is constructed such that

the standard lattice regularization follows immediately.

Motivated by the demand of local gauge symmetry, we consider a continuous

group of (gauge) transformations, represented by a set of SU(3) matrices V (x), and

a quark of flavor q, represented by a color-spinor field ψαc,q(x) with SU(3) color index

c = 1, 2, 3 and Dirac spinor index α = 0, 1, 2, 3. Suppressing all these indices in the

following, the fields ψ(x) transform like

ψ(x) → V (x)ψ(x) . (1-1)

In order to construct a gauge invariant kinetic energy term for these quark fields,

we define the gauge covariant derivative in direction µ by the limiting procedure:

Dµψ(x) = lim
a→0

1

a
[U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)] , (1-2)
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CHAPTER 1. THEORETICAL BASIS

where µ̂ is a unit vector in direction µ∗. For later purposes we extract the forward

covariant difference operator

∇µψ(x) =
1

a
[U(x, x+ aµ̂)ψ(x+ aµ̂)− ψ(x)] , (1-3)

and define also the backward covariant difference operator

∇∗
µψ(x) =

1

a

[

ψ(x)− U(x, x− aµ̂)ψ(x− aµ̂)
]

. (1-4)

In definition (1-2) we have introduced a so-called parallel transporter U(x, y), a

unitary SU(3) matrix, which obeys the transformation law

U(x, y) → V (x)U(x, y)V †(y) , (1-5)

and we set U(x, x) = 1. Since U(x, y) is a SU(3) matrix and a continuous function

of its arguments, for infinitesimal a it can be represented as

U(x, x+ aµ̂) = exp
(

−igaAiµ(x+
a

2
µ̂)λi +O(a3)

)

. (1-6)

Here g is the bare gauge coupling, introduced for later convenience, and Aiµ is a

vector field for each generator λi of the transformation group. Expanding (1-6) in

a and inserting it into definition (1-2) yields in the limit a → 0 for the continuum

covariant derivative associated with the local SU(3) gauge symmetry

Dµ = ∂µ − igAiµλi , (1-7)

which has the correct gauge transformation properties and where Aiµ is the con-

tinuum gauge potential. With what we have defined so far we can already write a

locally gauge invariant Lagrangian containing a kinetic energy term for the quark

field ψ(x) and a quark mass term. In order to complete the Lagrangian we have to

find a kinetic term for the field Aµ itself. A term like this can be constructed by

defining

U2(x;µ, ν) =U(x, x+ aµ̂)U(x+ aµ̂, x+ aν̂ + aµ̂)

× U(x+ aν̂ + aµ̂, x+ aν̂)U(x+ aν̂, x)
(1-8)

as the product of the four parallel transporters at the corners of a small square in

space-time, the plaquette. However, U2(x;µ, ν) itself is not gauge invariant, and

in order to convert it to a locally gauge invariant expression we have to take the

trace. Inserting (1-6) into (1-8) and using the Campbell-Baker-Hausdorff formula

we achieve by expanding to order a6

TrU2(x;µ, ν) = Tr[1]− 1

4
g2a4(F i

µν)
2 +O(a6) , (1-9)

∗We use the non-standard notation a (instead of for instance ǫ), because a will be identified

with the lattice spacing later on.
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1.1. QCD IN EUCLIDEAN SPACE-TIME

where we introduced the field strength

F i
µν = ∂µA

i
ν − ∂νAiµ + gf ijkAjµA

k
ν . (1-10)

f ijk are the structure constants of the symmetry group (see appendix A). By con-

struction (F i
µν)

2 is locally gauge invariant. Now we can write down the QCD La-

grangian that is renormalizable, conserves parity and is invariant under time rever-

sion [3, 4, 5]

L = −1

4
(F i

µν)
2 + ψ̄(iγµDµ −mq)ψ , (1-11)

with ψ̄ = ψ†γ0 being the anti-quark field. The fermionic part of Eq. (1-11) contains

the covariant Dirac operator M ≡ iγµDµ −mq with quark mass mq
†.

Eq. (1-11) exhibits the classical QCD Lagrangian. In order to quantize the

theory we will use the path integral formalism introduced by Feynman [21]. The

fundamental quantity in the path integral formalism is the classical action S, which

is explicitly given for QCD with one quark flavor as the space-time integral over the

Lagrangian density

S[ψ, ψ̄, A] =

∫

d4x

{

−1

4
(F i

µν)
2 + ψ̄Mψ

}

. (1-12)

The expectation value of a physical observable O is then formally given by the

following functional integral:

〈O〉 =
1

Z

∫

DADψDψ̄ O[ψ, ψ̄, A] eiS[ψ,ψ̄,A] , (1-13)

with the partition function Z

Z =

∫

DADψDψ̄ eiS[ψ,ψ̄,A] . (1-14)

One advantage of the path integral quantization is that it deals only with classical

fields and not with operators. However, in case of fermions the (classical) fields ψ

must be represented by anti-commuting variables. This is realized by the use of so

called Grassmann variables. The integral over such Grassmann valued numbers can

be defined in a sensible way and we adopt here the standard conventions (see for

instance [15]).

Formally we can perform the integral over the Grassmann valued fields ψ and ψ̄

analytically due to its Gaussian structure

∫

DψDψ̄ exp

{

i

∫

d4x ψ̄Mψ

}

∝ detM , (1-15)

†For simplicity we consider only one quark flavor. The generalization to Nf flavors of quarks is

straightforward.
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leaving us to calculate the functional determinant of the operator M ‡. Nevertheless,

we can define an effective action

Seff [A] =

∫

d4x

{

−i log detM − 1

4
(F i

µν)
2

}

. (1-16)

in terms of which we can now express the expectation value of an operator O

〈O〉 =
1

Z

∫

DA O[A] eiSeff [A] . (1-17)

This is possible because due to Wick’s theorem for the contraction of fields one can

eliminate the time-ordered product of quark fields in the operator O by suitable

factors of M−1 which do no longer depend on the quark fields ψ̄, ψ.

For a numerical treatment of the functional integral in Eq. (1-17) it is useful

to analytically continue the time component of the 4-vectors to purely imaginary

values§. This rotation of the time coordinate x0 → −ix0 leads to a Euclidean 4-

vector product:

x2 = (x0)2 − |~x|2 → −(x0)2 − |~x|2 = −|xE|2 . (1-18)

It was shown by Osterwalder and Schrader [22] that under certain conditions one can

reconstruct the whole quantum field theory in Minkowski space from the Euclidean

field theory. The most important condition is the so called Osterwalder-Schrader

positivity or reflection positivity, which replaces Hilbert space positivity and the

spectral condition of the Minkowskian formulation [22].

In Euclidean space the action is mapped to its Euclidean version

S → iS ≡ −SE = −
∫

d4x

[

1

4
(F i

µν)
2 + ψ̄(γµDµ +mq)ψ

]

, (1-19)

where the Euclidean Dirac matrices γµ are hermitian and satisfy the anti-commutation

relation

{γµ, γν} = 2δµν . (1-20)

For the explicit representation see appendix A.1. Consequently the exponential

weight, e.g. in the partition function Z, can now be interpreted as a Boltzmann

factor, as the Euclidean action is real and bounded from below (if the functional

determinant detM is real)

ZE =

∫

Dψ̄DψDA e−SE . (1-21)

Since we will work almost solely in Euclidean space-time we will skip the subscript

E in the following and use, for convenience, t instead of x0.

‡One can show that the functional determinant is equivalent to the sum of vacuum diagrams.
§This is often called Wick rotation.
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1.2. LATTICE REGULARIZATION

1.2 Lattice regularization

In the following section we will describe how QCD as a quantum field theory can be

regularized in Euclidean space-time by means of a discrete space-time lattice. As a

regularization scheme it can be used equally well as e.g. dimensional regularization.

But it has the crucial advantage to allow for non-perturbative computations by

means of Monte Carlo methods.

To this end, we introduce a hyper-cubic space-time lattice with spacing a and

extension aL (a T ) in the spatial directions (time direction). The boundary con-

ditions can be chosen in different ways, and we will use periodic boundary con-

ditions throughout this work. Only for the quark fields in time direction we use

either periodic or anti-periodic boundary conditions. The parallel transporters

U(x, y) are SU(3)-valued and defined as in Eq. (1-6), where we use the notation

Ux,µ ≡ U(x, x + aµ̂). Note that Ux,−µ ≡ U(x, x − aµ̂) = U−1
x−aµ̂,µ. The set of all

parallel transporters on the lattice U ≡ {Ux,µ} we call a gauge field configuration.

The finite lattice spacing provides an ultra-violet cutoff for the momenta. In the

finite volume the allowed momenta are then given by

k = ±2πn

La
, n = 1, . . . , L/2 . (1-22)

On lattice we are now able to specify what is meant by the functional integral over

the gauge fields:
∫

DA ≡
∫

∏

x,µ

dUx,µ , (1-23)

where the product is over all lattice points x and directions µ. Unlike in the con-

tinuum, the lattice gauge fields are SU(3) matrices with elements that are bounded

in the range [0, 1]. Therefore, as proposed by Wilson, we use the invariant Haar

measure for the integration and adopt the standard definitions (cf. e.g. [18]).

The path integral of the Grassmann valued fermionic fields ψ̄ and ψ is discretized

similarly by
∫

Dψ̄Dψ ≡
∫

∏

x

dψ̄(x)dψ(x) . (1-24)

1.2.1 Wilson lattice action

The next step is to discretize the action. Recalling the definition of the plaquette

variable (1-8) the definition

SG[U ] =
∑

x

∑

1≤µ<ν

β

{

1− 1

3
Re Tr(U2(x;µ, ν)

}

(1-25)
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is locally gauge invariant, real and positive for β ≡ 6/g2 > 0. It is obvious from

Eq. (1-9) that it has the correct limit as a → 0. SG is called the Wilson plaquette

gauge action [10] and in the following we will call β the bare coupling constant.

We are left to discretize the fermionic part of the action. With the definitions

(1-3) and (1-4) of the forward and backward difference operators ∇µ and ∇∗
µ, re-

spectively, the lattice Dirac operator DW proposed by Wilson in Ref. [10] can be

read off from

ψ̄ DW[U ]ψ = a4
∑

x,µ

ψ̄(x)
1

2

[

γµ(∇µ +∇∗
µ)− ar∇∗

µ∇µ

]

ψ(x) . (1-26)

The so-called Wilson term −ar∇∗
µ∇µ has been introduced in order to cure the

problem that a naive discretization gives in the continuum limit rise to 2d=4 = 16

fermion excitations rather than one (the so-called fermion doubling problem). With

the Wilson term the extra 15 species pick up a mass proportional to 2r/a and

decouple in the limit a→ 0. The Wilson parameter r can be chosen as −1 ≤ r ≤ 1.

With a bare mass m0 the Wilson lattice action then reads

S[ψ, ψ̄, U ] = SG[U ] + ψ̄(DW[U ]−m0)ψ . (1-27)

However, while curing the fermion doubling problem, the Wilson term explicitly

breaks chiral symmetry at finite values of the lattice spacing, i.e. even the massless

Wilson-Dirac operator no longer anti-commutes with γ5. Although chiral symmetry

is expected to be recovered in the continuum, its breaking at finite values of a has

important consequences, among others:

• It introduces discretization errors of O(a). With a naive discretization the

lattice artifacts in the action appear only at O(a2).

• The quark mass renormalizes both additively and multiplicatively. Hence, it

is useful to define a subtracted bare quark mass parameter by

mq = m0 −mcrit , (1-28)

where mcrit is called the critical mass parameter. The value of mcrit needs

to be determined such that the chiral point is properly defined, for instance

by demanding that the lightest pseudo scalar state becomes massless at this

point.

Both of these two consequences will play an important rôle in this work.

We note in passing that usually in the simulations the hopping parameter repre-

sentation of the Wilson lattice action (1-27) is used. It is obtained from (1-27) by

re-scaling the fermionic fields as follows:

ψ →
√

2κ

a3/2
ψ , ψ̄ →

√
2κ

a3/2
ψ̄ , κ =

1

2am0 + 8r
, (1-29)
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1.2. LATTICE REGULARIZATION

with the so called hopping parameter κ. To mcrit corresponds the critical hopping

parameter

κcrit =
1

2amcrit + 8r
, (1-30)

and the fermionic part of the action reads

S[ψ, ψ̄, U ] =
∑

x

{

ψ̄(x)ψ(x)− κψ̄(x)
4
∑

µ=1

[

Ux,µ(r + γµ)ψ(x+ aµ̂)

+ U †
x−aµ̂,µ(r − γµ)ψ(x− aµ̂)

]

}

≡
∑

x,y

ψ̄(x)Mxyψ(y) .

(1-31)

1.2.2 Remnant chiral symmetry on the lattice

If we consider massless continuum QCD with two quark flavors u ≡ ψαc,u and d ≡
ψαc,d, the Lagrangian obeys isospin symmetry, the symmetry of an SU(2) unitary

transformation mixing the u and d fields. But, since left- and right-handed quarks

do not couple, this Lagrangian is actually symmetric under the separate unitary

transformations
(

u

d

)

L

≡ 1− γ5

2

(

u

d

)

→ UL

(

u

d

)

L

,

(

u

d

)

R

≡ 1 + γ5

2

(

u

d

)

→ UR

(

u

d

)

R

. (1-32)

We can separate the U(1) and the SU(2) parts of these transformations: the sym-

metry of the classical Lagrangian is UV (1)×UA(1)× SUV (2)× SUA(2). The vector

part of this symmetry is a manifest symmetry of strong interactions, but the UA(1)

is broken by instanton contributions and the SUA(2) symmetry is spontaneously

broken. These two statements imply that the flavor singlet axial current

jµ5 = (ū d̄)γµγ5

(

u

d

)

(1-33)

is anomalous (Adler-Bell-Jackiw anomaly) and that the quark condensate acquires a

non-zero expectation value in the QCD vacuum. Due to Goldstone’s theorem we ex-

pect three massless particles associated with the spontaneously broken symmetries,

which are in nature realized as the pion triplet.

Of course, if the quarks are not exactly massless, the isotriplet axial currents are

no longer exactly conserved. Then, the quark mass terms give the pions masses of

the form (see e.g. Ref. [15])

m2
π =

M2

fπ
(mu +md) , (1-34)
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with a mass parameter M and fπ the pion decay constant with dimension of a mass.

The value of M has been estimated to be of the order of 400 MeV, the value of fπ
is 93 MeV [23]. To give the pions the observed 140 MeV [23] one therefore needs

(mu + md) ∼ 10 MeV, which is indeed a small, but important perturbation to the

massless case.

Chiral symmetry plays an important rôle in continuum QCD and it is therefore

desirable to preserve chiral symmetry also in lattice QCD at finite values of the

lattice spacing a. But, we have seen already in the discussion around Eq. (1-26)

that for the standard Wilson operator one has to live either with the doubling

problem or with explicitly broken chiral symmetry.

In fact, it was proven by Nielsen and Ninomiya [24, 25, 26, 27] that for a massless

lattice Dirac operator D it is not possible to achieve the following properties at the

same time:

1. D(x) is an essentially local operator (bounded by e−γ|x|).

2. The Fourier transform of D(x) fulfills D̃(p) = iγµpµ +O(ap2) for p≪ π/a.

3. D̃(p) is invertible for p 6= 0. (no massless doublers).

4. The lattice action is invariant under continuous chiral transformations, i.e.

γ5D +Dγ5 = 0.

In order to circumvent this theorem it was proposed by Ginsparg and Wilson [28] to

replace the property thatD anti-commutes with γ5 by the so-called Ginsparg-Wilson

relation:

γ5D +Dγ5 = aDγ5RD , (1-35)

where R is a local matrix that may have a nontrivial γ-matrix dependence but must

have a chirally non-invariant piece.

The Ginsparg-Wilson relation implies a continuous symmetry of the fermionic

lattice action, as was shown by Lüscher [29]. The infinitesimal variation correspond-

ing to this symmetry reads

δψ = γ5(1−
1

2
aD)ψ , δψ̄ = ψ̄(1− 1

2
aD)γ5 , (1-36)

which is a flavor singlet chiral transformation on the lattice. The flavor non-singlet

transformations can be defined similarly by including a group generator in Eq. (1-36).

An operator D fulfilling the Ginsparg-Wilson relation (1-35) is called a Ginsparg-

Wilson operator.

Since the flavor singlet chiral symmetry in QCD is anomalous in the presence

of gauge fields, it is interesting to see whether this anomaly is correctly reproduced
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when the lattice Dirac operator fulfills the relation (1-35). In fact it was shown

in Ref. [29] that the Ward identities associated with the global flavor singlet chiral

transformations on the lattice have the correct anomaly. Moreover, the discussion

in Ref. [29] reveals that flavor non-singlet chiral rotations are exact symmetries of

the lattice theory. In addition the Atiyah-Singer index theorem [30] holds at finite

values of the lattice spacing [31] with the important consequence that the difference

of the number of positive chirality zero modes and negative chirality zero modes of

a Ginsparg-Wilson Dirac operator in an external color gauge field is equal to the

topological charge.

Furthermore, like in continuum QCD, the lattice chiral symmetry prohibits mix-

ing between operators with different chirality. The latter proves to be rather useful

in the course of renormalization, in particular in the calculation of matrix elements

of the weak interactions Hamiltonian needed for instance for the extraction of BK .

One particular solution of the Ginsparg-Wilson relation was found by Neuberger

[32, 33] and is given by the so called overlap operator. For Rxy = δxy/ρ the massless

operator reads

D(0)
ov =

ρ

a

[

1− A(A†A)−1/2
]

, A = ρ− aDW , (1-37)

where DW is the Wilson-Dirac operator (1-26) and 0 < ρ < 2 is a real parameter.

A bare mass mov can be added in the following way

Dov =

(

1−mov
a

2ρ

)

D(0)
ov +mov , (1-38)

where the somewhat un-usual form avoids O(a) lattice artifacts [34]. The overlap

operator was shown to be manifestly gauge covariant and it has no doublers. More-

over it was shown to converge to the expected classical continuum expression (up

to a finite normalization constant) and the requirement of locality is fulfilled with

a certain choice of the parameter ρ [35]. Note that an equivalent formulation is

provided by the domain wall approach [36, 37] (for a review see [38]).

However, from a feasibility point of view the overlap operator is compared to the

Wilson-Dirac operator computer time demanding. The reason for this is the fact

that for each application of Dov an evaluation of 1/
√
A†A is needed. This is usually

done with a polynomial in the operator A†A and needs therefore a certain number of

applications of the latter. This number depends naturally on the parameters under

investigation and might very well be of O(100).

It is also part of this work to compare the computational costs for two particular

lattice Dirac operators – one of those being the overlap operator.
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1.2.3 Symanzik effective action

We have explained in the last paragraphs that the Wilson formulation of lattice

QCD breaks chiral symmetry and shows discretization errors of O(a), which is not

a problem of principle if one is able to simulate at small enough values of the lattice

spacing a. Unfortunately, nowadays lattice QCD simulations are still restricted to

rather large values of a and it is therefore worthwhile to improve the scaling with

the lattice spacing towards the continuum limit.

We will present here two ways to achieve on-shell O(a) improvement, both of

them are based on the effective action introduced by Symanzik [12, 13, 14].

Close to the continuum the lattice theory as has been defined in the previous

paragraphs can be described by a local effective action

Seff = S0 + aS1 + a2S2 + . . . (1-39)

While the leading term, S0, is just the continuum action¶, the correction terms Sk
are to be interpreted as operator insertions in the continuum theory and are given

by

Sk =

∫

d4xLk(x) . (1-40)

The Lagrangians Lk have mass dimension 4 + k and they are linear combinations

of local composite fields. The list of possible fields is constraint by gauge and flavor

symmetry and the exact discrete symmetries of the lattice action, including space-

time lattice symmetries and charge conjugation. Moreover partial integration can

be used to further reduce the number of possible terms.

Clearly the action is not the only origin for cut-off effects, also the local com-

posite fields, from which observables of interest are built, will be a source of those.

Consider a local gauge invariant composite field φ(x) on the lattice, constructed out

of gluon and fermion fields. For simplicity we assume that it does not mix with

other operators under renormalization. The effective field

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) + . . . (1-41)

represents in the effective theory the renormalized lattice field Zφφ(x) with an ap-

propriately chosen renormalization factor Zφ. The fields φk that appear in the

representation (1-41) are linear combinations of local fields with appropriate dimen-

sion and symmetry properties. To leading order in the lattice spacing a connected

lattice n-point function with all points x1, . . . , xn kept at non zero distance from

¶The continuum theory also has to be regularized to make the expressions meaningful. One

could think e.g. of a regularization with a much smaller lattice spacing ã≪ a.
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each other is given by

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉cont

− a
∫

d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉cont

+ a
n
∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉cont +O(a2) .

(1-42)

All the expectation values on the right hand side of Eq. (1-42) have to be evaluated

in the continuum theory with action S0, which we indicate by the superscript cont. In

the second term, which is the contribution of the O(a) term in the effective action,

the integral over y in general diverges at the points y = xk. However, each such

contact term can be described as the effect of a local field placed at xk. This local

field must have the global symmetry quantum numbers of φ0(xk)L(y) and therefore

the possible fields are known from φeff . Hence, the contact terms lead just to a

redefinition of the field φ1(x) and the renormalization factor.

In the following we will assume that the lattice action is the Wilson action. For

this case in Ref. [39] the O(a) effective Lagrangian L1(x) was derived to be a linear

combination of the following fields

O1 = ψ̄σµνFµνψ ,

O2 = ψ̄DµDµψ + ψ̄
←−
Dµ
←−
Dµψ ,

O3 = mTr{FµνFµν}
O4 = m{ψ̄γµDµψ − ψ̄

←−
Dµγµψ}

O5 = m2ψ̄ψ ,

(1-43)

where m is the quark mass and Fµν the field-strength tensor and Dµ is here the

gauge covariant partial derivative, see Ref. [39]. We do not consider the fields O2

and O4, because they can be eliminated by relations derived from the classical field

equations. Note that in order to apply the field equations to simplify the effective

Lagrangian one has to carefully treat some contact terms. However, these contact

terms can be shown to amount only for a redefinition of the fields [39], see above.

Thus, aiming to improve the lattice action by adding a suitable counter-term of

O(a) to the Wilson action, one has to add a counter-term of the form

a5
∑

x

[

c1Ô1(x) + c3Ô3(x) + c5Ô5(x)
]

, (1-44)

where Ôk is some lattice representation of the field Ok. Using the leftover ambiguity

of O(a2) we may represent the fields TrFµνFµν and ψ̄ψ by the Wilson plaquette

field and the local scalar density, respectively. Since these two already appear in

15



CHAPTER 1. THEORETICAL BASIS

the Wilson action the counter-terms proportional to Ô3 and Ô5 amount to a renor-

malization of the bare coupling and the bare mass. Let us remark here that the

latter prescription to absorb the counter-terms of O3 and O5 leads to the additional

complication of a mass dependent renormalization scheme, which is usually not fa-

vorable. One can cope with this complication [39], but we will not go into these

details since we are not going to use this improvement programme further.

Therefore, for the on-shell O(a) improved action one needs a counter-term

δS[U, ψ̄, ψ] = a5
∑

x

cswψ̄(x)
i

4
σµνF̂µν(x)ψ(x) , (1-45)

where F̂µν is a lattice representation of the field strength tensor Fµν and csw is a

tunable coefficient‖. The coefficient csw needs to be determined in a suitable way in

order to obtain an order a improved theory on the lattice.

Depending on the possible fields φ1 it might then also be necessary to determine

further improvement coefficients for the field under consideration. One example is

the isovector axial current

Aαµ(x) = ψ̄(x)γµγ5
1

2
ταψ(x) ,

that needs one improvement coefficient cA.

Finally, we want to mention that, since O1 transforms like a mass term under

chiral rotations [41] and therefore explicitly breaks chiral symmetry, it cannot appear

if the operator obeys the Ginsparg-Wilson relation: the reason for this is that in

the chiral limit there is exact chiral symmetry on the lattice and thus all correction

terms in the action not proportional to some powers of the mass must be absent

in the effective action [34]. Moreover, with a properly introduced mass term as in

Eq. (1-38) terms proportional to am are forbidden due to the combined symmetry

of [m→ −m] and

ψ → γ5(1− aD)ψ , ψ̄ → −ψ̄γ5 .

Thus a lattice regularization with exact chiral symmetry shows no O(a) lattice ar-

tifacts. This, of course, provides an additional advantage of chirally symmetric

lattice formulations compared to O(a) improvement by means of the Symanzik im-

provement programme: in the latter a (potentially large) number of improvement

coefficients has to be tuned, while there is still no control about higher order lattice

artifacts.

1.2.4 Twisted mass regularization

Having introduced in the last subsection the concept of Symanzik’s effective action

and one way to obtain on-shell O(a) improvement – that amounts in determining

‖The improved action was first obtained by Sheikholeslami and Wohlert [40].
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1.2. LATTICE REGULARIZATION

improvement coefficients and adding of counter-terms to the lattice action – we will

in this subsection follow a different approach, recently realized in Ref. [42], where

only one parameter needs to be tuned in order to obtain O(a) improved results.

To this end we introduce the so called twisted mass regularization of lattice QCD

(tmQCD) [43, 44]. The twisted mass fermion lattice action for Nf = 2 flavors of

mass degenerate quarks reads

Stm = a4
∑

x

χ̄(x)
[

DW +m0 + iµγ5τ3
]

χ(x) = a4
∑

x

χ̄(x)Dtmχ(x) , (1-46)

where µ is refered to as the twisted mass parameter and τ3 is the third Pauli matrix

acting in flavor space. The twisted mass Dirac operator Dtm is given by

Dtm = DW +m0 + iµγ5τ3 . (1-47)

We denote the fermion fields now by χ and call them the twisted basis for a reason

that will become clear later. In Ref. [43] this formulation was introduced to avoid

un-physically small eigenvalues of the lattice Dirac operator, since the twisted mass

serves as an infrared cutoff for the eigenvalues of the operator Dtm, and it was shown

that this particular regularization is equivalent to the standard Wilson regularization

up to cut-off effects [43].

In fact the continuum limit of the action (1-46) reads

Scont
tm =

∫

d4x χ̄(x)
[

γµDµ +mq + iµγ5τ3
]

χ(x) , (1-48)

which is form-invariant under axial transformations

χ → eiωγ5τ3/2χ , χ̄ → χ̄ eiωγ5τ3/2 . (1-49)

The form (1-48) can be obtained from the standard continuum fermion action by

rotating the fermion fields ψ with twist angle ω according to

ψ → χ = eiωγ5τ3/2ψ , ψ̄ → χ̄ = ψ̄ eiωγ5τ3/2 . (1-50)

Note that the axial transformations (1-50) are non-anomalous: they leave the fermion

measure invariant since Tr τ3 = 0. The latter rotations just transform the mass pa-

rameters according to

mq → mq cosω + µ sinω ,

µ → −mq sinω + µ cosω ,
(1-51)

and the mass term in Eq. (1-48) can also be written as m exp(−iωγ5τ3) with m2 =

m2
q + µ2. One form of particular interest – which will become clear later – is the

special case with mq = 0

Scont
mtm =

∫

d4x χ̄(x)
[

γµDµ + iµγ5τ3
]

χ(x) , (1-52)
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CHAPTER 1. THEORETICAL BASIS

which is related to the standard action by an axial transformation with angle ω =

π/2. It is refered to as the action with maximal twist. The corresponding lattice

action has the form

Smtm = a4
∑

x

χ̄(x)
[

DW +mcrit + iµγ5τ3
]

χ(x) , (1-53)

since the Wilson term −ar∇∗
µ∇µ still breaks chiral symmetry explicitly and there-

fore additive renormalization of m0 is needed. We refer to this particular lattice

regularization as maximally twisted mass lattice QCD (mtmQCD).

Since the transition from standard to twisted form of the action corresponds to

a change of fermionic variables ψ → χ, the χ basis is called twisted basis and the ψ

basis is called physical basis. The lattice Wilson twisted mass action (1-46) in the

twisted basis can be translated to the physical basis again by an axial transformation

of the form of Eq. (1-49) and it reads

Sph
tm = a4

∑

x

ψ̄(x)

[

1

2

∑

µ

γµ(∇∗
µ +∇µ)

+

(

−ra
2

∑

µ

∇∗
µ∇µ +mcrit

)

e−iωγ5τ3 +mq

]

ψ(x) .

(1-54)

In this form the fermion mass term is real and, since the Wilson term is not left

invariant under the axial rotation, now the Wilson term is rotated. We remark

that the tmQCD lattice action can easily be translated to the hopping parameter

representation by re-scaling according to Eq. (1-29), as it was done for the Wilson

lattice action with Eq. (1-31).

Finally, as in the continuum the tmQCD and the standard QCD are exactly

related by the transformation (1-50), they share all the symmetries. But in the

twisted basis the symmetry transformations can have a different form than usual.

For instance the usual parity operation

P :























U0(~x, t) → U0(−~x, t)
Uk(~x, t) → U †

k(~x− ak̂, t)
χ(~x, t) → γ0χ(−~x, t)
χ̄(~x, t) → χ̄(−~x, t)γ0

(1-55)

is no longer a symmetry of the continuum action in the twisted basis. But if P is

replaced by the following modified parity operation P̃ [44], the symmetry is recov-

ered:

P̃ :

{

χ(~x, t) → γ0 exp(iωγ5τ3)χ(−~x, t)
χ̄(~x, t) → χ̄(−~x, t) exp(iωγ5τ3)γ0 ,

(1-56)
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where ω is defined by Eq. (1-51) and the gauge fields transform under P̃ as for P .

However, for the lattice action in the twisted basis P is only a symmetry if it is

combined with [µ → −µ] or a flavor exchange [44]. The former combination we

will denote with Pµ and the latter with PF . Moreover, on the lattice the isospin

symmetry is explicitly broken in the twisted mass formulation even in the mass

degenerate case.

O(a) improvement at maximal twist

The mtmQCD formulation is of particular interest, because one can show that terms

proportional to O(a) are absent in the Symanzik expansion of certain physical ob-

servables, as was proven in Ref. [42]. In order to see this we will follow in this work

a different approach than originally used in Ref. [42]. It is similar to a proof in the

physical basis presented in Ref. [45] and based on the following observations:

First, it is important to notice that all the expectation values in the Symanzik

expansion of an operator O on the right hand side of Eq. (1-42) are to be taken in

the continuum theory with action S0. This implies that any operator not obeying

the symmetries of S0 must have zero expectation value and therefore be absent in

the expansion. The symmetry we will use is the just introduced modified parity

operation P̃ .

Second, all the operators in the expansion of the operator O must share all its

lattice symmetries, otherwise they must be absent. The particular symmetry of the

mtmQCD lattice action is P̃ ×Dm×Dd. The transformation according to Dm×Dd
is multiplying each term with (−1)dm+dd . dm represents the mass dimension of the

term and dd its normal dimension.

And last, the fields contributing to L1 are restricted to those that obey the

symmetries of the lattice action, as for instance Pµ and PF .

By using these arguments we will now show that in the expansion of an operator

O even under P̃ , which means O goes exactly into itself under a P̃ transformation,

terms linear in a are absent. To this end we first have to accumulate the action

counter-terms needed for L1: in addition to the fields listed in Eq. (1-43) one finds

among others the following:

O6 = µ2χ̄χ ,

O7 = µTr{FµνFµν} ,
O8 = imµχ̄γ5τ3χ ,

O9 = mµχ̄χ ,

O10 = µTr{FµνF̃µν} .

(1-57)

We listed some more fields than are actually important in order to show how they

can be removed by the help of the symmetries Pµ and PF . For instance O10 is parity
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odd, but not affected by a flavor exchange and is therefore absent in L1(x) due to

PF . O9 and O7 are also absent, because they are odd under Pµ. At maximal twist

m is identical zero and hence we are left with O6 in addition to O1 (with ψ replaced

by χ), where we again used the classical equations of motion to reduce the number

of possible fields.

Consider now an operator O even under P̃ . In the second term of its Symanzik

expansion (1-42), containing an insertion of L1, we have to evaluate the expectation

value of the P̃ even operator O and the fields Oi listed above: 〈OOi〉cont. O1 and

O6 are odd under P̃ , O is even and thus these terms are absent in the expansion.

Since this means that lattice artifacts originating from the lattice action are

absent we can conclude already that quantities extracted from the transfer matrix,

like for instance hadron masses, are not affected by O(a) cut-off effects at maximal

twist.

In order to show that also the third term on the right hand side of Eq. (1-42)

is absent for P̃ even operators we use the aforementioned symmetry P̃ × Dm ×Dd.
The operator O is even under P̃ and must therefore be even under Dm × Dd. As

the third term in Eq. (1-42) is multiplied with one power of a it must be odd under

Dm ×Dd and therefore odd under P̃ . Since O is even under P̃ also this term must

be absent in the expansion.

This is a remarkable result, because with tmQCD at maximal twist it is possible

to avoid un-physically small eigenvalues and to obtain O(a) improved expectation

values needing no improvement coefficients∗∗. Quantities even in P̃ are for instance

hadron masses and on-shell matrix elements at zero three-momentum. More exam-

ples can be found in Ref. [42].

Overlap versus mtmQCD

We will close this section with a short comparison of the overlap lattice approach

to the twisted mass lattice formulation at maximal twist. Both formulations allow

to extract O(a) improved results and the two corresponding lattice Dirac operators

are protected against un-physically small eigenvalues [43]. Of course, one has to

keep in mind that for the overlap formulation O(a) improvement comes automatic

while for mtmQCD the tuning of the twist angle is required. The first difference of

principle is the fact that the overlap operator exhibits exact chiral symmetry on the

lattice, while for mtmQCD chiral properties are only improved, since the symmetry

is still explicitly broken, even if the effects become visible only at O(a2). But the

price for exact chiral symmetry on the lattice is that the cost for one application of

∗∗One can show [42] that O(a) improvement for parity even operators can be achieved also for the

Wilson formulation, when one averages over independent simulations with positive and negative

value of the Wilson parameter r or with positive and negative value of mq.
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the overlap Dirac operator is significantly larger than the cost for the application of

the twisted mass operator.

We note in passing that also with mtmQCD it is possible to avoid unwanted

mixing of operators with opposite chirality, although chiral symmetry is broken.

For details we refer to Ref. [46].

1.3 Observables

In the preceding sections we have discussed several formulations of lattice QCD and

in particular, how one can obtain O(a) improvement. So far we did not yet explain

how physical quantities like masses and decay constants can be extracted in lattice

simulations, which is the content of the following section. Since we will work with

three different formulations, the pure Wilson, the tmQCD and the overlap formula-

tion, we have to consider in this section all of the three formulations. The composite

fields and correlation functions for the Wilson formulation can equivalently be used

in the tmQCD formulation, they only differ by the fact that for tmQCD we work in

the twisted basis, where all the fermion fields are rotated. There are, however, some

specialties in the case of maximal twist. We will discuss the three formulations in

separate subsections.

Before coming to the two point functions needed in this work it is useful to discuss

the relation between Euclidean and Minkowski quantities. Consider the following

Euclidean time ordered two point function

〈0|T [O1(x)O2(0)]|0〉 , (1-58)

with operators O1 and O2, representing the amplitude for the creation of a state

with quantum numbers of operator O2 at space-time point 0, its propagation to

space-time point x = (~x, t) and finally its annihilation by O1. By integrating over

space-like coordinates we project to zero momentum states. If we then insert a

complete set of energy eigenstates we obtain

〈0|
∫

d3x O1(x)O2(0)|0〉 =
∑

n

〈0|O1|n〉〈n|O2|0〉
2En

e−Ent . (1-59)

If there is a stable single-particle state |n〉 with the corresponding quantum numbers,

then its Energy En is equal to the mass Mn of the particle, since we have projected to

zero momentum. In general there might be several such states, but asymptotically

for large enough values of t the correlation function will be dominated by the state

with the lowest mass, e.g. M1. Thus one gets

〈0|
∫

d3x O1(x)O2(0)|0〉 t → ∞−−−−−→
〈0|O1|1〉〈1|O2|0〉

2M1

e−M1t , (1-60)

21



CHAPTER 1. THEORETICAL BASIS

and the mass of the lightest particle can be extracted from the exponential fall-off

of the correlation function at large Euclidean times without analytical continuation

to Minkowski space. This simple connection also holds for matrix elements. These

arguments, however, break down as soon as the sum over states is not just over stable

single-particle states. For instance the ρ meson mass can no longer be extracted by

simply measuring the ground state energy (cf. [47, 48]).

1.3.1 Wilson formulation

Hadron and quark masses are – in the simplest cases – extracted from two point

correlation functions of suitable composite fields. The most common bilinears are

the scalar and the pseudo scalar densities, which read in the physical basis ψ:

S0(x) = ψ̄(x)ψ(x) , Pα(x) = ψ̄(x)γ5
τα
2
ψ(x) , (1-61)

and the vector and the axial currents

Aαµ(x) = ψ̄(x)γµγ5
τα
2
ψ(x) ,

V α
µ (x) = ψ̄(x)γµ

τα
2
ψ(x) .

(1-62)

Here τα, α = 1, 2, 3 are the usual Pauli matrices acting in isospin space. Moreover

the local bilinear with tensor structure is of interest

Tαk (x) = ψ̄(x)γ0γk
τα
2
ψ(x) . (1-63)

All local interpolating field operators for mesons in a Wilson like theory can be

found in table 1.1. In practice a general two point correlator with three-momentum

p can be re-written in terms of the quark propagators as follows

CAB(p, t) =
∑

x

e−ipx〈ψ̄2(x)ΓBψ1(x)ψ̄1(0)ΓAψ2(0)〉

= −
∑

x

e−ipx〈Tr (S2(0, x)ΓBS1(x, 0)ΓA)〉 .
(1-64)

Here ΓA,B represent the Dirac structure, the quark propagators are denoted with

S1,2 and the trace is taken over spin and color indices. The sum over the space-like

points x on a given time slice projects to zero momentum states. In case the quark

propagators fulfill the hermiticity property S(0, x) = γ5S(x, 0)†γ5 the computation

of both S(0, x) and S(x, 0) can be avoided in favor of computing only one of the

two.

As explained at the beginning of this section the meson masses can then be

extracted from the exponential fall-off of suitable correlation functions at large Eu-

clidean times. In terms of the local interpolating fields introduced above for instance
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State IG(JPC) Operator

Scalar 1−(0++) ū(x)d(x)

1−(0++) ū(x)γ0d(x)

Pseudo-scalar 1−(0−+) ū(x)γ5d(x)

1−(0−+) ū(x)γ5γ0d(x)

Vector 1+(1−−) ū(x)γid(x)

1+(1−−) ū(x)γ0γid(x)

Axial 1+(1++) ū(x)γ5γid(x)

Tensor 1+(1+−) ū(x)γiγjd(x)

Table 1.1: The local interpolating field operators for light mesons in a Wilson like theory.

The quark fields corresponding to the two quark flavors up and down are labeled with u and

d.

the pseudo scalar mass mPS and the vector meson mass mV can be extracted from

the following two point correlation functions:

Cα
PP (t) = a3

∑

x

〈Pα(x)Pα(0)〉 α = 1, 2 , (1-65)

Cα
V V (t) =

a3

3

3
∑

k=1

∑

x

〈V α
k (x)V α

k (0)〉 α = 1, 2 , (1-66)

Cα
TT (t) =

a3

3

3
∑

k=1

∑

x

〈Tαk (x)Tαk (0)〉 α = 1, 2 . (1-67)

In a similar way the correlation functions Cα
AA(t), Cα

AP (t) and others can be defined.

Then, due to periodic boundary conditions, for example the correlation function

Cα
PP is expected to behave for large Euclidean times t like f(t) = A cosh(mPS(t −

T/2)), where T is the lattice time extent, mPS is the corresponding mass and A

the amplitude. By fitting the functional form f(t) to the data in a certain window

tmin ≤ t ≤ tmax, where all the excited states have vanished, the values for the masses

are actually extracted. Moreover, the amplitude A gives an estimate for the matrix

element 〈0|Pα(0)|π〉, where we denote with |π〉 the pseudo scalar state with the

lightest mass.

Besides the meson masses, the quark mass and the pseudo scalar decay constant

fPS ≡ m−1
PS〈0|Aα0 (0)|π〉 (1-68)

are quantities of interest. For calculating fPS the following two methods are possible.

The first one is to obtain the amplitude 〈0|Aα0 (0)|π〉 from the asymptotic behavior

of the correlation function Cα
AA(t) while the pseudo scalar mass is extracted from

Cα
PP (t). The second method [49] is to obtain the ratio (we skip the flavor index α
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in the following)

rAP =
〈0|A0(0)|π〉
〈0|P (0)|π〉 (1-69)

from the asymptotic behavior of

CAP (t)

CPP (t)
= rAP tanh[mPS(T/2− t)] , (1-70)

where again mPS is extracted from CPP (t). The value for fPS can then be obtained

from

fPS = m−1
PS rAP 〈0|P (0)|π〉 . (1-71)

Clearly, both methods agree asymptotically for large Euclidean times. With one

of these definitions for fPS also the bare current quark mass can be defined by the

PCAC relation

mPCAC =
fPS

2〈0|P (0)|π〉 m
2
PS . (1-72)

Note that this quantity – in contrast to the masses extracted from the exponential

fall-off – requires multiplicative renormalization, which is also the case for fPS de-

termined in the way explained above. In the pure Wilson case mPCAC serves as an

estimate for the bare quark mass.

1.3.2 tmQCD formulation

Introducing a twisted mass term in the Wilson-Dirac operator is equivalent to trans-

forming the fermion fields ψ → χ according to Eq. (1-50). Therefore also the com-

posite fields have to be transformed. The result for the axial and vector currents is

the following:

A′α
µ ≡ χ̄γµγ5

τα
2
χ =

{

Aαµ cos(ω) + ǫ3αβ V β
µ sin(ω) (α = 1, 2) ,

A3
µ (α = 3) ,

(1-73)

V ′α
µ ≡ χ̄γµ

τα
2
χ =

{

V α
µ cos(ω) + ǫ3αβAβµ sin(ω) (α = 1, 2) ,

V 3
µ (α = 3) ,

(1-74)

whereas the rotated scalar and the pseudo scalar densities are given by:

P ′α ≡ χ̄γ5
τα
2
χ =

{

Pα (α = 1, 2) ,

P 3 cos(ω) + i1
2
S0 sin(ω) (α = 3) ,

(1-75)

S ′0 ≡ χ̄χ = S0 cos(ω) + 2iP 3 sin(ω) . (1-76)

In the special case of ω = π/2 the vector and the axial currents with α = 1, 2

transform into each other, while the pseudo scalar densities (α = 1, 2) do not rotate
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with ω. Therefore the charged pseudo scalar (“pion”) mass can be extracted for all

values of ω from the pseudo scalar density also in the twisted basis. In the following

we will skip the ′ on the quantities in the twisted basis again, since we will always

work in the twisted basis if tmQCD is concerned.

The PCAC and PCVC relations assume in the twisted basis the following form

[44]:

∂µA
α
µ = 2m0P

α + iµδ3αS0 ,

∂µV
α
µ = −2µǫ3αβP β .

(1-77)

While in the pure Wilson-Dirac operator there is only one mass term, which is

aligned to the Wilson term (proportional to the unit matrix in flavor space), in the

twisted mass operator (1-54) there is an additional mass term in the three-direction

of flavor space, which is dis-aligned to the Wilson term. Therefore, at general values

of the twist angle the quark mass estimate has to contain both of them, µ and mq

m =
√

(Zmq
mq)2 + (Zµµ)2 . (1-78)

Of course, the twisted mass lattice action can be studied in the full parame-

ter space (µ,mq), but automatic O(a) improvement is only realized at full twist

corresponding to mq = 0. A sensible definition for an estimate of mq is given by

mPCAC
χ =

〈∇∗
µχ̄(x)γµγ5

τ±

2
χ(x)χ̄(y) τ

±

2
γ5χ(y)〉

2〈χ̄(x) τ
±

2
γ5χ(x)χ̄(y) τ

±

2
γ5χ(y)〉

, (1-79)

where we introduced τ± = τ1 ± iτ2. Comparing to Eqs. (1-73,1-74,1-75) it is clear

that mPCAC
χ is identical to mPCAC for ω = 0. Moreover, at the special value of

ω = π/2, mPCAC
χ is zero due to the exact vector symmetry in the lattice theory, and

the quark mass is purely given by the twisted mass parameter µ, as it should be.

Thus, mPCAC
χ is a quantity that can be used to determine the parameters at which

ω = π/2.

In the twisted basis we can also define a quantity fPS
χ , given by Eq. (1-68), but

now in the twisted basis. We denote with the subscript χ that this is a quantity

extracted in the twisted basis, and in fact it does not correspond to the physical

pseudo scalar decay constant. A further estimate estimate for mq in the twisted

basis is then given by

mPCAC
χ =

fPS
χ

2〈0|P (0)|π〉m
2
PS , (1-80)

representing again the quark mass term aligned to the Wilson term.
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Pseudo scalar decay constant at maximal twist

Of course, given the relations of the composite fields (1-73) connecting the twisted

basis χ to the basis ψ, the value for fPS can be extracted from fPS
χ . But for the

special choice ω = π/2 this does not work (see above) and there is another possibility

to extract a value for fPS even without the need of a renormalization factor (cf.

[50, 51, 52]).

Of particular interest in this context is the PCVC relation, which takes in the

twisted basis the following form (1-77):

∂µṼ
α
µ = −2µǫ3αβP β , (1-81)

which holds exactly when the point split vector current Ṽ as defined in Ref. [44] is

used. From this follows that the vector current is protected against renormalization

– in analogy to Ginsparg-Wilson fermions, which means the renormalization factor

ZṼ = 1. Therefore, Eq. (1-81) implies that ZP = Z−1
µ , where ZP is the renor-

malization factor of the pseudo scalar density and Zµ the one for the twisted mass

parameter µ.

Fixing the flavor index to α = 1 we now again start with the standard definition

for the pseudo scalar decay constant in the physical basis Eq. (1-68)

〈0|A1
0(0)|π〉 = fPSmPS . (1-82)

In the twisted basis at maximal twist the rôle of the axial and vector current is just

interchanged, and therefore we can write in the twisted basis

∂µ〈0|V 2
µ (0)|π〉 = fPSm

2
PS . (1-83)

Using then the vector Ward identity (1-81), we can finally relate the divergence of

the vector current to the pseudo scalar density and obtain

fPSm
2
PS = ∂µ〈0|V 2

µ (0)|π〉 = 2µ 〈0|P 1(0)|π〉 . (1-84)

Thus, by fitting the pseudo scalar correlation function for large time separations, we

can obtain mPS and the amplitude |〈0|P 1(0)|π〉|2/mPS from which we then compute

the desired matrix element |〈0|P 1(0)|π〉|. Hence, we have all necessary ingredients

to determine fPS from Eq. (1-84), without the need of any renormalization factor.

1.3.3 Overlap formulation

As we have discussed before the overlap formulation obeys exact chiral symmetry on

the lattice and the theory isO(a) improved, as long as cut-off effects originating from

the action are considered. We have seen that besides the action also the operators
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are possible origins of cut-off effects. For the overlap formulation O(a) improved

bilinears with a Dirac structure Γ can be constructed as follows (ā = a/ρ):

OΓ = ψ̄qΓ

(

1− āD
(0)
ov

2

)

ψq′ =
1

1− āmq′

2

(

ψqΓψq′
)

, (1-85)

where ψq and ψq′ represent two different quark flavors q and q′ with masses mq

and mq′ , respectively. The pseudo scalar meson mass is then extracted from the

exponential fall-off at large Euclidean times of

Cov
PP (t) = a3

∑

x

〈P †(x)P (0)〉 , (1-86)

where the pseudo scalar density now is given by

P (x) = ψ̄q(x)γ5

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-87)

In order to remove contributions of topological zero modes (which are finite volume

effects, cf. [53, 54, 55, 56, 57, 58]) the same quantity can be extracted from

Cov
PP−SS(t) = a3

∑

x

〈P †(x)P (0)− S†(x)S(0)〉 , (1-88)

where S can be defined via Eq. (1-85) as follows

S(x) = ψ̄q(x)
[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-89)

While Cov
PP−SS has the advantage that contributions from topological zero modes

are canceled, it has the drawback that the scalar meson appears as an excited state

and can affect the extraction of the ground state mass for large quark masses. The

vector meson mass mV is obtained with the overlap operator from

Cov
V V =

a3

3

3
∑

k=1

∑

x

〈V †
k (x)Vk(0)〉 , (1-90)

where the vector current is defined to be

Vµ(x) = ψ̄q(x)γµ

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-91)

For later purposes we define the axial vector current in the overlap formulation

Aµ(x) = ψ̄q(x)γµγ5

[(

1− ā

2
D(0)

ov

)

ψq′
]

(x) . (1-92)

The extraction of the bare quark mass and the pseudo scalar decay constant

from the Ward identity in case of overlap fermions is identical to the one described
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here for Wilson fermions. Only the bilinears have to be replaced by the suitable

counterparts as given in Eqs. (1-87) and (1-92).

We remark here that with overlap fermions the value for fPS can also be obtained

in the same way as for twisted mass fermions by using the PCAC relation. In fact

fPS can be computed from

f ov
PS =

2mov

m2
PS

|〈0|P (0)|π〉| , (1-93)

where as in the tmQCD case no renormalization constant is needed. The quark

mass mov is the quark mass parameter in the overlap operator (1-38).

1.3.4 Setting the scale

In lattice calculations, we need to fix one dimension-full quantity in order to set

the overall scale and to translate lattice units into physical units. This can be done

by using a hadronic scale r0, which is introduced by the force F (r) between static

quarks at intermediate distance r [59].

The hadronic length scale r0 defined by the implicit equation

r2F (r)|r=r(c) = c , r0 = r(1.65) (1-94)

has turned out to be a good choice to set the scale in lattice QCD calculations: it can

be computed on the lattice with high precision, both statistically and systematically,

and r0 is known to have a value of about 0.5 fm in QCD.

The force can be computed from the static quark potential that in turn can

be determined on the lattice from Wilson loops, which are r × t loops of gauge

links. Wilson loops are defined – similar to the plaquette variable – as the traces of

products of parallel transports around a closed loop. This is, as discussed before, a

gauge invariant object due to cyclic invariance in the trace. They represent a static

quark/anti-quark pair separated with distance r in space and propagating in time

the distance t. In order to improve the overlap with the ground state usually several

levels of APE smearing [60] are applied to the space like gauge links.

Following the variational approach of Ref. [61] one gets a correlation matrix

Wij(r, t) with i, j representing the smearing levels applied at the two space like

gauge link products. The correlation matrix can be used to solve the generalized

eigenvalue problem

Wij(r, t)vj(r) = λ(r, t0, t)Wij(r.t0)vj(r) . (1-95)

The eigenvector of the largest eigenvalue can be used to project Wij on the ground

state and the ground state energy can then be obtained form the exponential fall-off
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of the latter at large enough values of t, leading to an estimate of the potential V (r).

Equivalently, the generalized eigenvalue can be used as an estimate for the ground

state energy.

From the potential V (r) the force can be computed by numerical differentiation,

which in general reads

F (r′) = [V (r′)− V (r′ − a)] /a , (1-96)

at a certain distance r′. We decided to use a distance r′ = rI for which the lattice

force does not deviate from the tree-level continuum value [59]

F (rI) =
4

3

g2

4πr2
I

+O(g4) . (1-97)

The value of r0/a can then be determined by interpolating the force to the value of

r/a where Eq. (1-94) is fulfilled. A second possibility is to fit

V (r) = V0 + σr + α
1

r

to the data and determine the force from the best fit function. σ is the so called

string tension and α parameterizes the Coulomb like part proportional to the gauge

coupling. The final results, however, should agree within the errors for both meth-

ods.

The time like gauge links represent a static propagator of the static quarks that

can be derived from an effective static action. Here the naive choice is the Eichten-

Hill action [62], but one can also use static actions that show an improved signal

to noise ratio [63, 64, 65, 66]. The improved actions formally correspond to actions

with APE or HYP [67] smeared time like gauge links or a differently discretized time

derivative. The APE and in particular the HYP action lead to improved statistical

and systematical precision and therefore to a better estimate for r0 in lattice units

[63, 68, 69].

Our experience is that using a HYP static action is superior to using a APE

static action, which is then superior to the Eichten-Hill static action. This concerns

in particular the signal to noise ratio at large distances, where it is only with a

improved static action possible to determine a value for the force. This becomes

important close to the continuum and if one wants to use the potential to investigate

for instance string breaking [69, 70]. We remark that changing the static action is

equivalent to a different choice of the operator. Therefore, the different lattice

estimates for r0/a deviate from each-other by lattice artifacts, while the continuum

extrapolated value should of course agree.
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1.4 Lattice simulations

In this section we will shortly discuss some general principles for constructing algo-

rithms used in lattice simulations.

In order to compute the partition function (1-21) or an expectation value of an

operator O in principle one has to solve a high dimensional integral over the gauge

fields and the Grassmann valued fermionic fields. However, most of the contribu-

tions to the integral have only low weight and therefore stochastic integration with

importance sampling is an effective method to evaluate such integrals.

Stochastic integration with importance sampling preferentially chooses such con-

figurations that have a strong weight. At the same time it is assured that the sample

average estimates the ensemble average. This means that the sample is representa-

tive for the ensemble. In particular, such a stochastic integration can be performed

by means of Markov chains:

Markov chain

Consider a stochastic process in which a finite set of configurations Uτ1 , Uτ2 , . . . is

generated sequentially according to some transition probability Pij ≡ P (Ui → Uj).

The state of the system at any given simulation time τi will be a multi-dimensional

random variable, whose distribution depends only on the preceding state, if Pij
depends only on the state Ui. A set of configurations generated in this way is called

a Markov chain.

For an observable O we can define a simulation time average over a given set of

configurations {Uτi} generated in a Markov chain by

〈O〉N =
1

N

N
∑

i=1

O(Uτi) . (1-98)

We want to set up the transition probability in such a way that 〈O〉N is in the

limit N → ∞ equal to the ensemble average corresponding to a given Boltzmann

distribution e−S. In order to achieve this it is sufficient that the transition probability

fulfills as a sufficient condition the so called detailed balance condition

e−S(U)P (U → U ′) = e−S(U ′)P (U ′ → U) . (1-99)

There are many algorithms known that correctly implement the condition of detailed

balance. One of these is the Metropolis algorithm which is given by the following

two steps:

1. Chose an arbitrary test configuration U ′.
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2. Accept configuration U ′ as successor of configuration U with probability

P (U → U ′) =

{

e−S(U′)

e−S(U) if e−S(U ′) < e−S(U)

1 else .
(1-100)

This step is called a Metropolis accept/reject step.

The Metropolis algorithm is in principle applicable to a any system and it can be

very efficient, if one can efficiently produce test configurations in such a way that

the acceptance rate is high. One only has to take into account that the generation

of test configurations must be ergodic. This means nothing but that the probability

to generate configuration U ′ as a next test configuration must not be zero for any

possible configuration.

1.4.1 Quenched approximation

As explained before, the dependence of expectation values on the fermionic fields ψ

can be removed by the help of Wick’s theorem. An expectation value of an operator

O then reads

〈O〉 =
1

Z

∫

DU O[U ] e−SG[U ]−log detM [U ] . (1-101)

This means that only the integral over the color gauge configurations has to be per-

formed and we need an algorithm to generate color gauge configurations U with the

desired distribution. However, for instance for each accept/reject step the determi-

nant of M needs to be computed, which is an highly non-local object.

Therefore, solely due to limited computer resources, computations in lattice QCD

were often performed in a crude approximation: it consists of neglecting the fermion

contribution to the path integral, i.e. setting detM = constant . This approximation

corresponds to neglecting vacuum polarization effects of quark loops. As a conse-

quence for instance the string between a quark and an anti-quark does not break at

any distance.

Even though one could expect this approximation to be bad, since quenched lat-

tice QCD is confining, asymptotically free and shows spontaneous chiral symmetry

breaking, it is reasonable to use it as a model of QCD. As a side effect one can also

extract physical results and compare it to experiment. And in fact the quenched

approximation seems to work surprisingly well: the deviations from experimental

measurements are only of the order of 10%, even though the systematic errors are

hard to estimate.

From a practical point of view setting detM = constant corresponds to sim-

ulating a pure Yang-Mills gauge theory [71] with for instance the Wilson gauge

action (1-25) on the lattice. For pure gauge theories there are efficient Metropolis
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Monte-Carlo algorithms available, like the heat-bath and the overrelaxation algo-

rithm. While the latter of the two being not ergodic, their combination gives rise to

an efficient algorithm to generate gauge configurations with the correct distribution.

Details on this algorithm can be found in text books, see for instance Refs. [18, 19].

Finally we remark that, since r0 as defined in section 1.3.4 is a quantity depending

only on the gauge fields, the scale in quenched simulations does not depend on

the fermionic mass, but only on the coupling β in the here discussed quenched

approximation. It was computed for the Wilson plaquette gauge action in a range

of coupling constants between β = 5.7 and β = 6.75 in Ref. [72] (see also [73]).

Therefore, in the quenched simulations for this work we did not compute r0 but

rather used the values from Ref. [72].

1.4.2 Dynamical simulations

Of course, the aim of lattice QCD computations is to take the fermion determinant

into account††. The reason for full QCD simulations to be much more expensive

than the one in the quenched approximation is – as mentioned above – that the

computation of the determinant is rather demanding.

Nevertheless, there are two widely used algorithms, which include the determi-

nant in the generation of gauge configurations: on the one hand Multi-Boson like

algorithms [74] and on the other hand Hybrid Monte Carlo (HMC) like algorithms

[75]. The latter is discussed in detail in chapter 3, while the former is not used

for this work. However, a Two-Step Multi-Boson (TSMB) algorithm [76] was used

in the collaboration in addition to the HMC for checks and for production runs.

Naturally, we cross-checked the results and found full agreement within errors.

Details for Multi-Boson like algorithms can be found in the mentioned references.

1.4.3 Error estimates

In lattice simulations with Monte-Carlo methods there exist several sources of errors.

Apart from errors due to discretization and finite volume effects, the most important

contribution – and usually also the largest – is the statistical error.

The latter arises from the fact that due to finite computer and human resources it

is not possible to average over an infinitely large sample. Nevertheless, it is possible

to estimate the error one makes by approximating the infinite large sample with a

finite one. It is the content of this subsection to discuss the effects of taking only a

finite sub-sample.

††Only because for a long time most of the simulations have been performed in the quenched

approximation it became common to call full QCD simulations dynamical simulations.
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Statistical error

When averaging over a sample ofM configurations in order to measure the (primary)

observable O, the root-mean-square deviation‡‡ can be computed by

σ2
O,M =

1

M − 1





1

M

M
∑

i=1

O2
i −

[

1

M

M
∑

i=1

Oi

]2


 =
1

M − 1

(

〈O2〉 − 〈O〉2
)

, (1-102)

where Oi represents the i-th measurement of the observable O. For this estimate

it is necessary that the single measurements are not correlated, which is in general

not true. Therefore we call it the naive error estimate. In order to account for the

correlation one can use the integrated autocorrelation time τint. It can be defined as

follows

τint =
1

2

∞
∑

t̃=−∞

ΓO(|t̃|)
ΓO(0)

, (1-103)

where we label the “Monte Carlo time” with t̃ and we introduced the autocorrelation

function ΓO for an operator O

ΓO(|i− j|) = 〈(Oi − 〈O〉)(Oj − 〈O〉)〉 .

ΓO(|i − j|) depends only on the distance t̃ = |i − j| between measurements and

decays typically exponentially fast with the so called autocorrelation time τc

ΓO(t̃) ∝ exp(−t̃/τc) .

Typically τc and τint are found to be of the same order. There are two possibilities

to incorporate the integrated autocorrelation time in the estimate of the statistical

error:

On the one hand one can leave out during the course of production of configu-

rations τint many configurations until one is used for the measurements. Then the

sample of configurations is uncorrelated and the naive error (1-102) can serve as a

good approximation for the real error. This approach has the disadvantage that the

value of τint is in general not known before the measurements were performed and

one might perform measurements which are then not used for the final result.

On the other hand one can use the value of τint for the error computation taking

all the measurements into account: it is possible to show that the statistical error of

correlated measurements can be computed from the naive error and the integrated

autocorrelation time in the following way [77]

σ2
O,M = 2τint

(

σnaiv
O,M

)2
. (1-104)

‡‡The denominator arises from the fact that the exact mean value O was replaced by its estimate

over the sample, because the exact mean value is not known.
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This means de facto a reduction of the number of independent measurements to

M/(2τint).

Of course, when the integrated autocorrelation time shall be used to estimate the

error, a reliable estimate of τint itself and its error is needed. First of all a reliable

determination of τint is only possible, if the sample is large enough. Moreover the

estimation of the statistical error on τint is a delicate procedure. It is discussed in

detail in Ref. [78] and we will solely perform our error analysis along the lines of

this reference (cf. also [77]).

Another method to estimate the real error is to pre-average the measurements

on blocks of the total sample:

Ol,B =
1

B

lB
∑

i=1+(l−1)B

Oi, l = 1, ...,MB =
M

B
. (1-105)

If the blocks B become large enough – in units of τ order of τint – then the block

averages are uncorrelated and the error can be estimated by

σ2 =
1

MB(MB − 1)

∑

l

(

Ol,B −
1

MB

∑

l′

Ol′,B

)2

. (1-106)

The value of the latter will increase with increasing B and will, if the block-averages

become uncorrelated, reach a plateau. Of course the plateau will be only reached,

if the sample is large enough. This method is called binning.

A further method, which is similar to binning, is the so called Jackknife binning.

Instead of using the blocks itself to pre-average the measurements, the blocks com-

plementary to the binning blocks are used. Therefore the blocks are significantly

larger:

Ol,B̄ =
1

M −B





(l−1)B
∑

i=1

Oi +
M
∑

i=lB+1

Oi



 .

One can show that the error is now estimated by

σ2 =
MB − 1

MB

∑

l

(

Ol,B̄ −
1

MB

∑

l′

Ol′,B̄

)2

.

Especially for derived quantities the Jackknife binning is a widely used method (cf.

[18]).

In this work we solely rely on the error analysis with help of the integrated

autocorrelation time. The other methods are only used for checks. The statistical

error on the integrated autocorrelation time as well as the error for derived quantities

is determined along the lines of [78] (cf. [77]).
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