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Preface

The aim of this thesis is to present several developments regarding the associahedron

and its relatives. The associahedron, as pointed out in a manuscript by Mark Haiman

from 1984 [34], is a mythical polytope with a beautiful combinatorial structure. It first

appeared 1951 in Dov Tamari’s unpublished thesis [83], and since then, together with its

generalizations, keeps showing unexpected connections as well as leading to fascinating

results.

The present work contains a detailed study of the associahedron and some of its generali-

zations from a geometric and combinatorial point of view. The contents are subdivided

into three chapters. The first chapter is the result of a joint work with Francisco San-

tos and Günter M. Ziegler [15]. It describes many different construction methods for

the associahedron, which surprisingly produce substantially different geometric realiza-

tions. The second chapter, which is joint work with Jean-Philippe Labbé and Christian

Stump [14], introduces and studies a new family of simplicial complexes called multi-

cluster complexes; these complexes generalize the concept of cluster complexes and ex-

tend the notion of multi-associahedra to arbitrary finite Coxeter groups. The third

chapter shows a new point of view on the problem of polytopality of multi-associahedra

and spherical subword complexes, and presents two computational methods, which were

implemented in joint work with Jean-Philippe Labbé, to produce polytopal realizations

for small explicit examples.
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Notation

Assn n-dimensional associahedron

AssI
n associahedra of type I, by Hohlweg–Lange–Thomas

AssII
n associahedra of type II, by Santos

c a Coxeter element

c a word for a Coxeter element c

CFZn Chapoton–Fomin–Zelevinsky associahedron

GKZn Gelfand–Kapranov–Zelevinsky associahedron

h the Coxeter number

inv(π) inversion set of π

Lrc bijection between letters of cw◦(c) and almost positive roots

Pn+3 a convex (n+ 3)-gon

Postn Postnikov associahedron

Q	
s

rotation of the word Q along the letter s

rF root function associated to a facet F

RSSn Rote–Santos–Streinu associahedron

Sn+1 symmetric group Sn+1

T0 the seed triangulation

w◦ longest element in a Coxeter group

w◦ a word representing a reduced expression for w◦

w◦(c) the c-sorting word of w◦

(W,S) finite Coxeter system

W〈s〉 parabolic subgroup generated by S \ {s}

||c c-compatibility relation on almost positive roots

[1] the shift operation

∆m boundary complex of the dual associahedron

∆m,k simplicial complex of k-triangulations

∆(Q, π) subword complex associated to the word Q and the element π

∆k
c (W ) the multi-cluster complex of type W

δ(Q) Demazure product of Q

x



Notation xi

ΓΩ Auslander-Reiten quiver of a quiver Ω

Ω a quiver

Ωc the quiver associated to a Coxeter element c

Φ roots in a root system

Φ+ positive roots in a root system

Φ≥−1 almost positive roots in a root system

Φ〈s〉 root system associated to W〈s〉

Π simple roots in a root system

π an element of a Coxeter group

τ the Auslander-Reiten translate

Θ cyclic action on the vertices and facets of the multi-cluster complex

ZΩ the repetition quiver of a quiver Ω



Chapter 1

Many non-equivalent realizations

of the associahedron

1.1 Introduction

The n-dimensional associahedron is a simple polytope with Cn+1 = 1
n+2

(
2n+2
n+1

)
(the

Catalan number) vertices, corresponding to the triangulations of a convex (n+ 3)-gon,

and n(n+ 3)/2 facets, in bijection with the diagonals of the (n+ 3)-gon. It appears in

Dov Tamari’s unpublished 1951 thesis [83], and was described as a combinatorial object

and realized as a cellular ball by Jim Stasheff in 1963 in his work on the associativity

of H-spaces [77, 78]. A realization as a polytope by John Milnor from the 1960s is

lost; Huguet and Tamari claimed in 1978 that the associahedron can be realized as a

convex polytope [37]. The first such construction, via an explicit inequality system, was

provided in a manuscript by Mark Haiman from 1984 that remained unpublished, but

is available as [34]. The first construction in print, which used stellar subdivisions in

order to obtain the dual of the associahedron, is due to Carl Lee, from 1989 [48].

Figure 1.1: The 3-dimensional associahedron, realized as the secondary polytope of
a regular hexagon.

1



Chapter 1. Many non-equivalent realizations of the associahedron 2

Subsequently three systematic approaches were developed that produce realizations of

the associahedra in more general frameworks and suggest generalizations:

◦ the associahedron as a secondary polytope due to Gelfand, Kapranov and Zelevinsky

[32] [33] (see also [31, Chap. 7]),

◦ the associahedron associated to the cluster complex of type An, conjectured by Fomin

and Zelevinsky [24] and constructed by Chapoton, Fomin and Zelevinsky [16], and

◦ the associahedron as a Minkowski sum of simplices introduced by Postnikov in [59].

Essentially the same associahedron, but described quite differently, had been con-

structed independently by Shnider and Sternberg [72] (compare Stasheff and Shnider

[79, Appendix B]), Loday [49], Rote, Santos and Streinu [66], and most recently

Buchstaber [12]. Following [35] we reference it as the “Loday realization”, as Loday

obtained explicit vertex coordinates that were used subsequently.

The last two approaches were generalized by Hohlweg and Lange [35] and by Santos [69],

who showed that they are particular cases of exponentially many constructions of the

associahedron. The Hohlweg–Lange construction produces roughly 2n−3 distinct realiza-

tions, while the Santos construction produces about 1
2(n+3)Cn+1 ≈ 22n+1/

√
πn5 different

ones; exact counts are in Sections 1.4 and 1.5. The construction by Santos appears in

print for the first time here by Ceballos, Santos and Ziegler [15], where we prove in

detail that it actually works. For the others we rely on the original papers for most of

the details.

This chapter contains the results with Francisco Santos and Günter M. Ziegler in [15].

The goal is to compare the constructions, showing that they produce essentially different

realizations for the associahedron. Let us explain what we exactly mean by different (see

more details in Section 1.2). Since the associahedron is simple, its realizations form an

open subset in the space of (n+3)n
2 -tuples of half-spaces in Rn. Hence, classifying them

by affine or projective equivalence does not seem the right thing to do. But most of the

constructions of the associahedron (all the ones in this chapter except for the secondary

polytope construction) happen to have facet normals with very small integer coordinates.

This suggests that one natural classification is by linear isomorphism of their normal

fans or, as we call it, normal isomorphism.

The secondary polytope construction has a completely different flavor from the others.

Coordinates for its vertices are computed from the actual coordinates of the (n+ 3)-gon

used, which can be arbitrary, and a continuous deformation of the polygon produces a

continuous deformation of the associahedron obtained. The rest of the constructions are

more combinatorial in nature, with no need to give coordinates for the polygon. This

is apparent comparing Figures 1.1 and 1.2. The first one shows the secondary polytope
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of a regular hexagon, and the second shows (affine images of) other constructions of the

3-associahedron.

Figure 1.2: Four normally non-isomorphic realizations of the 3-dimensional associ-
ahedron. From left to right: The Postnikov associahedron (which is a special case of
the Hohlweg–Lange associahedron), the Chapoton-Fomin-Zelevinsky associahedron (a
special case of both Hohlweg–Lange and Santos) and the other two Santos associahedra.

Since they all have three pairs of parallel facets, we draw them inscribed in a cube.

One way of pinning down this difference (and of testing, for example, whether two

associahedra are normally isomorphic) is to look at which parallel facets arise, if any.

We start doing this in Section 1.3, where we show that secondary polytope associahedra

never have parallel facets (Theorem 1.8, but see Remark 1.9) while the Chapoton-Fomin-

Zelevinsky and the Postnikov ones have n pairs of parallel facets each (Theorems 1.14

and 1.25).

In Sections 1.4 and 1.5 we present the families of realizations by Hohlweg–Lange and by

Santos. The first one produces one n-associahedron for each sequence in {+,−}n−1. The

second one constructs one n-associahedron from each triangulation of the (n + 3)-gon.

We call them associahedra of type I and type II.

Apart of reviewing the two constructions, we show they both provide exponentially-

many normally non-isomorphic realizations of the n-dimensional associahedron with the

following common features:

◦ They all have n pairs of parallel facets.

◦ In the basis given by the normals to those n pairs, all facet normals have coordinates

in {0,±1}.

For the Santos construction both properties follow from the definition, for Hohlweg–

Lange we prove them in Sections 1.4.2 and 1.4.3. All these constructions are (normally

isomorphic to) polytopes obtained from the regular n-cube by cutting certain
(
n
2

)
faces

according to specified rules. Note that the last example of Figure 1.2 cannot be obtained

by cutting faces one after the other; the three faces, edges in this case, need to be cut

at about the same depth.

In Section 1.5.4 we use the Santos construction to present a simple combinatorial de-

scription of c-cluster complexes for Coxeter groups of type A as defined by Reading in

[61]. We show that in the particular cases where the seed triangulation has a path as
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a dual tree, we obtain polytopal realizations of the associahedron for which the normal

fans coincide with c-cluster fans.

In Section 1.6 we put together results from Sections 1.4 and 1.5, and show that there

is a single associahedron that can be obtained both with the Hohlweg–Lange and the

Santos construction, namely the one by Chapoton–Fomin–Zelevinsky.

We also note that Hohlweg–Lange–Thomas [36] provided a generalization of the Hohlweg–

Lange construction to general finite Coxeter groups; Bergeron–Hohlweg–Lange–Thomas

[7] have provided a classification of the Hohlweg–Lange–Thomas c-generalized associ-

ahedra in Coxeter group theoretic language up to isometry, and also up to normal

isomorphism [7, Cor. 2.6]. For type A, this specializes to a classification of the Hohlweg–

Lange associahedra, which we obtain in Theorem 1.32 in a different, more combinatorial,

setting. Besides the isometries of c-generalized associahedra presented in [7], normal iso-

morphisms of these polytopes are discussed earlier by Reading–Speyer [63] in the context

of c-Cambrian fans. In particular, they obtained combinatorial isomorphisms of the nor-

mal fans, which are in general only piecewise-linear [63, Thm. 1.1 and Sec. 5].

One of the questions that remains is whether there is a common generalization of the

Hohlweg–Lange and the Santos construction, which may perhaps produce even more

examples of “combinatorial” associahedra. It has to be noted that the associahedron

seems to be quite versatile as a polytope. For example, besides the four 3-associahedra

of Figure 1.2 we have found another four 3-associahedra that arise by cutting three faces

of a 3-cube (see Figure 1.3). Do these admit a natural combinatorial interpretation as

well?

Figure 1.3: More 3-associahedra inscribed in a 3-cube. The 3-associahedron is the
only simple 3-polytope with nine facets all of which are quadrilaterals or pentagons.

1.2 Some preliminaries

We start by recalling the definition of an n-dimensional associahedron in terms of poly-

hedral subdivisions of an (n+ 3)-gon.

Definition 1.1. Let Pn+3 be a convex (n + 3)-gon, whose vertices we label cyclically

with the symbols 1 through n+ 3.
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An associahedron Assn is an n-dimensional simple polytope whose poset of non-empty

faces is isomorphic to the poset of non-crossing sets of diagonals of Pn+3, ordered by

reverse inclusion.

Equivalently, the poset of non-empty faces of the associahedron is isomorphic to the

set of polyhedral subdivisions of Pn+3 (without new vertices), ordered by coarsening.

The minimal elements (vertices of the associahedron) correspond to the triangulations

of Pn+3.

For example, for the associahedron of dimension two we look at which diagonals of the

pentagon cross each other. There are five diagonals, with five of the
(

5
2

)
pairs of them

crossing and the other five non-crossing. Thus, the poset of non-empty faces of the two-

dimensional associahedron is isomorphic to the Hasse diagram of Figure 1.4, in which the

five bottom elements correspond to the five triangulations of the pentagon and the top

element corresponds to the “trivial” subdivision into a single cell, the pentagon itself.

13

13, 1414, 2424, 2525, 3513, 35

∅

24 142535

Figure 1.4: The Hasse diagram of the 2-dimensional associahedron.

This is also the Hasse diagram of the poset of non-empty faces of a pentagon, so the

2-dimensional associahedron is a pentagon. Figure 1.5 shows the associahedra of dimen-

sions 0, 1, and 2.

Figure 1.5: The associahedron Assn for n = 0, 1 and 2.

The goal of this chapter is to compare different types of constructions of the associahe-

dron, saying which ones produce equivalent polytopes, in a suitable sense. The following

notion reflects the fact that the main constructions that we are going to discuss produce

associahedra whose normal vectors have small integer coordinates, usually 0 or ±1. In
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these constructions the normal fan of the associahedron can be considered canonical,

while there is still freedom in the right-hand sides of the inequalities. (See [85, Sec. 7.1]

for a discussion of fans and of normal fans.) This leads us to use the following notion of

equivalence.

Definition 1.2. Two pointed complete fans in real vector spaces V and V ′ of the same

dimension are linearly isomorphic if there is a linear isomorphism V → V ′ sending each

cone of one to a cone of the other. Two polytopes P and P ′ are normally isomorphic if

they have linearly isomorphic normal fans.

Normal isomorphism is weaker than the usual notion of normal equivalence, in which

the two polytopes P and P ′ are assumed embedded in the same space and their normal

fans are required to be exactly the same, not only linearly isomorphic.

The following lemma is very useful in order to prove (or disprove) that two associahedra

are normally isomorphic. It implies that all linear (or combinatorial, for that matter)

isomorphisms between associahedra come from isomorphisms between the (n+ 3)-gons

defining them.

Lemma 1.3. The automorphism group of the face lattice of the associahedron Assn is

the dihedral group of the (n+ 3)-gon: All automorphisms are induced by symmetries of

the (n+ 3)-gon.

Proof. Suppose ϕ is an automorphism of the face lattice of the associahedron Assn, and

let D be the set of all diagonals of a convex (n+ 3)-gon. ϕ induces a natural bijection

ϕ̃ : D −→ D

such that for any two diagonals δ, δ′ ∈ D we have:

δ cross δ′ ⇐⇒ ϕ̃(δ) cross ϕ̃(δ′).

For a diagonal δ ∈ D denote by length(δ) the minimum between the lengths of the two

paths that connect the two end points of δ on the boundary of the (n+ 3)-gon. Then

length(δ) = length(ϕ̃(δ)).

The reason is that the length of δ is determined by the number of diagonals that cross

δ, and this property is invariant under the map ϕ̃.

Let δ0 be a diagonal of length 2, and ϕ̃(δ0) its image under ϕ̃. The diagonals that

cross δ0 have a common intersection vertex v0; from this vertex we label these diagonals
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δ4

δ2
δ1

δn

v0

δ3

δ0

ṽ0

ϕ̃(δ1)

ϕ̃(δ2)ϕ̃(δ3)

ϕ̃(δ4)

ϕ̃(δn) ϕ̃(δ0)

ϕ̃

Figure 1.6: The situation in the proof of Lemma 1.3.

in clockwise direction by δ1, . . . , δn. Similarly, the diagonals that cross ϕ̃(δ0) have a

common intersection vertex ṽ0, and they are labeled by ϕ̃(δ1), . . . , ϕ̃(δn). For any non-

empty interval I ⊂ [n] there is an unique diagonal δI that intersects the diagonal δi if

and only if i ∈ I. Applying the map ϕ̃ we obtain diagonals ϕ̃(δI) that intersect ϕ̃(δi) if

and only if i ∈ I. This task is possible only if the labelings ϕ̃(δ1), . . . , ϕ̃(δn) appear in

either clockwise or counterclockwise direction. From this, we deduce that ϕ̃ restricted

to {δ1, . . . , δn} is equivalent to a reflection-rotation map. Moreover, this map coincides

with ϕ̃ for all other diagonals δI .

1.3 Three realizations of the associahedron

1.3.1 The Gelfand–Kapranov–Zelevinsky associahedron

The secondary polytope is an ingenious construction motivated by the theory of hyper-

geometric functions as developed by I.M. Gelfand, M. Kapranov and A. Zelevinsky [31].

In this section we recall the basic definitions and main results related to this topic,

which yield in particular that the secondary polytope of any convex (n + 3)-gon is an

n-dimensional associahedron. For more detailed presentations we refer to [17, Sec. 5]

and [85, Lect. 9]. All the subdivisions and triangulations of polytopes that appear in

the following are understood to be without new vertices.

The secondary polytope construction

Definition 1.4 (GKZ vector/secondary polytope). Let Q be a d-dimensional convex

polytope with n+ d+ 1 vertices. The GKZ vector v(t) ∈ Rn+d+1 of a triangulation t of

Q is

v(t) :=

n+d+1∑
i=1

vol(start(i))ei =

n+d+1∑
i=1

∑
σ∈t : i∈σ

vol(σ)ei
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The secondary polytope of Q is defined as

Σ(Q) := conv{v(t) : t is a triangulation of Q}.

Theorem 1.5 (Gelfand–Kapranov–Zelevinsky [32]). Let Q be a d-dimensional convex

polytope with m = n+d+1 vertices. Then the secondary polytope Σ(Q) has the following

properties:

(i) Σ(Q) is an n-dimensional polytope.

(ii) The vertices of Σ(Q) are in bijection with the regular triangulations of Q.

(iii) The faces of Σ(Q) are in bijection with the regular subdivisions of Q.

(iv) The face lattice of Σ(Q) is isomorphic to the lattice of regular subdivisions of Q,

ordered by refinement.

The associahedron as the secondary polytope of a convex (n+ 3)-gon

Definition 1.6. The Gelfand–Kapranov–Zelevinsky associahedron GKZn(Pn+3) ⊂ Rn+3

is defined as the (n-dimensional) secondary polytope of a convex (n+3)-gon Pn+3 ⊂ R2:

GKZn(Pn+3) := Σ(Pn+3).

Corollary 1.7 ([32]). GKZn(Pn+3) is an n-dimensional associahedron.

There is one feature that distinguishes the associahedron as a secondary polytope from all

the other constructions that we mention in this chapter: the absence of parallel facets.

This property, in particular, will imply that the GKZ–associahedra are not normally

isomorphic to the associahedra produced by the other constructions:

Theorem 1.8. The Gelfand-Kapranov-Zelevinsky associahedron GKZn(Pn+3) has no

parallel facets for n ≥ 2.

Our proof is based on the understanding of the facet normals in secondary polytopes.

Let Q be an arbitrary d-polytope with n + d + 1 vertices {q1, . . . , qn+d+1}, so that

GKZn(Q) := Σ(Q) lives in Rn+d+1, although it has dimension n. In the theory of

secondary polytopes one thinks of each linear functional Rn+d+1 → R as a function ω :

vertices(Q)→ R assigning a value ω(qi) to each vertex qi. In turn, to each triangulation t

ofQ (with no additional vertices) and any such ω one associates the function gω,t : Q→ R
which takes the value ω(qi) at each qi and is affine linear on each simplex of t. That is,

we use t to piecewise linearly interpolate a function whose values (ω(q1), . . . , ω(qn)) we

know on the vertices of Q. The main result we need is the following equality for every
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ω and every triangulation t (see, e.g., [17, Thm. 5.2.16]):

〈ω, v(t)〉 = (d+ 1)

∫
Q
gω,t(x)dx.

In particular:

◦ If ω is affine-linear (that is, if the points {(q1, ω1), . . . , (qn+d+1, ωn+d+1)} ⊂ Rn+d+1×R
lie in a hyperplane) then 〈ω, v(t)〉 is the same for all t. Moreover, the converse is also

true: The affine-linear ω’s form the lineality space of the normal fan of GKZn(Q).

◦ An ω lies in the linear cone of the (inner) normal fan of GKZn(Q) corresponding to

a certain triangulation t (that is, 〈ω, v(t)〉 ≤ 〈ω, v(t′)〉 for every other triangulation

t′) if and only if the function gω,t is convex; that is to say, if its graph is a convex

hypersurface.

Proof of Theorem 1.8. With the previous description in mind we can identify the facet

normals of the secondary polytope of a polygon Pn+3. For this we use the correspon-

dence:
vertices ←→ triangulations of Pn+3

facets ←→ diagonals of Pn+3

For a given diagonal δ of Pn+3, denote by Fδ the facet of GKZn(Pn+3) corresponding to

δ. The vector normal to Fδ is not unique, since adding to any vector normal to Fδ an

affine-linear ω0 we get another one. One natural choice is

ωδ(qi) := dist(qi, lδ),

where lδ is the line containing δ and dist(·, ·) is the Euclidean distance. Indeed, ωδ lifts

the vertices of Pn+3 on the same side of δ to lie in a half-plane in R3, with both half-

planes having δ as their common intersection. That is, gωδ,t is convex for every t that

uses δ. But another choice of normal vector is better for our purposes: choose one side

of lδ to be called positive and take

ω+
δ (qi) :=

dist(qi, lδ) if qi ∈ l+δ
0 if qi ∈ l−δ

.

For the end-points of δ, which lie in both l+δ and l−δ , there is no ambiguity since both

definitions give the value 0. Again, ω+
δ is a normal vector to Fδ since it lifts points on

either side of lδ to lie in a plane.

We are now ready to prove the theorem. If two diagonals δ and δ′ of Pn+3 do not cross,

then they can simultaneously be used in a triangulation. Hence, the corresponding facets
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Fδ and Fδ′ meet, and they cannot be parallel. So, assume in what follows that δ and δ′

are two crossing diagonals. Let δ = pr and δ′ = qs, with pqrs being cyclically ordered

along Pn+3. Since n ≥ 2 there is at least another vertex a in Pn+3. Without loss of

generality suppose a lies between s and p. Now, we call negative the side of lδ and the

side of lδ′ containing a, and consider the normal vectors ω+
δ and ω+

δ′ as defined above.

They take the following values on the five points of interest:

ω+
δ (a) = 0, ω+

δ (p) = 0, ω+
δ (q) > 0, ω+

δ (r) = 0, ω+
δ (s) = 0,

ω+
δ′(a) = 0, ω+

δ′(p) = 0, ω+
δ′(q) = 0, ω+

δ′(r) > 0, ω+
δ′(s) = 0.

Suppose that Fδ and Fδ′ were parallel. This would imply that δ and δ′ are linearly

dependent or, more precisely, that there is a linear combination of them that gives an

affine-linear ω (in the lineality space of the normal fan). But any (non-trivial) linear

combination ω of ω+
δ and ω+

δ′ necessarily takes the following values on our five points,

which implies that ω is not affine-linear:

ω(a) = 0, ω(p) = 0, ω(q) 6= 0, ω(r) 6= 0, ω(s) = 0.

Remark 1.9. The secondary polytope can be defined for any set of points {q1, . . . , qn+3}
in the plane, not necessarily the vertices of a convex polygon. In general this does

not produce an associahedron, but there is a case in which it does: if the points are

cyclically placed on the boundary of an m-gon with m ≤ n + 3 in such a way that no

four of them lie on a boundary edge. By the arguments in the proof above, a necessary

condition for the associahedron obtained to have parallel facets is that m ≤ 4. For m = 4

we can obtain associahedra up to dimension 4 with exactly one pair of parallel facets

(those corresponding to the main diagonals of the quadrilateral). For m = 3, we can

obtain 2-dimensional associahedra with two pairs of parallel facets, and 3-dimensional

associahedra with three pairs of parallel facets. The latter is obtained for six points

{p, q, r, a, b, c} with p, q and r being the vertices of a triangle and a ∈ pq, b ∈ qr and

c ∈ ps intermediate points in the three sides. The associahedron obtained has the

following three pairs of parallel facets:

Fpq||Far, Fqr||Fbs, Fps||Fcq.

Remark 1.10. Rote, Santos and Streinu [66] introduce a polytope of pseudo-triangulations

associated to each finite set A of m points (in general position) in the plane. This

polytope lives in R2m and has dimension m + 3 + i, where i is the number of points

interior to conv(A). They show that for points in convex position their polytope is
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affinely isomorphic to the secondary polytope for the same point set. Their constructions

uses rigidity theoretic ideas: the edge-direction joining two neighboring triangulations

t and t′ is the vector of velocities of the (unique, modulo translation and rotation)

infinitesimal flex of the embedded graph of t ∩ t′.

1.3.2 The Postnikov associahedron

We now review two further realizations of the associahedron: one by Postnikov [59] and

one by Rote–Santos–Streinu [66] (different from the one in Remark 1.10). The main

goal of this section is to prove that these two constructions produce affinely equivalent

results. As special cases of these constructions one obtains, respectively, the realizations

by Loday [49] and Buchstaber [12], which turn out to be affinely equivalent as well.

1.3.2.1 The Postnikov associahedron

Definition 1.11. For any vector a = {aij > 0 : 1 ≤ i ≤ j ≤ n+1} of positive parameters

we define the Postnikov associahedron as the polytope

Postn(a) :=
∑

1≤i≤j≤n+1

aij∆[i,...,j],

where ∆[i,...,j] denotes the simplex conv{ei, ei+1, . . . , ej} in Rn+1.

Proposition 1.12 (Postnikov [59, Sec. 8.2]). Postn(a) is an n-dimensional associahe-

dron. In particular, for aij ≡ 1 this yields the realization of Loday [49].

600 060

006

321 141

123213

312

Figure 1.7: The Postnikov associahedron Postn(1) with the coordinates of the ver-
tices. This coincides with the realization of Loday.

In terms of inequalities the Postnikov associahedron is given as follows.
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Lemma 1.13.

Postn(a) = {(x1, . . . , xn+1) ∈ Rn+1 :
∑
p<i<q

xi ≥ fp,q for 0 ≤ p < q ≤ n+ 2,

x1 + · · ·+ xn+1 = f0,n+2},

where fp,q =
∑

p<i≤j<q ai,j.

The facet of Postn(a) determined by the hyperplane with right hand side parameter fp,q

corresponds to the diagonal pq of an (n+3)-gon with vertices labeled in counterclockwise

direction from 0 to n+ 2. In particular:

Theorem 1.14. Postn(a) has exactly n pairs of parallel facets. These correspond to the

pairs of diagonals ({0, i+ 1}, {i, n+ 2}) for 1 ≤ i ≤ n, as illustrated in Figure 1.8.

Proof. Two hyperplanes of the form
∑

i∈S1
xi ≥ c1 and

∑
i∈S2

xi ≥ c2 for S1, S2 ⊆ [n+1],

intersected with an affine hyperplane x1 + · · · + xn+1 = c are parallel if and only if

S1 ∪ S2 = [n + 1] and S1 ∩ S2 = ∅. Therefore two diagonals pq and rs correspond to

parallel facets if and only if pq = {0, i+ 1} and qr = {i, n+ 2}.

i i+ 1
n

n+ 1

n+ 2

2

1

0

i i+ 1
n

n+ 1

n+ 2

2

1

0

Figure 1.8: Diagonals of the (n+3)-gon that correspond to the pairs of parallel facets
of both Postn(a) and RSSn(g).

1.3.2.2 The Rote–Santos–Streinu associahedron

By “generalizing” the construction of Remark 1.10 to sets of points along a line, Rote,

Santos and Streinu [66] obtain a second realization of the associahedron.

Definition 1.15. The Rote–Santos–Streinu associahedron is the polytope

RSSn(g) = {(y0, y1, . . . , yn+1) ∈ Rn+2 : yj − yi ≥ gi,j for j > i, y0 = 0, yn+1 = g0,n+1},

where g = (gi,j)0≤i<j≤n+1 is any vector with real coordinates satisfying

gi,l + gj,k > gi,k + gj,l for all i < j ≤ k < l,

gi,l > gi,k + gk,l for all i < k < l.
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Proposition 1.16 (Rote–Santos–Streinu [66, Sec. 5.3]). If the vector g satisfies the

previous inequalities then RSSn(g) is an n-dimensional associahedron.

A particular example of valid parameters g is given by g0: gi,j = i(i − j). In this case

we get the realization of the associahedron introduced by Buchstaber in [12, Lect. II

Sec. 5].

y2

y1(0, 0) (1, 0)

(0, 2) (2, 2)

(2, 1)

Figure 1.9: The Rote–Santos–Streinu associahedron RSS2(g0) with the coordinates
of the vertices. This coincides with the realization of Buchstaber.

The facet of RSSn(g) related to yj − yi ≥ gi,j corresponds to the diagonal {i, j + 1} of

an (n+ 3)-gon with vertices labeled in counterclockwise direction from 0 to n+ 2. One

can also see that with this specified combinatorics of the facets, the conditions on the

vector g are also necessary for the proposition to hold.

Theorem 1.17. RSSn(g) has exactly n pairs of parallel facets. They correspond to the

pairs of diagonals ({0, i+ 1}, {i, n+ 2}) for 1 ≤ i ≤ n, as illustrated in Figure 1.8.

Rote, Santos and Streinu stated in [66, Sec. 5.3] that RSSn(g) is not affinely equiva-

lent to neither the associahedron as a secondary polytope nor the associahedron from

the cluster complex of type A. Next we prove that RSSn(g) is affinely isomorphic to

Postn(a). Furthermore, we prove, in Corollary 1.33 and Theorem 1.47, that these two

polytopes are not normally isomorphic to the associahedron as a secondary polytope or

the associahedron from the cluster complex of type A.

1.3.2.3 Affine equivalence

Theorem 1.18. Let ϕ be the affine transformation

ϕ : Rn+1 → Rn

(x1, . . . , xn+1) → (y1, . . . , yn)

defined by yk =
∑k

i=1(xi− i). Then ϕ maps Postn(a) bijectively to RSSn(g), for g given

by gi,j− (i+j+1)(j−i)
2 = fi,j+1(a). In particular, ϕ maps the Loday associahedron Postn(1)

to the Buchstaber associahedron RSSn(g0).
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Proof.

yj − yi ≥ gi,j

(xi+1 + · · ·+ xj) + ((i+ 1) + · · ·+ j) ≥ gi,j

xi+1 + · · ·+ xj ≥ gi,j − (i+j+1)(j−i)
2 .

Corollary 1.19 (Minkowski sum decomposition of RSSn(g)). Every Rote–Santos–Streinu

associahedron can be written as

RSSn(g) =
∑

1≤i≤j≤n
bi,j∆̃i,j ,

for certain (bi,j) with bi,j > 0 whenever i < j, and bi,i possibly negative. Here ∆̃i,j =

conv{ui, ui+1, . . . , uj} and ui = (0, . . . , 0, 1, . . . , 1) ∈ Rn is a 0/1-vector with i zeros.

1.3.3 The Chapoton–Fomin–Zelevinsky associahedron

1.3.3.1 The associahedron associated to a cluster complex

Cluster complexes are combinatorial objects that arose in the theory of cluster algebras

[25] [26] initiated by Fomin and Zelevinsky. They correspond to the normal fans of

polytopes known as generalized associahedra because the particular case of type An

yields to the classical associahedron. This polytope was constructed by Chapoton, Fomin

and Zelevinsky in [16]. We refer to [24], [23] and [16] for more detailed presentations.

1.3.3.2 The cluster complex of type An

The root system of type An is the set Φ := Φ(An) = {ei−ej , 1 ≤ i 6= j ≤ n+1} ⊂ Rn+1.

The simple roots of type An are the elements of the set Π = {αi = ei − ei+1, i ∈ [n]},
the set of positive roots is Φ+ = {ei − ej : i < j}, and the set of almost positive roots is

Φ≥−1 := Φ+ ∪ −Π.

There is a natural correspondence between the set Φ≥−1 and the diagonals of the (n+3)-

gon Pn+3: We identify the negative simple roots −αi with the diagonals on the snake of

Pn+3 illustrated in Figure 1.10.

Each positive root is a consecutive sum

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ n,

and thus is identified with the unique diagonal of Pn+3 crossing the (consecutive) diag-

onals that correspond to −αi,−αi+1, . . . ,−αj .
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−α1 −α3 −αn−2 −αn

−α2 −αn−1

Figure 1.10: Snake and negative roots of type An.

Definition 1.20 (Cluster complex of type An). Two roots α and β in Φ≥−1 are com-

patible if their corresponding diagonals do not cross. The cluster complex ∆(Φ) of type

An is the clique complex of the compatibility relation on Φ≥−1, i.e., the complex whose

simplices correspond to the sets of almost positive roots that are pairwise compatible.

Maximal simplices of ∆(Φ) are called clusters.

In this case, the cluster complex satisfies the following correspondence, which is dual to

the complex of the associahedron:

vertices ←→ diagonals of a convex (n+ 3)-gon

simplices ←→ polyhedral subdivisions of the (n+ 3)-gon

(viewed as collections of non-crossing diagonals)

maximal simplices ←→ triangulations of the (n+ 3)-gon

(viewed as collections of n non-crossing diagonals)

Theorem 1.21 ([24, Thms. 1.8, 1.10]). The simplicial cones R≥0C generated by all

clusters C of type An form a complete simplicial fan in the ambient space

{(x1, . . . , xn+1) ∈ Rn+1 : x1 + · · ·+ xn+1 = 0}.

Theorem 1.22 ([16, Thm. 1.4]). The simplicial fan in Theorem 1.21 is the normal fan

of a simple n-dimensional polytope P .

Theorem 1.21 is the case of type An of [24, Thm. 1.10]. It allows us to think of the cluster

complex as the complex of a complete simplicial fan. Theorem 1.22 was conjectured by

Fomin and Zelevinsky [24, Conj. 1.12] and subsequently proved by Chapoton, Fomin,

and Zelevinsky [16]. For an explicit description by inequalities see [16, Cor. 1.9]. These

two theorems are special cases of Theorems 1.37 and 1.38, proved in Section 1.5.
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1.3.3.3 The Chapoton–Fomin–Zelevinsky associahedron CFZn(An)

Definition 1.23. The Chapoton–Fomin–Zelevinsky associahedron CFZn(An) is any poly-

tope whose normal fan is the fan with maximal cones R≥0C generated by all clusters C

of type An.

Proposition 1.24 ([16, 24]). CFZn(An) is an n-dimensional associahedron.

A polytopal realization of the associahedron CFZ2(A2) is illustrated in Figure 1.11; note

how the facet normals correspond to the almost positive roots of A2.

α1-α1

α1 + α2α2

−α2

Figure 1.11: The complete simplicial fan of the cluster complex of type A2 and an
associahedron CFZ2(A2).

Theorem 1.25. CFZn(An) has exactly n pairs of parallel facets. These correspond to

the pairs of roots {αi,−αi}, for i = 1, . . . , n, or, equivalently, to the pairs of diagonals

{αi,−αi} as indicated in Figure 1.12.

−α1 −α3 −αn−2 −αn

−α2 −αn−1

α2

α3

αn−1

αn

α1

αn−2

Figure 1.12: The diagonals of the (n+ 3)-gon that correspond to the pairs of parallel
facets of CFZn(An).

1.4 Exponentially many realizations, by Hohlweg–Lange

1.4.1 The Hohlweg–Lange construction

In this section we give a short description of the first, “type I”, exponential family of

realizations of the associahedron, as obtained by Hohlweg and Lange in [35]. We prove
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that the number of normally non-isomorphic realizations obtained this way is equal to

the number of sequences {+,−}n−1 modulo reflection and reversal. This number is equal

to 2n−3 + 2b
n−3

2
c for n ≥ 3 (see [74, Sequence A005418]).

Let σ ∈ {+,−}n−1 be a sequence of signs on the edges of an horizontal path on n

nodes. We identify n+ 3 vertices {0, 1, . . . , n+ 1, n+ 2} with the signs of the sequence

σ̃ = {+,−, σ,−,+}, and place them in convex position from left to right so that all

positive vertices are above the horizontal path, and all negative vertices are below it.

These vertices form a convex (n + 3)-gon that we call Pn+3(σ). Figure 1.13 illustrates

the example P7({+,−,+}), where n = 4.

3

5

6

4

1

0

2

+ +−

Figure 1.13: P7({+,−,+}).

Definition 1.26. For a diagonal ij (i < j) of Pn+3(σ), we denote by Rij(σ) the set of

vertices strictly below it. We define the set Sij(σ) as the result of replacing 0 by i in

Rij(σ) if 0 ∈ Rij(σ), and replacing n+ 2 by j if n+ 2 ∈ Rij(σ).

The Hohlweg–Lange associahedron AssI
n(σ) is the polytope

AssI
n(σ) =

{
(x1, . . . xn+1) ∈ Rn+1 :

∑
i∈Sδ(σ)

xi ≥ 1
2 |Sδ(σ)|(|Sδ(σ)|+ 1) for all diagonals δ,

x1 + · · ·+ xn+1 = (n+1)(n+2)
2

}
.

Remark 1.27. If in σ̃ = {+,−, σ,−,+} we interchange the first two signs and/or the

last two signs, the sets Sδ(σ) do not change and the construction will produce the same

associahedron AssI
n(σ).

Proposition 1.28 ([35, Thm. 1.1]). AssI
n(σ) is an n-dimensional associahedron.

Proposition 1.29 ([35, Remarks 1.2 and 4.3]). AssI
n({−,−, . . . ,−}) produces the Post-

nikov (Loday) associahedron Postn(1), and AssI
n({+,−,+,−, . . . }) is normally isomor-

phic to the Chapoton–Fomin–Zelevinsky associahedron CFZn(An).

Proof. For the first part we note that for σ = {−,−, · · · −}, the set Sp,q(σ) of a diagonal

pq is given by Sp,q = {i : p < i < q}, and that the description of AssI
n(σ) coincides with

that of Postn(a) in Lemma 1.13 for a = 1. For the second part let σ = {+,−,+,−, . . . }.
We write Sδ instead of Sδ(σ) for simplicity, and denote by IS ∈ Rn+1 the 0/1 vector
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with ones in the positions of a set S ⊆ [n+ 1]. The snake triangulation is given by the

set of diagonals of the form i, i + 1, for 1 ≤ i ≤ n (in the case where n, n + 1 is not a

diagonal we interchange vertices n+ 1 and n+ 2; this doesn’t change the associahedron

we get, see Remark 1.27). We denote by −αi = ISi,i+1 the normal vector associated to

the diagonal i, i+ 1, and by ni,j = ISi−1,j+2 (i ≤ j) the normal vector associated to the

diagonal crossing {−αi,−α2, . . . ,−αj}. We need to prove that

ni,j ≡ αi + αi+1 + · · ·+ αj mod (1, . . . , 1).

The reason is that our polytope lies in an affine hyperplane orthogonal to the vector

(1, . . . , 1), and so we must consider the normal vectors modulo (1, . . . , 1). To this end,

note that

ni,i = αi + (1, . . . , 1)

and

ni,j+1 =

ni,j + (1, . . . , 1) + αj+1 if j is odd,

ni,j + αj+1 if j is even.

Remark 1.30. The Postnikov associahedron was defined as a Minkowski sum of certain

faces ∆S of the standard simplex ∆[n+1]. The question arises whether such Minkowski

sum descriptions exist for AssI
n(σ) in general. A partial answer is as follows. Postnikov

introduced the family of generalized permutahedra in [59]. A generalized permutahedron

is a polytope with facet normals contained in those of the standard permutahedron such

that the collection of right hand side parameters of the defining inequalities belongs

to the deformation cone of the standard permutahedron (compare with Postnikov et

al. [58]). This includes all the Minkowski sums
∑

S⊆[n+1] aS∆S for which the coefficients

aS are non-negative. Ardila et al. [1] have shown that every generalized permutahedron

admits a (unique) expression as a Minkowski sum and difference of faces of the standard

simplex. These decompositions, for the case of AssI
n(σ), are studied by Lange in [47]. A

different decomposition arises from the work of Pilaud and Santos [56], who show that

the associahedra AssI
n(σ) are the “brick polytopes” of certain sorting networks. As such,

they admit a decomposition as the Minkowski sum of the
(
n
2

)
polytopes associated to

the individual “bricks”. However, these summands need not be simplices.
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1.4.2 Parallel facets

Theorem 1.31. AssI
n(σ) has exactly n pairs of parallel facets. They correspond to the

diagonals of the quadrilaterals with vertices {i, j, j + 1, k} for j = 1, . . . , n, where

i = max{0 ≤ r < j : sign(r) · sign(j) = −}

k = min{j + 1 < r ≤ n+ 2 : sign(r) · sign(j + 1) = −}

Proof. Two diagonals δ and δ′ correspond to two parallel facets of AssI
n(σ) if and only if

the sets Sδ and Sδ′ satisfy Sδ ∪Sδ′ = [n+ 1] and Sδ ∩Sδ′ = ∅. These two properties hold

if and only if δ and δ′ are the diagonals of the quadrilateral {i, j, j+1, k} for j = 1, . . . , n,

and i and k satisfying the conditions of the theorem.

Associated to a sequence σ we define two operations, reflection and reversal. The reflec-

tion of σ is the sequence −σ, and the reversal σt is the result of reversing the order of

the signs in σ.

Theorem 1.32. Let σ1, σ2 ∈ {+,−}n−1. Then the two realizations AssI
n(σ1) and

AssI
n(σ2) are normally isomorphic if and only if σ2 can be obtained from σ1 by reflections

and reversals.

Proof. Suppose there is a linear isomorphism between the normal fans of AssI
n(σ1) and

AssI
n(σ2). It induces an automorphism of the face lattice of the associahedron that,

by Lemma 1.3, corresponds to a certain reflection-rotation of the polygon. We denote

this reflection-rotation by ϕ : Pn+3(σ1) → Pn+3(σ2). Any linear isomorphism of the

normal fans preserves the property of a pair of facets being parallel, so ϕ maps the

“parallel” pairs of diagonals of Pn+3(σ1), to the “parallel” pairs of diagonals of Pn+3(σ2).

Furthermore, for both realizations there are exactly four diagonals that cross at least

one diagonal of every parallel pair; they are {0, n+1}, {0, n+2}, {1, n+1} and {1, n+2}.
The set of these four diagonals is also preserved under ϕ. This is possible only if ϕ is a

reflection-rotation that corresponds to a composition of reflections and reversals of the

sequence σ̃1 = {+,−, σ1,−,+}.

It remains to prove that AssI
n(σ) is normally-isomorphic to both AssI

n(−σ) and AssI
n(σt).

The isomorphism between the normal fans of AssI
n(σ) and AssI

n(−σ) is given by multi-

plication by −1, since Sδ(−σ) = [n]−Sδ(σ). The isomorphism between the normal fans

of AssI
n(σ) and AssI

n(σt) is given by the permutation of coordinates τ(i) = n+ 1− i, as

Sδ(σ
t) = τ(Sδ(σ)).
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Corollary 1.33. The Postnikov associahedron is not normally isomorphic to the Chapoton–

Fomin–Zelevinsky associahedron.

Proof. The Postnikov associahedron is produced by the sequence σ1 = {−,−, . . . ,−},
and the Chapoton–Fomin–Zelevinsky associahedron is normally isomorphic to the one

produced by the sequence σ2 = {+,−,+,−, . . . }. The two sequences are not equivalent

under reflections and reversals.

1.4.3 Facet vectors

We now show that AssI
n(σ) can (modulo normal isomorphism) be embedded in Rn so

that its facet normals are a subset of {0,−1,+1}n and contain the n standard basis

vectors and their negatives among them. That is, it can be obtained from a cube by

cutting certain faces, as in Figures 1.2 and 1.3.

Obviously, the basis vectors and their negatives will correspond to the n pairs of parallel

facets that we identified in Theorem 1.31. Each such pair consists of a diagonal with

positive slope and one with negative slope. We choose as “positive basis vector” the one

with positive slope, which can be characterized as follows:

Lemma 1.34. Let {i, j, j + 1, k} for j = 1, . . . , n be as in Theorem 1.31. Let

a := max{0 ≤ r ≤ j : sign(r) = −},

b := min{j + 1 ≤ r ≤ n+ 2 : sign(r) = +}.

Then ab is one of the diagonals of the quadrilateral with vertices {i, j, j + 1, k} and it

has positive slope.

Proof. By construction, {i, j, j + 1, k} has two positive points and two negative points

(i and j have opposite sign, as have j+ 1 and k). Our definition of a and b is equivalent

to: a is the negative point in {i, j} and b is the positive point in {j + 1, k}.

As customary, we call characteristic vector of a set S ⊂ [n + 1] the vector in {0, 1}n+1

with 1’s in the coordinates of the elements of S. We denote it eS . In particular, the i-th

standard basis vector is ei = e{i}.

For each j = 1, . . . , n, let Xj = eSab(σ), where a and b are as in Lemma 1.34 and Sab(σ)

is from Definition 1.26. Then Xj is normal to the facet of AssI
n(σ) corresponding to the

diagonal ab, one of the facets in the j-th parallel pair. By convention, let Xn+1 = e∅ =

(0, . . . , 0) and X0 = e[n+1] = (1, . . . , 1).



Chapter 1. Many non-equivalent realizations of the associahedron 21

Theorem 1.35. For every S ⊂ [n+ 1], the characteristic vector of S is a linear combi-

nation of {X0, . . . , Xn+1} with coefficients in {0,+1,−1}.

Proof. Since

eS =
∑
j∈S

ej ,

the statement follows from the formula

ej = Xj−1 −Xj , ∀j ∈ [n],

which we prove distinguishing the case of j being positive or negative (the cases j = 1

and j = n+ 1 need separate treatment, but the formula holds for them too). Let a and

b be as in Lemma 1.34 and let a′ and b′ be the same, but computed for j − 1 instead of

j. That is, let Xj−1 be the characteristic vector of Sa′b′ . If j is positive, then a = a′,

b′ = j and b is the next positive point after j. If j is negative, then b = b′, a = j and a′

is the previous negative point before j.

Definition 1.26 says that the characteristic vector of Sδ(σ) is a normal vector to the

facet of AssI
n(σ) corresponding to a certain diagonal δ. Since AssI

n(σ) is not full-

dimensional, the normal to each facet is not unique. Others are obtained adding multi-

ples of e[n+1] = (1, . . . , 1) to it. Put differently, the normal fan of AssI
n(σ) lives naturally

in (Rn+1)∗/〈X0〉. For the basis {X1, . . . , Xn} in this space, Theorem 1.35 yields the

following.

Corollary 1.36. With respect to the basis {X1, . . . , Xn}, the normal vectors of AssI
n(σ)

are all in {0,+1,−1}n and include the 2n vectors {±X1, . . . ,±Xn}.

1.5 Catalan many realizations, by Santos

In this section we describe a generalization of the Chapoton–Fomin–Zelevinsky con-

struction of the associahedron (Section 1.3.3), originally presented at a conference in

2004 [69]. We prove that the number of normally non-isomorphic realizations obtained

this way, our “type II exponential family”, is equal to the number of triangulations of

an (n + 3)-gon modulo reflections and rotations. Interest in this number goes back to

Motzkin (1948) [51]. An explicit formula for it is

1
2(n+3)Cn+1 + 1

4C(n+1)/2 + 1
2Cb(n+1)/2c + 1

3Cn/3,

where Cn = 1
n+1

(
2n
n

)
for n ∈ Z and Cn = 0 otherwise [74, Sequence A000207].
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Let α1, . . . , αn denote a linear basis of an n-dimensional real vector space V ∼= Rn, and

let T0 be a certain triangulation of the (n + 3)-gon, fixed once and for all throughout

the construction. We call T0 the seed triangulation. The CFZ associahedron will arise

as the special case where V = {(x1, . . . , xn+1) ∈ Rn+1 :
∑
xi = 0}, αi = ei − ei+1, and

T0 is the snake triangulation of Figure 1.10.

Let {δ1, . . . , δn} denote the n diagonals present in the seed triangulation T0. To each

diagonal pq out of the n(n+3)
2 possible diagonals of the (n+ 3)-gon we associate a vector

vpq as follows:

◦ If pq = δi for some i (that is, if pq is used in T0) then let vpq = −αi.
◦ If pq 6∈ T0 then let

vpq :=
∑

pq crosses δi

αi.

As a running example, consider the triangulation {123, 345, 156, 135} of a hexagon with

its vertices labelled cyclically. Let δ1 = 13, δ2 = 35 and δ3 = 15. Written with respect

to the basis {α1, α2, α3} the nine vectors vpq that we get are as follows (see Figure 1.14):

2

3

5

6

4

δ1

δ3

δ2

1

Figure 1.14: A seed triangulation for Santos’ construction.

v13 = −α1 = (−1, 0, 0), v35 = −α2 = (0,−1, 0), v15 = −α3 = (0, 0,−1),

v25 = α1 = (1, 0, 0), v14 = α2 = (0, 1, 0), v36 = α3 = (0, 0, 1),

v46 = α2 + α3 = (0, 1, 1), v26 = α1 + α3 = (1, 0, 1), v24 = α1 + α2 = (1, 1, 0).

With a slight abuse of notation, for each subset of diagonals of the polygon we denote

with the same symbol the set of diagonals and the set of vectors associated with them.

For example, R≥0T0 = R≥0{−α1, . . . ,−αn} is the negative orthant in V (with respect

to the basis [αi]i). More generally, for each triangulation T of the (n+ 3)-gon consider

the cone R≥0T . We claim the following generalizations of Theorems 1.21 and 1.22, and

Proposition 1.24:

Theorem 1.37. The simplicial cones R≥0T generated by all triangulations T of the

(n+ 3)-gon form a complete simplicial fan FT0 in the ambient space V .
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Theorem 1.38. This fan FT0 is the normal fan of an n-dimensional associahedron.

1.5.1 Proof of Theorem 1.37

The statement follows from the following two claims:

(1) R≥0T0 is a simplicial cone and is the only cone in FT0 that intersects (the interior

of) the negative orthant.

(2) If T1 and T2 are two triangulations that differ by a flip, let v1 ∈ T1 and v2 ∈ T2

be the diagonals removed and inserted by the flip. That is, T1 \ T2 = {v1} and

T2 \ T1 = {v2}. Then there is a linear dependence in T1 ∪ T2 which has coefficients

of the same sign (and different from zero) in the elements v1 and v2.

The first assertion is obvious, and the second one is Lemma 1.39 below. Before proving

it let us argue why these two assertions imply Theorem 1.37. Suppose that we have two

triangulations T1 and T2 related by a flip as in the second assertion, and suppose that

we already know that one of them, say T1, spans a full-dimensional cone (that is, we

know that T1 considered as a set of vectors is independent). Then assertion (2) implies

that T2 spans a full-dimensonal cone as well and that R≥0T1 and R≥0T2 lie in opposite

sides of their common facet R≥0(T1∩T2). This, together with the fact that there is some

part of V covered by exactly one cone (which is why we need assertion (1)) implies that

we have a complete fan. (See, for example, [17, Cor. 4.5.20], where assertion (2) is a

special case of “property (ICoP)” and assertion (1) a special case of “property (IPP)”.)

Lemma 1.39. Let T1 and T2 be two triangulations that differ by a flip, and let v1 and

v2 be the diagonals removed and inserted by the flip from T1 to T2, respectively (that is,

T1 \ T2 = {v1} and T2 \ T1 = {v2}). Then there is a linear dependence in T1 ∪ T2 which

has coefficients of the same sign in the elements v1 and v2.

Proof. Let p, q, r and s be the four points involved by the two diagonals v1 and v2, in

cyclic order. That is, the diagonals removed and inserted are pr and qs. We claim that

one (and exactly one) of the following things occurs (see Figure 1.15):

(a) There is a diagonal in the seed triangulation T0 that crosses two opposite edges of

the quadrilateral pqrs.

(b) One of pr and qs is used in the seed triangulation T0.

(c) There is a triangle abc in T0 with a vertex in pqrs and the opposite edge crossing

two sides of pqrs (that is, without loss of generality p = a and bc crosses both qr

and rs).
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(d) There is a triangle abc in T0 with an edge in common with pqrs and with the other

two edges of the triangle crossing the opposite edge of the quadrilateral (that is,

without loss of generality, p = a, q = b and rs crosses both ac and bc).

p s p s p s p s

q r q r q r q r

(a) (b) (c) (d)

Figure 1.15: The four cases in the proof of Lemma 1.39.

To prove that one of the four things occurs we argue as follows. It is well-known that in

any triangulation of a k-gon one can “contract a boundary edge” to get a triangulation

of a (k−1)-gon. Doing that in all the boundary edges of the seed triangulation T0 except

those incident to either p, q, r or s we get a triangulation T̃0 of a polygon P̃ with at

most eight vertices: the four vertices p, q, r and s and at most one extra vertex between

each two of them. We embed P̃ having as vertex a subset of the vertices of a regular

octagon, with pqrs forming a square. We now look at the position of the center of the

octagon P̃ with respect to the triangulation T̃0: If it lies in the interior of an edge, then

this edge is a diameter of the octagon and we are in cases (a) or (b). If it lies in the

interior of a triangle of T̃0, then we are in cases (c) or (d). See Figure 1.15 again.

Now we show explicitly the linear dependences involved in T1 ∪ T2 in each case.

(a) Suppose T0 has a diagonal crossing pq and rs. Then

vpr + vqs = vpq + vrs, (1.1)

because every diagonal of T0 intersecting the two (respectively, one; respectively

none) of pr and qs intersects also the two (respectively, one; respectively none) of

pq and rs.

(b) If T0 contains the diagonal pr, let a and b be vertices joined to pr in T0, with a on

the side of q and b on the side of s. We define the following vectors wa and wb:

◦ wa equals 0, vpq or vqr depending on whether a equals q, lies between p and q, or

lies between q and r.

◦ wb equals 0, vps or vrs depending on whether a equals s, lies between p and s, or

lies between s and r.

We claim that in the nine cases we have the equality

vpr + vqs = wa + wb. (1.2)
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This is so because vpr + vqs now equals the sum of the αi’s corresponding to the

diagonals of T0 \ {pr} crossing qs, and we have that:

◦ The diagonals of T0 crossing qs in the q-side of pr are none, the same as those

crossing pq, or the same as those crossing qr in the three cases of the definition of

wa, and

◦ The diagonals of T0 crossing qs in the s-side of pr are none, the same as those

crossing ps, or the same as those crossing rs in the three cases of the definition of

wb

(c) If T0 contains a triangle pbc with bc crossing both qr and rs then we have the equality

2vpr + vqs = vqr + vrs, (1.3)

because in this case the diagonals of T0 crossing pr are the same as those crossing

both qr and rs, while the ones crossing qs are those crossing one, but not both, of

qr and rs.

(d) If T0 contains a triangle pqc with rs crossing both pc and qc then we have the

equality

vpr + vqs = vrs (1.4)

because the diagonals of T0 crossing rs are the same as those crossing pr and the

same as those crossing qs.

Observe that when T0 is a snake triangulation (the CFZ case) or, more generally, when

the dual tree of T0 is a path, cases (c) and (d) do not occur.

1.5.2 Proof of Theorem 1.38

To prove that FT0 is the normal fan of a polytope we use the following characterization.

Lemma 1.40. Let F be a complete simplicial fan in a real vector space V and let A be

the set of generators of F (more precisely, A has one generator of each ray of F). Then

the following conditions are equivalent:

(1) F is the normal fan of a polytope.

(2) There is a map ω : A→ R>0 such that for every pair (C1, C2) of maximal adjacent

cones of F the following happens: Let λ : A → R be the (unique, up to a scalar

multiple) linear dependence with support in C1 ∪ C2, with its sign chosen so that

λ is positive in the generators of C1 \ C2 and C2 \ C1. Then the scalar product

λ · ω =
∑

v λ(v)ω(v) is strictly positive.
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Proof. One short proof of the lemma is that both conditions are equivalent to “F is a

regular triangulation of the vector configuration A” [17]. But let us show a more explicit

proof of the implication from (2) to (1), which is the one we need. What we are going

to show is that if such an ω exists and if we consider the set of points

Ã :=
{

v
ω(v) : v ∈ A

}
,

then the convex hull of Ã is a simplicial polytope with the same face lattice as the

complete fan F . (We think of Ã as points in an affine space, rather than as vectors in a

vector space.) Hence F is the central fan of conv(Ã), which coincides with the normal

fan of the polytope polar to conv(Ã).

To show the claim on conv(Ã) we argue as follows. Consider the simplicial complex

∆ with vertex set Ã obtained by embedding the face lattice of F in it. That is, for

each cone C of F we consider the simplex with vertex set in Ã corresponding to the

generators of C. Since F is a complete fan and since the elements of Ã are generators

for its rays (they are positive scalings of the elements of A), ∆ is the boundary of a

star-shaped polyhedron with the origin in its kernel. The only thing left to be shown

is that this polyhedron is strictly convex, that is, that for any two adjacent maximal

simplices σ1 and σ2 the origin lies in the same side of σ1 as σ2 \ σ1 (or, equivalently, in

the same side of σ2 as σ1 \ σ2). Equivalently, if we understand σ1 and σ2 as subsets of

Ã, we have to show that the unique affine dependence between the points {O}∪ σ1 ∪ σ2

has opposite sign in O than in σ1 and σ2.

Now the proof is easy. The coefficients in the linear dependence among the vectors

in σ1 ∪ σ2 are the vector

(λ(v)ω(v))v∈A.

To turn this into an affine dependence of points involving the origin we simply need to

give the origin the coefficient −
∑

v λ(v)ω(v) which is, by hypothesis, negative.

So, in the light of Lemma 1.40, to prove Theorem 1.38 we simply need to choose weights

ωij for the diagonals of the polygon with the property that, for each of the linear depen-

dences exhibited in equations (1.1), (1.2), (1.3), and (1.4), the equation
∑

ij ωijλij > 0

holds.

As a first approximation, let ωij = 2 if ij is in T0 and ωij = 1 otherwise. This is good

enough for equations (1.3) and (1.4) in which all the ω’s in the dependence are 1 and

the sum of the coefficients in the left-hand side is greater than in the right-hand side. It
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also works for equations (1.2), in which we have

ωpr = 2, ωqs = 1, λpr = 1, λqs = 1,

so that the sum
∑

ij ωijλij for the left-hand side is three, while that of the right-hand

side can be 0, −1 or −2 depending on the cases for the points a and b.

The only (weak) failure is that in equation (1.1) we have

λpr = 1, λqs = 1, λpq = −1, λrs = −1

and all the ω’s are 1, so we get
∑

ij ωijλij = 0. We solve this by slightly perturb-

ing the ω’s. A slight perturbation will not change the correct signs we got for equa-

tions (1.2), (1.3), and (1.4). For example, for each ij not in T0 change ωij to

ωij = 1 + εgij

for a sufficiently small ε > 0 and for a vector (gij)ij satisfying

gik + gjl > max{gij + gkl, gil + gjk} for all i, j, k, l, 1 ≤ i < j < k < l ≤ n+ 3.

This holds (for example) for gij := (j − i)(n+ 3 + i− j).

1.5.3 Distinct seed triangulations produce distinct realizations

Let AssII
n (T ) denote the n-dimensional associahedron obtained with the construction of

the previous section starting with a certain triangulation T . (This is a slight abuse of

notation, since the associahedron depends also in the weight vector ω that gives the

right-hand sides for an inequality definition of our associahedron. Put differently, by

AssII
n (T ) we denote the normal fan rather than the associahedron itself.) We want to

classify the associahedra AssII
n (T ) by normal isomorphism.

In principle, it looks like we have as many associahedra as there are triangulations (that

is, Catalan-many) but that is not the case because, clearly, changing T by a rotation or

a reflection does not change the associahedron obtained. The question is whether this

is the only operation that preserves AssII
n (T ), modulo normal isomorphism. The answer

is yes, as we show below.

Lemma 1.41. AssII
n (T0) has exactly n pairs of parallel facets, each pair consisting of

(the facet of) one diagonal in T0 and the diagonal obtained from it by a flip in T0.
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Proof. As always, a necessary condition for the facets corresponding to two diagonals to

be parallel is that the diagonals cross; if the diagonals do not cross, they are present in

some common triangulation which implies the corresponding facets intersect.

So, let pr and qs be two crossing diagonals. Since AssII
n (T ) is full-dimensional, their

facets are parallel only if vpr and vqs are linearly dependent. By definition of the vectors

vij this only happens when {vpr, vqs} = {±αi} for some i, which is the case of the

statement.

Lemma 1.42. Let Pn+3 be an (n + 3)-gon, with n ≥ 2. For each triangulation T of

Pn+3 let BT denote the set consisting of the n diagonals in T plus the n diagonals that

can be introduced by a single flip from T . Then for every T1 6= T2 we have BT1 6= BT2.

Proof. Suppose that T1 and T2 had BT1 = BT2 . We claim that T2 is obtained from T1

by a set of “parallel flips”. That is, by choosing a certain subset of diagonals of T1 such

that no two of them are incident to the same triangle and flipping them simultaneously.

This is so because every diagonal pr in T2 but not in T1 intersects a single diagonal qs

of T1. If pqr and prs were not triangles in T2, then let a be a vertex joined to pr in T2,

different from q or s. One of pa and ra intersects the diagonal qs of T1 and one of the

edges pq, qr, rs and pr of T1.

Once we have proved this for T2, the statement is obvious. For every T2 different from

T1 but with all its diagonals in BT1 there is a diagonal that we can flip to get one that is

not in BT1 (same argument, let pr be a diagonal in T2 but not in T1; let pq, qr, rs and

pr be the other sides of the two triangles of T2 containing pq. Flipping any of them, say

pq, gives a diagonal that crosses pq and qs, which are both in T1).

Corollary 1.43. Let T1 and T2 be two triangulations of a convex (n + 3)-gon. Then

AssII
n (T1) and AssII

n (T2) are normally isomorphic if and only if T1 and T2 are equivalent

under rotation-reflection.

Proof. If T1 and T2 are equivalent under rotation-reflection then the resulting associ-

ahedra are clearly the same. Now suppose that AssII
n (T1) and AssII

n (T2) are normally

isomorphic. By Lemma 1.3 the automorphism of the associahedron face lattice induced

by the isomorphism corresponds to a rotation-reflection of the polygon. Now, normal iso-

morphism preserves the property of a pair of facets being parallel, so using the previous

lemma we get that this rotation-reflection sends T1 to T2.

However, the same is not true if we only look at the set of normal vectors of AssII
n (T ):
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Proposition 1.44. Let T1 and T2 be two triangulations of the (n + 3)-gon. Let A(T1)

and A(T2) be the sets of normal vectors of AssII
n (T1) and AssII

n (T2). Then A(T1) and

A(T2) are linearly equivalent if, and only if, T1 and T2 have isomorphic dual trees.

Proof. Let T be the dual tree of a triangulation T . Observe that the edges of T corre-

spond bijectively to the inner diagonals in T . Moreover, the diagonals of the polygon not

used in T correspond bijectively to the possible paths in T . More precisely: for every

pair of nodes of T , the two corresponding triangles of T have the property that one

edge of each triangle “see each other”. Let p and q be the vertices of the two triangles

opposite (equivalently, not incident) to those two edges. Then the diagonals of T crossed

by pq correspond to the path in T joining the two nodes.

This means that, if we label the edges of T with the numbers 1 through n in the same

manner as we labelled the diagonals of T we have that

A(T ) = {−αi : i ∈ [n]} ∪ {
∑
i∈p

αi : p is a path in T }.

In particular, A(T ) can be recovered knowing only T as an abstract graph. For the

converse, observe that if two trees are not isomorphic then there is no bijection between

their edges that sends paths to paths. For example, knowing only the sets of edges that

form paths we can identify the (stars of) vertices of the tree as the sets of edges such

that every two of them form a path.

In particular, this gives us exponentially many ways of embedding the associahedron of

dimension n with facet normals in the root system of An:

Corollary 1.45. Let T0 be a triangulation whose dual tree is a path. Let its diagonals be

numbered from 1 to n in the order they appear in the path. Then, taking αi = ei+1 − ei,
we have that A(T0) is the set of almost positive roots in the root system An.

The number of normally non-isomorphic classes of associahedra, for which the dual tree

of the seed triangulation T0 is a path, is equal to the number of sequences {+,−}n−1

modulo reflection and reversal.

It is surprising that the number of realizations that we get in this way is exactly the

same as we got in the previous section. Nevertheless, we prove in Theorem 1.48 that

the two sets of realizations are (almost) disjoint.
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1.5.4 Combinatorial description of c-cluster complexes in type An

In this section, we present a simple combinatorial description of c-cluster complexes in

type An as introduced by Reading in [61]. These complexes are more general than the

cluster complexes of Fomin and Zelevinsky [24], and have an extra parameter c corre-

sponding to a Coxeter element. In type An, Coxeter elements can be represented by

a sequence of signs c ∈ {+,−}n−1; the corresponding Coxeter element is given by a

product of generators s1, . . . , sn in some order such that si+1 comes after si if the i-th

sign in the sequence is positive, and si+1 comes before si if the i-th sign is negative.

As in the description of the cluster complex of type An in Section 1.3.3.2 consider the

root system of type An and the set of almost positive roots Φ≥−1. In addition, consider

a sequence of signs c ∈ {+,−}n−1 and let Tc be a triangulation of an (n+ 3)-gon Pn+3

whose dual tree is a path encoded by the sequence of signs c as illustrated in Figure 1.16.

−

+ +

−

c = {−,+,+,−} Tc

δ1

δ2

δ3 δ4

δ5

Figure 1.16: The triangulation Tc corresponding to the sequence of signs
c = {−,+,+,−}.

The description of the c-cluster complex follows the same steps in the description of the

cluster complex in Section 1.3.3.2 using the triangulation Tc. We label the diagonals of

Tc by {δ1, . . . , δn} in the order they appear in the dual path. There is a natural corre-

spondence between the set Φ≥−1 and the diagonals of Pn+3: We identify the negative

simple roots {−α1, . . . ,−αn} with the diagonals {δ1, . . . , δn}, and each positive root

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ n,

with the unique diagonal of Pn+3 crossing the (consecutive) diagonals−δi,−δi+1, . . . ,−δj .

We say that two roots α and β in Φ≥−1 are c-compatible if their corresponding diagonals

do not cross. The c-cluster complex can then be described as the simplicial complex

whose faces correspond to sets of almost positive roots that are pairwise c-compatible.
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The maximal simplices in this simplicial complex, which naturally correspond to trian-

gulations of the polygon, are called c-clusters. For instance, the set

{α1 + α2 + α3, α2 + α3, α2 + α3 + α4, α3, −α5}

is a c-cluster of type A5 for c = (−,+,+,−) corresponding to the Coxeter element

s2s1s3s5s4. The reason is that its corresponding diagonals in Figure 1.16 form a trian-

gulation of the polygon. This algorithm gives a simple combinatorial way of computing

c-cluster complexes in type A. The proof that this description of c-cluster complexes

actually coincides with the original description by Reading follows the two steps (i) and

(ii) in the definition of the c-compatibility relation in [64, Section 5]. As a consequence

we obtain

Proposition 1.46. The normal fan of the associahedron AssII
n (Tc) coincides with the

c-cluster fan of type An.

1.6 How many associahedra?

We have presented several constructions of the associahedron. We call associahedra of

types I and II the associahedra AssI
n(σ) and AssII

n (T ) studied in the previous two sec-

tions. Associahedra of type I include the Postnikov (or Rote–Santos–Streinu, or Loday,

or Buchstaber) associahedron, and both types I and II include the Chapoton–Fomin–

Zelevinsky associahedron. They all have pairs of parallel facets while the secondary

polytope on an n-gon (according to Section 1.3.1) does not. This implies that:

Theorem 1.47. The associahedron as a secondary polytope is never normally isomor-

phic to any associahedron of type I or type II. In particular, it is not normally isomorphic

to the Postnikov associahedron or the Chapoton–Fomin–Zelevinsky associahedron.

Both types I and II produce exponentially many normally non-isomorphic realizations.

The number of normally non-equivalent associahedra of type I is asymptotically 2n−3,

while for type II is asymptotically 22n+1/
√
πn5. Explicit computations up to dimension

15 are given in Table 1.1.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AssIn 1 1 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160

AssIIn 1 1 1 3 4 12 27 82 228 733 2282 7528 24834 83898 285357 983244

Table 1.1: The number of normally non-isomorphic realizations of the associahedron
of types I and II up to dimension 15.

Surprisingly, the realizations of types I and II are (almost) disjoint:
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Theorem 1.48. The only associahedron that is normally isomorphic to both one of type

I and one of type II is the Chapoton–Fomin–Zelevinsky associahedron.

Proof. Suppose that a sequence σ ∈ {+,−}n−1 and a triangulation T produce normally

isomorphic associahedra AssI
n(σ) and AssII

n (T ). The induced automorphism between

the face lattice of these two associahedra comes from a reflection-rotation map on the

(n + 3)-gon, by Lemma 1.3, so there is no loss of generality in assuming that this

reflection-rotation is the identity.

Denote by Bσ and BT the 2n diagonals corresponding to the n pairs of parallel facets

in both constructions respectively. The diagonals of BT consist of the diagonals of

T together with its flips. Since normal isomorphisms preserve pairs of parallel facets,

BT = Bσ.

We consider the (n+ 3)-gon drawn in the Hohlweg–Lange fashion (with vertices placed

along two x-monotone chains, the positive and the negative one, placed in the x-order

indicated by σ). The crucial property we use is that Bσ contains only diagonals between

vertices of opposite signs. Knowing this we conclude:

◦ Every triangle in T contains a boundary edge in one of the chains. (That is, the

dual tree of T is a path). Suppose, in the contrary, that T has a triangle pqr with

no boundary edge. Then the three diagonals pq, pr and qr lie in BT = Bσ. This is

impossible since at least two of p, q and r must have the same sign.

◦ The third vertex of each triangle is in the opposite chain. (That is, the dual path of

T separates the two chains). Otherwise the three vertices of a certain triangle lie in

the same chain. This is impossible, because (at least) one of the three edges of each

triangle is a diagonal, hence it is in Bσ.

◦ No two consecutive boundary edges in one chain are joined to the same vertex in the

opposite chain. (That is, the dual tree of T alternates left and right turns). Otherwise,

let abp and bcp be two triangles in T with ab and bc consecutive boundary edges in

one of the chains. Then the flip in bp inserts the edge ac, so that ac ∈ Bσ. This is

impossible, since a and c are in the same chain.

These three properties imply that T is the snake triangulation, so AssII
n (T ) is the

Chapoton–Fomin–Zelevinsky associahedron.



Chapter 2

Subword complexes, cluster

complexes, and generalized

multi-associahedra

2.1 Introduction

Cluster complexes were introduced by S. Fomin and A. Zelevinsky to encode exchange

graphs of cluster algebras [24]. N. Reading then showed that the definition of cluster

complexes can be extended to all finite Coxeter groups [61, 62]. In this chapter, we

present a new combinatorial description of cluster complexes using subword complexes.

These were introduced by A. Knutson and E. Miller, first in type A to study the combi-

natorics of determinantal ideals and Schubert polynomials [45], and then for all Coxeter

groups in [44]. We provide, for any finite Coxeter group W and any Coxeter element

c ∈ W , a subword complex which is isomorphic to the c-cluster complex of the corre-

sponding type, and we thus obtain an explicit type-free characterization of c-clusters.

This characterization generalizes a description for crystallographic types obtained by

K. Igusa and R. Schiffler in the context of cluster categories [39]. The present approach

allows us to define a new family of simplicial complexes by introducing an additional pa-

rameter k, such that one obtains c-cluster complexes for k = 1. In type A, this simplicial

complex turns out to be isomorphic to the simplicial complex of multi-triangulations of a

convex polygon which was described by C. Stump in [82] (see also C. Stump and L. Ser-

rano [70]), and, in a similar manner, by V. Pilaud and M. Pocchiola in the framework

of sorting networks [54]. In type B, we obtain that this simplicial complex is isomor-

phic to the simplicial complex of centrally symmetric multi-triangulations of a regular

convex polygon. Therefore, we call them multi-cluster complexes. They are different

33
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from generalized cluster complexes as defined by S. Fomin and N. Reading [22], and in

some sense complementary. In the generalized cluster complex, the vertices are given

by the simple negative roots together with several distinguished copies of the positive

roots, while the vertices of the multi-cluster complex correspond to the positive roots

together with several distinguished copies of the simple negative roots. Multi-cluster

complexes turn out to be intimately related to Auslander-Reiten quivers and repetition

quivers [28]. In particular, the Auslander-Reiten translate on facets of multi-cluster

complexes in types A and B corresponds to cyclic rotation of (centrally symmetric)

multi-triangulations. Furthermore, multi-cluster complexes uniformize questions about

multi-triangulations, subword complexes, and cluster complexes. One important exam-

ple concerns the open problem of realizing the simplicial complexes of (centrally sym-

metric) multi-triangulations and spherical subword complexes as boundary complexes

of convex polytopes.

In this chapter, we present the results obtained with Jean-Philippe Labbé and Christian

Stump in [14]. In Section 2.2, we recall the various objects in question, namely multi-

triangulations, subword complexes, and cluster complexes. Moreover, the main results

are presented and the multi-cluster complex is defined (Definition 2.5). In Section 2.3,

we study flips on spherical subword complexes and present two natural isomorphisms.

In Section 2.4, we prove that the multi-cluster complex is independent of the choice of

the Coxeter element (Theorem 2.6). Section 2.5 contains a proof that the multi-cluster

complex is isomorphic to the cluster complex for k = 1 (Theorem 2.2). In Section 2.6,

we discuss possible generalizations of associahedra using subword complexes; we review

known results about polytopal realizations, prove polytopality of multi-cluster cluster

complexes of rank 2 (Theorem 2.36), and prove that the multi-cluster complex is uni-

versal in the sense that every spherical subword complex is the link of a face of a

multi-cluster complex (Theorem 2.14). Section 2.7 contains a combinatorial description

of the sorting words of the longest element of finite Coxeter groups (Theorem 2.39), and

an alternative definition of multi-cluster complexes in terms of the strong intervening

neighbors property (Theorem 2.7). In Section 2.8, we define a natural action on the

vertices and facets of the multi-cluster complex (Definition 2.50) and use this action

to relate multi-cluster complexes to Auslander-Reiten and repetition quivers (Proposi-

tion 2.49). Finally, in Section 2.9, we discuss open problems and questions arising in the

context of multi-cluster complexes.

In [57], C. Stump and V. Pilaud study the geometry of subword complexes and use

the theory presented in this chapter (developed in [14]) to describe the connections to

Coxeter-sortable elements, and how to recover Cambrian fans, Cambrian lattices, and

the generalized associahedra purely in terms of subword complexes.



Chapter 2. Subword complexes, cluster complexes, and generalized multi-associahedra 35

2.2 Definitions and main results

In this section, we review the essential notions concerning multi-triangulations, subword

complexes and cluster complexes of finite type and present the main results. Throughout

the chapter, (W,S) denotes a finite Coxeter system of rank n, and c denotes a Coxeter

element, i.e., the product of the generators in S in some order. The smallest integer h

for which ch = 1 ∈W is called Coxeter number. Coxeter elements of W are in bijection

with (acyclic) orientations of the Coxeter graph of W : a non-commuting pair s, t ∈ S
has the orientation s −→ t if and only if s comes before t in c, i.e., s comes before t in

any reduced expression for c; see Shi [71]. In the simply-laced types A, D, and E, this

procedure yields a quiver Ωc associated to a given Coxeter element c, where by quiver

we mean a directed graph without loops or two-cycles. For two examples, see Figure 2.1

on page 60. The length function on W is given by `(w) = min{r : w = a1 · · · ar, ai ∈ S},
an expression of minimal length is called reduced, and the unique longest element in

W is denoted by w◦, its length is given by `(w◦) = N := nh/2. We refer the reader

to Humphreys [38] for further definitions and a detailed introduction to finite Coxeter

groups. Next, we adopt some writing conventions: in order to emphasize the distinction

between words and group elements, we write words in the alphabet S as a sequence

between brackets (a1, a2, . . . , ar) and use square letters such as w to denote them, and

we write group elements as a concatenation of letters a1a2 · · · ar using normal script such

as w to denote them.

2.2.1 Multi-triangulations

Let ∆m be the simplicial complex with vertices being diagonals of a convex m-gon and

faces being subsets of non-crossing diagonals. Its facets correspond to triangulations

(i.e., maximal subsets of diagonals which are mutually non-crossing). This simplicial

complex is the boundary complex of the dual associahedron (see Chapter 1). It can be

generalized using a positive integer k with 2k+ 1 ≤ m: define a (k+ 1)-crossing to be a

set of k+ 1 diagonals which are pairwise crossing. A diagonal is called k-relevant if it is

contained in some (k+1)-crossing, that is, if there are at least k vertices of the m-gon on

each side of the diagonal. The complex ∆m,k is the simplicial complex of (k+1)-crossing

free sets of k-relevant diagonals. Its facets are given by k-triangulations (i.e., maximal

subsets of diagonals which do not contain a (k + 1)-crossing), without considering k-

irrelevant diagonals. The reason for restricting the set of diagonals is that including

all other diagonals would yield the join of ∆m,k and an mk-simplex. This simplicial

complex has been studied by several authors, see e.g. [18, 41, 42, 46, 52, 67, 70, 82]; an
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interesting recent treatment of k-triangulations using complexes of star polygons can be

found in [55].

In [82], the following description of ∆m,k is exhibited: let Sn+1 be the symmetric group

generated by the n simple transpositions si = (i i+1) for 1 ≤ i ≤ n, where n = m−2k−1.

The k-relevant diagonals of a convex m-gon are in bijection with (positions of) letters

in the word

Q = (sn, . . . , s1, · · · sn, . . . , s1︸ ︷︷ ︸
k times sn,...,s1

, sn, . . . , s1, sn, . . . , s2, · · · sn, sn−1, sn)

of length kn+
(
n+1

2

)
=
(
m
2

)
−mk. If the vertices of the m-gon are cyclically labelled by

the integers from 1 to m, the bijection sends the i-th letter of Q to the i-th k-relevant

diagonal in lexicographic order. Under this bijection, a collection of diagonals forms a

facet of ∆m,k if and only if the complement of the corresponding subword in Q forms

a reduced expression for the permutation [n+ 1, . . . , 2, 1] ∈ Sn+1. A similar approach

which admits various possibilities for the word Q was described in [54] in the context of

sorting networks.

Example 2.1. For m = 5 and k = 1, we get Q = (q1, q2, q3, q4, q5) = (s2, s1, s2, s1, s2).

By cyclically labeling the vertices of the pentagon with the integers {1, . . . , 5}, the

bijection sends the (position of the) letter qi to the i-th entry of the list of ordered

diagonals [1, 3], [1, 4], [2, 4], [2, 5], [3, 5]. On one hand, two cyclically consecutive diagonals

in the list form a triangulation of the pentagon. On the other hand, the complement of

two cyclically consecutive letters of Q form a reduced expression for [3, 2, 1] = s1s2s1 =

s2s1s2 ∈ S3.

The main objective of this chapter is to describe and study a natural generalization of

multi-triangulations to finite Coxeter groups.

2.2.2 Subword complexes

Let Q = (q1, . . . , qr) be a word in the generators S of W and let π ∈ W . The sub-

word complex ∆(Q, π) was introduced by A. Knutson and E. Miller in order to study

Gröbner geometry of Schubert varieties, see [45, Definition 1.8.1], and was further stud-

ied in [44]. It is defined as the simplicial complex whose faces are given by subwords

P of Q for which the complement Q \ P contains a reduced expression of π. Note that

subwords come with their embedding into Q; two subwords P and P ′ representing the

same word are considered to be different if they involve generators at different posi-

tions within Q. In Example 2.1, we have seen an instance of a subword complex with
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Q = (q1, q2, q3, q4, q5) = (s2, s1, s2, s1, s2) and π = s1s2s1 = s2s1s2. In this case, ∆(Q, π)

has vertices {q1, . . . , q5} and facets

{q1, q2}, {q2, q3}, {q3, q4}, {q4, q5}, {q5, q1}.

Subword complexes are known to be vertex-decomposable and hence shellable [44, The-

orem 2.5]. Moreover, they are topologically spheres or balls depending on the Demazure

product of Q. Let Q′ be the word obtained by adding s ∈ S at the end of a word Q.

The Demazure product δ(Q′) is recursively defined by

δ(Q′) =

µs if `(µs) > `(µ),

µ if `(µs) < `(µ),

where µ = δ(Q) is the Demazure product of Q, and where the Demazure product of the

empty word is defined to be the identity element in W . A subword complex ∆(Q, π) is

a sphere if and only if δ(Q) = π, and a ball otherwise [44, Corollary 3.8].

2.2.3 Cluster complexes

In [24], S. Fomin and A. Zelevinsky introduced cluster complexes associated to finite

crystallographic root systems. This simplicial complex along with the generalized as-

sociahedron has become the object of intensive studies and generalizations in various

contexts in mathematics, see for instance [16, 36, 50, 61]. A generator s ∈ S is called

initial or final in a Coxeter element c if `(sc) < `(c) or `(cs) < `(c), respectively. The

group W acts naturally on the real vector space V with basis Π = {αs : s ∈ S}, its

elements are called simple roots. Let Π ⊆ Φ+ ⊆ Φ ⊂ V be the set of positive roots

and the set of roots for (W,S), respectively. Furthermore, let Φ≥−1 = Φ+ ∪ −Π be the

set of almost positive roots. By convention, we denote the maximal standard parabolic

subgroup generated by S \ {s} by W〈s〉, and the associated subroot system by Φ〈s〉. For

s ∈ S, the involution σs : Φ≥−1 −→ Φ≥−1 is given by

σs(β) =

β if − β ∈ Π \ {αs},

s(β) otherwise.

N. Reading showed that the definition of cluster complexes can be extended to all finite

root systems and enriched with a parameter c being a Coxeter element [61]. These

c-cluster complexes are defined using a family ‖c of c-compatibility relations on Φ≥−1,

see [64, Section 5]. This family is characterized by the following two properties:
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(i) for s ∈ S and β ∈ Φ≥−1,

−αs ‖c β ⇔ β ∈
(
Φ〈s〉

)
≥−1

,

(ii) for β1, β2 ∈ Φ≥−1 and s being initial in c,

β1 ‖c β2 ⇔ σs(β1) ‖scs σs(β2).

A maximal subset of pairwise c-compatible almost positive roots is called c-cluster. The

c-cluster complex is the simplicial complex whose vertices are the almost positive roots

and whose facets are c-clusters. It turns out that all c-cluster complexes for the various

Coxeter elements are isomorphic, see [50, Proposition 4.10] and [61, Proposition 7.2]. In

crystallographic types, they are moreover isomorphic to the cluster complex as defined

in [24].

2.2.4 Main results

We are now in the position to state the main results of this chapter and to define the

central object, the multi-cluster complex. Let c = (c1, . . . , cn) be a word corresponding

to a Coxeter element c ∈W , and let w◦(c) = (w1, . . . , wN ) be the lexicographically first

subword of c∞ which represents a reduced expression for the longest element w◦ ∈ W .

The word w◦(c) is called c-sorting word for w◦. The first theorem (proved in Section 2.5)

gives a description of the cluster complex as a subword complex.

Theorem 2.2. The subword complex ∆(cw◦(c), w◦) is isomorphic to the c-cluster com-

plex. The isomorphism is given by sending the letter ci of c to the negative root −αci,
and the letter wi of w◦(c) to the positive root w1 · · ·wi−1(αwi).

As an equivalent statement, we obtain the following explicit description of the c-compatibility

relation.

Corollary 2.3. A subset C of Φ≥−1 is a c-cluster if and only if the complement of

the corresponding subword in cw◦(c) = (c1, . . . , cn, w1, . . . , wN ) represents a reduced

expression for w◦.

This description was obtained independently by K. Igusa and R. Schiffler [39] for finite

crystallographic root systems in the context of cluster categories [39, Theorem 2.5].

They use results of W. Crawley-Beovey and C.M. Ringel saying that the braid group acts

transitively on isomorphism classes of exceptional sequences of modules over a hereditary

algebra, see [39, Section 2]. K. Igusa and R. Schiffler then show combinatorially that
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the braid group acting on sequences of elements in any Coxeter group W of rank n acts

as well transitively on all sequences of n reflections whose product is a given Coxeter

element [39, Theorem 1.4]. They then deduce Corollary 2.3 in crystallographic types

from these two results, see [39, Theorem 2.5]. The present approach holds uniformly

for all finite Coxeter groups, and is developed purely in the context of Coxeter group

theory. We study the connections to the work of K. Igusa and R. Schiffler more closely

in Section 2.8.

Example 2.4. Let W be the Coxeter group of type B2 generated by S = {s1, s2} and let

c = c1c2 = s1s2. Then the word cw◦(c) is (c1, c2, w1, w2, w3, w4) = (s1, s2, s1, s2, s1, s2).

The corresponding list of almost positive roots is

[−α1, −α2, α1, α1 + α2, α1 + 2α2, α2].

The subword complex ∆(cw◦(c), w◦) is an hexagon with facets being any two cyclically

consecutive letters. The corresponding c-clusters are

{−α1,−α2}, {−α2, α1}, {α1, α1 + α2}, {α1 + α2, α1 + 2α2}, {α1 + 2α2, α2}, {α2,−α1}.

Inspired by results in [82] and [54], we generalize the subword complex in Theorem 2.2

by considering the concatenation of k copies of the word c. In type A, this generalization

coincides with the description of the complex ∆m,k given in [54].

Definition 2.5. The multi-cluster complex ∆k
c (W ) is the subword complex ∆(ckw◦(c), w◦).

Multi-cluster complexes are in fact independent of the Coxeter element c. In particular,

we reobtain that all c-cluster complexes are isomorphic (see Section 2.4 for the proof).

Theorem 2.6. All multi-cluster complexes ∆k
c (W ) for the various Coxeter elements are

isomorphic.

A wordQ = (q1, . . . , qr) in S has the intervening neighbors property, if all non-commuting

pairs s, t ∈ S alternate within Q, see [19, Section 3]. Let ψ : S → S be the involution

given by ψ(s) = w−1
◦ sw◦, and extend ψ to words as ψ(Q) = (ψ(q1), . . . , ψ(qr)). We

say that Q has the strong intervening neighbors property (SIN-property), if Qψ(Q) =

(q1, . . . , qr, ψ(q1), . . . , ψ(qr)) has the intervening neighbors property, and if in addition

the Demazure product δ(Q) is w◦. Two words coincide up to commutations if they can

be obtained from each other by a sequence of interchanges of consecutive commuting

letters. The next theorem (proved in Section 2.7) characterizes all words that are equal

to ckw◦(c) up to commutations. This gives an alternative definition of multi-cluster

complexes not using the notion of sorting words.
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Theorem 2.7. A word in S has the SIN-property if and only if it is equal to ckw◦(c),

up to commutations, for some Coxeter element c and some non-negative integer k.

The next proposition generalizes [39, Lemma 3.2]. It gives a different description of

the facets of multi-cluster complexes. Set ckw◦(c) = (q1, q2, . . . , qkn+N ). For an index

1 ≤ i ≤ kn+N , set the reflection ti to be q1q2 . . . qi−1qiqi−1 . . . q2q1. E.g., in Example 2.4,

we obtain the sequence

(t1, t2, t3, t4, t5, t6) = (s1, s1s2s1, s2s1s2, s2, s1, s1s2s1).

Proposition 2.8. A collection {q`1 , . . . , q`kn} of letters in ckw◦(c) forms a facet of

∆k
c (W ) if and only if

t`kn · · · t`2t`1 = ck.

Proof. The proof follows the lines of the proof of [39, Lemma 3.2]. A direct calcu-

lation shows that t`1 · · · t`knq1q2 · · · qkn+N equals the product of all letters in cw◦(c)

not in {q`1 , . . . , q`kn}. We get that {q`1 , . . . , q`kn} is a facet of ∆k
c (W ) if and only if

t`1 · · · t`knq1q2 · · · qkn+N = w◦. As q1q2 · · · qkn+N = ckw◦, the statement follows.

We have seen in Section 2.2.1 that the multi-cluster complex of type Am−2k−1 is isomor-

phic to the simplicial complex whose facets correspond to k-triangulations of a convex

m-gon,

∆k
c (Am−2k−1) ∼= ∆m,k.

Thus, the multi-cluster complex extends the concept of multi-triangulations to finite

Coxeter groups and provides a unifying approach to multi-triangulations and cluster

complexes. The dictionary for type A is presented in Table 2.1.

∆m,k ∆k
c (Am−2k−1)

vertices: k-relevant diagonals of a convex m-gon letters of Q = ckw◦(c)

facets: maximal sets of k-relevant diagonals P ⊂ Q such that
∏

s∈Q\P s = w◦
without (k + 1)-crossings

simplices: sets of k-relevant diagonals P ⊂ Q such that Q \ P contains
without (k + 1)-crossings a reduced expression for w◦

ridges: flips between two k-triangulations facet flips using Lemma 2.18

Table 2.1: The correspondence between the concepts of diagonals, multi-
triangulations and flips of multi-triangulations in ∆m,k, and the multi-cluster complex

∆k
c (Am−2k−1).
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Also in type B, we obtain a previously known object, namely the simplicial complex

∆sym
m,k of centrally symmetric k-triangulations of a regular convex 2m-gon (see Sec-

tion 2.6.3 for the proof). This simplicial complex was studied in algebraic and com-

binatorial contexts in [68, 75].

Theorem 2.9. The multi-cluster complex ∆k
c (Bm−k) is isomorphic to the simplicial

complex of centrally symmetric k-triangulations of a regular convex 2m-gon.

The description of the simplicial complex of centrally symmetric multi-triangulations as

a subword complex provides straightforward proofs of non-trivial results about centrally

symmetric multi-triangulations.

Corollary 2.10. The following properties of centrally symmetric multi-triangulations

of a regular convex 2m-gon hold.

(i) All centrally symmetric k-triangulations of a regular convex 2m-gon contain exactly

mk relevant (centrally) symmetric pairs of diagonals, of which k are diameters.

(ii) For any centrally symmetric k-triangulation T and any k-relevant symmetric pair

of diagonals d ∈ T , there exists a unique k-relevant symmetric pair of diago-

nals d′ not in T such that T ′ = (T\{d}) ∪ {d′} is again a centrally symmetric

k-triangulation. The operation of interchanging a symmetric pair of diagonals be-

tween T and T ′ is called symmetric flip.

(iii) All centrally symmetric k-triangulations of a 2m-gon are connected by symmetric

flips.

The dictionary between the type B multi-cluster complex and the simplicial complex

of centrally symmetric k-triangulations of a regular convex 2m-gon is presented in Ta-

ble 2.2.

∆sym
m,k ∆k

c (Bm−k)

vertices: k-relevant symmetric pairs of letters of Q = ckw◦(c) = cm

diagonals of a regular convex 2m-gon

facets: maximal sets of k-relevant centrally symmetric P ⊂ Q such that
∏

s∈Q\P s = w◦
diagonals without (k + 1)-crossings

simplices: sets of k-relevant symmetric pairs of P ⊂ Q such that Q \ P contains
diagonals without (k + 1)-crossings a reduced expression for w◦

ridges: symmetric flips between two centrally symmetric facet flips using Lemma 2.18
k-triangulations

Table 2.2: The generalization of the concept of diagonals, multi-triangulations and
flips of multi-triangulations to the Coxeter group of type Bn.

In the particular case of c = (s1, s2, . . . , sn), where n = m−k and (s1s2)4 = (sisi+1)3 = 1

for 1 < i < n, the bijection between the k-relevant symmetric pairs of diagonals of a
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regular convex 2m-gon and letters of the word ckw◦(c) = cm is given as follows. If the

vertices of the 2m-gon are labeled cyclically by the integers 1 to 2m, the bijection

sends the letter si in the j-th copy of c in cm to the symmetric pair of diagonals

[m+ j, i+ j− 1]sym :=
{

[m+ j, i+ j− 1], [j,m+ i+ j− 1]
}

(observe that both diagonals

coincide for i = 1). Under this bijection, a collection of k-relevant symmetric pairs of

diagonals forms a facet of ∆sym
m,k if and only if the complement of the corresponding

subword in cm forms a reduced expression for w◦.

Example 2.11. Let m = 5 and k = 2, and let W be the Coxeter group of type B3

generated by S = {s1, s2, s3} where (s1s2)4 = (s2s3)3 = (s1s3)2 = 1. The multi-

cluster complex ∆2
c(B3) is isomorphic to the simplicial complex of centrally symmetric

2-triangulations of a regular convex 10-gon. In the particular case where the Coxeter

element c = c1c2c3 = s1s2s3, the bijection between 2-relevant symmetric pairs and the

letters of the word Q = c2w◦(c) = (s1, s2, s3)5 is given by

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

[6, 1] [6, 2] [6, 3] [7, 2] [7, 3] [7, 4] [8, 3] [8, 4] [8, 5] [9, 4] [9, 5] [9, 6] [10, 5] [10, 6] [10, 7]

[1, 7] [1, 8] [2, 8] [2, 9] [3, 9] [3, 10] [4, 10] [4, 1] [5, 1] [5, 2]

For instance, the first appearance of the letter s3 is mapped to the symmetric pair of di-

agonals [6, 3]sym =
{

[6, 3], [1, 8]
}

, while the third appearance of s1 is mapped to the sym-

metric pair of diagonals [8, 3]sym =
{

[8, 3]
}

. The centrally symmetric k-triangulations

can be easily described using the subword complex approach. For example, the sym-

metric pairs of diagonals at positions {3, 5, 7, 9, 13, 15} form a facet of ∆sym
m,k , and the

symmetric flips are interpreted using Lemma 2.18.

Using algebraic techniques, D. Soll and V. Welker proved that ∆sym
m,k is a (mod 2)-

homology-sphere [75, Theorem 10]. Theorem 2.9 implies the following stronger result.

Corollary 2.12. The simplicial complex of centrally symmetric k-triangulations of a

regular convex 2m-gon is a vertex-decomposable simplicial sphere.

This result together with the proof of [75, Conjecture 13] given in [68]1 implies the

following conjecture by Soll and Welker.

Corollary 2.13 ([75, Conjecture 17]). For the term-order � defined in [75, Section 7],

the initial ideal in�(In,k) of the determinantal ideal In,k defined in [75, Section 3] is

spherical.

We finish this section by describing all spherical subword complexes in terms of faces of

multi-cluster complexes (see Section 2.6.5 for the proofs).

1The proof appeared in Section 7 in the arxiv version, see http://arxiv.org/abs/0904.1097v2.
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Theorem 2.14. A simplicial sphere can be realized as a subword complex of a given

finite type W if and only if it is the link of a face of a multi-cluster complex ∆k
c (W ).

The previous theorem can be obtained for any family of subword complexes, for which

arbitrary large powers of c appear as subwords. However, computations seem to in-

dicate that the multi-cluster complex maximizes the number of facets among subword

complexes ∆(Q,w◦) with word Q of the same size. We conjecture that this is true in

general, see Conjecture 2.63. We also obtain the following corollary.

Corollary 2.15. The following two statements are equivalent.

(i) Every spherical subword complex is polytopal.

(ii) Every multi-cluster complex is polytopal.

2.3 General results on spherical subword complexes

Before proving the main results, we discuss several properties of spherical subword com-

plexes in general which are not specific to multi-cluster complexes. Throughout this

section, we let Q = (q1, . . . , qr) be a word in S and π = δ(Q).

2.3.1 Flips in spherical subword complexes

Lemma 2.16 (Knutson–Miller). Let F be a facet of ∆(Q, δ(Q)). For any vertex q ∈ F ,

there exists a unique vertex q′ ∈ Q \ F such that
(
F \ {q}

)
∪ {q′} is again a facet.

Proof. This follows from the fact that ∆(Q, δ(Q)) is a simplicial sphere [44, Corol-

lary 3.8]. See [44, Lemma 3.5] for an analogous reformulation.

Such a move between two adjacent facets is called flip. Next, we describe how to find

the unique vertex q′ /∈ F corresponding to q ∈ F . For this, we introduce the notion of

root functions.

Definition 2.17. The root function rF : Q → Φ associated to a facet F of ∆(Q, π)

sends a letter q ∈ Q to the root rF (q) := wq(αq) ∈ Φ, where wq ∈ W is given by the

product of the letters in the prefix of Q \ F = (qi1 , . . . , qi`) that appears on the left of q

in Q, and where αq is the simple root associated to q.

Lemma 2.18. Let F , q and q′ be as in Lemma 2.16. The vertex q′ is the unique vertex

not in F for which rF (q′) ∈ {±rF (q)}.
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Proof. Since qi1 . . . qi` is a reduced expression for π = δ(Q), the set {rF (qi1), . . . , rF (qi`)}
is equal to the inversion set inv(π) = {αi1 , qi1(αi2), . . . , qi1 · · · qi`−1

(αi`)} of π, which only

depends on π and not on the chosen reduced expression. In particular, any two elements

in this set are distinct. Notice that the root rF (q) for q ∈ F is, up to sign, also contained

in inv(π), otherwise it would contradict the fact that the Demazure product of Q is π.

If we insert q into the reduced expression of π, we have to delete the unique letter q′

that corresponds to the same root, with a positive sign if it appears on the right of q in

Q, or with a negative sign otherwise. The resulting word is again a reduced expression

for π.

Remark 2.19. In the case of cluster complexes, this description can be found in [39,

Lemma 2.7].

Example 2.20. As in Example 2.4, consider the Coxeter group of type B2 gener-

ated by S = {s1, s2} with c = c1c2 = s1s2 and cw◦(c) = (c1, c2, w1, w2, w3, w4) =

(s1, s2, s1, s2, s1, s2). Consider the facet F = {c2, w1}, we obtain

rF (c1) = α1, rF (w2) = s1(α2) = α1 + α2,

rF (c2) = s1(α2) = α1 + α2, rF (w3) = s1s2(α1) = α1 + 2α2,

rF (w1) = s1(α1) = −α1, rF (w4) = s1s2s1(α2) = α2.

Since rF (c2) = rF (w2), the letter c2 in F flips to w2. As w2 appears on the right of

c2, both roots have the same sign. Similarly, the letter w1 flips to c1, because rF (c1) =

−rF (w1). In this case, the roots have different signs because c1 appear on the left of w1.

The following lemma describes the relation between the root functions of two facets

connected by a flip.

Lemma 2.21. Let F and F ′ =
(
F \ {q}

)
∪ {q′} be two adjacent facets of the subword

complex ∆(Q, δ(Q)), and assume that q appears on the left of q′ in Q. Then, for every

letter p ∈ Q,

rF ′(p) =

tq(rF (p)) if p is between q and q′, or p = q′,

rF (p) otherwise.

Here, tq = wqqw
−1
q where wq is the product of the letters in the prefix of Q\F that

appears on the left of q in Q. By construction, tq is the reflection in W orthogonal to

the root rF (q) = wq(αq).
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Proof. Let p be a letter in Q, and wp, w
′
p be the products of the letters in the prefixes

of Q\F and Q\F ′ that appear on the left of p. Then, by definition rF (p) = wp(αp) and

rF ′(p) = w′p(αp). We consider the following three cases:

- If p is on the left of q or p = q, then wp = w′p and rF (p) = rF ′(p).

- If p is between q and q′ or p = q′, then w′p can be obtained from wp by adding the

letter q at its corresponding position. This addition is the result of multiplying wp

by tq = wqqw
−1
q on the left, i.e. w′p = tqwp. Therefore, rF (p) = tq(rF ′(p)).

- If p is on the right of q′, consider the reflection tq′ = wq′q
′w−1
q′ where wq′ is the

product of the letters in the prefix of Q\F that appears on the left of q′. By the

same argument, one obtains that w′p = tqtq′wp. In addition, tq = tq′ because they

correspond to the unique reflection orthogonal to the roots rF (q) and rF (q′), which

are up to sign equal by Lemma 2.18. Therefore, w′p = wp and rF ′(p) = rF (p).

2.3.2 Isomorphic spherical subword complexes

We now reduce the study of spherical subword complexes in general to the case where

δ(Q) = π = w◦, and give two operations on the word Q giving isomorphic subword

complexes.

Theorem 2.22. Every spherical subword complex ∆(Q, π) is isomorphic to ∆(Q′, w◦),

for some word Q′ such that δ(Q′) = w◦.

Proof. Let r be a reduced word for π−1w◦ = δ(Q)−1w◦ ∈W . Moreover, define the word

Q′ as the concatenation of Q and r. By construction, the Demazure product of Q′ is

w◦, and every reduced expression of w◦ in Q′ must contain all the letters in r. The

reduced expressions of w◦ in Q′ are given by reduced expressions of π in Q together

with all the letters in r. Therefore, the subword complexes ∆(Q, π) and ∆(Q′, w◦) are

isomorphic.

Recall the involution ψ : S → S given by ψ(s) = w−1
◦ sw◦. This involution was used in [7]

to characterize isometry classes of the c-generalized associahedra. Define the rotated

word Q	
s

or the rotation of Q = (s, q2, . . . , qr) along the letter s as (q2, . . . , qr, ψ(s)).

The following two propositions are direct consequences of the definition of subword

complexes.

Proposition 2.23. If two words Q and Q′ coincide up to commutations, then ∆(Q, π) ∼=
∆(Q′, π).



Chapter 2. Subword complexes, cluster complexes, and generalized multi-associahedra 46

Proposition 2.24. Let Q = (s, q2, . . . , qr). Then ∆(Q,w◦) ∼= ∆(Q	
s
, w◦).

Theorem 2.22 and Proposition 2.24 give an alternative viewpoint on spherical subword

complexes. First, we can consider π to be the longest element w◦ ∈W . Second, ∆(Q,w◦)

does not depend on the word Q but on the bi-infinite word

Q̃ = · · · Q ψ(Q) Q · · ·

= . . . q1, . . . , qr, ψ(q1), . . . , ψ(qr), q1, . . . , qr, . . . .

Taking any connected subword in Q̃ of length r gives rise to an isomorphic spherical

subword complex.

2.4 Proof of Theorem 2.6

In this section, we prove that all multi-cluster complexes for the various Coxeter elements

are isomorphic. This result relies on the theory of sorting words and sortable elements

introduced by N. Reading in [61]. The c-sorting word for w ∈W is the lexicographically

first (as a sequence of positions) subword of c∞ = ccc . . . which is a reduced word for

w. We use the following result of D. Speyer.

Lemma 2.25 ([76, Corollary 4.1]). The longest element w◦ ∈ W can be expressed as a

reduced prefix of c∞ up to commutations.

The next lemma unifies previously known results; the first statement it trivial, the second

statement can be found in [76, Section 4], and the third statement is equivalent to [36,

Lemma 1.6].

Lemma 2.26. Let s be initial in c and let p = (s, p2, . . . , pr) be a prefix of c∞ up to

commutations. Then,

(i) (p2, . . . , pr) is a prefix of (scs)∞ up to commutations, where scs denotes the word

for the Coxeter element scs,

(ii) if p = sp2 · · · pr is reduced then p is the c-sorting word for p up to commutations,

(iii) if sp2 · · · prs′ is reduced for some s′ ∈ S then p is a prefix of the c-sorting word for

ps′ up to commutations.

Proposition 2.27. Let s be initial in c and let w◦(c) = (s, w2, . . . , wN ) be the c-sorting

word of w◦ up to commutations. Then, (w2, . . . , wN , ψ(s)) is the scs-sorting word of w◦

up to commutations.
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Proof. By Lemma 2.25, the element w◦ can be written as a prefix of c∞. By Lemma 2.26,

this prefix is equal to the c-sorting of w◦, which we denote by w◦(c). Let scs denote

the word for the Coxeter element scs. By Lemma 2.26 (i), the word (w2, . . . , wN ) is a

prefix of (scs)∞ and by (ii) it is the scs-sorting word for w2 · · ·wN . By definition of ψ,

the word (w2, . . . , wN , ψ(s)) is a reduced expression for w◦. Lemma 2.26 (iii) with the

word (w2, . . . , wN ) and ψ(s) implies that (w2, . . . , wN , ψ(s)) is the scs-sorting word for

w◦ up to commutations.

Remark 2.28. In [64], N. Reading and D. Speyer present a uniform approach to the theory

of sorting words and sortable elements. This approach uses an anti-symmetric bilinear

form which is used to extend many results to infinite Coxeter groups. In particular, the

previous proposition can be easily deduced from [64, Lemma 3.8].

We are now in the position to prove that all multi-cluster complexes for the various

Coxeter elements are isomorphic.

Proof of Theorem 2.6. Let c and c′ be two Coxeter elements such that c′ = scs for

some initial letter s of c. Moreover, let Qc = ckw◦(c), and Qscs = (scs)kw◦(scs).

By Proposition 2.23, we can assume that Qc = (s, c2, . . . , cn)k · (s, w2, . . . , wN ), and by

Proposition 2.27, we can also assume that Qscs = (c2, . . . , cn, s)
k · (w2, . . . , wN , ψ(s)).

Therefore, Qscs = (Qc)	
s
, and Proposition 2.24 implies that the subword complexes

∆(Qc, w◦) and ∆(Qscs, w◦) are isomorphic. Since any two Coxeter elements can be

obtained from each other by conjugation of initial letters (see [30, Theorem 3.1.4]), the

result follows.

2.5 Proof of Theorem 2.2

In this section, we prove that the subword complex ∆(cw◦(c), w◦) is isomorphic to the c-

cluster complex. As in Theorem 2.2, we identify letters in cw◦(c) = (c1, . . . , cn, w1, . . . , wN )

with almost positive roots using the bijection Lrc : cw◦(c) −̃→ Φ≥−1 given by

Lrc(q) =

−αci if q = ci for some 1 ≤ i ≤ n,

w1w2 · · ·wi−1(αwi) if q = wi for some 1 ≤ i ≤ N.

In [61] this map was used to establish a bijection between c-sortable elements and c-

clusters. Note that under this bijection, letters of cw◦(c) correspond to almost positive

roots and subwords of cw◦(c) correspond to subsets of almost positive roots. We use

this identification to simplify several statements in this section. Observe, that in the



Chapter 2. Subword complexes, cluster complexes, and generalized multi-associahedra 48

particular case given by F0 = c in ∆(cw◦(c), w◦),

Lrc(q) = rF0(q) for every q ∈ w◦(c) ⊂ cw◦(c),

where rF0(q) is the root function as defined in Definition 2.17. We interpret the two

parts (i) and (ii) in the definition of c-compatibility (see Section 2.2.3), in Theorem 2.29

and Theorem 2.35. Proving these two conditions yields a proof of Theorem 2.2. The

majority of this section is devoted to the proof of the initial condition. The proof of the

recursive condition follows afterwards.

2.5.1 Proof of condition (i)

The following theorem implies that ∆(cw◦(c), w◦) satisfies the initial condition.

Theorem 2.29. {−αs, β} is a face of the subword complex ∆(cw◦(c), w◦) if and only

if β ∈
(
Φ〈s〉

)
≥−1

.

We prove this theorem in several steps.

Lemma 2.30. Let F be a facet of the subword complex ∆(cw◦(c), w◦) such that ci ∈ F .

Then

(i) for every q ∈ F with q 6= ci, rF (q) ∈ Φ〈ci〉.

(ii) for every q ∈ cw◦(c), rF (q) ∈ Φ〈ci〉 if and only if Lrc(q) ∈ (Φ〈ci〉)≥−1.

Proof. For the proof of (i) notice that if F = c then the result is clear. Now suppose the

result is true for a given facet F with ci ∈ F , and consider the facet F ′ =
(
F \{p}

)
∪{p′}

obtained by flipping a letter p 6= ci in F . Since all the facets containing ci are connected

by flips which do not involve the letter ci, then it is enough to prove the result for the

facet F ′. By hypothesis, since p ∈ F and p 6= ci then rF (p) ∈ Φ〈ci〉. Then, the reflection

tp orthogonal to rF (p) defined in Lemma 2.21 satisfies tp ∈ W〈ci〉. Using Lemma 2.21

we obtain that for every q ∈ cw◦(c),

rF ′(q) ∈ Φ〈ci〉 ⇔ rF (q) ∈ Φ〈ci〉.

If q ∈ F ′ and q 6= ci then (q ∈ F and q 6= ci) or q = p′. In the first case, rF (q) is

contained in Φ〈ci〉 by hypothesis, and consequently rF ′(q) ∈ Φ〈ci〉. By Lemma 2.18, the

second case q = p′ implies that rF (q) = ±rF (p). Again since rF (p) belongs to Φ〈ci〉 by

hypothesis, the root rF ′(q) belongs to Φ〈ci〉.

For the second part of the lemma, notice that the set {q ∈ cw◦(c) : rF (q) ∈ Φ〈ci〉} is

invariant for every facet F containing ci. In particular, if F = c this set is equal to
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{q ∈ cw◦(c) : Lrc(q) ∈ (Φ〈ci〉)≥−1}. Therefore, rF (q) ∈ Φ〈ci〉 if and only if Lrc(q) ∈
(Φ〈ci〉)≥−1.

Proposition 2.31. If a facet F of ∆(cw◦(c), w◦) contains ci and q 6= ci, then Lrc(q) ∈
(Φ〈ci〉)≥−1.

Proof. This proposition is a direct consequence of Lemma 2.30.

Next, we consider the parabolic subgroup W〈ci〉 obtained by removing the generator ci

from S.

Lemma 2.32. Let c′ be the Coxeter element of the parabolic subgroup W〈ci〉 obtained

from c by removing the generator ci. Consider the word Q̂ = c′w◦(c) obtained by deleting

the letter ci from Q = cw◦(c), and let Q′ = c′w◦(c
′). Then, the subword complexes

∆(Q̂, w◦) and ∆(Q′, w′◦) are isomorphic.

Proof. Since every facet F of ∆(Q̂, w◦) can be seen as a facet F ∪{ci} of ∆(cw◦(c), w◦)

which contains ci, then for every q ∈ F we have that Lrc(q) ∈ (Φ〈ci〉)≥−1 by Proposition

2.31. This means that only the letters of Q̂ that correspond to roots in (Φ〈ci〉)≥−1 appear

in the subword complex ∆(Q̂, w◦). The letters in Q′ are in bijection, under the map Lrc′ ,

with the almost positive roots (Φ〈ci〉)≥−1. Let ϕ be the map that sends a letter q ∈ Q̂
corresponding to a root in (Φ〈ci〉)≥−1 to the letter in Q′ corresponding to the same root.

We will prove that ϕ induces an isomorphism between the subword complexes ∆(Q̂, w◦)

and ∆(Q′, w′◦). In other words, we show that F is a facet of ∆(Q̂, w◦) if and only if ϕ(F )

is a facet of ∆(Q′, w′◦). Let r̃F and r′ϕ(F ) be the root functions associated to F and ϕ(F )

in Q̂ and Q′ respectively. Then, for every q ∈ Q̂ such that Lrc(q) ∈ (Φ〈ci〉)≥−1, we have

r̃F (q) = r′ϕ(F )(ϕ(q)). (?)

If F = c′ then ϕ(F ) = c′ and the equality (?) holds by the definition of ϕ. Moreover,

if (?) holds for a facet F then it is true for a facet F ′ obtained by flipping a letter

in F . This follows by applying Lemma 2.21 and using the fact that the positive roots

(Φ〈ci〉)≥−1 in Q̂ and Q′ appear in the same order, see [61, Prop. 3.2]. Finally, Lemma

2.18 and (?) imply that the map ϕ sends flips to flips. Since c′ and ϕ(c′) are facets of

∆(Q̂, w◦) and ∆(Q′, w′◦) respectively, and all facets are connected by flips, F is a facet

of ∆(Q̂, w◦) if and only if ϕ(F ) is a facet of ∆(Q′, w′◦).

The next lemma states that every letter in cw◦(c) is indeed a vertex of ∆(cw◦(c), w◦).

Lemma 2.33. Every letter in cw◦(c) is contained in some facet of ∆(cw◦(c), w◦).
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Proof. Write the word Q = cw◦(c) as the concatenation of c and the c-factorization

of w◦, i.e., Q = ccK1cK2 · · · cKr , where Ki ⊆ S for 1 ≤ i ≤ r and cI , with I ⊆ S,

is the Coxeter element of WI obtained from c by keeping only letters in I. Since w◦

is c-sortable, see [61, Corollary 4.4], the sets Ki form a decreasing chain of subsets of

S, i.e., Kr ⊆ Kr−1 ⊆ · · · ⊆ K1 ⊆ S. This implies that the word ccK1 . . . ĉKi . . . cKr

contains a reduced expression for w◦ for any 1 ≤ i ≤ r. Thus, all letters in cKi are

indeed vertices.

Proposition 2.34. For every q ∈ cw◦(c) satisfying Lrc(q) ∈ (Φ〈ci〉)≥−1, there exists a

facet of ∆(cw◦(c), w◦) that contains both ci and q.

Proof. Consider the parabolic subgroup W〈ci〉 obtained by removing the letter ci from S,

and let Q̂ and Q′ be the words as defined in Lemma 2.32. Since ∆(Q̂, w◦) and ∆(Q′, w′◦)

are isomorphic, applying Lemma 2.33 to ∆(Q′, w′◦) completes the proof.

Proof of Theorem 2.29. Taking ci = s, −αs = Lrc(ci) and β = Lrc(q) the two directions

of the equivalence follow from Propositions 2.31 and 2.34.

2.5.2 Proof of condition (ii)

The following theorem proves condition (ii).

Theorem 2.35. Let β1, β2 ∈ Φ≥−1 and s be an initial letter of a Coxeter element c.

Then, {β1, β2} is a face of the subword complex ∆(cw◦(c), w◦) if and only if {σs(β1), σs(β2)}
is a face of the subword complex ∆(c′w◦(c

′), w◦), with c′ = scs.

Proof. Let Q = cw◦(c), s be initial in c and Q	
s

be the rotated word of Q, as defined in

Section 2.3.2. By Proposition 2.27, the word Q	
s

is equal to c′w◦(c
′) up to commutations,

and by Proposition 2.24 the subword complexes ∆(cw◦(c), w◦) and ∆(c′w◦(c
′), w◦) are

isomorphic. For every letter q ∈ cw◦(c), we denote by q′ the corresponding letter in

c′w◦(c
′) obtained from the previous isomorphism. We write q1 ∼c q2 if and only if

{q1, q2} is a face of ∆(cw◦(c), w◦). In terms of almost positive roots this is written as

Lrc(q1) ∼c Lrc(q2)⇐⇒ Lrscs(q
′
1) ∼scs Lrscs

(
q′2
)
.

Note that the bijection Lrscs can be described using Lrc. Indeed, it is not hard to check

that Lrscs(q
′) = σs(Lrc(q)) for all q ∈ Q. Therefore,

Lrc(q1) ∼c Lrc(q2)⇐⇒ σs(Lrc(q1)) ∼scs σs(Lrc(q2)).

Taking β1 = Lrc(q1) and β2 = Lrc(q2) we get the desired result.
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2.6 Generalized multi-associahedra and polytopality of spher-

ical subword complexes

In this section, we discuss the polytopality of spherical subword complexes and present

what is known in the particular cases of cluster complexes, simplicial complexes of multi-

triangulations, and simplicial complexes of centrally symmetric multi-triangulations. We

then prove polytopality of multi-cluster complexes of rank 2. Finally, we show that every

spherical subword complex is the link of a face of a multi-cluster complex, and conse-

quently reduce the question of realizing spherical subword complexes to the question of

realizing multi-cluster complexes. We use the term generalized multi-associahedron for

the dual of a polytopal realization of a multi-cluster complex – but the existence of such

realizations remains open in general, see Table 2.3. The subword complex approach

provides new perspectives and methods for finding polytopal realizations. In [57] for

example, C. Stump and V. Pilaud obtain a geometric construction of a class of subword

complexes containing generalized associahedra purely in terms of subword complexes.

simplicial complex polytopal realization of the dual

of triangulations associahedron
(classical) [34, 35, 48, 60]

of multi-triangulations multi-associahedron
[41, 46, 54, 55, 82] (existence conjectured)

of centrally symmetric multi-triangulations multi-associahedron of type B
[68, 75] (existence conjectured)

cluster complex generalized associahedron
[24, 60–62] [16, 35, 57, 81]

multi-cluster complex generalized multi-associahedron
(present chapter) (existence conjectured)

Table 2.3: Dictionary for generalized concepts of triangulations and associahedra.

2.6.1 Generalized associahedra

We have seen that for k = 1, the multi-cluster complex ∆1
c(W ) is isomorphic to the

c-cluster complex. S. Fomin and A. Zelevinsky conjectured the existence of polytopal

realizations of the cluster complex in [24, Conjecture 1.12]. F. Chapoton, S. Fomin, and

A. Zelevinsky then proved this conjecture by providing explicit inequalities for the defin-

ing hyperplanes of generalized associahedra [16]. N. Reading constructed c-Cambrian

fans, which are complete simplicial fans coarsening the Coxeter fan, see [60]. In [63],

N. Reading and D. Speyer prove that these fans are combinatorially isomorphic to the

normal fan of the polytopal realization in [16]. C. Hohlweg, C. Lange and H. Thomas
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then provided a family of c-generalized associahedra having c-Cambrian fans as nor-

mal fans by removing certain hyperplanes from the permutahedron [36]. V. Pilaud and

C. Stump recovered c-generalized associahedra by giving explicit vertex and hyperplane

descriptions purely in terms of the subword complex approach presented in this chap-

ter [57].

2.6.2 Multi-associahedra of type A

In type An for n = m− 2k − 1, the multi-cluster complex ∆k
c (An) is isomorphic to the

simplicial complex ∆m,k of k-triangulations of a convex m-gon. This simplicial complex

is conjectured to be realizable as the boundary complex of a polytope2. It was studied

in many different contexts, see [55, Section 1] for a detailed description of previous work

on multi-triangulations. Apart from the most simple cases, very little is known about

its polytopality. Nevertheless, this simplicial complex possesses very nice properties

which makes this conjecture plausible. Indeed, the subword complex approach provides a

simple descriptions of the 1-skeleton of a possible multi-associahedron (see Lemma 2.18),

and gives a new and very simple proof that it is a vertex-decomposable triangulated

sphere [82, Theorem 2.1]. Below, we survey the known polytopal realizations of ∆m,k as

boundary complexes of convex polytopes. The simplicial complex ∆m,k, or equivalently

the multi-cluster complex ∆k
c (An) for n = m− 2k − 1, is the boundary complex of

- a point, if k = 0,

- an n-dimensional dual associahedron, if k = 1,

- a k-dimensional simplex, if n = 1,

- a 2k-dimensional cyclic polytope on 2k + 3 vertices, if n = 2, see [55, Section 8],

- a 6-dimensional simplicial polytope, if n = 3 and k = 2, see [9].

The case n = 2 is also a direct consequence of the rank 2 description in Section 2.6.4.

Further unsuccessful attempts to realize ∆m,k come from various directions in discrete

geometry.

(a) A generalized construction of the polytope of pseudo-triangulations using rigidity of

pseudo-triangulations [53, Section 4.2 and Remark 4.82].

(b) A generalized construction of the secondary polytope. As presented in [31], the sec-

ondary polytope of a point configuration can be generalized using star polygons [53,

Section 4.3].

(c) The brick polytope of a sorting network. This new approach brought up a large

family of spherical subword complexes which are realizable as the boundary of a

2As far as we know, the first reference to this conjecture appears in [41, Section 1].
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polytope. In particular it provides a new perspective on generalized associahedra [57,

57]. Unfortunately, this polytope fails to realize the multi-associahedron.

2.6.3 Multi-associahedra of type B

We start by proving Theorem 2.9 which says that the multi-cluster complex ∆k
c (Bm−k) is

isomorphic to the simplicial complex of centrally symmetric k-triangulations of a regular

convex 2m-gon. This simplicial complex was studied in [68, 75]. We then present what

is known about its polytopality. The new approach using subword complexes provides

in particular very simple proofs of Corollaries 2.10, 2.12 and 2.13.

Proof of Theorem 2.9. Let S = {s0, s1, . . . , sm−k−1} be the generators of Bm−k, where

s0 is the generator such that (s0s1)4 = 1 ∈W , and the other generators satisfy the same

relations as in type Am−k−1. Then, embed the group Bm−k in the group A2(m−k)−1 by

the standard folding technique: replace s0 by s′m−k and si by s′m−k+is
′
m−k−i for 1 ≤ i ≤

m− k − 1, where the set S′ = {s′1, . . . , s′2(m−k)−1} generates the group A2(m−k)−1. The

multi-cluster complex ∆k
c (Bm−k) now has an embedding into the multi-cluster complex

∆k
c′(A2(m−k)−1), where c′ is the Coxeter element of type A2(m−k)−1 corresponding to

c in Bm−k; the corresponding subcomplex has the property that 2(m − k) generators

(all of them except s′m−k) always come in pairs. Using the correspondence between

k-triangulations and the multi-cluster complex described in Section 2.2.1, the facets

of ∆k
c (Bm−k) considered in ∆k

c′(A2(m−k)−1) correspond to centrally symmetric multi-

triangulations.

Here, we present the few cases for which this simplicial complex is known to be polytopal.

The multi-cluster complex ∆k
c (Bm−k) is the boundary complex of

- an (m− 1)-dimensional dual cyclohedron (or type B associahedron), if k = 1, see

[35, 73],

- an (m− 1)-dimensional simplex, if k = m− 1,

- a (2m− 4)-dimensional cyclic polytope on 2m vertices, if k = m− 2, see [75].

The case k = m− 2 also follows from the rank 2 description in Section 2.6.4.
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2.6.4 Generalized multi-associahedra of rank 2

We now prove that multi-cluster complexes of rank 2 can be realized as boundary com-

plexes of cyclic polytopes. In other words, we show the existence of rank 2 multi-

associahedra. This particular case was known independently by D. Armstrong3.

Theorem 2.36 (Type I2(m) multi-associahedra). The multi-cluster complex ∆k
c (I2(m))

is isomorphic to the boundary complex of a 2k-dimensional cyclic polytope on 2k + m

vertices. The multi-associahedron of type I2(m) is the simple polytope given by the dual

of a 2k-dimensional cyclic polytope on 2k +m vertices.

Proof. This is obtained by Gale’s evenness criterion on the word Q = (a, b, a, b, a, . . . )

of length 2k+m: Let F be a facet of ∆k
c (I2(m)), and take two consecutive letters x and

y in the complement of F . Since the complement of F is a reduced expression of w◦,

then x and y must represent different generators. Since the letters in Q are alternating,

it implies that the number of letters between x and y is even.

2.6.5 Generalized multi-associahedra

Recall from Section 2.2.2 that a subword complex ∆(Q, π) is homeomorphic to a sphere if

and only if the Demazure product δ(Q) = π, and to a ball otherwise. This motivates the

question whether spherical subword complexes can be realized as boundary complexes

of polytopes [44, Question 6.4.]. We show that it is enough to consider multi-cluster

complexes to prove polytopality for all spherical subword complexes, and we characterize

simplicial spheres that can be realized as subword complexes in terms of faces of multi-

cluster complexes.

Lemma 2.37. Every spherical subword complex ∆(Q,w◦) is the link of a face of a

multi-cluster complex ∆(ckw◦(c), w◦).

Proof. Observe that any word Q in S can be embedded as a subword of Q′ = ckw◦(c),

for k less than or equal to the size of Q, by assigning the i-th letter of Q within the

i-th copy of c. Since the Demazure product δ(Q) is equal to w◦, the word Q contains

a reduced expression for w◦. In other words, the set Q′ \Q is a face of ∆(Q′, w◦). The

link of this face in ∆(Q′, w◦) consists of subwords of Q – viewed as a subword of Q′ –

whose complements contain a reduced expression of w◦. This corresponds exactly to the

subword complex ∆(Q,w◦).

3Personal communication.
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We now prove that simplicial spheres realizable as subword complexes are links of faces of

multi-cluster complexes. This result extends the universality of the multi-associahedron

presented in [53, Theorem 4.83] to finite Coxeter groups.

Proof of Theorem 2.14. For any spherical subword complex ∆(Q, π), we have that the

Demazure product δ(Q) equals π. By Theorem 2.22, ∆(Q, π) is isomorphic to a subword

complex of the form ∆(Q′, w◦). Using the previous lemma we obtain that ∆(Q, π) is

the link of a face of a multi-cluster complex. The other direction follows since the

link of a subword (i.e., a face) of a multi-cluster complex is itself a subword complex,

corresponding to the complement of this subword.

Finally we prove that the question of polytopality of spherical subword complexes is

equivalent to the question of polytopality of multi-cluster complexes.

Proof of Corollary 2.15. On one hand, if every spherical subword complex is polytopal

then clearly every multi-cluster complex is polytopal. On the other hand, suppose that

every spherical subword complex is polytopal. Every spherical subword complex is the

link of a face of a multi-cluster complex. Since the link of a face of a polytope is also

polytopal, Theorem 2.14 implies that every spherical subword complex is polytopal.

2.7 Sorting words of the longest element and the SIN-

property

In this section, we give a simple combinatorial description of the c-sorting words of w◦,

and prove that a word Q coincides up to commutations with ckw◦(c) for some non-

negative integer k if and only if Q has the SIN-property as defined in Section 2.2.4.

This gives us an alternative way of defining multi-cluster complexes in terms of words

having the SIN-property. Recall the involution ψ : S → S from Section 2.4 defined by

ψ(s) = w−1
◦ sw◦. The sorting word of w◦ has the following important property.

Proposition 2.38. The sorting word w◦(c) is, up to commutations, equal to a word

with suffix (ψ(c1), . . . , ψ(cn)), where c = c1 · · · cn.

Proof. As w◦ has a c-sorting word having c = (c1, . . . , cn) as a prefix, the corollary is

obtained by applying Proposition 2.27 n times.

Given a word w in S, define the function φw : S → N given by φw(s) being the number

of occurrences of the letter s in w.
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Theorem 2.39. Let w◦(c) be the c-sorting word of w◦ and let s, t be neighbors in the

Coxeter graph such that s comes before t in c. Then

φw◦(c)(s) =

φw◦(c)(t) if ψ(s) comes before ψ(t) in c,

φw◦(c)(t) + 1 if ψ(s) comes after ψ(t) in c.

Proof. Sorting words of w◦ have intervening neighbors, see [76, Proposition 2.1] for an

equivalent formulation. Therefore s and t alternate in w◦(c), with s coming first. Thus,

φw◦(c)(s) = φw◦(c)(t) if and only if the last t comes after the last s. Using Proposition

2.38, this means that s appears before t in ψ(c) or equivalently ψ(s) appear before ψ(t)

in c. Otherwise, the last s will appear after the last t.

It is known that if ψ is the identity on S, or equivalently if w◦ = −1, then the c-sorting

word of w◦ is given by w◦(c) = c
h
2 , where h denotes the Coxeter number given by the

order of any Coxeter element. In the case where ψ is not the identity on S (that is when

W is of types An (n ≥ 2), Dn (n odd), E6 and I2(m) (m odd), see [8, Exercise 10 of

Chapter 4]), the previous theorem gives simple way to obtain the sorting words of w◦.

Algorithm 2.40. Let W be an irreducible finite Coxeter group, and let c = c1c2 · · · cn
be a Coxeter element.

(i) Since the Coxeter diagram is connected, one can use Theorem 2.39 to compute

φw◦(c)(s) for all s depending on m := φw◦(c)(c1);

(ii) using that the number of positive roots equals nh/2, one obtains m and thus all

φw◦(c)(s) using

2 ·
∑
s∈S

φw◦(c)(s) = nh.

(iii) using that w◦(c) = cK1cK2 · · · cKr where Ki ⊆ S for 1 ≤ i ≤ r and cI , with I ⊆ S,

is the Coxeter element of WI obtained from c by keeping only letters in I, we obtain

that cKi is the product of all s for which φw◦(c)(s) ≥ i.

This algorithm provides an explicit description of the sorting words of the longest element

w◦ of any finite Coxeter group using nothing else than Coxeter group theory. This

answers a question raised in [36, Remark 2.3] and simplifies a step in the construction of

the c-generalized associahedron. We now give two examples of how to use this algorithm.

Example 2.41. Let W = A4, S = {s1, s2, s3, s4} and c = s1s3s2s4. Fix φw◦(c)(s1) = m.

Since s1 comes before s2 in c and that ψ(s1) = s4 comes after ψ(s2) = s3, the letter s1

appears one more time than the letter s2 in w◦(c), i.e., φw◦(c)(s2) = m− 1. Repeating

the same argument gives φw◦(c)(s3) = m and φw◦(c)(s4) = m − 1. Summing up these
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values gives the equality 4m−2 = n·h
2 = 4·5

2 = 10, and thus m = 3. Finally, the c-sorting

word is w◦(c) = (s1, s3, s2, s4|s1, s3, s2, s4|s1, s3).

Example 2.42. Let W = E6, S = {s1, s2, . . . , s6} with the labeling shown in Figure 2.1.

Moreover, let c = s3s5s4s6s2s1. Fix φw◦(c)(s6) = m. Repeating the same procedure from

the previous example and using that ψ(s6) = s6, ψ(s3) = s3, ψ(s2) = s5, ψ(s1) = s4,

one get φw◦(c)(s1) = φw◦(c)(s2) = m− 1, φw◦(c)(s3) = φw◦(c)(s6) = m, φw◦(c)(s4) =

φw◦(c)(s5) = m + 1. As the sum equals nh
2 = 6·12

2 = 36, we obtain m = 6. Finally, the

c-sorting word is (c5|s3, s5, s4, s6|s5, s4).

Remark 2.43. Propositions 2.27 and 2.38 have the following computational consequences.

Denote by rev(w) the reverse of a word w. First, up to commutations, we have

w◦(c) = rev(w◦(ψ(rev(c)))).

Second, we also have, up to commutation,

ch = w◦(c) rev(w◦(rev(c))).

Third, for all s ∈ S,

φw◦(c)(s) + φw◦(rev(c))(s) = φw◦(c)(s) + φw◦(c)(ψ(s)) = h.

We are now in the position to prove Theorem 2.7.

Proof of Theorem 2.7. Suppose that a word Q has the SIN-property, then it has com-

plete support by definition, and it contains, up to commutations, some word c =

(c1, . . . , cn) for a Coxeter element c as a prefix. Moreover, the word (ψ(c1), . . . , ψ(cn)) is

a suffix of Q, up to commutations. Observe that a word has intervening neighbors if and

only if it is a prefix of c∞ up to commutations, see [19, Section 3]. In view of Lemma 2.25

and the equality δ(Q) = w◦, the word Q has, up to commutations, w◦(c) as a prefix.

If the length of Q equals w◦ the proof ends here with k = 0. Otherwise, the analogous

argument for rev(Q) gives that the word rev(Q) has, up to commutations, w◦(ψ(rev(c)))

as a prefix. By Remark 2.43, the word w◦(ψ(rev(c))) is, up commutations, equal to the

reverse of w◦(c). Therefore, Q has the word w◦(c) also as a suffix. Since c = (c1, . . . , cn)

is a prefix of Q and of w◦(c), and Q has intervening neighbors, Q coincides with ckw◦(c)

up to commutations. Moreover, if Q is equal to ckw◦(c) up to commutations, it has in-

tervening neighbors, and a suffix (ψ(c1), . . . , ψ(cn)), up to commutations, by Proposition

2.38. This implies that the word Q has the SIN-property.
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Remark 2.44. In light of Theorem 2.7 and Section 2.3.2, starting with a word Q having

the SIN-property suffices to construct a multi-cluster complex, and choosing a particular

connected subword in the bi-infinite word Q̃, defined in Section 2.3.2, corresponds to

choosing a particular Coxeter element.

We finish this section with a simple observation on the bi-infinite word Q̃. For any letter

q in the word Qψ(Q), let βq be the root obtained by applying the prefix wq of Qψ(Q)

before q to the simple root αq. To obtain roots for all letters in Q̃, repeat this association

periodically.

Proposition 2.45. Let Q be a word in S having the SIN-property, and let q, q′ be two

consecutive occurrences of the same letter s in Q̃. Then

βq + βq′ =
∑
p

−aspβp,

where the sum ranges over the collection of letters p in Q̃ between q and q′ corresponding

to neighbors of s in the Coxeter graph, and where (ast)s,t∈S is the corresponding Cartan

matrix.

Proof. Without loss of generality, we can assume that q is the first letter in some oc-

currence of Q, as otherwise, we can shift Q accordingly. Let w〈s〉 be the product of all

neighbors of s in the Coxeter graph (in any order, as they all commute). The result

follows from a direct calculation.

βq + βq′ = αs + sw〈s〉(αs) = αs + s
(
αs +

∑
p

−aspαp
)

=
∑
p

−asps(αp) =
∑
p

−aspβp,

where the first equality comes from the fact that Q has the SIN-property, the second

comes from the fact that p(αs) = αs − aspαp, and that any two neighbors of s in the

Coxeter graph commute, while the last two are trivial calculations.

2.8 Multi-cluster complexes, Auslander-Reiten quivers, and

repetition quivers

In this section, we connect multi-cluster complexes to Auslander-Reiten quivers and

repetition quivers by introducing an action on vertices and facets in the multi-cluster

complex. Auslander-Reiten and repetition quivers play a crucial role in Auslander-

Reiten theory which studies the representation theory of Artinian rings and quivers. The

Auslander-Reiten quiver ΓΩ of a quiver Ω encodes the irreducible morphisms between
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isomorphism classes of indecomposable representations of right modules over kΩ. These

were introduced by M. Auslander and I. Reiten in [3, 4]. We also refer to [5, 27] for

further background.

2.8.1 The Auslander-Reiten quiver

In types A, D and E, sorting words of w◦ are intimately related to Auslander-Reiten

quivers. Starting with a quiver Ωc associated to a Coxeter element c (as described in

Section 2.2), one can construct combinatorially the Auslander-Reiten quiver ΓΩc , see [6,

Section 2.6]. R. Bédard then shows how the Auslander-Reiten quiver provides all reduced

expressions for w◦ adapted to Ωc, i.e., the words equal to w◦(c) up to commutations.

K. Igusa and R. Schiffler use these connections in order to obtain their description of

cw◦(c), see [39, Sections 2.1–2.3]. Conversely, given the c-sorting word w◦(c), one can

recover the Auslander-Reiten quiver ΓΩc , see [84, Proposition 1.2] and the discussion

preceding it. Algorithm 2.40 thus provides a way to construct the Auslander-Reiten

quiver in finite types using only Coxeter group theory; it uses results on admissible

sequences [76] and words with intervening neighbors [20].

Algorithm 2.46. The following fourth step added to Algorithm 2.40 yields the Auslander-

Reiten quiver ΓΩc of Ωc.

(iv) The vertices of ΓΩc are the letters of w◦(c) and two letters q, q′ of w◦(c) are linked

by an arrow q −→ q′ in ΓΩc if and only if q and q′ are neighbors in the Coxeter

graph and q comes directly before q′ in w◦(c) when restricted to the letters q and

q′.

Figure 2.1 shows two examples of Auslander-Reiten quivers and how to obtain it using

this algorithm.

2.8.2 The repetition quiver

Next, we define the repetition quiver.

Definition 2.47 ([43, Section 2.2]). The repetition quiver ZΩ of a quiver Ω consists of

vertices (i, v) for a vertex v of Ω and i ∈ Z. The arrows of ZΩ are given by (i, v) −→ (i, v′)

and (i, v′) −→ (i+ 1, v), for any arrow v −→ v′ in Ω.

For a Coxeter element c, the repetition quiver ZΩc turns out to be a bi-infinite sequence of

Auslander-Reiten quivers ΓΩc and ΓΩψ(c)
linked at the initial c and the final ψ(c). More
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w◦(c) = (c5|s3, s5, s4, s6|s5, s4)

Figure 2.1: Two examples of Auslander-Reiten quivers of types A4 and E6.

precisely, the repetition quiver ZΩc can be obtained applying the procedure described

in Algorithm 2.46 to the bi-infinite word

w̃◦(c) = · · ·w◦(c) ψ(w◦(c)) w◦(c) ψ(w◦(c)) · · · .

As discussed in Remark 2.44, the word w̃◦(c) does not depend on the choice of a Coxeter

element. Therefore, the repetition quiver is independent of the choice of Coxeter element,

as expected. The repetition quiver comes equipped with the Auslander-Reiten translate

τ given by τ(i, v) = (i−1, v). A second natural map acts on the vertices of the repetition

quiver: the shift operation [1] : ZΩc −→ ZΩc which sends a vertex in w◦(c) or ψ(w◦(c))

to the corresponding vertex in the next (to the right) copy of ψ(w◦(c)) or of w◦(c)

respectively. In Figure 2.2, we present an example of a repetition quiver of type A4.

Copies of the Auslander-Reiten quivers ΓΩc and ΓΩψ(c)
are separated by dashed arrows.

The Auslander-Reiten translate τ sends a vertex to the one located directly to its left.

One orbit of the shift operation shown in bold, we have (4, s1) = [1](1, s4) = [2](−1, s1).

Remark 2.48. Vertices in the Auslander-Reiten quiver correspond to (isomorphism classes

of) indecomposable representations of Ωc, and thus have a dimension vector attached.

By the knitting algorithm, the dimension vector at a vertex V = (i, v) of ΓΩc plus the



Chapter 2. Subword complexes, cluster complexes, and generalized multi-associahedra 61

(−2, s1)

(−2, s3)

(−2, s2)

(−2, s4)

(−1, s1)

(−1, s3)

(−1, s2)

(−1, s4)

(0, s1)

(0, s3)

(0, s2)

(0, s4)

(1, s1)

(1, s3)

(1, s2)

(1, s4)

(2, s1)

(2, s3)

(2, s2)

(2, s4)

(3, s1)

(3, s3)

(3, s2)

(3, s4)

(4, s1)

(4, s3)

(4, s2)

(4, s4)

(5, s1)

(5, s3)

︸ ︷︷ ︸
ΓΩc

︸ ︷︷ ︸
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︸ ︷︷ ︸
ΓΩc

Figure 2.2: The repetition quiver of type A4 with the quiver Ωc associated to the
Coxeter element c = s1s3s2s4.

dimension vector at the vertex τ(V ) equals the sum of all dimension vectors at vertices

V ′ for which τ(V ) −→ V ′ −→ V are arrows in ΓΩc , see [28, Section 10.2]. This procedure

is intimately related to the SIN-property, which ensures that this sum is indeed over all

neighbors of v. Moreover, Proposition 2.45 implies that this property holds as well for

the root βq attached to a letter q in the bi-infinite sequence Q̃. This yields the well

known property that the dimension vector and the corresponding root coincide.

The following proposition describes words for the multi-cluster complex using the repe-

tition quiver, the Auslander-Reiten translate, and the shift operation.

Proposition 2.49. Let Ωc be a quiver corresponding to a Coxeter element c. Words for

the multi-cluster complex are obtained from the bi-infinite word w̃◦(c) by setting τk = [1].

Choosing a particular fundamental domain for this identification corresponds to choosing

a particular Coxeter element. In other words, words for multi-cluster complexes are

obtained by a choice of linear extension of a fundamental domain of the identification

τk = [1] in the repetition quiver.

Proof. With the identification [1]V = τkV in the repetition quiver, a fundamental do-

main will consist of k copies of Ωc and one copy of the Auslander-Reiten quiver ΓΩc .

This fundamental domain is exactly the quiver formed from the word ckw◦(c) using Al-

gorithm 2.46. As linear extensions of this quiver correspond to words equal to ckw◦(c)

up to commutations, the result follows.

The red and the blue boxes in Figure 2.2 mark two particular choices of a fundamental

domain for the multi-cluster complex of type A4 with k = 1 corresponding to the Coxeter

elements s1s2s3s4 and s1s3s2s4 respectively.
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2.8.3 The Auslander-Reiten translate on multi-cluster complexes

The Auslander-Reiten translate gives a cyclic action on the vertices and facets of a multi-

cluster complex. This action corresponds to natural actions on multi-triangulations in

types A and B, and is well studied in the case of cluster complexes.

Definition 2.50. Let Q = ckw◦(c). The permutation Θ : Q −̃→ Q is given by sending

a letter qi = s to the next occurrence of s in Q, if possible, and to the first occurrence

of ψ(s) in Q otherwise.

Observe that in types ADE, the operation Θ corresponds to the inverse of the Auslander-

Reiten translate, Θ = τ−1 when considered within the repetition quiver.

Proposition 2.51. The permutation Θ induces a cyclic action on the facets of ∆(Q,w◦).

Proof. By Proposition 2.24, the subword complexes ∆(Q,w◦) and ∆(Q	
s
, w◦) are isomor-

phic for an initial letter s in Q. Proposition 2.27 asserts that ckw◦(c) and the rotated

word obtained from ckw◦(c) by rotating n times are equal up to commutations. By

construction, Θ is the automorphism of ∆(Q,w◦) given by inverse rotation of c.

Example 2.52. As in Example 2.41, consider c = s1s3s2s4 and Q = cw◦(c) = (qi :

1 ≤ i ≤ 14) = (c2|s1s3s2s4|s1, s3). After rotating along all letters in c from the right,

we obtain the word (s3s1s4s2|c2|s1, s3), so we have to reorder the initial 4 letters using

commutations to obtain again (c3|s1, s3). Therefore, Θ permutes the letter of Q along

the permutation of the indices given by(
1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 14 2 1 4 3

)
.

Here is an example of an orbit of Θ.

{q1, q2, q3, q4} 7→Θ {q5, q6, q7, q8} 7→Θ {q9, q10, q11, q12} 7→Θ {q13, q14, q2, q1}
7→Θ {q4, q3, q6, q5} 7→Θ {q8, q7, q10, q9} 7→Θ {q12, q11, q14, q13} 7→Θ {q1, q2, q3, q4}.

To relate the permutation Θ to clusters, we recall the definition of bipartite Coxeter

elements; consider a bipartition of the set S = S− t S+ such that any two generators in

Sε commute (this is possible since the graph of the Coxeter group is a tree), then form

the Coxeter element c∗ = c−c+, where cε =
∏
s∈Sε s. Using the bijection Lrc∗ between

letters in c∗w◦(c
∗) and almost positive roots, the cyclic action induced by Θ is equal to

the action induced by the tropical Coxeter element

σc∗ :=
∏
s∈S−

σs
∏
s∈S+

σs
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on almost positive roots, see Section 2.2.3 for the definition of σs, and [2, Section 5.2] for

more details about tropical Coxeter elements. In the case of cluster complexes, S. Fomin

and N. Reading computed the order of Θ [23, Theorem 4.14]. Since the words cw◦(c)

are all connected via rotation along initial letters, the order of Θ does not depend on a

specific choice of Coxeter element.

Theorem 2.53. For Q = ckw◦(c), the order of Θ is given by

ord(Θ) =

k + h/2 if w◦ = −1,

2k + h if w◦ 6= −1.

Proof. To obtain the order of this action, we consider the length of Q divided by the

length of c if w◦ ≡ −1, and twice the length of Q divided by the length of c otherwise.

We have already seen in Algorithm 2.40 that the length of Q is given by kn+ nh/2. As

the length of c is given by n, the result follows.

Remark 2.54. The action induced by the tropical Coxeter element on facets of the cluster

complex was shown by S.-P. Eu and T.-S. Fu to exhibit a cyclic sieving phenomenon [21].

Therefore, the cyclic action induced by Θ exhibits a cyclic sieving phenomenon for facets

of the cluster complex ∆(cw◦(c), w◦) and any Coxeter element c.

Finally, for types A and B, the cyclic action Θ : Q−̃→Q corresponds to the cyclic action

induced by rotation of the associated polygons.

Theorem 2.55. Let Q = ckw◦(c). In type Am−2k−1, the cyclic action Θ on letters in

Q corresponds to the cyclic action induced by rotation on the set of k-relevant diagonals

of a convex m-gon. In type Bm−k, the cyclic action Θ corresponds to the cyclic action

induced by rotation on the set of k-relevant centrally symmetric diagonals of a regular

convex 2m-gon.

Proof. The simplicial complex of k-triangulations of a convex m-gon is isomorphic to

the multi-cluster complex of type Am−2k−1, so the order of Θ is given by 2k+ h = 2k+

m−2k = m as expected. The simplicial complex of centrally symmetric k-triangulations

of a regular convex 2m-gon is isomorphic to the multi-cluster complex of type Bm−k, so

the order of Θ equals k + h/2 = k + m − k = m, as well. In type A, the result follows

from the correspondence between letters in Q and k-relevant diagonals in the m-gon as

described in Section 2.2.1. In type B, the result follows from the correspondence between

letters in Q and k-relevant centrally symmetric diagonals in the 2m-gon as described in

Section 2.2.4.
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2.9 Open problems

We discuss open problems and present several conjectures. We start with two open

problems concerning counting formulas for multi-cluster complexes.

Open Problem 2.56. Find multi-Catalan numbers counting the number of facets in

the multi-cluster complex.

Although a formula in terms of invariants of the group for the number of facets of

the generalized cluster complex defined by S. Fomin and N. Reading is known [22,

Proposition 8.4], a general formula in terms of invariants of the group for the multi-

cluster complex is yet to be found. An explicit formula for type A can be found in [41,

Corollary 17]. In type B, a formula was conjectured in [75, Conjecture 13] and proved

in [68]4. In the dihedral type I2(m), the number of facets of the multi-cluster complex

is equal to the number of facets of a 2k-dimensional cyclic polytope on 2k+m vertices.

These three formulas can be reformulated in terms of invariants of the Coxeter groups

of type A, B and I2 as follows,

∏
0≤j<k

∏
1≤i≤n

di + h+ 2j

di + 2j
,

where d1 ≤ . . . ≤ dn are the degrees of the corresponding group, and h is its Coxeter

number. In general, this product is not an integer. The smallest example we are aware

of is type D6 with k = 5. Therefore, this product cannot count facets of the multi-cluster

complex in general. The cyclic action Θ (see Definition 2.50) on multi-cluster complexes

might be useful to solve Open Problem 2.56, it gives rise to the following generalization.

Open Problem 2.57. Find multi-Catalan polynomials f(q) such that the triple({
facets of ∆(ckw◦(c), w◦)

}
, f(q),Θ

)
exhibits the cyclic sieving phenomenon as defined by V. Reiner, D. Stanton, and D. White

in [65].

In types A, B, and I2, there is actually a natural candidate for f(q), namely

∏
0≤j<k

∏
1≤i≤n

[di + h+ 2j]q
[di + 2j]q

,

where [m]q = 1 + q + . . .+ qm−1 is a q-analogue of the integer m. In the case of multi-

triangulations and centrally symmetric multi-triangulations, this triple is conjectured

4The proof appeared in Section 7 in the arxiv version, see http://arxiv.org/abs/0904.1097v2.
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to exhibit the cyclic sieving phenomenon.5 The counting formula in types A, B and

I2 can be enriched with a parameter m such that it reduces for k = 1 to the Fuss-

Catalan numbers counting the number of facets in the generalized cluster complexes.

The next open problem raises the question of finding a family of simplicial complexes

that includes the generalized cluster complexes of S. Fomin and N. Reading and the

multi-cluster complexes.

Open Problem 2.58. Construct a family of simplicial complexes which simultaneously

contains generalized cluster complexes and multi-cluster complexes.

The next open problem concerns a possible representation theoretic description of the

multi-cluster complex in types ADE. For k = 1, one can describe the compatibility by

saying that V ‖c V ′ if and only dim(Ext1(V, V ′)) = 0, see [11].

Open Problem 2.59. Describe the multi-cluster complex within the repetition quiver

using similar methods.

The following problem extends the diameter problem of the associahedron to the family

of multi-cluster complexes, see [53, Section 2.3.2] for further discussions in the case of

multi-triangulations.

Open Problem 2.60. Find the diameter of the facet-adjacency graph of the multi-

cluster complex ∆k
c (W ).

Finally, we present several combinatorial conjectures on the multi-cluster complexes.

We start with a conjecture concerning minimal non-faces.

Conjecture 2.61. Minimal non-faces of the multi-cluster complex ∆k
c (W ) have cardi-

nality k + 1.

Since w◦ is c-sortable, we have ckw◦(c) = ckcK1cK2 · · · cKr with Kr ⊆ . . . ⊆ K2 ⊆ K1.

This implies that the complement of any k letters still contains a reduced expression

for w◦. In other words, minimal non-faces have at least cardinality k + 1. Moreover,

using the connection to multi-triangulations and centrally symmetric triangulations, we

see that the conjecture holds in types A and B. It also holds in the case of dihedral

groups: it is not hard to see that the faces of the multi-cluster complex are given by

subwords of ckw◦(c) = (a, b, a, b, . . . ) which do not contain k+1 pairwise non-consecutive

letters (considered cyclically). The conjecture was moreover tested for all multi-cluster

complexes of rank 3 and 4 with k = 2.

5Personal communication with V. Reiner.
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In types A and I2(m), there is a binary compatibility relation on the letters of ckw◦(c)

such that the faces of the multi-cluster complex can be described as subsets avoiding k+1

pairwise not compatible elements. We remark that this is not possible in general: in type

B3 with k = 2, as in Example 2.11, ∆2
c(B3) is isomorphic to the simplicial complex of

centrally symmetric 2-triangulations of a regular convex 10-gon. Every pair of elements

in the set A = {[1, 4]sym, [4, 7]sym, [7, 10]sym} is contained in a minimal non-face. But

since A does not contain a 3-crossing, it forms a face of ∆2
c(B3).

Theorem 2.7 gives an alternative way of defining multi-cluster complexes as subword

complexes ∆(Q,w◦) where the word Q has the SIN-property. It seems that this definition

covers indeed all subword complexes isomorphic to multi-cluster complexes.

Conjecture 2.62. Let Q be a word in S with complete support and π ∈ W . The

subword complex ∆(Q, π) is isomorphic to a multi-cluster complex if and only if Q has

the SIN-property and π = δ(Q) = w◦.

The fact that π = δ(Q) is indeed necessary so that the subword complex is a sphere.

It remains to show that π = w◦ and that Q has the SIN-property. One reason for this

conjecture is that if Q does not have the SIN-property then it seems that the subword

complex ∆(Q,w◦) has fewer facets than required. Indeed, we conjecture that that multi-

cluster complexes maximize the number of facets among all subword complexes with a

word Q of a given size.

Conjecture 2.63. Let Q be any word in S with kn + N letters (where N denotes the

length of w◦) and ∆(Q,w◦) be the corresponding subword complex. The number of facets

of ∆(Q,w◦) is less than or equal to the number of facets of the multi-cluster complex

∆k
c (W ). Moreover, if both numbers are equal, then the word Q has the SIN-property.

In fact, the last two conjectures hold for dihedral groups I2(m). In this case, the multi-

cluster complex is isomorphic to the boundary complex of a cyclic polytope, which is a

polytope that maximizes the number of facets among all polytopes in fixed dimension

on a given number of vertices.

In view of Corollary 2.15, the following conjecture restricts the study of [44, Ques-

tion 6.4].

Conjecture 2.64. The multi-cluster complex is the boundary complex of a simplicial

polytope.

In types A and B, this conjecture coincides with the conjecture on the existence of

the corresponding multi-associahedra, see [41, 75], and Theorem 2.36 shows that this

conjecture is true for dihedral groups.



Chapter 3

Computational realizations of

multi-associahedra and spherical

subword complexes

In this chapter we show a new point of view on the problem of polytopality of multi-

associahedra and spherical subword complexes, and present two computational methods

to find polytopal realizations for small explicit examples. The implementation of these

methods was done in joint work with Jean-Philippe Labbé using the computer algebra

system Sage [80]. Discussions with Vincent Pilaud also influenced a lot the results in

this chapter.

We start by recalling the notion of multi-associahedra. Let k ≥ 1 and m ≥ 2k + 1 be

two positive integers. As introduced in Section 2.2.1, we denote by ∆m,k the simplicial

complex of k-triangulations of a convex m-gon. The vertices of this complex are given by

k-relevant diagonals of the m-gon, and its faces are (k+1)-crossing-free sets of k-relevant

diagonals. For k = 1, this complex coincides with the boundary complex of a dual

associahedron. For this reason, we refer to ∆m,k as the simplicial multi-associahedron.

The combinatorial structure of the multi-associahedron has been studied by several au-

thors. Apparently, it first appeared in work of Capoyleas and Pach [13], who showed that

the maximal number of diagonals in a (k+1)-crossing-free set is equal to k(2m−2k−1).

Nakamigawa [52] introduced the flip operation on k-triangulations and proved that the

flip graph is connected. Dress, Koolen and Moulton [18] obtained a reformulation of

the Capoyleas–Pach result, and in particular proved that all maximal (k + 1)-crossing-

free sets of diagonals have the same number of diagonals. The results of Nakamigawa

and Dress–Koolen–Moulton imply that the multi-associahedron ∆m,k is a pure simpli-

cial complex of dimension k(m− 2k − 1)− 1. A more recent approach for the study of

67
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k-triangulations, using star polygons, was given by Pilaud and Santos [55]. In 2003, Jon-

sson [40] showed that the multi-associahedron is a piecewise linear sphere. He also found

an explicit k × k determinantal formula of Catalan numbers counting the number of k-

triangulations [41]. Additionally to the result of Jonsson about the multi-associahedron

being a topological sphere, Stump [82] proved that it is a vertex-decomposable, and thus

in particular shellable, simplicial sphere. See also the results by Serrano and Stump [70].

All these results suggest that the simplicial multi-associahedron ∆m,k could be realized

as the boundary complex of a simplicial polytope of dimension k(m− 2k− 1). However,

while for the classical associahedron we have many different construction methods (see

Chapter 1), all the natural approaches seem to fail for the multi-associahedron. At

the moment, very few cases of the multi-associahedron are known to be polytopal (see

Section 2.6.2). Currently, the smallest open case is for m = 9 and k = 2. Is there a

simplicial polytope of dimension 8 and f -vector (18, 153, 732, 2115, 3762, 4026, 2376, 594)

which realizes the simplicial multi-associahedron ∆9,2?

In Chapter 2, we have seen that the work of Ceballos, Labbé and Stump [14] provides

a natural generalization of multi-associahedra to arbitrary finite Coxeter groups. The

description of generalized multi-associahedra is based on the notion of subword complexes

by Knutson and Miller [44]. We use this description to produce computational polytopal

realizations of the simplicial multi-associahedron of type A3 for k = 2, which corresponds

to the simplicial complex ∆8,2. Different realizations of this polytope were given by

Jürgen Bokowski and Vincent Pilaud in [9]. Our implementation can, in theory, be used

to find polytopal realizations of spherical subword complexes in general. Of course this

note is written with the hope that these methods will be applied with more advanced

computer software and better implementations to find polytopal realizations for even

more interesting bigger examples.

3.1 Primal problem and dual problem

In this section, (W,S) denotes a finite Coxeter system, Q is a word in the generators

in S, while w◦ is the longest element of the group W , and ∆(Q,w◦) denotes the subword

complex associated to Q and w◦ as described in Chapter 2. The objective of this section

is to solve the following problem:

Primal Realization Problem 3.1. Find a complete simplicial fan which realizes a

spherical subword complex ∆(Q,w◦) where

Q = (`r, . . . `2, `1, w1, . . . , wN ),
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and w1, . . . , wN is a reduced expression of w◦.

In particular, we are interested in subword complexes giving rise to generalized multi-

associahedra. A (simple) generalized multi-associahedron is a simple polytope whose

normal fan is a solution of the Realization Problem 3.1, where the word Q is of the form

Q = ckw◦(c) for some Coxeter element c. However, not every complete simplicial fan

is the normal fan of a polytope, and so, after solving problem 3.1 we still need to check

that the fan is regular.

In the same spirit of the proof of Theorem 1.37 in Section 1.5.1, the Primal Problem 3.1

is equivalent to find a matrix M ∈ Rr×m for m = r + N , whose column vectors are

associated to the letters of Q, and such that the following three conditions hold:

1. The vectors associated to a facet of ∆(Q,w◦) form a basis of Rr.
2. If I and J are two adjacent facets that differ by a flip, that is I\{i} = J \{j}. Then

the vectors associated to i and j lie in opposite sides of the hyperplane generated

by the vectors associated to the intersection I ∩ J .

3. There is a facet for which the interior of its associated cone is not intersected by

any other cone.

We will show that conditions 1. and 2. are equivalent to a dual realization problem

(Theorem 3.7). Condition 3. ensures that the fan is complete. Before we proceed to

state the dual problem, we need to introduce the sign function for reduced expressions

of w◦.

Definition 3.2. The sign function is a map

sign : reduced expressions of w◦ → {1,−1}

such that if P and P ′ are two reduced expressions connected by a flip with P \p = P ′\p′,
then

sign(P ′) = (−1)position of p in P− position of p′ in P ′ · sign(P ).

Remark 3.3. If such a sign function exists, it is uniquely defined up to a global multipli-

cation by -1. Observe however that it is a priori not clear whether such a function always

exists, but the next proposition shows that if this is not the case then there is a coun-

terexample to the existence of generalized multi-associahedra. We also remark that the

sign function seems to be well defined for reduced expressions of any element w in W ,

and that the results presented in this section are valid for general spherical subword

complexes.

Proposition 3.4. If the sign function in the previous definition is not well defined then

there are examples of spherical subword complexes that are not polytopal.
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The proof of this proposition will be given in Section 3.2.

Dual Realization Problem 3.5. Find a matrix M ∈ RN×m for m = r + N , whose

column vectors are associated to the letters of Q, and such that for every reduced

expression P ⊂ Q of w◦, we have that

sign(P ) ·Det(P ) > 0,

where Det(P ) is the determinant of the matrix M restricted to P .

Remark 3.6. Notice that sign(P ) only depends on the reduced expression represented

by P and not on its explicit position within the word Q.

Given a matrix M , we say that MG is a Gale dual matrix of M if the rows of MG form

a basis for the kernel of M 1. Note that this dual matrix is determined up to linear

transformation of the rows.

Theorem 3.7. Let M ∈ RN×m and MG ∈ Rr×m be a Gale dual matrix of M. The

following statements are equivalent:

1. M is a solution of the Dual Realization Problem 3.5.

2. MG satisfies conditions 1. and 2. of the Primal Realization Problem 3.1.

Example 3.8 (Realizations of multi-associahedra of type A2). Let c = s1s2 be a Coxeter

element of type A2, and letQ = ckw◦(c) = (s1, s2, . . . s1, s2, s1, s2, s1). The sign function

for reduced expressions of w◦ in type A2 is given by

sign(s1s2s1) = sign(s2s1s2) = 1.

Let a1, . . . , ak and b1, . . . , bk be real numbers such that ai < aj < 0 and bi > bj > 0 for

every 1 ≤ i < j ≤ k. Then, the matrix

M =


1 0 1 0 . . . 1 0 1 0 0

0 1 0 1 . . . 0 1 0 1 0

a1 b1 a2 b2 . . . ak bk 0 0 1


1The Gale dual matrix we use is different to the Gale transform, because we do not use an extra row

filled with ones in our definition
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is a solution for the Dual Realization Problem 3.5. Moreover, the Gale dual matrix

MG =



1 0 a1

0 1 b1

1 0 a2

−I2k×2k 0 1 b2
...

...
...

1 0 ak

0 1 bk


is a solution for the Primal Realization Problem 3.1. Conditions i. and ii. follow from

Theorem 3.7, and condition iii. can be easily checked by inspection (one way of checking

this is to see that the interior of the negative orthant is intersected only by the cone

corresponding to facet ck).

3.2 Proof of Theorem 3.7 and Proposition 3.4

Proof of Theorem 3.7. Let M ∈ RN×m and MG ∈ Rr×m be a Gale dual matrix of M. By

Gale duality, MG satisfies conditions 1. and 2. of the Primal Realization Problem 3.1 if

and only if M satisfies the following two conditions:

1. The vectors associated to the complement of a facet of ∆(Q,w◦) form a basis

of RN .

2. If I and J are two adjacent facets that differ by a flip, that is I\{i} = J \{j}. Then

the vectors associated to i and j lie in the same side of the hyperplane generated

by the vectors associated to the complement of I ∪ J .

Condition 1. implies that for every reduced expression P ⊂ Q of w◦ the determinant

Det(P ) is different from zero. If we set the sign and the determinant of w1 . . . wN ⊂ Q to

be positive, then condition 2. implies that the sign of the determinant of P is determined

by

sign(P ) ·Det(P ) > 0

Conversely, these inequalities imply both condition 1. and condition 2.

Proof of Proposition 3.4. Suppose that the sign function is not well defined. That means

that there is a reduced expression P of w◦ that can be obtained from w1 . . . wN by using

flips in two different ways such that one obtains two different signs for P . Pick a

sufficiently big word Q such that the two chains of flips to obtain P correspond to flips

in the subword complex ∆(Q,w◦). Then, if this subword complex was realizable as a
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polytope there would be a solution for the Dual Realization Problem 3.5, and we would

have two subwords P1 and P2 of Q representing the same reduced expression of w◦

given by P , such that the determinants Det(P1) and Det(P2) have different signs. Let

P be the left most reduced expression of w◦ in Q given by P . Both P1 and P2 can be

connected by flips to P without changing the signs at any step: start by flipping the

first letter of P1 to the first letter of P, then the second to the first and so on. Thus, the

signs of the determinants of P1 and P2 are both equal to the sign of the determinant

of P, which is a contradiction.

3.3 Computational method 1

In this section we present a computational method to find solutions for the Primal Re-

alization Problem 3.1. We applied this method to the particular case of the simplicial

multi-associahedron of type A3 for k = 2, which corresponds to the simplicial com-

plex ∆8,2. The input of the method is a word Q = (`r, . . . , `2, `1, w1, . . . , wN ) in a

finite Coxeter group, where w1 . . . wN is a reduced expression of w◦, and the output is a

complete simplicial fan realizing the subword complex ∆(Q,w◦).

We start with the N × N identity matrix M0, whose column vectors are associated to

the letters w1, . . . , wN of Q, and add column vectors on the left of this matrix, one at a

time for each letter `r, . . . , `1, such that the following happens:

i. at the i-th step the matrix Mi ∈ RN×(i+N), obtained after adding i vectors, is a

solution of the Dual Realization Problem 3.5 for Qi = (`i, . . . , `2, `1, w1, . . . , wN ),

and

ii. the fan determined by the Gale dual matrix MG
i , whose maximal cones correspond

to the facets of ∆(Qi, w◦), is complete.

After having found a solution for the matrix Mi, condition i. for the matrix Mi+1 is

equivalent to finding a solution of a system of linear inequalities, while condition ii. can

be verified using for example Polymake [29] or Sage [80].

In joint work with Jean-Philippe Labbé, this method was implemented using the com-

puter algebra system Sage [80]. The implementation finds several solutions for the

matrix Mi at each step, and repeats the process for each of these solutions in the

next step. Using this algorithm, we were able to find several solutions for the word

Q = (s1, s2, s3, s1, s2, s3, s1, s2, s3, s1, s2, s1) in type A3. The subword complex ∆(Q,w◦)

in this case is isomorphic to the simplicial multi-associahedron ∆8,2.
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One of the solutions of the of the Dual Realization Problem 3.5, which we found for this

word Q, is the matrix

M =



1/16 −1/8 −1/4 1/32 −1 0 1 0 0 0 0 0

1/8 −1/8 −1/2 1/32 0 −1 0 1 0 0 0 0

1/4 0 −1/4 3/32 0 −1/4 0 0 1 0 0 0

−1/2 9/16 1/2 3/8 1/2 0 0 0 0 1 0 0

3/8 1/2 1/2 5/8 0 1/4 0 0 0 0 1 0

3/4 −5/8 1/4 21/32 −1/2 1/4 0 0 0 0 0 1


.

Its Gale dual matrix

MG =



−1 0 0 0 0 0 1/16 1/8 1/4 −1/2 3/8 3/4

0 −1 0 0 0 0 −1/8 −1/8 0 9/16 1/2 −5/8

0 0 −1 0 0 0 −1/4 −1/2 −1/4 1/2 1/2 1/4

0 0 0 −1 0 0 1/32 1/32 3/32 3/8 5/8 21/32

0 0 0 0 −1 0 −1 0 0 1/2 0 −1/2

0 0 0 0 0 −1 0 −1 −1/4 0 1/4 1/4


determines a complete simplicial fan realizing the simplicial multi-associahedron ∆8,2.

Its maximal cones have rays corresponding to the column vectors associated to facets of

the subword complex ∆(Q,w◦).

A fan obtained as a solution of this method is not necessarily the normal fan of a

polytope. For this particular solution, according to computations in Sage [80], the fan

is not the normal fan of a polytope.

It remains the question whether the Dual Realization Problem 3.5 always has a solution

for arbitrary spherical subword complexes. Or in other words, whether the system of

polynomial inequalities

sign(P ) ·Det(P ) > 0

for reduced expressions P ⊂ Q of w◦ always has a solution. In [10], Jürgen Bokowski

and Bernd Sturmfels study the realizability problem of abstract geometric objects us-

ing computational methods. They showed the existence of final polynomials for every

non-realizable case. Is there such a final polynomial for a particular case of the Dual

Realization Problem 3.5?

3.4 Computational method 2

In this section we present another computational method to find polytopal realizations of

spherical subword complexes. Again, we applied this method to the particular case of the

simplicial multi-associahedron of type A3 for k = 2, which corresponds to the simplicial

complex ∆8,2. The input of the method is a word Q = (`r, . . . , `2, `1, q1, . . . , qm) in a
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finite Coxeter group, where (q1, . . . , qm) = cw◦(c) for some Coxeter element c, and a

polytopal realization of the dual generalized associahedron ∆(cw◦(c), w◦). The output

is a polytope realizing the subword complex ∆(Q,w◦).

Our method is based on known polytopal realizations of generalized associahedra, and

uses regular triangulations to construct polytopal realizations for bigger spherical sub-

word complexes. The basic idea is the following. If P is a polytope realizing a subword

complex ∆(Q,w◦), one can easily construct a polytopal realization of a subword complex

∆(`Q,w◦) under certain geometric-regular-triangulation assumption. In this procedure,

we always assume that all the letters of Q actually appear as vertices of ∆(Q,w◦), and

for this reason we start the process with the word cw◦(c).

The facets of ∆(`Q,w◦) are subdivided into two different kinds, the ones that contain

the letter ` and the ones that do not contain the letter `. The facets that contain the

letter ` are the joint of ` with facets of ∆(Q,w◦). The facets that do not contain the

letter ` are exactly the facets of the subword complex ∆(Q, `w◦), which actually form

a combinatorial triangulation T of the polytope P . If this combinatorial triangulation

is indeed a geometric triangulation, and in addition it is regular, then one can lift the

vertices of P in one dimension higher and add one extra vertex corresponding to the

letter ` to obtain a new polytope realizing ∆(`Q,w◦). More explicitly, if v1, . . . , vn are

the vertices of P then the new polytope can be obtained as the convex hull

conv{(0, h0), (v1, h1), . . . , (vn, hn)}

for certain weights h0, h1, . . . , hn ∈ R. The vertex (0, h0) corresponds to the new letter

` for a sufficiently big negative value h0, and (v1, h1), . . . , (vn, hn) are the lifted vertices

giving rise to the regular triangulation T .

In joint work with Jean-Philippe Labbé, this idea was implemented using the computer

algebra system Sage [80]. We start with a polytopal realization of the dual generalized

associahedron ∆(cw◦(c), w◦), and add the letters `r, . . . , `1, one at time, making sure

that the triangulations that appear at each step are both geometric and regular. These

two conditions are equivalent to verify two systems of linear inequalities.

In type A3, we were able to find several solutions for the subword complex ∆(Q,w◦)

where the word Q = c2w◦(c) = (s1, s2, s3, s1, s2, s3, s1, s2, s3, s1, s2, s1). In this case,

∆(Q,w◦) is isomorphic to the simplicial multi-associahedron ∆8,2.

We started with the polytopal realization of a dual 3-dimensional associahedron which

was obtained by using the Santos’ construction in Chapter 1 for the seed triangulation

in Figure 1.14. The vertices of this realization are given by the columns of the following
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matrix  1 1 1 0 0 −1 0 0 0

0 0 1 0 1 0 1 0 −1

1 0 0 −1 0 0 1 1 0

 .

Using the method above, we obtained the first known polytopal realizations of the

simplicial multi-associahedron ∆8,2 with rational coordinates. One of several solutions

we found is given by the matrix

0 0 0 1 1 1 0 0 −1 0 0 0

0 0 0 0 0 1 0 1 0 1 0 −1

0 0 0 1 0 0 −1 0 0 1 1 0

0 0 −3/4 0 −1/4 0 −1/4 0 0 0 0 3/4

0 −1/2 0 −1/4 −3/16 −1/2 0 −3/16 5/16 0 1/4 −3/8

−5/8 3/16 5/16 3/16 1/4 1/16 3/8 5/32 3/8 −1/32 −3/16 3/16


.

The column vectors of this matrix are the vertices of a polytopal realization of ∆8,2,

which is a 6-dimensional polytope with f -vector (12, 66, 192, 306, 252, 84).

The method presented in this section is different from the one presented in Section 3.3.

It has the advantage that the desired polytope is obtained directly without the need of

constructing the normal fan first. The disadvantage is that even if the subword complex

is polytopal, it is possible that the method has no solution. In practical terms, this

method is good to find polytopal realizations for small explicit examples, but in order to

prove or disprove polytopality, one should rather look at the first method in Section 3.3.





Appendix A

Summaries

A.1 English summary

This thesis presents several developments related to the associahedron. All results are

motivated by two specific problems. The first one, which was completely solved in this

work, concerns some polytopal realizations of associahedra (Chapter 1), while the second

one is about the existence of polytopal realizations of multi-associahedra. Although this

second problem was not solved in the thesis, it served as an starting point for very

interesting results connecting subword complexes in the study of Gröbner geometry and

cluster complexes in the theory of cluster algebras (Chapter 2). These results provide

a new approach and new perspectives for problems related to multi-associahedra and,

in a more general context, to generalized multi-associahedra. For example, we use

this approach as a tool to produce polytopal realizations for small explicit examples

(Chapter 3).

The thesis is subdivided into three chapters. The first chapter is focused on geo-

metric realizations of the associahedron, and is joint work with Francisco Santos and

Günter M. Ziegler [15]. We show that three systematic construction methods for the

n-dimensional associahedron (as the secondary polytope of a convex (n + 3)-gon by

Gelfand, Kapranov and Zelevinsky, via cluster complexes of the root system An by

Chapoton, Fomin and Zelevinsky, and as Minkowski sums of simplices by Postnikov)

produce substantially different realizations, for any choice of the parameters for the con-

structions. The cluster complex and the Minkowski sum realizations were generalized by

Hohlweg and Lange to produce exponentially many distinct realizations, all of them with

normal vectors in {0,±1}n. We present another, even larger, exponential family, gener-

alizing the cluster complex construction — and verify that this family is again disjoint

77



Appendix A. Summaries 78

from the previous ones, with one single exception: The Chapoton–Fomin–Zelevinsky

associahedron appears in both exponential families.

The second chapter is joint work with Jean-Philippe Labbé and Christian Stump [14].

We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical

subword complex called multi-cluster complex. This subword complex coincides with the

cluster complex of the given type for k = 1, and extends the notion of multi-associahedra

from types A and B to arbitrary finite Coxeter groups. We study combinatorial and geo-

metric properties of multi-cluster complexes. In particular, we show that every spherical

subword complex is the link of a face of a multi-cluster complex, and describe a natural

cyclic action that yields a connection between multi-cluster complexes, Auslander-Reiten

quivers and repetition quivers.

The third chapter shows a new point of view on the problem of polytopality of multi-

associahedra and spherical subword complexes, and presents two computational methods

to find polytopal realizations for small explicit examples. These methods were imple-

mented in joint work with Jean-Philippe Labbé using the computer algebra system

Sage [80].

A.2 Deutsche Zusammenfassung

Diese Arbeit präsentiert mehrere Entwicklungen im Zusammenhang mit Assoziaeder.

Alle Resultate entstanden aus zwei spezifischen Fragestellungen. Die Erste, welche

in dieser Arbeit vollständig gelöst wurde, befasst sich mit einigen polytopalen Real-

isierungen von Assoziaedern (Chapter 1), während es in der Zweiten um die Existenz

polytopaler Realisierungen von Multiassoziaedern geht. Obwohl die zweite Fragestel-

lung in dieser Arbeit nicht gelöst wurde, diente sie als Ausgangspunkt für sehr interes-

sante Ergebnisse, welche Subwordkomplexe aus der Gröbner-Geometrie mit Clusterkom-

plexen aus der Clusteralgebra verbinden (Chapter 2). Diese Ergebnisse liefern einen

neuen Ansatz und eine neue Perspektive für Fragestellungen, die mit Multiassoziaedern

und - in einem allgemeineren Kontext - mit verallgemeinerten Multiassoziaedern zusam-

menhängen. Zum Beispiel nutzen wir diesen Ansatz als ein Hilfsmittel, um polytopale

Realisierungen für kleine, explizite Beispiele zu erzeugen (Chapter 3).

Diese Arbeit gliedert sich in drei Teile. Der erste Teil konzentriert sich auf geometrische

Realisierungen von Assoziaedern und entstand in Zusammenarbeit mit Francisco Santos

und Günter M. Ziegler [15]. Wir zeigen, dass drei systematische Konstruktionsmeth-

oden des n-dimensionale Assoziaeders (als Sekunddärpolytop eines konvexen (n + 3)-

gons von Gelfand, Kapranov und Zelevinsky, durch Clusterkomplexe des Wurzelsystems
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An bei Chapoton, Fomin und Zelevinsky, und als Minkowskisumme von Simplizes bei

Postnikov) grundlegend verschiedene Realisierungen für jede Wahl der Parameter der

Konstruktionen erzeugen. Die Clusterkomplex- und Minkowski-Realisierung wurden von

Hohlweg und Lange verallgemeinert, um exponentiell viele verschiedene Realisierungen

zu erzeugen, deren Normalenvektoren in {0,±1}n liegen. Wir stellen eine andere, sogar

größere, exponentielle Familie vor, die die Clusterkomplexkonstruktion verallgemeinert

- und weisen nach, dass diese Familie selbst schnittfremd mit den vorangegangenen ist,

mit einer Außnahme: Das Chapoton-Fomin-Zelevinsky-Assoziaeder liegt in beiden ex-

ponentiellen Familien.

Der zweite Teil entstand in Zusammenarbeit mit Jean-Philippe Labbé und Christian

Stump [14]. Für jede endliche Coxeter-Gruppe und jede nichtnegative ganze Zahl k

führen wir einen sphärischen Subwordkomplex ein, den wir Multiclusterkomplex nen-

nen. Dieser Subwordkomplex entspricht dem Clusterkomplex des gegebenen Types für

k = 1 und erweitert den Begriff des Multiassoziaeders vom Typ A und B zu beliebi-

gen endlichen Coxeter-Gruppen. Wir untersuchen kombinatorische und geometrische

Eigenschaften der Multiclusterkomplexe. Insbesondere zeigen wir, dass jeder sphärische

Teilwortkomplex der Link einer Seite eines Multiclusterkomplexes ist und beschreiben

eine natürliche zyklische Verknüpfung, die einen Zusammenhang zwischen Multiclus-

terkomplexen, “Auslander-Reiten quivers” und “repetition quivers” herstellt.

Der dritte Teil zeigt eine neue Sichtweise auf die Frage nach der Polytopalität von

Multiassoziaedern und sphärischen Subwordkomplexen und präsentiert zwei algorith-

mische Methoden, um Realisierungen von kleinen expliziten Beispielen zu finden. In

Zusammenarbeit mit Jean-Philippe Labbé wurden diese Methoden unter Verwendung

des Computer-Algebra-Systems Sage [80] implementiert.
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