Zur Charakterisierung sonographischer Befunde am
Corpus haemorrhagicum und Corpus luteum der Stute

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der Freien Universität Berlin

vorgelegt von
Dominik Teschner
Tierarzt aus Minden

Berlin 2008

Journal-Nr.: 3185
Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin
der Freien Universität Berlin

Dekan: Univ.-Prof. Dr. Dr. Leo Brunnberg
Erster Gutachter: Prof. Dr. Dr. Peter Siegfried Glatzel
Zweiter Gutachter: Univ.-Prof. Dr. Karl Dietrich Weyrauch
Dritter Gutachter: Prof. Dr. Gerd Schlenker

Deskriptoren (nach CAB-Thesaurus):
Corpus Luteum, Horses, Mares, Ovulation, Ultrasonography, Ovarian Follicles

Tag der Promotion: 28.02.2008

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.ddb.de> abrufbar.

Zugl.: Berlin, Freie Univ., Diss., 2008
D188

Dieses Werk ist urheberrechtlich geschützt.

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen, usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen.

This document is protected by copyright law.
No part of this document may be reproduced in any form by any means without prior written authorization of the publisher.
Meiner Familie
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Häufigkeit und Zeit der Untersuchungen</td>
<td>35</td>
</tr>
<tr>
<td>3.1.2 Angaben zu den Stuten</td>
<td>35</td>
</tr>
<tr>
<td>3.1.3 Rasseverteilung</td>
<td>36</td>
</tr>
<tr>
<td>3.1.4 Standorte/Betriebe</td>
<td>37</td>
</tr>
<tr>
<td>3.1.5 Zuchtstatus</td>
<td>40</td>
</tr>
<tr>
<td>3.1.6 Art der Belegung</td>
<td>44</td>
</tr>
<tr>
<td>3.1.7 Zuchtergebnisse der Saison</td>
<td>46</td>
</tr>
<tr>
<td>3.1.8 Durchführung eigener Untersuchungen</td>
<td>47</td>
</tr>
<tr>
<td>3.1.8.1 Verwendete Geräte</td>
<td>47</td>
</tr>
<tr>
<td>3.1.8.2 Untersuchungsintervalle</td>
<td>49</td>
</tr>
<tr>
<td>3.1.8.3 Untersuchungsgang</td>
<td>49</td>
</tr>
<tr>
<td>3.1.8.4 Erfassung der Befunde</td>
<td>50</td>
</tr>
<tr>
<td>3.1.8.5 Auswertung</td>
<td>53</td>
</tr>
<tr>
<td>3.2 Ergebnisse</td>
<td>63</td>
</tr>
<tr>
<td>3.2.1 Grauwertmessung an Funktionskörpern p. o.</td>
<td>63</td>
</tr>
<tr>
<td>3.2.1.1 Alle Stuten</td>
<td>63</td>
</tr>
<tr>
<td>3.2.1.2 Aufteilung nach Rassen</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1.3 Vergleich der Rassen an den Untersuchungstagen</td>
<td>78</td>
</tr>
<tr>
<td>3.2.2 Corpus luteum Typen; Tage p. o.</td>
<td>80</td>
</tr>
<tr>
<td>3.2.2.1 Auslaufende Follikel und entstehende Corpora haemorrhagica</td>
<td>80</td>
</tr>
<tr>
<td>3.2.2.2 Corpus luteum Typen an den Tagen 10 und 15 post ovulationem in Abhängigkeit vom Trächtigkeitsergebnis</td>
<td>85</td>
</tr>
<tr>
<td>3.2.2.3 Unterschiede im Ultraschallbild von Corpus haemorrhagicum und Corpus luteum während des Zyklus</td>
<td>87</td>
</tr>
<tr>
<td>4 Diskussion</td>
<td>91</td>
</tr>
<tr>
<td>5 Zusammenfassung</td>
<td>105</td>
</tr>
<tr>
<td>6 Summary</td>
<td>107</td>
</tr>
<tr>
<td>7 Anhang</td>
<td>109</td>
</tr>
<tr>
<td>8 Literaturverzeichnis</td>
<td>112</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

a. o. ante ovulationem
AW Abweichung
C. a. Corpus albicans
C. h. Corpus haemorrhagicum
C. l. Corpus luteum
FSH Follikelstimulierendes Hormon
GnRH Gonadotropes Releasinghormon
GSA Graustufenanalyse
hcG human chorion gonadotropin
Hz Hertz
LH Luteinisierendes Hormon
MHz Mega Hertz
MW Mittelwert
P₄ Progesteron
p. c. post conceptionem
PGF₂α Prostaglandin F 2 alpha
PMSG Pregnant mare serum gonadotropin
p. o. post ovulationem
RSS Radspeichenstruktur
sog. so genannten
ZW Zentralwert
1 Einleitung

Deshalb soll in der vorliegenden Arbeit geklärt werden, ob die mit der Reifung des Gelbkörpers einhergehenden morphologischen Veränderungen eine reproduzierbare und messbare Entsprechung im sonographischen Bild aufweisen. Es soll geprüft werden, ob sich Veränderungen in Aufbau und Echogenität zur Einschätzung des Zyklusstandes heranziehen lassen.

Weiterhin soll geprüft werden, ob sonographische Bilder von Corpus haemorrhagicum, des zyklischen und des Gelbkörpers in der frühen Trächtigkeit Charakteristika aufweisen, die eine entsprechende Zuordnung erlauben.
2 Literaturübersicht

2.1 Geschlechtsverhalten der Stute

2.1.1 Äußere Einflüsse

2.1.2 Endokrine Steuerung

und Cerebralvene fest, dass während des Diöstrus LH und FSH ein bis zwei Mal täglich in
großer Menge pulsatil ausgeschüttet werden. Im Östrus und bei ovariektomierten Stuten
erfolgt diese Ausschüttung ebenfalls pulsatil, jedoch in stündlich hochfrequenten aber
unregelmäßigen Abständen.

FSH ist saisonunabhängig jedoch zykluskonform vorhanden, während es bei GnRH zu einer
geringen Depression der Produktion im Spätherbst und Winter kommen soll (AURICH und
immunisierten Stuten haben gezeigt, dass FSH nur zu etwa 50% in seiner Ausschüttung
durch GnRH kontrolliert wird, während für LH eine Abhängigkeit von 90 bis 100% besteht.
Dieses Phänomen wird auf eine Inaktivierung des Gens für die LH-Produktion zurückgeführt,
so dass während der Ruhephase kein LH gebildet werden kann (WATSON et al., 2000).

Untersuchungen an ovariektomierten bzw. gegen GnRH
immunisierten Stuten haben gezeigt, dass FSH nur zu etwa 50% in seiner Ausschüttung
durch GnRH kontrolliert wird, während für LH eine Abhängigkeit von 90 bis 100% besteht.
Dieses Phänomen wird auf eine Inaktivierung des Gens für die LH-Produktion zurückgeführt,
so dass während der Ruhephase kein LH gebildet werden kann (WATSON et al., 2000).

Stutenovarien präsentieren sich während dieser Phase der saisonalen Azyklie als relativ
klein und fest strukturiert ohne palpatorisch erkennbare Follikelaktivitäten. Gekennzeichnet
ist die saisonale Übergangphase durch eine unterschwellige Follikelaktivität ohne dass es
to einem dominierenden, ovulationsfähigen Follikel kommt (KLUG, 1996). Die genannten
Verhältnisse können mit entsprechenden Progesteronprofilen (P₄) objektiviert werden, wobei
die azyklische Phase durch sehr geringe P₄-Konzentrationen gekennzeichnet ist (GLATZEL,
1997). In der weiteren transiente Phase erreichen Follikel Ausmaße bis hin zur
Ovulationsgröße ohne jedoch zu ovulieren (KLUG, 1996). HOHENHAUS und LEHMANN
(1990) sprechen in dieser Zeit auch vom „Split-Östrus“, wobei ein Follikel bis zur
Ovulationsreife heranwächst dann aber atresiert. In dieser Zeit besteht die Möglichkeit der
Fehleinschätzung des Zyklusstandes. Wenige Tage später wächst dann oft ein neuer Follikel
unter Rosseerscheinungen heran und kann schließlich ovulieren.

FSH und LH verhalten sich in ihren mittleren Plasmakonzentrationen während des Zyklus
gegenläufig. Zudem werden sie in unterschiedlichen Glykosilierungsformen freigesetzt.
Diese Isoformen oder auch Isohormone besitzen unterschiedliche Halbwertszeiten und
Bioaktivitäten bedingt durch ihren Gehalt an Zuckerseitenketten und Rezeptoraffinität
relativ stabiles Verhältnis zwischen bioaktivem und immunreaktivem LH. Dieses Verhältnis
wird während der pulsatilen Ausschüttung um das 2–6 fache zugunsten des bioaktiven LH
verändert. Zudem war für die bioaktiveren Formen von LH eine verlängerte
Plasmahalbwertszeit zu beobachten.

Unter der FSH-Wirkung kommt es am Ovar zur Heranbildung von Follikeln, welche
Östrogene (vor allem Östradiol-17β) bilden. Der Anstieg der Östrogenkonzentration bei
zeitgleichem Abfall der P₄-Konzentration im Blut bewirkt, dass der pulsatilen Freisetzung des
GnRH aus dem Hypothalamus eine Ausschüttung von LH aus dem
der ersten selektiert wird, gelangt zur Ovulation (LACK und HUCHZERMEYER, 2004). Stuten mit einer Follikelwelle weisen kürzere Zyklen als Stuten mit zwei Wellen auf. Gemeinsam sind beiden Typen der Follikeldynamik ein signifikantes Absinken der Follikelanzahl mit einem Durchmesser unter 20 mm bei Heranbildung des dominanten Follikels (BECKER et al., 1994).

Der weitere Zyklusverlauf ist vom Schicksal der Eizelle abhängig. Bleibt eine Befruchtung aus, bildet sich der Gelbkörper zum Corpus luteum periodicum um. Dieser besteht bis zum Ende des Zyklus, an dem er unter der Wirkung von PGF$_{2\alpha}$ endometrialen Ursprungs zurückgebildet wird. Das bis dahin vom Gelbkörper produzierte Progesteron sinkt entsprechend in seiner Plasmakonzentration und der hemmende Effekt (negativer Feedback) auf die FSH-Freisetzung bleibt aus, wodurch ein neuer Zyklusbeginn ermöglicht wird.

Bei Befruchtung der Eizelle entsteht aus dem Gelbkörper ein Corpus luteum graviditatis, welches über die normale Zykluslänge hinaus Progesteron produziert und von neugebildeten Hilfsgelbkörpern unterstützt wird (GLATZEL et al., 1983).

2.2 Anatomische Voraussetzungen bei Zuchtstuten

Die Geschlechtsorgane der Stute lassen sich funktionell (BARTMANN et al., 2002) in die Keimzellen bereitenden Organe, die Eierstöcke, die Keimzellen leitenden Organe, die Eileiter sowie das die Keimzelle bewahrende Organ, die Gebärmutter gliedern. Als Verschluss- und Schutzeinrichtung liegt die Zervix zwischen Uterus und Scheidenraum. Letzterer dient mit seinen Anteilen Scham, Kitzler, Scheidenvorhof und Scheide als Begattungsorgan und Geburtsweg.

Die dargestellten Verhältnisse im Abschnitt 2.2. repräsentieren die anatomischen Gegebenheiten einer nicht trächtigen, durchschnittlich großen, schweren und geschlechtsreifen Warmblutstute. Entsprechende Veränderungen der Größen- und Lageverhältnisse ergeben sich beispielsweise durch Rasseunterschiede, Trächtigkeiten und Alter.
2.2.1 Scham, Scheidenvorhof und Scheide

2.2.2 Gebärmutter

Muskelfasern, dem darauf folgenden Stratum vasculosum und dem Stratum musculare longitudinale, einer äußeren schwächeren Muskel schicht mit longitudinal verlaufenden Muskelfasern. Umhüllt wird der Uterus durch das Perimetrium (BARTMANN et al., 2002).

2.2.3 Eileiter

Der Eileiter gliedert sich in seinem stark gewundenen Verlauf in mehrere Abschnitte. Das zur Bauchhöhle offene Infundibulum tubae uterinae trägt die Fimbriae tubae, welche sich an das Ovar anlegen und zum Teil mit diesem verbunden sind. Die folgenden Abschnitte bilden die erweiterte Ampulla tubae uterinae, das enge Isthmus tubae uterinae, die Pars uterina, sowie die Papilla uterina, welche die gebärmutterseitige Öffnung bildet (BARTMANN et al., 2002).

2.2.4 Eierstöcke

2.2.5 Gekröseverhältnisse am Genitaltrakt der Stute

Die Gesamtheit aus Mesovar, Mesosalpinx und Mesometrium bilden das Ligamentum latum uteri, dessen subserösen bindegewebigen Anteile das Parametrium bilden, welches die Leitungsstrukturen umschließt (BARTMANN et al., 2002).

2.3 Ovarfunktionen

Aufgrund der anatomischen und physiologischen Gegebenheiten bei der Stute ergeben sich für die Follikelentwicklung, Ovulation und die Ausbildung von Corpus haemorrhagicum und Corpus luteum Verhältnisse, die im Folgenden beschrieben werden.

2.3.1 Follikelentwicklung und Ovulation

Die Androgenbiosynthese wird mit zunehmender Follikelgröße durch LH stimuliert, bedingt durch eine zahlenmäßige Zunahme von LH- bzw. human Chorion Gonadotropin- Rezeptoren an den Follikeln. Mit Zunahme der Östrogenkonzentration im Blut verstärken sich die

Makroskopisch lassen sich dabei im Diöstrus reifende Follikel von atresierenden unterscheiden. Während reifende eine gelbliche Innenauskleidung besitzen und zahlreiche Blutgefäße durch die Follikelwand sichtbar werden, gestaltet sich die Innenauskleidung von atresierenden Follikeln weißlich und arm an Blutgefäßen (LIEBICH, 1999).

Die Stute gehört grundsätzlich zu den einfrüchtigen Tieren, es kommen jedoch auch Mehrfachovulationen vor die in Abhängigkeit von Rasse, Alter und Jahreszeit bis zu 25 % betragen können (GLATZEL et al. 1983; GLATZEL, 1997).

2.3.2 Die Entwicklung von Corpus haemorrhagicum und Corpus luteum

Der Gelbkörper, welcher sich nach der Ovulation aus den verbliebenen Zellen der Follikelwand und den Stromazellen der Zona follicularis bildet, hat die Funktion einer temporären endokrinen Drüse mit der Befähigung Progesteron, Östrogene und eventuell auch Oxytocin zu bilden. Je nach Schicksal unterscheidet man ein Stadium der Anbildung,
Reife und Rückbildung (Corpus luteum cyclicum) oder bei Eintreten einer Befruchtung und daraus resultierender Trächtigkeit eine Verlängerung des Bestehens zu einen Corpus luteum graviditatis (GLATZEL, 1997).

2.4 Klinische Untersuchungsmöglichkeiten des Stutengenitalres

2.4.1 Scheide, Gebärmutterhals und Gebärmutter

Vagina, Cervix und Uterus unterliegen zyklisch bedingten Form- und Funktionsveränderungen. Diese Merkmale können für die klinische Diagnostik und Beurteilung des Zyklusstandes mit herangezogen werden. Bedingt durch charakteristische Östrogen- und Progesteronspiegel im Zyklusverlauf ergeben sich je nach Zyklusstand unterschiedliche Symptome.

2.4.1.1 Scheide

Unter dem Einfluss von Östrogen während der Rosse erfährt die Vaginalschleimhaut eine verstärkte Ödematisierung mit Faltenbildung und gleichzeitiger Zunahme der Durchblutung mit Rötung und vermehrter Feuchtigkeit auf ihrer Oberfläche. Im Gegensatz dazu präsentiert sich die Vaginalschleimhaut unter hohen Progesteronwerten blass rosa, mit geringgradigen Mengen eines zäh pappigen Schleimes und ausbleibender Ödematisierung.

Im Proöstrus und Östrus besitzen sowohl das Vestibulum vaginae, als auch die Vagina propria einen dehnungsbereiten Tonus im Gegensatz zu Phasen, in denen eine Progesterondominanz vorherrscht und die genannten Organe eine fest- elastischen Tonus aufweisen (ENGLAND, 1992; BUSCH und KLUG, 1999). Diese Verschluss- und
Schutzmechanismen können auch nach verzögerten geburtsbedingten Dammrissen gestört sein und damit die weitere Zucht nutzung beeinträchtigen (LANGE et al., 1999; REIF, 2002).

2.4.1.2 Gebärmutterhals

2.4.1.3 Gebärmutter

In einer Studie an fünf holländischen Warmblutstuten über insgesamt 12 Zyklen wurde die Ausprägung und das Auftreten der RSS in Kombination mit äußerer Rosseausprägung sowie Östrogen- und Progesteronkonzentrationen untersucht und in Zusammenhang gestellt. Besonderes Augenmerk galt hier den Veränderungen an der Endometriumsschleimhaut, deren Falten sich im Diöstrus nicht darstellen und eine homogene Textur bei sonographischer Betrachtung ergeben (PYCOCK et al., 1995). Während sich das Uteruslumen im Diöstrus oft als schwache weiße Linie darstellen lässt, verschwindet dieses Phänomen mit zunehmender Ödematisierung des Endometriums während des Östrus (GINThER und PIerson, 1984b; ENGLAND, 1992; PYCOCK et al., 1995). Hieraus resultiert bei Ultraschalluntersuchungen des Uterusquerschnittes ein Bild, welches mit dem

2.5 Trächtigkeit bei der Stute

Im Falle der Befruchtung und Einnistung der Eizelle kommt es zur Entstehung eines Corpus luteum graviditatis, welches über die zyklische Phase hinaus bestehen bleibt und Progesteron sezerniert. Als Besonderheit bei der Stute wird dieses jedoch bereits ab dem 40. bis 60. Trächtigkeitstag durch sekundäre Gelbkörper (Corpora auxiliaria) unterstützt bzw. abgelöst. Diese Gelbkörper entstehen durch zusätzliche Follikelbildungen, die entweder direkt luteinisieren, oder aber auch ovulieren und mitunter befruchtungsfähig sein können. Ebenso wie der ursprüngliche Gelbkörper unterliegen die zusätzlichen auch der Regression, so dass ab ca. dem 200. Trächtigkeitstag die Plazenta die einzige Progesteronquelle darstellt (GLATZEL, 1997).

Die Anbildung zusätzlicher Follikel und somit daraus entstehenden Gelbkörpern erfolgt durch das Hormon Pregnant mare serum gonadotropin (PMSG), welches sowohl FSH- als auch LH-Aktivität aufweist. Es wird in den Endometrial cups des Endometriums vom 32. bis 40. Trächtigkeitstag bis hin zum 120. bis 130. Trächtigkeitstag gebildet. Diese Hormonbildung bleibt bestehen, auch wenn es zwischenzeitlich zum Verlust der fotalen

Ein besonderes Risiko in der Pferdezucht stellt die Zwillingsgravidität dar. Die Rate an Mehrfachovulationen wird mit bis zu 25 % angegeben, die Rate der daraus resultierenden Zwillingsgraviditäten rasseabhängig zwischen dem 13. und 21 Tag mit bis zu 15 % (GLATZEL et al., 1983).

2.6 Ultraschalltechnik

Schwingungsfrequenz f und der Schallgeschwindigkeit v. Es gilt die Formel $\lambda = \frac{v}{f}$ (GLADISCH, 1993).

Abbildung 1: Periodische Dichteänderung in einem Medium nach Ankopplung einer Schallwelle. HD = Hochdruckzone, ND = Niederdruckzone, Lambda = Ausdehnung eines Schwingungszyklus (GLADISCH, 1993)

Die Frequenz f wird mit der Einheit Hertz (Hz) bezeichnet. Sie gibt die Anzahl der Perioden pro Zeiteinheit wieder, wobei 1 Hz = eine Periode pro Sekunde bedeutet. Je nach Geräteausstattung reicht der Bereich des Ultraschalls von 1 bis 10 Megahertz (MHz). Im Vergleich dazu liegt der Bereich des für das menschliche Gehör wahrnehmbaren Schalls in einem Bereich von 16 Hz bis 16000 Hz.

Impedanz $z = \text{Dichte} \times \text{Schallgeschwindigkeit} v$

Beim Durchdringen von Gewebe wird ein Teil der Schallenergie, abhängig von Gewebeart und Schallfrequenz, in Wärme umgewandelt und steht für den Bildaufbau nicht mehr zur
Verfügung. Die Absorption erhöht sich in Weichgeweben linear mit Zunahme der verwendeten Frequenz, d.h. hohe Frequenzen bedingen eine starke Absorption und geringe Eindringtiefe der Schallwellen (POULSEN NAUTRUP, 2000a).

Speicherbild erzeugt, welches vor jedem neuen Bildaufbau wieder gelöscht werden muss – der Bildaufbau erfolgt durch divergierende und konvergierende Schallkopfführung. Im Gegensatz dazu erfolgt beim Echtzeit- oder Real-Timeverfahren ein ständiger Bildaufbau, mit einer Bildfolgefrequenz die so hoch ist (20 bis 50 Bilder pro Sekunde), dass die Einzelbilder vom Betrachter nicht mehr wahrgenommen werden können, und eine laufende Darstellung (wie im Film) ermöglicht wird. Hierdurch wird die Beurteilung von anatomischen und pathologischen Strukturen einschließlich ihrer Bewegungen ermöglicht und erlaubt in gewissen Grenzen Rückschlüsse auf ihre Funktion (GLADISCH, 1993).

2.6.1 Sonographie in der Stutengynäkologie

GINThER (1988) formuliert die Einsatzmöglichkeiten des Ultraschalls am Ovar wie folgt:

1. Feststellung der Geschlechtsreife von heranwachsenden Stuten und Überwachung ob eine Stute in einen ovulatorischen Zyklusverlauf eintritt
2. Abschätzung des Zyklusstandes
3. Bestimmung der bevorstehenden Ovulation
4. Feststellung der Ovulation
5. Feststellung des Ausbleibens einer Ovulation
6. Feststellung von Mehrfachovulationen
7. Feststellung der Persistenz eines C. l.
8. Feststellung einer vorgeburtlichen Regression des C. l. während der Trächtigkeit
9. Beobachtung des Follikelstatus von chronisch anovulatorischen Stuten und die Reaktion auf die Behandlung zur Follikelstimulation

Abbildung 2: Ultrasonographischer Untersuchungsgang von Uterus und Ovar der Stute. Über Uteruskörper und Uterushörner wird der Weg zu den Ovarien gesucht (HOHENHAUS und LEHMANN, 1990)

Am Ovar der Stute lassen sich je nach Funktions- und Zyklusstand verschiedene physiologische und pathologische Gegebenheiten und Funktionsgebilde mittels der Ultraschalltechnik darstellen. Im Folgenden soll lediglich auf Follikel und Corpora lutea eingegangen werden.

2.6.1.1 Follikel

Die Auflösung und Darstellung der zu beobachtenden Strukturen wird maßgeblich durch die Fähigkeiten und Qualität des Ultraschallgerätes vorgegeben. Je höher die Sendefrequenz des Ultraschallkopfes, desto besser die Auflösungsqualität, was jedoch zu Lasten der Eindringtiefe geht (KÄHN und LEIDL, 1984; GINTHER, 1988, POULSEN NAUTRUP, 2000a). Aufgrund der Distanz zum Ovar und dessen Größe, reicht bei der rektalen Untersuchung eine Eindringtiefe bis etwa 8 cm, was den Einsatz höher frequenter Sonden ermöglicht. Mit Hilfe von 3 MHz Sonden gelingt die Darstellung von Follikeln ab 6 mm und frischen Gelbkörpern, eine 5 MHz Sonde ermöglicht jedoch schon die Verbildlichung eines 2 mm großen Follikels und die Darstellung eines C. l. während seiner ganzen Lebensspanne. Deshalb ist für die gynäkologische Untersuchung der Stute ein 5 oder 7,5 MHz Schallkopf mit entsprechend leistungsfähigem Gerät Mittel der Wahl (GINTHER, 1988).

Follikel weisen im Ultraschall die Charakteristika einer flüssigkeitsgefüllten Blase auf. Die Darstellung entspricht zum Teil der morphologischen Beschaffenheit des Follikelaufbaus, darüber hinaus entstehen jedoch auch Strukturen, die durch das Verhalten der Ultraschallwellen beim Auftreffen auf die flüssigkeitsgefüllte Blase entstehen und dementsprechend zu interpretieren sind. Es entstehen Bildelemente, die nicht der tatsächlichen Gewebebeschaffenheit entsprechen, sondern als Kunstprodukte zu werten.

2.6.1.2 Corpora haemorrhagica und Corpora lutea

Mittels Dopplersonographie kann der Blutfloss der größeren, den Gelbkörper umgebenden Gefäße, ab einem Zeitraum unmittelbar nach der Ovulation bzw. ab dem zweiten Tag p. o. dargestellt werden. Der Blutfloss steigt bis etwa Tag fünf, wonach er bis Tag sieben auf einem konstant hohen Niveau verbleibt, um danach bis Tag 15, in seltenen Fällen bis Tag 19 wieder abzufallen (BOLLWEIN et al., 2002).

2.6.1.3 Feststellung der Trächtigkeit

2.6.2 Graustufenmessung

Die computergestützte Graustufenanalyse ermöglicht es die Bildelemente eines Ultraschallbildes zu erfassen und einer quantitativen Analyse der Gewebetextur zu unterziehen. Unter Textur versteht man die räumliche Verteilung der verschiedenen
Dabei bieten sich zwei Möglichkeiten. Zum einen die eindimensionale Analyse, bei welcher die Häufigkeit des Auftretens einzelner Grauwerte gemessen wird ohne dass Rückschlüsse auf die räumliche Anordnung der einzelnen Grauwerte ermöglicht werden. Bei mehrdimensionalen Analysen wird zusätzlich die räumliche Beziehung der verschiedenen Grauwerte zueinander berücksichtigt.

![Grauwerttextur](image1)

![Histogramme](image2)

Abbildung 4: Eindimensionale Grauwertistogramme zweier unterschiedlicher Schwarz/Weiß Bilder (HERMES, 1997)

Unter Digitalisierung versteht man eine Prozedur, bei der jedem Bildpunkt ein numerischer Wert für Helligkeit und örtliche Koordinaten zugeordnet wird. Mit dem Ausdruck Pixelanalyse wird umgangsprachig der Vorgang bezeichnet, mit dem Ultraschallbilder digitalisiert und analysiert werden. Damit soll die Lücke geschlossen werden, die durch subjektive Beurteilung von Ultraschallbildern und den tatsächlichen physiologischen Gegebenheiten entsteht. Mit Hilfe der Digitalisierung ist es möglich, dieses Problem zu verringern oder sogar
zu beseitigen und eine bessere Interpretation der Aufnahmen zu ermöglichen z.B. Follikelgröße und Kontur (TOWNSON und GINTHER, 1989b).
Diese Form der Bildbearbeitung ermöglicht die Auswertung der Anzahl sowie der Verteilung der einzelnen Grauwerte.

2.6.2.1 Graustufenmessung am Stutenovar

Anschließend wurden die C. l. anhand der Messbereiche klassifiziert und der prozentuale Anteil echogen zu anechogen abgeschätzt. 51,5 % wurden als C. h. mit nichtechogenen Anteilen klassifiziert. Dabei trat der anechogene Bereich bei diesen zu 28 % am Tag 0, zu 62 % am Tag 1, zu 6 % am Tag 2 und die verbliebenen 4 % am Tag 3 in Erscheinung. Die 48,5 % der C. l., welche als homogen bezeichnet wurden, wiesen diese Eigenschaften auf, solange sie im Zyklus nachweisbar waren. Ein signifikanter Unterschied zwischen der Regression der beiden Gelbkörpertypen und dem Wiedereintritt in einen neuen Zyklus war nicht festzustellen.

Die subjektiv ermittelten Grauwerte bzw. ihre Einteilung in Messbereiche war signifikant unterschiedlich für die einzelnen Zyklustage, es bestand jedoch kein signifikanter Unterschied zwischen beiden Gelbkörpertypen. Die Werte schwankten zum Zeitpunkt der Ovulation um einen Skalenwert von 4,5 bis 5,0 und fielen auf 3,0 bis 3,5 am Tag acht. Diese Werte wurden bis etwa Tag 12 gehalten und es erfolgte wieder ein Anstieg auf Mittelwerte von 4,0 bis 4,5, bevor das C. l. aufgrund seiner Regression nicht mehr nachweisbar war. Morphologisch war häufig eine charakteristische Pilz- oder Flaschenhalsform unabhängig vom Gelbkörpertyp zu beobachten.

2.6.2.2 Weitere Anwendungsmöglichkeiten der Grauwertmessung in der Tiermedizin

Ausdruck für aktive oder inaktive C. l. konnten nur tendenziell festgestellt werden (JÄHN, 1998).

Bei der sonographischen Untersuchung der Trächtigkeiten des europäischen Rehs (Capreolus capreolus) konnten mittels GSA am Endometrium Veränderungen der Echotextur festgestellt werden, welche dem Betrachter mit dem bloßen Auge nicht ersichtlich waren. Bei tragenden Tieren wurde ab dem dritten Monat der embryonalen Diapause (etwa ab Oktober) eine quantitative Zunahme flüssigkeitsassoziierter Graustufen in der Echotextur des Endometriums nachgewiesen, die im späteren Stadium durch Nachweis der Frucht verifiziert werden konnten. Im Rückschluss konnte zudem das Auftreten embryonaler präimplantativer Resorptionen anhand der Änderungen in der Grauwerttextur des Endometriums beobachtet werden (HERMES, 1997).

3 Eigene Untersuchungen

3.1 Material und Methode

3.1.1 Häufigkeit und Zeit der Untersuchungen

3.1.2 Angaben zu den Stuten

Mit Hilfe von Erfassungsbögen wurden die Halter der Stuten zu den allgemeinen Daten der Tiere befragt. Erfasst wurden folgende Daten:
- Name
- Alter
- Rasse
- Standort
- Besitzer
- Nutzungsrichtung

Im speziellen Teil wurden Daten zum bisherigen Reproduktionsgeschehen erhoben:
- bisherige Anzahl von Fohlen
- Datum und Verlauf der letzten Geburt
- Gründe für eine eventuelle erfolglose Zuchtsaison
- Ergebnisse von Tupferproben
- bisherige gynäkologische Behandlungen
- EHV Impfstatus der Tiere

Im Anschluss wurde allen Tieren eine fortlaufende Nummer in alphabetischer Reihenfolge ihrer Namen zugeordnet (s. Anhang II).

Mit Hilfe dieser Daten wurde im Weiteren der Zuchtstatus der Tiere erhoben. Alle Warmblutstuten, sowie zwei Kaltblutstuten waren aktuell EHV 1 und 4 geimpft, die restlichen Kaltblüter sowie alle zur Verfügung stehenden Traberstuten wiesen keinen gültigen EHV 1 und 4 Impfschutz auf.
3.1.3 Rasseverteilung

Insgesamt standen im Rahmen der Feldstudie 53 Stuten an 8 Standorten zur Verfügung. Es handelte sich hierbei um 23 Warmblutstuten der Zuchtrichtung Holsteiner, 12 Traberstuten, sowie um 18 Kaltblutstuten der Rasse Schleswiger Kaltblut. Die Warmblüter standen auf insgesamt fünf verschiedenen Betrieben, die Traber auf einem, die Schleswiger Kaltblüter auf zwei Betrieben.

Abbildung 5: Prozentuale Verteilung der untersuchten Stuten nach Rassen; (n;53)
3.1.4 Standorte/Betriebe

Beschreibung der Zuchtbetriebe:

Betrieb A

Betriebsstruktur landwirtschaftlicher Betrieb mit angeschlossener Pferdehaltung
Anzahl Zuchtstuten 12 eigene; 2 fremde
weitere Pferde Nachzucht; Sportpferde; Probierhengst
Fütterung Silage; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen auf Station und vor Ort

Betrieb B

Betriebsstruktur landwirtschaftlicher Betrieb
Anzahl Zuchtstuten 1
weitere Pferde Nachzucht; gekörter Deckhengst
Fütterung Silage; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform Natursprung

Betrieb C

Betriebsstruktur landwirtschaftlicher Betrieb mit Pferdepensionshaltung
Anzahl Zuchtstuten 2 eigene; 10 fremde
weitere Pferde Zuchtstuten zum Abfohlen; Nachzucht; Pensionspferde
Fütterung Silage; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen vor Ort; Tiefgefrierbesamung vor Ort und auf Station
Material und Methoden

Betrieb D

Betriebsstruktur Zuchtbetrieb/Hobby
Anzahl Zuchtstuten 8 eigene; 9 fremde
weitere Pferde Nachzucht; gekörter Deckhengst
Fütterung Gras; gelegentlich Kraftfutter
Haltung ganzjährige Weidehaltung
Besamungsform Natursprung

Betrieb E

Betriebsstruktur landwirtschaftlicher Betrieb
Anzahl Zuchtstuten 3
weitere Pferde Nachzucht
Fütterung Silage; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen auf Station

Betrieb F

Betriebsstruktur Zuchtbetrieb/Hobby
Anzahl Zuchtstuten 2
weitere Pferde Nachzucht
Fütterung Heu; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen auf Station

Betrieb G

Betriebsstruktur Reitstall
Anzahl Zuchtstuten 2
weitere Pferde eigene Sportpferde; Einsteller zum Beritt; Pensionspferde
Fütterung Silage; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen auf Station
Material und Methoden

Betrieb H

Betriebsstruktur Zuchtbetrieb/Hobby
Anzahl Zuchtstuten 2
weitere Pferde Nachzucht
Fütterung Heu; Gras; Kraftfutter
Haltung Boxenhaltung mit Weideaustrieb
Besamungsform frisch konservierter Samen vor Ort

Abbildung 6: Darstellung der Verteilung der Stuten auf die einzelnen Standorte
3.1.5 Zuchtstatus

Die Bestimmung des Zuchtstatus erfolgte mit Hilfe der erhobenen Daten bei den Haltern sowie der daraus resultierenden möglichen Einteilung in Fruchtbarkeitsklassen nach Götze und Merkt:

Tabelle 1: Fruchtbarkeitsklassen nach Götze und Merkt

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Voraussetzungen</th>
<th>Fruchtbarkeits-Aussicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tragende Stuten und Maidenstuten ohne klinische oder bakteriologische Bedenken</td>
<td>70 – 100 %</td>
</tr>
<tr>
<td>II</td>
<td>Stuten ohne klinische oder bakteriologische Bedenken, die ein Jahr güst geblieben sind</td>
<td>50 – 70 %</td>
</tr>
<tr>
<td>III</td>
<td>Stuten ohne klinische oder bakteriologische Bedenken, die mehr als ein Jahr güst geblieben sind, bzw. Stuten der Gruppe IV bzw. V nach Abheilung</td>
<td>25 – 50 %</td>
</tr>
<tr>
<td>IV</td>
<td>Stuten, die klinische Krankheitserscheinungen zeigen oder bakteriologisch bedenklich sind</td>
<td>0 – 25 %</td>
</tr>
<tr>
<td>V</td>
<td>Stuten, die wegen erheblicher klinischer Krankheitserscheinungen oder aus anderen Gründen keine Aussicht auf Wiederherstellung mehr bieten</td>
<td>fast 0 %</td>
</tr>
</tbody>
</table>

Quelle: Pferdekrankheiten; 4. Arbeitstagung der Fachgruppe „Pferdekrankheiten der DVG in München 1975
Nach Betrachtung der 53 Stuten ergibt sich für alle erfassten Tiere die in Tabelle 2 aufgeführte Verteilung:

Tabelle 2: Darstellung der Verteilung der Stuten auf die Fruchtbarkeitsklassen

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Gesamt</th>
<th>%</th>
<th>Traber</th>
<th>%</th>
<th>Warmblut</th>
<th>%</th>
<th>Kaltblut</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>31</td>
<td>58,5</td>
<td>10</td>
<td>83,3</td>
<td>14</td>
<td>60,9</td>
<td>7</td>
<td>38,9</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>18,9</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>17,4</td>
<td>6</td>
<td>33,3</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>18,9</td>
<td>1</td>
<td>8,3</td>
<td>4</td>
<td>17,4</td>
<td>5</td>
<td>27,8</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>3,7</td>
<td>1</td>
<td>8,3</td>
<td>1</td>
<td>4,3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Berücksichtigt man die vorherige Nutzung der Stuten, teilt sich die Population wie folgt:

Nutzungsrichtung

(n;53)

Abbildung 7: Prozentuale Verteilung der Nutzungsrichtung der untersuchten Stuten

Bedingt durch die Altersstruktur und die Zuchtnutzung ergibt sich folgende Verteilung:

Abbildung 8: Darstellung der Altersstruktur der untersuchten Stuten; (n;53)

Die durchschnittlich jüngste Rassegruppe stellen die Kaltblüter dar, ebenfalls mit der durchschnittlich geringsten Anzahl an erbrachten Fohlen, gefolgt von den Warmblütern und Trabern, wobei die Warmblüter trotz des geringeren Alters bereits mehr Fohlen als die Traber erbracht hatten. Die Werte in der Übersicht:

Tabelle 3: Übersicht über Durchschnittsalter und Anzahl erbrachter Fohlen

<table>
<thead>
<tr>
<th>Alter</th>
<th>Gesamt (♀)</th>
<th>Traber (♀)</th>
<th>Warmblut (♀)</th>
<th>Kaltblüter (♀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>9,3</td>
<td>11,25</td>
<td>10,2</td>
<td>7,2</td>
</tr>
<tr>
<td>Anzahl Fohlen</td>
<td>2,7</td>
<td>2,9</td>
<td>3,3</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Die Ausgangsposition des Zuchtstatus der Saison 2004 spiegelt folgende Grafik wider:

Aktueller Zuchtstatus
(n;53)

Abbildung 9: Darstellung des Zuchtstatus der untersuchten Stuten in der Zuchtsaison 2004

In der Gruppe der Maidenstuten befinden sich drei dreijährige, eine vierjährige und eine elfjährige Stute. In der Gruppe „Sonstige“, sind Stuten aufgeführt, welche in dieser Zuchtsaison kein Fohlen geführt haben. Gründe dafür waren freiwilliges Aussetzen, güst bleiben, Aborte oder Totgeburten. In der Rubrik Fohlen bei Fuß befand sich eine Stute die ihr Fohlen lebend zur Welt gebracht hat, welches aber einen Tag später tot aufgefunden wurde.

Abbildung 10: Übersicht über die Anzahl der bisher erbrachten Fohlen

3.1.6 Art der Belegung

Die Spanne der Art der Belegung reicht vom Natursprung über Besamung mit Frischsperma bis hin zur Besamung mit Tiefgefriersperma.
Alle Kaltblutstuten wurden ausnahmslos im Natursprung bedeckt. Betrieb D nutzte überwiegend seinen eigenen Hengst, zwei Stuten wurden einem Fremdhengst zugeführt, ebenso wie bei Betrieb B.

In Tabelle 4 ist die Verteilung der genutzten Belegungsformen dargestellt:

<table>
<thead>
<tr>
<th>Art der Belegung</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natursprung</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>flüssigkonservierter Samen</td>
<td>30</td>
<td>56,6</td>
</tr>
<tr>
<td>kryokonservierter Samen</td>
<td>5</td>
<td>9,4</td>
</tr>
<tr>
<td>gesamt</td>
<td>53</td>
<td>100</td>
</tr>
</tbody>
</table>
3.1.7 Zuchtergebnisse der Saison

Insgesamt waren am Ende der Zuchtsaison 2004 41 der 53 zur Verfügung stehenden Stuten tragend, woraus eine Trächtigkeitsrate von 77,4 % resultiert.

Unter Berücksichtigung der vorherigen Einteilung in Fruchtbarkeitsklassen ergibt sich folgendes Bild:

Tabelle 5: Trächtigkeitsergebnisse in Bezug zur Fruchtbarkeitsklasse nach Merkt/Götze; (n:53 Stuten)

<table>
<thead>
<tr>
<th>Fruchtbarkeitsklasse</th>
<th>TU +</th>
<th>%</th>
<th>TU -</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>24</td>
<td>77,4</td>
<td>7</td>
<td>22,6</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td>70,0</td>
<td>3</td>
<td>30,0</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
<td>90,0</td>
<td>1</td>
<td>10,0</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>50,0</td>
<td>1</td>
<td>50,0</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TU = Trächtigkeitsuntersuchung
TU + = Anzahl tragender Stuten
TU - = Anzahl nicht tragender Stuten

Nach dem Zuchtstatus ergibt sich die in Tabelle 6 dargestellte Verteilung:

Tabelle 6: Trächtigkeitsergebnis nach Zuchtstatus der Zuchtsaison 2004

<table>
<thead>
<tr>
<th>Stuten</th>
<th>Anzahl geamt</th>
<th>tragend</th>
<th>% tragend</th>
<th>nicht tragend</th>
<th>% nicht tragend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fohlen bei Fuß</td>
<td>31</td>
<td>25</td>
<td>80,6</td>
<td>6</td>
<td>19,4</td>
</tr>
<tr>
<td>Maidenstuten</td>
<td>5</td>
<td>4</td>
<td>80,0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Sonstige</td>
<td>18</td>
<td>13</td>
<td>72,2</td>
<td>5</td>
<td>17,8</td>
</tr>
</tbody>
</table>

Besamungsindex und Besamungsaufwand:

Der Besamungsindex (Anzahl Rossen bis zur Trächtigkeit / Anzahl tragender Stuten) beträgt 1,37 bei 56 Rossen und 41 Trächtigkeiten. Pro erreichte Trächtigkeit wurden 2,61 Portionen an Frischsperma oder Tiefgefriersperma bzw. an Deckakten benötigt, wobei sich bei Tiefgefrierbesamungen die Besamungsdosis laut Angabe der produzierenden Besamungsstation aus jeweils drei bis vier Pailletten zusammensetzte.

3.1.8 Durchführung eigener Untersuchungen

3.1.8.1 Verwendete Geräte

Die Untersuchungen wurden mit einem Ultraschallgerät der Firma GE Medicals® vom Typ LOGIQ TM α 100 und einem 5 Mhz Schallkopf der gleichen Firma mit Typenbezeichnung VE5 – Linear durchgeführt.

Im Rahmen von Voruntersuchungen wurde für die Untersuchung eine Einstellung gewählt, die nach Meinung des Untersuchers die beste Darstellung von Uterus und Ovarien lieferte. Diese wurde als gleich bleibende Standarddarstellung am Gerät für alle weiteren Untersuchungen belassen.

Sie lautet: V53; DB 54; T 100; N+20; F-0;

Tabelle 7: Übersicht zu den technischen Parametern des verwendeten Ultraschallgerätes

<table>
<thead>
<tr>
<th>technische Parameter</th>
<th>Modulationsmöglichkeiten</th>
<th>Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verstärkung</td>
<td>anwählbar in 1dB Schritten von 0 bis 99</td>
<td>53</td>
</tr>
<tr>
<td>Dynamikbereich</td>
<td>anwählbar in Schritten von 6dB von 30 bis 72</td>
<td>54</td>
</tr>
<tr>
<td>Tiefe</td>
<td>anwählbar in 25 mm Schritten von 50 bis 150</td>
<td>100</td>
</tr>
<tr>
<td>Near</td>
<td>Gesamtverstärkung im Nahbereich bis 20 mm; anwählbar in 5er Schritten von –20 bis + 20</td>
<td>+20</td>
</tr>
<tr>
<td>Far</td>
<td>Gesamtverstärkung im Fernbereich des Bildes über 20 mm Tiefe; anwählbar in 5er Schritten von –20 bis + 20</td>
<td>0</td>
</tr>
<tr>
<td>Focuseinstellung</td>
<td>anwählbar im Bereich von 2, 4, 6, 2 und 6 cm</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbildung 11: Aufbau des verwendeten Ultraschallgerätes mit angeschlossenem Aufzeichnungsgerät

3.1.8.2 Untersuchungsintervalle

Bis zur Ovulation wurde täglich etwa im 24 Stundenrhythmus, bei beabsichtigter Tiefgefrierm-Besamung auch frequenter, in 6 bis 8 Stunden Intervallen untersucht. Als Kriterien für kürzere Untersuchungsintervalle wurden Rossedauer, Follikelgröße, palpatorischer Follikelbefund, Ausprägung der Radspeichenstruktur der Gebärmutter und falls vorhanden, Aufzeichnungen vom Rosseverlauf einer vorherigen bzw. letztjährigen Rosse herangezogen. Die Untersuchungen wurden solange durchgeführt, bis sowohl palpatorisch, als auch durch Ultraschalluntersuchung die Ovulation gesichert und das Auslaufen des Follikels bzw. ein Corpus haemorrhagicum beobachtet werden konnte. Dieser Zeitpunkt wurde als Tag eins festgehalten und die weiteren Untersuchungen, sofern die Stuten weiterhin zur Verfügung standen, im Fünftagesrhythmus fortgeführt. Insgesamt erfolgten Untersuchungen an den Tagen 1, 5, 10, 15, 20 und 35, sofern die Stuten trächtig wurden. War dies nicht der Fall und es kam zu einer erneuten Rosse ab Tag 15 wurde mit den Untersuchungen ab der Ovulation mit Untersuchungstag 1 erneut begonnen. Der Schwerpunkt der Untersuchungen lag auf den Tagen 1, 5, 10, 15, die beiden weiteren Untersuchungstage dienten vor allem der Sicherung der Trächtigkeitsergebnisse.

3.1.8.3 Untersuchungsgang

3.1.8.4 Erfassung der Befunde

Für die Dokumentation und Auswertung der erhobenen Befunde wurden die in Abbildung 12 und in den folgenden Abschnitten aufgeführten Karten bzw. Untersuchungsschlüssel verwendet.

3.1.8.4.1 Untersuchungsbogen

Für jede Stute wurden Untersuchungskarten angelegt auf denen die erhobenen Befunde dokumentiert wurden. Die Erläuterungen zum Bogen und der verwendete Untersuchungsschlüssel in Anlehnung an den „hannoveraner- Untersuchungsschlüssel“ finden sich in Abschnitt 3.1.8.4.2.

Eine Beispielkarte findet sich im Folgenden:

Abbildung 12: Kopie einer Untersuchungskarte zur Dokumentation der Befunde
3.1.8.4.2 Legende zu den Untersuchungsbögen

Erläuterungen zu den Untersuchungskarten der Stuten unter Verwendung des hannoveraner Schlüssels:

Stute: Name der Stute
Besitzer: Angabe des Besitzer- bzw. Halternamens und des Standortes

Datum: Datum der Untersuchung
Uhrzeit: Uhrzeit der Untersuchung
Uterus: Angaben nach folgendem Untersuchungsschlüssel:

- **G = Größe**
 - G1 = klein, Gebärmutterhörner etwa daumenstark
 - G2 = mittelgroß; Gebärmutterhörner etwa kinderarmstark
 - G3 = groß, Gebärmutterhörner etwa unterarmstark
 - G4 = mehr als arm- bzw. brotlaibgroß, große Kurvatur aber noch mit der Hand zu umfassen
 - G5 = große Kurvatur der Gebärmutter nicht mehr mit der Hand zu umfassen

- **S = Symmetrie**
 - As = Asymmetrie des linken oder rechten Uterushorns; je nach Grad der Asymmetrie
 - + = geringgradig, bzw. ++ = deutlich bezeichnet.
 - am linken Horn erfolgt die Angabe vor, am rechten Horn nach dem „As“

- **K = Kontraktionsbereitschaft**
 - K1 = schlaff, wenig kontraktionsbereit
 - K2 = mittlere Kontraktionsbereitschaft
 - K3 = stark und schnell kontraktionsbereit
Material und Methoden

Ovarien: L- Ovar/ R- Ovar: Angaben zum linken (L) und rechten (R) Ovar:

W = walnussgroß
H = hühnereigroß
E = enteneigroß
G = gänseeigroß
F = faustgroß

Im jeweiligen Feld daneben schematische Zeichnung des Ultraschallbildes, sowie Größenangabe evtl. ausgemessener Follikel; Angabe in Millimetern.

Follikel: in dieser Spalte wurden Angaben zu palpierbaren Follikeln notiert:

F1 = prall, ohne Fluktuation
F2 = prall, Fluktuation schon feststellbar
F3 = sehr deutliche, aber noch gespannte Fluktuation
F4 = weiche, lappige Fluktuation
F5 = knetbar, lappig – weich (frisch ausgelaufene Follikel)

RSS = Radspeichenstruktur der Uterusschleimhaut

RSS 1 = geringgradig ausgeprägt
RSS 2 = mittelgradig ausgeprägt
RSS 3 = hochgradig ausgeprägt

Im Feld Bemerkungen wurden Angaben zu äußeren Rosse, eingesetzten Medikamenten wie hcG, PGF, Durchführung von Tupferprobenentnahme, Besamungsdaten und Auffälligkeiten bei der sonographischen Untersuchung notiert.
3.1.8.5 Auswertung

Die Durchführung der Grauwertmessungen erfolgte am Notebook mit Hilfe des Computerprogramms Adobe Photoshop© 5.0.2 unter dem Windows© XP Home Betriebssystem in Anlehnung an WEHRLE (2000). Sie wurde wie folgt durchgeführt:

1. Standbilder der C. h. und C. l. in ihrer maximalen Ausdehnung wurden nach Durchsicht der digitalen Videoaufnahmen am Sony® Watchman (Typenbezeichnung: GV – 1000) erstellt.
2. Diese Standbilder wurden auf der zugehörigen Speicherkarte des Aufzeichnungsgerätes im JPEG Format abgelegt.
3. Überspielung der Bilder von der Speicherkarte auf ein Notebook, wo sie entsprechend dem Zyklusstand und Stuten eingeordnet wurden.
4. Durchführung der Grauwertmessung:

4. a. Öffnen eines gespeicherten Standbildes eines C. h. oder C. l. im Adobe Photoshop Programm.

Abbildung 13: Das Standbild des auszumessenden Funktionskörpers

Abbildung 14: Markierung der zu messenden Fläche

4. d. Übernahme der Messwerte in eine Microsoft Excel Tabelle zur statistischen Auswertung.

3.1.8.5.1 Reproduzierbarkeit der Messungen

Um die Reproduzierbarkeit der Messungen zu gewährleisten, wurde am Standbild eines zufällig ausgewählten C. l. der Vorgang des Eingrenzens und der Grauwertmessung mittels Histogrammfunktion 10 mal hintereinander wiederholt und die Messwerte in einer Tabelle aufgetragen. Die Abweichungen in der Messung für den Gesamtgelbkörper fielen mit einer Standardabweichung von maximal 0,5 bei Vergleich der zehn Messergebnisse gering aus. Statistisch konnten keine Unterschiede der Messwerte errechnet werden so dass für dieses Verfahren eine hohe Reproduzierbarkeit gegeben ist. Zusätzlich wurde auf einer angrenzenden schwarzen Fläche des Bildausschnittes die Messung wiederholt und die Standardabweichung der zehn Messungen berechnet (siehe Anhang I).
Material und Methoden

3.1.8.5.2 Definitionen von Phänomenen am Corpus luteum

Das gesamte archivierte Videomaterial an Ultraschallaufnahmen wurde gesichtet und jeder Gelbkörper in seiner Gesamtheit, also nicht an einem einzelnen Standbild beurteilt.
In Anlehnung an Beschreibungen aus der Literatur wurde retrospektiv eine differenzierte Einteilung der verschiedenen morphologischen Ausprägungen vorgenommen und die Häufigkeit des Auftretens unter Berücksichtigung des Zyklustages und des Trächtigkeitsergebnisses festgehalten.

Die Einteilung wurde wie folgt durchgeführt:

<table>
<thead>
<tr>
<th>C. l.-Typ</th>
<th>Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>auslaufender Follikel/Gelbkörperanbildung</td>
</tr>
<tr>
<td>2</td>
<td>Schichtung</td>
</tr>
<tr>
<td>3</td>
<td>Eine oder mehrere Kavernen mit Trabekeln</td>
</tr>
<tr>
<td>4</td>
<td>Eine oder mehrere Kavernen</td>
</tr>
<tr>
<td>5</td>
<td>Homogenes Gesamtbild</td>
</tr>
</tbody>
</table>

Typ 4: Der Gelbkörper weist in der Durchsicht eine oder mehrere deutliche flüssigkeitsgefüllte Kavernen auf ohne darin erkennbare Strukturen. Die Kavernen zeigen ein anechogenes Ultraschallecho.

Typ 5: Der Gelbkörper präsentierte sich in der gesamten Durchsicht als homogenes Gewebe, welches sich durchweg gut von Ovarstroma und Follikeln abgrenzen lässt.
Material und Methoden

Ultraschallbeispiele in Form von Ausschnitten der verschiedenen Funktionskörpertypen

Abbildung 16: Funktionskörper vom Typ 1

Ultraschallaufnahme eines beginnenden auslaufenden Follikels. In der Follikelhöhle sind erste echogene Strukturen zu erkennen.

Abbildung 17: Funktionskörper vom Typ 1

Ultraschallaufnahme eines frisch ausgelaufenen Follikels. In der rechten Bildhälfte ist der frische Funktionskörper zu erkennen mit Restmengen an Flüssigkeit. Links daneben ein weiterer Follikel welcher am folgenden Tag ovulierte.
Material und Methoden

Abbildung 18: Funktionskörper vom Typ 2

Gelbkörper einer Stute 10 Tage p. o.. Im Kern des Funktionskörpers befindet sich echogenes Gewebe, darunter etwas schwächer echogene Areale. Über dem Kern wirkt das Gewebe porös. Der Gelbkörper setzt sich gut vom Ovargewebe ab.

Abbildung 19: Funktionskörper vom Typ 2

Funktionskörper einer Stute 5 Tage p. o.. Im unteren Drittel besitzt der Funktionskörper homogenere Anteile, darüber schwächer echogene Anteile. Gute Abgrenzung des Funktionskörpers vom Ovargewebe durch einen feinen Saum.

Abbildung 20: Funktionskörper vom Typ 2

Gelbkörper einer Stute 15 Tage p. o.. Das gesamte C.I. besteht aus einem echogeneren runden Anteil im linken oberen Teil der Aufnahme, ein etwa ebenso schalldichter Anteil darunter an den sich rechts ein etwas schwächer echogener Kreis anschließt. Die Abgrenzung zum Ovar wird undeutlicher.
Gelbkörper 5 Tage p. o.. Er beschreibt mit seinen kompakteren, homogenen Anteilen die Form eines auf dem Kopf stehenden „L“. Der dazugehörige Teil darunter zeigt eine netzartig durchzogene Kaverne. Das C. l. läßt sich von dem wolkig wirkenden Ovargewebe abgrenzen.

Gelbkörper derselben Stute wie in Abbildung 18; 10 Tage später (= Tag 15 p. o.). Sowohl echogenere als auch kavernöse Anteile nehmen ab. Der Gelbkörper setzt sich an drei Seiten durch einen breiten anechogenen Saum vom Ovargewebe ab.

Funktionsgebilde einer Stute 5 Tage p. o.. Das Gebilde weist wabige Strukturen mit überwiegend schwach echogenen Anteilen auf. Im unteren Bereich der Struktur befinden sich kleine Areale mit höherer Echogenität.
Gelbkörper einer Stute 10 Tage p. o.. Das C. l. grenzt sich durch seine etwas schwächere Echogenität deutlich vom Ovargewebe ab. Im unteren rechten Bereich besteht eine von einem leichten Saum umrandete Kaverne. Rechts neben dem C. l. ein Follikel.

Abbildung 24: Funktionskörper vom Typ 4

Gelbkörper einer Stute 10 Tage p. o.. Kleinere anechogene Einschlüsse vorhanden. Abgrenzung zum Ovarstroma durch körnige Textur mit etwas schwächerer Echogenität möglich.

Abbildung 25: Funktionskörper vom Typ 4

Gelbkörper einer Stute 5 Tage p. o.. Andeutung einer taillierten Form mit kleineren Einschlüssen.

Abbildung 26: Funktionskörper vom Typ 4

Abbildung 27: Funktionskörper vom Typ 5

Gelbkörper derselben Stute wie in Abbildung 24; 5 Tage später (= Tag 10 p. o.). Das Gesamtbild des C. l. wirkt körnig kompakt und gut abgrenzbar. Rechts daneben zwei Follikel, welche an Größe zur Voruntersuchung gewonnen haben.

Abbildung 28: Funktionskörper vom Typ 5

Gelbkörper einer Stute 10 Tage p. o.. Säulenartige Form. Gute Abgrenzung durch angrenzende Follikel nach links und rechts, bzw. durch gleichmäßige Textur nach oben und unten vom Ovargewebe.

Abbildung 29: Funktionskörper vom Typ 5
3.1.8.5.3 Statistische Verfahren

Die im Rahmen der Grauwertmessungen gewonnenen Zentralwerte wurden erfasst und in einer Tabelle entsprechend dem Untersuchungstag übernommen. Für jede Fragestellung erfolgte eine Sortierung, Berechnung des Mittelwertes und Berechnung der Standardabweichung. Der Vergleich der Werte erfolgte mittels t-Test unter Prüfung der Signifikanz von \(P < 0,05 \) (signifikant) bzw. \(P < 0,01 \) (hochsignifikant). Alle Berechnungen wurden mit Hilfe des Programms Microsoft® Excel 2000 durchgeführt.
3.2 Ergebnisse

3.2.1 Grauwertmessung an Funktionskörpern p. o.

3.2.1.1 Alle Stuten

3.2.1.1.1 Erste erfasste Ovulation

Abbildung 30: Mittlere Grauwerte der Funktionskörper bei (n;53) Stuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35; berücksichtigt ist jeweils der erste erfasste Zyklus jeder untersuchten Stute.

Tabelle 8: Mittlere Grauwerte der Funktionskörper und deren Standardabweichung bei (n;53) Stuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35; berücksichtigt ist jeweils der erste erfasste Zyklus jeder untersuchten Stute.

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>68,04</td>
<td>71,56</td>
<td>67,25</td>
<td>64,80</td>
<td>65,09</td>
<td>64,25</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,48</td>
<td>12,07</td>
<td>12,90</td>
<td>18,99</td>
<td>15,65</td>
<td>16,53</td>
</tr>
</tbody>
</table>
3.2.1.1.2 Vergleich erster erfasster Zyklus mit allen beobachteten Zyklen

In der Auswertung wurde der erste erfasste Zyklus der Stuten (n;53) mit allen erfassten Zyklen (n;81) verglichen. Die Zentralwerte der Grauwertmessung der Funktionskörper sind in Abbildung 31 dargestellt.

Abbildung 31: Vergleich der Grauwerte von Funktionskörpern des ersten erfassten Zyklus (n;53) und aller erfasster Zyklen (n;81) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

Tabelle 9: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern des ersten erfassten Zyklus (n;53) und aller erfassten Zyklen (n;81) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Untersuchungstag</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>erster erfasster Zyklus</td>
<td>68,04</td>
<td>71,56</td>
<td>67,25</td>
<td>64,80</td>
<td>65,09</td>
<td>64,28</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,48</td>
<td>12,07</td>
<td>12,90</td>
<td>18,99</td>
<td>15,65</td>
<td>16,53</td>
</tr>
<tr>
<td>alle Zyklen</td>
<td>68,61</td>
<td>72,57</td>
<td>67,14</td>
<td>63,91</td>
<td>62,82</td>
<td>66,38</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,51</td>
<td>12,49</td>
<td>13,30</td>
<td>17,27</td>
<td>14,35</td>
<td>17,92</td>
</tr>
</tbody>
</table>

Abbildung 31 zeigt, dass der individuelle Einfluß einzelner Stuten auf die Ausprägung der Echogenität vernachlässigbar ist. Auch bei dieser Betrachtung wird der Unterschied zwischen den Grauwerten am Tag 5 und den nachfolgenden Messungen deutlich, wobei
zwischen dem ersten erfassten Zyklus und allen anderen Zyklusgruppen kein Unterschied festzustellen ist.
Die Standardabweichung der Vergleichsgruppen weist eine starke Übereinstimmung zwischen den ersten drei Untersuchungen auf. Die letzten drei Untersuchungstage zeigen geringfügig größere Differenzen.

3.2.1.2 Aufteilung nach Rassen

3.2.1.2.1 Warmblutstuten

In dieser Auswertung wurden die Grauwerte von C. h. und C. l. von (n;40) Zyklen erfasst. Die Zentralwerte der Grauwertmessung sind in Abbildung 32 dargestellt.
Ergebnisse

Abbildung 32: Mittlere Grauwerte von Funktionskörpern aller erfasster Zyklen \(n;40\) von Warmblutstuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

Tabelle 10: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern aller erfasster Zyklen \(n;40\) von Warmblutstuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>65,63</td>
<td>73,66</td>
<td>66,23</td>
<td>64,32</td>
<td>62,72</td>
<td>64,27</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,44</td>
<td>11,83</td>
<td>13,85</td>
<td>18,78</td>
<td>16,68</td>
<td>13,67</td>
</tr>
</tbody>
</table>

Die ermittelten Grauwerte der Funktionskörper weisen einen Anstieg vom Untersuchungstag 1 zum Untersuchungstag 5 auf. Im Folgenden fallen sie bis zum Untersuchungstag 20 ab. Der Funktionskörper ist mit einem Wert von 73,66 am Untersuchungstag 5 am hellsten. Der Grauwert am Tag 10 liegt geringfügig über dem vom Tag 1, die Werte der zeitlich folgenden Untersuchungen darunter. Vom Untersuchungstag 20 zu Tag 35, welcher Gelbkörper tragender Warmblutstuten erfasst, ist ein geringer Anstieg der gemessenen Grauwerte zu verzeichnen. Die ermittelten Werte zwischen den Untersuchungstagen 1 und 5 sowie 5 und 10 unterscheiden sich hochsignifikant \(P < 0,01\).
3.2.1.2.1.1 Nach erfolgreicher Belegung

In der Auswertung in Abbildung 33 sind die Grauwerte aus der Messung an Funktionskörpern p. o. nach erfolgreicher Belegung bei Warmblutstuten dargestellt.

![Grauwerte von Funktionskörpern](image)

Abbildung 33: Mittlere Grauwerte von Funktionskörpern bei gravid gewordenen Warmblutstuten (n;16) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>65,73</td>
<td>70,00</td>
<td>67,47</td>
<td>71,06</td>
<td>63,87</td>
<td>64,27</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>12,00</td>
<td>11,77</td>
<td>18,45</td>
<td>19,54</td>
<td>15,64</td>
<td>13,66</td>
</tr>
</tbody>
</table>

Tabelle 11: Übersicht der mittleren Grauwerte und Standardabweichungen von Funktionskörpern bei gravid gewordenen Warmblutstuten (n;16) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

3.2.1.2.1.2 Nach erfolgloser Belegung

Die Abbildung 34 veranschaulicht die Grauwerte von Funktionskörpern von Warmblutstuten aus Zyklen mit erfolgloser Belegung.

Abbildung 34: Mittlere Grauwerte von Funktionskörpern bei Warmblutstuten mit erfolgloser Belegung (n;22 Zyklen); an den Untersuchungstagen 1, 5, 10, 15 und 20.

Tabelle 12: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern bei Warmblutstuten mit erfolgloser Belegung; (n;22 Zyklen) an den Untersuchungstagen 1, 5, 10, 15 und 20.

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>65,45</td>
<td>76,48</td>
<td>65,32</td>
<td>57,73</td>
<td>64,43</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,63</td>
<td>11,38</td>
<td>8,72</td>
<td>16,73</td>
<td>19,46</td>
</tr>
</tbody>
</table>

Mit einem Grauwert von 76,48 ist der Gelbkörper am Untersuchungstag 5 am hellsten. Der Anstieg der Messwerte vom Tag 1 zu Tag 5 wird gefolgt von einem Abfall des Grauwertes zu Tag 10 und 15 an welchem das dunkelste Gesamterscheinungsbild vorliegt. Die mittlere Helligkeit der Gelbkörper ist an den Untersuchungstagen 1 und 10 etwa gleich, die des Untersuchungstages 20 nach einem Anstieg von Tag 15 geringfügig kleiner. Hochsignifikante Unterschiede ergeben sich bei Betrachtung der Untersuchungstage 1 gegen 5, 5 gegen 10 und 5 gegen 15 (P < 0,01).
3.2.1.2.1.3 Vergleich nach erfolgreicher bzw. erfolgloser Belegung

Tabelle 13: Vergleich der mittleren Grauwerte von Funktionskörpern bei Warmblutstuten nach erfolgreicher (n;16) bzw. erfolgloser (n;22) Belegung

<table>
<thead>
<tr>
<th>Untersuchungstag</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Belegung</td>
<td>65,73</td>
<td>70,00</td>
<td>67,47</td>
<td>71,06</td>
<td>63,87</td>
<td>64,27</td>
</tr>
<tr>
<td>erfolglose Belegung</td>
<td>65,45</td>
<td>76,48</td>
<td>65,32</td>
<td>57,73</td>
<td>64,43</td>
<td></td>
</tr>
</tbody>
</table>

3.2.1.2.2 Traberstuten

Abbildung 35: Mittlere Grauwerte von Funktionskörpern aller erfasster Zyklen (n;17) von Traberstuten an den Untersuchungstage 1, 5, 10, 15, 20 und 35

Tabelle 14: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern aller erfasster Zyklen (n;17) bei Traberstuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>72,56</td>
<td>76,07</td>
<td>71,71</td>
<td>63,53</td>
<td>65,33</td>
<td>67,50</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>12,61</td>
<td>12,38</td>
<td>12,68</td>
<td>18,80</td>
<td>12,57</td>
<td>21,95</td>
</tr>
</tbody>
</table>

3.2.1.2.2.1 Nach erfolgreicher Belegung

In Abbildung 36 sind die Grauwerte von Funktionskörpern am Ovar p. o. nach erfolgreicher Belegung bei Traberstuten aufgeführt.

Abbildung 36: Mittlere Grauwerte von Funktionskörpern bei gravid gewordenen Traberstuten (n;11) an den Untersuchungstagen 1, 5 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>70,10</td>
<td>77,11</td>
<td>72,45</td>
<td>70,36</td>
<td>67,45</td>
<td>67,50</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,54</td>
<td>10,94</td>
<td>14,99</td>
<td>20,06</td>
<td>13,98</td>
<td>21,95</td>
</tr>
</tbody>
</table>

3.2.1.2.2.2 Nach erfolgloser Belegung

In Abbildung 37 sind die Grauwerte von Funktionskörpern am Ovar in Zyklen bei Traberstuten nach erfolgloser Belegung aufgeführt.

Abbildung 37: Mittlere Grauwerte von Funktionskörpern bei Traberstuten mit erfolgloser Belegung (n;6 Zyklen) an den Untersuchungstagen 1, 5, 10, 15 und 20

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>76,67</td>
<td>74,50</td>
<td>70,33</td>
<td>51,00</td>
<td>59,50</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>6,70</td>
<td>14,14</td>
<td>6,37</td>
<td>4,51</td>
<td>3,04</td>
</tr>
</tbody>
</table>

3.2.1.2.2.3 Vergleich nach erfolgreicher bzw. erfolgloser Belegung

Tabelle 17: Vergleich der mittleren Grauwerte von Funktionskörpern bei Traberstuten nach erfolgreicher Belegung (n;11) bzw. erfolgloser Belegung (n;6)

<table>
<thead>
<tr>
<th>Untersuchungstag</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>erfolgreiche Belegung</td>
<td>70,10</td>
<td>77,11</td>
<td>72,45</td>
<td>70,36</td>
<td>67,45</td>
<td>67,50</td>
</tr>
<tr>
<td>erfolglose Belegung</td>
<td>76,67</td>
<td>74,50</td>
<td>70,33</td>
<td>51,00</td>
<td>59,50</td>
<td></td>
</tr>
</tbody>
</table>

3.2.1.2.3 Kaltblutstuten

Von den Stuten, bei denen keine Trächtigkeit erzielt wurde, konnten zwei Tiere für den Verlauf eines, und zwei Tiere für den Verlauf von zwei Zyklen zur Untersuchung herangezogen werden.

In Abbildung 38 sind die Grauwerte von Funktionskörpern von Kaltblutstuten ohne Berücksichtigung des Trächtigkeitsstatus aufgeführt.
Ergebnisse

Abbildung 38: Mittlere Grauwerte von Funktionskörpern aller erfasster Zyklen (n=25) von Kaltblutstuten an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

Tabelle 18: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern aller erfassten Zyklen von Kaltblutstuten; (n=25) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>69,38</td>
<td>67,91</td>
<td>64,88</td>
<td>62,91</td>
<td>59,30</td>
<td>69,29</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>15,27</td>
<td>12,41</td>
<td>12,50</td>
<td>12,09</td>
<td>8,65</td>
<td>18,97</td>
</tr>
</tbody>
</table>

Der durchschnittlich hellste Wert der Grauwertmessung ist bei Gelbkörper am Untersuchungstag 1 mit einem Wert von 69,38 zu beobachten. An den weiteren Untersuchungstagen erfolgt eine kontinuierliche Abnahme der Helligkeit bis zur Untersuchung am Tag 20 p. o.. Die Untersuchungen am Tag 35 erbringen Grauwerte, welche in ihrem Durchschnitt nahezu den Werten des ersten Messzeitpunktes entsprechen.
3.2.1.2.3.1 Nach erfolgreicher Belegung

Abbildung 39: Mittlere Grauwerte von Funktionskörpern bei gravid gewordenen Kaltblutstuten (n;15) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

Tabelle 19: Übersicht der mittleren Grauwerte und Standardabweichungen von Funktionskörpern bei gravid gewordenen Kaltblutstuten (n;15) an den Untersuchungstagen 1, 5, 10, 15, 20 und 35

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1 (n;15)</th>
<th>5 (n;12)</th>
<th>10 (n;14)</th>
<th>15 (n;13)</th>
<th>20 (n;8)</th>
<th>35 (n;7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>74,07</td>
<td>69,58</td>
<td>64,93</td>
<td>62,15</td>
<td>62,00</td>
<td>69,29</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,01</td>
<td>13,56</td>
<td>12,61</td>
<td>9,62</td>
<td>7,52</td>
<td>18,97</td>
</tr>
</tbody>
</table>

Eine durchschnittlich maximale Helligkeit von überprüften Strukturen ist mit einem Wert von 74,07 am Untersuchungstag 1 zu beobachten. Bis zur Untersuchung am Tag 20 nahm die Helligkeit ab. Der Wert für die durchschnittliche Helligkeit am Tag 35 lag unter den ermittelten Grauwerten der ersten beiden Untersuchungszeitpunkte. Signifikante Unterschiede ergeben sich für den Vergleich des Untersuchungstages 1 gegen die Tage 10 und 20 mit \(P < 0,05 \) bzw. Tag 15 mit \(P < 0,01 \).
3.2.1.2.3.2 Nach erfolgloser Belegung

In Abbildung 40 sind die Grauwerte für Funktionskörper bei Kaltblutstuten in Zyklen nach erfolgloser Belegung aufgeführt.

Abbildung 40: Mittlere Grauwerte von Funktionskörpern bei Kaltblutstuten mit erfolgloser Belegung (n;10) an den Untersuchungstagen 1, 5, 10, 15 und 20

Tabelle 20: Übersicht der mittleren Grauwerte und Standardabweichung von Funktionskörpern bei Kaltblutstuten mit erfolgloser Belegung; (n;10 Zyklen) an den Untersuchungstagen 1, 5, 10, 15 und 20

<table>
<thead>
<tr>
<th>Tag der Untersuchung</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grauwert (ZW)</td>
<td>61,80</td>
<td>67,20</td>
<td>65,40</td>
<td>65,13</td>
<td>48,50</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14,77</td>
<td>10,64</td>
<td>12,81</td>
<td>15,42</td>
<td>1,50</td>
</tr>
</tbody>
</table>

3.2.1.2.3.3 Vergleich nach erfolgreicher und erfolgloser Belegung

Tabelle 21: Vergleich der mittleren Grauwerte von Funktionskörpern von Kaltblutstuten mit erfolgreicher (n;15) bzw. erfolgloser Belegung (n;10)

<table>
<thead>
<tr>
<th>Untersuchungstag</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erfolgreiche Belegung</td>
<td>74,07</td>
<td>69,58</td>
<td>64,93</td>
<td>62,15</td>
<td>62,00</td>
<td>69,29</td>
</tr>
<tr>
<td>Erfolglose Belegung</td>
<td>61,80</td>
<td>67,20</td>
<td>65,40</td>
<td>65,13</td>
<td>48,50</td>
<td></td>
</tr>
</tbody>
</table>

Die Zyklen aus der Gruppe der erfolgreichen Belegungen weisen ihren hellsten Gelbkörper zum ersten Untersuchungszeitpunkt auf, während dieses bei Zyklen mit erfolgloser Belegung erst am Untersuchungstag 5 der Fall ist. Von Tag 5 zu Tag 10 nimmt der Grauwert der Gelbkörper ab, ebenso zu Tag 15, wobei die Abnahme bei Zyklen mit erfolgloser Belegung nur sehr schwach ausfällt. Am Untersuchungstag 20 findet sich jeweils der durchschnittlich dunkelste Gelbkörper wobei der Abfall der Helligkeit bei zyklischen Rossen sehr stark ausgeprägt ist. Die ermittelten Werte von Zyklen mit erfolgreicher und erfolgloser Belegung unterscheiden sich sowohl am Untersuchungstag 1 als auch am Tag 20 signifikant \(P < 0,05 \).

3.2.1.3 Vergleich der Rassen an den Untersuchungstagen

Tabelle 22: Vergleichende Darstellung der mittleren Grauwerte an den Untersuchungstagen erfolgreich belegter Stuten getrennt nach Rassen

<table>
<thead>
<tr>
<th>Stuten</th>
<th>Untersuchungstag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Warmblut</td>
<td>66,73</td>
</tr>
<tr>
<td>Traber</td>
<td>70,10</td>
</tr>
<tr>
<td>Kaltblut</td>
<td>74,07</td>
</tr>
</tbody>
</table>

Tabelle 23: Vergleichende Darstellung der Grauwerte an den Untersuchungstagen erfolglos belegter Stuten getrennt nach Rassen

<table>
<thead>
<tr>
<th>Stuten</th>
<th>Untersuchungstag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Warmblut</td>
<td>65,45</td>
</tr>
<tr>
<td>Traber</td>
<td>76,67</td>
</tr>
<tr>
<td>Kaltblut</td>
<td>61,80</td>
</tr>
</tbody>
</table>
3.2.2 Corpus luteum Typen; Tage p. o.

3.2.2.1 Auslaufende Follikel und entstehende Corpora haemorrhagica

Das Auslaufen eines Follikels konnte in dieser Arbeit insgesamt zehn Mal beobachtet werden. Je nach Untersuchungszeitpunkt lässt sich zu Beginn ein Kollabieren des Follikels beobachten was einem langsamen Verlust der Follikelflüssigkeit entspricht. Im sonographischen Bild nimmt der Restfolikel dabei eine Form an, welcher durch seinen flüssigkeitsgefüllten Anteil im Entfernten an einen Halbmond erinnert (Abbildung 42 ff.). Abbildung 41 ff. veranschaulicht die kontinuierliche Abnahme von Follikelflüssigkeit an mehreren Stellen der Follikelöhle mit einem zunehmenden Anteil an echogenen Strukturen. Diese Strukturen umschließen dabei die Flüssigkeitsreste und nehmen zusehends ihren Platz ein.

Abbildung 41 a.: Ultraschallaufnahme eines auslaufenden Follikels in der Gesamtübersicht

Abbildung 41 b.: C. h. Ausschnitt (zentraler Schnitt); in der schematischen Darstellung ist die undeutliche Abgrenzung der Flüssigkeitslakune insbesondere im linken Randbereich (wenig organisiert) dargestellt
Abbildung 41 c.: C. h. Ausschnitt (leicht versetzter Schnitt); größte Ausdehnung und beginnendes Zusammenfließen der Flüssigkeitslakunen (Organisation wird deutlicher)

Abbildung 41 d.: C. h. Ausschnitt. Die Flüssigkeitslakune (leicht versetzter Schnitt) verändert ihre Form und Ausdehnung (eindeutige Abgrenzung und Organisation)
Abbildung 41 e.: C. h. Ausschnitt. Abnehmende Flüssigkeitslakunen; Organisation der Randbereiche deutlicher ausgeprägt

Abbildung 42 a.: Ultraschallaufnahme eines auslaufenden Follikels in der Gesamtübersicht
Abbildung 42 b.: C. h. Ausschnitt (zentraler Schnitt); etwas undeutlicher Kontrast (wenig organisierte Bezirke)

Abbildung 42 c.: C. h. Ausschnitt (zentraler Schnitt); beginnende Organisation

Abbildung 42 d.: C. h. Ausschnitt (1. randständige Ebene); deutlich organisierter
In Abschnitt 3.1.8.5.2. sind verschiedene Formen von Gelbkörpern aufgeführt und beschrieben. Entsprechend ihrer Homogenität wurden die Corpus luteum Typen 1 – 5 in folgenden Häufigkeiten beobachtet:

3.2.2.2 Corpus luteum Typen an den Tagen 10 und 15 post ovulationem in Abhängigkeit vom Trächtigkeitsergebnis

Abbildung 42 e.: C. h. Ausschnitt (2. randständige Ebene); eindeutige Zerklüftung durch Gewebsbildung

Abbildung 43: Prozentuale Verteilung verschiedener Gelbkörperstrukturen am Untersuchungstag 10; (n;82)
Ergebnisse

Tabelle 24: Verteilungsmuster der verschiedenen Gelbkörper (n;82) am Untersuchungstag 10 unter Berücksichtigung der Trächtigkeitsergebnisse

<table>
<thead>
<tr>
<th>Typ</th>
<th>Anzahl</th>
<th>Treibend</th>
<th>Träg</th>
<th>Nicht Treibend</th>
<th>Nicht tragend</th>
<th>Resorbiert</th>
<th>% Treibend</th>
<th>% Träg</th>
<th>% Nicht Treibend</th>
<th>% Nicht tragend</th>
<th>% Resorbiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 2</td>
<td>3</td>
<td>1</td>
<td>33,3</td>
<td>2</td>
<td>66,7</td>
<td>0</td>
<td>33,3</td>
<td>66,7</td>
<td>0</td>
<td>66,7</td>
<td>0</td>
</tr>
<tr>
<td>Typ 3</td>
<td>18</td>
<td>5</td>
<td>27,8</td>
<td>11</td>
<td>61,1</td>
<td>2</td>
<td>27,8</td>
<td>61,1</td>
<td>11</td>
<td>61,1</td>
<td>2</td>
</tr>
<tr>
<td>Typ 4</td>
<td>47</td>
<td>24</td>
<td>51,1</td>
<td>21</td>
<td>44,7</td>
<td>2</td>
<td>24,7</td>
<td>44,7</td>
<td>44,7</td>
<td>44,7</td>
<td>2</td>
</tr>
<tr>
<td>Typ 5</td>
<td>14</td>
<td>10</td>
<td>71,4</td>
<td>4</td>
<td>28,6</td>
<td>0</td>
<td>71,4</td>
<td>28,6</td>
<td>0</td>
<td>28,6</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbildung 44: Prozentuale Verteilung verschiedener Gelbkörperstrukturen am Untersuchungstag 15; (n;73)

Tabelle 25: Verteilungsmuster der verschiedenen Gelbkörper (n;73) am Untersuchungstag 15 unter Berücksichtigung der Trächtigkeitsergebnisse

<table>
<thead>
<tr>
<th>Typ</th>
<th>Anzahl</th>
<th>Treibend</th>
<th>Treibend</th>
<th>Nicht Treibend</th>
<th>Nicht tragend</th>
<th>Resorbiert</th>
<th>% Treibend</th>
<th>% Träg</th>
<th>% Nicht Treibend</th>
<th>% Nicht tragend</th>
<th>% Resorbiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ 2</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>3</td>
<td>75</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>Typ 3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>80</td>
<td>1</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>Typ 4</td>
<td>48</td>
<td>23</td>
<td>47,9</td>
<td>23</td>
<td>47,9</td>
<td>2</td>
<td>23</td>
<td>47,9</td>
<td>2</td>
<td>47,9</td>
<td>2</td>
</tr>
<tr>
<td>Typ 5</td>
<td>16</td>
<td>14</td>
<td>87,5</td>
<td>1</td>
<td>6,25</td>
<td>1</td>
<td>14</td>
<td>87,5</td>
<td>1</td>
<td>6,25</td>
<td>1</td>
</tr>
</tbody>
</table>

Sowohl am Tag 10 als auch am Tag 15 des Zyklus bildet der Gelbkörper vom Typ 4 den am häufigsten gefundenen Anteil, gefolgt von Typ 5. Vergleicht man das Vorkommen der verschiedenen Strukturtypen mit den Trächtigkeitsergebnissen, findet man für Gelbkörper mit Kavernen (Typ 4) an beiden Tagen ausgeglichene Trächtigkeitsraten, für homogene Gelbkörper (Typ 5) sehr hohe Konzeptionsraten. Der Anteil an Corpora lutea mit Kavernen...
und Trabekeln (Typ 3) nimmt von Tag 10 zu Tag 15 ab und weist ebenso wie C. l. mit geschichtetem Erscheinungsbild (Typ 2) sehr geringe Konzeptionsraten auf.

3.2.2.3 Unterschiede im Ultraschallbild von Corpus haemorrhagicum und Corpus luteum während des Zyklus

Anhand ihres sonographischen Erscheinungsbildes lassen sich Corpora haemorrhagica und Corpora lutea von Stuten unterscheiden. Diese Differenzierungsmöglichkeiten ergeben sich aus der Echogenität, Form, Beschaffenheit, Lage und Größe des Funktionskörpers.

3.2.2.3.1 Corpus haemorrhagicum und Corpus luteum bei gravid gewordenen Stuten

Der Gelbkörper unterliegt von seiner Anbildung an für den Untersucher ersichtlichen Veränderungen im Ultraschall. Unmittelbar nach der Ovulation erscheint der Funktionskörper für den Untersucher stark echogen und in verschiedenem Maße organisiert. Das frisch entstandene Corpus füllt die Ovulationsgrube aus und liegt am Ovarrand. Im Verlaufe des Zyklus nimmt der Organisationsgrad des Funktionskörpers zu, die Größe nimmt im Vergleich zur Untersuchung des Ovulationszeitpunktes leicht ab.

3.2.2.3.2 Corpus haemorrhagicum und Corpus luteum bei zyklinen Stuten

Ergebnisse

<table>
<thead>
<tr>
<th>Untersuchungstag</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erscheinungsbild des Funktionskörpers im Ultraschall</td>
<td>je nach Organisationsgrad einheitlich oder inhomogene Erscheinung mit dichten und lockeren Arealen; Einschluss von Flüssigkeit</td>
<td>homogenes Erscheinungsbild als am Tag 1 je nach Organisationsgrad; vollständig homogen oder gut abgegrenzte Kavernen</td>
<td>homogenes Erscheinungsbild; Gelbkörper dadurch gut abgrenzbar; Schnitflächen im Ultraschall mit leicht porösem Charakter</td>
</tr>
<tr>
<td>Lage und Größe des Funktionskörpers</td>
<td>vollständige Ausfüllung der Ovulationsgrube</td>
<td>weiter vom Ovarrand entfernt Grösse: etwas geringer als Tag 1 im Ovarstroma; Grösse: gleich oder etwas kleiner als Tag 5; Einschnürung durch angrenzende Follikel</td>
<td></td>
</tr>
<tr>
<td>Klinische Bewertung des Untersuchers</td>
<td>stark echogen</td>
<td>stark echogen</td>
<td>schwächer echogen</td>
</tr>
<tr>
<td>Funktion</td>
<td>Ovation; Gelbkörper-anbildung</td>
<td>Organisation von Gelbkörpergewebe; Übernahme der Funktion einer endokrinen Drüse</td>
<td>Funktion als endokrine Drüse</td>
</tr>
<tr>
<td>Untersuchungstag</td>
<td>gravide Stuten</td>
<td>zyklische Stuten</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Erscheinungsbild des Funktionskörpers im Ultraschall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>homogenes Erscheinungsbild Gelbkörper z. T. mit unregelmäßiger Form, bedingt durch angrenzende Follikel</td>
<td>homogenes, z. T. etwas geschichtet wirkendes Erscheinungsbild: kompakte Form mit untere große, angrenzende Follikel</td>
<td>schwächer echogenes kompaktes Erscheinungsbild oder z. T. wie am Tag 1</td>
</tr>
<tr>
<td></td>
<td>Lage und Größe des Funktionskörpers</td>
<td>im Ovarstroma; Größe: wiederum gleich oder etwas kleiner als Tag 10</td>
<td>im Ovarstroma</td>
</tr>
<tr>
<td></td>
<td>Klinische Bewertung des Untersuchers</td>
<td>schwächer echogen</td>
<td>wieder etwas stärker echogen</td>
</tr>
<tr>
<td></td>
<td>Funktion</td>
<td>Funktion als endokrine Drüse</td>
<td>Funktion als endokrine Drüse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Diskussion

Zu den nicht trächtig gewordenen Stuten gehörten überwiegend Tiere, welche erst gegen Ende der Zuchtsaison abgefohlt hatten und nur noch ein Zuchtversuch in der laufenden Saison unternommen wurde sowie Stuten, welche auch in der vorangegangenen Zuchtsaison güst geblieben waren.

Für die Durchführung der Untersuchungen wurde ein tragbares Ultraschallgerät mit einem 5 MHz Schallkopf verwendet. Für eine vergleichende Untersuchung war es notwendig, eine gleich bleibende Standardinstellation festzulegen. Dieses war insbesondere im Hinblick auf die Grauwertuntersuchung notwendig, um Veränderungen in der Helligkeit durch das Ultraschallgerät auszuschließen, welche zu nicht vergleichbaren Messwerten in der computergestützten Auswertung führen würden (PIERSON und GINTHER, 1985; HERMES, 1997).

Das mitgeführte tragbare Aufzeichnungsgerät ermöglichte eine einfache Aufzeichnung des Ultraschalluntersuchungsverfahrens über eine Kabelverbindung mit dem Videoausgang des Ultraschallgerätes. Eine Abspeicherung der später ausgewählten Bilder erfolgte im JPEG
Format mittels der integrierten Speicherkarte und stand dadurch für die Computer gestützte Auswertung zur Verfügung.

Im folgenden Abschnitt sollen die Messwerte von Funktionskörpern des jeweils ersten erfassten Zyklus pro Tier diskutiert werden.

Im folgenden Abschnitt sollen die Ergebnisse der Grauwertentwicklung der Funktionskörper in Abfolge des Untersuchungsschemas, getrennt nach Pferderassen und mit und ohne Berücksichtigung des Trächtigkeitsstatus diskutiert werden. TOWNSON und GINTHER (1989a und b) fanden Unterschiede zwischen amerikanische Quarter Horse- und Appaloosasstuten am Tag 1 und 2 des Zyklus, konnten jedoch keine Erklärung dafür geben. Mit der Trennung nach Rassen, der Betrachtung unabhängig und abhängig vom Trächtigkeitsergebnis sollte geprüft werden, ob Übereinstimmungen vorhanden sind oder rassespezifische Unterschiede festgestellt werden können.

Bei der Betrachtung der mittleren Grauwertentwicklung von Untersuchungstag 10 zu 15 weisen die Funktionskörper der Stuten aller drei Rassen ohne Berücksichtigung des Trächtigkeitsergebnisses einen Abfall in ihrer Entwicklung auf. Abweichend davon verhalten sich die Grauwerte von erfolgreich belegten Warmblutstuten, die einen Anstieg zu verzeichnen haben.

Grauwerte stark ab. BOLLWEIN et al. (2002) stellten in ihren Untersuchungen fest, dass ein Nachweis des Blutflusses mittels Doppler am C. l. bei zyklischen Traberstuten bis etwa zum 15., bisweilen 17. Tag und in einem Fall bis zum Tag 19 des Zyklus möglich ist. Das C. l. war noch bis zu drei Tage vor der folgenden Ovulation darstellbar. Das Versiegen des Blutflusses in diesem Bereich fällt in etwa gleichzeitig mit einer starken Abnahme der Grauwerte an C. l. dieser Studie am Tag 15 zyklischer Traberstuten zusammen, ist aber ebenso bei zyklischen Warm- und Kaltblutstuten zu beobachten und kann als ein Zeichen der laufenden Luteolyse gewertet werden.

Der starke Anstieg der mittleren Grauwerte der Funktionskörper bei Kaltblutstuten wirft die Frage auf, ob es sich hierbei um weitere Strukturveränderungen am C. l. handelt, oder ob es sich wie bei GLATZEL (1997) beschrieben, um Corpora auxillaria handelt. Diese werden bereits um den 40. Trächtigkeitstag zur Ablösung des primären C. l. gebildet und sind befähigt Progesteron zur Aufrechterhaltung der Trächtigkeit zu sezernieren.

Diskussion

Die subjektive Betrachtung des Funktionskörpers am Ovar p. o. im Ultraschall beschränkt sich häufig nur auf Feststellung des Vorhandenseins eines Gelbkörpers, evtl. noch seiner Größe und Form. Betrachtet man diesen jedoch eingehender, lassen sich Unterschiede feststellen wie sie in Abschnitt 3.1.8.5.2 beschrieben sind. Im Folgenden sollen die Beobachtungen entsprechend des Zyklusverlaufes der Stute beginnend mit der Ovulation
Diskussion

1. keine sonographisch feststellbare Follikelflüssigkeit in der Ovulationsgrube,
2. der Anteil an Follikelflüssigkeit sinkt während der Untersuchung unter 5 % der Fläche der Ovulationsgrube, und
3. den Zeitraum einer 5-minütigen Untersuchung nach Feststellung der Kriterien 1 und 2, in der kein zusätzlicher Flüssigkeitsverlust beobachtet werden kann.

auszuschließen, dass dieser Vorgang bei der Beobachtung durch den Druck der Ultraschallsonde beschleunigt wird.

Für die praktische Anwendung bedeutet dies, dass sich der Untersucher zur Erkennung eines frischen Gelbkörpers sowohl der Merkmale eines C. h. mit Einschlüssen von Restflüssigkeit, als auch der eines homogenen und hyperechogenen C. l. bewusst sein muss.

bzw. 19 post partum und anschließender Ovulationsinduktion mit Follikelkontrollen im sechsstündigen Abstand eine Trächtigkeitsrate von 73,6 %.

Bei der gynäkologischen Untersuchung von Stuten in der Praxis beschränkt sich das Interesse der Tierbesitzer häufig lediglich auf die Frage, ob die Stute in Rosse, eine Rosse zu erwarten oder aber trächtig ist. Während sich die erste Frage mitunter schon durch das Verhalten der Stute oder durch palpatorische und sonographische Untersuchungen abklären lässt, sind die übrigen Fragen mitunter schwieriger zu klären. Mit der sonographisch erhobenen Diagnose „Gelbkörper vorhanden“, kann nur eine derzeitige Rosse mit zusätzlich erhobenen Befunden wie Verhalten am Hengst und Uterusbefunden ausgeschlossen

Die Feststellung zweier Gelbkörper auf beiden Ovarien einer Stute gibt Hinweise auf eine stattgefundene Doppelovulation, welche aufgrund eines weiten zeitlichen Abstandes unbemerkt geblieben sein kann. In diesem Falle ist besonders gründlich nach einem zweiten Embryo zu suchen, der je nach Ovulationsabstand erheblich kleiner als der erste sein und sich bei frühzeitiger Trächtigkeitsuntersuchung der Beobachtung entziehen kann.
5 Zusammenfassung

Zur Charakterisierung sonographischer Befunde am Corpus haemorrhagicum und Corpus luteum der Stute

In der vorliegenden Arbeit sollte geprüft werden, ob sich die Umbauprozesse im Gelbkörper sonographisch darstellen lassen und dem entsprechenden Zyklusstand zuzuordnen sind. Weiterhin sollte geprüft werden, ob eine Objektivierung sonographisch erhobener Befunde an Corpora lutea mittels einer Graustufenmessung möglich ist und sich hierdurch verwertbare Daten für eine verbesserte Zyklusdiagnostik gewinnen lassen.

Die sonographisch erhobenen Befunde wurden mittels eines digitalen Aufzeichnungsgerätes archiviert und zur subjektiven Beurteilung und objektiven Auswertung mittels Grauwertmessung auf einen PC übernommen.
Zusammenfassung

Die subjektive Beurteilung ergab folgende Ergebnisse:

1. Das Auslaufen von Follikeln lässt sich ultrasonographisch gut darstellen und ermöglicht die Sicherung der Diagnose bei unsicherem palpatorischen Befund. Das frisch entstandene Corpus haemorrhagicum und Corpus luteum lässt sich sicher identifizieren, insbesondere wenn eine klare Dokumentation vorher erhobener Befunde stattgefunden hat.

Die objektive Auswertung mittels Grauwertmessung ergab folgende Ergebnisse:

1. Eine Grauwertmessung am Corpus luteum ist bei sicherer Identifizierung des Gelbkörpers möglich.

2. Die Grauwertmessung ermöglicht die Beobachtung der Grauwertentwicklung am equinen Corpus luteum. Für eine Stutenpopulation lassen sich Veränderungen der Grauwerte am Gelbkörper darstellen. Einzelwerte eines einzelnen Tieres lassen sich nicht einem bestimmten Zyklusstand oder Ereignis zuordnen.

6 Summary

The characterisation of sonographic findings at the corpus haemorrhagicum and corpus luteum of the mare

The anatomical location of the mare’s corpus luteum prevents manual examination and therefore makes it impossible to assess it via transrectal palpation. Merely the corpus haemorrhagicum is located in the fossa ovarica initially, but due to its soft consistency it might mistakenly be identified as preovulatoric follicle.

Consequently a dominant but non-ovulatoric follicle of the first wave of follicular growth is frequently exploited unsuccessfully for artificial insemination, because of not diagnosing an existing corpus luteum. The sonographic examination of the equine ovaries enhances the reliability of the examination and diagnoses. Corpora lutea can be detected in most instances by ultrasonic imaging of the oestrus cycle of the mare.

The purpose of this study was to examine if the conversion-processes of the corpora lutea can be detected and assigned to the corresponding stages of oestrus cycle by ultrasonic imaging. Furthermore it should have been checked if it is possible to objectify ultrasonic images of corpora lutea by grey scale measurement and if usable data for an enhanced cycle diagnosis can be obtained from this technique.

For the realisation of this work were 53 mares of warmblood breed, heavy draught breed and trotter horses available. The mares were examined every five days from ovulation on. If case of gravidity having been diagnosed on examination day 15 or 20, a further examination followed in order to confirm the result on day 35 after ovulation. When no gravidity had been detected, the mares have been included in the investigations again at the time a new oestrus cycle startet.

The results from the ultrasonic imaging have been recorded on a digital videotape recorder and stored on a personal computer for a subjective assessment and objective evaluation.
The subjective assessment concluded following results:

1. The follicle can be well displayed by ultrasonic imaging at the time of ovulation, allowing to make reliable diagnosis when palpatoric results are indistinct. A newly developed corpus haemorrhagicum and corpus luteum can be easily identified, especially if good documentations on former findings are at hand.

2. Depending on the length of oestrus cycle and the season signs of a beginning luteolysis can be recognized by ultrasonic imaging. It is a very helpful method to find signs for a newly expected oestrus cycle.

3. The images of corpora lutea contain a high variability. Throughout the oestrus cycle heavy deviations can be detected. To get revealing information about the correlation between the sonographic image and the functional characteristics, additional research will have to be done.

The objective evaluation by grey scale measurement gave following results:

1. A grey scale measurement can be conducted if the corpus luteum has been definitively identified.

2. The grey scale measurement allows to make observations of the grey scale value development of the equine corpus luteum. The differences in the grey scale value of corpora lutea can be detected for a mare population. Single values of each animal can not be related to a distinct state or event in the oestrus cycle.

3. Compared to formerly taken measurements at the expected time of luteolysis an intense decrease in the grey scale value can be seen as a sign for the regression of a corpus luteum. This decrease often corresponds to a change in the ultrasonographic image of a corpus luteum.

4. The results, classified into the various breeds, indicate a similar trend in the grey scale measurement of the corpus luteum. However, differences between the breeds do occur once in a while, especially concerning the values of the heavy draught.
Anhang

Anhang I

Messdaten zur Reproduzierbarkeit an einem Gelbkörper bei zehnmaliger Messung

<table>
<thead>
<tr>
<th>Gesamtgelbkörper</th>
<th>Zusatzmessung auf schwarzem Untergrund</th>
<th>MW</th>
<th>AW</th>
<th>ZW *</th>
<th>Pixel</th>
<th>MW</th>
<th>AW</th>
<th>ZW *</th>
<th>Pixel</th>
<th>MW</th>
<th>AW</th>
<th>ZW *</th>
<th>Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>73,27</td>
<td>73</td>
<td>19,41</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>73,41</td>
<td>73</td>
<td>19,15</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>73,77</td>
<td>74</td>
<td>19,07</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
</tr>
<tr>
<td>73,99</td>
<td>74</td>
<td>18,94</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,55</td>
<td>0,7</td>
</tr>
<tr>
<td>73,97</td>
<td>74</td>
<td>19,43</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>73,95</td>
<td>74</td>
<td>19,36</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>74,82</td>
<td>74</td>
<td>19,26</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>74,73</td>
<td>74</td>
<td>19,21</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>74,69</td>
<td>74</td>
<td>19,31</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>74,31</td>
<td>74</td>
<td>19,12</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
<tr>
<td>74,45</td>
<td>74</td>
<td>19,00</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
<td>30</td>
<td>5930</td>
<td>29,54</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Mittelwert

<table>
<thead>
<tr>
<th>MW</th>
<th>AW</th>
<th>ZW *</th>
</tr>
</thead>
<tbody>
<tr>
<td>74,04</td>
<td>19,19</td>
<td>5930</td>
</tr>
</tbody>
</table>

Standardabweichung

<table>
<thead>
<tr>
<th>MW</th>
<th>AW</th>
<th>ZW *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,494</td>
<td>0,157</td>
<td>334,117</td>
</tr>
</tbody>
</table>

*) in keiner der Messung für den Zentralwert (ZW) waren statistisch Unterschiede zu errechnen (t-test).
Anhang II
Stutenverzeichnis

<table>
<thead>
<tr>
<th>Stutennummer</th>
<th>Rasse</th>
<th>Betrieb</th>
<th>Alter in Jahren</th>
<th>erbrachte Fohlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Warmblut</td>
<td>G</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Traber</td>
<td>C</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Traber</td>
<td>C</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Traber</td>
<td>C</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Warmblut</td>
<td>A</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Warmblut</td>
<td>E</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Traber</td>
<td>C</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Traber</td>
<td>C</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Warmblut</td>
<td>A</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Kaltblut</td>
<td>D</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Warmblut</td>
<td>A</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Traber</td>
<td>C</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Traber</td>
<td>C</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Warmblut</td>
<td>H</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Warmblut</td>
<td>A</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>Warmblut</td>
<td>F</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Warmblut</td>
<td>F</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Warmblut</td>
<td>A</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Warmblut</td>
<td>A</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>Kaltblut</td>
<td>B</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>Warmblut</td>
<td>E</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Kaltblut</td>
<td>D</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>Warmblut</td>
<td>A</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>Kaltblut</td>
<td>D</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Warmblut</td>
<td>E</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>Kaltblut</td>
<td>D</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>Traber</td>
<td>C</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>Kaltblut</td>
<td>D</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>Warmblut</td>
<td>A</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>Traber</td>
<td>C</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Kaltblut</td>
<td>D</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>Warmblut</td>
<td>A</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Warmblut</td>
<td>A</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>Warmblut</td>
<td>A</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>Kaltblut</td>
<td>D</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Traber</td>
<td>C</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>Traber</td>
<td>C</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>Warmblut</td>
<td>A</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Warmblut</td>
<td>A</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Nr.</td>
<td>Art der Pferde</td>
<td>Name</td>
<td>Alter</td>
<td>Geschlecht</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>40</td>
<td>Warmblut</td>
<td>A</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Kaltblut</td>
<td>D</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>Kaltblut</td>
<td>D</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Warmblut</td>
<td>H</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Kaltblut</td>
<td>D</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>Kaltblut</td>
<td>D</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>Kaltblut</td>
<td>D</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>Traber</td>
<td>C</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>Kaltblut</td>
<td>D</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Kaltblut</td>
<td>D</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>Kaltblut</td>
<td>D</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>Kaltblut</td>
<td>D</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>Kaltblut</td>
<td>D</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>Warmblut</td>
<td>G</td>
<td>20</td>
<td>8</td>
</tr>
</tbody>
</table>
8 Literaturverzeichnis

Ultrasonic appearance of the equine corpus haemorrhagicum
Veterinary Record 121, 422-423

AURICH, Chr.; AURICH, J.E.; KLUG, E. (1993a)
Möglichkeiten der Zyklussteuerung beim Pferd
Der praktische Tierarzt 11/1993, 1001-1008

AURICH, Chr., KLUG, E. (1993b)
Endokrinologie des Sexualzyklus beim Pferd
Der praktische Tierarzt 10/1993, 889-895

Äussere Rosse, Befruchtung, Plazentation, Trächtigkeitsstadien und Geburt
In: Wissdorf, H., Gerhards, H., Huskamp, B., Deegen, E. (Hrsg.)
Praxisorientierte Anatomie und Propädeutik des Pferdes, 2. Auflage
Verlag M.& H. Schaper Alfeld – Hannover, Kapitel 16, 773-796

Weibliche Geschlechtsorgane, Milchdrüse und Harnröhre
In: Wissdorf, H., Gerhards, H., Huskamp, B., Deegen, E. (Hrsg.)
Praxisorientierte Anatomie und Propädeutik des Pferdes, 2. Auflage
Verlag M.& H. Schaper Alfeld – Hannover, Kapitel 15, 745-771

BECKER, F.; KANITZ, W.; SCHNEIDER, F. (1994)
Ultrasonographische Untersuchungen zur Follikeldynamik im Zyklus der Stute
Reprod. Dom. Anim. 29, 130

Klinische, mikrobiologische und hormonanalytische Untersuchungen im Puerperium der Stute im Hinblick auf die Fertilität in der folgenden Rosse
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 1773
Luteal blood flow during the estrous cycle in mares
Theriogenology 57, 2043-2051

Untersuchungen am Skrotum, Testis, Epididymis und Plexus pampiniformis mit Hilfe
sonographischer und histopathologischer Nachweismethoden
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 1766

Fortpflanzungsstörungen bei der Stute und Krankheiten der weiblichen Geschlechtsorgane
In: Dietz, O.; Huskamp, B.; Handbuch Pferdepraxis
2. Auflage, Ferdinand Enke Verlag, Kapitel 31, 567-599

ENGLAND, G. (1992)
Allen´s Fertility and Obstetrics in the Horse; Second Edition
Blackwell Science

GINThER, O.J. (1988)
Ultrasonic imaging of equine ovarian follicles and corpora lutea
Vet Clin North Am Equine Pract. 4, 197-213

GINThER, O.J.; PIERSON, R.A. (1984a)
Ultrasonic anatomy of equine ovaries
Theriogenology, 21, 471-483

GINThER, O.J.; PIERSON, R.A. (1984b)
Ultrasonic anatomy and pathology of the equine uterus
Theriogenology, 21, 505-516

Einführung in die sonographische Diagnostik
In: Ultraschalldiagnostik in der Veterinärmedizin
Tierärztl. Prax. 1993; Sonderheft: 3-19
GLATZEL, P. (1997)
Fertilität und Fertilitätsstörungen der Stute
In: Wintzer, H.J. (Hrsg.) Krankheiten des Pferdes; 2., vollständig überarbeitete Auflage
Parey Buchverlag Berlin, 259-291

Fruchtbarkeit bei Stuten bei gestörtem bzw. ungestörtem Puerperium; Aussagekraft
klinischer, mikrobiologischer und hormonanalytischer Untersuchungen

Zur Anwendung der Sonographie in der andrologischen Diagnostik beim Bullen,
pathologische Veränderungen und verfälschende Artefakte

GLATZEL, P.S., HOUSSAIN EL. K., TIBARY (1981)
Pferde- und Eselhengste der marokkanischen Landespferde- und Maultierzucht, erste
Ergebnisse aus dem Einsatz von Flüssig- und Gefriersamen für die Maultierproduktion

GLATZEL, P., HOUSSAIN EL. K., TIBARY (1983)
Breeding of horses and mules in Morocco and investigations about fluid and frozen semen

Computergestützte Graustufenanalyse sonographischer Befunde des Hodengewebes beim
Bullen
Hannover, Tierärzt. Hochschule, Dissertation

HERMES, R. (1997)
Sonographie der Trächtigkeit beim europäischen Reh (Capreolus capreolus) und
Quantifizierung endometrialer Veränderungen während der Diapause mittels
computergestützter Graustufenanalyse
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 2151
Ultrasonographische Untersuchung von Hoden und Prostata des Hundes unter besonderer Berücksichtigung der Graustufenanalyse
Hannover, Tierärzt. Hochschule, Dissertation

HOHENHAUS, M.U.; LEHMANN, B. (1990)
Ovaraufbau und Funktion bei der Stute aus klinischer Sicht unter besonderer Berücksichtigung der Ultrasonographie
Tierärztl. Prax. 18, 155-163

Transvaginale Ultraschalluntersuchungen des bovinen Corpus luteum: Beziehungen zwischen sonographischem Befund und Funktionszustand sowie Lage von Graaf'schem Follikel und daraus resultierendem Gelbkörper
Hannover, Tierärzt. Hochschule, Dissertation

Die Ultraschalldiagnostik bei der Stute
In: Atlas und Lehrbuch der Ultraschalldiagnostik
Schlütersche, 11-80

Die Ultraschalldiagnostik (Echographie) in der gynäkologischen Untersuchung der Stute
Tierärztl. Prax. 12, 203-210

Echographische Befunde an Ovarien von Stuten
Tierärztl. Umschau 42, 257-266

In-vitro-Untersuchungen zur Beziehung von sonomorphologischen, makro- und mikroskopischen sowie endokrinologischen Befunden am bovinen Corpus luteum
Hannover, Tierärzt. Hochschule, Dissertation
Charakterisierung biologischer Grundlagen für die Entwicklung einer neuen Reproduktionstechnik -In-vitro-Embryonenerzeugung- beim Pferd (Equus Przewalskii Caballus)
Berlin, Fachbereich Veterinärmedizin, Habil. - Schr. 2001

KLUG, E. (1999)
Tierärztliche Zucht- und Gestütsbetreuung
In: Dietz, O.; Huskamp, B.; Handbuch Pferdepraxis
2. Auflage, Ferdinand Enke Verlag, Kapitel 32, 601-606

Untersuchung zur diagnostischen Terminierung des Ovulationszeitpunktes bei der Stute
Der praktische Tierarzt 1/1987, 28-32

Geschlechtszyklus der Stute Wissenswertes für die Praxis
collegium veterinarium XXVI, 73-75

Ovulationsinduktion bei der Stute
Tierärztl. Prax., 357-361

Zur Versorgung des frischen unvollständigen Dammrißes bei der Stute und die Auswirkungen auf die nachfolgende Zuchtnutzung.
2. Giessener Neonatologische Tagung, 29. Oktober 1999

Klinische Aspekte der Ovarfunktion und ihrer Störungen bei der Stute
Tierärztl. Umschau 47, 63-66

Funktionelle Histologie der Haussäugetiere
In: Weibliche Geschlechtsorgane (Organa genitalia feminina)
3. Auflage, Schattauer, 282-302
MONTAVON, S. (1994)
Ultrasonography of the formation and development of the corpus luteum in the mare: review for the practitioner
Schweiz. Arch. Tierheilkd. 136, 91-94

PANTKE, K.H.P. (1990)
Charakterisierung von Sekretionsrhythmen der Gonadotropine in der venösen Drainage der Hypophyse bei der Stute
Hannover, Tierärztl. Hochschule, Dissertation

POULSEN NAUTRUP, C. (2000a)
Physikalische Grundlagen
In: Poulsen Nautrup, C. und Tobias, R. (Hrsg.)
Atlas und Lehrbuch der Ultraschalldiagnostik bei Hund und Katze
3. unveränderte Auflage; Schlütersche, 21-30

POULSEN NAUTRUP, C. (2000b)
Technische Grundlagen
In: Poulsen Nautrup, C. und Tobias, R. (Hrsg.)
Atlas und Lehrbuch der Ultraschalldiagnostik bei Hund und Katze
3. unveränderte Auflage; Schlütersche, 31-59

PIERSON, R.A.; GINTHER, O.J. (1985)
Ultrasonic evaluation of the corpus luteum of the mare
Theriogenology, Vol. 23, 795-806

Correlation of plasma concentrations of progesterone and oestradiol with ultrasound characteristics of the uterus and duration of oestrus behaviour in the cycling mare
Reprod. Dom. Anim. 30, 224-227

Untersuchungen zu den Verschlussverhältnissen im kaudalen Genitalkanal der Stute
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 2542
Oxytocin concentrations in peripheral blood during the oestrus cycle and after ovariectomy in two breeds of sheep with low and high fecundity
J. Endocrinol., 92; 9-13

Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates
Journal of Reproduction and Fertility 109, 35-44

TOWNSON, D.H.; GINTHER, O.J. (1989a)
Ultrasonic echogenicity of developing corpora lutea in pony mares

TOWNSON, D.H.; GINTHER, O.J. (1989b)
Size and shape changes in the preovulatory follicle in mares based on digital analysis of ultrasonic images
Anim. Reprod. Sci. 21, 63-71

VON RENTELN, M.C. (2001)
Zur Anwendung der künstlichen Besamung nach hormonell induzierter Rosse am Tag 18-19 post partum und gezielter Ovulationsauslösung bei der Stute
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 2547

Control of follicular development and luteal function in the mare: effects of a GnRH antagonist
Theriogenology 54, 599-609

Überprüfung von Proteinen aus bovinem Seminalplasma und der Spermienmembran mit Hilfe der 2-D-Gelelektrophorese und ihrer Beziehung zur Fruchtbarkeit
Berlin, Fachbereich Veterinärmedizin, Dissertation, J-Nr.: 2430
Danksagung

Herrn Prof. Dr. Dr. P. S. Glatzel möchte ich recht herzlich für die Überlassung des Themas, seinen fachlichen Rat und Durchsicht der Arbeit danken.

Mein Dank gilt Herrn Sönke von Fehrn und Dr. André Lange für die Unterstützung und Möglichkeit zur Durchführung des Dissertationsvorhabens. Vielen Dank für die geduldigen Erklärungen und jederzeit freundliche Bereitschaft zur Hilfe und Durchsicht der Arbeit.

Für ein stets offenes Ohr und die Unterstützung möchte ich mich bei Frau Elke Lange, Frau Dr. Sonja von Fehrn, Frau Katharina Mees, Herrn Claus von Fehrn und Herrn Hauke Büchmann bedanken.

Für die Überlassung des Ultraschallgerätes und der Bereitstellung seines umfangreichen Archivs danke ich meinem Vater Dr. Wolfgang Teschner.

Herrn Dr. Felix Scharrer danke ich für die Einarbeitung und Unterstützung.

Ein ganz besonderer Dank gilt Frau Dr. Verena Gomeringer, ohne deren Zureden und Unterstützung ich diese Arbeit nicht fertig gestellt hätte.

Dank an alle namentlich hier nicht genannten Personen, die mir durch Rat und Tat zur Seite gestanden haben.
Selbständigkeitsklärung:

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Schuby, den 15.11.2007

Dominik Teschner