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Preface

The first part of this thesis which is described in chapter 3 has been published
in Molecular Systems Biology under the title “Retrieval, alignment, and clus-
tering of computational models based on semantic annotations” [Schulz et al.,
2011]. My contributions to this work have been the development and adap-
tion of similarity measures, their evaluation, and their implementation in the
web tool semanticSBML, which has been published in Genome Informatics
and Bioinformatics [Schulz et al., 2006, Krause et al., 2010].

The second part of the thesis, extending the similarity measures by in-
corporating model network structures, has been published in BMC Bioin-
formatics under the title “Propagating semantic information in biochemical
network models” [Schulz et al., 2012]. For this work I have developed the
“annotation propagation” method. Furthermore, I have implemented and
evaluated the annotation and the similarity propagation method.

The third part of the thesis has partially been published in BMC Bioin-
formatics under the title “Tlde: a software for the systematic scanning of
drug targets in kinetic network models” [Schulz et al., 2009]. My contri-
butions have been the development of the software for the identification of
potent drug targets in kinetic models and its application to the glycolysis in
Trypanosoma brucei. Further conceptual changes in the drug target identifi-
cation framework as well as its application to the arachidonic acid pathway
in humans have not been published so far.
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1.1 Motivation and outline

1.1.1 Problems in current drug research

Decrease in research productivity Over the last years, the rate at which
newly developed drugs have been approved continuously declined [Mathieu,
2007]. Amongst the few newly approved drugs an increasing number belongs
to the group of follow-ups. These drugs target the same proteins as other
approved drugs and therefore do not treat new diseases. In most cases they
just provide a slight benefit over an existing treatment and replace a drug
whose patent protection is running out. Even though these drugs provide
little to no value to society, they are responsible for most of the revenue of the
big pharma companies [Booth and Zemmel, 2003]. While the development
of follow-ups of blockbuster drugs (leading to more than 1 billion dollar of
revenue per year) is financially advantageous for companies, going after novel
targets and curing new diseases bears lots of risks that can delay the drug
development process [Sams-Dodd, 2005]. Highly problematic amongst such
drug candidates are failures because of lack of in vivo efficacy and toxicity
as they are comparably frequent and only detected in late stages of the
development in which they have already lots of financial resources [Kola
and Landis, 2004]. Thus, for pharma companies there is less commercial
advantage in pursuing the development of drugs against novel targets [Ma
and Zemmel, 2002].

Increase in development costs Due to the decline in output of new drugs
the drug development process is becoming more and more expensive. It has
been estimated that the average drug costs in between 800 million [DiMasi
et al., 2003] and 1 billion dollars [Adams and Brantner, 2006]. Although
these numbers are highly quoted, they may overestimate the real costs by up

22



1.1. MOTIVATION AND OUTLINE

to one order of magnitude [Light and Warburton, 2011]. For example half
of the estimated costs stem from projected interest, that might have been
achieved if the development costs would have been invested on the stock
market. From the money actually spent on research and development only
around 20% are spent on candidates which will become drugs [DiMasi et al.,
2003]. The remaining 80% are spent on unsuccessful drug candidates, which
turn into stronger financial damages the later they fail [Ashburn and Thor,
2004].

Apart from the financial burden on the health care system, the high costs
of drug development have another aggravating consequence: they reduce the
applicability of commercial pharmaceutical research to certain diseases. As
the development of a drug has to be paid for by its beneficiaries, there is
a lack of commercial interest in rare diseases or diseases only occurring in
Third World Countries. Therefore, drug development for these diseases has
to be taken over by non-profit academic research [Trouiller et al., 2002].

1.1.2 Improving drug admission rates

Selection of efficacious and safe targets The target-based approach
for drug discovery follows two basic steps. First, targets are selected on
the basis of biological knowledge, and second, drugs are designed to specifi-
cally inhibit these targets. If the initial selection of a target is not optimal,
problems of drug candidates such as lack of efficacy or toxicity will arise in
trials. Therefore, much more effort should be put into the target selection,
e.g. by applying a combination of theoretical considerations and practical ex-
periments to identify effective and safe targets. Potential candidates against
ineffective targets will thus be sorted out as early as possible reducing total
development costs.

Systems Biology in drug target identification For the purpose of iden-
tifying efficacious and non-toxic target, concepts and methods of Systems
Biology can be applied to the target identification problem. In principle,
some of these methods are already used in drug development and it is con-
sequential to use them to tackle the selection of good targets [Butcher et al.,
2004]. Methods for the identification of targets include the construction of
mathematical models of relevant biochemical processes and the in silico sim-
ulation of the effects of potential drugs on them. Some of these predictions
can afterwards be verified in experiments, supporting the selection of targets.

If drug research pursues this Systems Biology approach for target iden-
tification, the modulation of these targets has already been shown to be
effective and safe. Thus, drugs against them will be less likely to fail in later
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stages of the development process. The inclusion of these methods will ulti-
mately reduce the costs of drug development. Therefore, research on some
diseases, that have been neglected for commercial reasons, may again become
interesting to pharma companies.

1.1.3 Contents of the introduction

Within this thesis I tackle the problem of drug target identification with
concepts from Systems Biology. Before I go into detail about my work, I
will give an introduction to the field. The introduction will cover current
paradigms in drug research and development. I will highlight some basic
concepts of Systems Biology and list different approaches of how biological
models have been used in drug research. Finally, two example systems are
introduced: the glycolysis in Trypanosoma brucei, which is the pathogen
causing the African sleeping sickness, and the arachidonic acid pathway in
humans, in which inflammatory mediators are produced. These systems will
be investigated throughout this work.

1.2 Current state of drug research

In the last decade drugs have mainly been developed following two ap-
proaches, (i) the target-based approach or (ii) the phenotypic screening [Swin-
ney and Anthony, 2011]. I will discuss these different approaches in the
following section.

1.2.1 Target-based approach

Magic bullets Rational development of new drugs has been driven by
the idea that only one single protein needs to be targeted to cure a certain
disease and that each such protein can be successfully targeted by a single
drug [Lindsay, 2003]. Historically this is motivated by the work of Paul
Ehrlich at the end of the 19'" century [Keith et al., 2005]. He discovered that
he could synthesise a dye which would specifically colour a certain pathogen.
The combination of such a selective molecule with a toxin lead to the idea of
the “magic bullet”, a drug which would specifically kill a certain organism.
Paul Ehrlich later managed to synthesise the first magic bullet, the drug
arshenamine, which kills Treponema pallidum, the pathogen causing syphilis
[Ehrlich, 1913].
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How does the target-based approach work? Following this idea drug
research is first identifying a target that is relevant to the disease, and second,
effective and safe drugs are designed against this target. The whole process
takes five to ten years and is divided into six consecutive steps [Bleicher et al.,
2003, Sams-Dodd, 2005].

e Potential targets are selected based on biological knowledge or genomic
data.

e Targets are experimentally validated, e.g. by investigating knock-outs
or transgenic animals.

e An assay is developed in which compounds can be tested for their
activity against the selected target.

e A library of compounds is screened using this assay to find initial “hits”
[Davis et al., 2005].

e Hit compounds are further optimised for binding to the target [Alanine
et al., 2003].

e Drug-like properties of the resulting “lead” molecules are further opti-
mised, which will result in the final drugs that can afterwards be tested
in clinical trials [Lipinski, 2004].

Advantages and drawbacks The target-based approach to drug discov-
ery has been pursued by the pharma industry because it is a very directed and
rational process. In each of the steps very clear requirements to the target
or the drug can be formulated, which is advantageous for large companies to
measure the success of a development process [Sams-Dodd, 2005]. Further-
more, the rational approach can be applied to many problems as it has no
explicit requirements on the investigated biological system, except for initial
knowledge on the mechanisms behind the disease of interest. However, its
major disadvantage is its declining productivity regarding drugs with a novel
mode-of-action [Mathieu, 2007]. One possible cause of this lack of success is
the suboptimal initial selection of targets. This initial selection should focus
more on the efficacy and safety of a drug targeting it to reduce attrition rates
in later stages [Paul et al., 2010].

Single drug treatments One important idea behind the target-based ap-
proach is the magic bullet, which is the conception that for every disease
there exists a single drug acting on a single target being able to cure the ill-
ness. For many diseases such magic bullets do exist. A very obvious example
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of such an illnesses is diabetes mellitus, which is caused by the inability to
produce sufficient amounts of insulin or an insensitivity of its receptor. This
disease can simply be treated by injecting insulin intravenously on a regular
basis [Banting and Best, 1922].

Multi drug treatments Regardless of the many available examples, the
assumption that diseases can generally be treated with a single drug might
not always be correct. On the one hand, even if a disease is caused by
a single factor it might become necessary to treat it using multiple drugs
for various reasons. First, as robustness is a central property of biological
networks, attacking it at one point might not be enough to continuously
achieve a certain result [Albert et al., 2000, Csermely et al., 2005, Hopkins,
2008]. Second, disturbing many targets in parallel with various drugs might
give the same effect at much lower individual drug doses than a single drug
treatment [Korcsmaéros et al., 2007]. This can become necessary if the high
dose of the single drug leads to severe side-effects [Farr and Bacon, 1995].
Furthermore, the combination of multiple drugs can increase the selectivity
of a treatment [Lehdr et al., 2009] or it can reduce the rate of drug resistance
development [Michel et al., 2008, Yeh et al., 2009]. Finally, if two approved
drugs are combined, the resulting treatment has the advantage that it can
enter the market comparably fast [Borisy et al., 2003].

On the other hand, many investigated diseases can have multiple causes.
This includes diseases that can be caused by different mutations on the same
protein. If the disease is to be treated with a drug against this protein, each
mutation can in principle require a different drug. Therefore, a universally
applicable treatment should involve all of these drugs [Radhakrishnan and
Tidor, 2008]. In addition, it includes diseases requiring several successive
mutations, such as cancer, which has been estimated to be caused by 4-7
independent mutations in most of the cases [Balmain et al., 1993]. Such
multicausal diseases can not be expected to be successfully treated with a
magic bullet. Thus, these cases require the selection of multiple targets
which should be thoroughly chosen based on available biological information
[Csermely et al., 2005]. For examples of treatments involving multiple drugs
the reader is referred to [Zimmermann et al., 2007, Hopkins, 2008].

1.2.2 Phenotypic screening

Compared to the target-based approach phenotypic screening works the other
way around. First, a biological example system for a disease is developed.
These example systems can vary heavily in size ranging from single cells
[Yarrow et al., 2003] to complete organisms [Gehrmann et al., 2000]. With
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the help of these systems large compound libraries are scanned for substances
with an in vitro/vivo activity. The result of such a high throughput scan is a
selection of efficacious compounds for which the mode-of-action is unknown.
This mode-of-action then has to be elucidated in order to further optimise
drug-like properties of the compound and to be able to assess its toxicity.

Given a relevant biological example system and a large compound library
the phenotypic approach is comparably easy to follow [Borisy et al., 2003, Yeh
et al., 2006, Apsel et al., 2008, Sharlow et al., 2009]. However, the required
biological system might not always be available, either because the disease
is not understood well enough, the affected system cannot be tested in an
ethically sound manner, or simply because large scale tests on this system
are too expensive.

In principle the target-based approach is preferred by the pharma indus-
try. However, most of the newly approved drugs with a new mode of action
have been found by phenotypic screens [Swinney and Anthony, 2011]. There-
fore, it has been argued that biological assays are more likely to produce drugs
which are effective and safe in vivo [Butcher, 2005].

1.2.3 Other approaches

Apart from these two main approaches to drug research, several other ways
to obtain successful treatments exist. First, drugs can be based on naturally
occurring substances. An example of such a drug is fondaparinux, a cleavage
product of heparin that binds to antithrombin III to inhibit Factor Xa thus
inhibiting blood coagulation [Choay et al., 1983]. Second, treatments like
vaccines and antibodies can directly be derived from natural processes. It
should be noted that in the strict sense these “biologics” can be regarded as
being target-based [Swinney and Anthony, 2011]. Furthermore, drugs can
be repositioned when one of their side-effects can be used to treat another
disease. Examples of such a drug repositioning are Viagra, which has been
observed to cure erectile dysfunctions in clinical trials, and Comtan, which is
primarily used to treat Parkinson’s disease and has been found to be useful
against tuberculosis [Kinnings et al., 2009].

1.3 Mathematical modelling of biological pro-
cesses

The desire to simplify the complex reality around us is an essential part of
human nature. Our ability to abstract the world influences the way in which
we perceive it and enables us to judge the consequences of potential actions
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in advance. Therefore, models, which are our abstract interpretations of
processes occurring around us, are the main drivers of human behaviour and
major contributors to our evolutionary advancement.

Models shape our understanding of the world in all stages of our life. In
our early years for example we observe that whenever we drop things they
fall down. From a large number of these observations we deduce the general
principle that all objects tend to move downwards if they are not stopped
by something else. Having this general principle in mind, we get along quite
well with our lifes. However, this view is challenged when we learn that
the earth is a sphere and that objects on the opposite side of it do not fall
upwards. At this point we have to move to more complex explanations of
our empirical findings: First, to the idea that everything moves towards the
centre of the earth, and then, when we learn about the solar system, to the
idea of gravitation.

1.3.1 What is Systems Biology?

Systems Biology can be perceived as different things: a scientific area, a
collection of methodologies, or a philosophy of how the scientific process can
acquire knowledge. Regardless of what Systems Biology is regarded to be, it
has been characterised by the same properties:

e Systems Biology is interdisciplinary. It combines knowledge and meth-
ods from physics, chemistry, biology, mathematics, philosophy, and
computer science, bridging the gap in between these disciplines.

e Systems Biology is integrative. It uses diverse kinds of data ranging
from physical properties of single molecules to the behaviour of popula-
tions of complete organisms and it is able to incorporate huge amounts
of information stemming from various “omics” measurements, such as
transcriptomics and proteomics.

e Systems Biology is holistic. It integrates data to deduce the “big pic-
ture” rather than processing information individually.

e Systems Biology is structured. Its results are presented in the form
of testable hypotheses, such as mathematical models of biological pro-
cesses. These testable hypothesis allow for the progression of research
through the so-called cycle of Systems Biology. This cycle denotes the
idea that a hypothesis can be tested in experiments, which might fal-
sify it and call for the integration of this new information into a new,
testable hypothesis.
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As a consequence of the approach of Systems Biology we can never expect
a model, which describes a certain biological process, to be right. We can only
say that a model is fit to represent a particular behaviour and make proper
predictions under certain conditions. Instead of being verified, models can
easily be falsified by contradicting observations, which ultimatively reduces
the number of possible explanations for a biological phenomenon [Popper,
1934]. This fact should always be kept in mind when dealing with models.
However, a model is can still be very useful to describe the current knowledge
about a particular system and as such a comprehensive description it has
the potential to replace databases as our current resources of information
[Aldridge et al., 2006].

For the purpose of knowledge integration, Systems Biology research pro-
gresses in different manners: top-down, in which one starts from observations
and tries to explain them by increasingly complex models, and bottom-up,
where networks are built from knowledge about molecular interactions and
refined with the help of experimental data [Bruggeman and Westerhoff, 2007].
For larger applications, neither of the two approaches can be followed strictly
because for example the description of a complete organism by the inter-
actions of individual atoms is currently by far too complex. One way to
circumvent this problem is to use a layered design, describing an individual
by its organs, which is described as a network of interacting cells, which
are described as reaction networks, and so on. For this principle the term
middle-out has been coined [Brenner, 2010].

1.3.2 Different levels of dynamic models

Depending on the amount of knowledge which is available on a certain sys-
tem, the amount and detailedness of available experimental data, and the
specific scientific question that should be answered with it, models should
describe different aspects of a system and therefore use different mathemati-
cal formalisms. As not all of these allow for the prioritisation of drug targets,
I will give a list of some formalisms and their application areas in the follow-
ing.

Boolean models For modelling large gene regulatory networks Boolean
models are often the most appropriate formalism. In such models the vari-
ables describe the state of a gene to be either on or off, or expressed and not
expressed, respectively, and the change in variable values over discrete time
steps is described by Boolean update rules.
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Discrete models In discrete models the variables can assume more than
two states. This allows for the description of models in which genes can
have multiple effects depending on the degree to which they are expressed.
Update rules thus do include thresholds above which a certain gene regulation
becomes active.

Ordinary differential equation models ODE models describe variables
and the time by continuous values and describe the time evolution of a system
by the rates in which the variables change over time. These kind of models
have been applied to various kinds of systems including gene regulation,
metabolic reactions, and signalling cascades.

Stochastic models Whenever systems involving few molecules of different
substances are described, stochastic models can be used to trace the reactions
of individual molecules. This is especially useful to observe the effects of
random fluctuations on the behaviour of a model.

Spatial models ODE and stochastic models can be further extended to
describe the localisation of molecules within a compartment. Such models
are for example used when diffusion of substances has a high impact on
the dynamics of the system or when the spatial distribution of molecules is
important for further considerations.

Amonst these different formalism, ODE models are the most simple ap-
proach which allows for the inclusion of inhibitors as continuous variables.
Using this formalism it is therefore possible to predict the quantitative rela-
tion between the concentration of a drug and its effect on the treated organ-
ism, which can be a desirable outcome for my applications.

1.3.3 Examples of successful predictions

The quality of a mathematical model is usually judged by its predictive
power. Because of that two examples of successful predictions should be
mentioned, which underline that the concept of modelling has high impli-
cations in biology. Probably the most well known model is the Hodgkin-
Huxley model of action potential generation and transmission in squid axons
[Hodgkin and Huxley, 1952]. As a conclusion to more than a decade of work
the model is able to explain the behaviour of a cell from the action of ion
channels, it proposed a general formula describing the actions of ion chan-
nels, and provided a general framework in which scientific research would be
performed afterwards [Hausser, 2000].
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Apart from their ability to describe observed biological results, bottom-
up models can also be used to predict general principles of how pathways
behave under certain conditions. An example of a successful prediction can
be found in [Klipp et al., 2002]. In their article Klipp et al. investigated
how and in which temporal order a limited amount of total protein should
catalyse different reactions in a linear chain in order to make the reaction
chain maximally effective. The theoretical results have afterwards been re-
produced experimentally for the amino acid metabolism of E. coli., and they
supported the idea that within a linear pathway the expression of function-
ally successive enzymes is delayed and enzymes appearing more early in the
chain have to be expressed more strongly [Zaslaver et al., 2004].

1.4 Drug target identification

Over the course of the last years the problem of identifying drug targets
with the help of Systems Biology has been subject to extensive research
(e.g. [Singh and Ghosh, 2006, Yang et al., 2008, Schoeberl et al., 2009]). Var-
ious approaches have been published, which differ not only in algorithmic
details but also in the type of information used. Depending on the amount
of knowledge that is available on a certain studied organism or pathway and
the detailedness of the scientific questions asked, different types of models are
used. Information in the format of a graph can be used as well as stoichio-
metric or kinetic models. As a result of the increasing amount of information
that is evaluated along the different approaches, kinetic models will lead to
more precise predictions as approaches based solely on network data.

1.4.1 Network approaches

Approaches based on data in the form of graphs have been applied in var-
ious areas of drug research, e.g. in the identification of potent drug targets
or in the investigation of a drug’s mode of action [Agoston et al., 2005, lo-
rio et al.; 2009]. The biological meaning of these graphs, however, can be
completely different. Nodes can represent drugs, targeted proteins, diseases,
or the gene involved in them while edges can indicate binding, influences,
causal relations, or different kinds of similarities or commonalities. Various
kinds of networks involving information on drugs have been compiled, and
they have given insights into properties of successful drugs and the processes
underlying their development. A small selection of different kinds of network
analyses should be presented in the following.
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1.4.1.1 Application to drug research

Finding potential drug targets The most important application of net-
works in pharmaceutical research is the identification of potent drug targets.
In their work, Wu et al. [Wu et al., 2010] have used a molecular interaction
network in combination with gene expression data after single drug treat-
ment to predict drug-affected subnetworks. This is formulated as a maximum
weight subgraph problem, which also incorporates the effects of multiple in-
hibitions and takes care of potential side-effects of the treatment. In another
example potential treatments in signalling networks are investigated for their
effects under diseased and healthy conditions. Ruths et al. [Ruths et al., 2006]
show that the problem of achieving this with the minimal number of drugs
is NP-hard and provide a heuristic to solve it. A completely different kind
of network has been investigated by Vazquez et al. In their work they try
to find a minimal set of known treatments, which will completely eradicate
a population of partially resistant pathogens [Vazquez, 2009]. Tools using
network topology to predict drug targets and further publications includ-
ing network data for specific diseases can be found in a review by Berger &
Iyengar [Berger and Iyengar, 2009].

Identifying drug effects Apart from the identification of new drug tar-
gets network based approaches can also be used to investigate unknown tar-
gets for existing drugs. Most of the available methods exploit networks of
drugs which are based on their similarity and are used to infer modes-of-
action by the targets of similar drugs. This is based on the observation that
if two drugs bind mostly to the same proteins, their effects and side-effects will
be similar [Fliri et al., 2005]. The drug similarity networks have been built
from different kinds of data like gene expression data after treatment [Xing
and Gardner, 2006, Torio et al., 2009] or molecule structure and side-effect
similarity [Campillos et al., 2008]. Information on novel targets for a certain
drug can also be used to find novel applications for it. This is for example
done by the web resource PROMISCUOUS, which combines drug-target and
protein-protein relations that can be used to find new drug applications [von
Eichborn et al., 2011]. In general, it should be noted that one is more likely
to find new targets if the investigated drugs are small molecules [Hopkins
et al., 2006].

1.4.1.2 General network analyses

Network approaches cannot only be used to answer detailed questions rel-
evant to certain diseases but they can also be analysed in a general way.
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Graphs compiled from drugs, their targets, and the interactions between
those has been used to find general properties of drug-target networks, like
the finding that most drugs are non-essential hubs in protein-protein inter-
action (PPI) networks [Yildirim et al., 2007, Ma’ayan et al., 2007]. In gene-
disease networks it has been shown that interacting proteins have a higher
chance to be involved in the same disease [Goh et al., 2007], which is also
supported by other investigations [Luo et al., 2007]. Furthermore, networks
of approved drugs and their application areas have also been constructed and
investigated [Nacher and Schwartz, 2008].

1.4.2 Stoichiometric approaches

Recent developments in genomic sequence analysis have led to a rapid in-
crease in the amount of genomic data available for various organisms. Using
this sequence data, the reconstruction of the complete metabolic networks
of various organisms has become feasible. Although these networks cannot
be guaranteed to be complete, they are integrated resources of the current
knowledge on a certain organism and some of them have already provided
promising preliminary results (e.g. [Herrgard et al., 2008, Yus et al., 2009]).

In principle, stoichiometric networks do not define any dynamical proper-
ties of the described system. However, using the assumption that a metabolic
network in a living organism will always try to operate close to a steady state,
one can make predictions on the metabolic fluxes through the reactions [Hein-
rich and Rapoport, 1974]. This steady state assumption is usually justified
with the fact that no metabolite can endlessly be consumed or produced.
Given this assumption one can make some predictions on the behaviour of
an investigated network as for example the ability of a knock-out mutation to
survive. Based on this idea a number of drug target identification approaches
have been developed.

Yeh et al. [Yeh et al., 2004] constructed a metabolic network for the
Malaria causing pathogen Plasmodium falciparum. Using this network they
have revealed that most of the known drug targets are so-called “choke-
points”. A chokepoint reaction is defined as either the only reaction produc-
ing a certain metabolite or the only one consuming it. This kind of analysis
has also been used to investigate the metabolism of Entamoeba histolytica
[Singh et al., 2007b]. In order to reduce the number of predicted targets
and to yield safer targets, genomic data of the human can be incorporated
to target only parasitic enzymes which have no orthologue. Another idea
to reduce side effects of a treatment is to reduce the number of affected,
non-disease-related compounds [Sridhar et al., 2006]. Furthermore, as sto-
ichiometric approaches lead to large result sets, it is possible to prioritise
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targets by various features as druggability, their expression, or their phylo-
genetic distribution [Crowther et al., 2010].

Folger et al. [Folger et al., 2011] have constructed a genome scale metabolic
model of cancer cell lines in NCI-60 (a set of 59 cell lines). Using flux balance
analysis [Edwards et al., 2001] they predicted the effects of knock-downs of
all reactions on the speed of growth, i.e. the biomass production. To address
potential side-effects the same knock-downs were also simulated in a full
scale human model [Duarte et al., 2007 using biomass and internal energy
production in terms of adenosine triphosphate (ATP) as objective functions.
Afterwards the selectivity of the targets for NCI-60 instead of non cancer
cells has been calculated. The simulation of single targets resulted in few
selective treatments, however their number can be increased when consider-
ing synergistic dual knock-downs. This is in accordance with experimental
results showing higher specificity for multi-target treatments [Lehar et al.,
2009].

1.4.3 Kinetic modelling approaches

Although drug target identification approaches based on stoichiometric mod-
els have been successful in a number of cases, their results include comparably
large numbers of possible targets between which no further distinction is pos-
sible and some questions cannot be answered with them at all. A biological
question requiring a more detailed kinetic model has been posed by Stites et
al. [Stites et al., 2007]. In their work the authors ask which conformation of
the Ras protein should be targeted to achieve a higher signalling inhibition
in cancer than in wild type cells.

Dynamic models of signalling processes have also already been used by
the industry. The company Merrimack Pharmaceutical has focused on the
development of drugs against epidermal growth factor receptors in the treat-
ment of cancer and has used various models to evaluate their importance
(e.g. [Schoeberl et al., 2009]).

Methodologically one can distinguish two different types of analysis that
can be used for the purpose of drug target identification: Steady state and
dynamical analysis. In steady state analysis the influence of infinitesimal
changes of some variables on the long term behaviour of others is investi-
gated. The results of these analyses are used to find reactions that exert a
large control over certain aspects of the network (e.g. [Bakker et al., 2000b,
Hornberg et al., 2005a, Murabito et al., 2011]). Dynamic analysis can not
only incorporate changes in the steady state behaviour of variables but also
their detailed dynamic behaviour [Tveito and Lines, 2009]. Furthermore, it
is able to simulate the effects of treatments at effective drug concentrations.
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For the purpose of identifying potent targets in kinetic models, different
methods and tools have been developed. Steady state analysis can be per-
formed using various tools that are capable of performing Metabolic Control
Analysis such as CoPaSi [Hoops et al., 2006]. Dynamic analysis has been
performed using various methods which deal with the combinatorial prob-
lem of multiple target interventions in a different way [Araujo et al., 2005,
Dasika et al., 2006, Yang et al., 2008, Tveito and Lines, 2009], tools for their
automatic analysis, however, are scarce [Schulz et al., 2009].

1.5 Glycolysis in Trypanosoma brucez

1.5.1 General information on the disease

The African Sleeping Sickness is a disease caused by the parasite Trypanosoma
brucei. Over the last 115 years, 3 major epidemics have spread over the
African continent killing approximately 1 million people. Currently, it is es-
timated that around 30000 new infections arise per year, which are considered
to be fatal if left without treatment [Hannaert, 2011] !.

The life cycle of Trypanosoma involves the tsetse fly as a vector, which
takes up the parasite together with human blood. In the fly T. bruce: mi-
grates from the intestines to the salivary glands, from where it can be trans-
mitted again to a human that is bitten by the fly.

In the human host the sleeping sickness develops in 2 stages. During the
first stage trypanosomes are located mainly in blood and lymph in order to
promote transmission to its vector. Here it causes unspecific symptoms such
as fever and headache. In the second stage the parasite crosses the blood-
brain barrier and infects the central nervous system and other organs. This
causes severe neurological effects, e.g. the name giving sleeping disorder.

1.5.2 Available treatments

The sleeping sickness has been subject to medical research from the beginning
of the 19" century. Paul Ehrlich discovered the first trypanocidal substance
in 1904, which led to the development of the first successful drug Suramin.
Over the last century, new drugs have been introduced (see Table 1.2), but
due to application restrictions, severe side effects, and resistance development
Suramin is still in use. The most severe problem of the available drugs is
that they all have to be administered by injection. Furthermore, some of the
drugs, e.g. the combination of Eflornithine & Nifurtimox, have to be applied

http://www.who.int/mediacentre/factsheets/fs259/en/
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Table 1.1: List of currently applied trypanocidal drugs.

Year Treatment  Side Resistance  Mode-of-
Name introduced stage effects observed action
Suramin 1916 first strong no promiscuous
Pentamidine 1937 first few yes? unknown”
Melarsoprol 1949 second toxicity  yes® promiscuous
Eflornithine 1990 second medium maybe® known?
E. + Nifurtimox 1967 second few maybe® unknown®

2 [Gehrig and Efferth, 2008]

b binds mitochondrial deoxyribonucleic acid (DNA) [Barrett et al., 2007]

¢ [Vincent et al., 2010]

dirreversible inhibitor of ornithine decarboxylase [Bacchi and Yarlett, 1993]
¢ contributes to production of reactive oxygen species [Enanga et al., 2003]

in a strict schedule, which makes medical personal necessary. This personal
is not available in rural regions or in regions involved in warlike events. The
Democratic Republic of the Congo is a good example for this. 70% of cases
from the last decade were reported here and this can be seen as a result of
the Second Congo War and its aftermath.

This and more detailed information can be found in recent reviews on
trypanocidal drugs [Barrett et al., 2007, Hannaert, 2011].

1.5.3 Potential new treatments

As already mentioned, the available drugs for the treatment of the sleeping
sickness are far from optimal. Since the geographic distribution of the disease
is limited to the African continent by the distribution of the tsetse fly, the
financial market for this drug is comparatively small. Thus, few commercial
treatments have evolved and research on this topic is mainly driven by pub-
licly funded institutions, which investigate how new trypanocidal drugs can
be developed. As there is already a vast amount of data publicly available,
including the pathogen’s genome [Berriman et al., 2005], the development of
potential drug candidates through public research seems to be feasible.

Unfortunately, the development of a vaccine against T. brucei appears to
be unlikely. The pathogen is covered in so-called variable surface proteins, a
set of approximately 1000 proteins, that is stochastically activated by DNA
recombination [Morrison et al., 2009]. Therefore, the pathogen can easily
avoid the human immune response and since prevention measures are not
sufficient, a potential cure has to focus on treatment of the patient after
infection.

Different pathways of trypanosomes have already been subject to re-
search: like other rapidly dividing cells pathogens heavily rely on the cel-
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lular machinery for cell proliferation, which includes for example energy
metabolism, biomass production, or cell cycle control [Hannaert, 2011].

Table 1.2: List of drugs and their targets in the extended trypanoso-
mal glycolysis. Apart from the targets mentioned above, glyceraldehyde-3-
phosphate dehydrogenase, aldolase [Perie et al., 1993], and phosphoglycerate

kinase [Bernstein et al., 1998] have been inhibited in vitro.
Enzyme Drug Reference
Pyruvate kinase suramin Morgan et al., 2011]

[
melarsoprol [Flynn and Bowman, 1974]

Hexokinase suramin [Wills and Wormall, 1950]
Glycerol-3-phosphate suramin [Fairlamb and Bowman, 1977]

dehydrogenase (NAD+) cymelarsan [Denise et al., 1999]
Phosphofructokinase polycarpol [Ngantchou et al., 2009]
Trypanosome salicylhydroxamic acid  [Clarkson et al., 1981]

alternative azaantraquinone [Nok, 2002]

oxidase ascofuranone [Minagawa et al., 1997

One of these pathways, the glycolysis, seems to be particularly interesting
for several reasons. First, while T. brucei is residing in the human blood-
stream, glucose is its primary energy source and targets in glycolysis have
proven to be essential in RNA (ribonucleic acid) interference experiments
[Albert et al., 2005, Céceres et al., 2010]. Second, many of the glycolytic en-
zymes have special structural and kinetics features distinguishing them from
the human homologues, which simplifies the process of designing selective in-
hibitors against them [Verlinde et al., 2001]. Third, the spatial organisation
of the glycolysis as seen in the pathogen is rarely seen in other organisms.
The glycosome, a compartment similar to a peroxisome, accommodates the
upper part and half of the lower part of the glycolysis. It has been proposed
that this compartmentalisation is an alternative to feedback regulation of
the pathway [Haanstra et al., 2008] and allows for high concentrations of
the metabolites in glycolysis [Bakker et al., 1995, 1997|. Finally, drugs with
targets in glycolysis have proven to be efficacious in experiments (see Table
1.2 for a list of drugs and their targets).

1.5.4 Available models of trypanosomal glycolysis

Glycolysis in T. brucei has already been subject to extensive investigation
and modelling. The first model describing this pathway with ODEs was
published in 1997 and was completely based on the literature and experi-
mental data from single enzyme measurements [Bakker et al., 1997]. As this
information was incomplete, some reactions were assumed to be in equilib-
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rium and several reactions were lumped together. The model was extended
in 1999 including, for example, a dihydroxyacetone (DHAP) — glycerol-3-
phosphate (G3P) — antiporter between glycosome and cytosol [Bakker et al.,
1999]. Helfert et al. extended the model further by detailed kinetics for
the triosephosphateisomerase (TPI) and the phosphoglucoisomerase (PGI)
[Helfert et al., 2001]. In 2005 many of the model’s kinetics were updated us-
ing recent measurements of kinetic parameters and the last lumped reaction
in the lower glycolysis was replaced by its explicit counterparts [Albert et al.,
2005]. This model version provided the basis for work of Haanstra et al. , who
created an alternative model version to study the effect of the compartmen-
talisation through the glycosome [Haanstra et al., 2008]. The most recent
version of the trypanosomal glycolysis compromises fewer reactions than the
2005 version but it is accompanied by a website 2 including different mea-
surements of the model’s kinetic parameters. This, in principle, allows for
investigations of the effects of parameter variations on the behaviour of the
trypanosomal glycolysis [Achcar et al., 2012].

1.5.5 In silico determination of drug targets

The question for the most relevant drug targets in the trypanosomal glycol-
ysis has so far been answered using different methods. The enzymes were
compared on the basis of control of the catalysed reaction on the flux through
the network (e.g. [Achcar et al., 2012]) or based on dynamic simulations of
the flux change in response to a reduction in a reaction’s maximal velocity
(e.g. [Bakker et al., 1999]). Latter results were compared to experiments
in which the maximal velocities were modulated by reducing the enzymes’
concentrations through RNA interference [Fire et al., 1998].

The second and the third version of the model supported the idea that the
most potent targets in the glycolysis are the trypanosomal hexose transporter
(THT), fructose bisphosphate aldolase (ALD), glycerol-3-phosphate dehydro-
genase (GPDH), glyceraldehyde phosphate dehydrogenase (GAPDH), and
phosphoglycerate kinase (PGK) [Bakker et al., 1999, Helfert et al., 2001].
Later model versions support the idea that THT is the most potent target
followed by GAPDH and phosphoglycerate mutase (PGM). Furthermore,
PGK has been predicted to be less promising while the enolase (ENO) has
received more attention [Albert et al., 2005, Haanstra et al., 2008, Achcar
et al., 2012].

Zhttp://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis

38



1.6. THE ARACHIDONIC ACID PATHWAY

1.6 The arachidonic acid pathway

1.6.1 Physiology
1.6.1.1 Pathway structure

A second example system that I will investigate throughout this thesis is the
arachidonic acid (AA) pathway in humans. The AA pathway, as it is de-
picted in Figure 1.1, describes the conversion of AA into various eicosanoids.
It starts with the release of AA from membrane phospholipids and diacyl-
glycerols by the phospholipases A2 (PLA,), C, and D (mainly cytosolic phos-
pholipase Asa [Ghosh et al., 2006]) and diacylglycerol lipases [Farooqui et al.,
1997]. AA is then converted via different pathways to prostaglandins (PGs),
prostacyclin (PGI2), thromboxanes (TXs), and leukotrienes (LTs). These
fatty acids act as autocrine and paracrine signalling molecules, binding to G-
protein coupled and nuclear receptors, activating various signalling cascades
leading to diverse responses.

Under normal conditions, eicosanoids are involved in inflammation, vas-
cular homoeostasis, and the protection of the gastric mucosa [Harizi et al.,
2008]. While PGE; is synthesised by most human cells, other eicosanoids are
mainly synthesised in specific cells or tissues (e.g. thromboxanes in platelets
and macrophages or leukotrienes in leukocytes, macrophages, and mast cells)
[Funk, 2001]. Thromboxane A2 (TXA,) promotes platelet coagulation and
acts as a vasoconstrictor, which is counteracted by the vasodilator PGIy
[Marcus, 1978]. LTB, plays a role in the immune response by acting as a
chemoattractant [Weller et al., 2005]. Together with PGE,, which induces
fever and acts in a proinflammatory way [Ivanov et al., 2004], it is the most
relevant metabolite of the arachidonic acid pathway. Further eicosanoids,
e.g. epoxyeicosatrienoic acids (EETSs), play a role in inflammation and cell
proliferation [Zeldin, 2001], but they are supposed to be of lesser importance
and are not described in detail in this context. For a more complete overview
on the list of actions of eicosanoids the reader is referred to [Harizi et al.,
2008].

1.6.1.2 Regulation

The production of inflammatory mediators via the AA pathway is a heavily
controlled process and this control is exerted via the activation of proteins
as well as changes in transcription. cPLAs« is catalysing the first reaction
of the pathway and is supposed to exert most control over the production
of eicosanoids [Wymann and Schneiter, 2008]. The enzyme is activated in
response to a proinflammatory stimulus, which induces a MAP kinase sig-
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Figure 1.1: The arachidonic acid pathway, its regulation, and its downstream
effects. Arcs in the graph either describe chemical conversion, receptor bind-
ing, or promotion of a physiological effect. This Figure has been compiled
from various resources mentioned in this section, foremost [Yang et al., 2008].
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nalling cascade and the release of calcium. Calcium binds first to cPLAs«a and
induces its translocation into membranes (like ceramide-1-phosphate [Pet-
tus et al., 2004]). Afterwards it is phosphorylated by ERK1, ERK2, p38,
calmodulin protein kinase II, and Mnk1, which further enhances its activ-
ity [Bonventre, 2004]. Furthermore, the transcription of cPLAs« is induced
by cytokines such as Interleukin-1 o or tumour necrosis factor [Clark et al.,
1995], e.g. via the JAK-STAT-pathway [Neeli et al., 2004], or through JNKs
and ERKs [Van Putten et al., 2001].

The arachidonic acid pathway is not only controlled on the level of cPLAs«,
however, many of the enzymes are regulated in a similar way. The microsomal
PGE; synthase-1 (mPGES1) is for example induced by the same cytokines
[Stichtenoth et al., 2001] and the transcriptional regulation of 5-lipoxygenase
(5-LOX) [Radmark et al., 2007] and cyclooxygenase 2 (COX-2) [Reddy et al.,
2000] is similar to the regulation of cPLAsa. This coregulation of the first
enzymes in the arachidonic acid pathway might indicate that cPLAs« is not
the only rate limiting enzyme, but that other enzyme concentrations need to
be raised as well to induce eicosanoid production [Herschman et al., 1997].

1.6.1.3 Downstream effects

After eicosanoids have been produced via the AA pathway, they leave the
cells through so-called multidrug resistance-associated proteins and act in an
autocrine or paracrine fashion on G-protein coupled receptors. The receptors
and their preferred ligands are shown in Figure 1.1. 1P, DP, EP,, and EP,
are so-called “relaxant” receptors, exerting their action through increasing
cAMP, EPq, FP, and TP are “contractile” receptors, signalling through re-
leasing calcium, and EPj3 is an “inhibitory” receptor mediating fever through
decreasing cAMP levels [Ushikubi et al., 1998, Funk, 2001]. Downstream
effects of the activated receptors include pain mediation through EP; [Stock
et al., 2001], induction of differentiation and growth in certain T helper cells
through EP, [Yao et al., 2009], and activation as well as attraction of other
immune system cells through BLTs [Tager and Luster, 2003, Lundeen et al.,
2006]. Downstream of the activated receptors a number of different signalling
pathways are activated, e.g. Wnt, EGFR-PI3K-AKT, and MAP kinase path-
ways [McCarty, 2004, Cha and DuBois, 2007]. For a recent overview on those
pathways the reader is referred to [Wang and DuBois, 2010].

Except from actions on GPCRs, eicosanoids have been shown to bind
to peroxisomal proliferator-activated receptors (PPARs), which are located
in the nucleus, although the involvement of PPARs in the in wvivo action of
eicosanoids is controversially discussed [Funk, 2001].
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1.6.2 Pathophysiology
1.6.2.1 Diseases involving the AA pathway

Inflammation As already mentioned, the arachidonic acid pathway is the
central metabolic part of the mediation of inflammatory processes. There-
fore, its deregulation can lead to uncontrolled inflammatory responses which
are implicated in autoimmune diseases and allergies but are also supposed to
play a role in diseases such as atherosclerosis, asthma, Alzheimer’s, Parkin-
son’s, and certain types of cancer [Serhan et al., 2008]. The inflammatory
response is mainly supposed to be caused by PGE,, which is the most abun-
dant prostaglandin and elevated in almost all of the aforementioned diseases
[Ushikubi et al., 1998, Samuelsson et al., 2007].

Asthma The symptoms of asthma are supposed to be mainly caused by
cysteinyl leukotrienes via the CysLTs, which induce bronchoconstriction, but
also the balance of the eicosanoids PGDy + TXA,/ PGEy; + PGI; seems to
play a role [Wenzel, 1997]. The increase in the leukotrienes is caused by
a change in the composition of the T-helper cell population and the fact
that different types of T-helper cells produce eicosanoids to a different ex-
tend [Robinson et al., 1992]. Furthermore, the leukotriene LTB, plays an
important role in asthma via attraction of immune response cells and acting
pro-inflammatory [Peters-Golden and Henderson Jr, 2007].

Cancer As general promotors of inflammation prostaglandins and leuko-
trienes are furthermore assumed to play a role in the development of cancer
[Wang and DuBois, 2010]. Tumor growth is assumed to be accompanied by a
change in its microenvironment, where an inflammation attracts leukocytes,
which in turn produce more eicosanoids. If this positive feedback is not in-
hibited, as it is in healthy tissue, chronic inflammations can occur [Mantovani
et al., 2008, Serhan et al., 2008].

1.6.2.2 Drugs acting in the AA pathway

Because of the central role of the AA pathway in many relevant diseases,
there is a high commercial interest in drugs acting on this pathway. Not
without reason acetylsalicylic acid has been described as “one of the most
endurably successful commercial products of all time” [Jeffreys, 2010]. After
its introduction to the market in 1899 under the brand name “Aspirin” it has
been used in the treatment of pain, fever, and various inflammatory diseases.
Furthermore, it is used as a treatment after infarction [Antithrombotic Tri-
alists’ Collaboration, 2002] and its long-term use has been shown to reduce
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death rates due to cancer [Rothwell et al., 2011]. Unfortunately, its use has
been associated with an increased risk of gastrointestinal bleeding, which par-
tially reduces its application areas [Derry and Loke, 2000]. On the molecular
level aspirin exerts its effect by irreversibly binding and inhibiting COX-1,
the “house-keeping” isoform of the prostaglandin G, / Hy synthase [Roth
and Majerus, 1975]. This effect is most dominant in platelets, which can-
not produce new enzymes and, therefore, become unable to produce TXA,,
causing the side-effects.

In order to circumvent the side-effects of aspirin or other NSAIDs (non-
steroidal anti-inflammatory drugs) which affect COX-1, drugs selectively tar-
geting the inducible COX-2 isoform have been developed [Chan et al., 1999].
Unfortunately, COX-2 is the main COX through which PGI; is produced
[FitzGerald, 2003], and reduced PGIy levels lead to high blood pressure,
atherosclerosis, and thrombosis [Wong et al., 2005, Yu et al., 2012]. Ac-
cordingly, selective COX-2 inhibitors, such as rofecoxib (Vioxx), are associ-
ated with an increased heart attack risk [FitzGerald, 2004, Jini et al., 2004,
Furberg et al., 2005] and have thus been taken off the market again. A second
potentially relevant mechanism by which the side-effects of selective COX-2
inhibitors can be explained come from a secondary role of the cyclooxyge-
nases. In later phases of the response to a stimulus, COX-2 is involved in the
production of inflammation resolving mediators such as lipoxins, resolvins,
and protectins, whose production is delayed under COX-2 inhibition [Gilroy
et al., 1999].

Apart from the cyclooxygenases, other enzymes and receptors have been
targeted in the search for potent anti-inflammatory drugs. A short summary
on some substances with an inhibitory effect on the AA pathway and their
targets is shown in Table 1.3. This table shows that the AA pathway is
offering a large number of targets that can be inhibited by small chemical
entities.

1.6.3 Modelling the AA pathway

In order to understand the effects and side-effects of available drugs and
to contribute to the development of new drugs, the arachidonic acid path-
way has been subject to modelling efforts. The first dynamic model of AA
metabolism has been developed by Yang et al. [Yang et al., 2007]. This
model described the pathway as present in human polymorphonuclear leuko-
cytes and comprised the production of LTB,, PGE,, thromboxanes and 5,
12, and 15-HETE (hydroxyeicosatetraenoic acid). Afterwards, the model
has been extended to include the production of PGI; and to incorporate
the metabolism in platelets and endothelial cells [Yang et al., 2008]. With
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Table 1.3: Potential targets in the AA pathway, their inhibitors or antag-
onists, and the diseases which are supposed to be treated with them. Ab-
breviated terms include diacylglycerol lipase (DAGL), 5-LOX activating
protein (FLAP), arachidonyl trifluoromethyl ketone (ATK), cardiovascu-
lar diseases (CV), and Alzheimer’s disease (AD).

Target Drug Treated disease Reference
cPLA2a ®  dexamethasone inflammation [Clark et al., 1995]

giripladib arthritis [Suckling, 2010]
COX-1 acetylsalicylic acid  pain, inflammation,

fever, thrombosis

COX-2P valdecoxib arthritis [Hood et al., 2003]
5-LOX zileuton asthma [Carter et al., 1991]
FLAP4 licofelone arthritis [Koeberle et al., 2008]
mPGES-1  MF63 pain & fever [Cété et al., 2007a)
LTA4H bestatin cancer [Peters-Golden and Henderson Jr, 2007]

6-gingerol cancer [Jeong et al., 2009]
12-LOX baicalein cancer & AD [Sekiya and Okuda, 1982]
EP1 ONO-8711 cancer [Kawamori et al., 2001]
EP2 AH 6809 cancer [Woodward et al., 1995]
EP4 AH23848 inflammation

ONO-AE3-208 cancer [Fulton et al., 2006]
BLT1/2 LY293111 asthma [Evans et al., 1996]
CysLT1 zafirlukast asthma [Hui et al., 2001]
TP&DP2  ramatroban atherosclerosis [Terada et al., 1998]
FP bimatoprost ocular hypertension  [Woodward et al., 2001]

& expression is reduced

b selectivity is achieved through slow dissociation (pseudo-irreversibility)
¢ also a mPGES-1 inhibitor

d also targets COXs

this extension the model was able to reproduce the effects and side-effects of
various NSAIDs in silico.

In total, the latest model includes 117 parameters (excluding substrate
and enzyme concentrations) from which 46 have been determined in experi-
ments. The rest of the parameters has been fitted using sparse experimental
data, which left many of the parameters unconstrained. In order to deal with
the resulting uncertainty about the outcome of simulations of this model, the
authors have accompanied the model with several parameter sets describing
the experimental data equally well. However, it has been concluded that
parameter variations only had a minor effect on the qualitative outcome of
inhibitors in the network [Yang et al., 2008].

1.7 Outline of this work

1.7.1 The big picture

Over the last years the rate of drug discovery has declined significantly, which
can, in the case of drugs developed following a target-based approach, be
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model > model > treatment

construction refinement prediction

data | ——] experiment

Figure 1.2: Overview on the workflow of Tlde for the identification of potent
targets with the help of mathematical models.

attributed to the drugs’ lack of efficacy or their toxicity in clinical trials. In
order to tackle this problem I apply methods from Systems Biology to the
identification of potent drug targets, which will help in the development of
effective and safe drugs.

For this purpose I have developed a framework, as visualised in Figure
1.2, which applies the cycle of Systems Biology to the drug target identifica-
tion problem. First, a mathematical model is constructed and refined using
available experimental data. Then, predictions on drug actions are made
from the model and tested in experiments, that support or invalidate the
hypotheses. And finally, data that does not agree with the model can be
used to refine it again such that new predictions can be made and the cycle
starts anew.

In contrast to other modelling efforts, the predictions in my framework
mainly focus on the actions of drugs on the network. While the idea of mod-
elling drug actions is not new in general, published methods do follow slightly
different approaches implementing it. My work aims at the unification, for-
malisation, and extension of these methods as well as at the development of
tools supporting scientists to follow my framework.

1.7.2 Contents of this thesis

This thesis, which introduces the aforementioned methods and tools, is di-
vided into different chapters. Each of them describes the methods than can
be used in different stages of the framework. I start with a general introduc-
tion of ODE models and mathematical methods for their storage, analysis,
and refinement in chapter 2. Then, I introduce methods for the retrieval,
analysis, and refinement of models that can be used in the construction of
a mathematical model, which is later used in the target identification step.
Chapter 3 introduces similarity measures for models and data sets, which aid
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in the search for relevant available knowledge, while chapter 4 extends those
measures to help in the alignment and annotation of models. These methods
can be used in the construction of large comprehensive dynamic networks.
In the following part of the thesis, I introduce different ideas of how mathe-
matical models can be used for the prediction of targets. For this purpose I
formalise the target identification as a parameter estimation problem in chap-
ter 5 and apply the concepts of network selectivity and non-identifiability to
it. Furthermore, in chapter 6 I search for synergisms and antagonisms across
different drug targets. Finally, I discuss the impact of my work and its pos-
sible extensions in chapter 7. Throughout this thesis, parts of the framework
are applied to small example models as well as to two biologically relevant
diseases, the African sleeping sickness and the inflammatory response. The
results of these analyses highlight new, potentially interesting experiments,
which can be used to improve the predictive power of the used mathematical
models.
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2.1 Modelling using ordinary differential equa-
tions

Because this work is mainly concerned with the application of mathemati-
cal models of biochemical processes to the problem of the identification of

efficient and safe drug targets, I will introduce basic concepts necessary for
the development of such models within this chapter. This introduction is
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based on [Schulz and Klipp, 2010], and it will cover the mathematical for-
mulation of ordinary differential equation (ODE) models, their construction,
their analysis, and their representation.

2.1.1 Problem formulation

ODE models in general, describe the time evolution of state variables by
differential equations. This means that for a vector of state variables y(t)
an ODE model describing how the variables change over time is given by
a vector of initial concentrations y(ty) and a vector of differential equations
Ly(t) = f(y(t),0,t). The differential equations are allowed to refer to the
current values of the states variables y(t) as well as to a vector of model
parameters # and the current time t.

In the context of Systems Biology the state variables usually describe con-
centrations or molecule numbers of various substances. These substances can
be small metabolites as well as macromolecules like proteins, RNA, or DNA.
The differential equations describe the processes converting substances and
the parameters determine the velocities of these conversions. In biological
contexts, these equations are usually not explicitly dependent on the time
t. This is a special case of ODEs that is termed autonomous. It should be
noted that ODE models are only applicable to systems in which one deals
with large molecule numbers and which are supposed to be well stirred. If
these assumptions are not true, one should either use a stochastic simulations
or incorporate spatial aspects of the system.

2.1.2 Solutions in time

The problem of determining the concentrations of substances at a certain
time y(t), given starting values y(ty) and the differential equations f, has
been called the initial value problem (IVP). For large systems this problem
can rarely be solved analytically. Exceptions to this are for example linear
models, e.g. Ly = a - y(t) which has the general solution y(t) = y(to) - €.
In most cases, however, the dynamic behaviour of the system has to be
approximated analytically.

The most simple numerical approximation of an IVP can be performed
using the Euler method [Euler, 1768]. For a given step size h the methods
works by successively calculating the state y(t+h) from y(t), resulting in a set
of time points y(to +4-h). The main assumption of the Euler method is that
the differential equations f do not significantly change within a time window
[t,t + h[ and that they can therefore be approximated by f(y(t),0,t). As a
result, the time evolution of the system can be approximated by the iterative
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calculations

y(t+h) =y(&) +h- fly(t),0,1). (2.1)

Euler’s method, however, is rarely used anymore, because its numerical
accuracy only decreases linearly with the step size and because the method
has severe problems with the stability of its solutions. Stability in the context
of ODE solvers refers to the fact under which conditions a numerical solution
converges to a stable steady state. These can for various ODE solvers be
different to the conditions under which the analytical solution converges.
Nevertheless, more complex methods are built upon this simple numerical
scheme and iteratively calculate new time points from old ones. Notable
improvements to this general idea are implicit methods, which allow y(t + h)
to appear on the right hand side of Eq. 2.1, Runge-Kutta methods [Runge,
1895], evaluating f at time points outside the grid ¢ = ¢ty + i - h, and Adams-
Bashford methods [Bashforth and Adams, 1883], considering multiple time
points calculated in previous steps.

2.1.3 Structure of models

2.1.3.1 Stoichiometric matrix

Con >+ >—o—»Q

Figure 2.1: Graphical representation of the stoichiometry of the example
network.

When dealing with ODE models describing large networks it becomes
useful to divide the differential equations into two parts, the network’s sto-
ichiometry N and a vector of reaction velocities v(y(t),p). The differential
equations then read Sy(t) = N -v(y(t), p). N, the stoichiometric matrix, has
the dimension |y| x |v|, where |y| is the number of variables of the system
and |v| is the number of reactions. Its entries describe whether an entity is
produced or consumed by a reaction via a positive or a negative sign and how
many molecules are converted per elementary reaction step via their absolute
values. For the simple example system shown in Figure 2.1 for example the
differential equations read

a0 =50 ) e,
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This notation is advantageous for theoretical considerations as well as numer-
ical calculations, as complex kinetic expressions only need to be evaluated
once instead of for every variable being changed by it.

2.1.3.2 Kinetics

Reaction velocities, the functions v(y(t), p), describe how fast processes hap-
pen in the considered system. In this context, reactions do not only describe
reactions in the classical chemical sense, but all kinds of processes converting
or transporting molecules in a system. Depending on the type of process
described by a reaction and the amount of knowledge one has about factors
influencing its velocity, different kinds of formulas are used.

Constant rates are the most simple reaction kinetics and are used for pro-
cesses creating matter that are not understood well enough to be described
with a more complex formula.

Mass action kinetics regard the reaction velocity to be proportional to
the concentrations of the substrates to the power of their stoichiometry [Guld-
berg and Waage, 1864]. They follow the general formula

vj=a- n yi(t)™™ —b- H yi(t)™.

i‘Nij<0 i‘N¢j>0

Michaelis-Menten type kinetics are compact descriptions of enzymatic
reactions [Menten and Michaelis, 1913]. Their formulas are derived from de-
tailed models of elementary reaction steps, which describe the binding and
dissociation of substrates and products as well as the enzymatic catalysis,
and are based on the following assumptions. First, for an irreversible re-
action product formation and release is irreversible and slow compared to
the formation of the substrate-enzyme-complex. Second, the enzyme con-
centration is low compared to the concentration of substrates and products.
Third, the concentration of the enzyme-substrate complex is supposed to be
in steady state. The final formula for the rate of product formation in an
irreversible enzymatic reaction j with one substrate 7 is given by

. Vmax “Yi (t)

K, + Y; (t) ’
where V. is the maximal reaction velocity and K, (the Michaelis-Menten
constant) is the substrate concentration at which the reaction assumes half
its maximal speed. More details on these kinetics and a visualisation of the
reaction scheme are given in section B.2.1.1 in the Appendix.

Uj
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Other kinetics than the aforementioned are known in the literature. They
have been deduced using similar approaches and extend to cases in which re-
actions are reversible, the reactions involve multiple substrates and products
that bind in a certain order, and the substrate binding is cooperative, i.e. the
association of one molecule makes others more likely to bind. Furthermore,
kinetics can be extended to respect inhibitors or activators of enzymatic reac-
tions. For Michaelis-Menten kinetics one can distinguish different inhibition
types as shown in section B.2.1 in the Appendix. These different types de-
pend on the conformation of the enzyme the inhibitor is able to bind. A
competitive inhibitor can only bind the free enzyme, an uncompetitive one
only the substrate-enzyme-complex, and a noncompetitive inhibitor binds
the enzyme regardless of its conformation.

2.1.4 Metabolic control analysis
2.1.4.1 Steady state

For some applications it is not necessary to study the dynamic behaviour of a
system in full detail. Instead one can investigate the approximate behaviour
for long timescales. For times approaching infinity the system can generally
behave in three different ways. It can converge to a single point in state
space, which is the space spanned by the state variables, it can converge to
a cyclic trajectory, or it can not converge at all.

In the first case the point in state space towards which the system is driven
is called an attractor or a stable steady state. For steady states y*(t) the
equation %y* (t) = 0 holds, which means that once the system has assumed
this state, it is unable to leave it on its own. If a model has stable steady
states, trajectories starting in the close proximity always converge to this
attractor over time.

2.1.4.2 Elasticities

Metabolic control analysis (MCA) has been developed to study changes in
models’ steady state behaviour in response to changes in parameters or initial
concentrations [Kacser and Burns, 1973, Heinrich and Rapoport, 1974]. In
MCA global properties of a system, the control and response coefficients, are
computed from the stoichiometry of the network and local properties of the
reactions, the elasticities. The normalised e- and 7 elasticities describe the
change in reaction velocity in response to changes in substrate concentrations
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or parameter values as defined by

Olnv; y; o0v;
= == 2.2
dlny; v; 0y ( )
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J
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= . 2.

2.1.4.3 Control and response coefficients

Through the connection of N, €, and 7, global changes in the steady state of
a reaction system can be computed. In this steady state the concentrations
are given by the vector y* while the reaction velocities are termed fluxes
and abbreviated with J. The influence of reaction velocities and parameter
values on the steady state concentrations and fluxes is given by the nor-
malised flux and concentration control coefficients and the normalised flux
and concentration response coefficients

w_ v 0J/0p
Cf = 5= s (2.4)

;v dy*/ap

i 2.
¢ y* Ov/dp (2:5)

oJ

Jr 2.6

"= T (2.6)
R = %Z . (2.7)

For details on how the coefficients can be deduced from the stoichiometric
matrix and the elasticities the reader is referred to [Klipp et al., 2009, Ch. 2].

2.2 Parameter estimation

The full description of a kinetic model includes its stoichiometry, its kinet-
ics, and numerical values for parameters and starting concentrations. Some
parameters and concentrations can be obtained from public web resources as
BRENDA [Scheer et al., 2011], but the remaining ones need to be guessed.
This guessing is performed in such a way that the dynamical model is able
to reproduce experimental data and is called parameter estimation.

2.2.1 Problem formulation

In the parameter estimation process a few assumptions are made. First of
all, one assumes that a deterministic process is underlying the experimentally
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obtained data. Second, this process can be described by a kinetic model with
a certain parameter set. And third, the experimental data is in principle de-
termined by the model but additionally contains some independent normally
distributed noise. Under these assumptions the likelihood of the experimen-
tal data given the correct model can be described by a normal distribution.
This likelihood can be shown to have the same extremal points with respect
to parameter values as the likelihood of the model given the data. Further-
more, the likelihood can be linked to the so-called objective function, which

is given by
_ 2
X2 — Z (yi(tj) - yi(tj,é’)) ,
oi(t;)

i7j

where 7 describes experimentally measured data points and o is the standard
deviation of the measurements, and it can be shown that a parameter set
minimising X? is a maximum likelihood estimate of the parameters given
the data. Mathematical details of this reasoning are given in section B.2.3.1
in the Appendix.

2.2.2 Algorithms and heuristics for optimisation

While one now knows what function should be minimised in order to get
a good estimate of parameters in agreement with experimental data, it can
be discussed how this objective function can be minimised. The methods
with which such an optimisation can be performed fall into two different
categories.

On the one hand there are local methods, like gradient-descent or BFGS
[Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno et al., 1970]. The
methods are algorithms that find a point in parameter space with the lowest
objective function value in close proximity to an initial starting point. If
one imagines the objective function as a surface, they try to find the lowest
point in the valley that contains the starting position. These methods are
reliable and fast in identifying local optima, however, their results depend
on the initial starting point and cannot be assumed to be optimal along the
complete parameter space.

On the other hand there are global methods which aim at finding opti-
mal points in the complete parameter space. Because the objective function
cannot be assumed to have a particular shape, global methods need to eval-
uate lots of parameter sets from different regions of parameter space. For
this purpose they remember one or a population of (sub-)optimal solutions
from which they jump to points in parameter space that will be evaluated
next in a particular way. Examples of such methods are simulated annealing
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[Kirkpatrick et al., 1983] and differential evolution [Storn and Price, 1997].
Depending on the particular problem that is investigated, different global op-
timisation heuristics might be successful in identifying the most favourable
parameter set. However, these methods can also not guarantee to find the
globally optimal solution within a limited time.

2.2.3 Statistical assessment of fit quality

Just given the value of the objective function one is not generally able to
decide how good a model fits the experimental data in absolute terms. Nev-
ertheless, the objective function can be used to judge which model from a
series of models is the most probable one given the experimental data. Such
an analysis can be performed using likelihood ratio tests, as long as the mod-
els are nested. For other kinds of compared models the Akaike information
criterion [Akaike, 1974] can be applied. This criterion assigns each model a
score based on the fit quality and its number of parameters and allows to
judge whether a more complex model is really needed to explain the data.

2.3 Model representation

In order to facilitate the easy reuse of mathematical models, different stan-
dards for the representation of dynamic models have been developed. The
implementation of a model in such a standardised format enables its anal-
ysis in a large number of computational tools and is therefore preferable.
However, not all models can be saved in them as they are restricted in their
expressivity. For a general guide on how reusable models are created the
reader is referred to [Krause et al., 2011].

2.3.1 Systems Biology Markup Language

The Systems Biology Markup Language (SBML) [Hucka et al., 2003] is an
XML-based exchange format for dynamical models of reaction networks. In-
ternally it is organised as lists of different entities, e.g. compartments, species,
which are the main variables, reactions, which convert species into each other,
and parameters, which are numerical values used in formulas such as kinetic
laws, assignments, or triggered events. By now, SBML is supported by more
than 200 tools ! including tools for construction, visualisation, simulation,
management, conversion, and various types of analyses. Furthermore, it

'http://sbml.org
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supports various kinds of model formalisms. Stoichiometric models are sup-
ported as well as dynamic ones and the latter can be formulated in either a
deterministic or in a stochastic way.

Other languages for the representation of models exist, however, they are
less well suited to describe the kind of kinetic models investigated within
this work. CellML [Lloyd et al., 2004] is a very general XML-based exchange
format, which does in principle not only allow the description of biochemi-
cal processes but can represent any kind of mathematical model. However,
CellML models do not necessarily represent a model’s stoichiometry, which is
required for my further analyses, in an unambiguous way. BioPAX (Biolog-
ical Pathway Exchange) [Demir et al., 2010] is an RDF/OWL-based format
for the representation of pathway related information. In contrast to SBML
this format is lacking quantitative descriptions of the dynamic behaviour of
the model, which is required by my methods to judge the quality of different
targets.

2.3.2 Model annotation

Proper access to the differential equations stored in a model is provided
through the use of a standard model format. Using such a format, however,
does not imply that human readers will be able to assess the biological con-
tent of a model, i.e. the physical entities or processes behind the model’s
variables. To address this problem annotations can be used to assign se-
mantic information to model elements, which unambiguously identifies their
meaning by stating a relation between the element and an entry from a web
resource providing a controlled vocabulary (CV).

In order to enhance the value provided by annotations the MIRIAM stan-
dard [Le Novere et al., 2005] has been developed. This standard describes
how semantic information can be incorporated into a model, which informa-
tion should be provided, what kind of web resources can be linked to, and
which formal relations can be used to describe certain biological facts.

The elements of a model can be linked to entries from various CVs in-
cluding Gene Ontology [Ashburner et al., 2000], ChEBI [Degtyarenko et al.,
2008], or UniProt [Bairoch et al., 2009]. By relating elements to entries from
these resources, it is possible to describe all sorts of physical entities within a
model, but none of these CVs can be used to assign a mathematical meaning
to a parameter or a kinetic law. This is helped by a special CV, the Systems
Biology Ontology (SBO) [Le Novere, 2006], which enables a model creator
to precisely define the functional meaning of a model element.
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2.3.3 Model repositories

Standards and annotations increase the reusability of a given model. A
final factor in the promotion of kinetic models is the availability of different
databases storing them. The most popular example of such a database is
BioModels Database [Le Novere et al., 2006], which is the largest collection
containing hundreds of models. Another example is JWS online [Olivier and
Snoep, 2004], which is much smaller but provides the opportunity to simulate
a model’s behaviour online. For information on further model repositories
the reader is referred to PathGuide [Bader et al., 2006], a meta web resource
on databases containing pathway information.
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3.1 Semantic information in Systems Biology

3.1.1 Using available information for modelling

Systems Biology models in drug target identification In the search
for good drug targets which will lead to drugs with a high efficacy and a
low toxicity one requires Systems Biology models of high quality. This high
quality implies that the model has been constructed in a bottom-up fashion.
Here, the modelling starts from elementary compounds and reactions which
are put together to form a large comprehensive model including detailed ki-
netic knowledge. Otherwise, if the model has been constructed in a top-down
or middle-out fashion, it renders necessary that relevant parts of the model
are described to the detail of single enzymatic or non-enzymatic reactions.
Furthermore, it implies that the model has been validated and refined using
various kinds of high quality biological data. While the first requirement
ensures the applicability of simple methods to simulate inhibition or activa-
tion of single reaction steps in the network, the second requirement increases
the plausibility of the model’s predictions. Nevertheless, it can never be
guaranteed that a prediction is correct. A model will in most cases only
be applicable for the purpose it has been designed for. Therefore, a model
used for target prediction should have proven its predictivity by reproducing
preferably many, diverse data sets, that are relevant to the treated disease.
But, even when the predictions made by a model are not fully correct, this
model might still be of use. The knowledge of the incorrect prediction and
the real biological results can be used to refine the model via the cycle of Sys-
tem Biology. In general, it could be possible to construct a model directly for
the purpose of drug target prediction. For many applications, however, the
construction of a biologically relevant model requires more cycles of predic-
tion, hypotheses generation, biological experiments, and model refinements
than a model constructed on the basis of diverse available biological data.

Constructing Systems Biology models The construction of a com-
prehensive computational model, which is the start the workflow proposed
within this thesis as seen in Figure 3.1, is a demanding task. First of all, it

60



3.1. SEMANTIC INFORMATION IN SYSTEMS BIOLOGY

model > model > treatment

construction refinement prediction

Figure 3.1: Current position in the workflow of applying Systems Biology
methods to pharma research and development.

requires the integration of knowledge from various sources: text books, re-
cent journal articles, databases, experimental results, and available Systems
Biology models. This knowledge has to be collected and evaluated for rele-
vance. Second, this vast amount of information has to be condensed into a set
of preferably few mathematical equations. Finally, although much informa-
tion from different sources flows into the construction of a model, not every
last detail of the model might be determined. Even with lots of research one
might still lack some numerical values for substance concentrations, volumes,
or kinetic parameters. This can be due to the fact that this particular infor-
mation can not be measured, has not been measured, yet, or simply that it
has not been found in the overwhelming amount of available information.

In order to rule out the latter problem and to simplify the process of gath-
ering relevant knowledge from the rapidly increasing amount of information,
it renders necessary to develop methods for making biochemically relevant
data searchable by computers. The first big step in that direction are the
different recent public data repositories, which will most probably combine
all knowledge in the future [Aldridge et al., 2006]. These repositories will not
only be of use by storing available data in a single physical location but also
by standardising the way in which this data is deposited, which simplifies
automatic processing. A small number of web resources relevant to model
construction is shown in Table 3.1.

A unified “language” In the construction of a kinetic model, the knowl-
edge from various databases has to be integrated. One can for example
combine the structures of certain pathways, kinetic parameters of the in-
volved enzymes, and gene expression data under various conditions in order
to construct a comprehensive mathematical model. A prerequisite for such
use cases is, however, that one can compare and relate entries from vari-
ous different databases such that one knows if and how one can combine
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3.1.

Table 3.1: Examples of various web repositories relevant in the construction of Systems Biology models.

Type of data

Name

Description

ArrayExpress
[Parkinson et al., 2009]

Gene Expression Omnibus

AE is a repository storing experimental data which are
mainly array based.
GEO is another repository containing microarray

Experimental  [Barrett et al., 2011] experiments and next-generation sequencing data.

data PubChem BioAssays This repository stores array descriptions and results from
[Wang et al., 2010a] assays involving small compounds and siRNA.
BRENDA BRENDA contains enzyme kinetics and kinetic
[Scheer et al., 2011] parameters manually collected from scientific literature.
KEGG KEGG encompasses various web repositories containing

Pathway data

[Kanehisa et al., 2008]
Reactome
[Croft et al., 2011]

e.g. information on compounds, genes, and pathways.
Reactome contains curated biochemical pathways and
crosslinks its information to other relevant web
repositories.

Complete
kinetic
models

BioModels Database

[Li et al., 2010]

JWS Online

[Olivier and Snoep, 2004]
CellML repository
[Lloyd et al., 2008]

This is a repository for highly curated Systems Biology
models from the literature.

JWS Online is an online simulation environment for
kinetic models including a database of published models.
The CellML Model Repository contains a large list of
mathematical models in the CellML format.
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knowledge from different sources.

Of course, having a huge number of different databases at hand gives us
access to lots of diverse data. Nevertheless, it comes at the price of a large
number of different “naming conventions”, because different people might
think of different things and still use the same word for it. A simple example
for this fact is ChEBI [Degtyarenko et al., 2008] entry 4167, which is named
“D-glucopyranose”. This entry is deemed equivalent to KEGG entry C00031,
which is named “D-Glucose”. At the same time the ChEBI entry 17634 has
the name “D-glucose”, but it is not thought to have a corresponding entry
in KEGG.

For the purpose of unifying the language between different kinds of re-
searchers web resources like Gene Ontology [Ashburner et al., 2000] have
been developed. These ontologies serve a lot of purposes.

e First, they unify terms by assigning an 1D, a standard name, and pos-
sible synonyms to them.

e Second, they can provide a definition of the described entity. ChEBI
for example provides a chemical structure for its entries.

e Furthermore, they can provide relations between entries in their re-
source and entries in other resources. The types of these relations can
be very diverse. ChEBI entry 4167 (“D-glucopyranose”) has an “is” re-
lation to KEGG entry C00031 (“D-Glucose”) and is therefore supposed
to describe the same chemical entity. The CGD (Candida Genome
Database) [Skrzypek et al., 2010] entry CAL0000198 (“HXK2”) has
an “is_ortholog” relation to SGD (Saccharomyces Genome Database)
[Engel et al., 2010] entry S000003222 (“HXK2”). In turn, this gene
“encodes” for the UniProt [Bairoch et al., 2009] protein P04807 (“He-
xokinase-2"), whose functional classification is described by the E.C.

number 2.7.1.1.

e Finally, an ontology provides relations of different types between its
own entries. An example for such a relation is the ChEBI entry 4167
(“D-glucopyranose”), which is a more specific term and a direct “is_a”
child of ChEBI entry 17634 (“D-glucose”). Depending on the types of
used internal relations the strict term for the ontology differs. In case
there are no internal relations at all, it is called a controlled vocabulary,
if there is only one type of relation (an “is_a” relation), it is a tazonomy,
and in case there are more types, it is an ontology in the strict sense.
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Linking Systems Biology models to ontologies IDs from public on-
tologies do not suffer from the same ambiguities as descriptions in natural
language. Therefore, they are suited much better to describe the Biological
Concept (BC) behind a variable in a Systems Biology model or behind nu-
merical values in a data set [Krause et al., 2011]. Furthermore, they can be
processed by computers more easily.

In order to define the intended BCs behind the elements in a computa-
tional model, the MIRIAM standard [Le Novere et al., 2005] has been devel-
oped. This standard defines, how links to entries of various web resources can
be written in XML using the Resource Description Framework (RDF). On
top of this standard, the BioModels initiative [Laibe and Le Novere, 2007]
has defined a set of useful web resources and a set of relations the anno-
tated model elements can have to ontology entries. Up to now, MIRIAM
compliant annotations have been used in many models (e.g. the models in
the BioModels Database) and are supported by various software tools (e.g.
semanticSBML [Schulz et al., 2006] or CoPaSi [Hoops et al., 2006]). But
not only the biological aspects of a model can be assigned computer readable
annotations: The Systems Biology Ontology [Le Novere, 2006] is a taxonomy
defining mathematical and functional terms which can be used to describe
the meaning of kinetic parameters or the role (e.g. inhibitor or catalyst) of
a compound in a reaction.

Comparing Systems Biology models As already mentioned, to make
full use of the available information when constructing a kinetic model one
has to be able to automatically compare models and data sets. One needs
to be able to search resources for appropriate models. One needs to rank
the retrieved results by relevance to the current application. One needs to
classify collected models and data sets according to their specific use. And
one needs to be able to relate the details of models and data set, in order
to see how they differ, overlap, and complement each other [Liebermeister,
2008, Krause et al., 2010]. In general, well accepted algorithms exist for
all of these applications. But in order to apply them, one has to define a
similarity measure for models, model elements, and data sets. And, as stated
above, this measure should be computed from machine readable semantic
information.

A first question one has to ask is which aspects of a Systems Biology model
are supposed to be captured by the similarity measure. Complete kinetic
models are always a combination of two different kinds of information: (i)
the biology or “what” is described by the model (e.g. substances, proteins, or
processes converting them) and (ii) the math or “how” the model is described
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(e.g. how does the stoichiometric matrix look like or which kinetics are used).

In this chapter, a similarity measure for the “what” should be developed.
Following this simple approach is advantageous from three different points
of view. First, the simpler the measure the broader will be its applicabil-
ity. When one neglects the mathematical aspects of the model, there is no
conceptual difference between an annotated model and an annotated data
set. Therefore, one will be able to compare data sets with data sets and/or
models. Second, a simple measure can serve as a starting point in the de-
velopment of a more complex measure incorporating the structure. Finally,
sometimes the “what” of a model might already give hints on the “how”.
The paper of Markevich et al. [Markevich et al., 2004], for example, discusses
different model alternatives with different structures. Along these different
structures also the biological annotations are changing, as e.g. assigned GO
terms are changing in between an enzymatic reaction and its implementation
in distinct reactions with mass action kinetics.

During the development of the methods introduced in the following sec-
tion, a related approach to a similarity measure has been published: Henkel
et al. [Henkel et al., 2010] have developed a method to query BioModels
Database for models containing certain (or related) terms. This approach
combines techniques from information retrieval with similarities defined on
entries in ontologies. As the most promising measure I have developed in this
thesis will follow a similar approach, I will introduce the different fields of re-
search it is built on in the following. Apart from similarities and information
retrieval, the challenges in combining knowledge from different ontologies will
be addressed. Because various kinds of information from various resources
might be useful for an extensive similarity measure and because established
measures have been developed on the basis of individual web resources, the
integration of ontologies should be regarded as a prerequisite of this measure.
Furthermore, concepts of the semantic web and minimal annotations will be
introduced as they give us information on the biological content of data sets
and models.

3.1.2 Integrating ontologies

What should be regarded as an integrated ontology? Before the
question of how one gains an integrated ontology should be answered, one
first has to define what should be regarded as an integrated ontology. Or,
seen from a different point of view, what will be the result of the integration
process? As its main constituents, an ontology contains uniquely identifiable
entries, which might be described in more or less detail, internal relations
between entries, and cross-links stating how internal entries relate to entries
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from other resources. In the scope of this thesis, I see the process of combining
different ontologies as a procedure leaving us with a new, big ontology such
that

e every entry from every ontology is linked to a certain entry in the
integrated ontology,

e cvery entry in the integrated ontology is linked to at most one non-
obsolete entry from a particular resource,

e cvery relation from every ontology has a corresponding relation in the
integrated ontology, and

e cross references between two entries of two web resources should in gen-
eral result in both entries being mapped to one entry in the integrated
ontology.

How can ontologies be integrated? Even though it can be stated com-
parably simple how an integrated ontology should look like, the problem of
how to integrate them practically is much more complex. This complexity
arises from the facts that the different ontologies come from multiple sources,
which might interpret things differently, they might describe entities to a dif-
ferent degree of detail, or they might simply be wrong. All of these problems
can lead to inconsistencies like circles of directed relations in the integrated
ontology.

These inconsistencies can be dealt with in two different ways: The meth-
ods designed for single, consistent ontologies could be modified to work on
an erroneous graph or the inconsistencies have to be removed from the inte-
grated ontology [Huang et al., 2005]. Since a consistent ontology might also
be of use for other applications, the latter is more preferable.

One of the biggest problems in ontology integration has already been
discussed in the literature: the problem of cycles of directed relations in the
integrated graph. If one assumes that the individual ontologies do not contain
these cycles, then the problem has to stem from the integration process. In
order to tackle this problem, two accepted approaches repairing an integrated
ontology remove cross references between the single ontologies which lead to
a cycle. This is repeated until the result is a consistent ontology [Meilicke
et al., 2007, Ji et al., 2009]. Another approach does not use direct cross
relations as evidence to merge entries from two different web resources but
takes cross references from a third ontology into account [Kirsten et al., 2007].
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entity, something

life form, being ...
animal, person, human, ...
beast, ... // \
adult, male, female, juvenile,
grownup male person  female person juvenile person

professional, male child, female child, girl, c¢hild, kid,
professional person  baoy, child child, little girl minor, ...

educator,
pedagogue

teacher,
instructor

Figure 3.2: Subpart of synonyms and their specialisations as defined in Word-
Net [Miller et al., 1990]. Figure taken from [Li et al., 2003].

3.1.3 Similarity measure for entries in ontologies
3.1.3.1 Measures used to compare ontology entries

Prerequisites of similarity measures Similarity measures for entries
in taxonomies have been discussed in the literature for decades. One of
their first big applications has been the automated search for documents in
large databases. Here the measures have been developed to compare words
from natural language for their similarity. In order to deal with ambiguities
of words the taxonomy WordNet [Miller et al., 1990] has been developed.
This taxonomy divides the English language into so-called terms consisting
of different synonyms and structures these terms as specialisations of each
other in a hierarchy. A subpart of this ontology is shown in Figure 3.2.
Apart from WordNet, many approaches use a second source of informa-
tion to judge the similarity of two words: their “information content”. This
information content is inversely related to how often a word is used and is
supposed to represent the fact that a rare term appearing in two documents
is a stronger evidence of the documents’ similarity than a common term. To
gain information on the frequency of words a “corpus”, which is a compila-
tion of texts on different subjects, is used. For the English language a good
corpus is the Brown Corpus of Standard American English, which contains
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one million words extracted from texts written in 1961 [Francis and Kucera,
1964].

A third commonality between most of the early approaches is how the
quality of the measures has been evaluated, or rather how much they resem-
ble human judgement. In the nineties, Miller and Charles compiled a data
set of 30 noun-noun pairs and recorded how 38 individuals rated their simi-
larity [Miller and Charles, 1991]. The correlation between the means of their
recorded similarities and the judgement of the evaluated similarity measure
has henceforth been used to rate different approaches. Even though the data
set has been used most often, it is actually a subset of a pair list compiled
by Rubenstein and Goodenough [Rubenstein and Goodenough, 1965], which
contained 65 word pairs. Nevertheless, because of its popularity the human
similarities for the Miller experiment have been replicated in [Resnik, 1995].

Differences in available similarity measures Although these data sets
attracted much attention, the first similarity measures for entries in an on-
tology have been derived beforehand. A very simple example is the concept
of distance introduced by Rada et al. [Rada et al., 1989], which is based
on the MeSH (Medical Subject Headings') taxonomy. This measure simply
counts the number of edges in between two entries in an ontology. Despite its
simplicity, this distance measure has been used in different contexts, e.g. in
combination with techniques from information retrieval to improve docu-
ment searches by keywords [Lee et al., 1993]. An apparent drawback of this
method can be seen in the example in Figure 3.2: not all edges have the same
semantic length. The edge from “entity” to “being” connects terms which
are semantically more different than the terms “educator” to “teacher”. In
order to deal with this problem Wang et al. [Wang et al., 2007] developed an
approach in which the paths from both compared terms to the root are taken
into account. Here, not only the number of edges appearing in both paths
play a role. Also the type of the relation they represent and their distance
to the compared terms is accounted for in the measure.

A common criticism of the purely ontology-based (or edge-based) methods
has been the fact that they could not distinguish between common and rare
terms. In theory, a common term appearing in two documents (probably
by chance) should influence the similarity of the documents less than a rare
term, which is much less likely to appear by chance. For the purpose of
assessing the information content of different words various approaches use a
corpus to count words in it. This information content is then combined with
the structural information implicated in a taxonomy. The first approaches

'http://www.nlm.nih.gov/mesh
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using this new source of knowledge have defined the similarity of two terms
as a function of the information content of their most precise superconcept
[Resnik, 1995, Lin, 1998]. A superconcept is here defined as a concept on the
path between the term and the root of the hierarchy. In both approaches
the number of occurrences of the individual words is counted first, and then
these numbers are summed up on the way upwards in the hierarchy. This
ensures that more specific words are regarded as more informative as their
superconcepts.

Although these so-called node-based methods already perform quite well,
it should be clear that a combination of both types of approaches should in
general work even better [Budanitsky and Hirst, 2001]. A first idea in this
direction was to use information to reweigh the edges in an ontology before
a distance between two terms is computed [Jiang and Conrath, 1997]. Other
approaches directly combine both kinds of information independently into the
similarity measure. In this setting it is possible to estimate weights, which
define how much a certain type of information contributes to the similarity,
in order to optimise the performance of the measure [Li et al., 2003].

3.1.3.2 Biological applications for similarity measures

In conjunction with the rise of the first biologically relevant ontologies the
first similarity measures have been applied to biological problems. One of the
first approaches compared sequence information from UniProt entries with
the semantic similarity of their function, given by links to entries in Gene
Ontology [Lord et al., 2003]. Gene Ontology terms have further been used
to relate gene expression levels to the functional similarity of their products
[Wang et al., 2004, Yu et al., 2007]. Based on the results of Wang et al. dif-
ferent similarity measures and the different branches of the Gene Ontology
hierarchy have been evaluated to assess whether the similarities computed
from them correlate well with gene expression data [Sevilla et al., 2005]. For
some applications new measures have been developed, e.g. to compare the
functions of all proteins expressed in an organism in order to find overlaps
and differences between species [Schlicker et al., 2006] or to correlate protein
families [Couto et al., 2007]. Although most of the biological applications of
similarity measures are based on Gene Ontology, also other ontologies have
been used. Kohler et al. for example used semantic information on diseases
from the human phenotype ontology [Robinson et al., 2008] to determine the
most probable diseases given a set of symptoms [Kohler et al., 2009].

In accordance with the huge amount of available measures and applica-
tions, also a lot of different tools, e.g. FuSSiMeG [Couto et al., 2003], Fun-
SimMat [Schlicker and Albrecht, 2008], or G-sesame [Du et al., 2009], have
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been developed. A comprehensive overview on similarity measures and their
applications in Systems Biology can be found in Pesquita et al. [Pesquita
et al., 2009]. This review also shows that different measures are more suit-
able for different applications. Therefore, for every use case various measures
should be evaluated.

3.1.4 Principles of information retrieval

Information retrieval (IR) is a field of research investigating the question of
how to reliably find relevant documents in a large resource. As the amount
and complexity of available information grows constantly, computers have
to aid humans in the search for knowledge. The biggest challenge in IR is
imposed by the fact that queries for documents do not need to follow a fixed
format. Therefore, the question of how relevance is determined or evaluated
is not determined a priori. Instead of simple rules, complex relations between
the query and the retrieved documents are thus used to rate their relevance.
These relations are then combined in heuristic similarity measures, which
differ along each other in 4 central points: (i) the way how query and doc-
uments are represented, e.g. term sets or vectors [Salton, 1971], (ii) the way
how terms are interrelated, e.g. not at all, based on the co-occurrences of
terms [Wong et al., 1987], or, as presented by Becker & Kuropka [Becker
and Kuropka, 2003], based on the “semantic coherence” of words, (iii) the
way how different terms are weighted in the similarity measure, e.g. by term
frequency-inverse document frequency (TF-IDF) [Jones, 1972], which weights
a term higher the more often it is used in the considered document but the
less often it is used in the complete document resource, and (iv) the way
how this information is combined into a similarity measure, e.g. by the co-
sine measure [Salton and McGill, 1986], which judges the similarity of two
feature vectors by the angle between them.

3.1.5 Standards for semantic information on the inter-
net

The annotation of data with computer readable information has not solely
been invented for biological applications. Together with the introduction of
various standards of the internet, the term “semantic web” has been coined.
The semantic web expresses the idea to annotate documents with meta in-
formation which describe its content. This meta information might be useful
for different purposes. It allows to search for relevant documents on a cer-
tain subject or, given descriptions of results from scientific literature, for the
inference of new knowledge.
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In order to store the meta data, the Resource Description Framework
(RDF) data model has been proposed. Its main feature is the form in which
information is stated: a triplet of subject, predicate, and object. For example,
the sentence “glucose is a certain kind of sugar” could be expressed as a triplet
(“glucose”, “is_a”, “sugar”). The single parts of the triplet are not supposed
to be simple terms but references to entries from controlled vocabularies,
e.g. the glucose entry in ChEBI. Given lots of elementary knowledge in this
RDF format, new, more complex information can be inferred. One can for
example verify that glucose really is a sugar. This information is not stated
explicitly in ChEBI, but the two terms are connected via a chain of other
terms and “is_a” relations, and the “is_a” relation is known to be transitive.
This inference of knowledge is called reasoning.

Apart from standards on the format in which meta data on documents is
stored, standards for the information placed in it are necessary. Most of these
standards try to establish a set of minimal semantic information needed to
judge the contents of a document. While the aforementioned MIRIAM de-
fines this minimal information for Systems Biology models, MIAME [Brazma
et al., 2001] does the same for microarray experiments. Eventually, even tex-
tual scientific information is supposed to get annotated [Cheung et al., 2010],
which will make large amounts of knowledge available for automated retrieval
and reasoning.

3.2 Comparing models and data sets based
on semantic information

3.2.1 Combining ontologies
3.2.1.1 A library to integrate ontologies

For the purpose of relating entries from different web resources I have de-
veloped an ontology integration library called libSBAnnotation. Its devel-
opment started in a project in which it has been investigated how to find
overlapping elements in SBML models in order to merge them to bigger,
more comprehensive models [Schulz et al., 2006, Krause et al., 2010]. Af-
terwards, this library has been reused to retrieve, cluster, and align similar
models and data sets from large databases [Schulz et al., 2011]. It should be
noted that in contrast to available ontology integration approaches the aim
of the libSBAnnotation has not been the construction of a fully valid, human
readable ontology. Its objective is merely to provide means for the pairwise
comparison of entries from different web resources.
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In the beginning, the library had a special scope. It was intended to be
part of an open source tool which is suitable for researchers as well as for
the industry. Because of licencing issues with some of the integrated web
resources (for a full list see Table 3.2), users have been supposed to man-
ually select the resources they need and are allowed to use. The selected
resources are afterwards downloaded and integrated on their local machines,
which imposed computing time and memory consumption limitations on the
integration process. Since prior test implementations making use of available
database systems (e.g. MySQL) have been too slow for the comparison of
SBML models containing large numbers of semantic annotations and since us-
ing a database system would impose more software requirements for our tool,
I have implemented the libSBAnnotation purely in Python [Van Rossum,
1995].

Being able to perform the integration process on the local machines of
different users requires the libSBAnnotation to run in limited time and with
less memory. One possible way to reduce the computational effort is to read
single entries from ontologies one after another and integrate them on-the-fly
into the libSBAnnotation. The steps of the integration and the underlying
database scheme will be explained in the following paragraphs after my goals
have been compared to the capabilities of other available tools.

3.2.1.2 Available frameworks incorporating semantic information

In recent years other tools sharing some similarity to the libSBAnnotation
have been developed. The libAnnotationSBML [Swainston and Mendes,
2009] is a Java library acting as a wrapper for the divergent web services
provided by different resources. By providing a unified interface to various
web services it reduces the programming effort of integrating annotation ca-
pabilities into new tools. However, because it depends on web services it is
slow when large numbers of annotations have to be compared. Another dis-
advantage of this approach is that it does not integrate the knowledge from
its different resources in order to uncover inconsistencies in them.

BridgeDB [Van Iersel et al., 2010] is another library providing a unified
interface to access various web resources. In contrast to the libAnnotationS-
BML it provides means to install some of the used databases locally. Nev-
ertheless, this feature is only used to speed up the tool and not to improve
the knowledge provided by individual ontologies. Further tools and libraries
that provide information on the entries of various web resources exist, e.g.
PICR [Coté et al., 2007b], but these are only based on single resources and
therefore also do not integrate ontologies.
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Table 3.2: All web repositories currently integrated during the construction
of the libSBAnnotation. Web resources differ by the type of described entities
(e.g. genes or organisms) and the relation types used to connect these entries.

Web resource Content Relations extracted
NCBI Taxonomy  organisms is_a
Gene Ontology compartments, is_a, negatively_regulates, regulates
processes part_of, positively_regulates
ChEBI small chemical has_functional_parent,
entities (SCE)  has_parent_hydride,
has_part, has_role, is_a,
is_conjugate_acid_of,
is_conjugate_base_of,
is_enantiomer _of,
is_substituent_group_from,
is_tautomer_of
SBO parameters is_a
PubChem SCEs
Compound
KEGG SCEs, genes,
reactions,
enzymes,
Reactome species
EntrezGene genes encodes, hasFunction, inOrganism,
inProcess, isLocated, isPartOf
UniProt proteins encodes, hasProcess, inOrganism
Interpro protein families parent, member, example, found_in
& domains
Saccharomyces genes
Genome Database
Candida Genome  genes

Database

3.2.1.3 Database schema of the libSBAnnotation

Although the libSBAnnotation has been developed exclusively in Python, I
have tested how relational database systems would perform in various appli-
cations. For this purpose, I have developed the database schema shown in
Figure 3.3, which has later been used as the basis of the Python implemen-

tation.

The schema is centred around the Abstractltem table. This table con-
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StringRepr
+ id - int
+ repr : string
+ abstract_item : Abstractitem
+ is_favourite_description : bool

+1_\£I|:|si_:r?ctltemRelation # +id : intEXl‘Eﬂ'?afﬂem
id - int + data_id : string
+ from_item : Abstractitem + abstract_item : Abstractitem
+ to_item : ﬁlbstract_ltem + is_reverse : bool
+ relation_type : string ) =
+ evidence : string +abstract_item iy Iy
" from_item| Abstractitem | abstract_item Externalitem...

+to_itém 3 id : int

+ type : string

| ExternalitemGeneOntology
I
I

— +abstract_item
species_id +localisation

feaction_id general_item ExternalltemKeggCompound!
]
TakesPart
+ species_id : Abstractitem Localisation
+ reaction_id : Abstractltem + abstract_item : Abstractltem
+ role : string + localisation : Abstractitem
+ stoichiometry : int + general_item : Abstractitem

Figure 3.3: UML diagram of the database scheme underlying the libSBAn-
notation.

tains volatile IDs for so-called Biological Concepts (BCs) and the type of
information described by this concept. BCs can describe various kinds of
entities in my implementation, e.g. proteins, compartments, or processes.
Various synonyms as well as a preferred term for the BCs are stored in the
StringRepr table.

In order to relate BCs to entries from other web resources the Exter-
nalltem™ tables have been created. Using separate tables for all referenced
resources has the disadvantage that new tables have to be created each time
new web resources are referred to. Nevertheless, the Python implementa-
tion is faster for many relevant queries and the abstract_item entry is unique
among every Externalltem™ table. Thus, it can be used as a key for faster
access to a specific column and to easily check for consistencies in the inserted
data.

The different kinds of relations which can be used to relate BCs are stored
in 3 different tables: (i) Localisation is a table for special localised compounds
from Reactome, (ii) TakesPart is a table storing the stoichiometry of reac-
tions, and (iii) AbstractIltemRelations is a table containing all other types of
binary relations in which two Als are involved. The latter table contains all
relations directly extracted from various web resources (see Table 3.2 for a
comprehensive list) together with the name of the resource from which it has
been extracted.
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3.2.1.4 Integrating information from different ontologies

As previously discussed, the integration process has to be done on-the-fly
due to constraints on time and memory usage. Therefore, the entries of the
different web resources are included one after another. This means that in
each step one has to consider how to integrate a single entry or a single
relation into the constantly growing ontology. Depending on whether this
information is already included in the ontology it has to be merged with
existing knowledge or it can simply be added to it.

In order to simplify the integration process I avoid merging relations. This
is done by neglecting sources of information which provide identical relations
between the same types of BCs. The nodes, however, can be taken from
different sources and can therefore contradict each other. By far the most
common problem of this kind arises when one web resource states that two of
its entries a; and ay are identical with an entry b; from a different resource;
or stating it differently, when a node {a;,b;} has to be merged with a new
node {ag,b;}. In such cases two new nodes {a;} and {ay} are constructed
and connected to the initial node {b;} by is_a relations. Existing relations
of the prior node {a;,b;} which had been extracted from the a resource are
then moved to the {a;} node.

A problem which frequently arises from this operation (and from possible
inconsistencies between the resources) are cycles of directed relations. These
cycles are found in a post-processing step and repaired by removing one of
the relations (preferably one which had been inserted automatically) in it.

Using these simple rules one is able to construct an ontology which is
consistent according to my definitions. It should be noted that this ontology
might not be of the same quality as a manually curated one. Nevertheless,
it provides good means to compare pairs of entries from various databases.

3.2.2 Similarity measures for Biological Concepts

The similarity measures presented in this chapter are built in a modular man-
ner. The similarity of complete models is dependent on the similarity of the
models’ elements which is in turn dependent on the similarity of annotations
and single BCs. Because of this modularity the similarity of BCs is discussed
first, before different model similarity measures are introduced.

3.2.2.1 Li’s modular similarity measure

According to Pesquita et al. [Pesquita et al., 2009] different measures are
more appropriate for different applications. Thus, researchers should not
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rely on a single measure to produce appropriate results but they should
rather compare the applicability of different approaches. Li et al. proposed
in [Li et al., 2003] a set of similarity measures built out of three parametrised
components. Each of these components uses a different kind of information
to judge the similarity of two ontology entries. My idea has therefore been to
test the individual components on whether they improve the quality of the
introduced similarity measures. Given the case that an appropriate amount
of test data is available, one could even try to estimate parameters in the
individual components of the similarity measures.

Mathematical notation Before I discuss Li’s measure in detail, I first
have to introduce some formal notation for models, model elements, their
annotations, the referenced resource entries or BCs, and the relations between
them, which will be used throughout this thesis. The rest of this methods
section is based on [Schulz et al., 2011]. For more details the reader is referred
to this publication.

X
Model Model Model .+ [|Annotation
collection M element ut
K R
0.‘. it 0’..

Qualifier p@

o < ...
.

. . Biological
-

~ 7

Figure 3.4: Subdivision of a model collection into single annotations and
their related Biological Concepts.

Formally, I regard annotations, elements, and models as nested sets (com-
pare Figure 3.4). MIRIAM-compliant annotations are regarded as parts of
elements p* € m, which are a part of a model m € M, which are a part of a
model list M € M. Depending on the measure I will discuss in the following,
the layer of the model elements can also be disregarded. In this case the
annotations are directly a part of the model. Each annotation p® relates
the model element to an identifier (ID) pu! from a web resource p*, while the
qualifier x9 specifies the relation between the element and the corresponding
resource entry. Thus, an annotation is formally a triple p® = (u?, ut, u®).
Given the knowledge from the libSBAnnotation, all web resource entries
(*, u') can be mapped to Biological Concepts p. Since T am not interested
in the fact which specific resource was used to annotate a model element, 1
can internally represent an annotation by the tuple u* = (u, u9).
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In the libSBAnnotation, relation edges connecting the BCs p and v can
be described as triples r = r(u, v, relation_type) (for a list of possible relation
types, see Table A.1 in the Appendix). I denote the set of outgoing relation
edges from a BC R(u) and the set of outgoing relation edges of a certain
type is called R(u,relation_type). Be the depth d(u) of a BC defined as the
number of “is_a” relations to a root in the ontology and the height h(u) by
the maximal number of “is_a” relations to any of the leaves below it. Finally,
I define the frequency of a BC in BioModels Database as c,, the cumulative
frequency as ¢, = ¢, + Zg:r(u,g,t)e R(u,is.a) c¢ which sums up the frequencies of
all its children in the “is_a” hierarchy, and the total number of annotation
appearances including pseudocounts as cq = 1+ ZV{:C£>O(C§ +1). To include
MIRIAM annotations that do not match any known BC in the considered
ontology, one can create new BCs without any relations to other concepts
and then treat them as if they had already been contained in the ontology.

Li’s measure Li’s similarity measure takes two different sources of knowl-
edge into account: a taxonomy of a natural language and a text corpus with
which the information content of terms is judged. It is built from three inde-
pendent factors fi/2/3 which measure the similarity of two words: f; takes the
number of relations [ on the shortest path between two terms into account, f,
contains a factor incorporating the depth of the lowest common ancestor of
two terms in the ontology, and f3 is computed from the information content
of the lowest common ancestor, which results from the composition of the
text corpus. From these factors, Li et al. set up their similarity measure

o(p,v) = filpv)- falwv) - fs(u,v).

Transferring this measure to my ontology leaves me with two problems.
First, [ am not computing the similarity from a taxonomy but from an ontol-
ogy. Therefore, different relation types have to be taken into account when
computing fi. Second, the entries which are compared in my ontology are
not necessarily members of the same “is_.a” relation hierarchy, e.g. when
genes and proteins are compared. This means that few pairs of compared
entries have a unique lowest common ancestor. Therefore, the fy/3 factors
should be modified such that they incorporate the depth and the information
of the compared entries, which are always available.

Adaption of Li’s measure to compare entries from full ontologies
In order to deal with the aforementioned problems I have adapted Li’s simi-
larity

U]I%ic(:uvy) = fl(:uvy)' 2Li(:uvy)' ;‘i(p”y)
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by modifying the single factors.

The ontology distance factor f; is defined as the product of scores for the
individual relations on a path between two entries. In case different paths
between two entries exist, it is defined as the maximum over these paths.
Numerical values fis(t) for the different relation types ¢ are in the range
between 0 and 1; heuristically determined values are given in Table A.1 in
the Appendix. The factor f; can be recursively defined as

il ) =1
V) = max rtsll) - ,V)). 3.1

fler) = e () () 3.

In case that there exists no relation path between p and v, f; is set to 0.
Depending on the specificity of two entries, the length of the path between

them should be reweighed. For more specific entries a certain path length
should result in a higher similarity than the same path length between un-
specific entries. The ontology depth factor f, incorporates this specificity by
measuring the relative depth of two entries in their ontology branches:

Li _ 3 d(p) +1 div)+1
2/ (pv) = tanh (5 (d(u) PR T A0+ R 1)) - (33

The prefactor 3/2 here has been chosen ad-hoc to use the nonlinear range of
the hyperbolic tangent function.

To deal with the fact that Biological Concepts appear in Systems Biology
models with different frequencies and that they therefore contribute differ-
ently to a model’s “identity”, the information content factor f3 is included
into the similarity measure:

3'(1,v) = tanh (— log <M)) (3.3)

CQ

This factor decreases the similarity of common BCs such as ATP and thus
decreases their weight in the comparison of complete models.

A general problem I see in the definition of the measure is the indepen-
dence assumption between the terms f; and f;. In my opinion this inde-
pendence assumption is not justified. Given a simple, balanced taxonomy
of “is_.a” relations and two entries having the maximal distance (measured
in length of the path between them) in it, it is evident that each of them
also has to have maximal depth. Furthermore, given that two entries have
minimal depth, they both have to be the root and have distance 0. Thus, I
propose to drop the independence assumption and modify the way in which
both factors contribute to the similarity.
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3.2.2.2 A modular measure for comparing Biological Concepts

A modified version of Li’s similarity measure assuming a dependence between
the distance and the depth factor is given by

oBo (1, v) = filp, )W fa(p) - f3(v) (3.4)

where
2
d(p) +d(v) +2
- log (¢, + 1).
log cq
This formula has been designed respecting the idea that the conceptual
distance between two entries connected by a relation declines exponentially
with their depth in the ontology. Therefore, a path length [ of entries in
depth d should result in the same similarity as a path length 2/ in depth 2d.
The change in how f3 is implemented in Equation 3.4 results from the
fact that the information content of both entries should be regarded as in-
dependent. Furthermore, the normalisation using the tangens hyperbolicus
seemed arbitrary and was replaced by a more simple linear normalisation to
log CQ.

f2(:u7 V)

f3(w)

3.2.3 Similarity measures for annotated data sets and
models

3.2.3.1 Comparing MIRIAM annotations

As shown in Figure 3.4, the difference between a MIRIAM compliant an-
notation and a Biological Concept is the qualifier. This qualifier states the
relation between the model element and the web resource entry. In order
to compare annotations, I complement the similarity measure with a factor
accounting for the different qualifiers

O-AH(IU’A7VA) = qum(ru’aqu) ’ UBC(Nv V)' (35)

This factor is independent of the similarity of the BCs and is supposed to
decrease with the distance the qualifier implies (see Table A.2 in the Ap-
pendix for numerical values). Nevertheless, both qualifiers are not regarded
as independent because certain combinations of qualifiers can imply a closer
relation of the model elements. An example for such a relation is a protein
which is annotated with the gene it is encoded by. In case this protein is
compared to itself, the combination of two “isEncodedBy” qualifiers should
increase the similarity.
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3.2.3.2 The preference-based measure

Comparing model elements In SBML, the biological meaning of model
elements can be expressed by a set of annotations. These annotations may
point to identical Biological Concepts in different web resources but they may
as well express different aspects of the element. A protein for example, could
carry an annotation which uses the “is” qualifier to point to a UniProt entry
and another annotation stating that this protein “isEncodedBy” a gene from
the Saccharomyces Genome Database.

In order to deal with the different ways in which a model element can be
annotated, I have developed similarity measures for elements and complete
models. The idea behind this measure, which is similar to the one proposed
in [Kohler et al., 2009], is that for every annotation in one of the compared
elements one tries to find the closest annotation in the other element. Because
of the fact that annotations can “choose” a matching annotation from the
other element, I call the similarity measure

> n}\axaAn(uA, M)+ > m

A A
AaxaAn(,u U
uAem VOEN vAen M€

m

Ugfef (m’ n) =

Im| + |n| ’

a preference-based measure. In this formula |m| denotes the number of anno-
tations assigned to model element m. Given the case that one of the elements
is not annotated, one of the maxima would not be defined. Therefore, I set
the similarity to a value eg; > 0, when one element has no annotations. This
value represents the small probability that randomly picked elements have
the same meaning, because no annotations supporting their dissimilarity are
known.

Comparing models The preference-based similarity measure for models

> maxog(m,n) + >, maxog(m,n)
ot (M, Ny = meM "N nen e (3.6)
° |M][ + [N
follows the same reasoning as the aforementioned measure for elements and
is computed from a similar formula.

A strange inconsistency of this measure can be seen in Figure 3.5. The
similarity of the two models M and N is computed as 34i while the similarity
of N with itself has a value of % Thus, N is more similar to M than to
itself. To correct for this behaviour, which results from elements lacking

annotations a normalised similarity

Pref
~ Pref UMo (M’ N)
M.N) =
o (M, N) max(oTr (M, M), otrt (N, N))

(3.7)
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(A) (B)
Model Model Model Model
M M

Annotated Element 1 Annotated Element
element \ element

Annotated 1 Annotated 1 Annotated Annotated 1
element 1 element element element

Figure 3.5: Preference-based similarity measure. (A) Pairwise element sim-
ilarities are depicted for the pairs of model elements. (B) Each element is

assigned the maximum of the similarities it is involved in. The similarity of

; Pref — 1+14e+1 _ 3+e
the compared models is now o' (M, N) = 555 = =3=.

/
0-

0
00-

(

could be used. Using this formula N would, as expected, be more similar to
itself than to M. Nevertheless, this formula leads to other problems as two
models sharing one single annotation and containing the same number of not
annotated elements would always have a similarity of 1.

3.2.3.3 Vector space model

The vector space model (VSM) [Salton, 1971] (for more details see [van Ri-
jsbergen, 1979, Berry et al., 1999]) follows the idea to represent documents
by vectors. These vectors reside in the space of so-called features i and their
numerical coefficients a; 4 denote if and how a document d is referring to each
feature:
Q1.4
vg = | @2.d

Instead of regarding v, as a vector in the space of features t; it is also possible
to include explicit knowledge about the features and rewrite vy as a linear

combination
Vg = Z ai,dti.
(2

In the most simple case, one assumes independence of the features and defines
their associated vectors to be unit vectors (t; = €;).

For the application of comparing Systems Biology models using the VSM
I disregard the layer of model elements and describe the models by vectors
in the space of Biological Concepts. Each model M is assigned a vector
vy which contains a one (v;y = 1) for all BCs ¢ which are referred to by
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the model. All other coefficients are set to 0. In principle it is possible
to incorporate the qualifiers of the annotations to assign the coefficient v;,,
values from the range [0,1] (e.g. vinr = A/ fqsm(p%, %)), but for simplicity
this is not investigated in the scope of this thesis.

Cosine similarity measure Different measures have been introduced which
can be used to determine the similarity of feature vectors (e.g. Dice’s coeffi-
cient [Dice, 1945] or the overlap coefficient). A measure with a comprehen-
sible geometrical interpretation is the cosine of the angle between the two
compared vectors [Salton and McGill, 1986], which is given by the formula

T .
o(M,N) = "IN

oadllaffonlls

Transforming the space of features This simple measure already leads
to convincing results. Nevertheless, it has the problem that if slightly differ-
ent BCs are used to annotate elements of two models (probable if models are
annotated by different people), this simple measure would not capture any
similarity. To deal with this problem I apply a transformation A to the basis
vectors of the feature space. This transformation is supposed to reduce the
angle between similar features to make them lose their orthogonality and is
based on the idea of the Topic-based vector space model (TVSM) [Becker
and Kuropka, 2003]:

(M, N) = vl AT Avy
’ VU AT AvyA /oL AT Avy

In the following, I will discuss how this transformation or rather how
the matrix S = AT A can be constructed. For this purpose I compute the
similarity of two models M; and N; which each contain only one annotation
(w.l.o.g. thei*™ and j** feature representing the BCs p and v). This similarity
then computes as

oTVSM(AL Ny = VS (3.8)
Mo ’ AU Sua/vk Suy
B el Se;
Vel Seiy /el Se;
S,

Siin/Sij
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Given the idea that the similarity of the models M; and N; should be equal
to the similarity of the BCs p and v, it is evident that the matrix S is made
out of normalised similarities of the Biological Concepts. If one requires the
similarity measure o, to fulfil oa, (¢, 1) = 1, one ends up with o(My, Ny) =

Sij E oan(t, V) and the pairwise BC similarities can directly be inserted into
the matrix S.

3.3 Retrieval, alignment, and clustering of mod-
els and data sets

3.3.1 Assessing the quality of different similarity mea-
sures

In the following I will evaluate the quality of different similarity measures
by using them to cluster models from the BioModels database or compare
clusters of them. For this purpose, I have compiled two sets of models, a
small set of 14 well-known models on 4 different pathways (see Table 3.3)
and a large set for which the division into predefined clusters has been done
semi-automatically according to the pathway annotations on their “model”
elements (see Supplementary Table A.3).

Table 3.3: Small set of models from the BioModels database, which have
been grouped manually according to the pathways they describe. The right
column does not show the complete IDs from the BioModels Database but
only its significant parts. Full IDs consist of the string “BIOMD” followed
by 10 digits.
Described pathway BioModels Database
model identifier

Glycolysis 70, 71, 211
Circadian clock 16, 21, 22
Cell cycle 57,8, 111

MAP kinase cascade 26, 27, 28, 29

Silhouette coefficient My first idea to evaluate how similar the models
in a predefined group are, is to compare intra- and inter-group similarity by
the silhouette coefficient [Kaufman and Rousseeuw, 1990]

Y hres e (030D
€ maxi{¢ €
sc(M) = M| ) (3.9)
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where
oM, N
G(M) _ max ZNGC oM ( )7
CeC,M¢C IC|
oMo M, N
(M) = max Livec. vz O ( ), (3.10)
CeC,MeC IC|

M is the set of benchmark models, and C is the set of predefined biological
model groups. Given a high silhouette coefficient, one knows that the simi-
larities within a group (¢) are higher than similarities between two different
groups (€). This value therefore measures how clearly models from different
groups are separated.

Jaccard coefficient My second idea to compare measures is to evaluate
clusterings of the models. For this purpose I use the different similarity
measures to perform an agglomerative clustering of the models with average
linkage. This is continued until the results contains as many clusters as there
are predefined groups in the data set. These clusters are then compared to
the groups by the Jaccard similarity coefficient [Jaccard, 1901]

On

, 3.11
Op1 + O19 + O13 ( )

jac =

where O1; is the number of model pairs sharing the same group and the same
cluster and Oy¢ and Og; are the number of pairs appearing exclusively either
in the same group or the same cluster. This value is supposed to determine
how closely the clustering based on the compared measures is related to the
predefined groups.

3.3.2 Evaluation of the different measures

Which is the best model similarity measure? The results of the com-
prehensive analyses of the different similarity measures evaluated by different
coefficients and using different data sets are shown in Table 3.4. In general,
no single measure performs best with respect to all four tests. Furthermore,
for most tests the values of the quality measures are quite similar. The only
test showing a distinctively superior measure is the Jaccard coefficient for
the clustering of the large model set. Here the TVSM measure which disre-
gards the information content of Biological Concepts (f; = 1) is clearly the
best. Since this measure can be evaluated much faster and since it is also
applicable to annotated data sets or any other type of information that can
be transferred to a list of BCs, I have used this measure in the web tool we
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Table 3.4: Evaluation of model similarity measures with predefined model
groups. Different variants of normalised similarity measures (rows) were com-
pared for the small and large model benchmark sets. The silhouette coeffi-
cient scores the similarities of models within and between groups. For com-
puting the Jaccard coefficient, the models were clustered by agglomerative
clustering with average linkage and with the respective similarity measure.
The dendrograms were cut at a height where the numbers of clusters and
predefined model groups were identical (4 groups for the small benchmark
set; 34 for the large benchmark set). The silhouette and the Jaccard coeffi-
cient assume values in the range between -1 and 1 or 0 and 1, respectively,
with higher values denoting a better classification.

Similarity measure & Silhouette coef. Jaccard coef.
(normalised) Small Large Small Large
set set set set
TVSM, S given by o858 657 .0982 1 284
with S = fi? .705 .136 1 377
with S =1 .766 .146 1 .356
Preference-based with agfef and aﬁlc 746 108 1 231
setting cj, = ¢, 746 .108 1 231
setting fHi = 746 104 1 229
Preference-based with O'Efef and UBDCD 741 118 1 231
setting ¢, = ¢, 738 120 1 231
setting f3 =1 .700 123 1 .269
additionally setting fo =1 720 122 1 .254
additionally without libSBAnnotation .746 101 1 .229
additionally setting fqsm = 1 .709 .095 .556 .262

have developed in our group (http://semanticsbml.org). The preference-
based measures also performed well, but their additional complexity is not
compensated for by better results.

Which is the best similarity measure for Biological Concepts? A
second question I want to answer with this large scale analysis is which kind
of measure should be used to compare BCs, ok or opg. Also this point
cannot be answered with certainty from the results in Table 3.4. If one again
puts more emphasis on the Jaccard coefficient for the large data set, then
oBg (especially setting f3 = 1) shows much better results than the measures

using o5, Since I also suppose the measure to be more properly justified,
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as it does not assume independence of term distance and term specificity, I
prefer o5 for all further considerations.

The final point addressed by the analysis was whether and how different
kinds of information (distance, depth, and information) on compared BCs
should affect their similarity. In this point the data was not clear either.
The only change introduced to the compared measures which has improved
results under more than one condition is the neglection of the information
factor f3. Thus, I suppose that the information of a BC should not affect how
it is contributing to models’ similarities. This finding is in agreement with
the results presented in [Li et al., 2003]. Disregarding f3 does, however, not
mean that one forgets the knowledge in the “information” content of BCs.
This knowledge can be taken into account in the computation of p-values as
shown in section B.1 in the Appendix.

Evaluation of the test data A final point on the data in Table 3.4 is
the general decline in the performance of the measures in between the small
and the large data set. The major reason for this might be the fact that
the definition of the model groups is not perfect. One example for this is
the distinction between the first and the fifth group in Supplementary Table
A.3. These models cannot be distinguished based on semantic annotations as
they contain too few of them. Nevertheless, I did not change the predefined
groups. These groups have been assigned based on their model annota-
tions, which are not considered by the similarity measures, and modifying
the groups based on the results I have gained so far would bias the outcome
towards too positive results.

Optimising parameters of the measures In principle, one of these tests
could be used to optimise the different parameters used in the similarity
measures. But since too few data is available I have been unable to reliably
estimate the large number of parameters in most similarity measures. When
running a parameter optimisation one ends up with strongly biased results.
An example of this is that pairs of “isVersionOf” qualifiers tend to get higher
scores than “is” pairs, because they are used in many models describing
proteins involved in signalling. In general, one can assume that a bias towards
the usage of certain qualifiers and BCs is introduced by the fact that only a
few people are annotating BioModels. Therefore, I propose for the estimation
step to be repeated as soon as models from more sources and a gold standard
of model categories are available.

However, not having optimised the parameters in my measures does not
necessarily alter the quality of the similarities. The similarity values and the
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ranking of retrieved models according to the similarities are not very sensitive
to variations in the parameter values (compare Supplementary Figure A.4).

3.3.3 Matching experimental data to models
3.3.3.1 Oscillating yeast genes

The vector-based similarity measures have multiple benefits. One of them
is their simplicity, which enables their use in diverse applications. Beyond
the comparison of models it enables us to relate data sets with themselves
and with models. This application can be useful when experimental data is
needed to which a model with poorly determined parameters can be fitted.
Furthermore, it enables the retrieval of models by an experimental data set.
The retrieved models could then serve as a basis for further modelling efforts.
In order to demonstrate the applicability of the TVSM measure to compare
models with data sets, I select an experimental data set from the literature
and search for models in the BioModels Database covering parts of the data.

For this purpose I use a data set describing oscillating genes, which
are coupled to bursts in DNA replication in yeast. The data of Klevecz
et al. [Klevecz et al., 2004] show that these genes are part of sulphur and
methionine metabolism pathways and involved in proteolysis, the ribosomes,
and the DNA polymerase.

I use the tool Annotate Your Model (AYM, http://semanticsbml.org/
aym) to automatically annotate the list of gene names from Klevecz et al. and
search for similarly annotated models (the process is described in detail online
http://semanticsbml.org/aym/default/examples).

The results of this retrieval process are shown in Figure 3.6. Retrieved
models describe amino acid metabolism (BioModels with IDs ending in 66,
68, 90, 190, and 212), include ubiquitination steps (105, 154-159, 186, 187,
and 293), or contain a DNA polymerisation reaction (15). The functional
categories of the pathways identified by Klevecz et al. and the pathways
described by the retrieved models therefore overlap quite well. Nevertheless,
the number of annotations co-occurring in the data set and in any of the
models is comparably small.

For future applications such a retrieval step might become valuable in
the the analysis of data sets, given that enough knowledge is available in the
form of annotated models.

87



3.3. RETRIEVAL, ALIGNMENT, AND CLUSTERING OF
MODELS AND DATA SETS

Model BioModel Similarity p-Value Overlap p-Value
Wolf2001 respiratory oscillations BIOMD0000000030 0.207 <=1e-3 6 6.6e-09
Chassagnole2001_Threonine Synthesis BIOMDO0000000066 0.184 <=le-3 4 1.5e-05
Curien2009_Aspartate_Metabolism BIOMDO0000000212 0.170 <=le-3 5 3.6e-07
Curien2003_MetThr_synthesis BIOMDO0000000068 0.141 <=l1e-3 2 1.0e-02
Proctor2007_ubiquitine BIOMD0000000105 0.098 2.0e-03 1 1.4e-01
Curto1998_purineMetabol BIOMDO0000000015 0.063 1.1e-02 2 1.0e-02
Ibrahim2008_Spindle_Assembly_Checkpoint_dissociation BIOMD0000000186 0.057 1.8e-02 0 1.0e+00
Ibrahim2008_Spindle_Assembly_Checkpoint_convey BIOMDO0000000187 0.057 1.8e-02 0 1.0e+00
Rodriguez-Cas02006_Polyamine_Metabolism BIOMDO0000000130 0.040 7.1e-02 1 1.4e-01 [
Nijhout2004_Folate_Cycle BIOMDO0000000213 0.032 1.1e-01 1 1.4e01 M
Morrison1989_FolateCycle BIOMD0000000018 0.030 1.3e-01 1 14e01 M
Zatorsky2006_p53_Model3 BIOMDO0000000154 0.023 2.5e-01 0 1.0e+00 H
Zatorsky2006_p53_Model6 BIOMDO0000000155 0.023 2.5e-01 0 1.0e+00 H
Hunziker2010_p53_StressSpecificResponse BIOMDO0000000252 0.023 2.5e-01 0 1.0e+00 H
Zatorsky2006_p53_Model5 BIOMDO0000000156 0.022 2.7e-01 0 1.0e+00 M
Zatorsky2006_p53_Model4 BIOMDO0000000157 0.022 2.7e-01 0 1.0e+00 M
Zatorsky2006_p53_Model2 BIOMDO0000000158 0.022 2.7e-01 0 1.0e+00 H
Zatorsky2006_p53_Modell BIOMDO0000000159 0.022 2.7e-01 0 1.0e+00 H
Proctor2008_p53_Mdm2_ATM BIOMDO0000000188 0.013 4.3e01 0 1.0e+00 0
McClean2007_CrossTalk BIOMDO0000000116 0.012 4.7e01 0 1.0e+00 0
Proctor2008_p53_Mdm2_ARF BIOMD0000000189 0.012 49e01 O 1.0e+00 I
Haberichter2007_cellcycle BIOMD0000000109 0.011 5.0e-01 0 1.0e+00 I
Sasagawa2005_MAPK BIOMD0000000049 0.006 5.5e-01 0 1.0e+00 |

Figure 3.6: List of retrieved BioModels when querying the database with the
data set of Klevecz et al. . The pathways of the described models partially
overlap with the pathways in which the genes from the data set participate
in.

3.3.3.2 Arachidonic acid pathway

One of the running examples throughout this work is the determination of
drug targets in the arachidonic acid pathway. In order to find relevant models
of this pathway that are already available in the BioModels Database, I start
a model retrieval using only the annotation for arachidonic acid. For this
purpose I create a single element in a data set using the AYM website,
annotate it with the ChEBI entry for “arachidonic acid” (CHEBI:15843),
and retrieve models similar to this data set.

This very specific query only results in one single model, the arachidonic
acid pathway of Yang et al. [Yang and Sze, 2007] (BioModel 106). It shows a
similarity of 0.141 with my query data set, which is highly significant (p-value
< 1073), and an overlap of 1, which is significant as well (p-value = 6.1-1073).

In a next step, I use this model to search for other models being able
to extend it. This retrieval reveals no models having a significant overlap.
Even though the overlap of the retrieved results is bigger than or equal to the
overlap between my initial data set and model 106, it is less significant (p-
value > 0.18). The reason for this lack in significance is the fact that the Yang
model also contains very common annotations (e.g. the Gene Ontology term
for “cell”), which makes other models more likely to share a few annotations
with it.

Based on these results, only one single relevant model seems to be avail-
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able for the investigation of the arachidonic acid pathway. However, addi-
tional models from Yang et al. are available in the literature [Yang et al.,
2008]. These models are included in the non-curated part of the BioModels
Database and can not be found by the retrieval without further computa-
tional steps as they are lacking proper annotations.

3.3.4 Matching Systems Biology models

The retrieval of models similar to a given one and their further comparison
can be important during various phases of the modelling process. Before
model construction is started one can ask, which models describing a par-
ticular process are already available. During the refinement of a model one
might be interested in the fact whether models exist, which describe a cer-
tain pathway using a different model structure or including further reactions.
Furthermore, once a model has been established one can look for models com-
plementing a reaction network by containing additional processes which are
not part of the query model.

In the following, results from different applications making use of my
vector-based similarity measure will be shown. These results directly address
the question of how the aforementioned problems can be dealt with.

3.3.4.1 Retrieving MAP kinase cascade models

A first question during the construction of a mathematical model is whether
there are similar or overlapping models available in the literature. This ques-
tion can either be answered by an extensive literature search or by query-
ing a database of curated existing models. As an illuminating example for
the capabilities of the developed web tools, I search for models of MAP
(Mitogen-activated protein) kinase cascades. For this purpose I select the ki-
nase cascade model described by Huang & Ferrell [Huang and Ferrell, 1996]
(BioModel 9) and start a model retrieval from this model. Figure 3.7 shows
the results of this retrieval. The first 14 retrieved models (or 18 out of the
first 20) are all MAP kinase cascades or include parts of it. Retrieved mod-
els which do not include any elements of a MAP kinase cascade share very
unspecific annotations with the Huang model. These include Biological Con-
cepts like “protein phosphorylation” (Gene Ontology term GO:0006468) or
“phosphoprotein phosphatase” (EC number 3.1.3.16). As the Huang model
contains some of these general annotations, which are relatively common in
the BioModels Database, the p-value of the overlap scores is quite high for
non-MAP kinase related models.
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3.3.

Model (click for information)

Huang1996_MAPK _ultrasens
Levchenko2000_MAPK_| fold
Levchenko2000_MAPK_Scaffold
Kholodenko2000_MAPK_feedback
Markevich2004_MAPK_orderedElementary

Markevich2004_MAPK_phosphoRandomEl
Markevich2004_MAPK_AlIRandomElementary
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Markevich2004_MAPK_orderedMM2kinases
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Figure 3.7: BioModels similar to the MAP kinase cascade from the publication of Huang & Ferrell (BioModel 9).
The retrieval shows almost exclusively MAP kinase cascades in the first results. When disregarding models showing
an insignificant p-value for the overlap score, the results only contain MAP kinase related models.
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Figure 3.8: Agglomerative clustering using average linkage of the first ten
models retrieved in the previous step (see Figure 3.7). The dendrogram on
the left visualises in which order the models are clustered together and the
matrix on the right is a matrix of pairwise similarities of the models.

The results of this retrieval step show that the similarity as well as the
statistical comparison with the null model works in practice. Since both
measures show different results (the similarity being a measure of whether
the models have the same content and the p-value of the overlap being a
measure of how relevant the finding of common Biological Concepts shared
by both models is) both measures are kept on the model retrieval page of
our web application (http://semanticsbml.org).

3.3.4.2 Clustering of MAP kinase cascade models

The second question I try to answer with our tool is how the retrieved models
relate to each other. Some of them might differ in the Biological Concepts
they describe and others might differ in their degree of detail. To assess the
question which models are most related in a set of retrieved models, one can
perform a clustering using the vector-based similarity measure.

As an example I cluster the first ten models from the retrieval step (com-
pare Figure 3.7). Figure 3.8 shows the results of an agglomerative clustering
using average linkage. The results of this clustering show three important
points. First, models from the same publication cluster together (models
26-31 stem from the publication of Markevich et al. [Markevich et al., 2004]
and models 11 & 14 have been taken from Levchenko et al. [Levchenko et al.,
2000]). Second, clustering divides the Markevich models into the ones using
enzymatic rate laws (27, 29 & 31) and the ones describing the MAP kinase
activation by elementary reactions (26, 28 & 30). Yet, the models have a
high similarity in the Markevich cluster. This shows that a few annotations,
which are specifically used when describing a process using a certain formal-
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ism, do not change the high overall similarity of these models. And third,
clustering further distinguishes between full MAP kinase cascade models (9,
10, 11 & 14) and the models describing only parts of it.

3.3.4.3 Simple alignments of MAP kinase cascade models

As a final application I use the vector-based similarity measure to align two
MAP kinase cascades, the BioModels 9 and 84 [Hornberg et al., 2005b].
These alignments can be used for the detailed comparison of the structural
features of models. They can reveal which parts of a pathway are shared
between two models or to which degree of detail processes are described by
the models.

For the purpose of aligning two models, I assign each model element a
feature vector. This vector is built only from the annotations of this element.
Then pairwise element similarities between both models are computed using
the vector-based similarity measure. Finally, a greedy matching of the ele-
ments is performed. Here, pairs having the highest similarities are matched
successively as long as they have not been matched already. This process
stops, when all elements from one model have been matched or when the
similarity drops below a certain threshold.

Results of the alignment of BioModels 9 and 84 are shown in Figure
3.9. Both models contain the activation of three kinases. The Huang model
describes these steps using mass action kinetics while the Hornberg model
uses enzymatic rate laws. Furthermore, the Hornberg model also contains
the activation of the upstream receptor, which is not included in BioModel
9.

Using such an alignment one is able to visualise the commonalities and dif-
ferences between two models. This can be useful to find structurally different
models as an alternative description of a system or to find relevant extensions
to a model. Furthermore, this application underlines the versatility of the
vector-based similarity measures by the fact that they are extensible enough
to be used to compare single model elements instead of complete models.

3.4 Discussion

3.4.1 Retrieval of models and data sets

I have developed a set of similarity measures and have shown various ap-
plications for them. These applications can be useful in the construction of
computational models that can be used for drug target identification. Out of
the shown example uses the retrieval of models describing certain Biological
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ctiv/MAPKKK (EL_KKK_1 \
APKKK activator (F1/1)

PKKK inactivator (E2_1)
inact_P-MAPKKK (E2_P_KKK_1)

Figure 3.9: Model alignment of the BioModels 9 [Huang et al., 2005] (red)
and 84 [Hornberg et al., 2005b] (blue). Circles denote compounds in the
network while squares show the reactions converting them. The elements of
a reaction network are connected by substrate (green), product (red), and
modifier edges (blue). Orange edges connect elements from two models that
have been matched.
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Concepts is the most important application. Retrieved models can provide
a good starting point to all modelling efforts, they can be used to find al-
ternative descriptions of processes possibly leading to an altered behaviour,
and they might serve as model extensions describing additional processes.
As shown in the results section of this chapter, the vector-based similarity
measure can be used to compare models and data sets. Therefore, also the
retrieval of relevant data for a given model can in principle be automatised.
The retrieved data can then be used to estimate unknown parameters in a
model or to further refine it.

In conjunction with the standardisation of models the tools discussed in
this chapter open up the possibility of an easy model reuse. As Systems
Biology models will further accumulate in the future, there will be a point
in time at which it is not possible to manually keep an overview on existing
models describing a certain pathway. Thus, computational methods have to
be applied to keep the knowledge stored in these models accessible.

3.4.2 Criteria for model similarity

An important question during the development of a similarity measure is
the selection of the criteria contributing to this similarity. In the measures
introduced in this chapter, the similarity is only determined by the biologi-
cal content of the model. Therefore, my measures address the point whether
compared models describe the same things rather than whether they describe
them in the same way. The preference-based measure further uses informa-
tion on how semantic annotations are distributed in the model, but this is
not considered in the vector-based measure.

My measures completely neglect any information on the structure of a
model and the particular mathematical formalism used in it. This behaviour
is intended as it allows the user to discover different formulations of the same
biological process as for example compared in the publication of Markevich
et al. [Markevich et al., 2004]. Even though the mathematical content or
the way in which a model describes a certain pathway is not considered
explicitly, a model’s formalism can contribute to the way annotations are used
in a model, thereby affecting the similarities calculated using my measures.
However, information on a model’s formalism could be easily included into my
similarity measure by using the semantic information stored in SBO (Systems
Biology Ontology) terms. These terms can be used in SBML models to
indicate the mathematical meaning of variables and formulas and they could
be included into the similarity measures in the same ways as other Biological
Concepts.
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3.4.3 Quality of the presented measures

I have shown that the vector-based measure works in a number of different
applications which are relevant to the modelling community. The representa-
tion of models or data sets as vectors opens up a whole range of possible new
applications like biclustering, principal component analysis [Pearson, 1901],
or independent component analysis [Comon, 1994]. Furthermore, the easy
structure of the vector-based measure makes it versatilely applicable. It can
be used to compare SBML models as well as computational models in other
formats, experimental data sets, or plain lists of annotations.

In order to assess the significance of the similarities gained from this mea-
sure, [ have developed a simple null model and shown ways how to calculate
p-values for different measures. This null model is able to detect whether
Biological Concepts occur together in a model “on purpose” rather than by
chance. Therefore, this p-value can detect whether modellers have tried to
describe the same processes or pathways.

The preference-based measures further take into account how annotations
are distributed in a model (which model elements are annotated with which
BCs). Because this information did not seem to be important in my large
scale measure comparison and because the preference-based measures can
only be used to compare computational models, I did not include them into
our web tools. However, they are mentioned in this work as they might
become important as soon as more models become available and a bigger
emphasis has to be put on the model’s structure.

Details on the similarity measures for BCs did not play a big role in the
large scale comparison. This might stem from the fact that the BioModels
have been annotated by the same people, which preferably reuse the same
annotations. When models from different sources are compared, details of
the BC similarity measure will probably become more important. Neverthe-
less, the results in Table 3.4 show small positive changes in the quality of the
measures when information from the libSBAnnotation and when the distance
and the depth factor are taken into account. Including the information con-
tent of BCs into the similarity measures did not improve their quality, which
is in agreement with the results of Li et al. [Li et al., 2003]. Knowledge on
term frequencies is, however, not ignored. It still contributes to the p-value
of the overlap score and affects which retrieved models should be regarded
as significantly similar.
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3.4.4 Limitations of the current method

A valid criticism of my similarity measures is that they do not take structural
information into account. Even though a purely annotation based approach
works in the applications I have shown here, it might not be suitable any-
more once more models are available. Future applications will probably have
to take structural aspects of the models into account to further refine the
retrieval.

This problem also becomes apparent during the alignment of models. The
greedy matching which I have applied in conjunction with the vector-based
similarity measure will in principle randomly choose to align model elements
carrying the same annotations. An example case in which this alignment
does not work is when models containing proteins in different phosphoryla-
tion states are aligned. Here the annotations only give information on the
identity of the protein and the fact that it has been phosphorylated. In order
to distinguish between different protein species in distinct phosphorylation
states, structural information of the reaction network can be taken into ac-
count. Model merging becomes important in the process of constructing large
mathematical models that have more power in predicting good drug targets
in a network. As a proper matching of model elements is a prerequisite in
model merging, I will improve the element similarity in the next chapter by
considering structural information.

3.4.5 Conclusion

The similarity measures developed in this chapter work well in practice for
the applications I have shown here. Once the amount of information stored in
the form of computational models increases beyond the point where a human
modeller can have a complete overview on his field, our tools for automated
retrieval, comparison, and alignment will play a major role for Systems Bi-
ologists. This approach might even become equivalently useful to System
Biology as tools like BLAST [Altschul et al., 1990] became to scientists deal-
ing with sequence data. Especially in the process of model driven drug target
identification where all publicly available data should be integrated in order
to make the most appropriate and biologically relevant predictions our tools
can provide a significant contribution to the way modellers work.
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4.1 Aligning biochemical networks

4.1.1 Comparing biochemical networks

The similarity measures for models and model elements, which have been
discussed in the previous chapter, ignore any kind of direct structural infor-
mation contained in the model. This behaviour makes the measures appli-
cable more broadly but it can also lead to a lack of specificity in the model
retrieval and to incorrect model alignments under certain circumstances. In
order to compensate for this problem of my similarity measures I will provide
extensions to them which directly incorporate a model’s topology.

Different graph theoretical and heuristic approaches have already been
applied in the field of computational biology to compare different types of
networks. These comparisons fall into three different categories [Sharan and
Ideker, 2006]: network alignment, integration, and querying. Network align-
ment is a process in which two networks of similar size are globally compared
in order to identify similarities and differences. Network integration combines
networks, which can contain different types of information, to detect new or
support existing information. Network querying tries to find approximate
occurrences of a small motif in a large network. These different approaches
have been used in a number of applications.

Network alignment has been used to identify protein-protein interactions
(PPI) [Matthews et al., 2001] or regulatory interactions [Yu et al., 2004]
conserved across species. The alignment of multiple PPI networks has led
to new information about protein functions and protein interactions [Sharan
et al., 2005]. Furthermore, network alignment has been used to identify genes
which are in close proximity on the genome and catalyse reactions involved
in the same pathway [Ogata et al., 2000].

Network integration has been applied to infer PPIs by integrating in-
teractome data, protein domain data, expression data, and functional an-
notations [Rhodes et al., 2005] or to infer enriched interaction motifs from
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PPIs, genetic interactions, transcriptional regulation, sequence information,
and gene expression data [Zhang et al., 2005].

Network querying has successfully been used to query genome scale
metabolic networks with metabolic pathways in order to find subgraphs with
a similar ordering of enzymes [Pinter et al., 2005].

4.1.2 General differences in network comparison algo-
rithms

While the applications of network integration usually follow diverse compu-
tational approaches depending on the kind of data the integration should
result in, applications of network alignment and querying are more compa-
rable. Even though algorithmic details can be quite different [Li et al., 2007,
Singh et al., 2007al, all alignment and querying algorithms consist of two
distinct steps: the identification of equivalent nodes, which can be based on
diverse information, and the actual alignment, which can make use of differ-
ent algorithms requiring the compared networks to be of a certain topology.

Depending on the application, the similarity of single nodes in the net-
work needs to be more or less elaborate. In cases in which one does not
have detailed information on the nodes (e.g. in the comparison of protein
sequences with the nodes being single amino acids) just their labels are com-
pared [Needleman and Wunsch, 1970]. A similarity measure on the labels
might be as simple as ¢ = 1 for equal labels and o = 0 otherwise or a com-
plete pairwise similarity matrix can be used [Dayhoff and Schwartz, 1978|.
For cases in which the number of labels is relatively small, such similarity
matrices can be constructed. If the number of labels grows further, one has
to rely on other information to automatically compute similarities. One pos-
sible information source are semantic annotations which can be related to
each other through their biological meaning, e.g. “Enzyme Classification”
numbers for comparing enzyme functions [Tohsato et al., 2000]. Other po-
tential information sources are structural features of the compared molecules
[Hattori et al., 2003] or protein sequence similarity [Kelley et al., 2003].

Depending on the structure of the compared graphs the alignment prob-
lem has a different complexity. Early algorithms started with the alignment
of simple paths and used ideas from the alignment of nucleotide or protein
sequences [Kelley et al., 2003, 2004, Shlomi et al., 2006]. This has been ex-
tended to trees [Pinter et al., 2005] (using the approximate labelled subtree
homeomorphism algorithm [Pinter et al., 2004]) and general graph structures
[Yang and Sze, 2007].
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More details on the algorithms used in different network querying algo-
rithms can be found in a recent review [Fionda and Palopoli, 2011].

4.1.3 Merging Systems Biology models

treatment
model > model >

construction refinement prediction

Figure 4.1: Current position in the workflow of applying Systems Biology
methods to pharma research and development.

The integration of new information into a mathematical model is a pivotal
step in the cycle of Systems Biology as shown in Figure 4.1. An example of
this information integration is the merging of models describing distinct,
relevant processes. The merging of Systems Biology models for the purpose
of producing more comprehensive models has already been discussed in the
literature. Comparable to the aforementioned approaches, these merging
heuristics can also be divided into consecutive steps: the identification of
similar model elements, the matching of elements based on their similarity,
and the resolution of possible conflicts stemming from model combination.

KEGGConverter [Moutselos et al., 2009] is a tool which merges path-
ways from KEGG [Kanehisa et al., 2008] and produces SBML models from
them. Since these models stem from the same resource, the identification of
identical compounds and reactions can be established via their IDs. Further-
more, the single pathways do not contradict each other and the merging is
straightforward.

Goodfellow et al. [Goodfellow et al., 2010] have developed a tool which
merges SBML models on the basis of their XML code. The way how similar
elements across the models are discovered depends on the specific type of
element that is compared but is usually quite simple, e.g. in the case of
species the ID and the name attribute have to match. In the end, a heuristic
is applied to fix some of the most common problems arising from the merging
of SBML models.

The approach of Randhawa et al. [Randhawa et al., 2009, 2010] subdi-
vides the idea of model merging into distinct tasks with a different outcome:
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composition is a process in which elements from models are linked but the
individual models are kept intact, fusion combines models irreversibly into
a single new model, and flattening turns a composed into a fused model.
Depending on which of the processes is used to merge models, the process
varies. However, the identity of model elements is in each case established
via their names or predefined by the user.

PInT [Wang et al., 2010b] is another tool to merge SBML models. Here,
the model elements are compared by their annotations. If these are com-
pletely identical, the elements are merged. The final processing of the merged
models is also in this case a heuristic addressing a set of potential conflicts
stemming from the merging process.

The software semanticSBML [Schulz et al., 2006, Krause et al., 2010] is
similar to PInT but uses an element similarity measure [Schulz et al., 2011]
to judge whether two model elements are identical. This approximation
simplifies the merging process when two models from different sources, which
have not been annotated by the same people, are combined.

4.2 Distributing semantic information in bio-
chemical networks

The aforementioned methods for network alignment and querying have been
developed mostly for the analysis of PPI networks. When these methods
are employed to compare Systems Biology models, they are facing a slightly
different challenge. The idea behind them is to find subgraphs of similar
structure in the query and the large network, which are equivalent to each
other (isomorphic) after a small number of edit operations (node insertions
and deletions). Depending on the number of allowed operations the com-
putational costs of the algorithms can become quite large. Therefore, this
number is usually kept small.

When kinetic models of reaction networks are compared by a modeller
diverse structures can be regarded as equivalent. Figure 4.2 shows such
equivalent structures, which require several edit operations to become iso-
morphic. Already for small networks, the number of necessary operations
exceeds the limit imposed by computational feasibility, which heavily re-
duces the applicability of the methods developed for PPI networks. One way
to circumvent this restriction is to especially allow for those edit operations
interconverting structures from Figure 4.2, e.g. replacing enzymatic reactions
by their elementary reaction steps, thus keeping the number of needed oper-
ations minimal [Gay et al., 2010]. A second idea, the inclusion of structural
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oF:FoJor=2o

Figure 4.2: Structures of reaction networks regarded as similar in Systems
Biology models. The three networks describe a single irreversible enzymatic
reaction using (A) mass action kinetics or (B) Michaelis-Menten kinetics
with or (C) without explicitly modelling the enzyme. This Figure is based
on Figure 1 from [Gay et al., 2010].)
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information into the similarity of nodes will be discussed here.

4.2.1 Feature propagation in biochemical networks
4.2.1.1 General idea behind feature propagation

The idea of feature propagation is based on the following observation. If
an interaction exists between two proteins, there is an increased probability
of both proteins sharing the same functional annotation [Schwikowski et al.,
2000]. Thus, information on interacting proteins can be used to annotate pro-
teins with unknown function. In principle, this idea can also be transferred
to reaction networks. This is obvious for models of signalling cascades, in
which proteins interact, but it is also possible for metabolic networks. Here,
the interactions are the information which compound participates in which
reaction. Using the transfer of annotations along the interactions, one could
annotate reactions with semantic information from their reactants, products,
and the enzyme catalysing them.

The concept of propagating semantic information along interactions has
already been applied by different tools. FunctionalFlow [Nabieva et al., 2005]
proposes a stepwise distribution of annotations along a protein interaction
network. Using this distributed annotations, novel protein functions can be
predicted. Another example of semantic propagation is discussed in [Singh
et al., 2008]. Here, the authors formulate an eigenvalue problem enforc-
ing global similarities between two nodes to follow a relation similar to the
similarity propagation formula. More details on predicting annotations in
protein-protein interaction networks can be found in [Sharan et al., 2007].

4.2.1.2 Mathematical formulation of feature propagation

I have implemented the distribution of semantic information, which is repre-
sented by feature vectors, on the network graphs by a non-mass-conserving
diffusion-like process as shown in Figure 4.3 [Schulz et al., 2012]. In this
process one defines the change over time of the new, inferred feature vector
Wy ;, which denotes the distribution of a certain information ¢ over all nodes
of the network, by the formula

d

aw*ﬂ» = Vs + ARWy; — Wy (4.1)

This formula contains a production term (v, ;) producing semantic informa-
tion on those nodes, which have been assigned semantic information on the

Biological Concept 7, a “diffusion” term incorporating the network topology
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Figure 4.3: Propagation of colour information in a reaction network (circles:
compounds, squares: reactions). (A) A network with sparse semantic infor-
mation (shown as colours red, blue, and green) on three out of its fifteen
nodes. (B) After propagation of the colour information in the network every
node is assigned a distinct colour determining its identity.

(AR), and a linear degradation term. In this scheme, the matrix R is an
|M| x |M| matrix, where |M| is the number of elements in model M, and A
is a scaling factor, that is determined later. R consists of the propagation
weights Ry, = pbi that assume non-zero values pM = a, ppl = 3 in cases in
which the elements a and b are directly related to each other (e.g. species a
participating in reaction b) and p = 0 otherwise. The distribution of the
inferred features on the network is eventually given by the steady state of
the diffusion process (w, ;| Lws; = 0).

Alternatively, the diffusion process can be formulated in terms of vectors
W« describing all information associated with a certain model element a.
This vector can be defined by the implicit formula

Wy = Vo + XD ens Lot W, (4.2)

which shows how the inferred features on related elements b contribute to
the inferred features on an element a.

4.2.1.3 Observations on feature propagation

In order to get an explicit formula for the computation of w, ;, one solves
Equation 4.1 for its steady state

0 =0V FARW; — Wy <
Wy i = (I — /\R)il’U*’i
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If AR has no eigenvalues whose absolute value is larger than 1, the matrix
inverse can be replaced by

[ee}
Wy = Z (/\R)kv*,i- (4.3)
k=0
This can be ensured by setting A\ = ﬁ, where r is the eigenvalue of R with

the largest absolute value.

In the infinite sum each summand describes how much semantic infor-
mation is propagated from one element to the elements being £ relations
away. Since AR has no eigenvalue whose absolute value is bigger than one,
higher exponentiations of this matrix will have smaller and smaller eigenval-
ues. Therefore, features are propagated less strongly to those nodes in the
network that are more distant.

In case the reaction graph is acyclic and features are only propagated in
one direction (e.g. compartments to species and species to reactions) higher
powers of AR will become zero and the infinite series in Equation 4.3 will be-
come finite. Furthermore, if p values are non-negative and the direct feature
vectors are non-negative, too, the values in the propagated feature vectors
are non-negative.

Finally, the vectors v, ; and w,; can be combined in matrices V' and W
leading to a single equation for the propagated features

W = (I—AR)WV. (4.4)

Similar to Equation 3.8, a vector based similarity measure for the inferred
feature vectors can be defined by

T
W, SWy,

VWL Sw,A/wE Sw,

f
D, =

Propagating pairwise similarities A slightly different idea on how to
distribute semantic information in a network is the concept of similarity
propagation. In contrast to the feature propagation, which distributes fea-
tures in the individual models, pairwise similarities between elements from
different models are propagated.

Given direct similarities between elements in two models M and N, which
do not necessarily have to be based on vectors, the inferred similarities are
defined in analogy to Equation 4.2 by the formula

sp __ M, ,sp N
ap — Oap + A Z Pab ,ébbq Ppq-
beM,qge N
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In this formula a potential similarity of the elements b and g contributes to
the similarity of elements a and p. After writing the pairwise similarities
into a single vector (as indicated by brackets on the index), the formula for
the computation of the propagated similarities can be stated similarly to
Equation 4.4:

WP = O + A Quanivn) Uiy =
(bg)

PP o= (I-)Q) o,

where Q(ap)ba) = Pab Py

As mentioned above, by an appropriate choice of A one can ensure that
the propagated similarities are non-negative. However, the propagated sim-
ilarities may become bigger than one. If this behaviour is not desired, the
propagated similarities have to be normalised, e.g. by

Sp
ﬁap = =

sSp Sp
A/ maXpe ¢bp V maXgen 77Daq

The two different propagation methods are in fact closely related. Simi-
larity propagation also simulates the outcome of a non-mass-conserving dif-
fusion process. Instead of propagating semantic information on the reaction
network of a single model, the semantic information is propagated on a graph
whose nodes correspond to pairs of elements from two networks. Nodes in
this graph are connected by edges in case a relation between each of the
model elements exists in both models. This means that the nodes (ap) and
(bq) are be connected if a relation between the elements a and b and between
p and ¢ exists.

4.2.2 Semantic propagation for merging network mod-
els

My prior approach to model merging has been based on a greedy pairing of
model elements. This greedy pairing is performed by putting the pairwise
similarities into a decreasing order and successively matching those pairs
with the highest similarity for which none of the elements has already been
matched. As soon as the similarities drop below a certain threshold, the
matching is stopped. After the pairing of model elements, the matched pairs
are merged and potential conflicts in the new merged models are removed by
applying some heuristic rules (see [Schulz et al., 2006] for details).
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The computation of the pairwise similarities can incorporate structural
information contained in both models by using the similarity calculated from
propagated features or by using the propagated similarities. Regardless of
the fact, which similarity measure is used in this initial step, all further steps
can follow the aforementioned scheme.

4.2.3 Predicting missing annotations in biochemical net-
works

The propagation of features can also be used to predict annotations for model
elements lacking semantic information. The basic idea for this step is to align
a sparsely annotated model to a well annotated one and transfer semantic
information to the matched, non-annotated elements. In order to work per-
fectly, this step would require a structurally identical, annotated model. Since
such models will not universally be available, I instead use all models in the
curated part of the BioModels Database to predict new annotations.

Computationally the prediction works by setting up a database of pairs
of annotations and propagated feature vectors. For each element a in each
BioModel one creates the propagated feature vectors w, and for all of the
element’s annotations ¢ one constructs modified feature vectors lacking the
corresponding features wﬂ = Wy — Wqi - €;, With e; being the i*" canonical unit
vector. The pairs of the vector w! and the feature i are then stored in the
database.

When predicting new annotations for model elements, one first propa-
gates features in this model and then one uses the similarity measure from
Equation 4.5 to search the database for propagated feature vectors pointing
into a similar direction. Finally, the features associated with the most similar
vectors are presented to the user as potential annotations for the considered
model element.

4.2.4 Implementation of propagation methods for SBML
models

Up to this point, I have mainly regarded a model as a reaction network con-
sisting of species and reaction. SBML models, for which these methods have
been implemented, have many more element types that can have various
relations with each other along which semantic information can be propa-
gated. One example is a model containing the same species in two different
compartments. The two species might actually carry the same annotations,
but might refer to different compartments that carry annotations themselves.
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Compartment Type
A
Species Type
Global Parameter
Initial Assignment
/
Local Parameter

Figure 4.4: Directed structural dependencies between elements of an SBML
model. Species are located in certain compartments, which may be sub-
compartments of each other, and these can be of a certain compartment
type. Along each arrow, semantic information can therefore be transmitted
between elements of a different type. The dependencies between compart-
ments themselves do not impose that a potential cycle exists. Compartments
may refer to one other compartment as their “outside”, but these references
should not involve any circularities.

Compartment

Reaction
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Propagating the annotation of the compartment to the species contained in
it, gives the two species distinct semantic information.

Figure 4.4 shows a complete overview on the direct relations existing
between different types. In principle, information could be propagated along
all relations in both directions.

Numerical values So far the choice of the numerical values used for propa-
gating semantic information has not been discussed. For the implementation
of my two applications, the alignment of sparsely annotated models and the
annotation prediction, I use two different sets of numerical values.

In the alignment routine on http://semanticsbml.org, the tool propa-
gates information between all the element types shown in Figure 4.4 in both
directions with pg, = % The fact why these values have been chosen can
easily be explained. First, apart from choosing the numerical value of % ad
hoc 1 have been unable to optimise numerical values due to a lack of mul-
tiple reference alignments, which could be used for benchmarking. Second,
I propagate along all relations in the network as I would like all semantic
information to be (at least partially) available on all nodes in the network.

For the prediction of annotations I have made some alterations to how
features are propagated in the network. First, information is only propagated
between reactions and their reactants or products. Second, the features are
only passed to the next node in the network. This means, that the sum in
Equation 4.3 only runs to one instead of to infinity. Using these two mod-
ifications increased the performance of the model prediction as it decreases
the number of proposed annotations in most examples (data not shown).
Furthermore, the decision to propagate information only to the direct neigh-
bours in a network is supported by results for PPI networks, for which the
“Markov property” seems to hold, i.e. only the direct neighbours contribute
to the identity of a protein [Deng et al., 2003].

4.3 Applications of improved model alignments

4.3.1 Improvements in the alignment of MAPK mod-
els

As a first example of how accounting for structural information in a similarity
measure can increase the quality of the alignment of two models, I compare
the introduced approaches using two MAP kinase cascade pathways. In
Figure 4.5, I use the greedy pairing heuristic based on three different simi-
larity measures to align the BioModels 9 and 11 [Huang and Ferrell, 1996,

111



4.3. APPLICATIONS OF IMPROVED MODEL ALIGNMENTS

Huang1996_MAPK_ultrasens I

compartment
E1l | B

E2 |

KKK

P_KKK
KK

P_KK

PP_KK

K

P_K

PP_K

KPase

KKPase |

E1_KKK

E2_P_KKK
P_KKK_KK

P_KKK_P_KK

PP_KK_K

PP_KK_P_K

KKPase_PP_KK

KKPase_P_KK

KPase PP_K

KPase_P_K

K_PP_norm L LB | NI | LB BB P

KK PP norm L BB | BB BB BL AL BB

KKK P norm L BB L BILEL | BIL | BB BLEL! 1l

rel K PP max | B B | BILEL | DL | LB BLEL!

K_PP_norm_max
=T O g 2 g2 2 2222 22222223 3330333
>SS > 2> » > » > > > M M MmMmMmMmMmMM@M@mOM0HOZS22 2 2> > 2>
T8 T T T I TIUITARAARAAAAAADTDTITDDITDTD
AT XXX XAAAZA T T T T 8 Tt 3 AT T T X
[ Z © T © © © T I 2 ° T 3 % I 3 >
S 2 m I £ £ © T m = > T > T
3 = > m < = m T o o=
9 ° T X > T A © by
=} ° X © T I ) I
= T © % I
S * I

Figure 4.5: Alignment of BioModels 9 (y-axis) and 11 (x-axis) based on sim-
ilarities produced by different direct and inferred measures. The six cells per
element pair denote the similarity (top row) and the greedy pairing based on
this similarity (bottom row) for the direct, vector-based measure (blue), for
the measure based on feature propagation (red), and for the propagated sim-
ilarities (green). Numerical values of the similarities are indicated by colour
intensities. Black boxes around element pairs denote a manually curated
reference alignment between the species in the two models.
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Levchenko et al., 2000].

A problem of the direct similarity measure with this alignment is that el-
ements representing proteins and protein complexes in different phosphoryla-
tion states carry identical annotations, e.g. P. KKK_KK and P_.KKK_P_KK
in the Huang model and MEKRAFp and MEKpRAFp in the Levchenko
model. While elements carrying identical annotations are correctly resolved
by both propagation methods, a few differences between both approaches
exist. The pairing based on propagated similarities matches the pairs KKK
& RAF and E2_ P_KKK & RAFpRAFPH, which are missed by the two other
measures. Nevertheless, the feature propagation performs better on matching
the reactions between the two models (matching of reactions is not shown).
Here, only feature propagation is able to resolve the correct matching of the
reactions with the IDs r7a & Reaction19 and r9a & Reaction25.

In this example both propagation methods seem to improve the quality
of the alignment. Nevertheless, both approaches still show some small short-
comings and one cannot state that either of them has an advantage over the
other.

4.3.2 Randomised removal of annotations and large
scale analysis

In order to further validate the results of the single alignment and to discrim-
inate between both propagation methods, I evaluate the different measures
in a larger analysis. For this purpose, I randomly removed elements from
BioModel 9 and again tried to align it to the Levchenko model. This has
been repeated ten times for different numbers of annotations to be removed
and the quality of the resulting predictions is shown in Figure 4.6.

When measuring the quality of the matching in terms of the recall (the
number of correct matches that have been identified), the power of the align-
ment based on direct similarities decays linearly with the number of annota-
tions that have been removed from one of the models. For the propagated
features the behaviour is similar except from the fact that the linear decay
starts from a higher recall for few missing annotations. In the case of prop-
agated similarities the decay in the recall seems to be biphasic. First, up to
30 removed annotations the decay is linear but less steep than in the case
of the propagated features. Then, the recall decays hyperbolically for higher
numbers of removed annotations and even for a single remaining annotated
element one fifth of the model can be aligned correctly.

When the quality of the matching is measured in terms of the precision
(the number of predicted pairs being correctly matched) the alignment based
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Figure 4.6: Quality of the alignment of BioModels 9 and 11 after removal
of random annotations from the Huang model. Depicted are precision and
recall of the proposed element pairs (compared to the reference alignment
from Figure 4.5). For each number of elements cleared from its annotations
ten repetitions have been performed. Regression lines have been added to
the first three plot lines to visualise the mostly linear decline in precision
and recall. Furthermore, a fourth line of plots visualises the mean values of
precision and recall for all three methods.
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on direct similarities scores already quite well. Here, no predictions about
elements lacking annotations are made and therefore only the ambiguity in
the matching of elements carrying identical annotations influences the pre-
cision negatively. For the propagated features the decay in precision seems
to be linear along the full range of removed annotations. But even though
the precision is higher for few removed annotations than for the matching
based on direct similarities, its quality drops faster. In the case of propa-
gated similarities, the behaviour is again biphasic as for the recall. It drops
linearly for up to 30 removed annotations but less steep than the precision of
the matching based on feature propagation. For higher numbers of removed
annotations this behaviour is again hyperbolic and even in the cases where a
single annotation is left in one of the models one fifth of the predicted match-
ings are correct. Generally, even though both propagation methods perform
better in terms of the recall, they perform worse than the direct measure
in terms of precision. This can be easily explained by the fact that they
also try to match non-annotated elements, which they might do incorrectly.
Therefore, their predicted matchings will contain more errors than the direct
matchings, especially if one of the matched models is annotated sparsely.

The same kind of analysis has been performed for other model pairs. Since
the results do not change qualitatively, they are not shown here. It would
in general be interesting to run this kind of analysis on a larger scale with
lots of different model pairs. Unfortunately, a manually curated matching of
the elements is required in order to measure the performance of the different
approaches. As these matchings are currently not available such a kind of
analysis has to be postponed.

4.3.3 Predicting annotations in a glycolysis model

In order to test the quality of the annotation prediction I perform a similar
kind of analysis. I repeatedly remove a varying number of annotations from
the glycolysis model of Hynne [Hynne et al., 2001] and try to repredict the
removed annotations. Instead of a signalling cascade model as in the previous
examples, I use a model describing a metabolic network. In contrast to the
aforementioned models, this model does not contain multiple species with
identical annotations.

For each element whose annotations have been randomly removed I use its
propagated feature vector to search for relevant annotations in the feature-
vector database. Given the topmost hits (i.e. the features associated with
vectors pointing into a similar direction), I evaluate the position of the correct
annotation in the retrieved list.

The results of this evaluation for BioModel 61 are given in Figure 4.7.

115



4.3. APPLICATIONS OF IMPROVED MODEL ALIGNMENTS

Fraction of times the correct annotation has been found considering the first result

O e L B s s s B B L s s s s s s s s s s B s e B L B s s

Fraction identified

B e e e L B e o e L e e e e e e e M S S B

Fraction identified

Fraction identified

Number of removed annotation

Figure 4.7: Large scale analysis of the quality of the annotation predic-
tion. Certain numbers of randomly chosen annotations (x-axis) have been
removed from BioModel 61 [Hynne et al., 2001], a model of glycolysis, in ten
repetitions. After the removal, I try to predict the missing annotations and
compute the fraction of times (y-axis) I have been able to find the annotation
in the first n results (different plots visualising n = 1,5, and 10).
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These results show two points: First, the quality of the prediction seems to
be linearly dependent on the amount of annotations which are already present
in the model. The more annotations are available, the better the prediction
of novel annotations works. Also the quality of the model matching based
on feature propagation has shown a linear dependence on the number of
annotations present in the models. Although this behaviour seems to be re-
curring it cannot be easily explained because of the complexity of the feature
propagation and the similarity measure. Second, the correct annotation is
in most cases contained in the first ten suggested annotations. The plot in
Figure 4.7, which depicts the fraction of correct annotations being in the
first ten suggested ones, did not differ significantly from a curve for the first
50 suggestions. Furthermore, about half of the times that the correct anno-
tation is included in the first ten retrieved ones, it is the first. While this
underlines the quality of my suggestion heuristic, the method is insufficient
to predict annotations completely automatically. Nevertheless, the method
is adequate to suggest annotations in a user interface, as it is implemented
on http://semanticsbml.org.

4.3.4 Merging arachidonic acid pathways

As one of the running examples throughout this thesis, a comprehensive
model of the arachidonic acid pathway is constructed and analysed. For this
purpose I perform a retrieval step on the non-curated part of BioModels
Database starting from an initial annotated model that had previously been
identified [Yang et al., 2007]. As the models in the non-curated part have not
been assigned semantic information, they have to be annotated automatically
beforehand (details omitted). This retrieval step leads to the identification
of three further models describing the arachidonic acid pathway. In contrast
to the query model, which describes the pathway in granulocytes, the more
recent models describe it in granulocytes as well as in endothelial cells and
platelets [Yang et al., 2008]. As the retrieval models are an improvement on
the first model, only these are used and combined into a single model.

My objective behind running the drug target identification in the three
different cell types, is to find a potential treatment, which can inhibit the pro-
duction of pain mediators in all types simultaneously. Thus, when the three
pathways are combined into a single model, I do not couple the pathways’
differential equations. After combining the models one ends up with a model
containing three arachidonic acid pathways in three different compartments.
In further steps the automatically assigned annotations have been manually
curated to ensure that model elements are described by appropriate semantic
information. Additionally to the models published in BioModels Database,
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the publication of Yang et al. contains four further parameter sets which fit
their experimental equally well. Making use of these parameter sets one ends
up with five different models, each describing the arachidonic acid pathway
in three distinct cell types.

4.4 Discussion

4.4.1 Combining structural and semantic information

What have I achieved so far? The models I am working with need to
carry specific semantic information which explain the Biological Concept be-
hind each model element. Without this kind of information, many of the
methods introduced in the scope of this thesis would not work. Nevertheless,
assigning annotations to all elements in a model can become an excessive
amount of work. This amount of work increases even further when the as-
signed semantic information is critical for the success of later methods and,
therefore, has to be as precise as possible.

Because of the additional effort that has to be put in the annotation pro-
cedure, many available models do not contain semantic information. There
are two ways in which this problem can be handled: First, a tool supporting
the automated assignment of semantic information to elements in a model
could be developed. Second, methods in need of completely annotated mod-
els, e.g. alignment algorithms, could be extended by working on partially
annotated ones. The approaches introduced in this chapter address both of
these ideas using a similar mathematical method.

Propagating information The propagation of semantic information in a
sparsely annotated biochemical network allows us to assign unique feature
vector to most of the elements in a model. These feature vectors describe the
distribution of semantic information within the network. For the purpose of
propagating the information in the network a non-mass-conserving diffusion-
like process is applied to the features, which, judging from the positive results,
seems to combine structural and semantic information appropriately.

This approach can further be extended to propagate information about
the similarities of related pairs of model elements. Using this kind of propa-
gation in the alignment of different models leads to improved results, but
its computational demands are by far higher (O(|M]? - |N[*) instead of
O(|M)? + |NJ?), where |M| and |[N| denote the numbers of elements in the
two models). However, similarity propagation is more broadly applicable
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than feature propagation because it can also be applied to similarity mea-
sures which are not vector-based.

Apart from its use during the process of merging sparsely annotated
models, feature propagation can also be of help to assign semantic infor-
mation to model elements. This ability has been added to our web tool
at http://semanticsbml.org, which does not only allow to add MIRIAM-
compliant annotations to an SBML model but also allows for query-based
retrieval of annotations by their names. The inclusion of the annotation pre-
diction into this interface adds another layer of comfort to the annotation
process and is able to reduce the effort associated with it.

4.4.2 Assessing the quality of the proposed measures

Quality of model alignment The quality of the model alignment based
on the different propagation schemes is higher than for the cases in which
the direct pairwise similarity has been used. Although the alignments differ
between the propagation schemes, they appear to be stable across a wide
range of parameter values for the different relations in the R matrix. One
possible explanation for this behaviour is the adaption, which is done through
the choice of the A parameter (half of the inverse of the largest absolute value
of an eigenvalue).

Although the results of an alignment might not be very sensitive to the
choice of the numerical values in the R matrix, it should be a matter of discus-
sion along which relations in an SBML model semantic information should be
propagated. In cases in which all relations propagate information, some ele-
ments might be matched without sufficient supporting information. This can
happen if two different compartments each contain a species sharing a single
annotation. This single annotation contributes positively to the similarity
of the species, which in turn propagates to the similarity of the compart-
ments. If such a behaviour is not desired, the threshold for the matching of
elements could be increased or, depending on the exact application, selected
propagation weights could be altered.

Quality of annotation prediction As shown in the results section of
this chapter, the prediction of new semantic information for elements in a
sparsely annotated model using my approach provides sensible results. In
general, the annotation prediction works best, when all elements in the con-
sidered model represent distinct BCs. Therefore, the semantic information in
metabolic models is easier to predict than in models of signalling networks.
As discussed for the example of BioModel 9, elements can share some or even
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all of their annotations even though they describe distinct states of a cer-
tain protein. These shared annotations can be a problem for the annotation
prediction, because the semantic information which is shared across all these
elements might be overrepresented in the internal “feature—vector” database
and, therefore, in the results of this method.

4.4.3 Comparison to existing approaches

Applying graph matching methods to Systems Biology models In
general, the graph matching algorithms that have been mentioned in the
introduction of this chapter, divide the process of the model alignment into
two distinct steps: First, pairwise similarities between the models’ elements
are computed. These are mainly based on local properties of the nodes
such as their labels, their associated sequence information, or their molecular
structure. Second, based on these similarities, a matching of the model
elements is computed, which respects the individual graph structures. The
numerical efficiency of this second step is in most cases dependent on how
much the compared graphs are allowed to differ in order to be still regarded
as equivalent. In the comparison of Systems Biology models, the differences
can be huge. Therefore, either the computation becomes very expensive or
a different approach has to be employed to find a suitable model alignment.

Modifications suitable for Systems Biology One possible way out of
this dilemma is to relax one of the requirements of the alignment. As soon
as one drops the idea that two graphs are supposed to be isomorphic after
a certain number of edit operations, this number does not limit the applica-
bility of my method. In order to still incorporate structural information into
the computation of pairwise similarities, semantic information is propagated
along the network structure. Given the fact that structural information has
been considered in the first step of model alignment, the second step — the
actual alignment — can be performed in a lazier manner. But apart from the
greedy matching heuristic employed in this chapter, the propagated similari-
ties can also be used in combination with the aforementioned graph matching
algorithms. By employing the introduced measures, the quality of the align-
ment of the graph matching methods could be increased, or the measures
could be used for filtering interesting regions of a large pathway map for
interesting subgraphs.

120



4.4. DISCUSSION

4.4.4 Conclusion

As demonstrated in the results section of this chapter, feature propagation
and similarity propagation do improve the quality of model alignments. Fur-
thermore, feature propagation can be used to predict new annotations. In
contrast to methods established for the comparison of PPI networks, the
methods introduced in this chapter can also be applied to compare Systems
Biology models. They can deal with the problem of aligning models de-
scribing processes to a different degree of detail, e.g. models using different
kinetics. Furthermore, they are able to distinguish between elements carrying
identical annotations.

In conclusion, the similarity measures described in this chapter integrate
structural information into the measures from the previous chapter in a con-
sistent manner, thereby resolving aforementioned problems.
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5.1 Drug target identification by parameter
optimisation

Current state

treatment
model > model >

construction refinement prediction

Figure 5.1: Current position in the workflow of applying Systems Biology
methods to pharma research and development.

In the previous chapters I have discussed methods for the retrieval of
knowledge in the form of computational models and experimental data sets
as well as methods for the alignment and integration of reaction networks.
After having applied these methods in the construction, refinement, and
verification of our model, we have acquired an extensive mathematical model
of pathways relevant for a certain disease.

Using this model (or potentially different model alternatives having a
different structure or altered parameter values) one can enter the cycle of
Systems Biology as indicated in Figure 5.1. In this cycle a model is used
to make a prediction, which is afterwards tested experimentally. Given that
the experiments do not support the model predictions, the model has to be
refined in order to be in accordance with them. Finally, the next prediction
can be made and the cycle starts anew. When this cycle is applied to the
identification of drug targets, the generation of hypotheses can be replaced
by the directed search for potential treatments. After having tested these
treatments experimentally, one has either identified a potent selection of
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targets or gained additional data to refine the model. In this second part of
my thesis I will introduce methods to make predictions on the potential drug
treatments, which can afterwards be tested experimentally. The prediction
is divided into two parts: the formalisation of the drug target identification
problem as a parameter estimation problem and the subsequent application
of methods to solve it and the identification of synergistic and antagonistic
drug combinations, which requires a slight modification of this formalism.
These two topics will be covered in this and the following chapter.

5.1.1 Drug target identification is a parameter estima-
tion problem

Apart from an extensive, validated model of the pathways involved in a
disease a description of the so-called “healthy” state of the system is needed in
the drug target identification process. The model’s dynamics are supposed to
represent the “diseased” state of the system. Thus, the healthy state is what
the model should be driven to by the application of external perturbations
(compare e.g. [Vera et al., 2007]). Depending on the application, the diseased
and the healthy state might describe different behaviours of the investigated
pathways. They might describe the overproduction of a certain substance
in a human cell and its normal production level or they might describe the
working metabolism of a human parasite and a state in which the metabolism
has been effectively disrupted.

For the following considerations it is conceptually advantageous, if the
healthy state can be expressed by time course data, i.e. values of certain
observables at certain time points. In this case, the difference between the
dynamic behaviour of the diseased model and the healthy state can be used
to construct an objective function equivalent to those used in parameter
estimations. Given that the objective of a target identification problem can
be formulated in such a way, one can map it to a parameter estimation
problem by applying the following steps.

First, one includes potential inhibitors targeting all reactions in a system
by various modes-of-action. Second, one declares the concentrations of all
added inhibitors as variables for the optimisation. Third, an objective func-
tion has to be constructed from the description of the healthy state. This
primary objective can be extended by the inclusion of undesired side effects
of a potential treatment and it can be accompanied by a secondary objective,
e.g. to optimise a treatment for involving a minimal number of drugs. Even-
tually, one can apply different optimisation methods which results in lists of
inhibitor concentrations and values of the objective function(s) prioritising
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Figure 5.2: Arbitrary landscapes showing different degrees of complexity
in the objective function. While the landscape on the left shows a fairly
simple optimisation problem that could arise from a simple model and an
objective function including only a single time point, the middle and the
right landscape could arise from problems including more and more data
points in the objective function leading to the fact that they have to be
solved using global optimisers to avoid getting stuck in local minima. The
figure has been taken from [Feala et al., 2010] and adapted.

the possible treatments.

5.1.1.1 Implications concerning solutions

The shape of the objective function under varying concentrations of the in-
dividual drugs can be more or less complex (e.g. as shown in Figure 5.2). It
depends on the structural and dynamic complexity of the underlying model,
the kinetic details of the drugs’ effects on the velocity of the affected reac-
tions, and the number of data points used in the construction of the objective
function. The fitness landscape determines how many local optima are avail-
able and how these optima look like, e.g. high dimensional subspaces. Thus,
in order to solve the drug target identification problem different optimisation
strategies have to be followed depending on the model and the objective.
For pharmaceutical applications not all solutions are equally useful. Treat-
ments can in principle involve an arbitrarily large number of inhibitors, but
this number should be chosen carefully to find a trade-off between the need
for a larger number of interventions to fulfil an objective and the effort in
developing the corresponding drugs afterwards. Treating a larger number
of targets in parallel has been proposed to be efficient and highly selective
[Agoston et al., 2005], to reliably destroy a system’s robustness to perturba-
tions [Lehar et al., 2008], and to slow down the development of drug resistance
[Bonhoeffer et al., 1997]. Nevertheless, solutions targeting all reactions in a
network (e.g. proposed in Tveito & Lines [Tveito and Lines, 2009]) are not
practicable as the development of a treatment involving a large number of
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drugs requires more effort in drug design stages.

Depending on their complexity different investigated problems can require
varying numbers of drugs. Amongst the more simple problem there might
be cases in which many local minima with a similar objective value exist. In
such cases the inclusion of secondary objectives should be considered to find
means to prioritise the solutions. An example of such secondary objective is
the minimisation of the amount of drug used in total which is supposed to
reduce the probability of encountering unforeseen side effects of the treatment
and increase the possibility of achieving a required bioavailability of the final
drug.

5.1.2 Parameter identifiability
5.1.2.1 Why does identifiability matter?

Following the above mentioned approach one is able to identify single treat-
ments, which are theoretically able to cure the modelled disease. When
setting up an experiment to test a hypothetical treatment in an experiment
the problem might arise that certain targets of this treatment are not drug-
gable. In the scope of my thesis I tackle this challenge by identifying targets
which can replace each other in certain treatments. For this purpose I have
applied the concept of parameter identifiability to the drug target identifica-
tion process.

Identifiability can be applied to any kind of parameter estimation prob-
lem and answers the question of how precisely certain parameters can be
estimated. More in detail it answers the question, given an optimal solution,
can one randomly change the value of one parameter and compensate for it by
changing other parameters? In fact, in kinetic models on average only }lth of
the parameters is inferable from experimental data as some model variables
cannot be measured with sufficient precision or even not at all [Gutenkunst
et al., 2007, Erguler and Stumpf, 2011]. Furthermore, examples exist in which
no single parameter can be estimated reliably [Ashyraliyev et al., 2008].

Applied to the drug target identification problem identifiability of a pa-
rameter in a solution signifies, whether one target can be replaced by a
different target in a certain treatment. Once these alternatives are identified
they can be valuable knowledge in the actual selection of targets based on
additional biological knowledge.
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5.1.2.2 Available approaches to find non-identifiable parameters

Non-identifiability of parameters can have two different reasons [Raue et al.,
2009]. On the one hand, there is structural non-identifiability, which is a
result of the overparametrisation of a model. If the parameter space has a
higher dimensionality than the “space of the time courses” of the observables,
various parameter combinations can lead to the same time course, rendering
some model parameters non-identifiable. These non-identifiabilities can be
detected a priori from the model using different analytic approaches (e.g. [Po-
hjanpalo, 1978, Jacquez and Greif, 1985, Ljung and Glad, 1994]) but these
approaches do either only deal with linear models or become infeasible for
larger model sizes [Bellu et al., 2007, Raue et al., 2011].

On the other hand, there exists practical non-identifiability, which is a
result of too sparse data or data being insufficiently accurate. In parameter
estimations experimental data restricts the space of “correct” dynamic sim-
ulation results, which in turn restricts the space of “correct” parameters. If
this restriction is not rigid enough, parameters can remain non-identifiable.
This problem can be fixed by including more experimental data, possibly
under different conditions, which will render a larger number of parameters
inferable [Apgar et al., 2010].

In general, the methods for investigating practical non-identifiabilities
work by investigating the shape of the objective function in parameter space
around a certain set of parameter values. Practical non-identifiability is
therefore a local property of a point in parameter space. As in most cases no
closed formula for the objective function exists and since Monte Carlo ap-
proaches to approximate it can easily become unfeasible, more simple meth-
ods have to be applied to capture its local properties. The shape can for
example be approximated by the objective function’s Hessian or using the
Fisher information matrix [Vajda et al., 1989, Erguler and Stumpf, 2011].
Such approximations can give hints on local non-identifiabilities and param-
eter relations, but they are unable to draw a broader picture. To tackle this
limitations Hengl et al. [Hengl et al., 2007] apply alternating conditional ex-
pectation [Breiman and Friedman, 1985] to identify the complex relations
which might exist between non-identifiable parameters. Furthermore, Raue
et al. [Raue et al., 2009] exploit the profile likelihood [Venzon and Mool-
gavkar, 1988] to determine numerical ranges in which the parameters are
unidentifiable. Using these approaches, practical non-identifiabilities can be
investigated in more detail.
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5.1.3 Host pathogen systems

In most applications the effect of the treatment with a potential drug cannot
only be judged by its effect on a single type of cell. When treating a parasitic
infection, not only the effect on the parasite but also the effect on the human
host has to be considered [Bakker et al., 2000a,b]. The same observation
holds for treatments of cancer, in which a drug should selectively harm cells
dividing in an uncontrolled manner but no other types of cells [Garrett and
Workman, 1999].

Selectivity against a certain cell type can be achieved in two different
ways. First, a drug can be designed to specifically bind its target only in the
desired cell [Fidock et al., 2004]. Second, its target can be chosen such that
the targeted cell type is far less robust to perturbations against it. The first
idea requires structural differences in the proteins in between “pathogen” and
“host”, which becomes more probable if their amino acid sequences show less
homology [Hasan et al., 2006]. The second idea requires differences in the
structures or the dynamics of the affected pathways, which can be computed
using Systems Biology models of both cell types.

A simplified quantitative picture on how different network dynamics can
affect the quality of a target can be given by the application of Metabolic
Control Analysis to the field of drug target identification (e.g. [Cascante
et al., 2002, Hornberg et al., 2007, Murabito et al., 2011]). In this context
the concept of network-based selectivity has been developed [Bakker et al.,
2002]. This quotient compares the derivatives of the steady state values of an
observable with respect to an inhibitor’s concentration in between two organ-
isms. Using the selectivity one is able to prioritise drug targets which have
a bigger effect in the parasite than in the host. The application of this ap-
proach requires dynamic models of the affected pathways in both organisms.
However, it compares steady state behaviour under an infinitesimal small
perturbation. Applying this concept in my framework it can be extended to
non-steady state behaviour and treatment-like perturbations.

5.2 Formalising the drug target identification
problem

In the previous section the idea that the drug target identification problem
can be mapped to a parameter estimation has been introduced. This idea
has been discussed in the literature in various ways. First, the effect of po-
tential drugs on different systems has been studied using different kinds of
objective functions comparing the effects [Jackson, 1993, Hornberg et al.,
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2005a, Fitzgerald et al., 2006]. Second, drugs acting with different mechanis-
tic modes-of-action on various targets have been included into a pathway and
the resulting changes in the steady state behaviour have been compared [Ger-
ber et al., 2008]. Finally, different numerical optimisation methods have been
applied to the drug target identification problem [Yang et al., 2008, Tveito
and Lines, 2009]. Nevertheless, none of the above mentioned approaches
provided a comprehensive and automatable framework and an open source
software implementing it.

During my thesis I have collected a set of approaches from the litera-
ture and combined them in a framework providing computational support
in the prediction of treatments. In the following I will introduce details on
how a drug target identification problem can be converted into a parameter
estimation problem and how it can be solved. Therefore, I will show how
a model should be manipulated and how the variables for the optimisation
steps should be selected. Furthermore, I will discuss what results will be
gained from the application of different optimisation methods to the prob-
lem.

5.2.1 Setting up a parameter estimation to solve the
drug target identification problem

5.2.1.1 Identifying and inserting kinetics

The variables of the optimisation problem, which is to be constructed in this
section, represent the action of potential drugs on targets in the considered
model. In most cases, such variables are not included in a model and have to
be added prior to the optimisation. Different approaches how to implement
the action of a drug on a certain target exist in the literature, and they differ
in the detailedness to which the action is modelled:

1. multiplication of the reaction kinetic with a Boolean variable, which
models a knock-out of the corresponding gene (e.g. [Raman et al.,
2005, Lee et al., 2009]);

2. multiplication of the kinetics with a non-negative real number, which
describes a linear change in the corresponding enzyme’s concentration
or activity (e.g. [Vera et al., 2007, Yang et al., 2008]);

3. incorporation of inhibition kinetics (e.g. [Gerber et al., 2008, Yang
et al., 2008]), which model a drug’s mode of action in detail.
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Which kind of variables should be used? Most of the drugs approved
in recent years are competitive inhibitors [Swinney, 2006]. Competitive inhi-
bition of a certain target results in a dynamic behaviour which is fundamen-
tally different to a gene knock-out or a change in enzyme concentration, as
it can be overcome by an accumulation of the substrates, rendering the inhi-
bition useless [Westley and Westley, 1996]. Thus, the effects of a treatment
with a potential drug in vivo should not be modelled using mechanisms 1 or
2 but rather by detailed inhibition kinetics in order to avoid false positive
targets in the prediction.

How are inhibition kinetics inserted into a model? In order to in-
clude these detailed inhibition mechanisms, the framework I have developed
contains a step in which the model’s network structure and kinetics are ma-
nipulated. For every selected reaction in the model the kinetics are changed
by including possible inhibitors or activators with different modes-of-action
(e.g. competitive or non-competitive inhibition). The identification of ki-
netics in the model and the replacement by inhibition kinetics is done based
on numerical comparisons to kinetic formulas from an internal library. This
library is based on the Systems Biology Ontology (SBO) [Le Novere, 2006]
and has been extended manually to include other popular kinetics, which I
have encountered during the analysis of various models. Furthermore, the
library can be extended by the user. Given the kinetic formulas in an SBML
model this tool adds various possible inhibition kinetics semi-automatically
to the library, as shown in subsection B.2.1 in the Appendix.

Apart from regular inhibition/activation kinetics describing the effect of
a modifier with a particular mode-of-action, I have introduced superimposed
kinetic formulas, which describe the effects of various modifiers at the same
time. Single modifications can be added to a kinetic formula by multiplica-
tion of certain parameters by a factor representing the binding of the partic-
ular modifier (see B.2.1.3 in the Appendix). All these factors for all possible
inhibitors/activators can in principle be included into a superimposed inhibi-
tion formula. As these introduced factors are equal to 1 when no inhibitor is
present, the superimposed kinetic resembles the various inhibition/activation
kinetics as long as only one modifier for this reaction is present. Therefore,
variables describing the potential action of drugs acting with various modes-
of-action on the targets in a given reaction network can be introduced by

e replacing reaction kinetics by their corresponding superimposed inhi-
bition/activation kinetics,

e introducing new variables describing the absolute concentrations of in-
hibitors acting on different targets with different modes-of-action, and
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e adding parameters describing the binding constants of the inhibitors to
their targets.

5.2.1.2 Affecting multiple targets with a single drug

The inclusion of new variables as explained above assumes that every reaction
can be targeted individually. This might not be the case for every model as
e.g. two reactions in the model could be catalysed by the same enzyme. Thus,
the inhibition of such reactions with a particular mode-of-action should be
described by the same variable.

In order to detect such cases automatically, I propose the following method.
First of all, two reactions should be inhibited by the same potential drug if
they are catalysed by the same enzyme, i.e. their kinetics are dependent on
the same modifier concentration and this modifier’s annotations suggest that
it is a protein. Judging from an element’s annotations I suppose an ele-
ment to be an enzyme if it is either annotated as a protein, e.g. containing
a UniProt annotation [Bairoch et al., 2009], or with an enzyme classification
(EC) number. Second, reactions should be inhibited by the same drugs if
their annotations or the annotations of their enzymes have a certain simi-
larity. This similarity is determined using the vector-based measure defined
in chapter 3. When the (reaction or modifier) elements show a similarity
which is higher than a user defined threshold, individual inhibition variables
(for all modes-of-action) are replaced by variables representing the parallel
inhibitions of both reactions.

5.2.1.3 Preparing the objective function

Now that we have added variables describing the effect of potential drugs to
the model, we construct the objective function which should be minimised
during the target identification process. This objective function has to be
chosen with as much carefulness as the model itself because it will have a
large impact on which drug treatments we will regard as optimal.

For the applications described in this work, the model is supposed to
describe the diseased state of a system and it is supposed to do that with
sufficient accurateness and detail. Opposed to that, the objective function
will describe the healthy state, a state to which the model is supposed to
be driven by the treatment. Therefore, it has to incorporate information on
the molecular consequences of a disease (e.g. an elevated concentration of a
certain substance) in order to cure it. Furthermore, general information of
the healthy state (e.g. normal concentrations of a few important metabolites)
should be incorporated to avoid side effects of the treatment.
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Figure 5.3: Different objectives at different concentration time points. A
trajectory of a simulation in the healthy state can be required to fall below
a certain threshold, surpass it, or stay within certain boundaries.

Description of the healthy state As a compromise between approaches
existing in the literature, I propose to describe the healthy state by a number
of concentration time points ¥,(¢;) for variables in the model. Each time
point is to be accompanied by information on how a dynamic simulation of
the model should behave under an effective treatment with respect to this
point. Given that a substance ¢ has an elevated concentration in the diseased
state, this concentration should drop below the point in the healthy state:
yi(tj,0) < 7,(t;), where y;(t;,0) is a time point of the model simulation run
with parameter set 6 (e.g. y; in Figure 5.3). Given that in the diseased state
the concentration is too high or not within a certain range, a healthy state
should satisty y;(t;,0) > y,;(t;) or y;(t;) — 0:(t;) < vi(t;,0) < y;(t;) + oi(t;),
respectively (see yo and ys in Figure 5.3). Using concentration time points to
discriminate between diseased and healthy state is supposed to be the most
appropriate measure of a treatment’s success [Kell, 2006].

With this information, an objective function measuring the difference
between a treatment simulation and the healthy state is constructed. In
accordance with existing parameter estimation methods, we compute the

function
xr =Y <yi(tj) f(fi)(tja 9)>2

i,J
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Assuming that the normalised residuals (y,(t;) — vi(t;,0))/0:(t;) are inde-
pendent and standard normally distributed, X? follows a x? distribution.
Depending on the objective a “healthy simulation” has to fulfil with respect
to each time point, different summands have to be added to the objective
function:

e minimisation of a concentration beyond a certain value

e maximisation of a concentration

2 0- y'(tl' 9) i
X =---+ + +
y;(t5)

e keeping a concentration in a range

Xy (?4%)07(%(”’9))2 i

i(t5)

Acceptable solutions Instead of performing a statistical test using the y?
distribution with the appropriate number of degrees of freedom, we accept
all drug target interventions with

x? < 1. (5.1)

In this case, we know that all separate aims (minimisation/maximisation of a
concentration beyond a certain value or keeping a concentration in a certain
range) are fulfilled. For a proof, see section B.2.2.1 in the Appendix.

5.2.2 Different optimisation methods and what solu-
tions to expect

As mentioned beforehand, the objective function can vary in its complexity
across different problems. Given a fairly simple objective, one might be able
to successfully identify a global optimum using a local optimiser, e.g. Nelder
Mead (Simplex) [Nelder and Mead, 1965] or Broyden—Fletcher—Goldfarb—
Shanno [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno et al., 1970].
In more complex cases many local optima will exist, which requires the em-
ployment of global optimisers as Simulated Annealing [Kirkpatrick et al.,
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1983] or Genetic Algorithms [Goldberg, 1989] in order to find one (or possi-
bly more) treatment(s).

If these algorithms are applied using the original objective function, their
result can in principle involve an unlimited number of drugs applied in par-
allel. While this provides initial information on whether the objective can
be achieved, it does not result in an easily testable hypothesis. Therefore,
in most cases one would additionally like to reduce the number of inhibitors
used. This aim can be achieved in different ways.

First, one can include the number of used drugs into the objective function
such that it is minimised in parallel. When doing so, one has to find a
trade-off between both objectives (treatment and reduction of drug number).
This can be implemented by including both objectives into the objective
function together with a factor weighting them. As an appropriate value
for this factor is unknown in the beginning it can be increased stepwise
until an optimisation run finds a suitable solution containing a sufficiently
small number of drugs. The penalty method [Courant, 1943] or augmented
Lagrangian methods [Powell, 1969] are examples of how such an approach
can be implemented.

Second, the maximal number of drugs could be included as a hard con-
straint. This would require the employment of optimisation methods incor-
porating constraints, e.g. COBYLA [Powell, 1994], but it might be necessary
to start the optimisation again and again for an increasing number of used
drugs as the algorithm might not be able to find a feasible solution.

Finally, the objective of using a minimal number of drugs can be included
by a brute force optimisation on top of the individual drug concentration opti-
misations [Schulz et al., 2009]. In each step of the “outside” optimisation only
selected reactions are allowed to be targeted. The concentrations of drugs
against them are then optimised in the “inner” optimisation. Along all of
these optimisations, the most favourable treatments, e.g. the ones using the
smallest number of drugs in the lowest concentrations, can be identified after-
wards. Although the brute force approach is numerically more demanding,
it allows for various types of constraints and, given that the inner optimisa-
tion finds the best solutions, is guaranteed to find an optimal solution of the
“outside” objective. Different authors have proposed similar approaches but
solved the “outside” optimisation by non-exhaustive searches [Yang et al.,
2008, Calzolari et al., 2008]. These approaches save computational effort at
the price of potentially missing optimal treatments. However, this process is
easily parallelisable and the time these computational steps require is neg-
ligible compared to the total time it takes to develop an effective and safe
drug. Thus, there is no need to rely on computational approximations of
optimal treatments.
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5.2.3 Parameter identifiability

Non-identifiable parameters Given the result of a successful parameter
estimation, identifiability analysis can answer the question of how precisely
the model parameters are determined by the experimental data. In the ap-
plication of drug target identification this analysis can answer, whether a
change in the concentration of a drug in a certain treatment can be com-
pensated by the change of the concentration of a different drug. Using this
analysis we can therefore determine treatment alternatives for cases in which
a selected target is not or hardly druggable.

Relation between non-identifiabilities and the objective function
As for general parameter estimations, there exist two different types of non-
identifiabilities between potential drugs [Raue et al., 2009]. The first type
is structural non-identifiabilities. These are caused by potential drugs hav-
ing the same effect on all observables in a model. Reasons for such non-
identifiabilities are easily detectable cases, e.g.

e when the same reaction is inhibited by inhibitors with a slightly differ-
ent mode of action,

e when reactions catalysed by isoenzymes are treated in parallel,

e or when a reversible reaction has been broken up into two irreversible
reactions and those are treated with one inhibitor and one activator.

As such cases can be avoided by proper selection of treatments tested in
parallel, I will not further discuss them in the scope of this thesis.

The second type of non-identifiabilities are practical ones. These arise in
between two hypothetical drugs, when both of them result in the same effect
on the variables covered by the objective function. This means either of the
two drugs can be used to cure the disease and avoid all the side-effects which
are currently observed. Therefore, the non-identifiable drugs can be used to
serve as treatment alternatives, using either one drug, the other drug, or a
combination of both in the final treatment. Alternatively, the simulations
under different treatments can be used to find observables being affected in
different ways. Biological knowledge on these observables might lead to the
identification of further relevant side-effects that should be integrated into the
objective function. The successive integration of new knowledge will remove
practical non-identifiabilities and will lead to a safer treatment eventually.
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Discovering non-identifiabilities Now that I have illuminated why we
investigate non-identifiabilities, I will introduce a method to determine them
computationally. For this purpose, I formulate identifiability specifically for
the drug target identification process.

In the following I will denote a working treatment involving the potential
drugs = and y by T ({z,y}). Knowing the concentrations i, and 4, of those
drugs I will denote a quantitative treatment by 7" ([is,7,]), i.e. there exists a
drug concentration vector 6;, ;, = (61 = 0,0, =0,...,0, =iy, ...0, =iy,...)
such that X?(6;,;,) < 1. Let T ([t - - ., ia,,0y]) and T ([ig,, ..., 4s,,1]) be
working treatments, then I call y replaceable by z in the condition 6,, =
Ggrs -y O, = Ug,, in short I (i, — i,lig,, ... 0z, ), if

. . . ., .,
Vo<i<i, i, + T ([ters - - s Lys i]).

Furthermore, I call y and 2 interchangeable in the condition 6,, = i,,,
oy Oy, =iy, in short I (iy < )iz, ... 0, ), if T(iy = is)iz,...,0,) and
I (i, = iylig,...,0,). This definition is of biological relevance, as inter-

changeable drugs in a treatment can replace each other if one of them can
only be applied in a lower than required dose or even not at all.
In order to identify all drug interchangeabilities I propose the following
algorithm:
for 7, € P(I) do
if T'(Z,) then
for 7, € P(Z,) do
for Z; e P(INZ;) do
if ](ilz s izg |i11) then
report interchangeability
end if
end for
end for
end if

end for

The test for interchangeability of drug combinations is implemented by suc-
cessively lowering 7, on a logarithmic scale, e.g. 1, =4, - f~', i, - f7%, ...,
iy - f79, and then applying a global optimiser to find a value 7, for which
T ([Z'y, i, ZI]) In case Z, involves more than one drug, i; values are varied
on a comparable high-dimensional grid. If the optimisation leads to accept-
able X values for all values of 7, we assume that I (i, — i.]iz).

This algorithm explores the complete combinatorial space of drug com-
binations and has therefore a running time of O ((2”)3) with n being the

number of possible targets. As this running time is already unacceptable
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for identifying interchangeabilities in models of moderate size, this general
algorithm has to be speeded up. I propose to decrease the running time by
restricting the cardinality of the sets considered in the power sets of inhibitors
P(I) and pruning the combinatorial space of drug combinations by removing
trivial results from further considerations. A full list of rules to infer trivial
results and an extended version of the algorithm are shown in section B.2.3.3
in the Appendix.

As an example of how the combinatorial space can be pruned, I introduce
the principle that the definition of interchangeability requires “minimality”
of the working treatments. I define a minimal working treatment by being
a set of drugs Z such that 7' (Z) from which no drug could be removed:
VeerT (Z\ {z}), where T ({z,y}) < Vi, 204,0X%(6;, 5, = 1). The treatments
are supposed to be minimal because working treatments can be extended
arbitrarily, i.e. given a set of drugs Z in a working treatment being effective
at concentrations iz we have T (Z) = T (Z + {x}). Therefore, it follows
from T (Z) that I (i, <> iyliz). According to this idea, Z; should be checked
for being minimal at the start of the first loop. Using this idea can lead
to a significant reduction in computational effort depending on the model
investigated.

5.2.4 Host-pathogen interactions
5.2.4.1 Network selectivity in metabolic control analysis

In the methods presented so far I have assumed that side-effects of a potential
treatment can be observed within a single model. For many applications this
is obviously not possible and one has to observe the effect of a treatment on
different models, e.g. the same pathway in a parasite and a host, in order to
come up with a more conclusive estimation of a drug’s safety. Given different
relevant models, we can simulate the effects of a treatment individually using
the aforementioned methods and compare the results afterwards.

The comparison of the results of drug target prioritisations has first been
shown in Bakker et al. [Bakker et al., 2002]. In this approach, MCA has been
used to identify inhibitors leading to the largest response in an observable.
For comparing responses to related inhibitors targeting homologue enzymes
in between both models, Bakker et al. have defined the “network selectivity”
of an inhibitor:

ij“ (parasite) - 6?/',% (parasite)
Cye(host) - e?/ki(host) ’

selectivity =

where S, is the observable, I is a potential inhibitor with a binding affinity
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Figure 5.4: Processes contributing to the effect of an administered drug /.
The processes include the uptake of the inhibitor to the compartments in
which it is supposed to act, the binding of the inhibitor to its target, the
local effect of the bound drug, e.g. on the reaction the target is catalysing,
and the global effect that is propagated through the network of interest to
an observed variable, e.g. the concentration of a certain compound.

of k; to the enzyme catalysing reaction v;, C' is the control coefficient, and
e is the elasticity (as introduced in chapter 2). Given that the effect of an
administered drug can be dissected into four terms (as shown in Figure 5.4)

v i Sa .
dSa/dI(parasite) _  U(parasite) k;(host) . EI?ki (parasite) . Cy} (parasite)
dSqa/dI(host) U (host) ki(parasite) 6?% (host) Cvsjfl (host)

uptake structure elasticity control

the selectivity describes how much effort has to be put into the design of
the actual drug. If the potential drug has a high selectivity, i.e. the network
effect in the parasite is much higher than in the host, less effort has to be
invested into increasing the preferential uptake of the drug into the parasite
or the preferential binding of the drug to the parasitic enzyme.

5.2.4.2 Network selectivity in drug target identification

Selectivity for single inhibitors In the scope of my framework, I have to
extend the concept of network selectivity, as the effects of potential drugs on
an objective are not quantified by a scalar but given by the objective function.
Therefore, one is only able to quantify the potency of a hypothetical drug
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by the minimal concentration needed to achieve a certain predefined effect.
Given such a desired effect in terms of an objective function (X?), T define
the required concentration of a drug by
fj(XpQ) = n};n : X;(Ij -€5) < L.

Depending on the investigated model, this objective function should quantify
different biological objectives. When investigating a model of a parasite this
can signify the necessary concentration Kkilling it, and when looking at a
human model, it can describe the tolerable dose, which we define as the
lowest concentration resulting in measurable damage to the host.

Within my extended network selectivity, one again searches for positions
in the network which are highly sensitive in the parasite, i.e. they require low
doses of a drug, and highly robust in the host. Thus, I define it by

(X2
selectivity; = 55 Hiow) (5.2)

gj (Xanrasite) ’
which again assigns favourable drugs are large selectivity. Using this formula
targets of single drug treatments can be compared within two different mod-

els. An extension of this method to treatments involving multiple drugs and
considering more models is given in section B.2.4 in the Appendix.

5.3 Results

5.3.1 Implementation

I have implemented the framework I present in this thesis in the open source
Python library ibTI2 (http://sourceforge.net/projects/semanticsbml/)
and a public web tool (semanticsbml.org/TIde). This library combines
the aforementioned methods and different optimisers implemented in SciPy
[Jones et al., 2001] with fast ODE solvers, which together allows for the rapid
computation of potential treatments. The current workflow followed by my
library involves the compilation of the considered model including all possi-
ble inhibitors in parallel into a binary. This binary is linked to different ODE
solvers written in Fortran (i.e. LSODE [Hindmarsh, 1980], LSODA [Petzold,
1983], SEULEX, RADAU [Hairer and Wanner, 1991], EULSIM [Deuflhard,
1985], LIMEX [Deuflhard et al., 1987]), which allows for a fast simulation
of the model under different treatments. Being able to compile the model
and reuse it in every iteration step provides a significant decrease in com-
putational time compared to other available simulation tools and libraries,
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e.g. SciPy, COPASI [Hoops et al., 2006], or the SBML ODE Solver [Machné
et al., 2006]. These tools allow for fast simulations, yet they do not offer the
possibility to compile a model or they do not provide an interface to reuse
the compiled model for further simulations.

5.3.2 Linear pathway
5.3.2.1 Introduction of the model

As a simple example case to prove the usefulness of my approach I analyse
the linear pathway which has been investigated in Gerber et al. [Gerber
et al., 2008]. This pathway consist of a chain of five reactions connecting
the metabolites S; to Sg, of which the first and the last are kept at constant
concentrations S; = 1, Sg = 0. The reactions in the chain have been assigned
reversible Michaelis-Menten kinetics (see Eq. B.1) with parameters V.J =
Kpns=Kpp=1and V] =02

In their article Gerber et al. investigate changes in the flux through the
network with respect to varying positions at which the chain is inhibited,
varying modes-of-action, and varying inhibitor concentrations. From this
simple model, Gerber et al. have predicted some general rules on which drugs
would be most successful in a linear pathway. In the following, I reproduce
some of their findings within my framework and extend the results to the
case of non-infinitesimal inhibitor concentrations. Furthermore, I will show
differences in both approaches and I will add new insights.

Details on the construction of the model and the objective function can be
found in section C.1 in the Appendix. In contrast to Gerber et al. I observe
the change in the concentration of the last substrate in the chain, which can
here be regarded as equivalent to the change in flux through the network (see
section C.1.2).

5.3.2.2 Insights from the application of my framework

As already mentioned, the objective behind the application of potential drugs
to this pathway is the reduction of flux through it. Because the pathway is
completely linear, the flux is identical to the steady state reaction velocity of
any reaction. With the help of MCA, Gerber et al. have shown that inhibitors
of any reaction in the network reduce the flux through the network with
increasing concentration (compare plots in section C.1.3 in the Appendix).
Contrarily, increasing activator concentrations increase the flux through the
network.

Apart from the concentrations in which a drug should be applied, one
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can ask for the best targets in the chain. For their parametrisation Gerber
et al. have identified the first reactions to be more effective targets. From
the results I have gained, I propose that the best drug target in the network
is determined by the equilibrium constants of the reactions in the model.
As an easy example, I will investigate different parametrisations in which all
reactions have the same parameters and thus the same equilibrium constant
(eq = %) If this equilibrium constant is equal to 1, all positions in
the chain in principle show comparable results upon inhibition. In the case
of non-competitive inhibitors and activators, the results are the same re-
gardless of the inhibitor’s target. Opposed to that, uncompetitive inhibitors
show better results when targeting the first reactions, while competitive in-
hibitors prefer the latter (compare Supplementary Figure C.3). Given that
the reactions have a larger equilibrium constant (as in [Gerber et al., 2008]),
inhibitions of the first reactions show a stronger effect than inhibitions in the
latter ones, and vice versa (as shown in Supplementary Figure C.4).

A final relevant question to be answered is the most appropriate mode-
of-action for the drug. As proven in section C.1.1, the best type of inhibition
for Michaelis-Menten kinetics is determined by the binding constants and
the substrate concentrations. Generally, non-competitive inhibitors show the
strongest effect, competitive and uncompetitive inhibitors can work compa-
rably well, but they will never work better. To decide whether an inhibitor
should rather work in a competitive or an uncompetitive manner, one should
investigate whether the following inequality holds in the steady state of the
inhibited system:

—t— <1 (5.3)

If it holds, then the competitive inhibitor achieves the same effect at a lower
concentration than the uncompetitive inhibitor. These results are in agree-
ment with Figure 3 from [Gerber et al., 2008] and they are supported by
their numerical simulations in section C.1.3.

Integrating these simple rules, one can explain the differences in the re-
sponse to various inhibitors as the ones shown in Supplementary Figure C.5.
In this network, all parameters have been set to 100 and I again try to reduce
the flux through the chain. Since the equilibrium constant is 1 for all reac-
tions, all non-competitive inhibitions work equally well and they show the
strongest effect. Competitive inhibitors work far better than uncompetitive
inhibitors as the left side in Eq. 5.3 is by far smaller than one. For competitive
inhibitors latter positions in the chain seem to work better, even though the
position of the competitive inhibitor only has a very small effect on the flux
inhibition. This can be explained by the fact that substrate concentrations
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are decreasing along the chain, which leads to the effect that more inhibitor
is bound to the enzyme when later reactions are targeted. Uncompetitive
inhibitors show the contrary behaviour. Here, the first positions in the chain
work better as the inhibitor binds to the enzyme-substrate-complex, which
is more abundant for higher substrate concentrations.

5.3.3 Glycolysis in Trypanosoma brucei

5.3.3.1 Prioritisation of drug targets by necessary effective in-
hibitor concentrations

As a biological application for my framework I have investigated the glycolysis
in Trypanosoma brucei in two different mathematical descriptions [Albert
et al., 2005, Achcar et al., 2012]. The stoichiometry of both models is depicted
in Figures C.6 and C.7 in the Appendix. Prior results have shown that the
glycolysis is an essential pathway for the bloodstream form of the pathogen
and that a reduction in flux by 50% results in a serious growth deficiency
[Albert et al., 2005]. Earlier descriptions of the pathway have already been
analysed for potent drug targets as discussed in section 1.5.5 but the most
recent versions have only been investigated on the basis of the control of
individual reactions over the glycolytic flux. In the following I will therefore
prioritise drug targets with my method, i.e. inhibiting the glycolytic flux by
50% and rating targets and inhibition mechanisms by the fact which requires
the least amount of drug to achieve this goal. Mathematical details on the
implementation of the objective function used are described in section C.2.1
in the Appendix.

The results obtained with my approach are in good agreement with prior
results (e.g. [Schulz et al., 2009]) (see Table C.1 for detailed values). In case
one searches for targets of non-competitive inhibitors the most favourable
enzymes are THT, the pyruvate transporter (PT) , PGM, GAPDH, GPDH,
ENO, and ALD. If one allows only uncompetitive inhibitors, this target set
reduces to TH, PGM, GPDH, GAPDH, ENO, and ALD. For competitive
inhibitors only GAPDH and THT prove to be valuable targets as the inhibitor
concentration for GPDH and the hexokinase (HK) needs to be 2.5 orders of
magnitude higher than its K; value.

5.3.3.2 What determines the quality of a target

An important question to raise is which factors determinate the quality of the
targets in the models. While prior investigations attribute the large control
of the THT to the difference in the K, values for glucose of the THT and the
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HK, I claim that my target prioritisation is mainly determined by the V4.
values in the enzyme kinetics. This claim can be supported by the follow-
ing calculations. For each reaction I compute the desired flux v,. This flux
should be defined as the maximal flux through the reaction with which the
system can be driven into the “healthy” state. In the case of the glycolysis
this can simply be defined as half of the flux in the “diseased” state. Then
I compute the needed effective concentration of a non-competitive inhibitor

to reduce the maximal enzyme capacity to vg by solving vy = ﬁme for
Kr

the inhibitor concentration and compare this value to the necessary concen-
tration from simulations (concentrations leading to X? = 1). The degree
in which both effective concentrations differ signify how much the effect of
the simulated inhibition can be attributed to the reduced enzyme capacity
and how much to changes in the rest of the network (e.g. the change in the
metabolite concentrations of its substrates and products).

Setting the desired flux v, for enzymes in the upper part of the glycolysis
to 52#;?0@1 and in the lower part to 87, the effective inhibitor concen-
trations from both calculations, the simulations and the prediction via the
enzyme capacity reduction, largely correspond to each other. Only PFK and
GAPDH show a significantly smaller value for the necessary inhibitor concen-
tration in simulations than predicted from the enzyme capacity. Therefore,
the effect of non-competitive inhibitors on both targets cannot only be ex-
plained by the V., values of the enzymes.

In order to test the hypothesis that for most enzymes the maximal capac-
ity determines the potency of the corresponding non-competitive inhibitors,
I have overexpressed enzymes in the model 10 fold by multiplying the V4.
values with the factor 10 and run the drug target identification process again.
For most enzymes the necessary inhibitor concentrations increased almost 10
fold, except for the PFK where it only increased marginally. Simulations
of the inhibition of PFK show that the inhibition leads to an accumulation
of upstream substrates and the production of glycosomal ADP (adenosine
diphosphate). This accumulation drives the lower glycolysis to a point at
which it runs out of substrates and the system is running into a state of
depletion of glycolytic intermediates.

5.3.3.3 Considering side effects in human cells

The development of a drug against 7. brucei should not only be focused on
the efficacy of the treatment against the pathogen. In order to assess the
safety of a potential treatment as well, the effects on the human host have
to be considered. Therefore, I first look for models describing glycolysis in
human cells and then use the network selectivity measure defined by Equation
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Table 5.1: Network selectivities between targets in the Achcar and the
Holzhiitter model for different modes-of-action. Higher selectivities denote
that an inhibition is effective in trypanosomes and shows almost no effect in
erythrocytes.

non-competitive uncompetitive competitive for
substrate cofactor
ALD 34.7 609 0.226
GAPDH 62.7 36.6 110 12.9
THT 14.7 19.1 9.75
PGM 6.72
PGI 3.21
PGK 1.79 11.4 0.0155 0.489
PFK 0.315 8.25 0.0195 0.00603

5.2 to look for targets which have a less severe effect in the host than in the
parasite.

A search for glycolysis models with semanticSBML (see Figure C.8 in the
Appendix) revealed the Holzhiitter model of carbon metabolism in human
erythrocytes [Holzhiitter, 2004] (BIOMDO0000000070) as a potential candi-
date to evaluate drug safety. This model shares a comparably large num-
ber of compounds and homologue reaction with the trypanosomal glycolysis.
Erythrocytes are of particular interest in this context as they are the most
abundant cells in the blood, the place of residence of trypanosomes in the
first stage. Furthermore, the Holzhiitter model has already been used to as-
sess the safety of potential drugs with the network selectivity using an older
version of the trypanosomal glycolysis [Bakker et al., 1999].

Using network selectivity, we compare targets by the effective inhibitor
concentrations needed to reduce the flux through trypanosomal glycolysis by
50% and the flux through the erythrocyte counterpart by at most 5%. For
details on the objective function used, the reader is referred to section C.3.1
in the Appendix.

The network selectivities depicted in Table C.3 in the Appendix show
basically no differences when the Holzhiitter model is compared to either the
Albert [Albert et al., 2005] or the Achcar model [Achcar et al., 2012]. A small
set of selectivities is shown in Table 5.1. Values bigger than one arise when
the effective inhibitor concentration needed for inhibition of trypanosomal
glycolysis leads to almost no disturbance in the erythrocytes. The most
promising targets in this analysis are GAPDH and THT as inhibitors with
various modes-of-action against these targets have a high selectivity. ALD,
PGM, PGI, and PGK have a high selectivity if targeted in a non-competitive
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manner. Unfortunately, PFK, which has been identified as an interesting
target beforehand, shows a comparably bad selectivity if it is not targeted
by an uncompetitive inhibitor.

Further targets, which are not included in Table 5.1, can be of interest
as well. For drugs targeting TPI and P'T the calculated selectivity is infin-
ity, because the inhibitors show no effect in erythrocytes. Furthermore, the
enzymes TAO and GPDH are not present in red blood cells and might also
be of potential interest [Fessas et al., 1980].

The results presented here largely correspond with the drug target ranking
by Bakker et al. [Bakker et al., 1999] but give a more distinctive picture on
the preferable targets with respect to different modes-of-action.

5.3.4 AA pathway

As a second biologically relevant example, I investigate possible drug targets
in the arachidonic acid pathway in humans. This pathway is responsible
for the production of various eicosanoids, which play a role as mediators of
pain, fever, and inflammations. As an objective, the concentrations of these
mediators should be reduced as it happens in response to anti inflammatory
drugs like aspirin. At the same time known side effects like gastrointestinal
bleeding or strokes, which are caused by an imbalance of other eicosanoids,
should be reduced.

5.3.4.1 Preparation of model

Refining the model In section 4.3.4 in the previous chapter I have con-
structed five different models of the arachidonic acid pathway in three dif-
ferent cell types: granulocytes, endothelial cells, and platelets [Yang et al.,
2008]. Because of lacking references for the number of cells and the cellular
volume in the publication of Yang et al. , which are necessary to construct
the aforementioned equations, these numbers are recalculated from reported
data in Table C.4 in the Appendix. As a final refinement of the models I
include new equations to calculate the area under the curve (AUC) of the
observed eicosanoids LTB,4, PGE,, PGI,, and TXA,. This AUC is supposed
to be a measure of the activity of downstream receptors.

Setting up the objective function The objective function we try to
minimise with the help of different drugs is the sum of the following parts:

e reduction of the AUC of LTB, to 10%,
e reduction of the AUC of PGE, to 10%,
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e keeping the ratio of the AUCs for PGI, and TXA, within 20% of its
value in the untreated state.

The full function is given in section C.4.1 in the Appendix.

5.3.4.2 Prior results

Solutions of Yang et al. So far the model has already been investigated
in Yang et al. [Yang et al., 2008] with a similar method and a similar objective
function. In their paper, they first classify inhibitors by having a “robust”
influence on the reduction of LTB, and PGE; production, i.e. they perform a
global optimisation with enzymatic activities as the variables and afterwards
rank the enzymes by having a large median over the standard deviation of
enzyme activity changes along all accepted solutions. With this step they
identify PLA,, LTA4H, 5-LOX, PGES, and COX-2 as potentially robust
targets for inhibitors.

In a second step, the authors add competitive inhibitors against COX-
1 and the aforementioned 5 targets to the model and “cure” the model,
i.e. reduce LTB; and PGE; production whilst keeping the PGI; to TXA,
ratio constant, by optimising their effective concentrations. This step is again
performed multiple times and statistics over the results are made, which have
led to the following conclusions:

e Treatments, which reduce the production of LTB4 and PGE, whilst re-
ducing side-effects, exist and they can involve from 2 up to 6 inhibitors.

e For treatments involving many inhibitors the objective function is less
sensitive to variations in the inhibitors concentrations.

e For almost all treatments involving the two cyclooxygenases, COX-1
and COX-2 have to be inhibited in a fixed ratio. This does not hold if
PLA, is inhibited as well.

Finally, they suggested two solutions how the system should be treated with
competitive inhibitors. Their first suggestion involved inhibitions of LTA4H
in combination with PGES or the cyclooxygenases. With this treatment it
is in principle possible to successfully cure the system targeting only two
different enzymes (cyclooxygenases are counted as a single target because
of a high structural similarity). The second solution involves the targets
PLA, and COX in combination with either LTA4H or 5-LOX. This three
target combination has the advantage that it allows larger dosing ranges and
therefore provides a potentially safer treatment.
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Criticism In the first step of their heuristic Yang et al. detect 5 potential
targets of inhibitors, which reduce LTB; and PGE; production. For all
further considerations other targets are disregarded because of their lack
of robustness or because they would require activators to achieve the desired
effects. To this set of targets the authors manually add COX-1. Using this
set of six inhibitors the authors then try to fulfil the objective of reducing the
eicosanoid production and keeping the PGI,-TXA, ratio constant, in order to
avoid side-effects of the treatment. However, the inclusion of COX-1 is done
without any algorithmic justification. Nevertheless, COX-1 does appear in
the majority of their final solutions and it should be regarded as a relevant
target. Thus, in order to regard further, potentially relevant targets in the
treatment identification, I will run my analyses on the full set of targets in
the models.

In their analyses in the second optimisation step Yang et al. randomly
produce various treatments involving the 6 aforementioned inhibitors. These
treatments are afterwards clustered and rated by whether they appear along
different parametrisations of the model and how sensitive the objective func-
tion is to changes in the inhibitor concentrations. Based on these results
the authors suggest a number of treatments. However, the final treatment
suggestions are not those solutions performing optimal to their own criteria.

For my analyses I will apply the straightforward criterion of achieving
an objective with (a) the smallest numbers of inhibitors possible, such that
the development of the treatment does not become too difficult, and (b) the
lowest inhibitor concentrations, to avoid unforeseen side-effects of the indi-
vidual drugs. Furthermore, I will replace the Monte-Carlo optimisation by
a brute-force approach in order to solidly and reproducibly identify possible
treatments.

5.3.4.3 Results

Single target solutions As a first analysis, I performed linear brute-force
scans of the effects of single inhibitors and activators on the objective func-
tion. Effective concentrations have been varied in the range from 10! to 10°
in 70 logarithmic steps for all possible inhibitors and activators in the model.
Furthermore, this step has been repeated for all 5 published parametrisations
of the model. The results of this step suggest that no practicable single tar-
get solutions are available. An activator of 12-LOX and a non-competitive
inhibitor of PLA, have been able to work for one of the parametrisations,
but in both cases their safe concentration ranges were relatively small.
Instead of asking for a single inhibitor or activator that can achieve all
three sub-objectives, LTB4 and PGE, reduction and balancing PGI; to TXA,
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levels, I have then investigated how each of these objectives is affected by
single inhibitors. The results of this analysis are shown in Tables C.5 and
C.6 and Figure C.11 in the Appendix. The lists of potential inhibitors of
LTB,; and PGE, production overlap in inhibitors for PLA, and activators
for phospholipid hydroperoxide glutathione peroxidase (PHGPx), 15-LOX,
and 12-LOX, making them the only possible single target solutions. However,
dependent on the chosen parametrisation of the model, these inhibitors and
activators lead to side-effects, which renders them unable to fulfil all three
given objectives. This effect on the objective function is visualised for the
potential single target solutions in Figure C.12 in the Appendix.

It should be noted that the potential single targets are not part of the
reaction chains leading to the production of LTB, and PGE,. Instead, the
targets are either upstream of both production chains (inhibitors of PLA,),
leading to a reduced activity of the whole system, or in other reaction chains
(activators of 12-LOX, 15-LOX, and PHGPx), which divert AA away from
LTB,4 and PGE, production. Their common action in the pathway is thus to
remove the available AA, which can afterwards not be metabolised to LTB,

and PGEs.

Dual target solutions Also for the two target solutions I investigate the
effects of various inhibitors and activators by changing the concentrations on
a grid in the range 107! to 10° using 70 logarithmic steps in each direction.
From these simulations I select those inhibitors pairs, which are potentially
able to reduce the X? value to 1 or less. Furthermore, for all accepted
inhibitor pairs I compared the size of areas in parameter space, in which the
treatment would work. Inhibitor combinations having larger areas in space
can be considered to be more useful, as the metabolism of the applied drug
needs to be taken into consideration when dosing strategies are developed. A
larger area can lead to a treatment where fewer development effort has to be
put into the final formulation in order to increase the drug’s bioavailability
over time.

The accepted inhibitor combinations computed in the step fall into two
different classes. First, there are pairs of drugs from which each one blocks
either LTB4 or PGE, production. Second, other pairs consist of one drug
from the aforementioned single targets and a second drug which is compen-
sating the first ones shortcomings, i.e. incomplete suppression of LTB,4 or
PGE; production or PGI;-TXA, ratio changes.

The first group includes inhibitors of PGES which can be used in combi-
nation with an activator of CYP4F3 or an inhibitor of LTA4H or 5-LOX. Of
the three targets inhibiting LTB4 production, the noncompetitive inhibitor of
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LTA4H and the activator of CYP4F3 work best. These two targets work for
all parametrisations and they do so at the lowest effective inhibitor concentra-
tions. However, along different parametrisations the required concentrations
differ largely, as already indicated in Tables C.5 and C.6. This fact renders
further experiments and model improvements necessary to prioritise between
the two targets. Inhibiting 5-LLOX, the third target in the LTB, production,
only worked for four out of five parametrisations. Nevertheless, the required
concentrations were in the same range as for LTA4H and CYP4F3. Along
all of these 3 target pairs the objective function decreased monotonically
with increasing inhibitor concentrations. Therefore, a higher-than-required
drug dose does not lead to side-effects, which makes this target combinations
highly preferable for treatment.

The second group of targets consists of pairs, in which one target was
already mentioned in the single targets list and the other one compensates
for the first drug’s shortcomings. This combination makes the treatment
less sensitive to the parametrisation of the model, as the treatments work
for more than one parametrisation, and it increases the dosing range along
which the treatments work. To investigate these pairs in more detail, I will
have a closer look on pairs involving the inhibition of PLA,. The inhibition
of PLA, leads to a decreased production of LTB4, PGE,, and PGIs, but it
has no effect on TXA, levels. This stems from the fact that platelet cells in
the model contain a large pool of free arachidonic acid that is converted to
TXA, afterwards. Therefore, targets being selected together with inhibitors
of PLA, are responsible for increasing the PGI,-TXA, ratio, as shown in
Figure C.13 in the Appendix, namely inhibitors of TXAS and the PGI; to
PGF, transformation and activators of PGIS, TXA, to TXB, transformation,
and 12-LOX. However, as shown in Figure C.13, the objective function is
fairly sensitive to changes in the concentration of the second inhibitors (not
to changes in the inhibitor of PLA,), thus reducing the applicability of these
solutions. Similar observations also hold for other pairs of the second group,
which makes the first group generally more preferable.

Higher order solutions and target non-identifiabilities For evalu-
ating treatments involving more than 2 drugs in parallel, brute-force ap-
proaches cannot be employed anymore. Using a similar approach as for
single and dual targets would require more than 100 billion simulations to
be performed. Therefore, I will try to assess higher order solutions using a
different approach.

So far, I have already discovered two basic ways in how a treatment can
work in order to drive the model to the healthy state. One can either re-
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duce the LTB; and PGE, concentrations in each production subpathway
individually or one can reduce the availability of arachidonic acid to these
subpathways. When pursuing the latter idea with for example an inhibitor
of PLA,, the treatment also has to take care of secondary problems as the
restoration of the original PGI;-TXA, ratio. If my understanding of these
treatment actions is true in general, then it should for example not matter
whether one inhibits 5-LOX or LTA4H in combination with PGES as a real-
isation of the first idea. In particular, one should also be able to inhibit both
enzymes, 5>-LOX and LTA4H, in combination with PGES. Furthermore, such
a treatment should work for varying concentrations of 5-LOX and LTA4H. In
my framework this concept can be stated by the hypothesis that there exists a
non-identifiability between 5-LOX and LTA4H when PGES is simultaneously
inhibited.

Given the algorithm proposed in the methods section of this chapter, I
indeed confirmed these non-identifiabilities, which supports my conceptuali-
sation of how the treatments work. Figure C.14 in the Appendix shows how
the non-competitive inhibitors of 5-LOX and LTA4H and the non-essential
activator of CYP4F3 can replace each other when applied in combination
with a non-competitive inhibitor of PGES. The non-identifiabilities imply in
particular that also unions of the non-identifiable target sets will provide suit-
able solutions. With the help of this idea it is possible to build higher order
solutions from lower order solutions and the non-identifiabilities, which al-
lows to explain the various kinds of treatments identified by Yang et al. [Yang
et al., 2008, Table 2].

The fact that inhibitors of LTB, production are non-identifiable in con-
junction with a non-competitive inhibitor of PGES, which reduces PGE, pro-
duction, suggests that non-identifiabilities might also exists in the PGE, pro-
duction subpathway. Testing this hypothesis I have found non-identifiabilities
in between a combination of drugs targeting COX-1 and COX-2 and an
inhibitor of PGES, when these are applied with a drug targeting either
CYP4F3, LTA4H, or 5-LOX. However, treatments involving COX inhibitors
and inhibitors of LTB, production would not have been suggested on the
basis of this model and the used objective because of the following reasons:
First, the non-identifiability did only exist across few model parametrisa-
tions. Second, the solution is very sensitive to changes in the concentration
of the COX inhibitors. Third, the shape of the objective function in inhibitor
space varied heavily across parametrisations, leaving the degree to which an
inhibitor should bind one isoform of COX over the other highly dependent
on the model parameters.

As a further example of non-identifiabilities in the second group of treat-
ments, I have confirmed the non-identifiability of the PGI;-TXA, ratio in-
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creasers in the context of the non-competitive inhibition of PLA,;. A vi-
sualisation of these non-identifiabilities is presented in Figure C.15 in the
Appendix. However, as already observed, these solutions are not of practi-
cal importance as the objective function is quite sensitive to changes in the
non-identifiable targets, which reduces their value for practical treatments.

5.4 Discussion

5.4.1 What has been achieved in this chapter

In this chapter I have introduced a framework that can be used to identify
efficacious and safe drug targets on the basis of reaction networks described in
terms of ordinary differential equations. The presented framework comprises
two parts: First, it manipulates a given kinetic model by inserting various
inhibition kinetics in a way that allows for the inclusion of inhibitors with
different modes of action into the same formulas and, therefore, into the
same model. Second, it formulates the identification of drug targets as an
optimisation problem. This has already been done in different contexts,
e.g. [Yang et al., 2008, Tveito and Lines, 2009], but to my knowledge it has
not been formalised strongly. This formalisation allows for the integration of
previous approaches and enables its universal reusability.

The examples in this chapter have demonstrated the usability of my
framework. All analyses have been performed using my publicly available
web tool, which has thereby proven its analytical versatility. For the different
analyses, I have used diverse biological objectives. The fact that these have
easily been included into the objective function used for the optimisations
underlines the extensibility of the presented approach. Furthermore, biologi-
cal results agree in general with prior knowledge, supporting the reliability of
my predictions. Nevertheless, the presented results are more extensive than
those produced by previous approaches and, through the inclusion of addi-
tional objectives, are more focused on the practical value of the predictions
to the pharma industry.

5.4.2 Comparison to other approaches
5.4.2.1 Predicting valuable drug targets

The results that I have gained using my framework have already been com-
pared to the most conclusive results presented in the literature. Nevertheless,
they can also be compared to results provided by other approaches, which
do not require a dynamic description of the pathway of interest.
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Stoichiometric approaches Using purely stoichiometric approaches on
the basis of KEGG pathway maps [Kanehisa et al., 2008] the set of potential
results is comparably large. With the help of choke point analysis [Yeh et al.,
2004] on the complete metabolic map, one can identify reactions that are the
way to produce or consume a certain metabolite. This analysis returns all
enzymes in the extended glycolysis upstream of PEP except for GPI and TPI
as potential targets.®

If one disregards reactions catalysed by isoenzymes, because a poten-
tial inhibitor might need to target different proteins, one loses THT, HK,
GAPDH, PGK and ENO. Interestingly, the analysis of the kinetic model
has shown that these enzymes are comparably good targets because of their
limiting capacity. This coincidence could be explained by two different ideas
[Jackson, 2007]. Omne the one hand, gene duplication, which often occurs
in tandem arrays (HK, GAPDH, PGK), might have led to an increase in
the enzymes’ concentrations resulting in a higher flux through glycolysis and
a selectional advantage. On the other hand, trypanosomes do express some
isoenzymes in different environments or transport them to different compart-
ments, which might act as a kind of control mechanism for the metabolism.

Flux balance analysis related approaches The application of flux bal-
ance analysis based approaches to the Albert model leads to similar, yet dif-
ferent results. Given the constraints that glucose is consumed by the system
and the same amount of pyruvate has to be produced by glycolysis?, two dif-
ferent fluxes are possible: The first flux activates the complete glycolysis and
the glycerol production. Here, the lower part of the glycolysis operates at half
its maximal speed as the NAD/NADH balance has to be restored through
glycerol production, which consumes half of the triose phosphates. In the
second flux, the complete glycolysis operates at full speed, while for each
mole of pyruvate produced by the system the cycle of GPDH, the antiporter,
and the glycerol-3-phosphate oxidase (GPO) has to restore one molecule of
NAD. These two behaviours are the two elementary modes which consume
glucose and produce pyruvate [Schuster et al., 2000]. In case a drug disrupts
both of these extreme fluxes, the parasite cannot convert glucose to pyruvate
and therefore cannot grow. Thus, enzymes being active in both modes, com-
prising all glycolytic enzymes including GPDH and excluding TPI, should be
considered essential enzymes from this analysis and thus as potential targets.

"http://www.genome. jp/kegg-bin/show_pathway?org_name=tbr&mapno=01100

2This idea is consistent with maintaining more than half of the original glycolytic flux
under aerobic conditions, which has also been used as the objective function for the analysis
in my framework
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Table 5.2: Lowest sequence identities amongst human and trypanosomal
isoenzymes. The results have been obtained by running BLASTp on try-
panosomal sequences from KEGG comparing them to the RefSeq sequence

database.
Enzyme Percent sequence identity

TAO n.a.
PGM 25
GPDH 28
HK 37
PFK 46
GK 46
ALD 49
PK 51
TPI 54
PGK 56
GPI 57
ENO 63
GAPDH 65

Sequence based approaches Many available approaches integrate pro-
tein sequence or structure information into the target prediction. In order
to compare results obtained with such an approach to results obtained by
others I have computed the protein sequence similarity between homologue
enzymes from the pathogen or the host in Table 5.2. This analysis has been
performed by blasting [Altschul et al., 1990] ® trypanosomal protein sequences
from KEGG against the RefSeq sequence database [Pruitt et al., 2000] and
choosing the highest sequence similarity between isoenzymes.

Comparing results of selected available methods In general, ap-
proaches for target identification relying solely on structural information can
only result in binary decisions whether an enzyme might be a good tar-
get or not. For the trypanosomal glycolysis these approaches do not lead
to a restriction in target space as almost all glycolytic enzymes are neces-
sary to maintain a flux through the pathway and are therefore chokepoints.
Amongst the results of stoichiometric approaches only marginal differences
exists. Compared to chokepoint analysis, FBA based methods regard the
network as a whole and do not only use the local connectivity. Thus, their
results differ in small details: FBA does not predict the GPO to be essential.

3http://blast.ncbi.nlm.nih.gov/Blast.cgi
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This is in accordance with my predictions and the fact that trypanosomes
can (at least for a short time) survive anaerobic conditions.

Approaches using kinetic models are able to quantify how good targets
are. This information is useful in the construction of actual drugs, as more
potent targets do not necessarily require drugs to be highly selective or to
have a high bioavailability. In cases in which a mathematical model for rele-
vant pathways is at hand, approaches based on dynamic simulations should
be preferred over metabolic control analysis, as they simulate finite changes
in inhibitor concentrations, which can be fundamentally different to infinites-
imally small perturbations [Schulz et al., 2009].

Information on the sequence and structure similarity of enzymes from
host and parasite can be seen as information, which is independent from
results gained by network selectivity. The bigger the difference in the en-
zymes’ structures, the larger are the odds of a drug being selective against
one of them. Therefore, it can be assumed that selective inhibitors against
trypanosomal enzymes in glycolysis can in principle be found. Opposed to
that, the network selectivity describes how selective a drug needs to be in
order to work. The ordering of the targets in Table 5.2 reflects this indepen-
dence: TAO, whose inhibition does only show an effect in combination with
glycerol, ranks highest while GAPDH, which is supposed to be an efficacious
and safe target, ranks last.

In general, structural information can be used to complement selectiv-
ity information, as targets with an unfavourable selectivity could still be of
interest if the structures of the homologues of the targeted enzymes are fun-
damentally different. Nevertheless, this would complicate the design of the
actual drug.

5.4.2.2 Identifiability

In contrast to the MTOI method [Yang et al., 2008], my identification of
treatments is largely based on brute-force optimisation. This leads to a more
thorough investigation of treatments but it also makes the investigation of
higher order combinations unfeasible. Identifiability analysis, however, pro-
vides means to judge which higher order combinations would work and leads
to a better understanding of the mechanisms behind successful treatments
than MTOI. This is reflected by the fact that the basis solutions, the ones that
can explain most of the possible solutions, in the paper of Yang et al. only
covered 61% of their stochastically determined treatments. Basis solutions
identified through non-identifiabilities, in contrast, covered 87% of them (see
Figure C.7 in the Appendix). Thus, these solutions provide a more complete
picture of the factors needed for a successful treatment, which might be vital
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to gain an understanding of how a system can be manipulated effectively.

Methodologically, my approach for the identifiability analysis can be re-
lated to the determination of parameter non-identifiabilities via the profile
likelihood [Raue et al., 2009]. This approach works by varying one param-
eter within a range that should be investigated and then optimising other
parameters in order to minimise the objective function. The resulting values
of the objective function are then observed in relation to the changes in the
first parameter’s value. Following this approach one can determine ranges in
which a parameter could be varied without necessarily increasing the value
of the objective function.

In principle, I perform the same analysis for drug combinations instead
of general parameters. However, I start the profile likelihood investigation
from the “borders” of the parameter space, as initially most of the drug con-
centrations are equal to zero. Furthermore, I extend the concept to identify
certain non-identifiabilities by only allowing selected drug concentrations to
compensate for a decrease in one or more drugs within a treatment.

5.4.3 Biologically relevant results
5.4.3.1 Glycolysis in Trypanosoma brucez

General insights As a general conclusion obtained from the results in this
chapter I would like to underline that different methodological approaches
or objectives might lead to different prioritisations of drug targets. A priori-
tisation obtained through protein sequence analysis is completely unrelated
to a prioritisation using MCA-based methods. In particular, this conclusion
underlines that targets which are selected for the efficacy of a drug against
them are not necessarily safe as well. Thus, the explicit evaluation of a drug’s
safety in silico, e.g. by means of network selectivity, should be regarded as
necessary.

Potential targets Based on the analysis of the trypanosomal glycolysis in
this chapter I propose that further efforts in the development of trypanocidal
drugs should focus on the targets GAPDH and THT. Both targets can in
principle be inhibited by inhibitors with different modes-of-action (competi-
tive, uncompetitive, and non-competitive) and simulations suggest that these
inhibitors will be efficacious and safe. The trypanosomal GAPDH shows the
highest sequence similarity when compared to human counterparts and might
therefore have been rejected by other approaches. However, as its network
selectivity is quite high, efficacious inhibitors of it do not need to be selective
for the parasitic enzyme in order to be safe.
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Apart from these results, further research could be put into the modelling
of the PFK reaction, as simulations have shown interesting effects upon its
inhibition. The idea of PFK as an interesting target has been supported by
RNA interference experiments, in which the system’s response to a reduc-
tion in the PFK level is much stronger than predicted from the Albert model
[Albert et al., 2005]. Therefore, in order to predict the consequences of PFK
inhibition more reliably the models should be refined. One potential idea is
the inclusion of a control of the PFK activity by AMP [Cronin and Tipton,
1985], which might reduce the models’ abrupt response to PFK inhibition.
A second idea is the inclusion of protein translation into the model. Albert
et al. have identified that a change in PFK activity leads to a change in
other enzymes’ acitivities [Albert et al., 2005]. This control of enzymatic ac-
tivity cannot happen at the level of transcriptional control as this is absent
in trypanosomes. In the parasite almost all genes are expressed to a com-
parable extent and the protein levels seem to be controled by the 3'UTRs
(untranslated regions) of the mRNAs[Clayton, 2002]. Via this mechanism it
is for example determined which TXT, ALD, and PGK is expressed in the
pathogen depending on the current environment [Hotz et al., 1995].

Another interesting target is the GPDH. Simulations suggest that a drug
against it will be highly efficient, but its safety could not be accessed by
comparisons to the erythrocyte metabolism, as red blood cells do not contain
this enzyme [Fessas et al., 1980]. Thus, further in silico validation of this
target requires a mathematical model of a relevant human cell type expressing

GPDH.

Potential resistances All results which have been gained in this chapter
depend on the fact that glycolysis is an essential pathway for bloodstream
T. brucei. However, experimental results have shown that the glycolysis can
become dispensable when the parasite is gradually transferred to a medium
with a different energy source [Drew et al., 2003]. Thus, the potential de-
velopment of resistances against a drug targeting glycolysis will need to be
considered and possibly monitored after the treatment is in use.

5.4.3.2 Arachidonic acid pathway

General insights The arachidonic acid pathway, as it is modelled by Yang
et al. , is a complex system. The various subpathways branching from arachi-
donic acid and their metabolites interfere with each other through feedbacks
leaving the system’s detailed dynamic response highly unpredictable. This
complexity makes the system suitable for modelling with ODEs, which in
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turn opens up the possibility of investigating possible drug targets using my
method.

Potential targets Treatment identification, as performed in the results
section of this chapter, has suggested different solutions. The most promis-
ing solution is the inhibition of PGES in conjunction with inhibitors of LTB,
production, i.e. non-competitive inhibitors of LTA4H or 5-LOX or an acti-
vator of CYP4F3. These solutions are insensitive to changes in the inhibitor
concentrations, which means that too high concentrations of the drugs do not
cause negative side effects, which need to be considered in the administration
of the final drug. A prioritisation of the targets in the LTB4 branch, however,
cannot be given as the necessary effective concentrations varied heavily for
the different parametrisations of the model. Of these four targets, three have
already been proposed as potentially relevant in the context of inflammatory
diseases (see Table 1.3). Selective inhibitors of PGES seem to relieve pain
[Xu et al., 2008], while inhibitors of LTA4H and 5-LOX seem to have an
effect on cancer [Ding et al., 1999, Jeong et al., 2009]. This agreement of
prediction and experimental results underlines the validity of my method for
identifying potential drug targets.

Further treatments have been introduced in the results section but all of
them seem less appropriate because they were heavily sensitive to changes
in the concentrations of some of their drugs. In the context of inhibitors of
the cyclooxygenases this seems quite restrictive as e.g. the treatment with
aspirin would not have been selected as being acceptable. This might have
two different reasons. First, the model might not be perfect and might re-
quire improvement. Second, the objective of keeping the PGI;-TXAs ratio
within 20% of its original value might be too restrictive to allow for biologi-
cally relevant treatments to be selected. Therefore, further simulations and
experiments including COX inhibitors could lead to a clarification of this
point. This is however beyond the scope of this thesis.

Points of improvement on the model The model of Yang et al. is
not only suitable for drug target identification, but it also shows how drug
development, Systems Biology, and experiments can and should go hand in
hand. Predictions made in the results section of this chapter yet do not have
the same quantitative quality as in the application of the sleeping sickness
because of the parameter uncertainty associated with the model. The fact
whether a treatment works better than another or whether it works at all is
highly dependent on the parametrisation of the model. A possible next step
in a cycle of predictions and experiments would therefore be to experimentally
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test different combinations of existing inhibitors and use these results for the
refinement of the model. Through further results it might be possible to
reject some of the proposed parametrisations, which would it turn allow for
a more quantitative assessment of the quality of different treatments.

Apart from using drug target predictions to improve the model, other
problems of the model need to be tackled in the future. A very obvious one
is the inconsistency between different descriptions of the model, i.e. the pub-
lished SBML models and the description in the Supplement of Yang et al. .
The most important inconsistency is the initial concentration of arachidonic
acid in platelets. Both descriptions differ in three orders of magnitude. Cal-
culations performed in this thesis are based on the high concentration, which
is present in the model code. This high concentration is an important factor
contributing to the fact that an inhibitor of the phospholipase alone cannot
fulfill the objective because it cannot stop the TXA, production in platelets.
Changing in the model at this point could therefore have a strong effect on
the inhibitor prioritisation.

Furthermore, the model could be extended into various directions. Leuko-
trienes and prostaglandines could be exchanged between different cell types
as it is a known fact that some cell types release eicosanoids to feed other
cells that do not contain the corresponding enzymes to produce them [Folco
and Murphy, 2006]. Another possible extension is the inclusion of the epoxy-
genase pathway, whose metabolites stem from AA and are also supposed to
play a role in the inflammatory response [Spector, 2009].

5.4.4 Drug resistance through mutations

Depending on the kind of disease which is meant to be cured with a certain
drug, resistance might become an important factor in the treatment’s success.
During the treatment of e.g. cancer or bacterial infections mutations might
arise in the population of treated cells, which render them less sensitive to
the applied drugs. This might be due to various facts: A mutation can
cause a conformational change in a drug’s target, reducing the probability
of binding, the pathway being targeted can be made obsolete by a different,
compensating pathway, which is activated, or the uptake of the drug into the
cell can be reduced. An important question in this context is whether and
how our choice of a proper target influences the development of resistances.
Once this connection is made, targets can be specifically selected for lowering
the probability of development of treatment insensitivities.

Based on a simple idea that is explained in section B.2.5 in the Appendix,
it is possible to relate the necessary effective inhibitor concentrations, which
are required to efficiently inhibit a target, to the probability of developing a
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resistance against the drug. Although this is a heavily simplified model, it
allows to draw the intuitive connection that targets, which are essential to
the system and require very little inhibitor, need more mutations to become
insensitive to the treatment. Therefore, resistances are less likely to develop
in this case and we are given a second reason to prefer drug targets requiring
lower effective inhibitor concentrations.

5.4.5 QOutlook

5.4.5.1 Implementation

The identification of drug targets involves performing dynamic simulations of
ODE models with many different sets of parameter values. Therefore, being
able to rapidly calculate time courses for these models renders mandatory.
Discussions with colleagues have taught me that the compilation of a model
as a driver for an ODE solver is the best approach to tackle this problem.
Following this idea it is not possible to make use of many of the available sim-
ulation tools as they only allow for dynamic simulations of single models or
complex tasks like parameter estimations using a restricted set of algorithms.
The employment of ODE solver libraries like LSODA within a custom tool,
however, has provided reliable and sufficiently fast results.

A further improvement on the computational speed of my tool, can pos-
sibly be provided by interfacing the ODE solver library SUNDIALS [Hind-
marsh et al., 2005] through the SBMLOdeSolver [Machné et al., 2006], which,
according to the author of the tool, is currently supposed to be the fastest
solution to repeatedly solve ODE systems on a CPU [Machné, 2012].

5.4.5.2 Tackling parameter uncertainties

When modelling the dynamic behaviour of a biological system, one is facing
different kinds of uncertainties. It can be questioned, whether the model
comprises all relevant physiological processes, whether it describes molecu-
lar mechanisms correctly, and whether it does so with reasonable kinetics
and accurate parameter values. Although research on metabolic pathways
has almost ruled out structural uncertainties on the underlying reaction net-
works, experimentally determined kinetics and their parameter values may
still contain measurement errors. Furthermore, differences in measurement
conditions lead to a high variance in values reported in the literature.
These uncertainties on the parameter level can in principle be dealt with
by performing a desired analysis over and over again for different param-
eter sets [Achcar et al., 2012]. Following such a procedure, one will end
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up with an ensemble of results, which can be statistically analysed [Mura-
bito et al., 2011]. Therefore, a potential extension of my framework, which
deals with parameter uncertainties, could be implemented with the follow-
ing steps. First, thermodynamically sound parameter sets could be drawn
from biologically relevant distributions [Lubitz et al., 2010], second, the drug
target identification can be repeated for each parameter set, and finally, a
statistical analysis of the quality of the drug targets can be presented to the
user. This statistical analysis could involve mean and variance of the neces-
sary effective inhibitor concentrations as well as information on the fact how
often such an inhibitor concentration could be found.

5.4.5.3 Using non-identifiabilities to direct further research

So far, non-identifiabilities of drug targets have only been considered to pro-
vide alternatives for targets against which no drug can be designed or which
have to be neglected because of other reasons. Apart from this use iden-
tifiability analyses can further provide hints to guide research and should
therefore be considered to be a part of the cycle of Systems Biology [Raue
et al., 2009].

General non-identifiabilities in parameter estimations can have different
causes. First, the model structure can comprise too much detail and can
incorporate too many parameters to allow for a reliable estimation of the
parameter values from measurable experimental data. Second, experimental
data can be too sparse and may therefore not allow to discriminate between
different parameter sets. Finally, also the values of parameters which are
not estimated can play a role because they might force the trajectory of
the system into certain areas in the state space which show a low dynamic
complexity and therefore do not allow for parameter discriminations.

In the application of drug target identification, the reasons for non-
identifiabilities are similar, yet slightly different. On the one hand, the consid-
ered pathway might be complex and allow for different inhibitions resulting
in the same desired effect. On the other hand, the amount of experimen-
tal data being considered might be sparse. This translates into the question
whether enough information on the discrimination between the “healthy” and
the “diseased” state of the system is taken into account. Knowledge on this
lack of information might then drive further research: Non-identifiabilities
between several drug targets can be used to find differences in the dynamic
response to drugs against each target. Then, information on differences in
dynamic changes of certain observables can be used to direct new experi-
ments. And finally, results of these experiments enter the objective function
and potentially resolve the non-identifiability. With this cycle of experiments
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and numerical simulations the predictive capabilities of the drug target iden-
tification will increase and eventually lead to the identification of potent drug
targets.

5.4.5.4 Reverse drug target prediction enables mode-of-action iden-
tification

The applications of my framework presented in this thesis focus on the bi-
ological objective of identifying potential drug targets, i.e. enzymes whose
inhibition leads to a certain desired effect, the transition from the “diseased”
to the “healthy” state. Another possible application of the framework is the
prediction of the mode-of-action of a drug. Such predictions can be valuable
for drugs which have been identified by high-throughput screens and have
therefore only been proven to work in vivo [lorio et al., 2010]. Given a model
and relevant experimental data of the treated organism before and after the
drug has been applied, these two conditions can be defined as the “diseased”
and the “healthy” state. The target identification applied to this data would
then lead to targets and inhibition mechanisms which are able to explain
the experimentally observed changes best and thus predict the drug’s most
probable mode-of-action.
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6.1.1 Synergisms and antagonisms in current research

The results of the last chapter have suggested that the methods presented
in this work are suitable to identify treatments which are effective and safe.
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Amongst equally effective solutions, I have so far prioritised treatments con-
taining fewer drugs and requiring the lowest drug concentrations. Addition-
ally, with the help of non-identifiability analysis one can determine drugs
that can replace each other in a certain treatment, which is an important
information when preferred enzymes cannot be targeted.

In contrast to prior considerations, I will throughout this chapter explic-
itly drop the idea of achieving an objective with the fewest number of drugs
possible. Instead, I will investigate combinations of drugs, which could in
principle have the same effect, but do achieve it better than the individual
drugs. The question of what exactly can be regarded as better and why will
be answered in the following paragraphs.

6.1.1.1 Synergistic drug combinations require lower doses

A synergism between two or more entities generally means that the whole is
bigger than the sum of the individual parts. In the context of drugs, it means
that a treatment involving two synergistic drugs is stronger than what was
expected from experiments involving only one of them. Such a synergistic
combination can be used for two different purposes. First, one can use both
drugs to achieve an effect that the single drugs cannot produce. Second, one
can reduce the amount of the individual drugs given with each dose, which
might reduce side-effects.

With the help of such synergisms it might also be possible to overcome
resistances, as it has been shown that cells which are insensitive to two indi-
vidual drugs can still be susceptible to a treatment involving both of them
[Di Gaetano et al., 2001]. This idea has already been picked up for system-
atic screenings. Spitzer et al. have screened a compound library for having a
highly synergistic action with fluconazole in different fungi in order to deal
with resistance against this compound [Spitzer et al., 2011].

Another advantage of synergistic drug combinations is that they are likely
to be organism-specific, which has been shown experimentally for synthetic
lethal interactions [Tischler et al., 2008]. From a theoretical basis this can
be explained by the fact that synergisms seem to be highly dependent on
the network’s structure [Lehar et al., 2007]. Numerical parameter values
have a less prominent effect on synergisms except if they significantly change
the model’s behaviour [Fitzgerald et al., 2006, Jackson, 1993]. Therefore,
knowledge about combined chemical effects and the targets of those chemicals
can even be used to predict an unknown network structure [Segre et al., 2004,
Lehér et al., 2007, Nelander et al., 2008].
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6.1.1.2 Antagonisms and resistance

In contrast to synergy, an antagonism between two or more entities describes
the circumstance that their combination is worse than what was expected
from the single parts. For drug combinations strong antagonisms can even
mean that the combination of two drugs has a smaller effect than each drug
individually. The fact that such a combination of drugs can be interest-
ing is opposing all previously made assumptions on preferable treatments.
However, they have a very important application.

Treatments targeting cells that are rapidly evolving, e.g. microorganisms
or cancer cells, are often facing the problem of drug resistance development.
It has been determined experimentally and theoretically that antagonisms
between drugs in a treatment can delay resistance development [Chait et al.,
2007, Michel et al., 2008, Hegreness et al., 2008, Yeh et al., 2009]. If a treat-
ment with two drugs leads to less severe consequences than treatments with
the individual drugs, then resistance to one of the drugs under the combi-
nation treatment will render an individual less fit than the wild type, thus
delaying complete resistance development. Thus, strongly antagonistic drug
combinations might be advantageous for the treatment of certain diseases.

6.1.1.3 What causes synergy?

Synergisms and antagonisms which might be desirable for the aforementioned
reasons can have various causes. First, they can target the same protein
such as gefitinib and certuximab. These drugs are binding the EGF receptor
ErbB1 in two different sites [Matar et al., 2004] and provide a prolonged inhi-
bition of the receptor in the treatment of cancer. Second, they might target
different proteins involved in the same or a functionally related pathway. For
diclofenac and paracetamol, as for many other combinations of painkillers,
it has been supposed that they inhibit different isoenzymes, but their syn-
ergistic effect could also be caused through individual effects in various off-
pathways [Miranda et al., 2006]. A third cause of synergy can appear on
the population level. Here, individual drugs might attack different subpopu-
lations which have already acquired partial resistances, thereby eradicating
the population completely. An example for this kind of synergy is the action
of cisplatin and mitomycin C in the treatment of cancer [Durand, 1989]. A
final cause of synergy can occur on the pharmacokinetic level. One drug can
increase the uptake and the distribution of another drug, it can alter how the
drug is metabolised, and delay its excretion. All of these processes increase
the bioavailability of the active substance, which leads to a stronger and pro-
longed effect as it is the case for cyclosporin A and paclitaxel [Bardelmeijer
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et al., 2000].

For my predictions on the quality of drug targets, I have so far used
only models of single pathways. Thus, it will be outside the scope of this
work to identify synergies other than those of the second type. However, it
should be noted that most synergistic drug pairs identified in high throughput
screens are more likely to be synergistic because of side-effects [Cokol et al.,
2011]. Considering this, one cannot expect to be able to find all possible
drug synergisms on the basis of ODE models of single pathways.

6.1.2 Mathematical definitions of synergy
6.1.2.1 Null models of combined effects

If one defines drug synergisms and antagonisms as combinations performing
better or worse than expected from the individual effects, then one first has to
define what actually is expected. According to Chou more then 300 equations
have been published that try to quantify drug combination effects in various
situations [Chou, 2010]. A few simple and accepted null models of how a
neutral drug interaction should look like are introduced in the following.
The interested reader is referred to [Greco et al., 1995] for more details on
these and further information on other models.

Highest single agent This model assumes that whenever two drugs are
applied in parallel, their combined effect is the maximum of their single
effects. Such an understanding of a drug interaction can be related to the
idea of a “bottleneck” in the flux of information or matter through a system.
If two drugs are used in parallel, one of them will represent the more narrow
bottleneck and will therefore determine the effect of the treatment.

Loewe additivity Loewe and Muischnek have come up with a model of
neutral drug interaction which they termed additivity [Loewe and Muischnek,
1926). This model assumes no interaction between the drugs and is best
described by the fact that a drug being tested for synergy with itself would
be considered additive. What it basically assumes is that if one achieves a
certain effect with a single drug at a certain concentration, one will achieve
the same effect if a fraction of the first drug is replaced by the same amount
of the second drug. In mathematical terms two drugs are additive if they
fulfil the equation

CA,:(: + CB,x

1 =
ICs, ICp,’

(6.1)
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where IC}y , is the individual dose of A needed to achieve effect x and Cy , is
the dose in combination with drug B to achieve the same effect. Despite the
age of this model, so far there has been no substantial criticism to it [Greco
et al., 1995].

Bliss independence Bliss assumes in his null model, which is termed in-
dependence, that fractional effects of two drugs multiply to give the combined
effect [Bliss, 1939]. This means that if one drug reduces the production of an
observed output to half of its normal value and another drug to one third,
the observable’s production should decline to one sixth under a treatment
involving both drugs.

In contrast to the Loewe additivity, people have criticised Bliss indepen-
dence. One argument is that the application of one drug will most probably
alter the dynamic behaviour of the system. Therefore, it cannot be assumed
that the system’s response to the second drug will be the same when it is ap-
plied in combination with the first drug or without [Gessner, 1974]. However,
I would argue that this behaviour is actually an interesting point to detect
and that I would like to use synergism analysis to detect cases in which one
drug provides a second drug with an “environment” in which it can work
more effectively. A second argument against this model is that the same
drug tested for synergy with itself is not regarded as neutral (as it would be
with the Loewe additivity) [Grindey et al., 1975]. This point is true, and one
should therefore not investigate drugs targeting the same enzyme for synergy
using Bliss independence.

6.1.2.2 How to detect synergy

Given the aforementioned null models of drug interaction, it is possible to
define synergistic and antagonistic drug combinations as treatments being
more or less effective than expected. However, depending on which null
model is used, the ways of how synergisms are detected do differ.

Isobolographic analysis The idea of isobolographic analysis is very sim-
ple in its theory. In a plot where the two axes represent the concentrations of
the compared drugs, one draws a line through points representing different
concentration combinations leading to the same effect. If this line is straight,
the drugs follow the Loewe additivity, if the line is bent towards the origin
of the plot, they are synergistic, and if it is bent away from the origin, they
are antagonistic [Loewe and Muischnek, 1926].
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Fractional product method Compared to the isobolographic analysis,
which asks for drug concentrations leading to the same effect, the frac-
tional product method [Webb, 1963] compares different effects for the same
drug concentrations. Given fixed drug concentrations for the two drugs, the
method predicts their combined effect by their individual effects using the
formula

fU12 = fu1 . fUQ, (62)

where fu is the fraction unaffected of either combined or individual treat-
ment. This fraction unaffected represents the variable that should be reduced
by the treatment, e.g. the production of a metabolite in a certain pathway
compared to the untreated state. If the effect of the combined treatment
is stronger than expected from the Bliss independence, the combination is
synergistic, if it is weaker, it is antagonistic. This decision can in principle be
statistically assessed for the confidence associated with it [Drewinko et al.,
1976, Prichard and Shipman, 1990], however, I will not go into detail on this
point.

6.1.2.3 How to quantify synergy

For the application of rating drug combinations, one does not only need to
know whether they are synergistic or not, but one needs to quantify this syn-
ergy. Depending on the chosen null model, this quantification is represented
by different formulas.

For the Loewe additivity, a quantification can be given through the in-
teraction index [Berenbaum, 1977]. The formula

j= Caa | Cba (6.3)
ICs, ICp,
is an extension of Equation 6.1 and quantifies how far the same-effect-isobole
is off from being a straight line at a certain angle. If the interaction index
is in the range 1 < I < oo, higher values signify stronger antagonisms, and
if it is in the range 0 < I < 1, lower values indicate stronger synergy. This
principle has been taken up and extended many times in the literature. The
most prominent of these extensions is the median effect analysis [Chou and
Talalay, 1984], which extends the null model and describes how synergies can
be predicted from little experimental data.

For the Bliss independence, a quantification can be given by the Bliss
boost model (e.g. [Lehdr et al., 2007, Yeh and Kishony, 2007]). This model
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extends Equation 6.2 by rewriting it in terms of the affected fractions (fa, =

(1= fus))
Jaiz = far + faz — far - fas

and then adding a factor «, which represents the degree of cooperativity

faiz = fay + fazs — - fay - fay. (6.4)

If the cooperativity is in the range —o0 < a < 1, lower values represent
stronger synergy, while in the range 1 < a < o0, higher values indicate
stronger antagonisms.

Apart from these two basic approaches, lots of other quantifications of
synergy exists in the literature (see [Greco et al., 1995] for a review) and
even combinations of the aforementioned approaches are possible (e.g. [Beren-
baum, 1985]).

6.2 Methods

6.2.1 Synergism detection in ODE models

Synergisms in ODE models have already been investigated in various cases
with diverse approaches [Jackson, 1993, Fitzgerald et al., 2006, Lehér et al.,
2007]. However, to my knowledge no tool being capable of investigating
them in general reaction networks is freely available. In this chapter I will
present the methods which are the fundamental core of the numerically stable
synergism detection implemented in my tool. These methods are largely
based on the ideas presented by Lehar et al. [Lehar et al., 2007], they are,
however, adapted to the use in an automatic tool.

6.2.2 Choice of the null models

Depending on which kind of experimental information they require, the null
models presented in the introduction of this chapter fall into two different
groups. The first group is derived from the Loewe additivity and in order to
check for synergisms or antagonisms in a drug combination one is asking for
different drug concentrations leading to the same effect. The other group is
derived from the Bliss independence and utilises the effects of combinations
of drugs with constant concentrations to test for synergy.

Thus, depending on which class of null model one wants to investigate
different simulations have to be carried out. For the Bliss-based models,
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chequerboard analysis can be performed, which is the extension of the frac-
tional product method to a whole grid of drug concentration combinations.
Following this approach has the advantage that all necessary simulations are
known in advance and can be performed in parallel on a cluster. On the
contrary, the Loewe-based models require the search for drug concentrations
having a certain effect. This is essentially a parameter estimation problem
and might therefore require a much larger number of sequential simulations,
which makes the chequerboard approach more attractive from the computa-
tional side.

In principle, none of the generally accepted models has any kind of jus-
tification on why it should universally be able to predict the effect of drug
combinations in complex reaction networks [Greco et al., 1995]. However,
Lehar et al. have been able to show that certain structural patterns in re-
action network can lead to combination effects that can be explained by
Bliss-based null models. Therefore, I will mainly use this kind of models in
the following.

6.2.3 Computational detection of synergisms

Chequerboard analysis For my analyses on the synergistic action of drug
pairs, simulations are carried out on a grid of drug concentrations for each
available drug pair. The grid consists of ten concentration points for every
drug: 0 and nine logarithmic steps centred around a relevant concentration
[Borisy et al., 2003]. As a relevant concentration, I try to estimate the drug’s
EC50 value, which is the inhibitor concentration at which 50% of its maximal
effect is achieved. This concentration has been chosen because around it the
effects of the individual drugs change most significantly and, therefore, it
is most informative. Furthermore, in order to avoid numerical problems,
extreme values for the relevant concentration, i.e. below 0.1 or above 1000,
are avoided and the relevant concentration is in these cases set to 10.

Synergism model fitting Given the simulation results of the chequer-
board analysis and the parametrised synergism models, one can optimise
parameters of these models to make their predictions for a combined effect
fit the simulated data. For most of the models an optimisation step is not
required as they have no parameters. These models include single agent
models, describing that only one of the drugs is responsible for the combined
effect, highest single agent, and the Bliss independence. For parametrised
models as Bliss boost and optimisation of the cooperativity factor is carried
out using the differential evolution heuristic [Storn and Price, 1997].
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Integrating Loewe additivity Using the results of the chequerboard
analysis, tests for Loewe additivity are not easily possible. As an approxima-
tion of the computations needed to detect Loewe synergisms, I perform the
following calculations, which are based on ideas presented in [Berenbaum,
1985]. I first predict the combined effect of the combination treatment by
the effect of one of these drugs in the combined concentration. If the effect
at this certain concentration is not provided on the chequerboard, the value
is linearly extrapolated in a second step from the closest values available.
Using this method, Loewe additivity can approximately be tested for using
chequerboard simulations.

Model selection Finally, my method wants to be able to judge, whether
a combination of drugs is synergistic or not. In order to do so, the following
steps are performed. First, the model best describing the combined effects
has to be found. If we compare models without parameters, this can easily
be done by taking the model with the best goodness of fit. However, in order
to be able to compare models with different numbers of parameters, my
tool displays the Akaike information criterion (AIC) [Akaike, 1974] for each
model fit. This criterion signifies whether a more complex model, i.e. one
including more parameters, is really necessary to describe the data. Given
that the model best describing the data contains parameters, these can finally
be used to quantify the degree of synergism or antagonism in between two
drugs.

How to quantify a drug’s effect In the previous chapter a drug’s effect
has always been measured in terms of the objective function, the residual sum
of squares between desired concentrations at certain time points and their
simulated concentrations. The synergism models in this chapter, however,
measure the effect in a linear variable, e.g. as the fraction of a population alive
after treatment or the relative production of a certain toxic substance via a
pathway. Therefore, the cooperativity models cannot be easily transferred
to the framework described beforehand. A more detailed analysis of this fact
is shown in section B.3.1 in the Appendix for the Bliss boost model. There
it is also shown that the application of the Bliss boost model to the residual
sum of squares is practically only possible if the objective function is made
from a single time point. For all other purposes, the drug effect has to be
measured by a linear function.
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Table 6.1: Synergisms between non-competitive inhibitors in the trypanoso-
mal glycolysis. The results show all combinations for which the Bliss boost
model fitted the data best (according to the Akaike Information Criterion
(AIC)), which acted significantly synergistically (cooperativity < 0), and
which had a relevant effect on the flux through the glycolysis (objective
function could be reduced to less than 1, i.e. more than 50% flux reduction).

Drug 1 Drug 2 AIC Model Cooperativity Min. obj. val.
nPFK nGAPDH 3020 Bliss boost —1.22-1073 1.93-1078
nPFK  nALD 3050 Bliss boost —9.17-107° 0.0924

nPFK nGPDH 3050 Bliss boost —2.71-107° 0.0914
nPFK nPGK 3050 Bliss boost —1.88-1077 0.0183

nPFK  nPT -509 Bliss boost —2.00-10"!'  0.106
nPFK nPGM -520  Bliss boost —2.00-10"!!  0.0984
nPFK nENO -531  Bliss boost —2.00-10"''  0.0726

6.3 Results

In order to test the validity of the computational method presented in this
chapter the artificial model presented in [Lehar et al., 2007] has been in-
vestigated. The method has been able to reproduce the results of Lehar et
al. with respect to the synergism models implemented in my tool. These
results implicate a high dependency in between the structure of the underly-
ing reaction network and the way in which drugs act in combination on this
pathway. However, they are not shown in this work as they do not provide
novel information.

6.3.1 Glycolysis in Trypanosoma brucei

As a real biological application I investigate synergisms and antagonisms
in the trypanosomal glycolysis as implemented in the Albert model [Albert
et al., 2005]. A visualisation of this model is given in Figure C.6 in the
Appendix. Using the synergism detection heuristic described in the meth-
ods part of this chapter I investigate the combined effects of different non-
competitive inhibitors on this network. For all further considerations involv-
ing this model the effect is quantified by the square root of the objective
function as presented in Equation C.4 in the Appendix.

6.3.1.1 Detected synergisms

Table 6.1 shows the results of the synergism analysis for the trypanosomal
glycolysis. From the result list drug combinations following an interaction
other than the Bliss boost model and combinations without a significant
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Table 6.2: Antagonisms between non-competitive inhibitors in the trypanoso-
mal glycolysis. Results show again combinations for which the Bliss boost
model fitted best, which show a significant antagonism (cooperativity > 2),
and lead to a relevant reduction of the pathway’s activity.

Drug1 Drug?2 AIC Model Cooperativity Min. obj. val.
nPFK nAKc 3140 Bliss boost 100 4.19-10710
nPFK nAKg 3020 Bliss boost 100 5.67-107%
nGK nGPO -321 Bliss boost 37.4 0.0879

effect on the objective have been removed. As the Bliss independence model
seems to judge the combined effects of two drugs on this network better than
the Loewe additivity, only Bliss synergisms are regarded in this context.
Among the resulting 7 drug combinations, two subgroups with different AIC
values showed up in the results. The high AIC values of the first results
indicate that the Bliss model could not be fitted accurately to the data.
A closer inspection of the simulation results show outliers in the simulated
treatments, which indicate numerical problems of the solver. Such numerical
problems have already been encountered beforehand with inhibitors of PFK
and are not a problem of the synergism detection.

For the remaining three results the fit to the Bliss boost model is signifi-
cantly better. However, also among these combinations simulations have run
into numerical problems with the non-competitive inhibitor of PFK. When-
ever the concentrations of this inhibitor is raised above 15, simulations crash
and lead to outliers in the results matrix. These outliers severely affect the
synergism model fitting, as a significant part of the results matrix is incor-
rect. If one disregards these outliers, the HSA model would best describe the
interaction of the three drug combinations.

Thus, according to my prior criteria no synergism being in agreement
with the Bliss boost model could be identified in the Albert model [Albert
et al., 2005].

6.3.1.2 Detected antagonisms

Table 6.2 shows the results of the antagonism identification. These results
again contain two subgroups, one with high AIC values, which again stem
from failed simulations, and the combination of non-competitive inhibitors
targeting glycerol kinase (GK) and glycerol phosphate oxidase (GPO). This
combination is comparably well fit by the Bliss boost model and does not
contain an inhibitor of PFK, whose simulation is particularly prone to nu-
merical errors. Therefore, it is investigated in more detail.

A closer look into the way how different drug interaction models fit the
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Table 6.3: Fitting results of different synergism models to the simulation
data from simultaneous inhibition of GPO and GK. The different versions of
the Loewe additivity model stem from the fact to which single inhibitor the
combined drug effect is compared.

Model AIC  Sum of  Sum of squared Model
residuals residuals variables

Bliss boost -321  -1.31 0.411 a=374

HSA -66.3 29.1 22.7

Second alone -66.3 29.1 22.7

Bliss -61.0 32.1 24.7

Loewe Y 379 -2.76 35.4

First alone 32.2 70.9 106

Loewe X 329 714 107

simulated data of GK and GPO reveals that the interaction is best described
by a strong Bliss boost antagonism (Table 6.3). Judging from the AIC, this
model fits the interaction by far better than the other models.

Detailed simulation results of the drug combination are given in Figure
6.1 together with the interaction prediction of the Bliss boost model and
estimates of the cooperativity in the space of drug concentrations. These
results point to two interesting facts. First, the drugs show a stronger com-
bined effect for concentrations over 10 when compared to the effects of the
single drugs. The fact that this cooperativity is regarded as an antagonism is
driven by the response of the pathway to non-competitive inhibitors of GK,
which are increasing its activity. According to Equation 6.4, the combination
is therefore classified as being antagonistic although it has a strongly neg-
ative impact on the flux through the pathway. Second, although the Bliss
boost model fits the data comparably well, the model is partially over- or un-
derestimating the antagonistic effect depending on the concentration of the
GPO inhibitor. Because the cooperativity only seems to take effect after the
inhibitor has risen above a concentration of around 1, lower concentrations
show no antagonistic behaviour and the cooperativity matrix seems to be di-
vided into two distinct parts. This indicates that a model being sigmoidally
dependent on the GPO inhibitor concentration might be more suitable to
describe the combined effect of these drugs.
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Figure 6.1: Results of the synergism analysis in between non-competitive
inhibitors of GPO and GK. The heat maps show the simulated effect of the
inhibitors on the objective function for varying inhibitor concentrations, the
predicted effects according to the fitted Bliss boost model, and the coopera-
tivity factor of the Bliss boost model if all data points were fitted individually
to the Bliss boost model.

6.4 Discussion

6.4.1 Synergisms in the trypanosomal glycolysis

In conclusion, inhibitors of GPO and GK are the only drug combination
showing a relevant cooperativity. Parallel inhibition of the glycerol phos-
phate oxidation and the glycerol kinase does not only lead to a complete
inhibition of the glycolysis, but it is achieving this objective using relatively
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low inhibitor concentrations. In fact, this combined effect is already known
in the literature and can be exploited using for example salicylhydroxamic
acid (SHAM) together with glycerol [Clarkson et al., 1981]. SHAM is an
inhibitor of the trypanosomal alternative oxidase (TAO) , which is an en-
zyme necessary for the oxidation of glycerol phosphate, while glycerol, the
substrate of the glycerol kinase, is inhibiting the flux through glycerol kinase
thermodynamically [Krakow and Wang, 1990].

The mechanism by which the synergistic combination of a GPO and a
GK inhibitor work is fairly complex when compared to the single targets in
the trypanosomal glycolysis. All of the single targets work by reducing the
capacity of the main route of carbon flux from external glucose to cytoso-
lic pyruvate. Both enzymes, GPO and GK, are not part of this route and
therefore act differently. Along the carbon flux route, the cofactor NADH is
produced by GAPDH. If the organism is unable to convert NADH to NAD+
in the glycosome, the reaction catalysed by GAPDH (and therefore the whole
glycolysis) cannot proceed indefinitely. Under normal conditions this cofactor
conversion is done by the GPDH, which in turn produces glycerol 3 phos-
phate. This product is either consumed by the GK or it is converted back
to DHAP, which involves TAO. Thus an inhibition of these two enzymes
leads to an increase in glycerol 3 phosphate making the reaction catalysed
by GPDH thermodynamically unfavourable and depleting NAD+, without
which the glycolysis cannot proceed.

6.4.2 Advantages of the employed method

The method described in this chapter is based on work of Lehér et al. [Lehar
et al., 2007] and is able to automatically search for potential synergisms and
antagonisms in between hypothetical drugs in a given model. It is built on
accepted models of drug interactions and is able to evaluate Loewe-based
and Bliss-based types of synergism models. When compared to other steps
proposed in this thesis, synergism analysis does only require little more com-
putational effort than 2d inhibitor scans. It requires the determination of
EC50 values and the fitting of interaction models to simulation results, which
are in principle small parameter estimation problems with few parameters.
In spite of the inclusion of many different steps and methods into my
synergism detection heuristic, it is unable to provide spotless results without
user interaction. The results part of this chapter has shown, that compu-
tational problems along the simulations of inhibitions might occur. Those
numerical problems can affect the results and lead to a corrupted synergism
prediction. A further problem is the question of how to automatically judge
the goodness of fit in between an interaction model and simulation results.
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The AIC provides means of how different models having varying parameter
numbers can be compared, however, it can not be used to tell how good a
single model fits the simulation results.

Compared to the very simple synergism prediction I have published be-
forehand [Schulz et al., 2009], criteria on what should be regarded a relevant
synergism have become more strict. The results from this article included
the GPO/GK pair but also further pairs, which have not been able to achieve
a therapeutically relevant reduction of the objective function. This explains
why the current list of synergisms and antagonisms is much smaller than my
previously published one.

6.4.3 Advantages of synergisms and antagonisms for
drug research

Knowledge on synergistic or antagonistic actions of drugs can provide valu-
able information for the development of successful treatments. Synergisms,
which achieve a certain effect with multiple inhibitors in low doses, can be
either used to produce stronger or prolonged responses to a treatment or to
reduce side-effects caused by a high concentration of one drug. In contrast,
antagonisms require higher doses to achieve an effect but antagonistic drug
combinations can delay the development of resistances against a treatment.

As the computational effort of detecting synergisms and antagonisms does
only slightly increase compared to the two-dimensional inhibitor scans, this
type of analysis should be performed whenever possible. It can be applied to
a drug target identification problem, if the objective either follows the restric-
tions mentioned in section B.3.1 in the Appendix or if it can be transformed
into a linear function. A final remaining problem, however, is the decision on
whether a synergism or an antagonism is favourable for a treatment. This
decision surely depends on the specific disease which is to be treated and
should be decided individually for every case.
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7.1 Achievements

7.1.1 A
Within this

is visualised

framework for drug target identification

thesis I have introduced a workflow which aims at the unifi-
cation of further efforts using ODE models of biochemical processes as an
aid in the search for efficient and safe drug targets. This workflow, which
in Figure 7.1, consists of five building blocks, three of which

181



7.1. ACHIEVEMENTS

treatment
model > model >

construction refinement prediction

data | <———] experiment

Figure 7.1: Overview on the workflow of TIde for the identification of potent
targets with the help of mathematical models.

involve computational steps that are enabled or simplified through methods
and software introduced here. First, a model either needs to be constructed
from scratch or taken from the literature. Second, an initial version of the
considered model is refined and extended using available experimental data
and computational models. Third, the model is investigated for potential
drug targets, which lead to the reestablishment of “healthy” conditions upon
inhibition or activation. Finally, these predictions are supposed to be tested
in experiments, e.g. via known small chemical entities interacting with the
targets or via RNA interference [Fire et al., 1998], a method for the specific
reduction of single protein concentrations through the introduction of small,
double-stranded RNA fragments [Ngo et al., 1998, Elbashir et al., 2001, Nov-
ina et al., 2004]. In accordance with the cycle of Systems Biology, the results
of these experiments are then checked for being in agreement with the model.
If the resulting data agrees with the model, further predictions can be made
based on the current model and drugs can be developed against the selected
targets. If the data contradicts the model, it has to be refined. This includes
changes in parameter values, addition or removal of regulatory mechanisms,
or alterations in the stoichiometry of the reaction network in order to make
the model fit this new data.

The methods introduced in this work are designed to simplify the first
three steps of this workflow: the search for relevant available models, the
alignment and combination of models, and the detection of drug targets in
them. Through the methods introduced in chapter 3 the software semantic-
SBML provides means to find relevant models and experimental data starting
from an initial model or data set. To my knowledge no other software is
available at the time of writing which is able to achieve a similar objective.
The most closely related methods are concerned with query based retrieval
of computational models, i.e. a tool being able to search for models related
to provided keywords [Henkel et al., 2010].
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The aligning and combination of networks describing biochemical pro-
cesses is not a novel idea in general. Our software semanticSBML, however,
provides easily accessible yet methodologically advanced means to compare
and combine reaction networks with the methods described in chapter 4. By
treating the problem of model alignment in a way similar to the comparison of
models, my methods lowers the computational burden of network alignment
and allows for the structural comparison of moderately large models.

Finally, methods introduced in the chapters 5 and 6 have paved the way
for the development of the software Tlde. To my knowledge this is the only
open-source tool allowing for the identification of effective and safe drug
treatments with the help of ODE models. Other published approaches do
either rely on a different kind of model as an input (e.g. [Karp et al., 2010]) or
do not publish their software (e.g. [Yang et al., 2008]). Furthermore, through
the integration of synergism and non-identifiability analysis my tool provides
a unique combination of established and novel methods, which have shown
their applicability in the examples presented within this work.

7.1.2 Target predictions

Within this work I have applied my methods for the prediction of efficient
and safe drug targets to examples which fall into two different categories.
First, a number of results from the literature has been replicated to show the
validity of my approach. These results include the investigation of synergistic
drug actions in an artificial model and the potential drug actions in a simple
linear pathway. Through the latter example I have been able to deduce
general principles on the quality of different targets and different modes-of-
action.

Second, I have investigated potential drug targets in established models of
different pathways, which have already been analysed using other approaches.
One of these examples is the glycolysis in Trypanosoma brucei. Various
versions of this model have already been analysed and targets have been
rated through metabolic control analysis. My results, which simulate the
effects of realistic inhibitor concentrations on the model, do differ in small
points from conclusions that have been drawn beforehand. Furthermore, they
highlight parts of the models which are in need of more careful experimental
validation and modelling. The other biologically relevant example provided
throughout this thesis is the arachidonic acid pathway in different human
cells. My results on this model agree with published data [Yang et al., 2008],
however, they provide clearer insights into the way how successful treatments
affect the dynamics of the pathway.
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7.2 Directing new research

7.2.1 How to proceed from predictions

The cycle of Systems Biology implies that theoretical and experimental work
always have to go hand in hand. As the main contributions of my work are
of a purely theoretical nature, possible practical experiments implicated by
my results should be discussed.

In general, as already implicated by the workflow in Figure 7.1, experi-
ments are supposed to support or invalidate predictions of the drug target
identification step. Therefore, the predicted treatments should be used to
search the literature for existing inhibitors or activators against the proposed
targets. If such inhibitors can be found their binding to the target protein
needs to be quantified. Appropriate K; values can either be found in public
databases like KiBank [Zhang et al., 2004] or the literature, or they have to
be determined experimentally. Furthermore, one should rule out the possi-
bility that the applied inhibitors bind to multiple targets in the considered
network or, if this is inevitable, account for this fact in further simulations.
As an alternative to the application of small chemical entities to the system,
which might not be available, RNA interference [Fire et al., 1998] can be con-
sidered. Reducing the amount of expressed protein through this technique
can be considered to be equivalent to the treatment with non-competitive
inhibitors, which effectively also reduce the maximal velocity of a reaction.

Subsequent to these considerations, the selected perturbations are applied
in experiments. The experimental conditions under which the new results
are gained should be planned such that they are closely related to the con-
ditions under which other data that has been relevant for the construction
of the model has been obtained. Finally, the resulting data is compared to
model predictions. If the data agrees with the model, the successfully tested
treatment could serve as an initial result for further drug development ef-
forts refining drug molecule structures to optimise pharmaceutically relevant
properties. If the data, however, does not agree with the model, this data
can be used in the refinement of the model. This additional knowledge could
point to the fact that some parts of the model, its structure, its kinetics, or
its parameter values need to be changed to increase the model’s predictive
power.

7.2.2 Curing sleeping sickness

The results based on my analysis of the trypanosomal glycolysis in chapters
5 and 6 suggest a number of interesting drug targets that could be verified
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in experiments. First, the inhibitions of the glyceraldehyde 3-phosphate de-
hydrogenase, which are the most promising treatment, can be tested. This
could be done by using RNAi to lower the protein concentration as done in
[Albert et al., 2005]. Second, inhibitions of the trypanosomal hexose trans-
porter have lost their influence on the pathway along newer versions of the
glycolysis model. RNAi experiments could be used to clarify this influence
and the resulting data might be an important step in the further refinement
of the model. Third, simulations involving an inhibitor of the phosphofruc-
tokinase have lead to interesting results. Experiments involving the PFK
inhibitor polycarpol [Ngantchou et al., 2009] could be performed and their
results might lead to a further improvement of the model. Finally the pro-
posed synergistic effect of SHAM and glycerol treatment could be quantified
to further refine the oxygen consuming branch of the model.

7.2.3 Reducing inflammatory responses

Results on the arachidonic acid pathway provided in chapter 5 indicate that a
number of experiments still needs to be done solely for the purpose of refining
the current model. While it is clear from experiments and currently available
treatments that a number of proteins are successfully targeted by different
drugs, a prioritisation of these targets cannot be given by my analyses yet.
The reason behind the “fuzziness” of my predictions is the fact that multiple
parameter sets for the model have been published. As the quality of the
different targets highly depends on these parameters, no reliable predictions
can be made without further restrictions on their numerical values. The
determination of further necessary experiments could be done using methods
from optimal experimental design, e.g. [Vanlier et al., 2012], the application
of such methods to the examples presented, however, is beyond the scope of
this thesis.

7.3 Extensions to my framework

7.3.1 Using web resources for drug prediction

Years ago the identification of drugs against diseases has been solely in the
hands of the pharma industry. The reason behind this gap between industry
and academia has been the lack of public databases storing information on
the bioactivity of large sets of compounds, which are required to move from
knowledge about a potent target to a potent drug candidate. Over the last
years this gap has been closed by publicly available databases, which now
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complement the knowledge available to academia [Bender, 2010].

7.3.1.1 Publicly available resources

Today, a diverse set of web resources containing information on drug-target
relationships is publicly available. These knowledge bases differ in the infor-
mation they are built upon and on the information and tools they offer.

A large fraction of these resources have been compiled using protein-
ligand structures from the Protein Data Bank (PDB). Examples are Relibase!
[Hendlich et al., 2003], which for example contains analyses of ligand simi-
larities and allows for ligand substructure and interaction searches, and the
Potential Drug Target Database? (PDTD) [Gao et al., 2008], which amongst
other information contains binding affinities.

A second kind of web resources are built upon integrated information
from commercial databases and literature information. Examples of such re-
sources are the list of druggable protein domains [Hopkins and Groom, 2002,
Russ and Lampel, 2005], DrugBank® [Wishart et al., 2008], which apart from
drug-target relations contains further pharmacologically relevant information
like drug-drug interactions, or BindingDB* [Liu et al., 2007], a database of
experimentally determined drug affinities.

Due to the heavy increase in the number of available web resources con-
taining information on drugs and their targets, meta-databases as STITCH®
[Kuhn et al., 2010b] have become available. These resources integrate inter-
actions from metabolic pathways, chemical structures, or results of binding
experiments into complex knowledge bases. In addition, different resources
compiling indirect information on the action of drugs are available. An ex-
ample of such a database is SIDER® [Kuhn et al., 2010a], which collects drug
side-effects compiled from package inserts.

7.3.1.2 Identifying drugs for selected targets

In succession to the prediction of potent drug targets using my or a differ-
ent workflow, the gained target information can be enriched by potential
inhibitors acting on the selected proteins. Knowledge about such drug can-
didates could then be used in upcoming experiments to support or falsify the
predictions.

'http://relibase.ccdc.cam.ac.uk
Zhttp://www.dddc.ac.cn/pdtd/
Shttp://www.drugbank.ca
‘http://www.bindingdb.org
Shttp://stitch.embl.de
Shttp://sideeffects.embl.de
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As the manual determination of potential drugs from the aforementioned
web resources is tedious work when done thoroughly, this step should be
supported by software. For a similar purpose, Cockell et al. [Cockell et al.,
2010] have integrated diverse data sets from various sources into a compre-
hensive knowledge base. Then, they have constructed complex patterns of
potential relations between entities of this new resource in order to determine
potentially new applications for known drugs.

A similar idea could be used to find potential drugs for selected targets
when combined with methods presented in this work. For this purpose I
would propose to start from an annotated SBML model. In this model,
kinetic and semantic information could be used to determine enzymes in the
model structure automatically. Using the semantic similarity proposed in
chapter 3 information on the function of an enzyme can be used identify the
protein catalysing the reaction, which can in turn be used to identify drugs
binding to it. After a successful target identification step, these results on
potential modulators of the target enzymes can be presented to the user for
further experimental validation.

7.3.2 Considering parameter uncertainties

As already mentioned in the discussion of the TIde approach, model param-
eter can heavily affect the results of my methods. Therefore, uncertainties
associated with them should explicitly be taken into account when targets are
selected and prioritised. Computationally this can be done by sampling pa-
rameters from an assumed distribution and the distribution of the necessary
effective inhibitor concentration of the targets could be analysed.

Furthermore, these parameter uncertainties could be used in the planning
of new experiments. Optimal experimental design [Kreutz and Timmer, 2009,
Vanlier et al., 2012] could be used to dedicatedly select those experiments
that can reduce the uncertainty associated with the parameters having the
largest impact on my predictions. Using these methods ultimatively reduces
the number of cycles of predictions, experiments, and model refinements one
has to go through to achieve satisfying results.
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7.4 Systems Biology for drug research

7.4.1 Comparing different approaches
7.4.1.1 Predictions based on different information

The workflow I present in this thesis proposes the application of Systems
Biology methods in the field of drug development through the use of ODE
models for target prediction. ODE models, however, are just one of many
ways how structured biological knowledge can be used in pharmaceutical
research.

Information on protein sequences and structures can be used in the search
for good drug targets. In the development of anti-parasitic agents, proteins
of the pathogen can be selected for being different to human counterparts,
which makes it more likely that they can be selectively inhibited by drugs,
or they can be selected to be structurally similar to proteins against which
drugs have already been developed [Crowther et al., 2010].

The increased availability of genomic data has not only lead to the direct
exploitation of this knowledge but also to the construction of stoichiometric
models of metabolic pathways. Such knowledge is used to predict potential
drug target through methods like choke point analysis [Yeh et al., 2004].
This analysis proposes those enzymes as targets which uniquely produce or
consume a certain metabolite. Upon inhibitions of these targets complete
pathways are disrupted as the enzymatic action cannot be compensated for.
A similar idea can also be used to exploit protein-protein-interaction data
to specifically disrupt information transmission in PPI networks [Csermely
et al., 2005].

Apart from approaches relying on more simple input knowledge com-
pared to ODE models, also more complex information can be used in the
determination of effective and safe drug targets. This includes for exam-
ple stochastic models, which are preferable to ODEs when small molecule
numbers and stochastic fluctuations play a role in the model’s behaviour, or
spatial models, that might be required whenever the location of a particular
substance within a compartment becomes a noteworthy factor.

7.4.1.2 Advantages of ODE models

Compared to the aforementioned approaches, ODE models involve a medium
degree of complexity. On the one hand, they require experimental measure-
ments of the dynamic behaviour of a process in order transform this knowl-
edge into new, quantitative predictions. This makes ODE models harder to
obtain than network models or protein sequence data. On the other hand,

188



7.4. SYSTEMS BIOLOGY FOR DRUG RESEARCH

they do not require information on the cellular localisation of model elements
and a therefore more easy to construct than spatial models.

For the additional knowledge which has to be put into the construction
of an ODE model, ODE based target identification approaches return more
comprehensive results than those based on more simple input models. First,
they allow for the rating of drug targets according to the amount of inhibitor
which will be needed for an effective treatment. Second, with their help one
can investigate potential side effects of a treatment, which can be included
into the model. Stoichiometry- and structure-based methods do not allow
for this in a straightforward manner.

Although ODE models require lots of experimental data, they have be-
come increasingly popular amongst Systems Biologists. An indicator of this
fact is the strong accumulation of models in BioModels Database over the
last years [Li et al., 2010]. Due to this increased availability ODE models
for many pharmacologically relevant processes might already exist in pub-
lic databases. In cases in which such models are not available, many tools
and web resources can support researchers in their construction. Metabolic
models, for example, can be built by taking the network stoichiometry from
databases like KEGG [Kanehisa et al., 2008], retrieving measured parameter
values from resources like BRENDA [Scheer et al., 2011], and inserting con-
venience kinetics [Liebermeister and Klipp, 2006] determining the model’s
dynamics. Through the use of such web resources, the construction of large
scale models can even be fully automatised [Borger et al., 2007].

In conclusion, it can be stated that through the amount of available rel-
evant knowledge, ODE models can be constructed without too much effort.
Furthermore, they are the most simple type of models that allow for a quan-
titative rating of targets based on necessary inhibitor concentrations. Thus,
they are in my opinion better suited for the prediction of effective and safe
drug targets.

7.4.2 Limitations of predicted drugs
7.4.2.1 Potential lack of efficacy

In contrast to drugs that have been developed following the standard target-
based approach, drugs predicted via the cycle of Systems Biology have al-
ready proven their efficacy in fulfilling a given objective in vitro. A prereq-
uisite for a drug to work in wvivo, however, is that the investigated objective
function is a proper quantitative measure of the state of the disease. If
this objective function is not properly chosen, a drug developed using the
presented methods might still not be efficacious in clinical trials. Thus, af-
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ter observing a lack of in vivo efficacy one should investigate the molecular
causes of a disease again and then repeat the systematic search for drugs
with a refined objective.

7.4.2.2 Potential side effects

Although it is possible to account for potential side-effects in my frame-
work, drugs developed with my approach might still lead to unforeseen
consequences in clinical trials. Depending on the molecular causes of the
side-effects, these can or cannot be accounted for by my method. First,
a treatment can lead to effects in the considered network, which have not
been included into the objective. If such side-effects occur, they can be ac-
counted for in the description of the healthy state and another cycle in my
proposed workflow will lead to predictions avoiding the unwanted effects.
Second, side-effects might occur outside of the considered model but as a di-
rect consequence of the inhibition in it. In such cases, it should be considered
whether the model and the objective function can be extended to account for
the side-effects. Third, drugs designed against a certain target might bind
to off-targets and lead to unforeseen results. The occurrence of this kind of
side-effects is a direct problem of the target-based approach and cannot be
handled by my workflow. After targets have been selected, the design of the
actual drug should be performed in a way to ensure its specificity. If a drug
does not achieve a high specificity, one should either choose a different target
or expect side-effects of the treatment. Although the latter idea might be
associated with a high risk of failure in clinical trials, promiscuous molecules
can still become commercially successful drugs. An example is the cancer
drug Sunitinib, which has been shown to bind more than 70 kinases [Fabian
et al., 2005].

7.4.2.3 Potential ADME problems

Problems that cannot be addressed by my approach include difficulties in
the Administration of the drug, its Distribution, its Metabolism, and its
Excretion (short ADME). Compared to the problem of finding a drug that
is able to bind a selective target tightly enough, the problem of increasing
a drug’s bioavailability is much harder [Copeland et al., 2006]. If such a
problem is encountered during drug development it might render necessary
to switch to alternative targets. These treatment alternative can be provided
by my methods through the application of non-identifiability analysis.
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7.4.2.4 Link to personal medicine

One final problem in drug development, which cannot be anticipated by the
methods presented in this work, is the fact that the efficacy of a drug in
clinical trials does not necessarily imply that it achieves a certain “benefit-
to-risk” ratio on a population level [Eichler et al., 2011]. According to Eichler
et al. the difference between these two outcomes has to be attributed to var-
ious factors. First, there might be a genetic diversity for certain beneficial
or hazardous alleles within a population. Second, non-genetic personal fac-
tors like age or weight as well as environmental factor like stress or grapefruit
juice consumption can render individuals more susceptible to certain drug ef-
fects. Finally, issues with the prescription can arise as doctors might ignore
contraindications for a drug or individuals might not adhere strictly enough
to dosing intervals. These problems, however, open up the possibility of in-
cluding methods of Systems Biology even closer into the drug development
process by integrating information on individuals. This step towards person-
alised medicine will in my opinion lead to safer drugs and will ultimatively,
through the inclusion of a vast amount of novel knowledge, simplify the de-
velopment of novel treatments.
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Supplementary Figures and
Tables

A.1 Parameters and data
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A.1. PARAMETERS AND DATA

Supplementary Table A.1: Quantitative factors f. assigned to the relations
in the libSBAnnotation ontology. The numerical values were chosen ad-hoc
after a series of tests and systematic evaluations.

relation type frts
is_a D
part_of 1
has_part 1
regulates .01
positively_regulates .01
negatively regulates .01
is_tautomer_of 9
is_enantiomer_of .01
is_conjugate_acid_of 9
is_conjugate_base_of 9
has_role .75
has_functional parent 0.
is_substituent_group_from .01
has_parent_hydride 9
encodes 1
hasFunction .75
hasProcess .25
inOrganism 1
inProcess .25
isLocated 1
isPartOf .25
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A.1. PARAMETERS AND DATA

Supplementary Table A.2: Contribution fusm (1%, %) of the biological qual-
ifiers to the annotation similarity Eq. (3.5). Each possible pair of biological
qualifiers u® and 1 is scored by a value between 0 and 1. The numerical
values were chosen ad-hoc after a series of tests.

>
L S >
TS5 2 % =
= 8 7 % 5 - % n
Sz 5 £ £ & S =
S R o =B e & S
A = 2 O Z m =
fom 2 2 B <= & & <o & o
is 1. 0. 5 b5 8 2 2 2 2
isDescribedBy 0. 1. 0. 0. 0. 0. 0. 0. 0.
isVersionOf 5 0. 3 25 4 1 1 1 .1
hasVersion .5 0. 25 3 4 .1 1 1 1
isHomologTo .8 0. 4 4 7 64 .64 .64 .64
isPartOf 2 0. .1 .1 64 .05 .04 .04 .04
hasPart .2 0. .1 .1 64 .04 .05 .04 .04
isEkncodedBy .2 0. .1 .1 .64 .04 .04 5 04
encodes .2 0. .1 1 64 04 04 04 5
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A.1. PARAMETERS AND DATA

Supplementary Table A.3: Large set of benchmark models. Models from
BioModels Database were semi-automatically classified into joint biological
groups taking into account the MIRIAM annotations of their <model> el-
ements. Some annotations, e.g. GO:0000165 (MAPKKK cascade) or the
annotations for organisms, referring to the NCBI Taxonomy, would have
resulted in too big clusters and were therefore ignored.

<model> annotation Name Models

G0O:0019228 regulation of action potential in neuron 124, 127, 129, 130, 131, 132,
133, 134, 135, 136, 141, 142

G0O:0006096 glycolysis 42, 51, 61, 63, 64, 70, 71,

kegg.pathway:sce00010 172, 176, 177, 206, 211, 225

G0:0048863 stem cell differentiation 203, 204, 209, 210

GO0:0006915 apoptosis 102, 103, 220

kegg.pathway:hsa04210

GO0:0005248 voltage-gated sodium channel activity, 20, 118, 119

GO0:0019227 neuronal action potential propagation,

G0O:0005249 voltage-gated potassium channel activity

G0O:0048511 rhythmic process 79, 99

GO:0009755 regulation of calcium ion transport, 114, 115

G0O:0051924 hormone-mediated signalling

GO:0007259 JAK-STAT cascade 93, 94, 151

kegg.pathway:mmu04630

G0O:0019236 response to pheromone 32, 116

reactome:REACT_634 MAP kinase cascade 9, 10, 11, 14

G0O:0016692 NADH peroxidase activity 46, 143

G0O:0007188 G-protein signalling, coupled to 128, 165

cAMP nucleotide second messenger
G0O:0045990 regulation of transcription by carbon catabolites 65, 67

kegg.pathway:mmu04660

T cell receptor signalling

139, 140, 147, 226, 227, 230

G0O:0009088 threonine biosynthetic process 66, 68
kegg.pathway:map00260
GO:0008277 regulation of G-protein coupled receptor 85, 86
protein signalling pathway
GO:0006099 glyoxylate cycle, 218, 219, 222
kegg.pathway:ko00020 tricarboxylic acid cycle
GO:0006097
reactome:REACT_1785
GO:0019722 calcium-mediated signalling 39, 43, 44, 45, 47, 57,

kegg.pathway:hsa04020
kegg.pathway:map04020

58, 59, 60, 81, 100, 113,
117, 145, 166, 184

G0O:0031684 heterotrimeric G-protein complex cycle 72, 80, 82
G0O:0006935 chemotaxis 200, 229
kegg.pathway:hsa04012 ErbB signalling pathway 175, 223
GO:0006816 calcium ion transport 98, 162
G0O:0000278 mitotic cell cycle 3,4,5,6,7, 8, 56,

kegg.pathway:sce04111
kegg.pathway:hsa04110
reactome:REACT_152

69, 87, 107, 109, 110, 111,

144, 150, 168, 181, 186, 187

193, 194, 196, 207, 208

kegg.pathway:hsa04660

T cell receptor signalling

120, 122, 123

GO:0007623
kegg.pathway:hsa04710

circadian rhythm

16, 21, 22, 24, 25, 34, 36, 55,
73, 74, 78, 83, 89, 95, 96, 97

160, 170, 171, 214, 216

G0O:0016055

‘Wnt receptor signalling pathway

149, 201

GO:0007173

epidermal growth factor receptor signalling pathway

19, 33, 48, 49, 84, 161

kegg.pathway:hsa04115

p53 signalling pathway

154, 155, 156, 157, 158, 1569

188, 189
G0O:0007166 cell surface receptor linked signal transduction 1, 2,125
GO:0046655 folic acid metabolic process 18, 213
G0O:0002028 regulation of sodium ion transport 54, 126
kegg.pathway:hsa04350 TGF-beta signalling pathway 101, 112, 163, 173
G0O:0040029 regulation of gene expression, epigenetic 12, 104
from small example MAPKKK cascade 26, 27, 28, 29
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A.1. PARAMETERS AND DATA

Supplementary Table A.4: Sensitivity of the similarity oy "™ and the model
retrieval ranking with respect to relation type scores. Shown are the mean
and the standard deviation of similarity and rank for the retrieved mod-
els when searching for models similar to BioModel 9. Mean and standard
deviation are determined in 100 trials in which each relation type score is
multiplied by a Gaussian distributed random variable with mean 1 and stan-
dard deviation (SD) 0.1 or 0.5. The value of the measure and the ranking by
it seem quite stable with respect to variations in the f,;; parameter values.

Model SD = .1 SD = .5
Rank Similarity score Rank Similarity score
Mean SD Mean SD Mean SD Mean SD
9 1 0 1 0 1 0 1 0
11 2 0 925 .0003 2 0 925 .0022
14 3 0 .865 .0006 3 0 .865 .0037
10 4 0 .816 .0009 4 0 .816 .0058
26 5 0 .737 .0013 5 0 .736 .0087
28 6 0 .687 0025  6.08 .392  .685 0174
30 7 0 .687 0025  7.08 .392  .685 0174
27 8 0 .673 0018  7.92 392 672 0122
31 9 0 .673 0018 892 .392 672 0122
29 10 0 .64 .0033 10 0 .612 .0228
84 11 0 482 .0049 11 0 480 .0291
116 12 0 .397 .0029 12 0 .396 0177
32 13 0 .348 .0028 13 0 .346 .0182
149 14 0 .335 .0023 14.09 .28  .333 .0158
205 5 0 .299 0079 1524 991  .298 .0455
33 16 0 .260 .0010 15.84 .367  .259 .0065
16 17 0 244 0027 17.16 .367 .242 0171
49 18 0 .240 0015 17.75 .639  .239 .0098
21 19 0 .230 0025 19.02 .316  .228 .0161
4 20 0 222 .0031 20.16 .463 220 .0199
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Appendix B

Supplementary methods

B.1 Mathematical details on similarity mea-
sures

B.1.1 Statistical significance of retrieved models

One of the most interesting applications of the developed similarity mea-
sures is the retrieval of relevant models and data sets from a database. This
retrieval returns a list of results with their corresponding similarity values.
Per se these similarities do not answer the question which results are sig-
nificant or not. Usually, this problem is tackled by adding p-values to the
results which quantify the probability that a certain similarity occurs only
by chance. Given this probability and a significance level (e.g. 0.05), results
can be checked for whether they are relevant or not.

B.1.1.1 Null model for the VSM

In order to be able to test for significance, one first has to develop a null
model for “random” models. Such a null model is more simple to develop
for the vector space model as one does not have to regard the model element
and annotation structures. For the null model it should be assumed that
individual features occur independently and that they are set to 1 in the
random vectors with the same probability as they occur in the BioModels
Database

random __ Ly + 1

pe= P = =

where x; is the number of models in which the corresponding BC is referred
to and |M| is the total number of models in the database.
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B.1. MATHEMATICAL DETAILS ON SIMILARITY
MEASURES

Given that two models show a higher similarity than expected from com-
paring one model to an ensemble of random models, one can assume that this
similarity did not result from the fact that both models by chance contain
the same common features. Therefore, one has to assume that there is some
kind of “correlation” between the mentioned features and that they occur
“on purpose” in both models. This would for example be the case when two
models describe the same pathway:.

B.1.1.2 Bayesian estimation of a p-value

When trying to develop a closed formula for the p-value for all introduced
similarity measures one is facing the problem that the formulas are too com-
plex to allow for a simple assessment of their significance. Therefore, one can
perform a random sampling of similarities between the model with which the
retrieval is initiated and an ensemble of random models constructed from the
null model instead. Using this ensemble of random models one can employ a
Bayesian approach to estimate the p-value. Given a similarity o between two
compared models, one computes the similarities of one model to a set of Z,anq
random models of which xg,, have a similarity > o. Under the null hypothe-
SIS, Zgim 1S binomially distributed with parameters x,,,q and an unknown p’.
Following Bayesian reasoning, assuming a uniform prior distribution for the
p-value on the interval [0, 1], and incorporating evidence from the computed
similarities, the posterior of the p-value is beta distributed [Gelman, 2004]:

prob(p) ~ pzsim (1 _ p)mrand_zsim'
The mean and the standard deviation of the p-value are then given by

Tsim + 1
Trand T 2

\/(xsim + 1)(xrand — Tsim + ]-)

(xrand + 2)2(xrand + 1)

p =

var(p) =

Depending on the number of random models x,.,q4 in the test the minimal
achievable p-value varies. E.g. setting x,.,q = 998 the minimal achievable
p-value is 1072 + 1072, In order to be able to compute lower p-values an
analytic approach has to be taken.

B.1.1.3 Analytic derivation of a p-value

As mentioned before, I have been unable to derive an analytic formula for
the p-values for similarity measures discussed above. This results from the
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fact that the measures are too complex and the fact that the different BCs
occur with varying probabilities in the random models. I deal with the first
problem by developing a way to compute p-values for a simplified measure
and then showing how this approach could be extended to more complex
similarities. To deal with the second problem efficiently, I employ a dynamic
programming approach [Bellman, 1952] to compute the p-values numerically.

p-value for model overlap A much simplified version of the similarity
oy ™M s the model overlap o3, (M, N) = vivy with the additional condition
Vivinr € {0,1}. W.lo.g., I assume that BCs are sorted such that Ve arvin =
1 and v; = 0 otherwise. Under these conditions, the probabilities of certain

scores are easy to compute, e.g.

| M|
Pr(o0, (M. M) =0) = [0 -n)
M|
Pr(UI\O/IO(MuN):|M|) = sz

It should be noted that the product in these formulas only runs to |M|. This
is due to the fact that only the first features in vy can contribute to the
overlap score, which can be exploited for speeding up calculations.

In general the probability distribution for overlap scores can be obtained
from a convolution of Bernoulli distributions, which describe the probabil-
ity of a certain feature to be in a random model. Using some tricks this
convolution can be calculated by dynamic programming.

In iterative steps the dynamic programming matrix D is filled with condi-
tional probabilities D, = Pr(of}, = = | [M| = y). An entry D, describes
the probability of a certain overlap, given that the first model refers to y
features. The anchor of the iteration is given by

Doy = Pr(og,=0]||M|=0)=1

)

Vosy i Dgy = 0.

From this anchor one can compute all entries of the D matrix using the
iteration
Pr(al?/IO =z ‘ |M| = y)
= py-Pr(oy,=2—1|[M]=y—1)
+(1—p,) - Pr(oy, =2 | [M| =y —1)
= py D1y +(1=py) - Doy
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The final p-value is then computed by the formulap = 1— ZUM‘)(M N D;

which, as mentioned above, simplifies the computation because only a part
of the matrix x < o},(M, N) has to be computed explicitly. Therefore, the
computational effort of the calculation is relatively low: O(|M|-o5}, (M, N)).

Searching against a database The previously computed p-value de-
scribes the probability that a certain or higher similarity is observed by
chance when comparing two models (of which one is a random model). When
comparing a model against a model collection and asking how probable it is
to see such a similarity score in any of the comparisons, one has to calculate
an extended p-value

Pe = 1- (1 _p)‘M‘a

where | M| is the number of models in the database and p is the p-value for
the comparison to one single random model.

Incorporating the similarity of BCs The simple overlap score does
not include knowledge of the similarity of BCs as e.g. oy >™. In order to
investigate how this knowledge affects the computation of the p-value I look
at a new similarity measure oOp (M, N) = vi;Svx. Compared to the p-value
computation for the overlap two problems arise. The first is that more than
the first |M| features in the second model can contribute to the similarity.
Thus, the computation will get less efficient as bigger parts of the D matrix
have to be computed. The second problem is that the similarity can take
non-integer values, which increases the number of possible scores considered
in the D matrix. One can reduce the additional computational effort by
two ideas. First, the S matrix has to be kept as sparse as possible, e.g. by
using a threshold below which the similarities of the BCs are set to zero.
Second, the number of different numerical values in S has to be reduced, e.g.
to multiples of 1 5> which together with the first idea reduces the number of
values the smnlarlty o0 can take. Apart from these numerical problems a
similar iteration step has to be applied, which results straightfoward from
the considerations above.

Normalisation for vector length Another feature of the measure oYM

which has not been considered yet is the normalisation to the lengths of the
vectors. To investigate the effects of this normalisation on the computation

vM UN

of the p-value, I consider the measure oQL(M, N) = Here
«\/UM’UN{'\/’UNUN ’

the computation of the p-values becomes computationally more demanding
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because now two random variables contribute to the similarity: the overlap
and the vector length minus the overlap

M|
X = ZUZ‘N
i=1
Al
Y = Z VN -
i=|M][+1

Both variables are independent. Therefore, their joint distribution is the
product of their individual distributions, which can be calculated as previ-
ously described. The final p-value can in this case be computed by summing
up the probabilities of all pairs X and Y fulfilling \/XLT > \/|M|oQE(M, N).

Using the discussed extensions, a p-value for the ofY*™ could be com-
puted. Nevertheless, this computation would be far too time consuming for

the applications discussed in this thesis.

B.2 Mathematical details on drug target iden-
tification

B.2.1 Different inhibition kinetics

In the following I will introduce the kinetic formulas for various inhibition
mechanisms for Michaelis-Menten (MM) kinetics. The idea behind those
kinetic formulas is to simplify the reaction network, the system of differen-
tial equations, and how the system can be integrated by condensing several
reaction steps acting on different time scales into a single reaction. Formu-
las, reaction mechanisms, and further considerations have been taken from
[Bisswanger, 1994, Klipp et al., 2009].

B.2.1.1 Irreversible Michaelis-Menten kinetics

The irreversible Michaelis-Menten kinetics assumes that the binding of the
substrate S to the enzyme FE is a reversible process that will equilibriate
rapidly, which is only valid if the substrate concentration is much higher
than the enzyme concentration. Furthermore, it proposes that the enzyme-
substrate complex slowly and irreversibly dissociating into enzyme and prod-
uct P. An enzyme-product complex is not explicitly considered. The corre-
sponding reaction scheme is given by

E+S2 pskBpyp

k_1
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Using the above mentioned assumptions one can calculate the following equa-
tion for the production of P

dpP V- VinaxS

it K,+S
where Vi.x = Fiot - ko is a product of the total enzyme concentration and the
enzymes catalytic rate constant and K, = % (K ~ kk—‘ll for k1, k1 > ko)
is the Michaelis-Menten constant. In this equation V., signifies the maximal
reaction velocity for high substrate concentrations and K,, is the dissocia-
tion constant of the enzyme-substrate complex and describes the substrate
concentration at which the reaction velocity reaches %
General inhibitions In any of the following inhibition types we assume
that an inhibitor I can bind the enzyme (propably only in a particular state)
and that it affects the reaction rate of the product formation (ks — kg). The
general reaction scheme of an inhibitor affecting an irreversible enzymatic

reaction is given by

I+E+S 2 14ES BryE4p
-1

kes | ks kea | ka

IE+8S k’“: IES Mr1r+iE+p
-5

Depending on the state of the enzyme which is bound by the inhibitor, the
place where it binds it, and how it affects product formation, the reaction
scheme will look different and the resulting reaction rates will vary.

Competitive inhibition The scenario in which an inhibitor binds an en-
zyme at the same place where the product is supposed to bind is called
competitive inhibition:

I+E+S 2 14ES Brypsp

ks | ks )
IE+ S

An example of this scenario in nature is the inhibition of a reaction by its
product. This feedback mechanism ensures that the production of P will be
limited even for large concentrations of S. The resulting reaction velocity is
given by
V — VmaxS 7
K, - (1 + KLI) + S
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where K; = kk—j’ Thus, the inhibitor affects the substrate concentration at
the half-maximal reaction velocity, slowing down the reaction for low concen-
trations of S. Nevertheless, as soon as the concentration of S becomes higher,
more and more enzyme will be bound to the substrate and the inhibition will
be outcompeted. Competitive inhibition is the most important among the
inhibition mechanisms. This results from the fact that most available drugs
work this way and the fact that similar mechanisms have a highly similar

kinetic behaviour.

Uncompetitive inhibition When an inhibitor is only able to bind the
enzyme-substrate complex and it keeps it from forming a product, the mech-
anism is called uncompetitive inhibition:

I+E+S ::1 I+ES BryE4p
1
kg | ks
IES

This mechanism occurs in nature as substrate inhibition (substrate and in-
hibitor are identical) and reduces the reaction rate when too much substrate
is available. In the resulting reaction velocity

with K; = %, the inhibitor affects the maximal reaction velocity as well as
the MM constant.

Noncompetitive inhibition In cases in which an inhibitor binds the en-
zyme in a different position as the substrate but still prevents the product
from being formed, one ends up with a noncompetitive inhibition:

I+E+S 2 14ES Brypsp

k_1
ks 1| ks kea f| ka
k
IE+S <& IES
k—s5
Under the assumption that % = kki and kk;s = kki, the reaction velocity
1 5 3 4
can be written as
Vmaxﬁs
V= =L
K,+S ’
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with K, = 7= = 1;5 and K; = k—s = k . In this kinetic formula only the

maxnnal reaction Velomty is affected by the concentration of the inhibitor.

Other types of inhibition All of the above mentioned inhibition mecha-
nisms assume that the binding of the inhibitor to the enzyme will prevent it
from transforming the subtrate to the product. In case we drop this assump-
tion, we end up with so-called partial inhibitions. These kinetics assume that
the binding of an inhibitor reduces the rate at which a product is formed but
it does not completely stop the production process (0 < kg < k2). As for the
complete inhibitions different versions of partial inhibitions exist but they
will not be considered in this context as they rarely occur in nature and are
more of interest for theoretical considerations [Bisswanger, 1994].

Non-essential activation A very simple mechanism for the activation of
an enzymatic reaction is given by the reaction scheme

A+E+S ;é A+ES BA+E+P
-1
ks 1| ks kg | ka
AB+S & AES B A+E+P
-5
ks k ke
Again assuming that ==t wo = o and =2 = k4, and furthermore supposing

that kg > ko, the reaction Velomty can be written as

V:VLMS.<1+£>’

K,+S Ky
with A being the concentration of the activator, K,, = kk;ll = kk—?, and
K, = %3 = k=4 Tn analogy to the noncompetitive inhibition, only the

ks ka
maximal reaction velocity is affected by the concentration of the activator.

B.2.1.2 Reversible Michaelis-Menten kinetics

Previously, we have only considered inhibitions to irreversible enzymatic re-
actions which follow Michaelis-Menten kinetics. Such reactions play a role
when the enthalpy of formation of a reaction is relatively high and no sub-
strate will be formed spontaneously from the product. For other cases the
description using reversible kinetics is more suitable. The scheme of a uni-
molecular reversible enzymatic reaction can be drawn as

E+5S ];’é ES :éE+P.
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The velocity of a reaction following this scheme can be written as

dpP Vrr]iax S Vnﬁax
— =V = 2 fms Emp (B.1)
dt e

with VJ and V[ _ being the maximal reaction rates for the forward and

reverse direction and K,,s and K,,p being the MM constants of the substrate
and the product.

Competitive inhibition Given an inhibitor which can only bind the free
enzyme and does so at the site at which substrate and product are binding,
the reaction velocity changes to

Vf S __y/r P
max K. mS* ) max Kmp-i
V= S
Kpsi | K,
f 8 _yr _P_
Vmax[( ms Vmax KmP
= g ,
Kms

with ¢ = 1 + —. As for the competitive inhibition of the irreversible MM
kinetics the 1nh1b1tor changes the apparent MM constant of the substrate and
the product. In the formula this is reflected by the fact that the K,,s/K,,p
values are multiplied by the factor ¢ = 1—|—KLI increasing it with rising inhibitor
concentrations.

Uncompetitive inhibition In cases in which the inhibitor is binding to
the enzyme-substrate or the enzyme-product complex preventing their tran-
sition into each other we have an uncompetitive inhibition and the reaction
velocity can be described by

foog-t —_Vyr .l P
V Vmax KmS i—1 Vmax Kp,pi 1
S P
Kpsi™ 1 + Kpp: g1 + 1
f S _yr
VmaXK mS VmaxK mP

= - .
z-(Kms—i-KP)—l—l

with i~ =

L Asin the irreversible case, the maximal reaction velocities
Ky

and the MM constants are multiplied by the factor i~! decreasing them for
rising inhibitor concentrations.

1+
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Supplementary Table B.1: Factors to multiply the maximal reaction velocity
or the MM constant with in order to to achieve different kinds of inhibitions
for Michaelis-Menten type kinetics.

inhibition type  Viax K,

competitive 1 1+ %
uncompetitive L L
noncompetitive 1+1 7 1
Ky,
activation 1+ KAA 1

Noncompetitive inhibition Given the scenario that the inhibitor is able
to bind all forms of the enzyme, one again ends up with a noncompetitive
inhibition, whose reaction velocity can be described by the formula

S P
V = Vrr]:ameS — VHTI&X Kmp 1
[ I I R B
Kms Kmnp Ki

Also this kinetic formula shares a commonality with the irreversible case:
only the maximal reaction velocity is affected by rising inhibitor concentra-
tions.

Non-essential activation Similar to the behaviour of the non-essential
activation, the kinetics of a non-essential activator in the reversible case are
similar to those in the irreversible case. The activator increases the maximal
reaction velocity by a factor {1+ % :

= 1+ —

S P
V= Vn{ames - VnZameP A
T s P TRy
KmS KmP A

B.2.1.3 General considerations on inhibition/activation kinetics

As shown in this section of the Appendix, the kinetic formulas for different
kinds of inhibitions do only differ by the fact which kind of variables are
altered by multiplication or division with the term 1 + KLI (compare Table
B.1). This fact is used in the TIde tool in order to automatically create
possible inhibition kinetics from a non-inhibited kinetic after the V., and
the K, variables have been identified.

250



B.2. MATHEMATICAL DETAILS ON DRUG TARGET
IDENTIFICATION

These variables can be identified in a kinetic formula by numerically eval-
uating it for various changes to variable values. A V., value can be identi-
fied by the bahaviour that the reaction velocity should scale linearly with it.
Thus, replacing Vipax by 2 Vinax should change the reaction velocity v to 2-v.
For kinetics in which this fact hold for more than one variable (e.g. if Vj,ax is
split into keat - Fiot) we can simply select one of these variables and proceed
with the aforementioned multiplication. For K, values the identification is
a little more complex as we have one value for every substrate (and for re-
versible reactions one for each product, too). Given that we want to identify
the K,s, value for a substrate S;, it will be the only variable = for which
holds Vyer : v(Si, @, ...) =v(y-Si,y-x,...). It should be noted that in case
a reaction is reversible, both, the K,, of the substrate and the K,, of the
product are affected by the inhibition. Furthermore, if a reversible reaction
involves multiple substrates and products, an inhibition will always affect
a certain substrate/product pair, which cannot necessarily be determined
automatically.

B.2.2 Construction of a objective function for drug
target identification

B.2.2.1 Proof: All objectives are fulfilled if the objective function
has a value smaller than one

The construction of the objective function (X?) from a description of the
healthy state has been discussed in 5.2.1.3 in the main text. I have pro-
posed that X? < 1 implies that the objective associated with each single
concentration time point is satisfied.

Proof. Lets assume that one of the aims is not fulfilled. Depending on the
type of the aim, we have three different cases.

e The minimization is not achieved if y;(¢;) = y;(¢;) + € with ¢ = 0. In
this case the corresponding summand of the x? value reads

A\%
—_
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e The maximization is not achieved if y;(t;) = 7,;(t;) —e with e > 0. In
this case the corresponding summand of the y? value reads

1 2 1 2
<0 B yz’(tj)) . <0 B yi(tj)5>
1 = 1
Y (t5) y;(t5)

= 1

e Keeping a value in a certain range is not fulfilled, if the value lies e.g.
below the lower boundary of the range vy;(t;) = v,(¢;) — 0i(t;) — ¢

_ 2 2
(y_yi(tj)) _ (Ui(tj) +5)
oi(t;) oi(t;)
> 1
Considering the separate summands in the x? value X? = Y, X? and assum-

ing that one of the aims is not fulfilled, we have 3; : X? > 1 and because of
V;: X? = 0 it follows that X? > 1. ]

B.2.3 Parameter identifiability

B.2.3.1 Mathematical reasoning for investigating X

In parameter estimation problems we are given the objective to find the most
likely set of parameter values given certain experimental data 7. We generally
assume those data points can be described by an ODE system

WO _ piy.0.0)

and that the data are observations of the underlying ODE system (including
the real parameter values 0*) including measurement errors

y(t) = y(t,0") + o(t)e (B.2)

where ¢ is standard normally distributed random variable.

Maximum likelihood Given this assumptions the probability of the mea-
sured data set Y given the parameters ¢ is expressed by

Pr(Y9) = W nexp ( @) _252(t’9))2> )
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which is the likelihood of the parameters L(6).
From this we would like to infer the behaviour of the posterior probability

L]

While Pr(Y) is just a normalization, Pr(f) is in most cases assumed to be
constant over a broad parameter range, from which follows

0 Pr(0)

g Y

and thus o o
oPr(9Y)  Pr(9) oPr(Y9)
00 Pr(Y) o0

Using this assumption we can write the sensitivity of the posterior with
respect to the parameters

olnPr(|Y) oPr(dY) 6
olng 90  Pr(gY)
_ oPr(Y|0) Pr(d)  6Pr(Y)
00 Pr(Y)Pr(Y]0) Pr(6) (B:3)
_ 0lnPr(Y]0)
- 0lnd

Setting Eq. (B.3) to 0 one can see that the posterior has extremal values
at the same parameter values as the likelihood. So, maximizing the posterior
is equivalent to maximizing the likelihood.

x? distribution Assuming that the normalized residuals

y(t) B y(t7 9)
o(t)

are independent and standard normally distributed (compare Eq. (B.2)), we
know that the sum of squared, normalized residuals is x? distributed

() v
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Connection between likelihood and X2

L(6) = Px(

=
=

Il
[a—y
@
>
o}
/|\
~
<
VS
~
N’
|
<
VS
\.PF
S
N—’
N’
[\V)
~_

from which follows

= X% =c—2InL(H)
Since we are now aware of the relations between conditional probabili-

ties, likelihood, and X2, we can formulate the objective of the parameter
estimation: finding a parameter set

B.2.3.2 Rules for interchangeabilities

Given a working treatment Z with a list of corresponding drug concentrations
17 I propose the following theorems for treatments and interchangeabilities:

e T(Z)=T(Z+ {x})
Proof.

T(I)=X%*7) <1
=3.0X%(07) +e< 1

Using 0, = (6p=0,...,0, =1,...,0, =0) and knowing that the ob-
jective function is continuous in the parameter space we know that

E|5>0X2(91 + 50x) <X2(91) + €.
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Inserting this we end up with

3.0 X2(07) + € < 1 =350 X% (07 + 66,) < 1
=T (Z + {x})

o T (I) = Eliz>0,iy>0[ (Zm > Zy|ZZ)
Proof. From T (Z) one concludes that T (Z + {z}), T (Z + {y}), and
T(Z + {z,y}). Along small values for i, and i, the X? value does
not change significantly (see proof above), and thus we can conclude

interchangeability for them: 3;, -0, >01 (iz < iy|iz). O]

o I(iy—iyliz) = V.31 (iy — iy, i.)iz)
o I(iy —iyliz) &I (iy — i.liz) = I (iy — i.iz)

o I(iy o iyliz) &I (iy < i.liz) = I (iy < i.iz)

Proof.

I (iy < iyliz) =1 (iy — iy)iz) (1)
&I (iy — 1a]i7) (2)
I (iy o i.liz) =1 (i, — i.]iz) (3)
&I (i — iy)iz) (4)
(1) & (3) =1 (iy — i.iz) (5)
(4) & (2) =1 (i, — ig)iz) (6)

(5) & (6) =1 (i, <> i.|iz)

B.2.3.3 Algorithm for identifying drug interchangeabilities

Here I present the full algorithm behind the drug interchangeability identi-
fication as introduced in section 5.2.3 in the main text. In comparison to
the simplified version in the main text, this version explicitly states at which
points we can use information to prune the interchangeability space explored
in the algorithm.
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for 7, € Prazcara(l) do
if 7, € blacklist then
continue
end if
if T (Z,) then
add trivial extensions of Z; to blacklist
for 7, € Prazcara(Z1) do
for 73 € Prazcara(I\Z1) do
if I(iz, < iz,|iz,) or interchangeability can be inferred from tran-
sitivity then
report interchangeability
add Z;\Z, + Z3 and its trivial extensions to blacklist
end if
end for
end for
end if
end for
The running time of this algorithm is reduced by the application of pruning
rules and defining a maximal cardinality in the power sets of drugs tested
in the treatments. It should be noted that I assume the power sets to be
ordered by cardinality.

B.2.4 Extending my definition of network selectivity
B.2.4.1 Selectivity in higher order drug treatments

For most applications a treatment will have to involve a larger number of
drugs applied in parallel. In order to quantify the selectivity on each target
in such a treatment, I extend the aforementioned definitions of network selec-
tivity from chapter 5. First, I define the conditional required concentration
of a drug within a certain treatment 6 as
&(X2,0) = mIin X216+ 0) < 1.

j
In this definition the vector # should include non-zero values for all drugs
applied in parallel, except for drug j. Second, using this definition the con-
ditional network selectivity reads

(2
selectivity;(0) = %
J\““parasite’

This conditional selectivity describes how much effort has to be put into the
design of each actual drug candidate in the treatment. In general, treatments
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having a high conditional selectivity along all their drugs are preferential to
those having low values for some of them, as those drugs might become a
bottleneck in later development stages.

B.2.4.2 Selectivity in between multiple models

A further complication may arise in cases in which we need to consider the
effect of a treatment on more than two distinct models. This might be the
case if several models are necessary to cover potential side-effect in a host. In
such cases I propose to compare the selectivity between the parasitic pathway
and all host models and regard the lowest of these selectivities as the limiting
one. Following this approach a resulting treatment has a high probability of
achieving efficacy and safety with respect to all known side-effects.

B.2.5 A mathematical model to relate necessary drug
concentrations to probabilities of resistance de-
velopment

Depending on the type of disease which is to be cured by a simulated treat-
ment, the possibility of resistance development should be considered when
targets are selected. Therefore, I will introduce a few considerations in the
following subsection, in which I will link the probability of resistance devel-
opment against a certain drug to the necessary inhibitor concentrations. For
simplification, I will make a number of assumptions.

First, I assume that the treatment consists of a single drug targeting a
single enzyme in a non-competitive manner. Second, this enzyme is involved
in an essential metabolic pathway, whose malfunction will lead to a serious
impairment of the treated cell, e.g. a parasite. Third, I assume a strong
correlation between the number of gene copies and the enzyme levels in the
cell, i.e. if a drug resistance occurs in one gene, half of the enzyme is still
susceptible to the treatment. Finally, it is supposed that the resistance to
a certain drug can be described by a factor «, which signifies how much
of the enzyme is insusceptible to the drug. As previously described, the
reaction velocity of a reaction targeted with a non-competitive inhibitor can
be modelled using the formula

where V' and V' are the reaction velocities before and after treatment, I
is the concentration of the non-competitive inhibitor, and K7 is its binding
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constant, then the reaction velocity after treatment given that a resistance
has been developed can be described by

V' =aV +(1-a)V

1+ 4
1+ai
=V—7 L (B.4)
1+K—I

A value of a = 1 would describe a full resistance to the treatment, while a
complete susceptibility is modelled using o = 0.

Given these assumptions a single, first mutation to a diploid organism,
which is homozygote for the wild-type allele of the targeted enzyme through-
out the population, can only affect one allele, and therefore render at most
half of the available enzyme insensitive to the treatment, i.e. o < % One can
argue now that if a drug only needs to inhibit a small fraction of the enzymes,
e.g. 25 %, then a single mutation event, which can only lead to resistance in
a single gene copy, will not be able to rescue the cell. At most half of the
available enzyme will function properly, which is by assumption still lethal
to the organism. After the mutation has occured a higher drug dose might
become necessary, but the treatment will still work rendering the mutation
recessive. Opposed to that, if it is necessary to inhibit a large fraction of the
enzyme, e.g. 75 %, for the drug to show an effect, a mutation is potentially
able to lead to drug resistance by making 50 % of the enzyme insusceptible
for the inhibitor. As such an effect cannot be accounted for by increasing
the drug concentration, the mutation will appear to be dominant, because it
rescues the organism already after the first mutation.

Depending on whether mutations in the targeted enzyme are preferrably
dominant or recessive, one can assume that the rates of resistance develop-
ment vary as it is caused by either one or two mutation events. Thus, for
treatments in which resistance is an issue one should select targets in which
mutations are most likely to be recessive. In order to quantify the proba-
bility of a mutation in the targeted enzyme to be recessive, I will make the
following considerations.

I assume that I am given an effective and safe inhibitor, which satisfies

. . 2 I . . .
Equation 5.1, i.e. X (E) < 1. Given the essentiality of the pathway for

the organism and the essentiality of the target for the pathway, the effect
of the inhibitor on the network is excerted only via the inhibition of this
single reaction. Thus, X2 is a function of the rate of the inhibited reaction

V' i.e. for the inhibitor X2 (V’ (KL,)) < 1 holds. In terms of this function,

the question of whether a certain mutation is recessive is equivalent to the
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question of whether

3 V! ! a=0)=V I a=0
%20 KI’ - - KI’ =

holds. Inserting the definition from Equation B.4, we get

1 1+ ai=
3 V—F = V—t
K~ 1+K_] 1+K_1
I —%
= dp _— = —17
2K ozKLI +a-—1
which holds if and only if
I 1
— < ——1 B.5
% a (B.5)

Using Equation B.5 and given knowledge of a distribution for a values,
one can compute a probability distribution for the fact of whether a beneficial

mutation that affects a targeted enzyme is recessive or dominant. In case
one assumes a uniform distribution of « values in the range of 0 to %, the

cumulative distribution of the probability of the mutation being recessive can
be given by

Therefore, I conclude that those targets should be preferred, which have a
lower KLI value needed for an effective and safe treatment, as mutations af-
fecting this enzyme will be less likely to be dominant and will therefore less
likely manifest on a population level. Despite these clear and intuitive re-
sults, the assumptions made in the beginning are quite restrictive. Specific
assumptions on the effect of the treatment, the target organism, and the
way in which resistance arise have been made. As these assumptions cannot
be assumed to be universal, e.g. resistances can arise through various mech-
anisms, not only mutations in the enzyme targeted by a drug, the results
should be treated with caution. Nevertheless, they do indicate ideas on how
resistance development could be slowed down and they support my claim
that targets having the lowest necessary KLI values are to be preferred.
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B.3 Mathematical details of synergism anal-
ysis

B.3.1 Rewriting Bliss drug interaction models

Bliss independence The formula for the Bliss model in its original form
is fuio = fuyfug, meaning the the fraction unaffected (e.g. the fraction
of bacteria surviving a treatment) after combined medication (fu;s) is the
product of the fractions after single medication (fu/,). Transfered to a
setting in which we observe the concentration of a single species x, which is
elevated in the pathological state, this independence can be written as

T2 T1 22

= =
Zo ZTo To
T1T2
T12 = )
Zo

where z( is the untreated concentration of x after a given time, 1/, are the
concentrations after treatment with a single drug, and x5 is the concentra-
tion after dual treatment.

Bliss boosting A simple version of the Bliss boosting model from Lehar
et al. [Lehar et al., 2007] can be written in terms of the “affected fraction”

fa1/2/12 =1- fa1/2/121

1-— fCL12 = (1 — fal)(l — fag) =
farz = far + fas — faifas.

A boosting factor « is now introduced in such a way that a value a = 1
represents independence, larger values represent antagonisms, and smaller
values synergisms. The definition is not completely coherent with the orig-
inal formula of Lehar et al. . In our formulation we leave out the explicit
mentioning of enzyme concentrations (because they do not necessarily appear
in the model). Therefore, the Bliss boosting model reduces to

faiz = fai + fay — afaifas <

Z12 x T2 x X2
1-——==1-—)+(1-3)—a(l——)- 1= =

- 0- a1 - ) -2

T1X2

)

Tig =21 +Ts—To+a=(xg—2] —Ta+
Ty
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Bliss independence of x? values In the case in which the objective
function behind our drug target identification optimisation only consists of
a single concentration the independence models are comparably simple. For
examples in which we are using a x? value, the situation is getting more
difficult. Let us assume that we want to fit 2 simulated timepoints (z and
y) to a value of 0 with a standard deviation of 1. In this simple case, the
objective function reduces to x? o2 = z? o2 T yf/2 2

Assuming Bliss independence between two inhibitors the formula for the
objective function under dual inhibition reads

T1T2 )2 + (y1y2)2

Zo Yo

X%2 = ( )
which cannot generally be rewritten in terms of x; 12 There are only two
conditions under which this is possible.

e First, if the objective function consists of a single timepoint, we have

2,2 2.2
) X1X2 .
X1 o = xl 1 and x2, = =02 . This formula can be generalized for

the case in which n inhibitors affect one single timepoints:

HX 2 n

e Second, if each of the two inhibitors affects only one timepoint, we have
w.l.o.g. T3 = xp and y; = yo and our formula reduces to x%, = r?+y3 =
X3+ x5 — x3. This formula can also be generalized for n timepoints
which are all individually affected by n inhibitors. In the general case

it reads
Z Xz n - 1

Both of these formulas can be extended for cases in which the y? value
contains summands that are affected by neither drug, e.g. x? /12 = z? o127 C
with the x timepoint being affected by 2 inhibitors and multiple not affected
timepoints in the residual sum c. With this extension the independence
model for the dual inhibition reads

(Xl - C) (xg —©)

Xo_C
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Appendix C

Models and objective functions
for the target identification

C.1 Linear chain

default

O RO R O O S O et O)

Supplementary Figure C.1: Structure of the linear model as used in Gerber
et al. [Gerber et al., 2008] visualised using biographer [Handorf et al., 2012].

The chain model investigated in this work implements a linear reaction
network as shown in Figure C.1. Reaction velocities are described by re-
versible Michaelis-Menten-kinetics with parameters V., = K, = K,p =
1, V).« = 0.2 and species concentrations S; = 1 and Sg = 0 are fixed while
the others are variables of the model. To distinguish, which parameters influ-
ence the result of the tested inhibitions, I have selected different parameter
sets. These will be introduced together with the specific results later in this

section.

C.1.1 Potency of different inhibition types

In order to explain some of the results introduced in the main text, I would
like to investigate how inhibitors with different modes-of-action influence the
velocity of reversible Michaelis-Menten kinetics. For all considerations I will
assume that the reaction runs in forward direction, i.e. VJ_ Ki =~ Vifax KZ -~ >

0, and that the parameters and concentrations are non-negative but are not
subject to any further constraints.
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Comparing competitive and uncompetitive inhibition In the follow-
ing, I will try to deduce conditions under which an uncompetitive inhibitor
has a larger effect on a reaction velocity than a competitive inhibitor at a
comparable effective concentration.

V(L) >V (I.) =
vi S _yr _P_ v S _yr _P_

max K5 — VmaxKpp max K,,s _ 'maxK,.p

S P I I, S P
Km,S + KwLP + (1 + Kilt) (1 + Klu) ’ (KmS + KmP) +1

LS, P L _ .8 P L S I, P -
KmS KmP -K'IC KmS KmP Klu KmS KIu KmP
1. < I, S I, P
K, Ki, Kns  Ki, Kmp'
Given identical effective inhibitor concentrations, i.e. -2~ = -f» the un-

Ky, K
competitive inhibition is stronger than the competitive in}{fbition Iiuf and only
if
S P

1< Ko + s (C.1)
This equation defines a mathematical condition under which an uncompeti-
tive inhibitor should be preferred over a competitive one. It can intuitively
by understood via the idea that the inhibitor works best if it is binding the
most abundant form of the enzyme. E.g. given S << K,,s and P << K,,p
the binding of substrate and product is weak, the enzyme is largely unbound,
and the competitive inhibitor is more effective than the uncompetitive one.

Comparing competitive and non-competitive inhibition Starting
from the same assumptions I will now compare the effects of a competi-
tive and a non-competitive inhibitor on the reaction velocity of a reversible
enzymatic reaction.

V(1) =2V (I,) -
S P s ) P
Vn{ax Kms Vrgax Kmp > Vrﬁax Kog — anrlax yo - 1 -
T2 P L.
KfLS+KiP+(1+K17;c) Kos T Rpr 71 T+ 5
1+ + + -2 < + v1) (14 I -
KmS KmP KI,_. Kms KmP KI”

I I, S I, P I,
<+ oy
Ki, K;, KpnsKi, KypKp,

Assuming that we are given comparable effective inhibitor concentrations
and that all parameters are non-negative, a non-competitive inhibition will
always be at least as good as a competitive inhibition. Furthermore, equiv-
alence of both modes is only achieved iff S = P = 0, otherwise a non-
competitive inhibitor will be better.
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Comparing uncompetitive and non-competitive inhibition The last
pair of modes-of-action, that is compared, is uncompetitive and non-compe-
titive inhibition.

V(L) >V (I,) =

Vioos ~VowTr _ Vidaios ~Vewry 1 -
(1+Ig?u)'(KiS+Kip>+1 Ros TR 71 L+

<1+ I“)-<S + P>+1<<S +P+1>-<1+I”> =
Ky, Kpns  Knp Kpns  Knp Ky,

L S G N U I
Klu KmS KmP KI,L KmS KmP

Given non-negative parameters, a non-competitive inhibitor will always have
a larger effect on a reaction velocity than an uncompetitive inhibitor at the
same effective concentration. Furthermore, it can be seen that the advantage
of the non-competitive inhibitor gets smaller for increasing effective substrate
and product concentrations.

C.1.2 Setting up the objective function

In their article, Gerber et al. observed the flux through the linear chain under
different inhibitions. While the flux through a reaction is a variable that can
easily be analysed in MCA, dynamic simulations only keep direct track of the
variables, i.e. the chemical species, of the model. Therefore, fluxes can only
be determined by evaluating the reaction kinetics (including all inhibitors)
given the current concentrations. For the standard parametrisation of the
model (as presented in the main text), the objective function judging the
flux is given by

s\’ .
X? = h
(vsw) it

Vf i_vr Se 1

o max KmS max KmP .
B L, s s L) 1+ -’
<1+K_I'1L)'(K7YEZS+K7§P>+<1+K_IC) +K1n
I., I,, and I, being the concentration of the competitive, the uncompetitive,
and the non-competitive inhibitor, and V;* ~ 0.272 being the steady state
flux through reaction 5 without inhibitions. The objective function is con-
structed as such that it will drop below 1 if the flux is reduced to less than
half its steady state value, i.e. V5 < V%
Gerber et al. argue, that the potency of inhibitors along the chain has to

be judged by flux control coefficients and not by concentration control coeffi-
cients, e.g. the derivative of the steady state concentration of S5 with respect

(C.2)
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to the velocity of an inhibited reaction. Analyses observing the concentration
control coefficients would be misleading as the coefficients switch signs when
the inhibition targets a reaction “behind” the considered substance. For my
approach, however, fluxes are less easily handable, as experimental data for
the “healthy” state is harder to determine experimentally than metabolite
concentrations. Therefore, I want to investigate conditions under which ob-
serving a metabolite concentration provides comparable results to settings in
which the change in a flux is observed.

I propose the following three conditions under which the concentration of
a certain metabolite can be representative of the flux: First, a reaction r has
to be selected, whose velocity is linearly dependent on the flux through the
network because of stoichiometric constraints, e.g. it is one of the reactions
in a linear pathway. Second, the selected metabolite s is the only variable in
the kinetics of reaction r, i.e. the only substrate or product with no further
modifiers present. Third, the velocity of r is monotonic with respect to s,
i.e. no substrate inhibition is assumed.

Under these conditions s can be representative for the flux through the
network, given that two points are kept in mind. First, the relationship
between the flux and s is non-linear. Second, inhibition of reactions which
appear after s in the pathway have to be neglected [Gerber et al., 2008]. This
is for example underlined by Eq. C.3. It shows that an inhibition of the last
reaction changes the relation between s and the flux through the reaction.

In the example of the linear chain one can in principle observe the concen-
tration of substance S instead of the flux. The resulting objective function
then becomes

S5\’ .
X2 = ( with
5?;5/2>
S5 = (.3862, (C.3)

with the advantage that the “healthy” concentration of S5 can be determined
more easily experimentally. When investigating inhibitions of the first four
reactions, the effects on S5 and V; are comparable and easily explainable.
However, when observing the effect of different inhibitor modes-of-action
on reaction 5 an interesting behaviour becomes apparent (see Figure C.2):
For low inhibitor concentrations the competitive inhibitor is stronger than
the uncompetitive one. This can be explained by the relation shown in
Eq. C.1. For inhibitor concentrations above I., I, ~ 1.75 the steady state
concentration of S5 rises above 1 and Eq. C.1 switches from being false to
true. An interesting follow-up question is why does this effect only show up
for reaction 5. This can be explained by the fact that the product of reaction
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Objective function for single inhibitions with logarithmic concentrations

Value of objective function

Supplementary Figure C.2: Abnormality concerning different inhibitions
of the last reaction in the chain. The Figure shows the effects on the flux
(see Eq.C.3) through the chain after inhibition with different modes of ac-
tion (red:noncompetitive, blue:competitive, green:uncompetitive) at different
concentrations (x-axis). At other positions in the network competitive inhi-
bition is the weakest mode-of-action at all concentrations, which is not the
case at this reaction.

5 is kept constant at a low concentration of 0. For higher concentrations,
which would change the outcome of inequality Eq. C.1 this behaviour would
not be present. Therefore, I conclude that investigating reactions at the
“border” of the network should be taken with a pinch of salt. Thus, when
investigating the last metabolite in a chain instead of the flux (neglecting
inhibitions of reactions behind it), it does not mean one necessarily loses
relevant information.

C.1.3 Results

I have conducted different analyses on different parametrisations of the Ger-
ber model. In the following, the various results and their underlying param-
eter values and objective functions are introduced.

In Figure C.3, I have investigated a version of the model in which the
equilibrium constants of all reactions are set to 1. For this purpose I have
chosen the parameter set V/ = V" = K, ¢ = K,,p = 1 and investigated

max max
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changes in the objective function X? = (0*%)2. Using this objective function

instead of one focussing on the flux leaves one with results mostly comparable
to those of Gerber et al. .

For Figure C.4, I have changed the equalibrium constants of all reactions
to 100 using the parameter set V! = K,,p = 10, Viex = Kims = 1 and

investigated changes in the objective function X? = (0216)2.
For Figure C.5, I have changed the parameter set to VJ/ = V7’

max max

K = K,,p = 100 and investigated changes in the objective function X? =

S 2
(0.0592) . ‘ ‘ ‘ ‘ '
The results of these simulations support the main conclusions drawn in
section 5.3.2.2 in the main text.
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Objective function for single inhibitions with logarithmic concentrations

Value of objective function

Value of objective function
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Supplementary Figure C.3: Effects of different inhibitors on a linear chain
in which all parameters have been set to 1. The three graphs show the effects
of competitive (top), uncompetitive (middle), and non-competitive (bottom)
inhibitors on the objective function (y-axis) for different positions (reaction
1: blue, 2: red, 3: green, 4: violet) in varying effective concentrations (x-axis
in log,, scale).

Value of objective function
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Objective function for single inhibitions with logarithmic concentrations
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Supplementary Figure C.4: Same analysis as performed in Figure C.3, except
for the fact that the equilibrium constants have been changed from 1 to 100.
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Objective function for single inhibitions with logarithmic concentrations
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Supplementary Figure C.5: Same analysis as performed in Figure C.3. All
parameters have been set to 100 to demonstrate general rules in the in-
hibitor’s response to changes in the parameter set.
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C.2 Glycolysis in Trypanosoma brucez

Model describes the glycolysis in the bloodstream form of Trypasomoma bru-
cei, the pathogen causing sleeping sickness. In the scope of this work I will
compare results from two different models, the model of Albert et al. [Albert
et al., 2005] and the model of Achcar et al. [Achcar et al., 2012]. The latter
of the models is an updated version of the Albert model, it however fails
to reproduce one result of Visser [Visser, 1981]. In Visser’s experiments the
total glucose consumption is not altered in between aerobic and anaerobic
conditions, i.e. half of the flux directed towards pyruvate is redirected to-
wards glycerol under anaerobic conditions. Because this result has not been
considered by Achcar et al. , single inhibitions of the glycerol 3 phosphate
oxidase reaction (as compared to inhibitions accompanied by an increase in
external glycerol) appear to be far more potent than they might be [Nok,
2002, Minagawa et al., 1997]|. Therefore, I will consider both models instead
of just the updated one.

C.2.1 Setting up the objective function

As the objective function judging the performance of the glycolysis, I have
chosen the flux through the pyruvate transporter, which should be inhibited
by 50% in order to kill the pathogen [Bakker et al., 1999]. Therefore, the

objective function for the Albert model is

2

200-speciesl 1 . (1 + a,UPT)
9 1.96+speciesl 1+M 1
= 87.25 (©4)

and the objective function for the Achcar model has been set to

2

200-Pyrc . 1 . (1 + a,varT,c)
1. + r_C 1 noncvr/yri _c 1
9 96+ Py _:,_7113 r
X2 = 8 . (C.5)

C.2.2 Results

Results of Table C.1 are largely in agreement with results produced using a
similar method [Schulz et al., 2009]. Small differences result from a slightly
different objective function (comparing flux through upper glycolysis with
flux through lower glycolysis), but they are in the order of magnitude of the
variance resulting from simulating the ODE system using different solvers
with different parameters.
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Supplementary Figure C.6: Structure of the glycolysis in Trypanosoma bru-
cei as described by Albert et al. [Albert et al., 2005].
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Supplementary Figure C.7: Structure of the glycolysis in Trypanosoma bru-
cei as described by Achcar et al. [Achcar et al., 2012].
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Supplementary Table C.1: Inhibitor concentrations necessary for an effective
treatment. (c: competitive inhibition, k: competitive inhibition on a cofactor binding
site, n: non-competitive inhibition, u: uncompetitive inhibition, ALD: aldolase, AU: ATP
utilisation, ENO: enolase, GAPDH: glyceraldehyde-3-phosphate dehydrogenase, GlcTg:
glucose transport into glycosome, GPDH: glycerol-3-phosphate dehydrogenase, THT: try-
panosoma hexose transport, HK: hexokinase, PGI: glucose-6-phosphate isomerase, PGK:
phosphoglycerate kinase, PGM: phosphoglycerate mutase, PK: pyruvate kinase, PT: pyru-

vate transport, TPI: triosephoshate isomerase)

Inhibitor concentration
Target MOA  Albert 2005  Achcar 2012

THT n 1.07 1.09
THT u 1.28 1.29
THT n 1.29 1.31
PGM n 1.58 1.59
PGM u 1.58
GAPDH n 2.51 2.82
GPDH n 3.37 3.48
GPDH u 3.44 3.56
GAPDH u 4.71 4.86
GAPDH c 5.48 6.67
ENO n 5.86 5.95
ENO u 5.86
THT c 6.46 6.53
ALD u 7.19
ALD n 7.89 8.14
PK n 9.78 9.84
PK u 9.84
PGK n 24.9 25.1
PGK u 25.1 25.3
PGI n 27.7 28.1
TPI n 27.9 28.5
PGI u 27.9
GAPDH k 28 31.2
TPI u 29.9
HK n 37.5 37.9
HK u 41.7 42.2
PFK u 138 18.4
GPDH c 174 172
PFK n 190 14.8
PK k 122
GPDH k 204 226
AU n 209 212
PGK k 273 298
HK c 372 378
TPI c 481
PFK c 1610 177
PFK k 946
PK c 1280
AU a 1500
HK k 1970 1980
PGK c 2780 3420
PGI c 2990
GlcTg n 5160
ALD c 9150
3PGAT n 11600
PGM c 14700
ENO c 25100
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C.3 Glycolysis in human erythrocytes

Model (click for information) BioModel Similarity Overlap

score p-value score p-value
Albert2005_Glycolysis BIOMDO000000211 1.000 <=1e-3 64 -4.4e-16
Bakker2001_Glycolysis BIOMDO000000071 0.6892 <=1e-3 42 -4.4e-16
Teusink2000_Glycolysis BIOMDO000000064 0.522 <=1e-3 3B -4.4e-16
Pritchard2002_glycolysis BIOMDO000000172 0.499 <=1e-3 32 -4.4e-16
Ralser2007_Carbohydrate_Rerouting_ROS BIOMDO000000247 0.499 <=1e-3 38 -4.4e-16
Conant2007_WGD_glycolysis_2A3AB BIOMDO00000D0176 0.491 <=1e-3 31 -4.4e-16
Hynne2001_Glycolysis BIOMDOO000000061 0.474 <=1e-3 31 -4.4e-16
Holzhutter2004_Erythrocyte_Metabolism EIOMDO000000070 0.471 <=1e-3 41 -4.4e-16
Conant2007_glycolysis_2C EBIOMDO000000177 0.467 <=1e-3 31 -4.4e-16
Teusink1998_Glycolysis_TurboDesign BIOMDO000000253 0.465 <=1e-3 20 1.7e-15
Galazzo1990_FermentationPathwayKinetics BIOMDO0OO00O00063 0.453 <=1e-3 24 -4.4e-16
Nielsen1998_Glycolysis BIOMDO00000D0042 0.433 <=1e-3 29 -4.4e-16
Chassagnole2002_Carbon_Metabolism BIOMDO00O00OO0051 0.398 <=1e-3 33 -4.4e-16
Chance1960_Glycolysis_Respiration BIOMDO000000281 0.349 <=1e-3 18 4.3e-13
Westermark2003_Pancreatic_GlycOsc_extended BIOMDO000000236 0.335 <=1e-3 10 2.9e-05
Wolf2000_Glycolytic_Oscillations BIOMDO000000206 0.327 <=1e-3 15 7.6e-10
Poolman2004_cCalvinCycle EIOMDO000000013 0.279 <=1e-3 18 4.3e-13
Rohwer2001_Sucrose EIOMDO000000023 0.176 <=1e-3 & 5.4e-02
Jiang2007_GSI|Ssystem_PancreaticBetaCells BIOMDO000000239 0.161 <=1e-3 10 2.9e-05
Westermark2003_Pancreatic_GlycOsc_basic BIOMDO000000225 0.155 <=1e-3 3 3.4e-01
Cronwright2002_Glycerol_Synthesis BIOMDO000000076 0.130 <=1e-3 3 3.4e-01
Voit2003_Trehalose_Cycle BIOMDO000000266 0.123 2.0e-03 2 6.2e-01
Valero2006_Adenine_TernaryCycle BIOMDO000000231 0.119 5.0e-03 3 3.4e-01
Tyson2003_Mutual_Activation BIOMDO000000311 0.112 1.2e-02 0 1.0e+00
Rovers1995_Photsynthetic_Oscillations BIOMDO0000000292 0.111 1.2e-02 4 1.5e-01

Supplementary Figure C.8: Results of the model retrieval starting from the
Albert model of the Trypanosoma glycolysis [Albert et al., 2005]. Most of
the depicted models describe glycolysis in Saccharomyces cerivisiae, except
for Holzhiitter: human erythrocytes, Chassagnole: Escherichia coli, Chance:
human tumor cells, Westermark and Jiang: human pancreatic beta cell, and
Poolman: Nicotiana tabacum. From the models describing glycolysis in hu-
man cells the Holzhiitter model has the largest overlap with the Albert model.

In order to develop a treatment working in wvivo, one not only needs to
consider a drug’s efficacy but also the potential side effects this treatment
would have in a human. Given the case that a parasite infection should be
treated, one class of potential side effects can be predicted by computing the
effect of a treatment on the investigated pathway in the human host. Models
being able to serve this purpose can be identified by using our model retrieval
website. The results of the model retrieval can be found in Figure C.8.
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Supplementary Figure C.9: Structure of the energy and redox metabolism
in human erythrocytes as described by Holzhiitter [Holzhiitter, 2004].

C.3.1 Setting up the objective function

As a representative of the flux through the lower glycolysis I observed the
flux through the enolase reaction, which is supposed to be inhibited at most
by 5%. Using the objective function

1500_CrizP—5EE 2
X2 = 1+Gri2P+PEP

2.805

treatments reducing the flux by more than 5% will have an objective value
< 1.

C.3.2 Results

Results of the network selectivity analysis are shown in Table C.3. The al-
dolase (ALD) reaction, the glyceraldehyde 3 phosphate dehydrogenase (GAPDH),
and the trypanosomal hexose transporter which is expressed by the blood-
stream form seem to have the largest selectivity and should therefore be
prioritised as targets in the search for trypanocidal drugs. Experimental

277



C.3. GLYCOLYSIS IN HUMAN ERYTHROCYTES

Supplementary Table C.2: Tolerated inhibitor concentrations which reduce
the flux through glycolysis by 5%.

Target MOA Inhibitor concentration

BPGP n 0.276
BPGP u 0.292
HEX u 0.640
BPGM a 0.840
HK n 1.01

HK k 1.26

PK n 3.03
PFK c 3.44
PFK n 4.67
BPGP ¢ 5.04
PFK k 5.71
ENO n 5.82
PGM n 10.7
THT n 16.0
ATPase a 22.5
THT u 24.7
PGK n 44.9
HK a 47.4
PGK ¢ 53.0
THT ¢ 63.7
GPI n 90.3

HK ¢ 102
PGK k 146
PFK u 152
GAPDH n 177
GAPDH u 178
LDHNADH n 218
BPGM n 255
PGK u 289
BPGP a 401
GAPDH k 402
Phiexch n 654
PFK a 721
GAPDH c 734
ALD u 4380
AK n 20700

results have already shown that decreasing the concentration of ALD and
GAPDH is trypanocidal [Caceres et al., 2010], while for the GADPH in-
hibitors selectively targeting the trypanosomal homolog of the enzyme have
already been designed [Aronov et al., 1999]. Apart from targets with a high
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C.3. GLYCOLYSIS IN HUMAN ERYTHROCYTES

Supplementary Table C.3: Inhibitor concentrations necessary for an effec-
tive treatment of Trypanosoma brucei and in parallel tolerated by human
erythrocytes. The quotient of both concentrations gives the network selec-
tivity defined in Eq. 5.2.

Necessary concentrations Network selectivity
Target MOA Albert et al. Achcar et al. Holzhiitter Albert Achcar
HK k 1970 1980 1.26 0.000639 0.000636
PFK k 946 5.71 0.00603
HK u 41.7 42.2 0.64 0.0154 0.0152
PGK c 2780 3420 53 0.019 0.0155
PFK c 1610 177 3.44 0.0195
HK n 37.5 37.9 1.01 0.027 0.0267
ALD c 9150 2070 0.226
HK c 372 378 102 0.273 0.269
PK n 9.78 9.84 3.03 0.31 0.308
PFK n 190 14.8 4.67 0.315
PGK k 273 298 146 0.533 0.489
ENO n 5.86 5.95 5.82 0.994 0.979
PGK n 24.9 25.1 44.9 1.8 1.79
PGI n 27.7 28.1 90.3 3.26 3.21
PGM n 1.58 1.59 10.7 6.77 6.72
PFK u 138 18.4 152 1.1 8.25
THT c 6.46 6.53 63.7 9.85 9.75
PGK u 25.1 25.3 289 11.5 11.4
GAPDH k 28 31.2 402 14.4 12.9
THT n 1.07 1.09 16 14.9 14.7
THT u 1.28 1.29 24.7 19.3 19.1
ALD n 7.89 8.14 282 35.8 34.7
GAPDH u 4.71 4.86 178 37.7 36.6
GAPDH n 2.51 2.82 177 70.6 62.7
GAPDH c 5.48 6.67 734 134 110
ALD u 7.19 4380 609
PT n 1.29 1.31
PGM u 1.58
GPDH n 3.37 3.48
GPDH u 3.44 3.56
ENO u 5.86
TPI n 27.9 28.5
PGI u 27.9
TPI u 29.9
GPDH c 174 172
GPDH k 204 226
AU n 209 212
TPI c 481
PGI c 2990
PGM c 14700
ENO c 25100
PK u 9.84
PK k 122
PK c 1280
AU a 150
GT n 5160
3PGAT n 11600
ATPase n 0.05
BPGP n 0.276
BPGP u 0.292
BPGM a 0.84
BPGP c 5.04
ATPase a 22.5
HK a 47.4
LDHNADH n 218
BPGM n 255
BPGP a 401
Phiexch n 654
PFK a 721
AK n 20700

selectivity, there are also targets with an infinite selectivity (i.e. the pyru-
vate transporter and the triose phosphate isomerase). Numerical simulations
suggest that the erythrocyte is insensitive to inhibitions of these reactions.
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C.4. ARACHIDONIC ACID PATHWAY IN DIFFERENT
HUMAN CELLS

Furthermore, the glycerol 3 phosphate oxidase (including the trypanosomal
alternative oxidase) the glycerol 3 phosphate dehydrogenase, and some trans-
porters (Gly-3-P DHAP antiporter, 3-phosphoglycerate transporter, glycoso-
mal glucose transporter) are not present in erythrocytes. Thus, they would
also make good targets. Apart from these targets some inhibitors have an
infinite selectivity because the specific inhibition cannot be included into the
erythrocyte model because their specific inhibition kinetics are not available.

C.4 Arachidonic acid pathway in different hu-
man cells

Pathway in PMN

Pathway in EC
Pathway in PMN and EC
Pathway in PLT

Pathway in PMN, EC and PLT
Metabolite

Enzyme

Negative feedback
-—----=>Positive feedback

Supplementary Figure C.10: Structure of the arachidonic acid pathway in
the used models. The models and this Figure have been taken from [Yang
et al., 2008].

As a mathematical description of the arachidonic acid pathway in dif-
ferent human cells, I use the models describing the pathway in endothelial
cells (EC), platelets (PLT), and polymorphonuclear leukocytes (PMN) as de-
scribed in [Yang et al., 2008]. These models have been the result of a seman-
tic model search in the partially curated branch of the BioModels Database
starting from a model of the AA pathway in PMNs [Yang et al., 2007], which
is available from BioModels’ curated branch (number 106).
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C.4. ARACHIDONIC ACID PATHWAY IN DIFFERENT

HUMAN CELLS

Supplementary Table C.4: Relevant data from the literature needed for the
construction of the objective function.

Entity Attribute Value Reference
Bloodvessel  length lem [Yang et al., 2008]
diameter 50pm [Yang et al., 2008]
surface lem - m-25um
= 785398um?
volume lem - - (25um)?
~ 0.02mm3
Endothelials  surface 1000pm? [Jaffe, 1987]
number cells in vessel 785
volume (estimated) 4z (25pm
-10pm - 10pum)
~ 10000pm?
total volume ~ 7850000um3
Platelets concentration 250000% [Flindt, 2006]
number cells in vessel 4908
diameter 2 —3um [Campbell, 1993]
volume (22 um)?
~ 4 — 14pm3
~ Yum?
total volume ~ 44200um3
Neutrophils  concentration 5000 —— [Alberts et al., 2007]
number cells in vessel
diameter 12 — 15um  [Fujibuchi et al., 2007]
volume 900 — 1800m>
~ 1350um?
Eosinophils concentration 200 —1 [Alberts et al., 2007]
number cells in vessel 4
diameter 12 —17um [Young et al., 2006]
volume 900 — 2600um?
~ 1750pum3
Basophils concentration 40—L; [Alberts et al., 2007]
number cells in vessel 1
diameter 10 — 14pm  [Fujibuchi et al., 2007]
volume 520 — 1400um3
~ 960um?
Granulocytes  total volume ~ 140000pm?
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C.4.1 Setting up the objective function

The three seperate models have then been combined using semanticSBML
and additional reactions and rules have been added which compute the in-
tegral of the total amounts of PGE,, LTB4, TXA,, and PGI; using volumes
provided in Table C.4. E.g.

PGEqota1 = 7850000 - PGE, 4 140000 - PGEy
PGEgal(t = 0) = 0.

The models describe the dynamics of the arachidonic acid pathway after a
stimulus has been given. Yang et al. defined the objective that should be ful-
filled after treatment as the reduction of the cumulative production of PGE,
and LTB4 by 90% after an hour. Furthermore, they included the poten-
tial side effect of an imbalance between TXA, and PGI, with the additional
objective of keeping the ratio within 20% of its original value.

In the following I will use a similar objective function, which uses the total
production of the corresponding substances as they probably better reflect
the changes in variables further downstream of the eicosanoid receptors. The
only variable for which this makes a difference is TXA,, whose dynamical
response happens in the first 5 minutes after induction and is therefore not
visible in the transient concentration after one hour. The complete objective
function then reads

v (PG () (B vty

~ \ 567000 4380000 0.00854 - 0.2 ' '
Unfortunately, the model of Yang et al. is highly underdetermined in
terms of the amount of experimental data it is fitted to. In order to be able
to identify effects of the parameter uncertainty, the authors have published
four further parametrisations of the model, which are in agreement with the
experimental data. As the different parametrisations partially change the be-

haviour of the system, individual objective functions have to be constructed
for them:

PGItota 2
XQ _ PGEtotal ? + LTBtotal ? + m —0.813 (C 7)
2 56083646 2577000 0.813-0.2 '
PGItota 2
w2 _ (PCEuw 2+ LTBiogal 2+ Txael —(.0118 ©.8)
3/5 2744580 7419152 0.0118-0.2 '
PGItota 2
v _ ((PCBuwa \", (LTBuww\* , [ axace — %19 ©9)
4 38402516 4566180 5.19 - 0.2 ' ‘
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C.4.2 Results

Supplementary Table C.5: Targets to reduce LTB, production ordered by
the respective effective inhibitor concentrations needed to reduce LTB, to

10%.

Type Target Reaction Concentration

Set 1 Set 2 Set 3 Set 4 Set 5
a CYP4F3 3.85 3.79 2.84 4.56 2.84
a LTA4H degradation 4.25 3.94 6.97 5.34 6.97
n LTA4H 4.93 3.22 6.82 4.96 6.82
c LTA4H 10.2 6.30 7.19 6.55 7.19
u LTA4H 10.6 7.46 284 21.9 284
n PLA2 14.9 37.2 4.64 50.8 4.64
¢ PLA2 15.0 374 4.64 51.2 4.64
a 15-LOX 31.0 129 8.65 7.68 8.65
a 15-LOX expression 33.4 1830 9.19 17.0 9.19
a 5-LOX expression 52.4 251 7.18 17.6 7.18
n 5-LOX 260 264 4.39 12.7 4.39
c 5-LOX 292 275 4.51 13.6 4.51
a LTB4 degradation 2500 274 1560 1560
a COX-2 5978 7170 17900 349 17900
u PLA2 8860 7940 5480 7830 5480
u 5-LOX 15300 53500 344 426 344
a PHGPx 34300 64600 67.1 94.4 67.1
a LTA4 degradation 66000 6690 61400 310000 61400
a 12-LOX 121000 228000
a AA degradation 371000 25500 6800 25500
a LTB4 degradation 27400
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Supplementary Table C.6: Targets to reduce PGE, production ordered by
the respective effective inhibitor concentrations needed to reduce PGE; to
10%.

Type Target Reaction Concentration

Set 1 Set2 Set3 Set4 Setbh
a LTA4H 7.92 6.25 19.9
n PLA2 14.8 4.36 9.80 40.1 9.80
¢ PLA2 4.68
n LTA4H degradation 9.94
¢ LTA4H degradation 12.5
n PGES 50.7 383 1230 11.2 1230
C PGES 50.7 413 1230 12.9 1230
a LTA4 degradation 406
n COX-2 426 25.5 79.3 77.2 79.3
¢ COX-2 547 25.8 90.7 114 90.7
a 15-LOX 2160 31.5 233 73.1 233
a 15-LOX expression 2170 60.8 235 174 235
u PLA2 4660 935 11400 6110 11400
u COX-2 8010 3450 1240 551 1240
a 12-LOX 9940 21500
a PLA2 167000 84600 14200 928 14200
a PHGPx 748 19.1
n TXAS degradation 1460
u LTA4H degradation 2070
n 5-LOX expression 3230
u PGES 7030 195
a AA  degradation 9000
a TXAS 13900

284
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Supplementary Figure C.11: Targets with effects on various variables for the
first parameter set. Red and green ellipses signify the compounds the should
be reduced or increased in their concentration. Red and green rectangles show
which inhibitions or activations lead to the desired effect, where the inhibitors
and activators are also allowed to affect the enzyme levels by changing its
expression or degradation. The figures show from top to bottom the targets
being able to lower (a) LTB,4 or (b) PGE; production to 10% or to (c) increase
or (d) decrease the PGI;/ TXA, ratio by a factor of 2. The network structure
image is again taken from [Yang et al., 2008].
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Objective function for single inhibitions with logarithmic concentrations

~n PLA2

«a 15-LOX
«a PHGPx
+a 12-LOX

Supplementary Figure C.12: Effects of varying inhibitor concentrations on
the objective function. Results show a noncompetitive inhibitor of the phos-
pholipase A2 and non-essential activators of 15- and 12-lipoxygenase and
phospholipid hydroperoxide glutathione peroxidase. These inhibitors can
potentially reduce LTB, and PGE, levels in parallel and could therefore be
potential single drugs.
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Objective function for single inhibitions with logarithmic concentrations

jective function

Value of obj

5
1

0 05 1 15 2 25 3 35

+n TXAS
» n PGI-PGF transformation
+ a TXA-TXB transformation
+a PGIS

«a 12-LOX

Supplementary Figure C.13: Effects of different effective inhibitor concen-
trations on the objective function when he system is in parallel treated using
a non-competitive inhibitor for phospholipase A2 with an effective concen-
tration of 100.
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Chisquare plot Chisquare plot

1 1
a CYP4F3 a CYP4F3

Chisquare plot

n 5 LOX

1
n LTA4H

Supplementary Figure C.14: Nonidentifiabilities between targets reducing
LTB4 production. The plots show the objective function in dependence to
varying concentrations of non-competitive inhibitors of 5-LOX and LTA4H
and a non-essential activator of CYP4F3. In parallel the system is treated
with a non-competitive inhibitor of PGES with an effective concentration
of 10000. The plots show that for every concentration of one of the non-
identifiable drugs there is a range of concentrations of a different inhibitor
compensating for it. In contrast to other examples this simulations are per-
formed using the third parameter set as the non-competitive inhibitor of
5-LOX does not work for the first parametrisation.
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: Nonidentifiabilities between targets increasing
PGI, over TXA, levels. Plots again show the objective function in depen-
dence to varying inhibitor and activator concentrations.
drugs shown on the axes the system is treated with a non-competitive in-
hibitor of PLA, with an effective concentration of 100. The Figure signifies
that PGI, over TXA, level increasers are non-identifiable when applied in
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Supplementary Table C.7: List of solutions provided by the Yang et al. using
the MTOI method. Lines represent clusters of possible solutions, where
the letter y signifies that a drug against this target is used in the solution,
the frequency denotes in how many parametrisations this solution has been
observed, and S denotes the sensitivity of the objective function with respect
to the inhibitor concentrations. The remaining two columns describe the
final solutions provided by Yang et al. and the results in chapter 5. A “b”
denotes here that this is a basis solution provided by the respective author
and “d” denotes that this solution can be derived from basis solutions as it
is a superset of them. The basis solutions of Yang et al. cover 14 of 23 found
solutions, while the basis solutions identified in chapter 5 cover 20 of them.
These basis solutions do not only represent the all found solutions better but
are, in contrast to the solutions provided by Yang et al. , mathematically
motivated and reproducible.

Targets Solutions

PLA2 COX PGES 5-LOX LTA4H | Frequency S MTOI TIde
y y - - - 1 0.0011 - b
y y y - - 1 0.0011 - d
- y y y y 5 0.002 d d
- y y - y 5 0.0021 d d
- - y y y 2 0.0026 d d
y y y y y 5 0.0028 d d
- y y y - 5 0.0033 - d
vy y y - y 5 0.0034 d d
- y - y y 5 0.0036 d d
y y - y y 5 0.0037 d d
y y y y - 5 0.0041 d d
y y - - y 5 0.0042 b d
- y - - y 5 0.0048 b b
y - y y y 1 0.0057 d d
- - y y - 2 0.0061 - b
- - y - y 3 0.0072 b b
y y - y - 5 0.0075 b d
- y - y - 5 0.01 - b
y - y - y 1 0.0123 d d
y - y y - 1 0.0241 - d
y - - y y 1 0.0431 - -
y - - - y 1 0.0569 - -
y - - y - 1 0.0624 - -
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Abstract

Over the last decade the productivity of the pharma industry has been con-
stantly declining. Less and less drugs against new diseases are admitted to
the market each year. This is mainly due to the fact that an increasing num-
ber of drug candidates fail for a lack of in vivo activity or for their toxicity
in clinical trials.

In order to reduce this failure rate, the targets against which new drugs
are developed have to be chosen more carefully. This can be done with the
help of methods from Systems Biology with which the dynamical effects of
hypothetical drugs can be modelled in silico. The combination of mathemat-
ical models with experimental data will improve the target selection and will
make the resulting drugs less likely to fail in clinical trials.

Within this work I have developed a framework for the application of
kinetic models in the drug development process. Furthermore, I have devel-
oped methods and tools that support researchers in pursuing the framework.
This includes methods for the automated retrieval of mathematical models
that describe processes relevant to an investigated disease, methods for the
integration of knowledge stored in these models, and the investigation of the
combined information for potential drug targets.

For the priorisation of drug targets I propose different objectives and
methods. Depending on the diseases, one can either choose to only consider
the efficacy of drugs against potential targets or one can decide to incorpo-
rate information on potential side-effects in the considered or in alternative
models. These objective can then be used in exhaustive searches for op-
timal combinations of hypothetical drugs. Apart from this identification of
optimal treatments, I introduce methods that allow for the discovery of treat-
ment alternatives, which can be useful when drugs against a selected target
are hard or even impossible to create. Furthermore, I discuss methods for
the investigation of synergisms and antagonisms amongst hypothetical drugs.
Knowledge about these drug combination effects can be exploited to create
treatments with fewer side-effects or treatments against which resistances are
less likely to develop.
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In order to prove the relevance of the investigated methods, these are
applied to two example systems, the glycolysis in Trypanosoma brucei, the
pathogen causing the African sleeping sickness, and the arachidonic acid
pathway in different human cells. The obtained results generally agree with
the knowledge available in the literature but extend the understanding of
drug effects on these networks.
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Zusammenfassung

Uber die letzten Jahre ist die Produktivitit der Pharmaindustrie deutlich
zuriick gegangen. Jedes Jahr werden weniger Medikamente zum Markt zuge-
lassen und dies liegt hauptsichlich daran, dass viele Kandidaten aufgrund
von zu geringer Effizienz oder wegen ihrer Toxizitat durch klinische Studien
fallen.

Um diese hohe Ausfallrate zu verringern, sollten die Medikamententar-
gets, die von den Kandidaten angegriffenen Proteine, sorgsamer ausgewahlt
werden. Ein Weg, dies zu bewerkstelligen, fiihrt iiber die mathematische
Modellierung von biologischen Systemen. Uber derartige Modelle von krank-
heitsrelevanten Stoffwechsel-, Signaltransduktions- oder Genregulationsnet-
zwerken ist es moglich den Effekt eines Medikamentes in Computersimulatio-
nen vorherzusagen und so zu wirksamen und sicheren Targets zu gelangen.

In dieser Arbeit habe ich ein Framework fiir die Anwendung von math-
ematischen Modellen in Form von Differentialgleichungen fiir die Medika-
mentenforschung entwickelt. Des Weiteren habe ich Methoden und Software
entwickelt, die Forschern bei der Entwicklung und Auswertung von mathe-
matischen Modellen in diesem Zusammenhang unterstiitzen. Dies umfasst
Methoden zur Suche nach existierenden Modellen von krankheitsrelevanten
Pathways, deren Integration und die Simulation von hypothetischen Medika-
menten in ihnen.

Fir das Auffinden von optimalen Targets in mathematischen Modellen
habe ich unterschiedliche Kriterien und Methoden entwickelt. Innerhalb
meines Frameworks lassen sich hypothetische Medikamente sowohl nach ihrer
Effizienz bewerten, als auch nach moglichen Nebeneffekten im betrachteten
oder anderen mathematischen Modellen. Fiir die Identifikation von Zielen,
die nach diesen Kriterien optimal sind, habe ich verschiedene Methoden en-
twickelt. Wahrend die erste Methode eine erschopfende Suche iiber mégliche
Medikamentenkombinationen durchfiihrt, identifiziert die zweite Methode
Targets, die zu gleichen Effekten fithren und daher Behandlungsalterna-
tiven darstellen. Die dritte Methode untersucht Medikamentkombinationen
auf synergistische oder antagonistische Kombinationswirkungen, da diese zu
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nebenwirkungsarmen Behandlungen oder Behandlungen, gegen die die Re-
sistanzbildung verlangsamt, wird fithren konnen.

Um die Anwendbarkeit meiner Methoden zu demonstrieren, wende ich
sie auf zwei Beispielsysteme an, die Glykolyse im Pathogen Trypanosoma
brucei, dem Erreger der Schlafkrankheit, und den Arachidonsdure Pathway
in menschlichen Zellen. Die erhaltenen Ergebnisse decken sich grofitenteils
mit bekanntem Wissen, sie erlauben jedoch einen detaillierteren Einblick in
die Wirkungsweise von erfolgreichen Behandlungen.
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