
65

5. Applications, Results and Analysis

In this chapter the global view mechanism of CrossTalk is thoroughly analyzed
as it serves as the basis for many cross-layer adaptations and optimizations. The
following subsections furthermore demonstrate that the CrossTalk architecture
provides a framework which can be used to achieve the goals of this thesis as
stated in section 1.2. Additionally, several applications of the CrossTalk
architecture are described and analyzed, to demonstrate how it can be utilized to
increase ad hoc network protocol performance and how to alleviate some of the
issues that arise in such networks and networks in general. The exemplary
applications of our framework also show how the metric generation works in
detail and how the Global View is utilized to change protocol behavior. Also, a
novel application or network service for ad hoc networks is presented, that can
easily be realized using CrossTalk’s unique feature set.

5.1. Load Balancing – Solving Conventional Networking Issues
Using CrossTalk

This chapter is a very good application example of CrossTalk’s Global View
mechanism as it nearly covers all aspects of it [50]. It furthermore covers many
goals of this thesis with the exemplary load balancing application. One of the
goals for example is to find a new way to deal with conventional networking
issues in ad hoc networks. One of these issues, which in nature is not restricted
to ad hoc networks only, is load balancing and this chapter describes a way how
the Global View mechanism can be used to alleviate it. The solution presented
here goes even a step further and also weakens broadcast storms [61], a common
problem found in ad hoc networks causing congestion of the media and resulting
in a high collision probability. Furthermore, this chapter contains a good example
how the metric generator works also complying with the goals of this thesis. In
addition, a way of protocol signaling is introduced as a means of a fallback
mechanism.

5.1.1. Related Work
Load balancing and the reduction of the problems caused by the broadcast storm
problem remain an investigated research area. Balancing the load in ad hoc

665.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

networks is important since nodes with a high load burden deplete their batteries
quickly, thereby increasing the probability of disconnecting or partitioning the
network. Additionally, if the network is more balanced, the spatial reuse of the
spectrum allows for a higher throughput and relieves the center of the network
[56].
One of the earliest pieces of work that addressed load balancing in ad hoc
networks is part of the Associativity-Based Routing (ABR) protocol [57]. But the
load, in their case relay load, is only regarded as a secondary metric inside ABR
and a route’s stability is the primary metric used for route selection. Load
balancing itself is therefore not in detail evaluated but the load as a metric was
identified.
Hassanein and Zhou presented the on-demand Load-Balanced Ad hoc Routing
(LBAR) in [58]. The metric they present is rather coarse grained. The basis of
their metric was termed node activity which is the sum of active paths through a
node and therefore only reflecting the actual load indirectly as the actual load per
path is left unconsidered. Furthermore, the node activities of neighboring nodes
are taken into account called traffic interference. A destination waits for some
predefined time to let multiple route requests arrive and then chooses the most
suitable route according to a cost metric which is simply the sum of all the node
activities and traffic interferences along the respective path. This general
principle applies to most routing protocols presented here. The wait time has
therefore to be chosen carefully and always adds some delay to the route
discovery process.
In [62] the Traffic-Size Aware (TSA) Routing protocol based on the Virtual Path
Routing (VPR) Protocol [63] is presented. For all virtual paths, which essentially
are routes from some source to some destination, a load metric called Entry Load,
based on the size of the traffic in bytes that go through the path is calculated. In
addition the number of packets and the MAC header size are also taken into
account to address the MAC contention overhead. This per path load metric is
calculated by averaging the accumulated values mentioned above over the total
lifetime of the virtual path. The sum of all Entry Loads is called the Local Load
of a node. Furthermore, the Regional Load of some node X is the sum of all Local
Loads of X’s neighbors. Finally, the Total Load as defined in [62] is the sum of a
node’s Local Load and its Regional Load which is the basis of their load balancing
algorithm. To compare different paths the Total Load of all nodes belonging to a
path are summed up yielding the Path Load. Their metric is a little more fine-
grained as other metrics as they take into account the size of the traffic in bytes
and not the number of packets alone but as the metric is based on the average of
an entries lifetime, fluctuations over the lifetime of a virtual path are averaged
out. As an example, a path that is highly loaded at the beginning of its usage and
later on is only lightly loaded will appear heavily loaded and only slowly
decreasing over time. A node could also try to send many packets on its own
behalf to make sure that it does not have to forward packets on behalf of other
nodes. In addition, the question arises whether the accumulated Path Load is a
good metric for load balancing. Longer paths around the edge of the network
might be less loaded but since more nodes are involved in the overall path the
Path Load will appear to be high.
The load balancing extension to VPR itself uses different headers making it none-
compatible with the previous version. In addition, a static parameter is used at

5 Applications, Results and Analysis 67

the source to determine how long a node has to wait for incoming route replies.
This can result in long delays or possibly missing the optimal path depending on
the selected wait time. Interestingly, the performance of TSA is not evaluated
against VPR which is the basis of TSA, which appears strange as the authors are
also the developers of VPR. Instead some other shortest path routing algorithm,
namely Implicit Source Routing (ISR) is used. Therefore, it cannot be said if this
load balancing is more efficient than VPR and to what extend.
Dynamic Load-Aware Routing (DLAR) [66] is another on-demand routing
algorithm designed explicitly for load balancing purposes. The load metric is
simply the amount of packets buffered for a node’s interface. It therefore only
represents the current load without also taking into account the recent load
situation. A path is chosen according to 3 different schemes. One is the path load,
which is the sum of loads on a given path, the average nodal load on a path or the
amount of nodes on a path above a certain load threshold. During the usage of a
route the load metric is constantly recalculated and in case of a threshold
violation a new path is chosen. DLAR’s performance obviously heavily depends
on a good choice of the various thresholds, especially the one that forces a new
route lookup. As not being a cross-layer protocol the load information also
remains inside DLAR and cannot be used for further adaptations as it is the case
for most protocols presented here. In lightly loaded networks the question arises
if a good distinction between routes can be made, as the buffers are emptied
quickly and in general are empty most of the time.
All routing schemes presented so far are all very similar in the way they behave
and the Busy Node Avoidance Routing (BNAR) protocol [67] is no exception. In
fact it is extremely similar to the previously described TSA algorithm. The load
metric calculated, called busy rate, is the sum of the times a node either receives
or sends packets divided by the total observation window time. Again, as with
TSA, the choice of this window is critical as for example there is no weighting
inside this timeframe which could account for recent load changes. The authors
recognize this shortcoming and restrict their scheme to scenarios with long-
lasting routes with continuous traffic. As in many other protocols the sum of the
individual loads along a path is the route selection metric. The destination
chooses the route after some wait time having the drawback already mentioned
before. More interestingly BNAR is extended in cross-layer fashion in [68] by
including the Network Allocation Vector (NAV), employed by the Distributed
Coordination Function (DCF) of the IEEE 802.11 standard into the busy rate
calculation. In other words, their new scheme BNAR_with_NAV combines MAC
layer information with routing layer functionality. The algorithm stays the same
only the busy rate calculation includes the time a node defers channel access due
to the setting of the NAV.
In [69] Wu and Harms describe their Load-Sensitive Routing (LSR) method.
Their load metric is similar to the one of DLAR only that it also accounts for the
amount of packets in the buffers of neighboring nodes. They define a path
comparison function where the path load of a currently used path needs to exceed
the path load of an alternative path by some threshold to be regarded as
preferable. Or, the standard deviation of the path loads must differ by some other
threshold value. These values of these two thresholds are vital for the
functionality of LSR and difficult to pre-asses. One advantage of LSR is that the
destination does not wait to send a route reply back to the source. But LSR sends

685.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

multiple replies back and the source can later switch the route. This paper
indirectly confirms our assumptions about the load metric of DLAR. In low traffic
scenarios LSR does not differ very much from the in principle similar DSR as the
buffer state based metric cannot reflect load well in such scenarios.
Yuan et al. [70] present a scheme where a threshold simply decides whether a
node forwards a route request or not, this way making sure that overloaded
nodes will not have to carry more forwarding load. Obviously, the threshold value
plays here once more a vital role. Therefore, they calculate the average queue
occupancy of each node, which is the average of its own queue level one of its
neighbors. Each node during the route discovery phase adds its average queue
occupancy to the route request before forwarding it. The calculated threshold is
simply the average queue occupancy of the nodes on the backward path including
the current node. The problem with this approach is that a route request is not
guaranteed any more to be successfully delivered.
Basically the same scheme is employed in [71]. Route requests are simply
dropped on the violation of a threshold. One difference is that a predefined upper
and a lower bound on the threshold exist whereas in [70] only a minimum bound
is set. The maximum bound has to be chosen carefully though, as a low bound
prevents a good load balancing efficiency and might actually ender routing
impossible as all route request will be dropped. Also a flag is introduced which
forces nodes to forward a packet which can alleviate the problem of the scheme in
[70]. Their calculation of the load also works on the queue lengths but has some
coarse grained time base and works with different static parameters and
thresholds. Therefore, the whole calculation might not be very accurate
depending on the overall network conditions.
In [72] the above load-balancing technique is combined with a caching
enhancement method to increase the energy efficiency of the overall approach.
Zheng et al. [73] introduce their dynamic load-aware based load-balanced routing
(DLBL) algorithm. Their metric introduces some slightly new aspects as they also
include nodal propagation delay into their load metric but the actual load
calculation is not explicitly addressed. They utilize it but do not state the way
they calculate it. The route reply is used to create multiple routes which includes
the total path load as a sum of individual nodal loads along a path.
The Simple Load-balancing Approach (SLA) [75][76] is a module which according
to the authors works with any existing routing protocol, although it depends on
the availability of periodic Hello messages which have some none-utilized space
in their packet headers. It also represents a cross-layer approach as it utilizes
energy information at the routing layer. The space in the packet header is
initially used to add the nodes number of buffered packets and its remaining
energy. But consecutively, it will be used to include the averages of its neighbors,
this way creating a notion of the network-wide load and energy, sharing some
similarities to CrossTalk’s Global View mechanism of establishing a network-
wide view. Using the buffered packets metric has the obvious disadvantages as
stated before which can potentially also have a negative impact on their
calculation of the network-wide view, which itself, in addition, has no time base.
The paper defines three possible load metrics of which two also account for the
remaining energy level. The first one is simply the ratio between a node’s load
and the network-wide load. The second metric is the ratio between a node’s load
to power ratio and the network-wide load to power ratio. The last metric is the

5 Applications, Results and Analysis 69

ratio between the energy left after all network-wide packets have been send to
the energy left after all packets transmitted by the local node are dispatched
successfully. The energy-based metrics clearly are a tradeoff between pure load
balancing and the extension of the overall network lifetime.
The algorithm itself is two-staged, operating between two predefined thresholds.
Crossing the lower load threshold SLA enters a passive load balancing state
where all incoming route requests are dropped. Here it becomes obvious that SLA
is designed for only on-demand protocols. Dropping route requests has been
discussed before. After the second threshold has been violated SLA sends out
packets to force a route discovery process circumventing the overloaded node
which requires more substantial changes to the routing protocol or fundamental
routing capabilities inside of SLA.
Zhou et al. designed [21] a cross-layer framework (CRDF) specifically for route
discovery. It consists of two parts which are the priority-based route discovery
strategy (PRDS) [82] and the virtual device information manager (VDIM). The
overall goal is to reduce redundant broadcasts and to solve the next hop racing
problem at the same time. The VDIM is responsible to manage cross-layer
information from all layers and devices and provides an API to access that
information. This information is utilized by PRDS, which uses it for routing
strategy automation (RoSAuto). RoSAuto lets a source node choose the general
routing strategy, such as least delay, which is further refined by nodes on a path.
PRDS works in a way that it uses some priority index to determine whether it is
a “good” or a “bad” candidate for a route which can be derived from the
information provided by the VDIM. Load is only one possible metric, therefore no
actual load calculation is described but the priority index calculated is
normalized to lie in the interval [0,1]. According to the priority index the
forwarding of an incoming route request is delayed. In addition route requests
are dropped after receiving the same route request more than n times, where n is
a fixed threshold, to solve the rebroadcast redundancy problem.
In [83] the issue of shortest path routing and the core of the network is analyzed
and the authors therefore propose a center-relieving forwarding scheme which
essentially is a load balancing scheme. As shortest path routing only utilizes the
distance towards the destination as a route selection metric they introduce a
secondary metric which is the distance to the center of the network. This way the
distance towards the destination is reduced in each step but at the same time the
distance to the center of the network is maximized. The obvious problem with
this approach that it will need to utilize some positioning system or be rather
coarse grained on a distance metric based on hops. In addition, a notion of the
core of the network is needed as every node needs to know how far the center is
away. The actual determination of the core and the distance measurements are
not described in detail.
There exists also some remotely related work which is only mentioned for
completeness without going into detail. There are some special solutions to load
balancing in ad hoc networks using node clusters with the goal to distribute the
load evenly [64][65]. These solutions differ significantly with our own solution
and no applicable load metrics are presented therein. Also multi-path routing
solutions are not presented here in detail, as they are not directly related to our
work and represent a very special solution to the problem. But, as the load is
distributed over many paths in these approaches, they theoretically can achieve

705.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

load balancing to some extend although route coupling can render such an
approach only marginally useful [78]. Even worse, Ganjali and Keshavarzian [79]
show by analysis and simulation, that multi-path routing in ad hoc networks
does not achieve any significant gain in load balancing compared to single path
routing for a realistic number of paths. One multi-path approach is worth
mentioning though as it uses the packet delay based metric for load balancing.
Another approach [74] is based on the ability to have Internet connections over
cellular technology and therefore represents no pure ad hoc network solution.
The focus is on load balancing towards gateway nodes. The load balancing
approach found in [77] works only in ad hoc networks with directional antennas.
In [80] some load metric in conjunction with an obscure maximum throughput
value and some arbitrary coefficients are presented in a very vague way which
also includes the actual routing process. Therefore the details are omitted here.
In the load-balancing experiments carried out AODV was used as basis for our
load balancing scheme. It has to be noted that we strongly believe that other
routing schemes are as suitable for load balancing adaptations using CrossTalk.
Nevertheless, there are very good reasons for the choice of AODV. On the one
hand some cross-layer architectures such as MobileMAN make certain
assumptions about the suitability of protocols. They strongly suggest the use of
proactive routing protocols as they maintain routing state actively which is in
consequence available at all times. Therefore, AODV serves very well as an
exemplary case that the CrossTalk architecture does not make such assumptions
per se. Furthermore, AODV is a very well analyzed and a well advanced routing
protocol that is even one of only a very few protocols in discussion for
standardization by the IETF. Many papers are based on AODV and many
comparative studies exist, making it a highly suitable protocol base to
incorporate adaptations as AODV itself was shown to be a well performing
protocol already.
AODV’s general operating mode is quite simple and is described only very briefly
here. For a comprehensive functional description please refer to [60] and [84].
Whenever an application wants to send a packet and the destination is unknown,
AODV issues a route request. What this translates to is flooding the network to
find the destination node. When the destination node or, depending on the
implementation, an intermediate node that has the destination in its route cache
is reached a route reply message is send back to the origin of the route request.
As the route request message is used to set-up the reverse route, the reply can
follow this path without having to flood the network again. Once the reply
reaches the source node, the transfer of the data packets begins. After the route
is not actively used any more for a certain time the route is purged from the route
caches on the nodes along the route instead of maintaining it proactively.
AODV comprises a neighborhood maintenance and detection mechanism based
on periodic beacons called Hello messages. Hello messages are one hop
broadcast messages that notify surrounding nodes of another node’s presence. An
absence of some consecutive Hello messages, after at least once being received
indicates the departure of a former neighbor node.

5 Applications, Results and Analysis 71

5.1.2. Metric Generation and the Load Balancing Extension to
AODV

As already mentioned the protocols that run inside the CrossTalk framework
should not be completely redesigned. The general principle of the protocol should
remain intact, i.e. should remain basically the same as in the purely layered
version of the protocol. Minor changes to the protocols should suffice, keeping the
design effort and the complexity low. The load balancing enhanced AODV is a
very good example for this. To create a load balanced AODV variant using the
Global View mechanism, two enabling mechanisms have to be implemented:

• A metric has to be derived that reflects the current load of a node.

• AODV has to be changed slightly to make use of the information provided
by the Global View in comparison with the Local View, i.e. its relative
state.

Let’s first look at the generation of the load metric. Many different ways have
been proposed to actually calculate the nodal load as presented in the related
work section. We do not simply adopt any of the calculations presented for
several reasons. Many metrics are based on a simple time window which we
believe is hard to choose. If it is to small, bursty traffic patterns might not be
evaluated correctly, as a load burst my be undetected or dominate the load metric.
On the other hand if it is chosen too large then longer term changes are not
accounted for in a reasonably timely manner. If a node for example stops
transmitting packets all together then this should be reflected in a load metric
timely as it clearly has capacity to route data traffic. We also do not choose the
packet buffer fill degree due to the drawbacks described in the previous chapter.
For our proposed metric of a node’s local load, the number of packets sent by a
node on behalf of other nodes during a relatively small time frame or slot t is
used as a basis. We do not include our own packets to provide a degree of fairness
and to enforce cooperation to some extend. If a node’s own packets would be
accounted for it could simply transmit many packets generated by its own
applications and be rewarded by not having to forward packets on behalf of other
nodes. This is an aspect that has so far not been regarded. Since ad hoc networks
rely on the concept of cooperation every node has to perform tasks on behalf of
others and should behave selfishly, which also applies to the consummation of
resources such as bandwidth. A protocol should not be able to be exploited easily
by such nodes, i.e. rewarding selfish nodes. As simple metrics can drive protocol
behavior, giving indirect control over these metrics at application level to a user
will certainly be exploited.
As already mentioned choosing a fixed timeframe might turn out to be critical.
Therefore, we chose a method to make the choice of the actual time window less
critical. When choosing the duration of a time window too small, as already
mentioned then strong fluctuations that occur during one observed time period
will make the load metric very unstable. To eliminate such fluctuations, we use n
of the previously mentioned time slots to calculate the actual load over a time
period of n * t. The choice of t should be made reasonable which is not very
difficult. For example the Hello message interval of AODV can be used as a

725.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

basis together with a small multiplication factor f. The choice of n can also be
derived from certain metrics used in the routing protocol. When a route expires
for example a new route request needs to be issued and the route is likely not in
active use any more by the previous application. Therefore, n should be chosen to
have a total window size which is at least bigger than the route expiration time.
This way short period bursty traffic will be accounted for over the lifetime of the
route. To account for long term, rather constant changes in the load during that
period, we calculate the weighted moving average of all slots, except the current
slot, with a weight being equal to the slot number as shown in Fig. 5.1. The
formula for this calculation looks like this:

∑

∑
−=

=

−=

== 1

1

1

1
ni

i
i

ni

i
ii

w

sw
l ,

whereas l is our load metric, n denotes the number of slots used and s is the slot
value. The weight w in the experiments was simply set to i but other functions
are imaginable.
Using the above formula, the recent past will have a higher weight and will
therefore influence the load metric in a stronger way. In other words, if a node
stops forwarding packets for example, i.e. no active routes go through this node
any more, this will be reflected in the load metric faster as opposed to only use a
simple time window. Also if the load increases at a node this will be reflected in a
timely manner with the past load’s influence fading out over time. Breaking up
the time window and using the function above, the actual choice of t and n
become far less critical. Also there are some good indicators for the two values
making the choice easy, which has not been addressed in this way so far.

Time

Slot time

Number
of packets
handled

Current Slot

1 2 3 4 nn-3 n-2 n-1

Fig. 5.1 Load metric calculation

The actual calculation of the load metric is done inside the metric generator who
only needs to be informed by the routing protocol (or potentially the MAC layer)
that a packet was sent.
Having a local load metric to disseminate the only thing left to do is to change
AODV’s algorithm slightly by making use of the global load information. Many
approaches work at the destination of a route request as presented in the
previous section. The destination waits for all route requests that arrive during a
certain wait time and selects the most appropriate path. With our approach we

5 Applications, Results and Analysis 73

do not need to wait since a node already locally can do estimations about its
suitability during the route detection phase. The advantage is that the delay can
be reduced in comparison to these approaches and at the same time the
likelihood for having found the optimal route is increased since when utilizing a
wait time it might be chosen too small. In other words there is no route selection
algorithm necessary.
Having a global view enables us to influence the route request phase of AODV, i.e.
the route discovery. Dropping route request packets through overloaded nodes
being the only mechanism to do load balancing as proposed by some approaches
has the clear drawback that route requests are not guaranteed to reach the
destination any more. Also having a fixed threshold has the disadvantage that it
is very coarse grained and beyond the threshold no distinction between nodes is
done any more. The advantage on the other hand is that the rebroadcast
redundancy is implicitly reduced as well as the broadcast storm problem since
fewer broadcast packets are sent.
Preferably, a load balancing scheme differentiates overloaded nodes according to
their overload degree but at the same time makes sure that nodes that are
overloaded beyond a certain point drop route request to make sure that no more
routes will go through them. This also has a QoS aspect as such an upper bound
guarantees that a route circumvents such hot spots. But it is very important that
this upper bound is not a fixed threshold but is dependant on the current load
situation in the network.
Therefore, our load balancing algorithm is a three-phase mechanism as
illustrated in Fig. 5.2 and works as follows:
Whenever an AODV route request reaches a node, it calculates the global view
and compares its own local load against it, i.e. it evaluates its relative load state.
This comparison yields as a result if and to what extend the node is overloaded. If
the node is not overloaded compared to the calculated global view, it resumes
“normal” operation in terms of AODV. In this case the shortest path objective of
AODV is pursued.
When the node finds itself overloaded, it calculates the overload degree, that is
the ratio of the own local load and the global view of the load. From the point of
being overloaded, which translates to an overload degree > 1, up to a predefined
relative threshold, the delay bound, the node will hold back the route request for
a certain amount of time before forwarding it. This threshold is relative as it
represents a specific overload degree and is therefore dynamic. In other words,
the higher the network load is, the higher the absolute load value the delay
bound represents. This forwarding delay grows proportionally with the overload
degree up to the delay bound, where the delay reaches its maximum. By delaying
the route request, the probability increases that an alternative route (through
other nodes) will be established circumventing the overloaded area, which is
likely to be the core of the network as already mentioned. This way the following
data packets will not have to be forwarded by the overloaded node, which would
have even further increased the load and at the same time increased the collision
probability with other packets in the overloaded area. Using this mechanism,
newly formed routes and the subsequent data traffic are being pushed towards
the edge of the network. With the delay being proportional to the overload degree,
a route will be established balanced between being short in terms of the hop
count and carrying mild load.

745.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

Once its delay bound is reached, a node holds back packets with a maximum
delay d. Even if the load is beyond the delay bound, packets will not be delayed
longer than d.

overload degree

max. drop rate

max.
delay

1
0/0

dmax/0

dmax/
rmax

d = delay
r = drop rate

drop zone

delay zone

Fig. 5.2 The load balancing algorithm

The second phase of the algorithm covers the load reduction functionality. When
a node has an overload degree beyond the delay bound, it starts dropping route
requests with a certain probability. If it is not dropped the forwarding of the
route request is delayed by the maximum delay d. The drop rate also grows
proportionally with the overload degree up to another relative threshold, the drop
bound. Reaching the drop bound the drop probability or drop rate reaches a
predefined maximum value.

Increasing
load

Fig. 5.3 Bottleneck node between network partitions

Beyond the drop bound the algorithm is in its third phase. A node that is
overloaded heavily enough to be in this phase will drop route requests at the
maximum drop rate or delay it by d. By dropping route requests, these heavily
overloaded nodes make sure that the path towards the requested destination will
not lead through highly overloaded nodes as already mentioned. Additionally, the
broadcast storm problem in highly overloaded zones is reduced. The maximum
drop rate should never reach 100% though since an extremely overloaded node
might be so for the simple reason that it is the only node connecting parts of a
network as depicted in Fig. 5.3. Since it does not accept every route request, the

5 Applications, Results and Analysis 75

node would keep up a certain path quality for existing paths through it, by
limiting the amount of paths that lead through it.

Increasing
load

Fig. 5.4 The network core problem

The load balancing example is also a good showcase for the usefulness of the
protocol signaling mechanism as described in section 4.4. Consider the node in
the center of the exemplary network presented in Fig. 5.4. It is clearly overloaded
as can be expected using a simple shortest path routing algorithm. The figure
also displays that the neighboring nodes are also overloaded. Let us assume that
all these nodes are operating beyond the drop bound, i.e. they reject most of the
route request. The center node would therefore have many difficulties to
establish routes successfully. It could determine by querying its Global View that
it is in this unfortunate position under the assumption that the Global View of its
neighboring nodes is virtually the same. Therefore, it could use the signaling
mechanism described earlier to be able to successfully establish routes.
What is important to note is also that the changes to standard AODV do not
influence the interoperability with our scheme. As the headers are not changed
and the general algorithm is not altered in its core functionality nodes running
the standard AODV will be able to communicate with nodes running our cross-
layer enhanced ADOV. When mixing different versions of AODV the overall load
balancing properties will deteriorate though.

5.1.3. Experimental Setup
All experiments [53] to evaluate the Global View mechanism were carried out
using the ns-2 network simulator [59]. Due to its non-conformance with the
Internet draft, the standard AODV implementation was replaced by the
implementation of the Uppsala University (AODV-UU) [85]. Every simulation
run carried out was running for 600 simulated seconds. To isolate the effects of
various parameters such as network size, network density, mobility and more on
the Global View mechanism and our AODV reference application, we keep all
simulation parameters fixed except the one we want to evaluate. The standard or

765.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

base simulation network was a static, 200 node network on a 2000x2000 meter
square plain. Each node has a transmission range of 250 meters. The nodes were
placed randomly onto the plain, each running a traffic pattern agent that
searches for a new destination every 10 seconds and sends one packet per second
afterwards. On the basis of this configuration one parameter was changed for our
simulations. For the reference application, the delay bound was chosen to be 1.8
and the drop bound 2.5 using a maximum delay of 100ms and a maximum drop
rate of 67%. For every data point in the following graphs, 20 simulation runs
were averaged to compensate for marginal phenomena.
For our experimental evaluation, we added some thresholds for the calculation of
the global view as a security measure. Whenever the Global View component
contains an insufficient number of samples, our CrossTalk architecture would not
calculate a network-wide average on request forcing “normal” mode. This way the
generation of a highly incorrect network-wide view is prevented. Also the
composition of the samples was evaluated. If more than two-thirds of the samples
were from direct physical neighbors, the cross-layer entity would not calculate a
global view for that metric preventing cross-layer operation, either.
When a node joins the network, we added an initialization procedure to bootstrap
the node’s Local View as mentioned in section 4.4. The joining node would
broadcast the initialization request to its neighbors. The neighbors reply with a
message containing their global view, which in turn is used at the newly joined
node to fill the first slot of the load calculation algorithm. This way a node
directly disseminates relatively correct load information which is adjusted over
time by its own observations. In these experiments we also exploit the fact that
AODV is sending periodic Hello messages. Instead of only using this kind of
message to distribute our own local information, we also enrich Hello messages
alternatingly with information of our one hop neighbors. This way, we use the
one-hop broadcast Hello to disseminate recent and close-by information more
effectively. In later experiments we do not do this any more to have a comparison
if such diversification mechanisms are useful. During our follow-up experiments
we found out that there is no significant gain.
We identified several parameters to test in our experiments. Since the global
view’s correctness is based on the amount, quality and diversity of the samples,
the network structure has to be considered, as it has an impact on it. For this
purpose, we evaluated the parameter network density. The denser a network is
the more recipients a single message has which can have an impact on the global
view. We also varied the network size in terms of participating nodes. The more
nodes participate, the longer paths become and border effects might influence the
global view differently. Another parameter that has to be considered is node
mobility. In our case that is mobility according to the random waypoint mobility
model. Mobile nodes can potentially help disseminating the local view data more
efficiently. Finally, as a network structure parameter the aspect ratio of the
topology geometry was varied over a broad range, which in our experiments is
the ratio of the topology’s geographical width and height. A narrow topology with
longer path lengths might have an advantage concerning the correctness of the
global view, since along a long stretched path in a narrow topology many nodes
receive the same disseminated data.
Since we do not generate any messages, the Global View mechanism is also
dependant on the traffic pattern and on the load. Therefore, we tested our

5 Applications, Results and Analysis 77

CrossTalk architecture under different load scenarios. The traffic pattern we
apply distinguishes between local and distant communication. Within a certain
radius (in hops), a node considers the communication local, whereas beyond that
radius the traffic is considered distant traffic. In our simulations, we evaluate
different ratios of local and distant traffic. Finally, we analyzed the global view
under churn conditions for the simple reason that the global view will become
more accurate over time since it most probably aggregated more samples. With
churn, there are constantly nodes joining the network with an empty global view
influencing the correctness of the local evaluation process.
The experiments described in this chapter made no assumptions about memory
limitations on the devices. Therefore, the stateful dissemination approach was
not applied. The analysis of memory requirements and communication overhead
can be found in chapter 5.4.

Table 5.1 Load balancing experiment parameters

Simulation
parameter Parameter range

Network density 50 – 100 nodes/km²

Network size 50 – 400 nodes

Mobility 1.4m/s

Topology aspect ratio 1:1 – 1:9

Traffic generation 0.5 – 2 pkts/s

Traffic pattern 25% - 100% within 3 hops

Churn each node fails every 60 – 250s

5.1.4. Experimental Results
The results we were aiming at were twofold. First, the correctness of the global
view provided by CrossTalk has to be analyzed. All protocols that make decisions
on the global view data rely on a certain degree of correctness. Due to the
dynamic nature of the metric itself, the network and the dissemination process
the global view, as already mentioned can never be 100% correct, but a
correctness degree within certain bounds is essential. Furthermore, for some
application is might also be very important that the global view is not only
relatively correct locally but also uniform within certain bounds across all nodes.
In other words, it might be important that all nodes have virtually the same
global view. Therefore, before showing the results of our AODV reference
application of CrossTalk, we present an analysis of the quality of the Global View
mechanism. We show the quality of the global view using three different metrics
which have been analyzed for all the scenarios described above. The first metric
to show the global view’s accuracy is the average value of all global views in the
network, i.e. the average of all global views locally calculated at a node. This

785.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

value is compared with the average value of all local views in the network.
Ideally the two values should match. Of course, the average alone does not reflect
the quality of the global view accurately enough. The second metric reflects the
global view’s uniformity across nodes, which is the standard deviation of the
global view at each node in the network. This value is compared against the
standard deviation of the local view at each node in the network as a measure of
the uniformity of the data samples collected by the Global View. Ideally, the
global views’ standard deviation is zero, independently from the local views’
standard deviation.
The third metric we termed correctness. We calculate the average local view
artificially representing a perfect Global View and then compare the local view of
each individual node against it. If this comparison and the comparison of local
and global view at each node yield the same result (overloaded vs. not
overloaded), the node evaluates its status correctly, and otherwise it fails to do so.
The correctness is the percentage of nodes in the network that evaluate their
status correctly.

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600

time [s]

lo
ad

Average local view

Simple mean global view

Time weighted, linear global view

Fig. 5.5 Comparison of the average global and local view over 600 simulated seconds in

a typical mobile scenario

Let us look at the load metric behavior over a simulation run, i.e. over 600
simulated seconds as illustrated in Fig. 5.5. The figure depicts the average local
load metric in comparison of the average global view produced by the network
nodes for two selected global view algorithms in a mobile network. The reason
why only two global view algorithms are shown is the similarity of the resulting
average global views.
At the beginning of the simulation all nodes start out having no state at all.
When the traffic generators start to create their data, all the network nodes issue
route requests congesting the network. This can be seen by the steep increase in
the network load. Over some time nodes will be able to establish routes without
having to query the network as some routes are already present and in use. As a

5 Applications, Results and Analysis 79

consequence the load is dropping to some relatively stable level. The key
statement of Fig. 5.5 is that the Global View mechanism of CrossTalk can adapt
to such sudden increases in the network load extremely well. The average
network-wide view is at all times very close to the average local view across all
nodes, i.e. the theoretically perfect global view, nearly independent of the actual
algorithm to compute it. When the network load slowly levels in over time the
global view adapts virtually synchronously. The time based weighting algorithms
of CrossTalk perform slightly better as they account for the increase by putting
more weight on recent data samples. In all other tested scenarios CrossTalk’s
behavior is very similar and for reasons of clarity these additional graphs are
omitted here. In reality, a network will most likely not bootstrap in such an
extreme way. The network would gradually evolve and nodes would not come up
all at the same time. But this simulation can be seen as a worst case scenario and
shows very well that the Global View very early is able to produce a high quality
network-wide and that sudden increases of the metric in question do not affect its
quality.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600
time [s]

lo
ad

Average local view

Simple mean global view

Distance weighted, linear global view

Time weighted, linear global view

Time weighted, exponential global

Fig. 5.6 Behavior of the global view with a sudden metric decrease

Another issue is the sudden decrease of an optimization metric due to a sudden
decrease of the respective network parameter. The question is if the Global View
is able to reflect those very well. We therefore evaluated the reactivity to extreme
drops in traffic. We let the traffic generator run at each node for the first 100
seconds of a simulation run and then reduced the packet rate by a factor of 5 and
the lookup rate for new destinations by a factor of 2. The results are displayed in
Fig. 5.6 clearly showing the ability to react to extreme metric changes. Again, we
left out some global view calculation algorithms for the sake of clarity due to the
very similar results. The sudden load drop is again reflected the most accurately
by the time-base weighted moving average slightly out performing the other
algorithms. The graph shows how extreme the change in the load of the network
is, still the global views timely reflect the change. Although such a scenario
might appear unlikely in the real world, this can again be seen as a worst case

805.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

scenario. If the Global View mechanism can compensate such sudden, network-
wide and extreme changes, minor fluctuation will surely be compensated without
difficulties.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
packets/s

st
an

da
rd

 d
ev

ia
tio

n

simple average
distance weighted, triangular
distance weighted, linear, no neighbors
time weighted, linear
time weighted, exponential

Fig. 5.7 Global view standard deviations in different load scenarios

Let us now focus on the three core metrics for the quality of the global view as
described before. We will now stop focusing on the behavior of the global view
over time but rather concentrate on a range of different network parameters.
Having seen that the averages of the global views are very close to the actual
average of the local views, we now need to analyze the uniformity of the global
views found in the network. As a measure, as described before, we use the
standard deviation. In Fig. 5.7 the standard deviations of selected global view
algorithms are shown, one for each weighting category. As can be seen, in terms
of uniformity the simple average outperforms all other algorithms. Before going
into more detail some extra information has to be presented to actually give some
significance to the data presented. The standard deviation of the local views,
which is a measure of the uniformity or vice versa for the degree of discrepancy of
the data samples, has to be compared against the standard deviations found in
Fig. 5.7. This standard deviation of the local views ranges from 15 to 30
increasing over the observed load. That the standard deviation increases makes
sense of course as the absolute amount of traffic increases. But also the core of
the network will non-proportionally attract far more load than the border nodes
of the network as the overall traffic increases which leads to an even stronger
load imbalance. As can be seen in Fig. 5.7, CrossTalk’s Global View mechanism
can very effectively create a uniform network-wide view across all nodes.
Although the simple average global view calculation outperforms the other
approaches by up to a factor of three, the absolute difference is only marginal.
The distance based algorithms expose the biggest standard deviation as the load
in the network highly depends on the topological locality. The time based
algorithms perform a little better but as the likelihood of having more up-to-date
information from close-by nodes is relatively high, therefore having a stronger

5 Applications, Results and Analysis 81

impact on the global view. Again, for all tested network parameters the results
are similar; therefore these graphs do not contain any additional information and
are omitted here, which is also true for the following graphs.

86

88

90

92

94

96

98

100

0 100 200 300 400 500 600

time [s]

co
rr

ec
tn

es
s

[%
]

simple average

distance weighted,
triangular
distance weighted, linear

time weighted, linear

Fig. 5.8 Global view correctness in scenarios with high churn rates

We have analyzed so far the uniformity and the accuracy of the average global
view. The last metric to reflect the quality of the global view creation is our
correctness metric. In Fig. 5.8 the correctness of various selected global
algorithms over the duration of a simulation run is presented. Especially in
churn scenarios the global view can severely suffer as nodes constantly join the
network having no state at all. We believe that we evaluated severe churn rates
with a node having a lifetime between only 60 and 250 seconds with a failing
probability uniformly distributed over the remaining 190 seconds once a node
existed for a minute. At the beginning of the simulation the correctness is slightly
below 90% due to the fact that all nodes just start to build up global knowledge
and the steep increase in network load. Here the time based algorithms work the
best as they account for the rapid changes the most. Very quickly the correctness
degree grows to up to 98% reflecting a highly correct global view inside the
network. Even the subsequent node failures and joins do not significantly impact
the correctness degree over time, partially due to our initialization procedure.
Fig. 5.9 illustrates the global view correctness over a broad range of network
sizes. Here again the simple average outperforms the other algorithms with all
algorithms being well above 90% correct for all tested network sizes. The main
advantage of this algorithm though can be seen in small networks. With
increasing network size, the distance based algorithms gain. The reason is that a
distance based algorithm such as the triangular weighted moving average
stronger accounts for the network core. In small networks the ratio between
border nodes to core nodes is much bigger than in larger networks. That means
that with increasing network size, the local values of core nodes influence the
network-wide average stronger and stronger therefore increasing the accuracy of
the distance based algorithms.

825.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

With the analysis so far, we could show that the global view produced locally at a
node is of very high quality reflecting the actual network-wide situation very
precise in all tested scenarios. Having carried out the global view analysis, we
can base our load balancing scheme as described above on the data provided by
CrossTalk with quite some confidence. We tested the AODV load balancing
extension in all the scenarios described in section 5.1.3.

94

95

96

97

98

99

100

50 100 150 200 250 300 350 400

network size [number of nodes]

co
rr

ec
tn

es
s

[%
]

simple average

distance weighted, triangular

distance weighted, linear

time weighted, linear

time weighted, exponential

b

Fig. 5.9 Global view correctness in networks of different sizes

The performance of our scheme was compared against the purely layered AODV.
The performance itself was measured according to multiple metrics. The average
number of messages sent per node during a simulation run reflects whether there
is an actual load reduction effect in the network or not. This metric shows how
well our algorithm protects severely overloaded nodes and at the same time
reduces the packet collision and retransmission problem by circumventing
congested areas. The on average most overloaded node reflects the reduction of
the bottlenecks within the network. The hot spot nodes, i.e. those nodes that are
loaded the most in a network will have a poor performance for their own data
traffic and also, as they are burdened the most, will deplete their batteries
quickly from which point on other surrounding nodes will follow and the network
starts to break apart. By relieving these nodes the network lifetime is also
increased. The coefficient of variance, which is the ratio of the standard deviation
to the mean multiplied by 100, shows the actual load balancing effect amongst
nodes when applied to the average number of packets send per node. It is a
measure for how well our algorithm is able to push data traffic towards the edge
of the network. Additionally, we measured the average delay per hop, which is
influenced by both effects (load reduction and load balancing) since both reduce
the likelihood of collisions. Also, since we delay the route request it might happen
that the route request itself takes longer than in standard AODV. Therefore, in
our delay metric, we include delay caused by the route discovery process to have
a fair comparison. Since we drop packets, there is the potential problem that our

5 Applications, Results and Analysis 83

packet delivery ratio (PDR) declines as routes might not be established and
packets get dropped. Also our paths might become longer and the collision and
interference probability increases. Therefore, we also monitored the PDR. To
calculate the global view we followed the KISS (Keep It Simple, Stupid) principle
and applied the simple average algorithm, which performed very well as shown
before.

7000

7500

8000

8500

9000

9500

10000

10500

11000

0 0.5 1 1.5 2 2.5

load [packets/s]

nu
m

be
r o

f p
ac

ke
ts

cross-layer AODV
standard AODV

Fig. 5.10 Load reduction – Average number of packets send per node in differently

loaded networks

Let us first consider the load reduction effect. Fig. 5.10 shows the degree of load
reduction of cross-layer AODV by comparing its average number of packets sent
per node against standard AODV’s. The measurements displayed in this figure
were taken from simulation scenarios of different amount of load as created by
the traffic generator. As can be seen, as the load increases the load reduction
effect grows. This is due to the reason that the load concentration problem in the
core of the network also grows and more nodes will operate in phase three of the
algorithm causing more nodes to disregard route requests. In this particular case
as displayed in Fig. 5.10 we only have an average saving of up to 5%. The
maximum saved amount was 15% for the topology geometry scenarios discussed
later on. This shows that, although not the primary goal of the load balancing
algorithm, our cross-layer AODV reference application is able to reduce the load.
In Fig. 5.11 the improvements of the per hop delay is presented, which is the
time from a data packet being received at one hop till it is received at the next
hop. As already mentioned the delay incurred by the route discovery phase is
accounted for. This is done by including the time the data packet remains in the
send buffer of the source while the route request phase establishes a path to the
destination. In almost all tested scenarios the delay performance of our cross-
layer approach was better than with the standard, layered approach, the only
exception being highly dense networks (however, there was still a significant load
balancing effect). The maximum delay improvement achieved in the tested

845.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

scenario parameter configurations measured was 65%. The figure shows the per
hop link delays in networks of different topology geometry aspect ratios. An
aspect ratio of 9 would translate to a network that occupies a plane which is
rectangular that is 9 times as long as it is high. The reason why the per hop delay
is dropping with an increasing topology aspect ratio can be explained by the fact
that routes are on average obviously longer and therefore the route discovery
delay does not that much influence the overall per hop delay. Additionally, the
network gets a little less dense as the network borders become dominating
resulting in less collision and congestion since the network core is thinned out. As
can be seen, although the route request can potentially add delay at the route
discovery phase the load balancing properties of our modified AODV influences
the delay performance positively. This in principle reflects two things. One the
one hand it shows that the delay potentially added by overloaded nodes during
the route discovery phase does not influence the overall delay gain, as nodes on
the routes that will eventually be utilized for the data traffic did not add any
delay since they are not overloaded. In addition to that, it shows that the paths
established by our cross-layer enhanced AODV are actually less loaded then
standard AODV’s paths where packets stay longer in nodes’ send buffers, this
way increasing the delay.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9

topology geometry ratio

de
la

y
[s

]

cross-layer AODV
standard AODV

Fig. 5.11 Average per hop link delay in networks with different topology aspect ratios

One of the biggest problems of simple shortest path routing in ad hoc networks is
that the core of the network is loaded extremely high. Some bottleneck nodes will
carry a significantly higher load burden than any other nodes in the network.
With our load-balancing enhanced AODV these hot spots experience a load relief
as depicted in Fig. 5.12. The graph shows the load burden in number of packets
sent during a simulation run in differently dense networks ranging from 50 to
150 nodes per km². As the figure shows the hot spot load reduction seems to be
independent of the network density. In this particular scenario the reduction at

5 Applications, Results and Analysis 85

the most overloaded node goes up to 25%. This load relief effect at highly
overloaded nodes was observed in all tested scenarios.

9000

11000

13000

15000

17000

19000

21000

23000

40 60 80 100 120 140 160

density [nodes/km²]

nu
m

be
r o

f p
ac

ke
ts cross-layer AODV

standard AODV

Fig. 5.12 Hotspot relief – Maximum packets sent per node in networks of different

density

10

15

20

25

30

35

0 20 40 60 80 100 120

local traffic ratio [%]

co
ef

fic
ie

nt
 o

f v
ar

ia
nc

e

cross-layer AODV
standard AODV

Fig. 5.13 Network wide load balancing effect expressed as the coefficient of variance of

the individual nodal loads in scenarios with different traffic patterns (3 hop local)

The last performance metric for the evaluation of our load balancing reference
application is the coefficient of variance of the average packets sent per node
during a simulation run. This metric reflects the network wide load balancing
effect, whereas the previous figure only had a focus on the worst network

865.1 Load Balancing – Solving Conventional Networking Issues Using CrossTalk

bottleneck. We can not use the simpler standard deviation here, since the cross-
layer AODV algorithm sends out fewer packets per node, which makes a direct
comparison of the standard deviations impossible. In Fig. 5.13 the coefficient of
variance is show dependent on the local traffic ratio. A local traffic ratio of 20%
would simply mean that 20% of the packets a node sends are destined for nodes 3
hops or less away. In the tested scenarios the coefficient is up to 20% smaller
using our cross-layer approach and can be observed in all scenarios.

62

64

66

68

70

72

74

76

0 2 4 6 8 10

topology geometry ratio

PD
R

 [%
]

cross-layer AODV
standard AODV

Fig. 5.14 PDR comparison in networks with different topology aspect ratios

In our tested mobility scenario our cross-layer architecture performed the worst
in terms of load balancing compared to standard AODV. This is due to the fact
that with total random mobility as generated by the random waypoint mobility
model load balancing comes as a side effect since nodes traverse differently
loaded areas constantly. Still, our algorithm achieves a coefficient of variance of
7.92 compared to 8.61 with the layered architecture and an average maximum
load of 8941.5 compared to 9564.55 both improvements of slightly less than 10%.
In this respect, the random waypoint mobility model can be seen as a worst case
scenario for our load balancing scheme.
As already mentioned we also monitored the packet delivery ratio (PDR)
achieved to make sure our scheme does still perform its core functionality
efficiently. In only one single scenario the PDR dropped slightly below the
reference PDR of the layered protocol stack. The PDR of the cross-layer approach
was 64 compared to 68.4 in the topology with an aspect-ratio of 1:9 (see Fig. 5.14).
This phenomenon can be explained by the fact that in topologies with such an
aspect ratio, or an even higher one, there are only few paths through the network.
Those are extremely overloaded compared to nodes at the edges of the network,
for example. Nodes on these paths will sooner operate beyond the drop bound.
Therefore preventing a route to be established, causing the source to drop the
data packets after some unsuccessful route discovery attempts. On the other

5 Applications, Results and Analysis 87

hand our scheme guarantees therefore a higher quality for data packets through
established routes as seen before.

5.1.5. Conclusion
The contribution described in this chapter was twofold. The first one being a
novel load metric, which can be used for cross-layer load balancing, the second
one was an exemplary application of this metric using our CrossTalk architecture.
The load metric itself is adapting timely to load changes and reflects the actual
load in the network very well. Additionally, it cannot be exploited easily by
selfish nodes to be relieved from cooperation duties such as packet forwarding.
The load balancing adaptation of AODV showed that the protocol adaptation
process to make a protocol utilize cross-layer information is straight forward and
requires only little changes. The analysis of this approach revealed that
CrossTalk’s Global View mechanism delivers a high quality network-wide view
and that protocol adaptations on its basis are therefore feasible. The load
balancing algorithm itself performed very well and the per hop packet delay
could be reduced by up to 65%. In addition bottleneck nodes were relieved by up
to 25% of their load burden and the coefficient of variance of the packets sent per
node was reduced by up to 20%.

5.2. Mobility Adaptations – Solving Ad Hoc Networking Issues
Using CrossTalk

Node mobility is one of the unique system dynamics an ad hoc network exposes.
The performance of the routing protocol heavily depends on the mobility degree
and static parameterization of such protocols fails to make them operate
efficiently in a broad range of network conditions ([87],[88] and [89]). Other
networks suffer from node mobility too, such as cellular networks, but the
problem’s complexity is greatly reduced by having base stations. This way,
mobility is only a one hop issue which can be solved by hand-off mechanisms.
Mobility in ad hoc networks is much more severe as on a multi-hop path,
arbitrary nodes can move causing routes to break constantly in a non-
deterministic fashion. A source node can therefore not always determine in a
timely manner that mobility has caused a route to break whereas in cellular
networks this issue is more trivial. In an ad hoc network there simply is no
infrastructure that can assist in solving mobility issues. This makes mobility a
case for distributed, network-wide adaptations and therefore CrossTalk’s Global
View mechanism can be used to alleviate the problems caused by mobility [90].
Again two fundamental things have to be done. First of all, metric that
represents node mobility accurately has to be found. Preferably this metric has
its origin inside the protocol stack and reflects the topological change rate well.
Secondly, this metric has to be utilized by the routing protocol as it has to
compensate for the effects of node mobility.

5.2.1. Related Work
There has been extensive work on mobility models, mobility metrics and mobility
adaptive protocols which clearly shows the need to solve and study mobility

88 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

related problems. Mobility models are designed to be used in simulations as a
way to mimic or represent real world node movement. They can be categorized as
either trace-based or synthetic models [86]. Trace based models are mobility
patterns recorded from observations whereas synthetic models are a
mathematical representation of node movement which tries to approximate real-
life mobility patterns. Clearly, trace based models are more realistic as they were
captured by observing a real-world environment but at the same time they are
difficult to generate as it takes a significant amount of effort just for the
observations and also a huge amount of data has to be collected. Therefore
synthetic models are used nearly exclusively as they reduce the complexity of
mobility modeling significantly and can be changed easily to simulate many
different mobility scenarios.
The mobility pattern can have a significant impact on the network performance
and therefore several mobility models with different characteristics should be
tested to evaluate a routing protocol [86].
Mobility metrics on the other hand try to capture and express the degree of
mobility independent of an underlying mobility model. They can be categorized
into real-world applicable and artificial. Artificial are those metrics that are
based on information not available in real-world scenarios or parameters from
mobility models. Those metrics are only useful to compare simulation results but
cannot be applied to enhance a protocol. Such metrics for example utilize the
number of nodes in the network, the transmission range, relative velocity
between nodes or the pause time of a mobility model just to name a few. Mobility
metrics will be described in detail as we need to base our algorithm on a real-
world applicable and accurate mobility metric. Mobility models are not the
primary focus of this section. A good overview of many commonly used and
referenced models can be found in [86].
In [91] Kwak et al. derive a mobility metric to be able to compare simulation
results against each other, in the case that different mobility models or
differently parameterized models were used. As the performance of a routing
protocol and the degree of mobility are very closely related such a metric would
enable a direct comparison. As they are only concerned with simulation
environments their mobility metric is not real-world applicable at all. It operates
on a remoteness function which is a function of the distance between two nodes.
Furthermore, it works on a network-wide scale knowing the distance from each
node to every other node and the transmission ranges.
Tsumochi et al. [92] analyze several mobility metrics many of which are not very
accurate or widely applicable such as the pause time of a mobility model. They
even propose to use the number of neighbors which seems odd. The models they
propose that reflect mobility more accurately have in common that they are not
real-world applicable as they utilize information such as velocity and accurate
distance knowledge, i.e. some positioning system and the transmission range.
The only exception is the frequency of link state changes but they do not describe
a way how to calculate it at a node. So it can be assumed they focus on
simulations settings only.
Some important work has been done by the authors of [93] and [94]. They
propose various mobility metrics but again many of which utilize information
realistically not available at a network node such as the relative speed between
nodes. Some of those metrics are based on the connectivity graph of the network.

5 Applications, Results and Analysis 89

These therefore express the topological mobility. As they use the simulation time
or the number of nodes in their calculations they can not be used in real world
scenarios as such. But the general principle can be applied in real-world settings
on a per node basis. Their results show that some of these metrics do not reflect
the mobility degree very well and interestingly they find that the link duration
metric is able to capture the effects of mobility very well.
In [95] a simplified mobility model is presented, mainly designed to analyze the
suitability of two different mobility metrics, the link change rate and the link
duration. The study also tries to derive a relationship between the link duration
and the mean residual duration of a path. The authors come to the same
conclusion as the authors of [93] and [94] that the link duration is a good metric
which reflects the degree of mobility very well and also it is suitable to derive the
residual lifetime of a path independent of the underlying mobility model. In other
words they show that the lifetime of the route is in fact a function of the link
duration. This is a very important aspect. Also in accordance with the previous
paper they showed that the link change rate fails to have the above mentioned
properties.
[96] has a strong focus on the real-world applicability of a mobility metric. They
therefore define five core requirements a good mobility metric should fulfill which
are:

• “Computable in a distributed environment without global network
knowledge”

• “A good indicator of protocol performance”
• “Feasible to compute (in terms of node resources)”
• “Independent of any specific protocol”
• “Computable in real network implementations”

Using CrossTalk, the first requirement can be disregarded to some extend, i.e. for
the network-wide mobility. It is valid though for the computation of local load at
a node. These requirements serve as a good guideline for a mobility metric in
general. The main contribution of [96] is the analysis of two mobility metrics
which are the link change rate and the link duration. The results show that the
link duration is the better metric and reflects the routing protocol’s performance
much more accurately. The problem with the calculation of the link duration
metric is the determination of the time window size in which to observe the link
duration. This issue is left open by the authors who recognize that the choice of
the time window is critical but only mention that this issue is under investigation.
In [97] the previously mentioned link duration metric is combined with the link
change rate as the authors believe this to be a more precise mobility metric. In
their simulations they show the correlation between the metrics link duration,
link change rate, their own metric and the maximum speed of the random
waypoint mobility model and the transmission range. What they do not show
though is if the mobility metric is able to reflect the routing protocol performance
very well as in [93]. Also other mobility models were not evaluated which would
have been important.
A mobility metric based on the received signal strength of two successive packets
is proposed in [98]. Such a metric suffers from the problem that the received
signal strength is not a good indicator of mobility as it can vary drastically in

90 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

short time intervals [99] even without mobility. The authors of [98] apply their
mobility metric to choose appropriate cluster heads.
Tan et al. [100] basically use the same mobility metric for their simulations
which has the aforementioned problems in real-world settings. The adaptation
they propose is based on ADOV enhanced by two additional mechanisms. The
first one is the limited forwarding of route requests. When a route request arrives
at a node it checks if the mobility metric towards that node is above a certain
fixed threshold. If this is the case, it will drop the route request. This makes the
threshold vital and a strongly fluctuating mobility metric can cause many
packets to be dropped increasing the likelihood of a route never to be established.
The second mechanism limits the amount of intermediate nodes sending a route
reply. If an intermediate node receives a route request and knows a route
towards the destination it first checks if the mobility metric towards the next hop
is beyond a certain threshold. In case this threshold is violated the route request
is further propagated and no reply is sent.
An estimation of the residual link lifetime is attempted in [101] by observing past
link lifetimes. They propose to have a finite array where each array element
represents a certain link lifetime interval. A link that was up for a certain
amount of time would increase the array element by one which interval it lies in.
This is a rather coarse grained approach and the array dimensions need to be
chosen carefully which in the real-world would be difficult. Also if the mobility
changes the old values inside the array are never purged and they will always
keep on influencing the calculations. Based on this array link lifetimes are
estimated which can be used for routing decisions.
The Route Fragility Coefficient is a metric proposed by Tickoo et al. [102]. It is
also utilizes the received signal strength as a basis and in addition assumes the
free space propagation model and some constant to be known which depends on
antenna gains and the wavelength of the transmission. By knowing these
parameters they calculate the relative velocity between nodes and from that they
derive whether nodes are moving closer or whether they move apart. The
combination of those two metrics on a given path is termed Route Fragility
Coefficient, obviously suffering from the simplified model assumptions as already
stated before. A subsequent simulation study utilizes their metric in a modified
version of DSR. Since they have to alter DSR’s control packet headers their
version will not be compatible with standard DSR. Their scheme also demands a
change in the MAC layer as it has to keep track of successive received signal
strengths and is therefore a cross-layer scheme as this information is passed to
the routing layer. During the route discovery phase every nodes adds their
information about the relative expansion or contraction towards the previous hop.
The destination waits for a certain amount of time and selects to most suitable
path as proposed by many other protocols before having the aforementioned
issues.
In [103] a metric for the quality of a node is presented which also incorporates
the stability of a node, i.e. an indirect measure for its degree of mobility. It is very
simple the ratio of the number of neighbor nodes that remain in its vicinity in a
certain time frame and the total amount of neighbors during that timeframe.
This metric is relatively coarse grained and relies on a time window which might
be difficult to choose. In combination with the buffer and power level of a node it

5 Applications, Results and Analysis 91

was shown to improve the selection of nodes that form a forest, i.e. a backbone
inside an ad hoc network.
Many protocols have been proposed to use location information and as this is not
directly related we do not in detail describe these approaches but one case has to
be noticed which is Adaptive Location Aided Routing from Mines (ALARM) [104].
It not only makes use of location information, as for example provided by GPS,
but it also takes the previously mentioned link duration into account. ALARM is
a hybrid protocol. Based on a link duration threshold on the source route it
switches between the Location Aided Routing (LAR) [105] protocol or utilizes a
directed flooding algorithm when link durations are shorter than the predefined
threshold. The authors state that there are some critical threshold values in their
system that are difficult to choose. Again the selection of the window size for the
calculation of the link duration is not addressed properly.
The mobility adaptive routing scheme MARio is presented in [106]. It is thought
as a component in juxtaposition to the protocol stack that can provide link or
path duration statistics. The statistical information about the route lifetimes can
be used to establish a new route prior to the expected breakage of a route in use
or it can be used to invalidate a route prior to its expected breakage. In the
presented application example of MARio, it gathers statistics about every route
constructed by the DSR protocol and uses an exponentially weighted moving
average to calculate a path duration metric. From the description in [106] it
becomes not clear whether the actual path lengths are differentiated. In case
they are not the thresholds chosen for a route invalidation and for route pre-
fetching might not be accurate. Their simulation study also reveals that for the
Reference Point Group Mobility model, their approach does not perform well,
which is bad as it is the more realistic model compared to the other tested model,
the Random Waypoint mobility model.
Hu and Johnson [107] evaluate different mobility metrics in terms of how well
they reflect the routing difficulty, i.e. in terms of routing overhead and route
errors. They find, that from the tested metrics the minimal route change metric
correlates the most accurately with the routing effort. They do not test the link
duration metric though.
The Adapting to Route-demand and Mobility (ARM) control mechanism
presented in [108] can be utilized by only proactive routing protocols. ARM
consists of two mechanisms the update-period control and the update-content
control. The update-period control is the interesting mechanism as it is
dependant on a mobility metric. It determines the interval in which routing state
updates are sent. The mobility metric itself is based on the one-hop neighborhood
fluctuations during a routing update period. The performance of ARM was
exemplary shown using the DSDV routing protocol.
Also designed to work with proactive protocols is the algorithm proposed in [109].
The utilized metric is the one already mentioned in [97]. The metric is utilized as
an input into a feedback controller which adapts the frequency of routing state
updates. In their exemplary application of their component inside the DSDV
routing protocol they could not always outperform statically parameterized
versions of DSDV.
There is a lot more work on mobility in ad hoc networks such as mobility
predictions and more approaches based on location information. We do not

92 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

describe those here as they are not directly related to the work presented in the
following chapters.

5.2.2. Metric Generation and the Mobility Adaptation Extension to
AODV

The previous chapter introduced several possible mobility metrics but only few of
which satisfy the criteria of [96]. The most promising metric appears to be the
link duration as it was shown by several independent studies to reflect protocol
performance metrics very well in addition to satisfying the previously mentioned
criteria for a good mobility metric. The link duration is defined as the average
time a link to a neighboring node exists (a formal definition can be found in [93]).
In other words the link duration is a metric which quantifies the time two nodes
are in each others transmission range on average during a certain time period.
The question that arises is how to exactly calculate the link duration metric
locally at a node. First of all, a node must be capable of identifying nodes that
arrive and depart from its transmission range. A lot of protocols such as AODV
have a mechanism to deal with this issue. As already stated, AODV sends out
Hello messages periodically to maintain accurate information about a node’s
network neighborhood. By sending out these beacons, nodes are aware of each
other when they come into each others transmission range. On the other hand, if
these messages are not received anymore for some time, the link between the two
nodes is interpreted as being down. But even without an extra mechanism,
passively gathering link duration times as described in [96] can be used making
the mechanism to measure link durations somehow protocol independent. The
only problem identified with the calculation of the link duration is the choice of
an appropriate window size in which to observe the link durations. When chosen
too small, long lived links are not accounted for correctly. As a result the
calculated link duration would be too small indicating a higher mobility than
actually present. Since the mobility is a time-varying measure, the link durations
metric must reflect the current mobility accurately. Therefore, when the window
size is chosen too large, the link duration metric fails to account for changes in
the mobility as old data influences the metric calculation. This means that the
size of the time window must be dependant on the mobility degree itself and its
relative change rate.
The problem of determining an appropriate window size is the reason why we
chose to use a different mechanism to organize the individual link duration
measurements. Since an observation period should be dependant on the degree of
mobility and at the same time it is used to derive the mobility metric itself there
is an intrinsic conflict which has to be solved differently. To calculate the local
average link duration at a node, we use two separate lists. Both lists are used to
calculate the average link duration experienced locally at a node. One list
contains all currently active links (links up list – LU), i.e. it contains all nodes
that are currently in the local nodes network neighborhood. Whenever a node
comes into transmission range, it is added to LU. The mechanisms to identify a
node that intersects with a node’s transmission range were described before. The
second list contains links that are already down (link down list – LD), i.e. links to
nodes that have entered and already left a local node’s transmission range.

5 Applications, Results and Analysis 93

The amount of links stored in LD should match the amount of links in LU if
possible. To achieve this, LD’s size is adjusted in a way that it never exceeds LU’s
size. In other words, LD’s size is determined by the amount of links that are
currently active. When a link goes down, it is moved from LU to LD. If LD is
smaller than LU, the entry is simply added. Otherwise the entry replaces the
oldest entry in LD. If necessary, LD’s size is further adjusted by removing the
oldest entries in LD until the sizes of both lists match.
The intuition behind this mechanism is as follows. First of all, the overall amount
of links stored for the average link duration calculation is determined by the
amount of one-hop neighbors, i.e. by the density of the network. Ideally there are
twice as many link duration entries in both lists together as there are one-hop
neighbors. This way excessive storage consumption due to a badly chosen window
size is prevented. The second reason for this mechanism is that something like a
window size intrinsically exists. The higher the mobility the faster links move
from LU to LD. So the higher the mobility, the faster “old” links are removed
from LD, which is equivalent to a shorter window size. With less mobility links
stay longer in LD, i.e. the intrinsic window size is bigger. In other words, the
window size is controlled by the mobility degree itself.
Each entry in LU comprises the node’s address or unique ID and the time the
link was established. The entries in LD additionally comprise the time when the
link went down. Using both lists, our mobility metric is calculated as follows. In a
first step, the average link duration of the links in LD is calculated, which gives
us a snapshot of the average links duration of the recent past. Afterwards, in a
second step, all links found in LU that exist longer than the average link
duration of the links in LD are also averaged. Both values are combined to give
the average link duration which we use as our mobility metric. Let’s look at a
mathematical representation of our algorithm:

∑
=

=
LDs

n
nLD Ld

1
, { }LDL∈ (1)

∑
=

=
LUs

n
nLU Ld

1

,
⎭
⎬
⎫

⎩
⎨
⎧

>∈
LD

LD

s
duptimeLUL (2)

LULD

LULD

ss
ddd

+
+

= (3)

Formula (1) denotes dLD, which is the sum of link durations found in LD, where
sLD represents the size of LD. Formula (2) calculates dLU, which is the sum of link
durations in LU satisfying the condition that they were up longer than dLD/sLD.
The calculation to obtain the average local link duration finally is show in
formula (3). It is sum of (1) and (2) divided by the size of LD plus the amount of
link durations found in LU satisfying formula (2)’s condition.
The reason why we developed this algorithm is that is can accurately reflect the
current mobility. If the mobility is slowing down, the links in LU over time will
gain more weight than the links in LD. This automatically adjusts the link
duration metric. If we only considered links that are already down, the link
duration metric would start to adjust much later. The longer lived links would

94 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

need to expire before the mobility metric reacts to the decreasing mobility. As a
worst case scenario consider a node that moves from a mobile into a static
network area. It would still determine that it is in the mobile part of the network
since the links around it would not expire. This is prevented using our approach.
But generally, there is a potential problem with also taking the link durations of
active links into account. Very recently established links can significantly
influence the average link duration metric since their link duration is very low.
This is why we chose the average link duration of LD as our dynamic threshold
for the inclusion of links in LU. If the mobility starts to increase links will start
to move faster from LU to LD. That means that the average link duration of past
links will decrease, i.e. the threshold for the inclusion of existing links is lowered.
So the mobility automatically adjusts the calculation of the link duration metric
to reflect the increased mobility.
With the way we calculate our mobility metric, we eliminated static
parameterization, in conformance with one of the goals as stated in section 1.2.
The mobility degree and change rate themselves steer the way the average link
duration is calculated. In addition, the network structure determines the choice
of link measurements used for the mobility metric calculation. Our metric is also
in conformance with the characteristics of a good mobility metric as described in
[96].
To establish a network-wide link duration metric, CrossTalk’s Global View
mechanism is used. As an exemplary protocol to incorporate a mobility
adaptation mechanism we chose the again the reactive AODV routing protocol.
The description of its general operational behavior can be found in section 5.1.1.
It was not chosen because it is the most suitable protocol for mobility adaptations,
but because it is one of the best studied ad hoc routing protocols. Additionally,
AODV does not rely on any extra information such as location information,
making it more generally applicable. AODV should only be regarded as an
exemplary protocol. We strongly believe that enhancements using mobility
information can be done for any ad hoc routing protocol either reactive, proactive
or hybrid. Even protocols already enhanced with location information provided by
GPS were shown to benefit from link duration measurements [104]. Let us look
at some examples to show that every routing protocol in principle exposes
mechanisms that would benefit from mobility adaptations. The main application
area of a mobility metric is the dynamic adaptation of protocol parameters. A
proactive routing protocol that periodically broadcasts routing state information
could adapt the update interval. This update period is the key parameter for
table-driven routing protocols. If the mobility is high the update interval must be
short to keep the routing state of each node up-to-date. If the mobility is low,
resources such as bandwidth and energy can be saved by reducing the amount of
redundant and unnecessary update messages.
Hybrid routing protocols can also benefit immensely from mobility adaptive
mechanism. The general idea of these protocols is that a proactive protocol is
used in a radius around each node, which keeps the overhead of route
maintenance to a strictly localized area but routing performance in these areas is
high. Only for distant communication reactive routing strategies are employed as
the maintenance overhead for distant destinations would be too high. A mobility
metric could be the basis for the choice of the zone radius. The lower the mobility

5 Applications, Results and Analysis 95

the bigger the proactive zone should be and vice versa. For the proactive part of
the hybrid protocol the above stated update interval adaptation also applies.
Reactive routing protocols such as the one used in our experiments have several
possible mobility adaptation opportunities. One is the tuning of the neighborhood
maintenance interval. For AODV this would translate to adapting the Hello
message interval. In low mobility scenarios frequent Hello messages consume
resources without any benefit. The route cache of reactive routing protocols can
also be optimized by dynamically choosing an expiration time for the various
routes. All of the above mentioned protocols can be optimized towards choosing
the most stable route according to a mobility metric.
For our link duration metric used in the following experiments, we utilize the
mechanisms provided by AODV, i.e. the link duration metric is generated
according to the link duration feedback of the Hello message mechanism. But as
mentioned earlier, other available mechanisms could be used such as layer-2
notifications comparable to the ones provided by IEEE 802.11. Whenever AODV
recognizes a newly arrived one-hop neighbor by overhearing a Hello message for
the first time, a corresponding entry is added to our links up list (LU). When
AODV determines that a link went down by not having received three
consecutive Hellos, this entry is moved to the links down list as described in the
previous section.
We identified several possible enhancements to make AODV mobility-adaptive.
They include:

• Tuning of the Hello message interval
• Dynamic calculation of the route cache timeouts
• Improved route discovery and route selection

Making the Hello message interval dependant on the mobility degree is
intuitive at first. As already mentioned, if the mobility is low, there is no need to
excessively send out Hello messages since the local connectivity changes slowly.
But if local changes should be detected timely, the Hello mechanism should
remain in a relatively short interval. Increasing the Hello interval also
increases the time that a link change is detected for two reasons. First of all if a
link fails at the beginning of an interval than the remaining time of that interval
the link failure will be undetected independent of AODV’s parameterization. The
second reason for an increased failure detection time is that AODV normally
waits until more than a single Hello message was not received to mark a link as
being down. Additionally, fast moving nodes might be completely undetected if
the Hello interval is altered as they might not send a beacon while in the
transmission range of some nodes. The Hello mechanism must also be
synchronized amongst all nodes. That means that a node has to know in which
interval another node sends out Hello messages to make sure that it can
correctly identify when a node is not in its transmission range any more. This
adds a degree of complexity to the alteration of the Hello interval. In our case,
there is the additional dependence of our mobility metric on a timely detection of
topological changes in the direct transmission range. Therefore, we chose not to
alter the Hello mechanism of AODV.

96 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

The route cache has the advantage that it provides an accurate routing state over
some time. Its accuracy clearly depends on the assigned route lifetime, i.e. on the
time routes remain as being active inside the cache. Having a static route
lifetime has one major disadvantage. If chosen to be too large, the node will start
using stale routes, very often resulting in errors, which in turn results in
increased routing overhead. If chosen too small, routes are purged from the route
cache although they are still alive, possibly forcing unnecessary route requests.
That is why we chose to make the route timeouts adaptive. To do this, we employ
a heuristic. Consider two nodes. On average they are in each others transmission
range for the amount of time equal to our average link duration metric provided
by the Global View component, assuming of course that it is correct. Looking at
each node individually and assuming a uniform distribution of the times the
links became active in a interval of the average link duration, the expectation
value of the remaining lifetime of a link is:

2
)(ld

ld
ttE =

whereas ldt is the average link duration provided by CrossTalk.
The farther a destination is away the smaller the overall lifetime of the path will
be as more intermediate mobile nodes can cause the failure of the route. We
therefore calculate our route lifetime for a newly found path as:

hops
tEt ld

r #
)(

= .

For our scheme we need to slightly modify the entry format of AODV’s route
cache. We add the time a link or route becomes active to the information stored
in the cache. Whenever AODV wants to update the timeout of a route, it will use
this information to see if the link has been active for tr or longer. If it has been
active longer, there is an increased probability that this link will fail in the near
future. From this time on, the route lifetime is only extended by the value defined
by standard AODV to make sure the route is purged fast from the cache once it is
not used any more.
The second mechanism of AODV that was modified is the route discovery and
selection process. It shares some similarities with the mechanism developed by
Tan and Seah [100]. A major difference is that our mechanism does not rely on
heuristics to discard route requests, which makes it possible that no route is
established at all. When a data packet has to be sent, our mobility-adaptive
AODV tries to find a route in the route cache, which up to this point is also what
standard AODV would do. If it finds a route to the destination it first checks if
the remaining lifetime to the next hop on that route exceeds)(ldtE . If it does, it
will start to use that route; otherwise it will issue a route request to find a more
stable route. Standard AODV would simply use this route. A failure would then
cause AODV’s route error mechanism to become activated and an additional
route request would be issued. During the route discovery phase, intermediate
nodes which have a route to the destination will perform the exact same test.
This way, old routes will be avoided in favor of routes with a higher life

5 Applications, Results and Analysis 97

expectancy. In addition, we apply a second mechanism to establish the most
appropriate routes. When a route request arrives at an intermediate node and it
does not have a route to the required destination in its route cache, it will
evaluate the remaining lifetime to the previous hop, i.e. to the node that it
received the route request from. If the remaining lifetime exceeds)(ldtE , it will
simply forward the route request. If not, i.e. if the link was up already for more
than half of the average link duration, an intermediate node will delay the
forwarding of the route request. The maximum delay is given by the Hello
interval of AODV. It decreases proportionally with an increasing remaining
lifetime. This way the probability is decreased that a route is established which
leads through links which will statistically fail soon. In other words, this
mobility-adaptive scheme automatically favors links on a route with statistically
long remaining lifetime. This way, data packets are routed on more stable links.
Of course the mechanisms presented are all based on a probabilistic approach.
Again, what has to be noted is that the mobility adaptive AODV is still
interoperable with its standard version counterpart. Neither message headers
are altered nor is the general routing algorithm changed in a way that standard
AODV would fail to make correct routing decisions.

5.2.3. Experimental Setup
For the experimental evaluation of our mobility metric and our mobility-adaptive
version of AODV, we used again the network simulator ns-2. For the reasons
stated in section 5.1.3 we chose the AODV implementation of the Uppsala
University. We evaluated 200 node networks in a variety of mobility scenarios. It
is important to choose a variety of models with different characteristics as
interdependencies between models and metrics have to be avoided. By choosing
different models interdependencies can be identified. Many previous studies only
rely on a single mobility model, predominantly the Random Waypoint Mobility
model. We chose 4 mobility models which comprise Random Waypoint, Reference
Point Group Mobility (RPGM), Manhattan and Freeway [86]. They were chosen
because they all represent very different scenarios and differ strongly in terms of
nodal dependencies, directional restrictions and geographic constraints. They
also vary in the amount of necessary parameters and interpret and use common
parameters differently. For example, the speed metric used in the RPGM model
is interpreted as the mean speed whereas in the Random Waypoint model the
speed metric defines the maximum allowed speed. Due to these differences, they
are very difficult to be compared directly but at the same time cover a broad
spectrum of mobility patterns and are therefore a good subset of mobility models
to test our metric and adaptation mechanisms.
For the RPGM model, we chose 20 groups with 10 members each and a speed
mean between 2 and 20 ms/s. The simulation area had a size of 2400x600 meters.
For the Random Waypoint model, we always set the maximum speed to be also
the minimum speed to prevent speed decay as described in [110]. We used
maximum speeds between 1.4 and 20 m/s and always a pause time of 10 seconds.
The network area was 2828x707 meters. For the Manhattan and Freeway
mobility model, we chose maps similar to the ones found in [93]. The maps for the
Manhattan mobility model and the Freeway model are displayed in Fig. 5.15 and

98 5.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

Fig. 5.16 respectively. The minimum speed was always set to be half of the
maximum speed which varied between 2 and 20 m/s for both models.

Fig. 5.15 Manhattan mobility map

5 m x 5 m

Fig. 5.16 Freeway mobility map

The traffic pattern applied defines 3 classes of nodes. Class 1 represents the high
load nodes. These nodes generate a packet once every 1.5 seconds and switch
destinations randomly every 20 seconds. Only 15 of those nodes existed per
simulation run. Furthermore, there were 30 second class nodes generating one
packet every 3 seconds and which change destinations every 40 seconds. 60 nodes
in the network belonged to the 3rd class issuing a packet in an interval of 6
seconds and changing destinations every 60 seconds. So in total roughly 50% of
the nodes actively generated data packets. A simulation run lasted 1000 seconds,
of which the first 200 seconds were used to settle the network. All statistics and
measurements were gathered in the remaining 800 seconds.

5 Applications, Results and Analysis 99

Table 5.2 Mobility-adaptations experiment parameters

Mobility model Parameter range

RWP 1.4 m/s – 20 m/s, pause time 10 s

RPGM 20 groups, 10 member per group, 2 m/s – 20 m/s

Manhattan 2 m/s – 20 m/s according to map

Freeway 2 m/s – 20 m/s according to map

5.2.4. Experimental Results
An analysis of the quality of the global view is largely omitted here as it yielded
similar results to the ones found in section 5.1.4. Only a brief description of the
findings is given later for completeness sake. For our mobility metric though we
have to make sure that it actually is able to reflect protocol performance
accurately as one of the requirements from section 5.2.1 defines a good mobility
metric as a good indicator for protocol performance. We use 3 protocol
performance metrics to prove that our mobility metric reflects the protocol
performance very well. We use the packet delivery ratio as a measure for the
success rate, the amount of protocol packet transmissions per data packet
delivery as a measure for the protocol overhead and the average end-to-end delay
including the route discovery process as a measure for the temporal efficiency.

R2 = 0.859

0

2

4

6

8

10

12

0 20 40 60 80 100
link duration [s]

pa
ck

et
 d

el
iv

er
y

ra
tio

 [%
]

Fig. 5.17 Correlation between link duration and PDR in Manhattan mobility scenarios

To show that the link duration metric reliably indicates standard AODV’s
performance, the coefficient of determination between the three performance
metrics and the mobility metric were calculated for all tested mobility models

1005.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

and scenarios. The link duration used to construct the graphs below is the
average link duration provided by CrossTalk’s Global View component of each
node in the network.
Fig. 5.17 shows the relationship between the link duration and the packet
delivery ratio (PDR) for standard AODV in Manhattan mobility scenarios. Each
data point represents a simulation run. As can be seen, the PDR increases with
increasing link durations, i.e. with less mobile nodes, as can be expected. The
fitted curve has a coefficient of determination of nearly 86%. In all tested
scenarios the coefficient of determination for the PDR yielded similar results
with a maximum of 87% for the tested Freeway mobility scenario. In other words
the link duration metrics has a strong correlation with the success rate of the
routing protocol.

R2 = 0.9063

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350
link duration [s]

pr
ot

oc
ol

 p
ac

ke
t t

ra
ns

m
is

si
on

s
pe

r d
at

a
pa

ck
et

 d
el

iv
er

y

Fig. 5.18 Correlation between link duration and routing overhead in Freeway mobility

scenarios

Fig. 5.18 displays the protocol packet transmissions per data packet delivery
versus the link duration in the tested Freeway mobility scenarios. For shorter
link durations, the protocol of course generates a higher overhead to deliver a
packet successfully as routes tend to break more frequently. Again, all tested
scenarios showed similar values for the coefficient of determination of the fitted
curves which is very important as it shows the metrics independence of the
mobility pattern. For this performance metric the fitted curve even exceeded a
value of 90%, clearly showing that the link duration metric is able to reflect
protocol performance in terms of routing overhead very well.
The last performance metric evaluated was the end-to-end delay. In Fig. 5.19 an
exemplary simulation series is displayed showing the end-to-end delay in
Random Waypoint settings with a broad range of mobility degrees. Here as well,
with all tested mobility models, the coefficient of determination is very high
showing that the link duration is a very good measure for the performance of the
underlying routing protocol. In the figure below we see a coefficient of
determination of the fitted curve of over 91%.

5 Applications, Results and Analysis 101

R2 = 0.9128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250
link duration [s]

de
la

y
[s

]

Fig. 5.19 Correlation between link duration and end-to-end delay in RWP mobility

scenarios

The analysis of the quality with which the link duration metric reflects the
routing protocol performance must be the basis of following work. A metric which
fails to be an indicator for the routing performance might not yield good results
when utilized for protocol adaptations. In the figures above we used the average
link duration provided by CrossTalk’s global view of each node in the network.
Before we can use the metric provided by CrossTalk we must make sure that the
global view itself has a high quality. That means that all nodes in the network
must have a similar network-wide view and that the relative error from the real
average of the global views must be relatively small. The above only represents
the average which gives no information about the uniformity of the global view
across nodes and also does not indicate the average relative error per node from
the real average that exists in the network. Therefore, we need to do some
further analysis before utilizing the link duration metric similar to the one found
in section 5.1.4.
In no tested scenario, the coefficient of variance of the global views at each node,
which can be regarded as a measure for the uniformity of the global view across
nodes, exceeded 3.5% at the end of a simulation run. That shows that the
distributed global view’s uniformity is very high. The average relative error at
the end of a simulation run never exceeded 10% and was in nearly all cases well
below that, showing that the global view provides a good accuracy, i.e. reflects
the network-wide average very well independent of the underlying mobility
model.
In the previous paragraphs we showed that the way the link duration mobility
metric is calculated in fact is highly suitable to reflect the degree of mobility and
that it is a good measure for the performance of the routing protocol. Therefore, it
fulfills all criteria of a good mobility metric as defined before. In the following
paragraphs, we show the analysis of the applied mobility metric in the mobility
adaptive AODV as described in section 5.2.2.

1025.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

0

10

20

30

40

50

60

70

80

0 5 10 15 20
speed metric [m/s]

pa
ck

et
 d

el
iv

er
y

ra
tio

 [%
]

cross-layer AODV
standard AODV

Fig. 5.20 PDR comparison in RWP mobility scenarios

In the following graphs we display the speed metric of the respective mobility
model versus the performance metrics introduced in the previous section. We
observed the most significant performance gain of our mobility-adaptive AODV in
scenarios using the Random Waypoint mobility model. As can be seen in Fig. 5.20,
the packet delivery ratio of our mobility-adaptive scheme exceeded standard
AODV’s PDR significantly. In low mobility of around 2 m/s we were able to
increase the PDR by a factor of nearly 3 to roughly 75%. This factor could
approximately be maintained over the whole range of tested mobility rates. The
PDR of our scheme even never fell below the best achieved PDR of AODV in low
mobility. In other words, our scheme maintained a significantly better PDR at
20 m/s as compared to the PDR of standard AODV at 2 m/s.

0

100

200

300

400

500

600

0 5 10 15 20
speed metric [m/s]

pr
ot

oc
ol

 p
ac

ke
t t

ra
ns

m
is

si
on

s
pe

r
da

ta
 p

ac
ke

t d
el

iv
er

y cross-layer AODV
standard AODV

Fig. 5.21 Routing overhead comparison in RWP mobility scenarios

5 Applications, Results and Analysis 103

At the same time the routing overhead was reduced by up to 78% as can be seen
in Fig. 5.21. The end-to-end delay was also improved, but the Random Waypoint
mobility model was the only tested mobility pattern that clearly favors our
scheme in terms of end-to-end delay. This is not necessarily a drawback of our
algorithm but due to differing assumptions for the direct comparison of standard
AODV and our modified version. The reason for this will be explained shortly.
In scenarios using the RPGM mobility model our scheme performed similar to
the results obtained with the Random Waypoint mobility model. The only
significant difference can be found in the end-to-end delay. Using the RPGM
model, the delay performance between standard AODV and our scheme did not
significantly differ.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25
speed metric [m/s]

de
la

y
[s

]

cross-layer AODV
standard AODV

Fig. 5.22 End-to-end delay comparison in RPGM mobility scenarios

Comparing the delay performance of both approaches directly is not a fair
comparison per se. One thing has to be mentioned when the delay of both
approaches are compared. Since our mobility adaptive scheme has a much higher
PDR, more packets are actually delivered. That is especially true for packets that
are delivered to far away destinations, i.e. packets that have to be forwarded
much more often since they travel on much longer paths. The simulations showed
that the average path length of successfully delivered data packets was much
higher in our adaptive scheme. On the one hand this clearly shows that our
scheme is choosing much more stable and suitable routes. On the other hand this
is one reason why the delay is higher since those packets are less accounted for in
the standard AODV measurements. This makes a direct comparison very difficult
if, in terms of fairness. Additionally, to be completely fair, when the PDR is lower,
an application would need to retransmit the lost packets. This would add to the
contention in the network, further reducing the PDR and increasing the delay
and routing overhead. Such a retransmission scheme was not implemented in our
simulations. A fair comparison of the end-to-end delay would probably be one
where the PDR of both approaches are the same. This could be done by

1045.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

experimentally approximating equal PDRs in differently mobile scenarios using
the same mobility model. This would be a very time-consuming process though.
An interesting fact to notice is that, when looking at the protocol overhead of
standard AODV as displayed in Fig. 5.21, it appears that delivering one data
packet successfully generates, depending on the mobility rate, more control
messages than there are nodes in the network. Naïvely, that implies that when
not taking into account the size difference between data and control packets that
broadcasting might be much more efficient above a certain mobility rate in
certain scenarios. With the scheme we propose, utilizing a more sophisticated
routing protocol still makes sense in scenarios with a much higher degree of
mobility.
For the random waypoint mobility model, even at a maximum speed of 20 m/s,
the control overhead per successful data packet delivery is well below the number
of nodes in the network. As already mentioned the Random Waypoint mobility
model yielded the best results. But under all other tested mobility models, our
adaptive-AODV performs significantly better than standard AODV as well with
the exception of the end-to-end delay for the previously stated reasons. The
reason why scenarios using the Random Waypoint pattern inflict less stress on
the routing protocol is because there are no bounds on the way nodes move. The
more realistic patterns do not allow a node to move purely randomly as there are
regions defined where nodes are allowed to move, nodal dependencies exist and
the changes in speed and direction can be restricted.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20
speed metric [m/s]

pr
ot

oc
ol

 p
ac

ke
t t

ra
ns

m
is

si
on

s
pe

r
da

ta
 p

ac
ke

t d
el

iv
er

y

cross-layer AODV
standard AODV

Fig. 5.23 Routing overhead comparison in Freeway mobility scenarios

Fig. 5.23 displays the protocol overhead of standard AODV compared to our
approach in Freeway mobility scenarios. In low mobility we again generate three
times less overhead per successfully delivered data packet which quickly
stabilizes at a factor of around 2 for higher mobility rates. So for this
performance metric, we clearly outperform standard AODV. As for the PDR, the
gain lies between a factor of 1.5 and 2 with a maximum PDR of 75% for our
scheme and 35% for standard AODV.

5 Applications, Results and Analysis 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20
speed metric [m/s]

de
la

y
[s

]

cross-layer AODV
standard

Fig. 5.24 End-to-end delay comparison in Freeway mobility scenarios

In terms of end-to-end delay our approach starts to have a higher delay above 4
m/s for the Freeway mobility model as shown in Fig. 5.24. Up to this point our
approach clearly outperforms standard AODV in terms of delay. After this point
a direct performance comparison is difficult for the previously mentioned reasons
and it cannot be said which approach performs best. The worst increase in delay
is roughly 40% for the mobility degrees analyzed.
Of all tested mobility models, the Manhattan model put the most stress on the
routing protocol. In all tested scenarios AODV performed much worse when
Manhattan mobility was applied. Still our version of AODV achieved a PDR that
was between 2 to 2.6 times higher in comparison to standard AODV.

0

200

400

600

800

1000

1200

1400

0 5 10 15 20
speed metric [m/s]

pr
ot

oc
ol

 p
ac

ke
t t

ra
ns

m
is

si
on

s
pe

r
da

ta
 p

ac
ke

t d
el

iv
er

y

cross-layer AODV
standard AODV

Fig. 5.25 Routing overhead comparison in Manhattan mobility scenarios

1065.2 Mobility Adaptations – Solving Ad Hoc Networking Issues Using CrossTalk

Fig. 5.25 presents the enormous routing overhead generated in Manhattan
mobility scenarios. With high mobility rates, using standard AODV can hardly be
justified under the tested conditions. At a speed of 20 m/s, nearly 1200 packets
are sent per successful data packet delivery. The PDR itself is at that point at an
alarming 5.2%. Perhaps broadcasting every single data packet would make more
sense in such a situation. In contrast, the adaptive-AODV has a slower increase
in protocol overhead over the range of mobility degrees and was reduced in total
by up to 65% as compared to standard AODV.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20
speed metric [m/s]

de
la

y
[s

]

cross-layer AODV
standard AODV

Fig. 5.26 End-to-end delay comparison in Manhattan mobility scenarios

The Manhattan mobility pattern is also the only tested model that lets our
scheme perform worse in terms of end-to-end delay over the whole range of
mobility rates. The extend of the increase in delay can be seen in Fig. 9. Although
less pronounced than the increase in PDR and the overhead savings there is a
clear increase in the end-to-end delay of up to 65% in low mobility which is due to
the reasons stated before.
We now attempt a comparison of the mobility models we used. When evaluating
mobility metrics and mobility adaptations the underlying models used are very
important. Most studies though restrict themselves to the rather unrealistic
Random Waypoint mobility model. The reason might be that it is very easy to
implement and to parameterize. And additional reason might be that it is the
only model that comes with the standard ns-2 package. Fig. 5.27 depicts all
mobility models used in our experiments. The routing overhead performance
metric displayed are the ones taken from our adaptive AODV. The x-axis
represents the speed metric of the corresponding model. Although the speed
metric does not have the exact some influence in the tested scenarios it can be
used as a rough metric for comparison. What Fig. 5.27 quite obviously illustrates
is that the Manhattan mobility model is by far the most demanding model. On
the other hand the Random Waypoint model is the least demanding model. This
is the case for all routing performance metrics evaluated. Therefore, when
evaluating a mobility metric or mobility adaptive protocol more than a single

5 Applications, Results and Analysis 107

mobility model should be evaluated. When choosing only a single mobility model
the Manhattan model is probably the best choice as it puts the mode stress on the
protocol.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

speed metric [m/s]

pr
ot

oc
ol

 p
ac

ke
t t

ra
ns

m
is

si
on

s
pe

r d
at

a
pa

ck
et

 d
el

iv
er

y

Freeway
Manhattan
RPGM
Random Waypoint

Fig. 5.27 Routing overhead across mobility models

5.2.5. Conclusion
In the previous sections we presented a novel algorithm to locally calculate the
link duration from link statistics without predefined parameterization. This way,
the algorithm adapts automatically to changing networking conditions and is
therefore suitable over a wide range of possible network dynamics. We further
analyzed its suitability to reflect the routing protocol performance.
The second main contribution was the application of the link duration metric to
make an exemplary routing protocol (AODV) mobility-adaptive. We showed how
and where mobility information can be utilized. The proposed adaptive AODV
clearly outperformed standard AODV in terms of packet delivery ratio and
protocol overhead by a factor of up to three in a vast amount of mobility scenarios.
Only in some situations did the end-to-end delay increase, which can be
explained by the increase in path lengths due to the increased PDR performance.
Furthermore, the tested scenarios showed that a wide range of mobility models
should be tested, as they all have different characteristics. Although the principal
conclusion remains the same in all scenarios, the performance varies. The
simulations showed that the Random Waypoint mobility model seems to be the
least stressful for the given routing protocol. Therefore, we believe that, if only
one mobility model is tested, it should be a more demanding one such as the
Manhattan model.
Another contribution was a second analysis of the quality of the Global View
similar to the one found in section 5.1.4 only using a different metric. The
findings again support our confidence in utilizing CrossTalk’s Global View
mechanism.

108 5.3 Partition Detection – A Novel Application Using CrossTalk

5.3. Partition Detection – A Novel Application Using CrossTalk
One of the goals of CrossTalk is to enable novel applications based on the
mechanisms it provides [111][112]. One of the unique phenomena in ad hoc
networks is network partitioning. A network partition occurs when a connected
network topology breaks down into two or more separate, unconnected topologies.
In fixed infrastructure based networks, the occurrence of a network partition is
highly unlikely and only possible if big parts of the infrastructure fail
simultaneously. In mobile ad hoc networks, the problem of partitioning can also
occur due to the mobility of the participating nodes making it a more common
phenomenon. Various applications and network services for mobile ad hoc
networks could benefit from a reliable partition detection mechanism. As an
application, distributed mobile games are especially prone to network partition
since they are expected to be played on the go. They are played, for example,
while waiting for a bus or subway. Here often significant amounts of players
move in a group and therefore partition the network. In such a situation it would
be beneficial to detect the partitioning and not interpret it as node failure. This
way, two or more separate games can be established without having to restart a
game. In general applications which have to perform expensive tasks in terms of
network load on node failure would benefit from partition detection. If that node
failure is due to a network partition, the application could choose to wait a
certain amount of time expecting it to be a temporary phenomenon. This way, the
application could resume the normal operation after the network partition
problem is solved without loading the network unnecessarily. Also, applications
based on swarm intelligence can act and try to re-establish a fully connected
network or they can intelligently adapt to the situation when using a partition
detection system. A type of network service which would benefit is auto-
configuration. When network partition takes place, a possibly big part of the
network address space becomes available again in separate partitions and can
therefore be reused. A network based on a topology control mechanism could also
benefit from such an approach. On detection of network partitioning, the nodes
could extend their transmission range to reconnect the separate network
topologies. In this chapter we compare two approaches to detect network
partitioning, a centralized and a distributed approach. Both approaches have
unique advantages which are compared and analyzed.

5.3.1. Related Work
There has only been some effort to detect partitioning in ad hoc networks. We are
not going to describe partition prediction or anticipation schemes here in great
detail as their focus is different and often these schemes rely on trajectory
information obtained by positioning information which we do not assume.
One of the few partition detection schemes is presented in [116] considering
asynchronous distributed systems. They focus on processes rather than on
network nodes. Their goal is to distinguish between network partition and
process failure. Using signal strength measurements a node will send an alert
message to inform other nodes, or more precise other processes about an
upcoming partitioning event. The accuracy of signal strength measurements was
discussed in previous sections. This clearly is a cross-layer solution by design. In

5 Applications, Results and Analysis 109

addition there are unreliable failure detectors in the system which monitors
processes to observe if they crash. The name indicates that these detectors are
not necessarily correct. The authors develop two ways to detect partitioning. The
first approach tries to obtain knowledge about its neighbors and its neighbors’
neighbors. Partition detection is triggered by neighbors if they believe they are
the only node that can connect to certain unavailable processes. On the detection
of a partition the still reachable processes are informed. The other partition
detection scheme relies on total topological knowledge and the configuration of
the distributed application at start time. In general their system is not described
in great detail and it is not analyzed in any way.
A little more comprehensive approach is presented in [117] and [118]. Here
partitioning is not concerned in a network-wide scale but between a client and a
server, whereas the client should be enabled to detect the partition. For their
system to work it is important that there are multiple disjoint paths between the
source-destination pair that is going to be monitored. They also try to anticipate
a partitioning event and derive two link robustness metrics where one utilizes
the probability of link breakage. The authors fail to mention where they get this
information from. Not surprisingly this metric does not perform very well. The
other metric simply represents the longest suboptimal disjoint path found. They
then introduce a threshold that, if violated for a certain amount of time raises a
warning flag that has to be interpreted by the application. This makes the system
somewhat inflexible and the general question is how to choose this threshold.
Their analysis shows a high efficiency for the simple metric but the authors fail
to mention how they obtain that value. Additionally, to obtain multiple disjoint
paths a broadcast algorithm is used. The authors do not mention how these paths
are maintained as the nodes move. In general, all their descriptions show some
lack of detail.
Especially the academic interest in group communication pushed for a partition
detection scheme. Babaoglu et al. [119] developed a partitionable group
communication service which allows so called “partition-aware applications” to
operate in separated network topologies and, after two or more partitions merge,
reconfigure themselves. The partitioning problem is handled by a simple
PING/ACK mechanism. A node sends a PING message to another node. If it does
not receive an ACK in a certain amount of time, that node is added to a list of
suspects. A dynamic timeout mechanism is used which leads to a reasonably
accurate suspect list. This scheme lacks the ability to distinguish between node
failure and partitioning which for most applications is desirable. Also it does not
carefully choose the nodes that monitor the network to increase the detection
probability. In general most of the schemes described here do not offer this
important feature.
Killijian et al. [120] go a step further and try to anticipate a network partition.
They only briefly describe their system, which consists of 3 entities: a failure
anticipator, a movement planner and an environment evaluator. Obviously these
components heavily rely on some form of sensing equipment and a huge amount
of information exchange. Especially the sensing equipment cannot be assumed
for all participating nodes. This approach appears to be quite heavy weight and
the authors do not mention how they intend to detect that partitioning has taken
place. They also do not show any facts and figures that demonstrate the accuracy
of their anticipation scheme.

110 5.3 Partition Detection – A Novel Application Using CrossTalk

In [121] simple heartbeat messages are used. Partitioning is suspected in the
absence of an expected heartbeat. Clearly, this scheme does not allow to
distinguish between node failure and network partitioning.
Other research conducted in the field of group communication explicitly includes
the network partition problem [122][123]. These approaches show that they are
resilient against the problems arising after a network breaks apart and
eventually merges back together, but none of the approaches deal with the
detection of the event itself.

5.3.2. The Partition Detection System
Mobile ad hoc networks based on radio technology such as Bluetooth or wireless
LAN are restricted in terms of bandwidth and their multi hop capability. That
limits the amount of participating nodes and the size of the network topology. In
such networks we have the notion of borders due to their geographic constraints
and their wireless nature. To be able to exploit this characteristic is important for
the network partition detection system. Border nodes are especially suitable to
play a vital role in the detection process. The general idea is that border nodes
exchange messages among each other. This way they monitor large parts of the
network as the messages traverse extensive network regions. If the network
breaks up into separate partitions the nodes cannot reach each other any more
and therefore detect the partition. This is of course only true if nodes are unable
to communicate due to the failure of one of the nodes. In order to be able to
distinguish between failure of border nodes and partition, extra functionality is
added. The network wide partition detection is complemented by a local
monitoring mechanism to prevent false partition detection due to node failure.
Before going into the details of the partition detection systems developed it has to
be noted that they do not rely on CrossTalk per se. One can argue that in the
application layer a developer can easily implement CrossTalk’s Global View
functionality to at least some extend. Whether CrossTalk’s Global View is used or
not, the approaches developed are cross-layer in nature and the presented
solutions could go through CrossTalk’s local view to obtain routing protocol
information. But even that we do not as even this potential cross-layer
functionality can be implemented at the application layer.
The partition detection systems presented are therefore a good comparison
against CrossTalk’s Global View functionality against an application layer
implementation that does basically the same and we will see that it is less
precise. That means the presented solution should preferably be based on
CrossTalk.
Before we go any further, the disadvantages of having an application layer
mechanism are manifold. First of all each node would need to run the application.
Having the functionality in a common framework would make sure that the
functionality exists on each node. A second drawback is that only application
layer packets can be enriched with additional data which reduces the efficiency of
the data dissemination procedure. Also, every application that would rely on such
a mechanism would have to implement it in addition to the aforementioned
problems. As every application does the same thing individually, there are less
possibilities of optimizing the data dissemination procedure in addition to the
development overhead. Finally, the mechanisms that could be leveraged at lower

5 Applications, Results and Analysis 111

layers have to be re-implemented. That means that the same functionality has to
be implemented twice. This unnecessary redundancy consumes resources that
are scarce in ad hoc networks.
Let us now look at the partition detection systems in detail. Both approaches we
developed distinguish two sets of nodes. One set consists of nodes not actively
taking part in the network partition detection system. The other set of nodes
actively probes the network as part of the system. The nodes probing the system
have to be chosen carefully as mentioned above to ensure that most of the
network topology is monitored. Their key property is that they have a relatively
small amount of neighbors compared to the nodes not actively supporting the
partition detection system. The prominent reason for this is because nodes with a
relatively low neighbor count are most likely at the border of the network
topology. The number of neighbors a node has allows us to select the most
appropriate nodes for the active part of our system. In other words, it allows us to
identify border nodes. This is again a good example for the application of global
knowledge. The local one-hop neighbor count or neighbor degree does not imply
whether a node is at the border of the network or not. Only by comparing its own
neighbor degree with the average neighbor degree in the network a node can
determine if it is in a sparse network area and therefore at a border with a high
probability. But as stated before, in this experiment we try to solve the problem
at the application layer.
Both approaches work in a way that nodes periodically send out beacon messages
serving as keep-alive messages. Every active node monitors a certain amount of
other active nodes (or just one in the centralized approach as will be explained
later). If a beacon message from one of these monitored nodes is not overheard for
a certain amount of time, network partition is suspected. Therefore, active nodes
should be placed far apart so that the beacon messages travel through large parts
of the network, thereby increasing the monitored network area. In order to
distinguish whether the absence of the beacon is due to node failure or due to
network partition, a local validation mechanism is used, as already mentioned.
The nodes sending beacon messages elect a so called “buddy”. This buddy is an
one-hop neighbor monitoring the node sending the beacon message. If the buddy
node cannot hear its one-hop neighbor any more, it starts a route request for it. If
it finds the node over a multi-hop path, it asks that node to elect a new buddy. If
it does not find the node, it suspects node failure and notifies the other active
nodes about that incidence. Using this buddy mechanism the probability for a
false partition alarm is significantly reduced. It can be even further reduced by
electing multiple buddies since a false partition alarm is only set off if all buddy
nodes together with the active node fail simultaneously.
Since the active node (or border node) identification is so important, we evaluated
two different approaches here as well, a static one and a dynamic one, which
adapts well to topology changes. Since the criteria for becoming an active node is
the neighbor count, all nodes in the network have to monitor their immediate
network neighborhood periodically. Every node sends a broadcast message with a
time-to-live (in hops) of one so that the message is only heard by direct neighbors,
which in turn send an acknowledgement. This way, every node always has a
relatively up-to-date view of its immediate network environment. This exactly is
the mechanism which much more efficiently could be handled by cross-layer
mechanisms. As an example, AODV could provide this information at no extra

112 5.3 Partition Detection – A Novel Application Using CrossTalk

cost. By not utilizing cross-layer mechanisms the exact same mechanism would
be carried out twice, once at the network layer, once at the application layer. This
clearly is a very wasteful approach in terms of resources.

no
de

 s
ta

te

Fig. 5.28 Neighborhood hysteresis

The static approach uses a fixed threshold. Here a node becomes active if it has
equal or less neighbors than the threshold. In the dynamic approach, a node
constantly piggybacks its own neighbor count onto application data packets. The
receiving node extracts that information and generates a threshold based on the
last set of neighbor counts received. If its own neighbor count is below that value,
it becomes active. This part, i.e. the dynamic approach could much more
efficiently be realized using CrossTalk’s Global View as previously mentioned.
Border nodes can also leave the active state again. When their neighbor count
increases, they stop actively taking part in the system as it indicates that the
node is moving away from the border making it less suitable to participate in
partition detection. Since in mobile networks the network topology could
constantly change and, therefore, the neighbor count could fluctuate, the system
uses a kind of neighborhood hysteresis. That means that a node enters the active
state at a certain neighbor count but returns to the inactive state at a neighbor
count higher than the threshold to enter the active state as illustrated in Fig.
5.28. Without this mechanism border nodes could potentially change their state
frequently causing a high overhead.
If an active node has only a few neighbors, there is a high probability that its
neighboring nodes also have a relatively low neighbor count due to the nature of
ad hoc networks. It would be inefficient to activate those nodes since that area of
the network topology is already covered. Both developed approaches make sure
that nodes adjacent to active nodes do not become active themselves through a
neighbor inquiry mechanism when joining the network, or by overhearing
activation messages. The inquiry mechanism also makes sure that newly
switched on nodes learn about beacon sources.
Note, that the prerequisites for our system to work are that an efficient routing
algorithm exists, which supports broadcast and unicast. Additionally, it should
provide the ability to set a time to live field.

5 Applications, Results and Analysis 113

The first system that was developed takes a centralized approach. Only one of
the active nodes sends out beacon messages periodically, with the other active
nodes only being the endpoints for those messages. On start-up of the system, the
first node that detects that it should become active sends out a broadcast
message telling each node that it is the beacon source (or server). Conflict
situations can be handled by an algorithm similar to the lowest ID algorithm
[113] or by another clusterhead election procedure. Every subsequent node that
becomes active sends a notification to that node causing it to periodically send
out a beacon (unicast message) to the just activated border node. As long as all
the border nodes receive the beacon periodically, the network between the border
nodes and the beacon source is monitored and connected. This, again, is why the
placement of the active nodes is so important.
If one of the border nodes does not hear the beacon any more, it would always
interpret it as a result of network partition. That is why we introduce the local
validation mechanism, which was already briefly mentioned. It works as follows.
In the centralized approach only the beacon source elects a buddy on start-up.
The buddy periodically sends out a PING message to the beacon source which
responds to that message with an acknowledgement. It is important that the
interval of this PING message is much smaller than the interval of the beacon
message. This way node failure is detected much faster than partitioning and the
monitoring border nodes can be notified before they suspect partition due to the
absence of the beacon. When a new node within the network becomes active and
registers at the server, the server sends out an updated list of all border nodes to
the buddy. This way the buddy always has an up-to-date view of the partition
detection system and knows which nodes it has to notify if the server fails and
could also quickly replace the server on failure. Another approach would be to
simply broadcast the failure message, instead of using unicast messages. We did
not implement this approach, since we wanted to keep broadcasts to a minimum.
Failing nodes are not the only source of disruption for the partition detection
system. In a wireless network, messages are much more likely to fail than in a
wired network. Therefore, partition detection mechanisms must be robust
against an increased message failure rate. The border nodes do not expect every
beacon message to arrive at their destination. Every border node allows a certain
number of messages to be lost before they suspect network partition. If the
allowed beacon message loss is for example 3 and the beacon interval is 10
seconds, the system would suspect partitioning after 30 seconds have passed
without having received a beacon message and also not having received a failure
notification from the server buddy.
A similar mechanism is used for the keep-alive-messages exchanged between a
buddy and the server. However, since they are one hop neighbors, message loss is
considered to be far less significant.
The border nodes that monitor the server have to send a keep-alive message back
to the server infrequently to tell the server that they are still participating since
they have no fail notification mechanism like the server does. That ensures that
the server does not load the network unnecessarily after a border node failed. If a
node changes its state to be inactive it notifies the server for the same reason.
The centralized approach has one general disadvantage. The partition which
contains the server does not detect the partition as such. This is because in the
centralized approach active nodes do not exchange beacon messages amongst

114 5.3 Partition Detection – A Novel Application Using CrossTalk

each other. Detecting partitioning in the server partition might not be necessary
though. If the applications in all but one partition have to suspend their
operation, the centralized approach is sufficient. This situation is described in the
primary partition model [114][115].
There is also one general case in which partitioning is not detected, neither in the
centralized nor in the distributed approach. The algorithms will not detect a
partitioning when a part of the network is separated that does not contain an
active node. If the border node detection works properly, this can only occur if a
very small amount of nodes are separated in a rather unlucky constellation. The
question is whether someone would consider this a network partition.
The distributed approach is in its operating mode similar to the centralized
approach. One key difference is that every active node sends out beacon messages.
On becoming an active node, the node sends out a broadcast message telling
every other node that it just became active. Every node in the network, even the
inactive ones, store a certain number of border node addresses together with the
distances to those nodes in hops. If there are more addresses to store, the node
either replaces “old” entries or it replaces addresses of nodes that are closer than
the new node. When a node now becomes active, it uses these nodes as partner
nodes. It sends a request to send beacon messages at a certain interval to them.
With the active nodes already stored while having been inactive, a node becoming
active already knows of other active nodes in the network and can directly
participate in the system. The replacement strategy mentioned above ensures
that large parts of the network are covered by the system since only the nodes
furthest away are kept. Since every active node sends out beacon messages, they
all need a buddy node. The buddy acts a similar way as in the centralized
approach. A difference is that the active node always informs the buddy node
when either a new partner node is chosen, or if a beacon requestor fails or is
added. This way all other nodes (a small number of active nodes) that in some
form interact with the active node get notified if it fails. The partner nodes then
stop sending beacons and the beacon requestors have to choose a new partner for
themselves. If active nodes get notified that one of their partner nodes failed, it
can either choose to wait until a new node becomes active, or if too many partners
fail, it could start a lookup request for active nodes to fill the partner table. The
latter is especially useful after a partition was detected.
There is one critical moment in the system on startup. When the detection
system is initiated, the nodes start checking whether they should become active.
That would lead to a broadcast storm shortly after startup. This is why nodes
start a timer when they receive an activation broadcast. If that broadcast timer is
not expired when they want to send their own activation broadcast, the nodes
delay it until after the timer expires. This mechanism makes sure that the
network is not loaded unnecessarily, keeps collisions to a minimum at startup
and saves bandwidth for other packets such as application data packets.
The distributed approach has one possible weak point. If a buddy (or buddies if
multiple exist) and its corresponding active node are separated by partitioning,
the partition remains undetected in the case that the active node is the only
active node in its partition.

5 Applications, Results and Analysis 115

5.3.3. Experimental Setup
To validate the two approaches and to analyze their behavior and performance
we implemented them using the ns-2 network simulator. We evaluated four basic
scenarios:

• Networks without partition and failing nodes
• Networks with partitioning but without failing nodes
• Networks with failing nodes but without partitioning
• Networks with both failing nodes and partitioning

Additionally we changed parameters for the border node detection. Every
scenario was simulated 50 times with a given parameter combination. The
networks we simulated consisted of 50 nodes, which we believe is a reasonable
number for scenarios such as a mobile gaming scenario at a subway station or
group communication at a construction site or in a company.
As already mentioned, the border node detection is a vital mechanism for our
system. In our simulations we let the nodes move according to the random
waypoint mobility model. In some scenarios the nodes are expected to move only
little or extremely slowly for example while participating in a multiplayer game.
We believe that there is a vast amount of other scenarios where this assumption
cannot be made. Therefore, we let the nodes move at an average walking speed.
This way we can evaluate the stability of our system and we see nodes changing
their state due to changes in their immediate networking neighborhood. The
mobility model itself has a certain characteristic [110] that we believe might
mimic the behavior of ad-hoc application users. In the random waypoint model
the node density in the center of the network area increases over time. Mobile
gamers for example might in reality move together a little closer since mobile
gaming and other applications in ad hoc networks also have a social implication.
For the dynamic border node identification approach, every node picked a node at
random every 10 seconds and sent a packet with its own neighbor count
piggybacked onto that packet to that node. Depending on the application, that
might not be very much, but we wanted to evaluate whether the system still
works with applications that generate only little traffic. The threshold itself was
then generated out of the last 10 application data packets a node received.

Table 5.3 Partition detection experiment parameters

Simulation
Parameter Parameter range

Network size 50 nodes

Mobility Random Waypoint 1.4 m/s

Traffic generation 0.1 pkts/s to random destination

116 5.3 Partition Detection – A Novel Application Using CrossTalk

5.3.4. Experimental Results
Let us first have a look at the border node identification process. This process is
crucial for the efficiency of both partition detection schemes. Very important is
that even in the face of node mobility, the active nodes are close to the border of
the network.

Fig. 5.29 Network topology after 50s of simulation

Fig. 5.29 shows a typical network topology after 50s of simulation. The system
had plenty of time to perform border node identification but the nodes themselves
did not move a significant amount. The figure shows the geographic positions of
the nodes with their respective transmission ranges denoted by the dots and
circles respectively. The dark nodes are the active nodes monitoring the network,
i.e. they believe to be at the border of the network. The figure clearly shows that
the border node detection scheme reliably identifies border nodes within the
topology. It can be also seen, that the overall amount of nodes that activate
themselves is low as neighboring nodes do not become active as well as
previously described. This mechanism obviously works well too.

Fig. 5.30 Network topology after 500s of simulation

5 Applications, Results and Analysis 117

In Fig. 5.30 the same network is displayed again but after 500 seconds of
simulation. The effect of the mobility model can be seen clearly. The node density
is much higher in the center now, increasing the average neighbor count. The
border node detection lost a slight bit of its accuracy. That can be explained by
the fact that the nodes only check at certain intervals whether to become active
or not. This could be much more efficiently be solved by CrossTalk as the interval
itself would be much smaller due to other application packets and routing control
packets for example. During the time interval the partition detection system is
passive, the neighborhood might have changed and after the next check the node
might change its state. Another reason could be that the last 10 application data
packets received led to an unbalanced dynamic threshold at some of the nodes.
That has no negative effect on the partition detection. Only the network is loaded
a bit more until the nodes finally change to the inactive state. For example the
node in the center of the network most likely will change its state soon after the
displayed network snapshot. This inefficiency though could be reduced using
CrossTalk as it was shown to provide a highly accurate global view. In general it
can be said that the borders are still very well covered and that the partition
detection system is fully operational. It is compared to a solution based on
CrossTalk very wasteful in terms of resources though.

0

2

4

6

8

10

12

14

16

18

20

neighbor count
local average

 neighbor count (active node)
 local average (active node)

Fig. 5.31 Dynamic border node detection statistics after 50s simulation

Fig. 5.31 and Fig. 5.32 show the key parameters in more detail. In both graphs
show statistics collected in the same situation depicted in the previous figures, i.e.
after 50 and 500 simulated seconds. They show the neighbor count which is the
actual number of neighbors of each individual node in ascending order together
with the locally calculated neighbor averages which is the network-wide neighbor
average calculated form the piggybacked data received by each individual node,
i.e. the application layer global view. In other words, each two consecutive lines
represent one node ordered by the number on neighbors a node has. The

118 5.3 Partition Detection – A Novel Application Using CrossTalk

probability for being a border node is therefore the highest on the left side of the
graph. The dashed horizontal line is the network wide neighbor average
calculated employing global knowledge. The closer the local average of an
individual node is to that line, the more reliable it can identify itself as a border
node. If more nodes have a local average above that line, the overall system
might generate a large number of active nodes. If the local average is in general
calculated too low too few border nodes could be the result. That of course is also
dependant on the way the threshold for becoming an active node is calculated.
From the figures one can see that at the beginning of the simulations we have a
global average of 11 neighbors per node, whereas that average increases to 18
neighbors after 500 seconds. That translates into an increase of 63% in neighbor
density. In our case, this characteristic of the chosen mobility model is a good test
scenario as the border node detection algorithms has to adapt to this change.
From Fig. 5.30 it can be seen that this is the case.
Fig. 5.31 shows that the dynamically calculated neighbor average in general
reasonably well reflects the real network-wide average. Most of the nodes, though,
have a local neighbor average slightly lower than the artificially extracted
average. Also the deviation of the different locally calculated averages is
relatively high. Clearly, CrossTalk would perform much better. In the figure, the
statistics of active nodes are shown in black (local average) and white (neighbor
count) respectively. In Fig. 5.31 the values are all within the normal thresholds of
the system i.e. activation threshold and neighborhood hysteresis. The first three
active nodes from the left all have a lower neighbor count to the calculated
average neighbor count. They clearly qualify to be active nodes. For the next
active node both values are equal. The node might have gotten more neighbors
and/or the calculation of the average neighbor count might have changed. The
same applies for the next two nodes which should evaluate themselves differently.
But the neighborhood hysteresis prevents them form becoming inactive to fast as
the neighborhood might be in a state of frequent flux.

0

5

10

15

20

25

30

35

neighbor count
local average

 neighbor count (active node)
 local average (active node)

Fig. 5.32 Dynamic border node detection statistics after 500s simulation

5 Applications, Results and Analysis 119

In Fig. 5.32, i.e. after 500 simulated seconds, some of the values do not fully
satisfy the system criteria due to the reasons already stated above. For example,
the two rightmost border nodes in Fig. 5.32 should leave the active state next
time they check their neighborhood. The reason why so many nodes have far less
neighbors than the locally calculated threshold and are nonetheless not active is
that they have a one hop neighbor which is already active. Still the approach is
reasonable. As can be seen from the figures, the neighbor average is not constant,
but the system adapts to the changing environment and the border node count is
not decreasing. The system is still fully functional. But again it has to be stated
that clearly CrossTalk would do a much better job in this case in terms of relative
error and standard deviation compared to the application layer global view
without the additional overhead.

0

5

10

15

20

25

30

35

N
um

be
r o

f n
ei

gh
bo

rs

border node

threshold

Fig. 5.33 Neighbor statistics after 500s for the simple threshold approach

In the previous figures we analyzed the dynamic approach. In comparison, the
simple threshold approach is not able to adapt to changing environments. The
first problem is that the threshold has to be chosen very carefully. If it is too low,
no or too few nodes become active which leads to a dysfunctional partition
detection system. A second problem arises when the environment changes and
nodes leave the system. This is of course only the case when the topology changes
in a way that the average neighbor count increases like it does in the scenarios
we tested. For the exact same movement traces the simple threshold approach
always had less successfully detected border nodes at the end of simulation runs,
when starting out with equal thresholds. Fig. 5.33 shows the neighbor count of
each individual node together with the threshold value (dashed line) for the
simple threshold approach. The black marked data points are active nodes. What
someone could do to increase the number of active nodes is to set the threshold
relatively high. This way, active nodes will be guaranteed, but their placement
does not have to be optimal any more. With such a high threshold, the number of
active nodes would not excessively grow as nodes neighboring an active node

120 5.3 Partition Detection – A Novel Application Using CrossTalk

would stay inactive and the density of the network would not allow the number of
active node to grow unreasonably. We simulated the threshold approach in such
networks with a threshold of 50, which is equal to the total number of nodes. This
way every node would activate itself without having an active node in its radio
range. The result was that only 12 nodes were activated leaving the number of
active nodes at a reasonable number. The positions of the nodes within the
network were left to chance and therefore the border node detection lost its
relative determinism and usability. Even worse would be the effect in networks
based on a short-range radio technology resulting in networks that are far less
dense than the one shown in Fig. 5.29. The number of active nodes would further
increase if the threshold is set to a high value.

Fig. 5.34 Typical centralized partition detection system structure

Let us now have a look at the two network partition detection schemes. Fig. 5.34
shows a typical centralized partition detection system structure. Clearly the
server is the most vulnerable element of successful partition detection. For our
simulations we chose the first node that activates itself to become the server. In a
real network we would have to use a mechanism similar to a cluster head
election phase used in hierarchical routing algorithms as already mentioned or a
node initiating the application would serve as the beacon source (e.g. the game
initiator).
For the first set of simulations we measured the amount of packets sent by the
partition detection system averaged over 50 simulation runs without partitioning.
The simulations lasted 500s and the results show the cost of operating the
system in terms of message exchanged in the state that it should be in most of
the time, i.e. in an unpartitioned network.
Fig. 5.35 sums up the number of different messages exchanged. The parameters
chosen in the simulation runs are the following. Every 15 seconds every node
probed the neighborhood and then decided whether to change its state or not.
The buddy sent a PING message every 5 seconds and the server sent a beacon
message every 15 seconds to each of the border nodes. The figure does neither
include the application data traffic nor the neighbor probes since they are equal
in both approaches.

5 Applications, Results and Analysis 121

As can be seen, the buddy traffic dominates the overall load generated by the
system with nearly 50% (220.2) of the message total of 447.5 messages in average.
These messages are in most cases one hop messages and therefore do not load the
overall network very heavily. Using CrossTalk these messages could be saved in
addition to the neighbor probes not shown in the graph. The other half of the
messages generated mainly consist of beacon messages (214.1) which most likely
are multi-hop messages loading the network more than the buddy messages do.
This is basically the business logic of the partition detection algorithm. Some of
those messages might be saved using CrossTalk as the routing state could
confirm the existence of the node. The rest of the sent packets can be neglected
except for the one broadcast message from the server at start-up. The main load
of the partition detection system is carried by two nodes: the server and the
server buddy. The server has to send all beacon messages and also 50% of the
buddy packets (acknowledgements). Since the buddy changes during the
simulation due to node mobility the rest of the buddy load is distributed over
multiple nodes.

220.2

214.1

21
10.2

buddy messages

beacon messages

broadcast messages

notification messages

fail messages

h

Fig. 5.35 Maintenance cost in number of messages sent for the centralized approach

during a 500s simulation run

The total traffic generated (447.5 messages) averaged over all nodes in the
network would roughly translate into one packet sent per node every 55 seconds.
In mobile gaming scenarios that amount of traffic would only be a fraction of the
overall load generated by the application. The relation between partition
detection inflicted load and load caused by the application is also highly
dependent on the parameter set of the partition detection system. If an
application needs to detect the partitioning relatively fast more packets have to
be exchanged compared to a relatively slow detection process.

122 5.3 Partition Detection – A Novel Application Using CrossTalk

In the simulations where we let nodes fail we concentrated on the server. The
buddy always replaced the server and notified the other active nodes. The system
could always handle server failure. The only time it was not able to handle the
failure and a false partition alarm was initiated was when both, server and
buddy, failed simultaneously. Such a situation should be fairly rare, but to
overcome this problem, an active node could elect more than one buddy node.
Simultaneously failing border nodes could have an effect on the partition
detection system only if by chance all border nodes in one partition failed after
the partition occurred. The extra messages sent after a partition was detected are
negligible compared to the messages sent throughout a simulation run.

Fig. 5.36 Typical partnerships amongst nodes in the distributed approach

The distributed approach spans a mesh in the network topology as illustrated in
Fig. 5.36. Every route from one active node to the other is sensitive to partition
detection. The distributed approach of course generates much more traffic since
much more beacon messages have to be exchanged and also every active node
needs a buddy.
The load generated can be seen in Fig. 5.37. The settings chosen are the same as
for the distributed approach. Additionally, every active node should communicate
with 3 other active nodes, temporarily less when nodes fail. The average total
message count sums up to an amount of 3121 messages. For the chosen
parameter set that is roughly 7 times the amount of messages that have to be
exchanged compared with the centralized approach. Again 50% or 1617 of those
messages are one-hop buddy messages. 904 beacon messages are exchanged
amongst the active nodes. The individual load of a single active node, though, is
far less than the server load in the centralized approach. Now also a significant
amount of fail packets have to be sent. This kind of message includes
notifications to active nodes if another active node changes its state. The other
message types are negligible except the request messages that in average sum up
to 95.2 messages and describe the messages exchanged to build up a partnership
between two active nodes.
The simulations also showed that the distributed approach is much more
resilient against node failure. The problem of simultaneously failing buddy and

5 Applications, Results and Analysis 123

active nodes also persists here. If someone wanted to decrease the risk of such an
unlikely event even more, multiple buddies would be the answer here as well.

1617

904

13.3

95.2

491.5

buddy messages

beacon messages

broadcast messages

request messages

fail messages

Fig. 5.37 Maintenance cost in number of messages sent for the distributed approach

during a 500s simulation run

The effectiveness of the distributed system is illustrated in Fig. 5.38. It shows the
different partnerships that exist among the active nodes in the network. The
separate partitions both contain 5 active nodes. 15 partnerships span the
partitioned region. That means that 15 partnerships have to be destroyed in
order to disrupt a successful partition detection. In this particular case it would
mean to let nearly all active nodes fail simultaneously without giving the system
time to recover.

Fig. 5.38 Partnerships amongst nodes during partitioning

124 5.4 Global View Scalability Enhancements

5.3.5. Conclusion
In this chapter two different approaches to detect network partitioning were
evaluated. Both approaches are based on the notion of border nodes and their
successful identification.
With both systems one is able to distinguish node failure from network partition,
with both systems primarily differing in terms of resilience against failure and
network load. Both approaches explicitly select the best suited nodes and are also
able to distinguish node failure from network partitioning. Our distributed
approach is still extremely lightweight, of course depending on the temporal
granularity of the detection mechanism, resilient, and efficient.
Both our approaches have unique advantages. The centralized approach
generates a by far lower message overhead compared to the distributed approach.
It is in its structure much simpler, but burdens one single node far more than the
rest of the nodes. The centralized approach also has some critical system states.
For example during the time between server failure and the time when all active
nodes registered at the new server the network is completely unmonitored. The
same problem occurs during the time when a new server has to be elected in a
separated partition. The server election phase itself could be a complex and costly
task in terms of network load and system downtime.
The distributed approach is far more resilient against node failure. Multiple
partnerships make sure that a single or more failing nodes only reduce the
monitored area of the affected nodes temporarily. That also has the effect that
there is no downtime in that system except if a large number of nodes fail or an
extremely unfortunate combination of nodes fail simultaneously. That also makes
the system more stable against malicious nodes trying to disrupt the system.
These positive properties of course come at a cost. The distributed approach loads
the network far more than the centralized approach.
The whole system was built in user space, i.e. in the application layer. It serves
as a good example to compare against a CrossTalk-based equivalent as it can be
argued that at the application layer, the same functionality can be implemented
in this case. The business logic of the system itself, i.e. the exchange of
monitoring messages can under some circumstances be made more efficient using
CrossTalk. The main advantage would be though that the enabling algorithm, i.e.
the border node identification can be made more efficient and precise and low
cost. The algorithm itself is per se a global adaptation problem and therefore
CrossTalk’s Global View mechanism should be employed. Therefore, the partition
detection system is a good example of the novel applications CrossTalk enables.

5.4. Global View Scalability Enhancements
Optimizations based on the relative state of a node inside a network, i.e. based on
the comparison between Local View and Global View, must be based on
reasonably correct data the both views provide. The Local View will no doubt be
correct as the data provided origins at the local network protocols and they got
this data through measurements or directly from their own data repository. The
Global View though is constructed based on information gathered by the data
dissemination process employed by CrossTalk. This section therefore solely deals
with the quality of the Global View and the corresponding cost involved [54].

5 Applications, Results and Analysis 125

Furthermore, some the cache replacement algorithms for the case a device is
unable to store all incoming Global View samples are evaluated. This analysis
also answers the question if it is really necessary to store each and every sample
to generate a reasonably correct network-wide view. Furthermore, the stateful
approach as described in section 4.3.1 is analyzed according to the relative
savings compared to the stateless approach.

5.4.1. Experimental Setup
A vast amount of experiments were carried out, again inside the ns-2 simulator.
The metric that was disseminated in these experiments and on which the Global
View data is based on was a load metric [53] generated as described in section 5.1.
The routing algorithm used was again the Ad-hoc On-demand Distance Vector
(AODV) algorithm where we only enriched route requests and route replies in
addition to application packets. Hello messages were enriched with information
of one-hop neighbors since we did not use the information of direct physical
neighbors for the calculation of the global view.
Having learned from the impact of different network settings analyzed in section
5.1, we carefully chose our simulation parameters. Every simulation carried out
included churn, i.e. the leaving and joining of nodes. Churn can have a significant
impact on the global view as newly joined nodes start out stateless and have to
establish their global view from scratch. Therefore, we evaluated, as we believe, a
quite severe churn rate as we did before. Each node stays for at least 60 seconds
in the network and stays for 250 seconds at maximum, failing within this 190
second timeframe according to a uniform distribution.
To help nodes to establish their global view faster, we utilized the previously
mentioned initialization procedure. A node would send a packet with a time-to-
live (TTL) of one hop requesting the global view information of its neighbors to
initialize its own. For the case of AODV that could be coupled with the Hello
messages.
The area of each simulation has an aspect ratio of 1:4 and a density of 50 nodes
per km². Mobility, as shown in section 5.1 proved to be – if anything – marginally
advantageous so we did not simulate mobility extensively. The high churn rate in
fact can be seen as discrete mobility in a way with the additional penalty of
loosing the obtained state information.
For the traffic generation, we chose relatively low load scenarios. The reason for
this is that the higher the load is, the better CrossTalk will perform since it has a
larger choice of packets to enrich. We evaluated two kinds of traffic patterns, one
where every node generates the same amount of traffic. Every two seconds, a
node would send a packet to some fixed destination and after 40 seconds it would
change its destination. Sending packets at that rate is, as we believe, extremely
low. The other traffic pattern employed distinguishes between three traffic
classes as introduced in section 5.2. The first class is an extremely low traffic
generator where only every four seconds a packet is sent to a destination and
destinations are changed every 50 seconds. The second class sends a packet every
2 seconds and changes destinations every 30 seconds. The third class sends 2
packets per second and changes destinations every 10 seconds. The distribution
of the classes is exponential, which means that there are roughly twice as many
class-2 nodes as there are class-3 nodes and twice as many class-1 nodes as there

126 5.4 Global View Scalability Enhancements

are class-2 nodes. In other words, there are only few “high” traffic nodes but
many low and mid-range traffic nodes in the network.
As for the cost of storage, we evaluated several cache sizes in combination with
several network sizes and load settings.
The size of the tested networks ranged from 50 to 400 nodes to be able to derive
scalability trends. Each simulation had a duration of 600 seconds. The first 100
seconds were disregarded as a startup phase since the whole network started
from scratch without any state at all (even without any routing state). Over the
remaining 500 seconds the results were averaged.
The parameters to reflect the quality of the global view are equal to those found
in section 5.1 with the exception of one parameter. We added the relative error of
the global view to reflect its quality. The relative error in our case is calculated
by looking at each node individually and by determining the relative error of the
global view generated at each node as compared to the actual, correct global
value, which is calculated artificially. The relative error in our analysis is the
average of all relative errors in the network. The second metric is our correctness
metrics as introduced in chapter 5.1. The third metric is the standard deviation
of the global views across all nodes in the network. Since we only compare
corresponding simulation parameters, we do not calculate the coefficient of
variance as the standard deviation can be compared directly. It reflects the
uniformity of the global view, i.e. the degree of dissimilarity of the individual
global views within the network.

Table 5.4 Scalability experiment parameters

Simulation
Parameter Parameter range

Network density 50 nodes/km²

Network size 50 – 400 nodes

Topology aspect ratio 1:4

Traffic generation 0.5 pkts/s or exponential traffic pattern

Churn each node fails every 60 – 250s

5.4.2. Experimental Results
The experiments had two objectives both in respect to scalability. On the one
hand the necessary overhead in terms of cache size for the Global View
component should be analyzed. The experiments described so far all assumed
that memory for the Global View cache was of no concern. So the experiments
should reveal if CrossTalk is feasible with very limited memory availability. But
not the size alone was a focus but also finding the most suitable cache
replacement strategy as described in section 4.3.2.
The second objective was to find out how well the stateful approach performs in
direct comparison with the stateless approach, which was the approach employed

5 Applications, Results and Analysis 127

in the previous experiments. That comprises the actual overhead induced by both
approaches on the one hand and the quality of the global view on the other hand.

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300 350 400

network size [number of nodes]

re
la

tiv
e

er
ro

r

biggest
smallest
FIFO
most differing
farthest
closest

Fig. 5.39 Correlation between network size and the relative error at a fixed cache size

of 50% of the number of nodes for different cache replacement strategies

In Fig. 5.39 the relative error of the Global Views for all caching strategies are
displayed in increasingly large networks with caches that are able to store data
samples from 50% of the participating nodes. In other words the relative cache
size according to the number of nodes participating stays constant along the
x-axis. The graph therefore represents scenarios in which a node cannot store all
possible disseminated values and has to employ one of the cache replacement
strategies. As can be clearly seen, the FIFO strategy performs best in all network
sizes, closely followed by the strategies which replace entries according to the
distance metric (closest/farthest). FIFO maintains a relative error well below 0.2
in all scenarios. It even displays a decreasing relative error with increasing
network sizes. From the 50-node network to the 400-node network, the relative
error is lowered by a factor of 3 to roughly 0.05 for the FIFO strategy. This trend
hints at the scalability properties of the CrossTalk data dissemination technique
since growing network sizes do not have a negative impact on the state of the
global view.
The “most differing” and “biggest” replacement strategies perform worst. For
small networks, the global view is only an extremely rough estimation of the
actual situation. For adaptation or optimization processes or the alteration of
protocol behaviour such a global view would be useless. With increasing network
sizes, the performance increases here, too, but the general trend shows the
importance to consider large, or the most differing values in the calculation of the
global view. In general, the results imply not to replace cache entries on the basis
of their value with the exception of the smallest values as the corresponding
replacement strategy performs reasonably well. An explanation to this
phenomenon has to deal with the fact that the disseminated value from which

128 5.4 Global View Scalability Enhancements

the global view is constructed is the load metric presented in section 5.1.2. In
small networks there is a relatively small core with only few nodes. These nodes
though will be highly loaded as they are most likely on the shortest path. By
replacing the values of those few nodes which have a big impact on the actual
network-wide average the global view’s quality suffers strongly. With an
increasing network size the core of the network grows, the load inside the core
will be slightly better distributed and there are relatively and of course
absolutely more nodes that actually have to carry a higher load burden. By
replacing the sample in the Global View that represents the highest load the
overall effect on the calculated network-wide average is less strong. Therefore,
the corresponding graphs decrease with much stronger than the others with
growing network sizes. The reason why all graphs in Fig. 5.39 decrease with
growing network sizes is that the strong discrepancy created by the border effects
become less pronounced in larger networks and because there are absolutely
more cache entries to choose from when a new sample arrives. Fig. 5.40 confirms
these observations.

65

70

75

80

85

90

95

100

50 100 150 200 250 300 350 400
network size [number of nodes]

C
or

re
ct

ne
ss

 [%
]

biggest
smallest
FIFO
most differing
farthest
closest

Fig. 5.40 Correlation between network size and the correctness at a fixed cache size of

50% of the number of nodes for different cache replacement strategies

Fig. 5.41 displays the dependency of the quality of the global view on the cache
size used for the FIFO replacement strategy. As it turned out to be the best
choice we continue to have a closer look at it. The cache size in Fig. 5.41 is
expressed as the fraction of data samples it can hold over the number of nodes in
the network. A cache size of 10% in a 100 node network implies that a node can
hold 10 data samples and so forth. Here again the scalability properties can be
seen. With growing network sizes, an increase in the cache size becomes more
and more insignificant. That means that the quality improvements grow sub-
linearly with increasing cache and network sizes. As an example let us look at
the 50 node curve at 100% cache size. Here we have a cache able to hold 50 data
samples and the relative error is at roughly 0.13. The same absolute cache size,

5 Applications, Results and Analysis 129

i.e. a cache that is able to hold 50 data samples, we find at 50% for the 100 node
network curve, at 25% for the 200-node network and at 12.5% for the 400-node
network. With the exact same absolute cache size in those networks, the relative
error drops to 0.08 for the 400-node network. That clearly shows that it is not
necessary to invest more memory for increasing network sizes. With a fixed cache
size, the actual relative error is dropping when the network grows. Memory-wise,
CrossTalk’s global knowledge approach clearly scales and, with relative errors
well below 0.1, it also provides a high quality of the global view.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cache size [% of number of nodes]

re
la

tiv
e

er
ro

r

50 nodes
100 nodes
200 nodes
300 nodes
400 nodes

Fig. 5.41 Dependency of the quality of the global view on the index size when using a

FIFO replacement strategy in networks of different sizes

Fig. 5.42 and Fig. 5.43 show the standard deviation of two selected cache
replacement (FIFO/Biggest) strategies for differently sized caches. In small
networks and with small cache sizes, the FIFO strategy does not perform as well
in terms of uniformity. The standard deviation is relatively high in these
networks under the previously mentioned conditions. The Biggest replacement
strategy exposes roughly the same uniformity degree across all network sizes for
caches with a relative size of 10% of the network size. But very quickly with
growing network sizes and also cache sizes, FIFO again outperforms the other
replacements strategies as the uniformity changes similar to the relative error.
As can be expected, all approaches perform identically when approaching cache
sizes that are able to hold all possible samples from throughout the network.
The presented standard deviations differ significantly in their overall behavior
with growing cache sizes. For the FIFO strategy there is a clear trend that with a
growing cache the standard deviation drops, at first very fast and then only
slowly. The reason for this clear trend is very simple. Samples get replaced
according to their time of entry into the cache. Therefore, for small caches, the
actual value distribution inside the cache is quite random. As only few samples
can be stored the overall standard deviation of the global views of all nodes in the
network is high. The bigger the cache the less impact this randomness has as the
sample base grows.

130 5.4 Global View Scalability Enhancements

0.5

1

1.5

2

2.5

3

10% 30% 50% 70% 90%

cache size [% number of nodes]

st
an

da
rd

 d
ev

ia
tio

n

50 nodes
100 nodes
200 nodes
300 nodes
400 nodes

Fig. 5.42 Dependency of the uniformity of the global view on the cache size using the

FIFO replacement strategy in networks of different sizes

0.5

1

1.5

2

2.5

10% 30% 50% 70% 90%

cache size [% number of nodes]

st
an

da
rd

 d
ev

ia
tio

n

50 nodes
100 nodes
200 nodes
300 nodes
400 nodes

Fig. 5.43 Dependency of the uniformity of the global view on the cache size using the

Biggest replacement strategy in networks of different sizes

On the other hand the Biggest replacement strategy has a direct impact on the
actual values that reside in the cache. As the biggest samples are purged from
the cache with a high probability in favor of a smaller value, the standard
deviation for small networks with small cache sizes is smaller as compared to the
FIFO strategy. The standard deviation grows at first as in some caches now a few

5 Applications, Results and Analysis 131

big values will remain whereas in others all will be replaced with smaller values.
This creates less uniformity across nodes. This effect at some point, depending on
the network size, fades with an increase in the cache size as can be seen in Fig.
5.43.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

20 40 60 80 100 120 140 160 180 200

cache size [number of entries]

re
la

tiv
e

er
ro

r

traffic classes - churn
uniform traffic - churn
uniform traffic - mobility

Fig. 5.44 The impact of churn and the traffic pattern using the FIFO replacement

strategy in a 200 node network

One important aspect of all our simulations was the high churn rate. The effect of
churn and different traffic patterns can be seen in Fig. 5.44. The curve with the
lowest relative error denotes the simulation setting without churn, following the
Random Waypoint mobility model at 1.4 m/s and a pause time of 10s. As can
clearly be seen, the more stable in terms of node departure and arrival a network
is the less caching space is needed to achieve a global view of a very high quality.
In the tested scenarios, churn-less networks achieve twice as low a relative error
at same cache sizes. The traffic pattern on the other hand does not seem to have
a highly significant impact on the quality of the global view as the uniform traffic
pattern and our simulation using exponentially distributed traffic classes
perform similarly.
So far all, results utilize the stateless data dissemination technique of CrossTalk.
The remainder of this section deals with the changes of the global view when
utilizing our new stateful dissemination technique and with the respective cost
reductions in terms of communication overhead. The threshold for new
dissemination in case the disseminated value changed was chosen to be 10%, and
the local information should also be newly disseminated after one third of its
useful lifetime expired, i.e. one third of the time a sample is held inside the
Global View component before being purged. This way not every packet needs to
arrive at a node in order to keep the sample inside the Global View cache on a
path.
By adding state information, we somehow decoupled the absolute amount of data
that is generated by source nodes from the traffic pattern. As an example

132 5.4 Global View Scalability Enhancements

consider an application that sends 20 packets per second to some other remote
application. In the stateless approach we would piggyback local state information
20 times. If it would send only half that amount we would also only half as often
add additional information, i.e. the overhead we produce is directly in correlation
with the traffic or load pattern. With the stateful approach we would add the
exact same amount in both scenarios, absolutely speaking of course. What we
have not done is decoupling the overhead from the number of participating nodes
in the network. This is partly due to the choice of our traffic pattern. Since we
choose our destinations randomly, the average path lengths grow with the
network size naturally. The absolute overhead we measure and display in the
corresponding graphs is not the amount of packets that are enriched at each
source node, but we also count every enriched packet that has to be forwarded.

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

network size [number of nodes]

fra
ct

io
n

of
 o

ve
rh

ea
d

[%
]

stateful

Fig. 5.45 Overhead reduction of the stateful data dissemination as opposed the

stateless approach

In Fig. 5.45, the savings are displayed in reference to the stateless approach.
Compared to the stateless alternative, we saved roughly 50% of the generated
overhead in our tested scenarios. This value remains relatively constant with
growing network sizes. Therefore, the relative savings remain constant or in
other words with the chosen traffic pattern we constantly only generate half of
the overhead. The absolute network-wide overhead of course grows as each node
has to disseminate its local information and this information has to be forwarded
more often. This effect can be seen in Fig. 5.46. The overhead, although small
since only the packet size of enriched packets that have to be sent anyway, grows
over-proportionally with growing network sizes. Only regarding source nodes, one
would see a linear increase. The slight drop of the growth for large networks is
due to the fact of an increased number of collisions, reducing the packet delivery
ratio. Although the overhead increases, the benefits from applying CrossTalk can
easily compensate for that increase as shown in the previous experiment
described in sections 5.1 and 5.2.

5 Applications, Results and Analysis 133

0

500000

1000000

1500000

2000000

2500000

3000000

50 100 150 200 250 300 350 400
network size [number of nodes]

en
ric

he
d

pa
ck

et
s

se
nt

/fo
rw

ar
de

d

stateful
stateless

Fig. 5.46 Absolute overhead of both dissemination techniques

As shown, we saved a significant amount of the overhead generated which per se
is already small. Since we disseminate data less frequently, there will of course
be some effect on the quality of the global view. How strong this effect is, depends
on the thresholds chosen for the re-dissemination of local data. For the threshold
chosen above, the effect is displayed in Fig. 5.47. We can see, as expected, a slight
degradation of the quality of the global view as the relative error increases
marginally. Compared to the relative savings the degradation is miniscule and
even degreases slightly with growing network sizes.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

50 100 150 200 250 300 350 400
network size [number of nodes]

re
la

tiv
e

er
ro

r

stateless
stateful

Fig. 5.47 Quality of the global view for stateless and stateful data dissemination

134 5.5 Summary

Our dissemination technique has another advantage which has not been
mentioned so far. In networks with nodes that only relay packets but not actually
generate traffic themselves, these nodes were not able to contribute to the global
view.
Now, those nodes could potentially enrich those packets with their local
information that were not enriched by the source or any intermediate node.
Doing this would increase the amount of data that has to be piggybacked overall
though as the intermediate node would need to add its address. This has to be
done since otherwise the packet source’s local value would be purged along the
path from the Global Views of intermediate nodes.
As can be seen from the graphs, the overhead that we calculated increases super-
linearly. That is because we include intermediate hops and route request, which
are broadcast packets. This might in general seem as if the overall approach does
not scale. But it has to be mentioned that the overall size of the data piggybacked
is very small. Additionally, no extra control packets are sent keeping the
overhead and the overall footprint lightweight. As previously mentioned, the data
added to a packet can be seen as an additional header field. In this sense,
CrossTalk’s Global View mechanism is as scalable as having header information.

5.4.3. Conclusion
In this section, two aspects concerning CrossTalk’s Global View scalability were
analyzed. The first one concerned the memory side of the sample cache that
CrossTalk maintains inside its Global View. The question that was answered was
how many data samples should be stored to achieve a reasonably accurate Global
View and which cache replacement strategy should be employed. It turned out
that a reasonably fixed size cache performs well in all tested scenarios and
adding additional storage did not significantly impact the Global View’s quality.
In other words, memory-wise CrossTalk’s Global View is very much scalable. As
for the replacement strategy, the FIFO algorithm largely performed all other
tested strategies.
The second scalability aspect is the communication overhead introduced. The
stateful data dissemination procedure was analyzed in direct comparison with its
stateless counterpart. In the tested scenarios, it was observed that the stateful
approach can significantly reduce the overall overhead by only slightly
deteriorating the quality of the global view.

5.5. Summary
CrossTalk’s Global View component is its most outstanding feature when
compared to the capabilities of other related cross-layer architectures. It enables
network-wide adaptations, global optimizations and novel applications. This
chapter introduced several applications of the Global View mechanism including
a load balancing scheme and mobility adaptations. The analysis of the quality of
the global view CrossTalk provides showed that it reflects the network-wide
status very well and it is therefore suitable to base cross-layer mechanisms on it.
The adaptation and optimization mechanisms presented that make use of
CrossTalk significantly outperformed the standard approaches. A novel partition
detection system was also presented which should be based on CrossTalk.

	Title Page, Abstract and TOC
	1. Introduction
	2. Background
	3. Related Work
	4. The CrossTalk Architecture
	5. Applications, Results and Analysis
	5.1. Load Balancing – Solving Conventional Networking Issues
	5.1.1. Related Work
	5.1.2. Metric Generation and the Load Balancing Extension to
	5.1.3. Experimental Setup
	5.1.4. Experimental Results
	5.1.5. Conclusion

	5.2. Mobility Adaptations – Solving Ad Hoc Networking Issues
	5.2.1. Related Work
	5.2.2. Metric Generation and the Mobility Adaptation Extension to
	5.2.3. Experimental Setup
	5.2.4. Experimental Results
	5.2.5. Conclusion

	5.3. Partition Detection – A Novel Application Using CrossTalk
	5.3.1. Related Work
	5.3.2. The Partition Detection System
	5.3.3. Experimental Setup
	5.3.4. Experimental Results
	5.3.5. Conclusion

	5.4. Global View Scalability Enhancements
	5.4.1. Experimental Setup
	5.4.2. Experimental Results
	5.4.3. Conclusion

	5.5. Summary

	6. Conclusions
	7. Outlook and Future Work
	References and Appendix

