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4. The CrossTalk Architecture 

This chapter introduces the CrossTalk [50] cross-layer architecture and its 
components. It describes the unique features CrossTalk exposes in conformance 
with the goals of this thesis such as its mechanism to establish a global view of 
the network or its way to generate optimization metrics. Where appropriate, 
CrossTalk’s features and components are briefly compared with the architectures 
presented in section 3.2. 

4.1. Motivation & Architectural Overview 
Naturally, CrossTalk shares some similarities with the architectures and design 
thoughts from chapter 3 as the general idea of cross-layer information sharing 
and adaptation is the basis of all the work presented in this document. When 
looking at the two tiered CrossTalk architecture consisting of two components in 
juxtaposition to the protocol stack, as depicted in Fig. 4.1, the protocol stack 
together with the components left of it look similar to the MobileMAN 
architecture as found in Fig. 3.2. And in deed, functional similarities exist. The 
component found on the left part of the protocol stack is called Local View. The 
Local View contains local knowledge about the network and networking 
conditions provided by the protocol stack as well as other state information 
obtained from system components such as the operating system. Such 
information could comprise data about the neighbor degree (number of one-hop 
neighbors) as it could be provided by the routing protocol, the bit error rate from 
the MAC layer or the battery status from a hardware driver or the operating 
system. It therefore represents the local state of the network node and its local 
view, hence the name, onto the network similar to the function the NetSt has in 
the MobileMAN architecture. Looking only at this part of the architecture 
without going into the details found in section 4.2 similar optimization and 
adaptation capabilities of CrossTalk and MobileMAN can be assumed. 
Looking at the right side of the network stack in Fig. 4.1 a component called 
Global View can be seen that is one of the unique and novel aspects of this 
architecture. The Global View contains the same type of information that can be 
found in the Local View as mentioned before but represents not only the local 
state but network-wide state information. For the aforementioned neighbor 
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degree, this would mean that the network wide neighbor degree can be obtained 
from the Global View which directly translates to the network density. In other 
words the Global View allows a node to evaluate the network-wide status 
according to the parameters found in the Local View. 
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Fig. 4.1 The CrossTalk architecture 

The motivation for this two tier architecture, without going into the details of 
how the two views are constructed, which can be found in later chapters, is quite 
intuitive. Having a network-wide or global view of the network in addition to 
having a local view allows a node to evaluate its own status against the average 
status within the network at any time. This comparison of local and global view 
yields the relative state of a node, i.e. a node can for example evaluate whether it 
has more or less energy left than the average node in the network, or if it carries 
more or less load than the network average and how much it is overloaded or not. 
Consider the following example. A node knows from its Local View that it runs at 
60% of its capacity. This value on its own has only little meaning. The local 
knowledge the node has in this case does not necessarily allow for optimizations 
or protocol adaptations. But compared against a global capacity utilization of 
only 10% for example, the 60% imply that the node is clearly overloaded 
compared to the rest of the network. That might lead to a higher collision 
probability at that node and quicker depletion of its batteries, causing routes to 
break. The knowledge of its relative state allows the node to act accordingly and 
lower its communication burden. More generally speaking, the idea behind 
CrossTalk’s Global View mechanism is to base local actions of a network node on 
global knowledge. 
Local actions as opposed to global actions are lightweight in terms of resource 
utilization. The clear disadvantage is, of course, the potential lack of accuracy 
and efficiency. Global actions on the other hand are very expensive and they are 



46 4.1 Motivation & Architectural Overview 

 

wasteful in terms of resource utilization such as bandwidth or energy but can 
achieve network-wide optimal results. Consider a reactive routing protocol and a 
route request as the global action. A request is flooded through the network to 
find the destination. Every node in the network might participate in finding the 
destination node. Ultimately, only a small amount of nodes will, after 
establishing the route, participate in the forwarding of data packets. But by 
involving a huge amount of nodes, possibly every node, the route could be found 
and it is quite likely that an optimal route was found. Local actions do not involve 
other nodes, making them lightweight. But they lack information beyond the 
node’s scope which ultimately might lead to inefficiencies. For example, if a node 
is able to increase its performance locally by some means (e.g. by boosting its 
output power), it might at the same time significantly increase the interference 
with its neighbors. On a multi-hop path, that might effectively lead to a lower 
overall performance and also affect other routes in the network increasing the 
harmful effect of the local action. 
CrossTalk’s approach ultimately combines the advantages of both approaches to 
achieve global objectives at a low overall cost by following one basic principle: Act 
locally considering the global network status [51] (“Act locally, think globally”), 
this way simple local actions achieve global objectives [52]. 
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Fig. 4.2 Importance of adaptation type vs. timescale 

It is wrong to believe that all optimization and adaptation processes should be 
based on a comparison between information from the Local View and the Global 
View. Some adaptations should solely be based on the local view. The reason for 
this are the different timescales adaptations are based on. Some phenomena vary 
based on timescales that are only within the range of seconds and below. This is 
especially true for lower layer system dynamics such as the time-varying channel 
characteristics. The establishment of a global view of the network must therefore 
be much faster than any significant variations of the phenomena. Considering 
this example, a global adaptation scheme is unable to compensate for the fast 
changing channel conditions. But following the protocol stack up to higher layers 
the importance of global adaptations and optimizations increases. Such global 
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optimizations could include load balancing at the network layer which could be in 
the range of several minutes to decisions at the application layer about where to 
place objects and services which could have a timescale of many hours. In general, 
the longer lasting the impact of an optimization should be the more likely a 
global optimization process is suitable to fulfill the objective. Due to the nature of 
the conventional protocol stack the importance of global adaptations grows from 
lower to upper layer protocols as shown in Fig. 4.2. 

4.2. Local View 
As already mentioned in the previous section, the local view contains information 
provided by the protocols of the networks stack, applications or system 
components, therefore representing the local state of a network node. This 
chapter describes how this information and what kind of information can and 
should be stored inside the Local View. The interactions between the involved 
components are explained and the optimization metric generation, a general goal 
as stated in section 1.2, is discussed in detail. 
Recalling one of the factors that, according to the authors of [49], made some 
popular architectures so successful and helped them to remain the blueprint for 
modern systems was their simplicity. A cross-layer architecture should be no 
exception to this rule, especially if such an architecture is intended to be used for 
a broad spectrum of possible scenarios. A very complex system for example would 
most probably not be used in sensor networks as only light-weight systems are 
applicable in such environments. Furthermore, the more functionality is placed 
inside the architecture, the more it looses its generic character. 
The Local View component has therefore only two very basic functionalities: 
 

• Data Management: Structured, controlled access to the information 
provided by the applications, system components and protocols. 

 
• Metric Generation: Generation of more complex optimization metrics 

from very basic information provided by system components and network 
protocols. 

4.2.1. Data Management 
The data management functionality can be regarded as the core component of 
every cross-layer architecture since it is the enabling entity for the information 
exchange which is the basis of every cross-layer adaptation and optimization. 
Representing data in a fashion that is highly generic and extendible, and very 
expressive and easily accessible at the same time is difficult to achieve. For 
example the authors of [45] suggest to develop and to use a specification 
language that describes the data types that components provide and require. 
They have not designed the language yet, but their goal seems to be, by using a 
specification language, that the data management framework remains highly 
flexible, even if new protocols are added that come along with new types of 
information, represented in arbitrary data types. Such an approach has several 
drawbacks that have to be considered. Using a language to describe stored 
parameters, values, objects and data structures has the disadvantage that 
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descriptions and queries to the data management entity have to be processed in a 
rather complex form. For example XML descriptions would need to be parsed, 
requiring not only a parser for the language, possibly part of the architecture, 
making it more complex, but every interaction would consume significantly more 
processing power and storage. On powerful network nodes that might not impose 
a challenge but on low power devices such as sensor nodes, cell phones or PDAs 
such additional overhead is certainly not negligible. The MobileMAN group 
would also like to base their data management component, the NetSt, on more 
complex mechanisms such as introspection, XML descriptions and profiles [37]. 
They note though that it is important that the data management entity remains 
responsive at all times to guarantee an appropriate level of real-time behavior. 
Since they make use of call-backs in their design, which influences protocol 
performance in a non-deterministic way they suggest pre-fetching and caching 
mechanisms, further complicating the overall design. 
The reason to allow network protocols to store arbitrary data inside the data 
management entity and at the same time let arbitrary protocols allow to access 
and use it seems very desirable at first. This would allow for protocols to use new 
types of data once they are provided by a component and protocols could interpret 
them by means of a specification language and/or introspection or some other 
technique. But thinking about real-world systems the question arises whether 
such powerful mechanisms are really suitable and necessary. We assume that 
this is not the case for several reasons. 
First of all, it is highly unlikely that there is an arbitrary amount of parameters 
and metrics that make sense to be used for optimizations and adaptations which 
would justify such complexity. Instead there exist a small number of parameters 
that can be used or somehow transformed to be used for a broad spectrum of 
different adaptations at different layers of the protocol stack. The frequent 
reoccurrence of parameters such as the signal strength in the literature suggest 
that the most basic parameters seem to work extremely well for many purposes. 
Even if the simple signal strength is not used as such, it is used as the basis for 
the generation of probably more expressive metrics (compare section 4.2.2). The 
most significant and important parameters that are needed are the ones that 
quantify the effect which protocols have to adapt to. This are either more 
traditional parameters such as load to solve conventional network issues such as 
load balancing and QoS or parameters that reflect the unique characteristics of 
ad hoc networks such as a metric for the degree of node mobility. Some 
information can be placed in predefined data containers such as routing state 
information. Most routing protocols for example maintain overlapping 
information anyway. The way most protocols differ is the routing strategy not the 
routing state information. A routing state data container should hold information 
such as the address, the distance in hops, and the next hop towards that 
destination. If a protocol cannot provide such data, it will simply not fill out these 
parts of the data container. 
Another reason why complex descriptions and data type query mechanisms most 
probably are not necessary is the fact that old protocols, even if they are able to 
interpret new information types correctly, will algorithmically not be able to 
apply that information for adaptation processes. In other words, if new 
parameters are available and older protocols should use that information they 
have to be updated or redesigned. In such a case, automatic parameter 



4 The CrossTalk Architecture 49 

interpretation is not useful as the protocol designer needs to change to protocol 
accordingly anyway. It should be mentioned here that with the experience 
gathered during the application of the CrossTalk framework it often appeared 
that new metrics added to the Local View and used for network-wide adaptations 
using the Global View mechanism described later, had its origin in the same 
layer or protocol as it was used for adaptations later on. In such a case 
interpretation is of no concern as the generating protocol will not need to 
interpret data it can provide itself. This of course holds only true for certain 
global adaptations as it can not be considered cross-layer communication locally 
on a network node. Examples of such cases can be found in section 5.1 and 5.2 
with the theoretical background found in section 4.3. 
Furthermore, there will not be an arbitrary amount of protocols that need to be 
highly adaptable. As on the Internet some very basic protocols will be used more 
than 90% of the time for a certain purpose. Take transport protocols as an 
example. Mostly TCP and UDP are used as a transport mechanism on the 
Internet. Parameters such protocols can provide should be included as predefined 
parameters inside the Local View. Once they are included, other protocols will 
very likely be able to provide the same parameters and other protocols will rely 
on their presence to carry out optimizations. 
Finally, history has shown that usually only a small subset of architectural 
functionality is used in real-world systems. A good example for this is the 
ISO/OSI layered protocol stack (compare Fig. 1.2). The intended seven layers are 
usually not found in real world systems such as the TCP/IP stack where session 
and presentation layer for example are missing. 

 
Fig. 4.3 Local View data container 

As a conclusion, it can be said that the Local View should mainly hold predefined 
data types. This way interpretation is unnecessary and the complexity of the 
overall architecture is greatly reduced. Still it should be possible to store 
arbitrary objects inside the Local View. The reason for this is that the 
functionality the Local View offers, as described later in this chapter, can be used 
for software reuse reason and for certain global adaptations as further explained 
in section 4.3 and demonstrated in section 5.1 and 5.2. 
Now that the general functionality is explained let’s look at how the data 
management is realized and at the interactions with the Local View in more 
detail. Fig. 4.3 displays the structure of a data container that is used by the Local 
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View. The protocol information, in whatever form it is represented, is the content 
of the container displayed at the bottom of Fig. 4.3. Here exemplary a routing 
state data element is displayed just next to it on the right side of the figure. For 
managing the data inside the Local View four additional pieces of information are 
required. First of all there is the unique item ID. This is generated using a hash 
function provided by CrossTalk. A protocol has to know a unique set of 
information for each entry. In this example the destination address of the routing 
entry could be used as input for the hash function and the resulting hash value 
will uniquely identify this data entry amongst all entries of the same type. Using 
this unique ID and a set of hash functions a bloom filter can for example be used 
to check the existence of data elements. The second piece of information is an 
expiration time given by the protocol or system component. Once the data is stale, 
out of date and therefore useless it will be removed from the Local View. 
Additionally there is the owner ID. This ID is assigned to a protocol or component 
once it registers with the CrossTalk architecture. Using this ID all interactions 
with CrossTalk are carried out. Using the Owner ID, access rights can be defined. 
Finally, the data container header contains a data type ID. This ID simply 
specifies what kind of data the specific container is holding. All header 
information can be used to query the Local View. For example, the data type ID 
can be used to retrieve all routing entries. 

 
Fig. 4.4 Interactions between the involved components for a notification 

Other than simple read and write operations, the local view offers one more 
interaction which is notification. Sometimes, it is desirable for a protocol to adapt 
only when certain thresholds are violated. For example, consider a power control 
algorithm that is intended to keep the output power of the radio at a minimum to 
locally save some energy. On the other hand it should not reduce the output 
power too much as another important aspect is network connectivity. The 
algorithm could work in a way that it increases its output power as soon as the 
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amount of neighbors in its direct radio range decreases below a certain number 
or decreases it if it grows beyond a certain threshold. The protocol would need to 
subscribe to the Local View with a query that if the amount of entries of data 
type 4EF2 (routing entry as in Fig. 4.3) with # hops equal to one is smaller than 
the threshold, it has to be notified. The amount of notifications should be kept to 
an absolute minimum as each change to an observed data type would trigger a 
threshold violation check inside the Local View. The flow of interactions for the 
case of a notification is illustrated in Fig. 4.4. Protocol B subscribes for a 
notification on some data provided by protocol A. After A changes the data, the 
thresholds of all to be considered registered notifications are checked and any 
violations are reported to the respective protocols, in this case protocol B (for 
more selected interaction flows please refer to appendix C). 
All possible interactions with the Local View component are depicted in Fig. 4.5. 
A is a data container inside the local view. A in the diagram represents data 
provided by an application, a system component or a network protocol. The owner 
can write and overwrite A, whereas A can be read by any component that has 
access to the Local View including the metric generator. The same applies to 
notifications concerning A as displayed by interaction 1 in Fig. 4.5. The other 
interactions will be further discussed in section 4.2.2. 

 
Fig. 4.5 Local View interactions 

The way the Local View is designed and the nature of some of the information 
stored in it imposes certain requirements on adaptive network protocols running 
inside the CrossTalk architecture. Consider a protocol that utilizes an adaptation 
mechanism based on position information provided by a GPS receiver. Upon 
entering a building or tunnel for example that information might not be available 
any more. At some time the stored GPS coordinates will expire and the Local 
View will purge them. At this point the adaptation mechanism will not work any 
more. Or consider a routing protocol in use that does not provide certain 
information such as the next hop which another protocol needs for some 
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optimization. The fact that certain information is permanently or temporarily not 
available should not render a protocol dysfunctional. In other words, when 
designing a protocol only “layered” information flow should be assumed for the 
basic functionality. That means that without the presence of any additional 
cross-layer functionality the protocol must be able to provide its basic service. 
Only mechanisms to improve the performance of a protocol should be based on 
the information provided by CrossTalk. The absence of that information should 
therefore only result in a worse performance. This also guarantees that protocols 
not using the cross-layer framework, e.g. purely layered protocols, still function 
and are interoperable with new, cross-layer optimized protocols. The only effect 
these layered protocols have is that they on the one hand do not provide any 
information to the Local View which could be used by other protocols and they do 
not optimize their own algorithms by utilizing cross-layer information on the 
other hand. 

4.2.2. Metric Generation 
Cross-layer design is a very metric centric approach. The most fundamental part 
is to provide metrics to base decisions on. An important feature is to have metrics 
that are easy to generate, which virtually every network system should be able to 
provide. This way those metrics can be assumed to be present for adaptations 
and optimizations. Such a set of metrics should be provided by the architecture to 
guarantee uniformity, eliminating interpretation ambiguity. This set of metrics 
ideally covers large parts of possible protocol adaptations together with some 
fundamental and very basic metrics provided by protocols and system 
components such as the received signal strength, bit error rate and others.  
The metric generator as depicted in Fig. 4.1 and Fig. 4.5 is another unique 
feature of the CrossTalk architecture. The MobileMAN architecture for example 
does explicitly not generate any data as stated in [37]. We have several reasons to 
do so. 
When looking at the data container shown in Fig. 4.3 it becomes clear that there 
will be many single data containers that may have some form of relationship. The 
single routing entries for example might together reveal some information about 
the topology such as the network diameter. If there is no topology data type then 
this information would need to be generated and instead of having each protocol 
in need of that information to calculate that data, this functionality is placed at a 
central location, the metric generator. In addition, if this data is not required at 
all, the generator will simply never calculate it. This way, in comparison if this 
more complex data would be part of a data container, processing power is saved. 
Generating this kind of information inside of CrossTalk and not inside the 
protocols has also the advantage that the protocols remain more responsive as 
they can focus on the core service they provide. 
Another reason for having an additional component that generates more complex 
optimization metrics is that some metrics have to be observed over time whereas 
the Local View only reflects the exact state of a node at a point in time. For 
example by observing the network density over time, a protocol could conclude 
whether the node is moving into a more dense area of the network or in a sparser 
one. A hybrid routing protocol could use that information to change its routing 
strategy. Furthermore, some pieces of information are most likely useless from 



4 The CrossTalk Architecture 53 

an adaptation standpoint when only being observed at a certain time instant. 
Take for example the information that a packet was just sent or received. That 
can hardly be used for any kind of optimization. But observed over a certain time 
period, the simple notification about incoming and outgoing packets without 
considering destination or other header information can be condensed to a load 
metric [53], for example. The same could also be done by a protocol registering for 
a notification but as already pointed out notifications are expensive in terms of 
processing overhead and the generation would not be done any more in a central 
location. Together, these are the responsibilities of the metric generator. 
The interactions in Fig. 4.5 marked 2 and 3 refer to interactions with the metric 
generator. Interaction 3 illustrates the way external components such as network 
protocols or the operating system can feed data or simple notifications to the 
metric generator directly. An example for such a notification could be that a 
packet was just sent, which the metric generator will use for the previously 
mentioned load metric calculation. Interaction 2 depicts how external 
components can access the data produced inside the metric generator. Instead of 
placing it inside the local view it can only be accessed directly. This way the 
necessary data is collected constantly but the metric itself is only generated on 
demand, saving processing power. 

4.3. Global View 
When looking at the CrossTalk architecture and comparing it with other 
architectures, its most powerful and unique feature is the Global View. It allows 
a network node to evaluate its local state against the network-wide state 
according to the metrics the Local View provides. This comparison enables a node 
to change protocol behavior and parameterization to achieve global objectives 
such as increased overall network lifetime, load balancing and more. 
This section describes how data is disseminated by the architecture to distribute 
the locally collected or generated data to allow each and every node in the 
network to estimate the network-wide status. It further discusses the 
mechanisms and algorithms that actually compute the network-wide value of a 
disseminated metric. 

4.3.1. The Data Dissemination Process 
The only way to get an exact network-wide view of some parameter or metric is to 
look at each node in the network, collect the data for that metric from all nodes 
and then aggregate that nodal information in some way. In other words each 
node would need to inform every other node about its locally measured or 
calculated metric so that every node can calculate the network-wide average. One 
way to do this would be to let every node broadcast that information periodically. 
This way each node would receive the necessary data to compute a global view. 
The problem is that this approach puts a lot of stress on the network as, 
depending on the interval, a large quantity of the available bandwidth is 
consumed by data dissemination packets. Choosing the dissemination period too 
small will save bandwidth but at the same time the global view will loose some 
accuracy. Actively broadcasting the information has also the disadvantage that 
some nodes might spend some energy and effort on data dissemination whereas 
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its optimization goal might be energy conservation. Therefore, the CrossTalk 
data dissemination procedure is not an active one, meaning that no control or 
data dissemination packets are actively sent by the framework. 
CrossTalk leverages packets that are sent for any kind of purpose and enriches 
these packets with information from the Local View by piggybacking the 
information onto those packets. For example, onto outgoing application or routing 
packets the neighbor degree can be piggybacked to let the nodes in the network 
be able to estimate the node density of the network. Every CrossTalk node 
receiving a packet, either because it is the intended destination or next hop or it 
simply overhears the packet by being in radio range, extracts that information 
and adds it as a sample to its Global View. This way, numerous samples are 
collected at every node in the network. Special attention should be directed to 
overhearing messages. The wireless medium itself is one of the prime reasons for 
the dynamic nature, the various performance bottlenecks and networking 
challenges found in ad hoc networks. On the other hand it allows doing certain 
things which cannot be done in infrastructure-based wired networks. One of 
these things is overhearing messages that are not explicitly addressed to a 
network node. The broadcast nature of the wireless medium, on the one hand 
imposing challenges, can and should be exploited as it also opens up 
opportunities. CrossTalk exploits it by more efficiently disseminating the data 
from the Local View as message overhearing expands the number of recipients. 
Fig. 4.6 illustrates the data dissemination procedure. Node A represents a node 
on which an application is generating data to be sent and node B being a 
forwarding node. As can be seen, as intermediate nodes only utilize the lower 
layers to perform the forwarding task, the data dissemination module has to be 
placed at the lower layers of the protocol stack. At node A in the figure, the 
module selects data to be disseminated from the Local View and piggybacks it 
onto a packet. This data is extracted at node B where the data dissemination 
module adds it as a sample to the B’s Global View. 

 
Fig. 4.6 CrossTalk’s data dissemination procedure 
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By not generating data dissemination or control packets, the overall overhead of 
the dissemination procedure is minimized. Additionally, only the source of a 
packet is adding information, i.e. only the node that generates the packet is 
adding information form its Local View. Forwarding nodes only extract the 
origin’s local information and do not add any additional overhead. This way, the 
packet sizes are only marginally increased, keeping the overall overhead low and 
making fragmentation due to increased packet sizes unlikely. When adding a 
sample to the Global View, additional information can augment the collected 
samples. Besides giving it a timestamp, for example distance information can be 
added if available. As an example, the topological distance in hops could be 
extracted from a packet header. The timestamp is used to remove stale samples 
form the Global View. Each information type is assigned a useful lifetime. Once 
this lifetime expires the sample is purged from the Global View. 
By piggybacking the information the overall footprint of the system is kept low 
for two reasons. First of all the information that is propagated into the network is 
most likely a simple low precision number and no complex data structures which 
only increases the packet size marginally. It can be compared to adding an 
additional small header to the packet. Complex data structures exist in the Local 
View but they most likely will be less suitable for network-wide adaptations. 
Think of the individual routing entries, which only would be useful as a whole 
and in case they are really needed they should rather be obtained by the routing 
protocol itself, i.e. by a proactive routing protocol. The second reason is, that by 
using packets that have to be sent anyway the whole additional data for an 
individual data dissemination packet, such as the various headers is not only 
saved but additionally the whole additional medium access contention problem is 
avoided, which can potentially result in collisions and retransmissions. 
The overall communication overhead can further be reduced by employing a 
stateful approach. So far the data dissemination method described is purely 
stateless as the dissemination module keeps no track of when, where or what was 
piggybacked onto outgoing packets. Introducing a state is a trade-off between 
spending memory and little extra computation time versus spending energy on 
additional bits that have to be transmitted. Since communication is, in terms of 
energy consumption, far more expensive than computation [55], the stateful 
approach helps conserving battery power. Depending on the device, the one or the 
other strategy might be favorable or perhaps not feasible as a sensor node might 
simply not have enough storage available for additional state information. The 
stateful approach saves energy and reduces the communication overhead by not 
adding Local View information to every outgoing packet. To reduce the amount of 
messages that have to be enriched, a dissemination state is added that basically 
is a small table which has four columns that every node maintains. One column 
contains the destination address of the enriched packets. The second column 
contains the type of data that has been disseminated and is only needed if more 
than one optimization metric is disseminated at all. Form a database perspective 
those two columns together can be regarded as the primary key as they can be 
used to uniquely identify an entry. In case only one metric is disseminated the 
destination address alone serves this purpose. The third column contains the 
value that was disseminated and the final one holds a timestamp of the time the 
packet was sent. 
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Fig. 4.7 Stateful dissemination algorithm 

The stateful dissemination algorithm is illustrated in Fig. 4.7. Whenever a node 
is about to send a packet and is potentially able to enrich it, it first consults the 
dissemination state table. If there is no match for the primary key in the state 
table, i.e. the destination plus the type of data that is about to be piggybacked 
onto the packet, the packet is enriched with the information from the Local View. 
After a packet has been enriched of which the destination was not found in the 
table, it is updated according to a simple rule. Either the oldest entry in the table 
is purged, or if an empty row is available, that one is used. The absence from the 
dissemination state table implies that either the destination has never been 
contacted before or has been contacted a relatively long time ago. Therefore, in 
either case, the data should be disseminated as it will reach new nodes or refresh 
old Global View data samples on the path towards the destination. 
If the primary key is found in the dissemination state table, it is checked whether 
the value has changed significantly. What “significantly” means here is very 
application dependant, i.e. it is dependant on the required precision of the Global 
View that is constructed from that data. If the value has changed beyond a 
certain threshold, the packet is enriched to update the new value at the nodes 
receiving the packet. 
Finally, if there is an entry for the destination and the value has not changed 
beyond the threshold, the timestamp is checked. If one third of the useful lifetime 
of the local information has passed, the local information has to be disseminated 
again. This procedure makes sure that Global View entries in other nodes are 
refreshed before they are purged. Only if all conditions are met, will the packet 
not be enriched with local information. 
As a special case, n rows are reserved for broadcast packets, with n being equal to 
the number of data types that have to be disseminated which is equal to the 
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number of possible primary keys for the broadcast address. Their state should 
never be purged from the dissemination table since broadcasts are the most 
expensive type of operation form a communication standpoint. With giving 
broadcasts persistent rows in the dissemination table network flooding is 
guaranteed to be most resource conserving when it comes to the data 
dissemination process. 
There are two major advantages of the stateful approach. One, as already 
mentioned is of course that less total information is propagated using a 
dissemination state. Another advantage is that nodes which solely act as relays 
without generating messages on their own can now use non-enriched packets to 
disseminate their local information, this way contributing to the global 
knowledge. 
Criticism to the overall dissemination procedure might be that there is no 
immediate control over the data dissemination process. If not many packets are 
sent not many data is disseminated resulting in a deteriorating Global View. The 
answer to that criticism would be that the timestamps on the samples collected 
will prevent the Global View from severe deterioration as it is used to purge old 
samples. If there are no samples or only a few inside the Global View no network-
wide estimate will be produced, forcing the protocol to run in purely “layered” 
mode. Additionally, the fewer packets are sent the less potential there is for 
network-wide optimizations and in very lightly loaded networks global 
adaptations will not be necessary and local adaptations based on the Local View 
solely will suffice. An active dissemination technique would in such a case only 
waste resources whereas our approach would not. In other words, the more 
potential and need there is for adaptations and optimizations, i.e. the more traffic 
the network produces the more information is automatically disseminated by the 
CrossTalk framework. 
Not all data elements in the local view should be constantly disseminated. A 
network protocol needs to flag the data type that should be disseminated as 
shown in Fig. 4.6. If a protocol is laid out do load balancing using the Global View 
then it would most likely only require the load metric to be disseminated. It on 
the other hand might be able to add much more to the Local View which can 
further be used for local adaptations. The amount of different metrics 
disseminated should be reduced to only a few. Depending on what the network 
should be optimized towards this preference can be set for example at 
deployment time. Imagine a sensor network, the probably most important 
optimization in such a network is the overall network lifetime, i.e. energy 
conservation which can be set at deployment time, as this requirement will most 
likely not change during the lifetime of the network. 
The dissemination module itself could be realized with a mechanism similar to 
Libmac as implemented on the ORBIT testbed. Libmac allows appending 
measurements on a per-frame granularity level at the MAC layer. 

4.3.2. The Global View Calculation 
The previous section had a focus on how the data to generate a network-wide 
view of a certain metric is disseminated whereas this section deals with the 
actual computation of such a global view. Clearly, with the previously described 
approach to disseminate our data there will never be a 100% correct network-
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wide view on each node in the network and that is not what CrossTalk is aiming 
at. Even with an active data dissemination technique, depending on the dynamic 
character of the metric itself, the structure of the network and the dissemination 
period, establishing a 100% correct view might realistically not be possible. What 
we want is a reasonably correct and up-to-date view within certain bounds that 
will still be accurate enough to let a node evaluate its relative state in the 
network. 
The key in establishing the global view besides disseminating the data is the way 
the collected samples are aggregated. Therefore, part of the Global View is a 
collection of algorithms to compute the network-wide view from the collected 
samples which reside in the sample aggregator as illustrated in Fig. 4.1. 
Intuitively, the simple mean value of the samples would be an appropriate way of 
estimation of the network-wide view but due to the special nature of ad hoc 
networks and probably due to relatively fast changing metrics other algorithms 
can be more beneficial. 
But before going into the details of the specific algorithms provided, let us look at 
how the Global View can be seen in a more abstract way. This way, its overall 
value and significance can be more easily evaluated. More specifically, let us look 
at the information flow provided by the various models that have been proposed 
so far. 
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Fig. 4.8 Information flow in a layered architecture 

When going back to the layered approach the information flow is very easily 
describable. The layered approach allows for a peer-layer information exchange 
and nothing more when only looking at the flow of information exchanged 
between layers. What is meant by peer-layer information exchange is depicted in 
Fig. 4.8. Every protocol of each layer adds some header and/or trailer information. 
The information is ignored locally at a node as it is simply treated as payload by 
lower layers. A peer-layer protocol, i.e. the exact same protocol on a remote node, 
will interpret the header and/or trailer information added by its remote 
counterpart and nothing else. That is the sole information flow that a layered 
architecture offers. 
The cross-layer architectures developed so far add an additional information flow 
as protocols now can also locally share information more or less freely depending 
on the architecture. This information flow was already illustrated as for example 
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in Fig. 3.2 or Fig. 3.3 for some presented architectures. In Fig. 4.9 all models are 
compared directly in one single diagram. The layered approach is shown by the 
information flow arrows in the middle of Fig. 4.9. Furthermore, it illustrates the 
up-to-now proposed cross-layer information flow which can be found on the left 
side, labeled intra-node cross-layer communication as it all takes place locally on 
a network node.  

 
Fig. 4.9 Information flow in the various models 

The CrossTalk architecture preserves these two kinds of information flow. The 
layered approach by its protocols directly and the intra-node cross-layer 
communication by means of the Local View only. In addition, CrossTalk goes one 
step further and introduces a new information flow by means of the Global View 
depicted on the right side of Fig. 4.9. This type of cross-layer communication is 
termed inter-node cross-layer communication. By disseminating data between 
nodes which is then shared amongst all layers on the remote nodes is in a way a 
combination of the two previously mentioned information flows. It provides a 
node with information about the local state of individual remote nodes and 
additionally enables a node to estimate network conditions on a global, i.e. 
network-wide scale. In other words, the Global View enables remote cross-layer 
communication. 
The algorithms that compute the global view are all of one general type, namely 
weighted moving averages: 
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The above formula denotes the general structure of a weighted moving average to 
calculate the global view vglobal of a metric s, where n is the number of samples 
inside the Global View and w is a weighting factor based on some dimension such 
as time or distance. Therefore, si are the samples collected inside the Global View 
for that metric and wi are the corresponding weights applied to si. It has to be 
noted that for a constant weight c=wi the simple mean value of the samples is 
calculated. 
The difference between the available formulas inside the Global View is therefore 
only based on the calculation of the weighting factor. As already mentioned by 
keeping the factor a constant the mean of the samples, collected through our data 
dissemination process is calculated. The other weighting functions need some 
more explanation as they follow different intuitions. 
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Fig. 4.10 Time based weighting functions 

The first concern when calculating a value representing a global view from 
samples collected during a period of time is the question of accuracy as the 
disseminated values might already have changed without noticing. One 
mechanism takes already partially care of this. Upon entry into the Global View 
the samples are time stamped. After expiration of their useful lifetime they are 
purged from the Global View and will therefore not influence the calculation any 
more. But there are phenomena that could rapidly change such as the mobility in 
a network. Imagine a sensor network which monitors a geographic region for a 
phenomenon that only rarely occurs such as fire. On the observation of the 
phenomena, in our example the outbreak of a fire, the network has to react and 
perform its task. Before the outbreak the network was probably only very lightly 
loaded by some control traffic now on the other hand many network nodes might 
suddenly create data traffic to notify the data sink, query other sensor node to 
see if the sensed data is accurate or to calculate the extend of the fire. In such a 
situation the disseminated load information obtained during the period prior to 
the fire might still influence the global view calculation until these samples 
expire. In other words there is a certain timeframe in which the global view of 
the network might be less accurate. Therefore, the generation of a global view for 
these fast changing metrics should account for such possible significant 
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fluctuations. The key lies in the calculation of the weighting factor for the 
weighted moving average. For this purpose two functions are provided as 
depicted in Fig. 4.10, one giving proportionally more weight to recent samples 
and one favoring recent samples even more by giving them exponentially more 
weight, the latter one adapting to sudden changes of the observed metric even 
faster. 
The second type of weighing function targets the peculiarities of ad hoc networks 
that exist due to their nature. The metric that is the basis for this type of 
function is the topological distance in hops. This information as stated before can 
be added to augment the samples from the Global View. The first function simply 
gives samples from far away nodes proportionally more weight than samples 
from nodes close by. The intuition behind this is very simple and has its roots in 
the fact that there are certain parameters which have a dependency based on the 
geographical and topological proximity of nodes. Nodes that are very close most 
likely will contribute more samples to the Global View than nodes that are far 
away. Therefore nodes in the close vicinity of each other can potentially dominate 
each others Global View. As an additional effect, some metrics will locally be 
similar amongst nodes due to the nature of ad hoc networks. For example the 
number of one-hop neighbors will very likely be similar amongst nodes in direct 
transmission range as they cover largely overlapping regions of the network 
topology, otherwise they would not be able to communicate with each other. 
These two effects can be to some degree alleviated using this function that 
linearly increases with the distance as shown on the right side of Fig. 4.11. For 
all functions available, samples from direct physical neighbors can be completely 
excluded from the Global View calculation as they are a special case in that they 
can always be overheard and due to the other reasons stated before. 
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Fig. 4.11 Distance based weighting functions 

There is another effect in ad hoc networks which is also due to the topological 
and geographical dimensions. As the network has geographical bounds formed by 
the transmission ranges of the nodes the border of the network is sparser than its 
core. Furthermore, the core of the network most likely will be under a higher load 
especially when using shortest path routing as not only more nodes are present 



62 4.3 Global View 

 

at the core but also most routes originating at the borders will lead into or 
through the core [56]. We will from now on refer to these effects as border effects 
as displayed in Fig. 4.12. If a metric is prone to these border effects and the 
Global View should instead rather reflect the situation inside the core of the 
network a triangular function is provided as illustrated on the left side of Fig. 
4.11. The samples from nodes furthest away most likely have their origin at the 
border of the network and are therefore weighted less. Samples from nodes close 
by are also weighted less as they might yield similar values as found locally. The 
highest weight is assigned to nodes in a medium distance between the local node 
and the suspected border nodes most likely being at or close to the core of the 
network. 

 
Fig. 4.12 Ad hoc network border effects 

So far the algorithmic aspects of the global view computation have been described. 
As a second and very important concern there is the storage and data 
management aspect of the Global View. Collecting samples from throughout the 
network and keeping them for some time might not always be possible for all 
classes of devices and the question arises if that even is necessary. If storage 
becomes a concern then a suitable replacement strategy has to be found in case 
the Global View cache reached its capacity limit and new samples arrive. 
Different cache replacement strategies were implemented for this case. Probably 
the most intuitive strategy is to replace the oldest entry in the Global View, 
which corresponds to the simple first-in-first-out (FIFO) principle. Furthermore, 
other cache replacement strategies are available inside the Global View (for the 
experimental evaluation compare section 5.4) that do not consider the age of an 
entry, unless they are expired, but rather the value itself. One strategy replaces 
the biggest value, another one the smallest and a third one the sample that 
differs the most whether it is the biggest or smallest. The intuition behind these 
strategies is that the most extreme values inside the Global View will influence 
the computation the most. This can potentially lead to a highly incorrect 
network-wide view especially with very small cache sizes. The last two 
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replacement strategies consider only the distance of the collected samples. If 
spatial dependencies exist, these algorithms can be able to reduce such effects. A 
spatial dependency as already described can be due to border effects or due to the 
close proximity of nodes. The two corresponding replacement strategies replace 
the most distant or the closest data sample in case the Global View cache reached 
its maximum capacity. 
In addition to providing the ability to construct a network-wide view, the Global 
View component can also be queried for the information regarding only a single 
sample and generally can be accessed in the same way as the Local View. 

4.4. Node Bootstrap and Protocol Signaling 
As the previous chapter described, the establishment of a global view of the 
network requires a node to collect a certain amount of data samples before a node 
is able to calculate a meaningful and reasonably correct view. When a node 
enters a network by switching it on, by moving into a networked environment or 
by roaming between two separate networks the Global View component will not 
be able to provide protocols with a network-wide view for optimizations till 
enough samples are collected. Therefore, a simple initialization procedure was 
designed, intended to bootstrap the Global View on entering a network. 
Depending on the nature of the ad hoc network in use, some are believed to suffer 
from high churn rates, i.e. the network experiences frequent node departures and 
constantly new nodes join the network. The initialization procedure will in such a 
case enable to node during the full lifetime of the node to carry out global 
adaptations using CrossTalk’s Global View, even if that lifetime is only limited. 
Furthermore, it will in turn be able to assist in bootstrapping other nodes right 
from the start. 
The procedure is quite simple. A joining node would broadcast an initialization 
request to its one-hop neighbors only, i.e. the broadcast would not be propagated 
into the rest of the network which can easily be achieved by assigning it a time-
to-live (TTL) of only 1 hop. Nodes receiving such a request would send their 
calculated global view values back. 
This procedure can now be used in two different ways which do not mutually 
exclude one another. One way is generally applicable as it initializes the Global 
View itself. The values received from the neighbors are added to the Global View 
this way not only having already received some samples but also some that are 
very close to the network-wide value. In other words the Global View is 
initialized with high quality information. These values are marked so that they 
are not replaced by the local values send by the neighbors in successive 
transmissions. They will be removed after their useful lifetime is expired. The 
node therefore has enough time to gather samples during that timeframe. 
The second way the initialization information can be used is to initialize the 
metric generator. This procedure cannot be described in general as it is highly 
dependant on the metrics the initialization data is used for. An example can be 
found though in section 5.1. As described in section 4.2.2 the metric generator 
calculates metrics that have to be observed during a certain time window. On 
bootstrap no time has elapsed yet and the information provided by the 
initialization procedure can be used to initialize the generation of such a metric. 
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Another procedure which should be considered has to do with some of the 
criticism summed up in chapter 3.3. The criticism expressed in that chapter 
concern the issue that cross-layer optimizations can potentially influence protocol 
behavior negatively due to unintended consequences or adaptation loops. Since 
using network-wide adaptations there is no direct influence on the way other 
nodes behave, an extra monitoring and fallback mechanism should be used. As 
already described each protocol running inside of the CrossTalk framework has 
to be able to run in purely “layered” mode as the required cross-layer information 
might not be available at all times. Another reason for this is that the 
optimization process might not be satisfactory. Imagine a routing protocol based 
on the Global View mechanism. It might be that, due to unforeseen 
circumstances, the optimization in place might have a negative performance 
impact. A source node has no immediate influence on the behavior of a remote 
node. Therefore a protocol should have a signaling mechanism to force 
intermediate nodes to perform their functionality without the Global View 
optimization. This way, if Global View optimizations do have a negative impact, 
the layered mode is resumed and the network remains functional. This 
mechanism can also be used for monitoring purposes as a node might force the 
intermediate nodes not to use optimizations and can compare the cross-layer 
performance directly against the “layered” performance. This protocol signaling is 
not part of the CrossTalk architecture itself but would have to be implemented by 
every protocol making use of the Global View algorithm. Realizing this is not 
very complex though as it builds up on the fallback requirements of CrossTalk-
enabled protocols. A good way to do this would be to have a flag inside the 
protocol header which indicates whether to use the Global View optimization or 
not. A good example for this can be found in chapter 5.1.  
It has to be stressed that this procedure is not essential to the functionality of the 
Global View mechanism and does not have to be implemented. A reason not to do 
so could be that by changing a header, the protocol interoperability cannot be 
guaranteed. But many protocols allow expanding the header with arbitrary 
information or having some reserved bits for future use which could be utilized 
for a fallback mechanism flag. 

4.5. Summary 
The CrossTalk architecture exposes several unique characteristics and 
components not found in cross-layer architectures proposed so far. The most 
powerful and one of the central aspects of CrossTalk is the Global View 
component which is able to provide a network-wide view of metrics used for 
adaptations and optimizations of network protocol behavior. These optimizations 
are based on the comparison between the local node state and the corresponding 
network-wide state. This comparison yields the relative state of a node which can 
be used to base local decisions on it this way achieving globally near optimal 
results while employing lightweight mechanisms. 
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