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3. Related Work 

This chapter introduces related work on cross-layer design, cross-layer 
optimizations and adaptations. The main focus is on cross-layer architectures 
and on single adaptation mechanisms that were introduced without specific 
architectural considerations. Additionally, some criticism on cross-layer design in 
general that was recently expressed and the ability of the proposed architectures 
to withstand that criticism is analyzed. Most importantly, proposed architectures 
are compared against each other and are discussed in detail. Related work that is 
closely connected to the adaptation mechanisms introduced later in this 
document will be discussed in the corresponding chapter. 

3.1. Cross-layer Adaptations and Optimizations 
Cross-layer adaptations are the fundamental protocol enhancements that a good 
cross-layer architecture enables and supports by providing basic services such as 
data exchange and accessibility. In other words, the adaptations are the 
mechanisms that utilize the cross-layer architecture to improve protocol 
efficiency. 
Many such adaptations have been proposed in the literature for a very broad 
spectrum of possible application and protocol shortcomings. At the same time 
most of these adaptations leave out the actual process of cross-layer 
communication and interaction. Architectural considerations are rarely found but 
the sheer amount of proposed adaptations suggests that there is a definite need 
for an architectural framework to base adaptations on. These single adaptations 
also reveal the plethora of possible cross-layer adaptations and optimizations 
that can significantly increase the performance of an ad hoc networking stack. 
This section describes some of the existing cross-layer adaptation mechanisms 
that have been developed. 
Starting at the topmost layer, the application layer, several cross-layer 
optimizations have been suggested and described. For example CrossROAD, a 
peer-to-peer system based on Pastry, was proposed in [17]. CrossROAD utilizes 
the network topology information provided by a proactive routing protocol that is 
the core requirement for CrossROAD. It also introduces some interaction 



3 Related Work 29 

between CrossROAD and the routing protocol which requires a joint design. The 
general idea is that by utilizing the routing state information the overlay 
network construction and maintenance can be optimized as the routing protocol 
already maintains complete topology information. CrossROAD does not address 
further ad hoc network specific in-layer optimizations though, such as proposed 
by DynaMO [5] and is restricted to proactive protocols. This restriction to a class 
of protocols in general is not desirable and a good architectural design might help 
to weaken these very strict requirements. 
Multimedia applications are very demanding from a networking perspective as 
they have very strict bounds for QoS parameters such as jitter and throughput. 
On the other hand there is some flexibility and adaptability intrinsic to 
multimedia applications such as streaming video as, for example, video encoding, 
video resolution and others can be tuned. That is why many cross-layer 
optimizations target explicitly this group of applications. An example for such an 
optimization can be found in [18] where an error protection scheme for video 
transmissions is described. The general idea is that channel state information is 
utilized to adapt the video encoding scheme to provide the most appropriate error 
protection for a given packet loss ratio. What this scheme achieves in comparison 
to conventional forward error correction (FEC) is that the video quality degrades 
graceful with an increasing packet loss ratio. 
When it comes to QoS ad hoc networks are probably the most challenging 
network variants that exist since they can be very dynamic in many respects 
which makes guaranteed availability of network resources and performance 
highly difficult. Hard-QoS, i.e. guaranteed bounds on delay, jitter or bandwidth 
in such environments is nearly impossible to provide as many factors that affect 
these metrics cannot be controlled. In [19] a QoS system was designed that 
supports soft-QoS for 4 different service classes by incorporating cross-layer 
interaction between the MAC, network and application layer. At the MAC layer 
many statistical metrics are collected and provided to upper layers such as the 
routing layer which performs load balancing by choosing the least busy route as 
measured by the MAC. The metrics are further used for traffic shaping and all 
system components together provide QoS in a DiffServ manner. 
Other optimizations try to increase the performance of ad hoc routing protocols 
as they are one major source of inefficiencies in ad hoc networks. Several cross-
layer optimizations work on the problem of node mobility. For example in [20] a 
link stability metric based on an entropy concept is calculated at the MAC layer 
and used for the route selection process. Some routing protocol messages have to 
be altered for this and the whole approach is tailored towards on-demand 
protocols which would violate two of our own system constrains as regular and 
cross-layer protocols are not interoperable in one common network any more due 
to the changed message format and as there are constrains on the choice of the 
protocols which can be used with the developed approach. With such an approach 
on cross-layering this would need to be done on a per-protocol basis which would 
be a very complex task. In addition, since the message formats are changed, to 
keep the network operational the protocols would need to be updated on every 
participating node simultaneously. This example illustrates the importance of a 
sound architectural design. Another cross-layer routing approach combines 
hardware driver information such as GPS location information to derive a 
priority index that is used inside the Cross-layer Route Discovery Framework 
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(CRDF) [21]. This framework was designed to solve two problems of on-demand 
routing protocols which are the “rebroadcast redundancy” and the “next-hop 
racing” problem. What this approach clearly shows is that information outside 
the traditional network stack (GPS, energy etc.) should also be made available to 
network protocols. 
As energy is a primary concern in ad hoc networks, several cross-layer 
optimizations have been proposed to conserve energy. Several power control 
protocols have been proposed in [22] which connect physical and network layer in 
a way where in principal several proactive routing protocols run in parallel each 
at a different power level. Based on the routing table information, the power level 
is chosen for data traffic that fully connects the network while using the least 
energy. 
The major transport protocol found on the Internet, the TCP (Transmission 
Control Protocol), has been found to perform very poorly in mobile ad hoc 
networks. This is due to the assumptions standard TCP makes about the 
underlying network. For example, if a packet does not make it to its destination 
congestion is assumed since the Internet is a very reliable, wired medium and 
packet loss due to other reasons is unlikely. TCP would reduce the packet send 
rate to alleviate the congestion. This assumption does not hold true in wireless 
networks as packet loss is likely to be due to the interference-prone, shared 
wireless medium and reducing the send rate on every lost packet degrades the 
performance significantly. Many cross-layer schemes to improve the performance 
of TCP in dynamic, heterogeneous networks have been proposed. One exemplary 
scheme is called A-TCP which was developed in [23] using MAC layer statistics 
to fine-tune the transport layer. More specifically, the MAC layer collects 
statistics about the unsuccessful transmissions of RTS (Request To Send) packets. 
These statistics are used to adjust the size of the maximum window size at the 
sender side to prevent a sender from causing congestion at forwarding nodes. 
Another TCP improvement can be found in [24] where an additional software 
module generates and drops TCP acknowledgements locally to prevent 
unnecessary acknowledgement exchange. The actual cross-layer interaction is 
here also between the transport and MAC layer where ARQ (Automatic Repeat-
reQuest) messages already indicate the successful delivery of a packet. To add an 
additional software component might not be a good design choice for the general 
case as every adaptation and optimization process might require such a 
component making the overall design of the communication system highly 
complex. 
There exist many more cross-layer optimizations and adaptations on all 
traditional layers of the protocols stack, too many to describe them all in detail. 
As this thesis’ focus is not on single adaptation mechanisms but on cross-layer 
architectural design this section should only give an idea how many possible 
adaptations exist and how such adaptations can look like. The vast amount of 
single optimization mechanism itself is a key motivation for a good architectural 
framework. A good general overview can be found in [25]. 

3.2. Cross-layer Architectures for Ad Hoc Networks 
Compared to the vast amount of single cross-layer adaptations only a few cross-
layer architectures have been proposed so far. All architectures share some 



3 Related Work 31 

common features as the general cross-layer idea is very straight forward. What 
they significantly differ in is the way the cross-layer principle is implemented, 
what kind of application focus and scope the architecture has and where the 
actual adaptation intelligence is situated. The following sub-sections present 
proposed architectures in detail and compare the goals of these architectures 
with the goals of this work. 

3.2.1. Cross-layer Approach To Self-healing (CATS) 
CATS [27], as the name implies, is tailored towards self-healing properties across 
all layers of the network stack. The approach itself is tailored towards sensor 
nodes and battlefield applications, as self-healing is crucial in those scenarios. 
CATS does not require a change of the underlying infrastructure, namely the 
routing protocol and the medium access control to be able to accommodate the 
protocols provided by the military. The authors of [27] introduce a component 
they call Management Plane containing the Cross-layer Platform which contains 
protocol information and is visible across all layers. The Management Plane itself 
is an active component which carries out necessary self-healing functions and 
actively influences packets as they traverse the protocol stack. It can even 
actively influence protocol behavior. As an example, the Management Plane can 
actively change the destination of a packet or make the routing protocol stop 
responding to route requests. One of the core components of the CATS approach 
is that each node maintains a table containing interchangeable nodes. 
Interchangeable nodes are those nodes which are in close proximity and provide 
the same sensing and computational abilities. In case one of the nodes fails, an 
interchangeable node can take over the responsibilities of the failed node. 
The disadvantage of CATS is that the framework itself represents an active 
component, i.e. the framework itself influences protocol behavior and state. This 
means that for every protocol a mechanism must be developed to do this and 
protocol designers must cater for service points where the framework can 
actually influence protocol behavior and data. That means that as new protocols 
and applications are introduced the framework has to be updated or replaced too. 
That in general is not a good architectural design. In addition designing a 
protocol is not independent any more from the underlying framework and the 
design complexity increases significantly. The question that arises is how the 
authors want to leave the routing protocol and MAC protocol unchanged and still 
achieve their goals as they need to access the protocol data and in addition 
change the protocol’s behavior. CATS is also a very powerful component. Failure 
of CATS can result in a total failure of the network stack. Bugs, unforeseen 
circumstances and attacks to CATS can easily disrupt a functioning network. 
Compared to the goals of this thesis CATS also does address the issue of 
unreliability in ad hoc network scenarios. Since it mainly targets at reactive self-
healing strategies and contains active functionality instead of merely providing a 
generic architectural framework it does not cover per se a broader spectrum of ad 
hoc networking issues. Traditional networking issues are left an open issue and 
will most probably be left to in-layer adaptations. Novel application support is 
not mentioned explicitly as well as metric generation and provisioning as 
protocols will remain unchanged and therefore will not make use of additional 
information. Also static parameterization is not addressed. Instead some 
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parameters mentioned are static for CATS like the number of nodes in the table 
of interchangeable nodes. Also network-wide optimizations are not dealt with or 
envisioned. In fact none of the architectures presented in this chapter do. Up to 
now, CATS was never exemplary evaluated, i.e. it was never actually used to 
demonstrate its operation. 

3.2.2. ECLAIR 
In [28] ECLAIR is presented, which is loosely based on previous work described 
in [29]. ECLAIR is a two tier architecture consisting of an Optimization 
SubSystem (OSS) and so called Tuning Layers (TL). A Tuning Layer provides 
access to the data structures held in a specific protocol. For example, the 
Network TL or more specific the IP TL would have access to the state of the IP 
protocol and by altering that state the protocol behavior can be changed. A TL is 
split into two parts: a generic part containing common protocol layer interfaces 
that are implementation independent and an implementation specific part. That 
means that for every single implementation there must be a TL that is aware of 
the implementation details. TLs also provide an event notification mechanism to 
notify registered components, so called Protocol Optimizers (PO), when observed 
data structures change. There is also a TL for user feedback. This way the user 
can directly influence the behavior of the protocol stack. In [28] an example 
application of the User TL is given, where a user prioritizes file downloads and 
TCP parameters are set accordingly. 
The OSS is the cross-layer engine containing the optimization algorithms and 
corresponding data structures. The containers for the optimization algorithms 
are the aforementioned Protocol Optimizers. They take optimization actions on 
events they registered for or on protocol state that they have access to. 
ECLAIR shares some similarities with CATS as it splits the data part and the 
active cross-layer optimization part. Both CATS and ECLAIR actively influence 
protocol behavior with the result that there is no well defined separation between 
framework and functionality any more. The reason behind integrating the cross-
layer optimization algorithms into the framework is that this way there are only 
minor alterations necessary within the existing protocol stack which is one of the 
design goals of ECLAIR. The complexity of ECLAIR is increased by this approach 
as many components reside inside the architecture exhibiting complex 
interactions and relationships with each other. Security and stability might 
become an issue over time as the system will grow with every protocol, 
application and update added to the protocol stack. 
ECLAIR addresses some of the goals of this thesis. Since it actively alters 
protocol state it addresses the issue of static parameterization. The User TL is a 
good example of catering for novel applications. What ECLAIR leaves out 
completely though are network-wide optimizations and optimization metric 
generation. A handling of the more conventional network issues is not explicitly 
addressed in [28] but it appears to be possible to some extend. 

3.2.3. Global Resource Adaptation through CoopEration (GRACE) 
The main focus of GRACE [30][31] is on mobile multimedia terminals and QoS 
provisioning and at the same time resource conservation. Primarily, GRACE tries 
to conserve energy as it is rated a first-class resource. Instead of restricting the 



3 Related Work 33 

cross-layer framework to the network stack the whole device is considered the 
optimization domain. Therefore, the authors of [30] use a slightly different 
terminology when talking about layers. A layer, as defined by GRACE, 
corresponds with a device layer which can be the operating system, the hardware, 
the network stack or applications as shown in Fig. 3.1. GRACE itself coordinates 
the cooperation amongst the system layers by providing interfaces to a central 
resource manager where the coordination functionality is situated. The resource 
manager mediates between the layers to find a suitable combination of possible 
configurations for each layer to achieve near optimal global results. It has to be 
stressed that in GRACE terminology, global refers to the device and not to the 
network. The way GRACE coordinates application demands and available 
resources is a two stage process, one involving global adaptations and one 
involving local adaptations. Global adaptations are only triggered rarely, i.e. the 
system normally operates in the local adaptation mode. Global adaptations only 
occur when either application demands grow significantly, new applications come 
into the system or resource availability changes, violating certain thresholds. 
Global adaptations work as follows. Applications need to specify their resource 
requirements together with the corresponding associated utility at certain 
operation points the application provides. To be more specific each application 
must provide a set of different requirement/utility configurations to the resource 
manager. Utility can be some application specific metric such as frame rate for a 
multimedia application and resource requirements are metrics such as CPU 
utilization. To acquire resource requirements at certain operation points, 
applications query the system layers through resource monitors. Having received 
all possible system configuration sets from all applications, the resource manager 
picks the configurations that meet the resource constrains at the highest possible 
utility and assigns the resources to the applications. In other words the resource 
manager mediates between the available resources and application demands 
guaranteeing fairness to the applications and preventing over-utilization of 
system resources. 
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Fig. 3.1 GRACE’s view of a device’s system components [30] 

As already mentioned the expected steady state mode is GRACE’s local 
adaptation mode. Local adaptation does not involve the central resource manager. 
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Once resources are allocated, the systems layers have some degree of freedom to 
locally adapt to minor changing conditions and fluctuations as long as they do not 
excess the previously allocated resource allowance or reduce the overall system 
utility. 
GRACE is a fairly complex framework as it addresses the whole device and its 
resources. The global adaptation process is by far the most complex task and at 
the same time the most important one. Every application that wants to make use 
of the GRACE framework must include some kind of cost model and should allow 
for multiple operation points. Without multiple operation points GRACE would 
not make much sense since there is no coordination possible. The cost model 
itself can become quite complex and difficult to predict since many applications 
vary drastically in resource consumption over time. This results in a pre-assessed 
operation point to be violated which in turn would trigger many expensive global 
adaptations, disrupting an unobstructed operation of the applications. Local 
adaptations are also very difficult since very often it is not possible to assess the 
effect of an adaptation exactly prior to applying it. This might not apply that 
much to the hardware, for example, as the effect of stepping the processor speed 
up or down is well known and easily quantifiable. But it is especially true for the 
network layer since the communication medium is shared and a node only has 
partial control over it. This is why network-related utility violations can be 
expected more frequently making global adaptations necessary. The question 
arises whether it is practicably possible to provide several network stack pre-
configurations exposing well predictable performance measures for the complex 
global adaptation process. 
Since GRACE does not focus on the network stack alone, actual cross-layer 
network optimizations are not a primary concern. That especially includes 
network-wide optimizations and also more traditional networking issues. What it 
does though is providing a framework for novel applications that are adaptable to 
the dynamics found in ad hoc networks and that run on typical devices found in 
such environments. Very positively to be mentioned is that there is a limited 
functionality GRACE prototype implementation called GRACE-1 [32]. The 
authors’ application focus is very narrow and important for the framework. It is 
on multimedia applications that have periodic tasks such as video decoding has, 
as it can operate on a per-frame basis. GRACE-1 only adapts inside the operating 
system layer, the application layer and the hardware layer. The obvious 
problematic layer, the network layer, is not part of the prototype. The overall 
overhead of GRACE-1’s global adaptations in terms of CPU stress is low 
compared to the computation of a MPEG frame but increases linearly with the 
number of applications running as can be expected. Additional performance gains 
can be achieved for process groups as described in [33]. Unfortunately, GRACE-1 
does not utilize the local adaptations in most of the experiments as the ones that 
are applicable to their demonstrator application are considered to be to 
heavyweight by the authors. Therefore, GRACE-1 was further refined in [34] and 
renamed GRACE-2. GRACE-2’s main focus is to show the effectiveness of another 
introduced local adaptation mechanism, the per-application mechanism, but still 
has the same application focus. The network layer is still non-adaptive and the 
network itself is a static simulated one. It was shown though that those per-
application adaptations are much more lightweight compared to global ones as 
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can be expected. They also yield relatively good energy savings in scenarios with 
restricted network bandwidth. 

3.2.4. The MobileMAN (Mobile Metropolitan Ad hoc Network) 
architecture 

The MobileMAN [35] project itself is a European research effort funded under the 
5th Information Society Technologies (IST) Framework Programme of the 
European Community. Being a very big project, MobileMAN tries to explore the 
various aspects and potentialities of a wireless, self-organizing metropolitan area 
ad hoc network including social and economical aspects. Building a cross-layer 
architecture is only one of their many objectives though fundamental to the 
overall project and therefore a primary concern. They very strictly follow the 
cross-layer idea as their main design objective is to let protocols share data freely 
but at the same time conserve layer separation. MobileMAN, as well as the other 
proposed approaches tries to solve the performance problems found in ad hoc 
environments and also has a focus on connecting this new technology with the 
existing Internet. 

 
Fig. 3.2 The MobileMAN architecture [35] 

[35] and [36] describe the conceptual MobileMAN cross-layer design and the 
general structure of the architecture as depicted in Fig. 3.2. They identify some 
general objectives which are cross-layer by nature, i.e. which are relevant at each 
layer of the network stack, such as security, energy management and cooperation. 
The core component, enabling the data sharing, is called Network Status (NetSt). 
Protocols of all network layers can store their collected data within the Network 
Status, acting as a general purpose data container. The access to the Network 
Status is well defined, regulating the way protocols actually access the stored 
information, i.e. write and read operations on the data are strictly governed by 
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the Network Status itself. By placing this component including the interaction 
with it in juxtaposition to the network stack, a normal operation is guaranteed. 
Or in other words, within a stack, purely layered network protocols and protocols 
making use of the Network Status can coexist. In [37] this characteristic is 
termed loosely-coupled cross-layering as the Network Status introduces a level of 
indirection and acts as a mediator between layers. The more purely layered 
protocols operate within the network stack the less optimization potentialities 
exist as the protocols do not make use of the additional information provided by 
the Network Status and at the same time do not provide any information. That 
means that in order to fully exploit the advantages of the MobileMAN 
architecture, network protocols must be redesigned to provide their information 
and also make use of information from other layers. Within the MobileMAN 
project also a peer-to-peer middleware, CrossROADS [17], was designed which 
makes use of the cross-layer framework. Interestingly, the authors of [35] and 
[36] already make certain assumptions about the suitability of certain protocols 
classes to make use of MobileMAN as a cross-layer architecture. Reactive routing 
protocols for example are seen as much less suitable since topology information 
which could potentially be shared is not necessarily available at all times or 
largely incomplete. 
In the 10th deliverable [37] of the MobileMAN project the authors mention to 
continue working with a layered architecture and only explore as much as 
possible the cross-layer design in parallel. The design itself is further refined in 
subsequent deliverables [37][38][39]. Two types of interaction are supported by 
the NetSt, synchronous and asynchronous. Synchronous interaction simply 
means that a protocol requests data from the NetSt whereas asynchronous 
interaction is an event notification system the NetSt provides and protocols need 
to register for. Events are classified as internal and external where internal 
events refer to events generated inside a protocol and external events are 
triggered by the NetSt itself. The data inside the NetSt is abstracted to 
accommodate for the various protocols which internally represent their data 
differently. In other words, the abstraction the NetSt provides is an agreement 
about the common representation of data inside the NetSt. The transfer of 
protocol internal data into the NetSt is done by using call-backs. They are 
provided by the protocols and transform internal data into the abstracted form of 
NetSt, which actually invokes the call-backs. 
The MobileMAN cross-layer framework fulfills some of the requirements that are 
the basis for the work described in detail later in this document. Seamless 
integration for example is guaranteed as layered and cross-layer protocols can 
coexist in the same protocol stack. Clearly, MobileMAN has a focus to solve the 
problems that are unique to ad hoc networks such as energy efficiency of which 
some are an issue across layers by nature. A problem of the MobileMAN 
architecture is that it already limits the amount of possible protocols running 
inside the framework. For example, a proactive routing protocol must exist that 
maintains complete topology information if CrossROAD should be used. 
Additionally, that protocol must be able to disseminate CrossROAD service 
information. This somehow violates the aforementioned goals of the MobileMAN 
architecture. Another difference is that more significant data is not generated but 
instead very complex data abstractions are provided by the architecture which 
potentially should accommodate every kind of information which can be produced 



3 Related Work 37 

by a protocol of the network stack. Also, the framework itself does also not cater 
for network-wide objectives and optimizations and per se. 

3.2.5. WIDENS (WIreless DEployable Network System) 
The WIDENS (WIreless DEployable Network System) project [40], also 
supported by the European Community’s research fund under the Sixth 
Framework Programme, includes cross-layering as a fundamental principle into 
the system design. The WIDENS architecture is an ad hoc communication system 
for future public safety, emergency and disaster applications and is therefore 
intended for very well defined deployment scenarios. The advantage is that 
certain assumptions can be made such as the existence of a central server and a 
hierarchical organizational structure of public safety organizations. WIDENS 
makes use of these known environmental and organizational specifics in their 
systems design. In addition to that, specific protocols are already chosen for the 
architecture but the fundamental ideas are still in principle generic even if the 
chosen solution is not as there exist many protocol dependencies. The project 
itself comprises many objectives ranging from MAC/PHY layer co-design to 
network layer design. 
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Fig. 3.3 The WIDENS architecture [40] 

A special focus of the cross-layer functionality is on the routing problem in ad hoc 
networks under Quality of Service (QoS) constraints [41][42]. In [43] the cross-
layer interactions are described which are realized through well defined 
interfaces between adjacent layers. These cross-layer extensions provide state 
information and parameter mapping between adjacent layers to increase protocol 
reconfigurability and adaptability [44] as can be seen in Fig. 3.3. The cross-layer 
information is utilized in the case that in-layer optimizations cannot prevent 
performance degradation. Potential adaptation loops are avoided by only allowing 
interactions between adjacent layers. Information from non-adjacent layers can 
only be accessed through the mapping functions of the layer above or below. This 
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can only be done if the cross-layer adaptations at the adjacent layer are 
insufficient and other layers need to adapt in addition to achieve a satisfactory 
networking performance. Furthermore, this way, unnecessary and unintended 
cross-layer operations can be avoided. 
The scope of the WIDENS project is rather narrow as it targets a very specific 
application domain. Cross-layering is a little more restricted compared to other 
approaches such as MobileMAN since only adjacent layers perform cross-layer 
interactions at first and only in cases where these adaptations are not sufficient 
other layers gain access to lower layer information. This potentially leaves out 
possible performance gains. In addition, it is not necessarily true that 
neighboring layers are the optimal choice for adaptations if only one layer is 
chosen to adapt. 
The general goals of the WIDENS are comparable with the MobileMAN project. 
As such, it has similar limitations compared to the design goals in section 1.2. 
These include that network-wide optimizations are not a primary design goal and 
mechanisms to achieve them explicitly are missing. Additionally, the architecture 
does not utilize basic protocol information to compute more relevant and 
meaningful metrics for protocol adaptations. On goal is reconfigurability, but 
basic protocol characteristics are set at deployment time. Protocol 
parameterization might therefore be rather static which might be a valid 
assumption for a system such as WIDENS as its deployment scenario is rather 
well defined. 

3.2.6. TinyCubus 
TinyCubus [45][46][47][48] is a cross-layer framework especially targeted at a 
very specific type of ad hoc networks, sensor networks. More specifically 
TinyCubus targets sensor networks that consist of nodes running the TinyOS 
operating system narrowing down the application domain of TinyCubus greatly. 
One of the core motivations for a cross-layer architecture solely designed for 
sensor networks is their data-centric nature making them unique in some 
respects. Also some special requirements, not limited to but especially 
pronounced in sensor networks such as energy efficiency can justify a focus on 
such networks only. 
TinyCubus consists of three major components which are the Tiny Cross-layer 
Framework, the Tiny Configuration Engine and the Tiny Data Management 
Framework. The cross-layer framework provides two basic functions. One is data 
management in the sense that a layer can provide information that is stored in a 
data repository that in turn can be accessed by any other layer. The other 
function allows the execution of custom code through callbacks. Application-
specific code can be invoked this way at lower layers. 
The configuration engine is responsible for distributing and installing code in the 
network as TinyCubus allows changing components running inside the 
framework to be replaced or added at run-time. The configuration engine 
contains a topology manger which beyond being responsible for the self-
organization of the network handles the node’s role assignment. A role a node has 
can depend on factors like hardware capabilities, location and others. For 
example a node with a virtually unlimited energy source can act as a data sink, 
gateway or cluster head. The code distribution entity of the configuration engine 



3 Related Work 39 

makes sure that updating components is done in an energy efficient and reliable 
manner. 
The last component, the Tiny Data Management Framework, is where the name 
TinyCubus has its origin. The core component is called Cubus as it represents a 
three dimensional data management structure. Those three dimensions are: 
system parameters, application requirements, and optimization parameters. 
Algorithms are classified according to the three aforementioned dimensions. For 
example a routing algorithms is chosen that can be used in high mobility (system 
parameter), is reliable (application requirement) and energy efficient 
(optimization parameter). This way the most appropriate algorithm from the set 
of available algorithms is chosen according to the various requirements. This 
requires either that many algorithms of the same type (e.g. routing, time 
synchronization) are available or different parameterizations of one protocol are 
classified differently. Since sensors are tiny devices in the sense that they are 
very limited in terms of computational capabilities and storage only the code for a 
specific requirement set is installed on a device. If conditions change, code has to 
be downloaded onto the sensor to adapt to the changes. 
As already pointed out the TinyCubus project has a very limited scope as it only 
targets sensor networks running the TinyOS operating system. The Cubus of the 
framework can grow extremely large as each dimension can already be very large 
itself. Defining the parameters of each dimension therefore becomes a very 
difficult task. For example, the question arises if mobility as a system parameter 
is enough or if it should rather be low, medium and high mobility or any other 
subdivision. Then the question arises how to classify if an algorithm is suitable in 
a particular situation. The authors suggest to do that either via simulation or 
real-world analysis. But then, the tested scenarios must exactly match to make 
results comparable and a vast amount of parameters must be tested to fully 
evaluate an algorithm. And how to choose between two algorithms that expose 
the same classification also remains an open question. Furthermore, with each 
added dimension holes in the Cubus might be created and adding dimensions as 
such after the system is deployed might be difficult. The idea of downloading code 
might also be a problem in fast changing environments as it is not very efficient 
to do so to adapt to changes and during installation of the code the network 
might be non-functional. If an algorithm is changed at a node in the network that 
might also mean that the code has to be changed network wide as two completely 
different protocols or algorithms are not necessarily compatible any more and 
that single node would not be able to communicate any more. 
Due to the narrow focus many of the goals of TinyCubus cannot be directly 
compared to the goals of this thesis. The Tiny Cross Layer Framework represents 
the general cross-layer idea of inter-layer information exchange but does not 
seem to be the central component of TinyCubus and is not described in much 
detail. One goal is slightly overlapping as static parameterization in TinyCubus 
is indirectly addressed by having a different parameterization of an algorithm to 
be represented at a different position in the Cubus. The parameterization though 
is discrete and coarse grained depending on the granularity of the different 
dimensions. 
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3.3. Potential Weaknesses of Cross-layer Design 
Cross-layer design is one way to meet the challenges of highly dynamic 
networked environments such as ad hoc networks. Considering the fact that 
some standard protocols such as TCP do not perform very well in such 
environments and that many protocols have to be reinvented completely such as 
routing and time synchronization protocols, introducing cross-layer optimizations 
seems to be feasible as protocols need to be created or adapted already. But 
besides feasibility of the introduction of cross-layer optimizations or even a cross-
layer architecture the question arises whether cross-layer design exposes certain 
weaknesses as apposed to the layered approach. 
In [49] the general cross-layer principle is analyzed and compared against the 
layered approach from a higher level view, i.e. in a more abstract way. The key 
advantage of a layered architecture is argued to be the modular nature and its 
simplicity which allows for future improvements of the business logic of the 
network protocols without tempering with the architectural framework itself. In 
[49] many well designed and in their nature simplistic architectures are 
presented as examples of good architectural design. What all of these 
architectures have in common is the impact they had on their respective 
application domain. For a technological development, good architectural design is 
the warrant for its long existence and its widespread use and application. On the 
other hand, architectural short-cuts might lead to significant performance 
improvements. Compared to the long-lasting impact of a well designed 
architecture the impact of these performance improvements might be short-
termed. Therefore, cross-layer optimizations should always be embedded within 
or supported by an architectural framework. 
The interaction between layers and independent optimization processes which 
act on information provided by other protocols might yield certain unintended 
consequences. As the principle of protocol independence and separation does not 
exist as such any more, at least not as strict as it is in a layered architecture, 
protocols influence each other. In a worst case scenario adaptation loops can be 
created between two or more protocols resulting in a dysfunctional or poorly 
performing network node. To counteract such unintended consequences, the 
authors of [49] suggest the usage of a dependency graph where each node is a 
parameter shared between protocols and the edges represent the respective 
dependency relations. To further improve the stability of the cross-layer protocol 
stack time scale separation can be introduced where different protocols can 
control one parameter but under different time scales. Only for closed loops in the 
dependency graph which act at similar time scales additional analysis is needed 
to proof system stability. 
Finally, the authors of [49] fear that the implementation of cross-layer 
optimizations might lead to, what they call, spaghetti-like code, i.e. code that is 
difficult to maintain. Consequences of such code include difficulties to update the 
network stack, slow development and an increase in cost which ultimately will 
end up on the consumer side. As a result, the cost and potential instabilities 
might hinder the widespread adoption of ad hoc networks. 
Some of the criticism is addressed by the architectures in section 3.2. Consider 
MobileMAN for example. The interaction between protocols is handled by the 
NetSt through well defined interfaces. By only allowing protocols to interact 
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through this mediator the creation of hard-to-maintain spaghetti-like code should 
be prevented as modularity is preserved. Another example is the WIDENS 
architecture. Some adaptation loops can be prevented as the access to protocol 
parameters is regulated by adjacent layers. This way, if a lower layer is able to 
achieve satisfactory performance, the parameter is not passed on to higher layers, 
which in turn might prevent a possible adaptation loop but not necessarily all 
possible unintended consequences as some examples in [49] demonstrate. On the 
other hand, ECLAIR would be a negative example as the framework can actively 
influence protocol behavior. Co-design between protocols and the architecture are 
therefore necessary making the development of network protocols a more 
complex and time consuming task in addition to architectural alterations. 
The goal of a cross-layer architecture must therefore be that it is simple in its 
design and modular in nature to guarantee the longevity of any technology 
implementing such a framework. Furthermore, it should allow identifying or 
detecting possible unintended consequences and as a result it should not utilize 
the cross-layer optimizations that affect the overall network performance 
negatively. And finally, the layer separation principle should be kept intact as 
much as possible by not directly having interactions between protocols but by 
providing a level of abstraction where protocols do interact through a mediator. 
This way implementation independent interfaces to the mediator can be designed 
which provides control over the cross-layer interactions and allows designing 
protocols in a clear, modular and structured way. 

3.4. Assessment of the Presented Architectures 
In this section the architectures presented in section 3.2 are compared against 
each other concerning selected criteria. Although it is sometimes difficult to 
directly compare the architectures, the table below is intended to give a rough 
overview of the complexity, applicability and optimization potential of the 
architectures presented before. These chosen representative criteria are the basis 
for the following comparison: 
 
Application generality: Application generality comprises the aspect of the 
application domain of the architecture, i.e. in what kind of networks and for what 
kind of scenarios an architecture can be used. Or in other words, it is a measure 
of how generic an architecture is in terms of its applicability (Excellent/++  
very poor/--). 
 
Functional complexity: The functional complexity comprises the amount of 
complexity introduced by the architecture that accounts for the cross-layer 
optimization processes and the amount of cross-layer functionality inside the 
architecture excluding the data and information side (Very high/--  very low/++). 
 
Data management complexity: This is a metric for the amount of effort put 
into holding, sharing, representing, evaluating and accessing data including 
mechanisms such as XML representation, data abstraction and cost models (Very 
high/--  very low/++). 
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Network optimization potential: The network optimization potential 
expresses how many network optimizations can be supported by an architecture. 
This includes for example, local network adaptations and network-wide 
adaptations (Excellent/++  very poor/--). 
 
Protocol complexity: Represents a measure for the amount of effort that has to 
be put into creating, maintaining or updating a protocol for the given 
architecture and the degree of complexity for interactions with the architecture 
(Very high/--  very low/++). 
 
Protocol assumptions and preconditions: Is a measure of the assumptions 
and preconditions that protocols must or should fulfill to be able to work inside 
the respective architecture (many/--  no/0). 
 
The above described criteria are weighed using the following symbols in the table 
below: 
 
++ : Excellent, very low 
+ : Good, low, high 
0 : N/a, medium, no 
- : Poor, high, some 
-- : Very poor, very high, many 
 

Table 3.1 Assessment of the architectures described in 3.2 
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CATS - - - + 0 - 

ÉCLAIR ++ -- - + -- 0 

GRACE + - -- + - - 

MobileMan ++ + 0 + + - 

WIDENS 0 0 - 0 - - 

TinyCubus -- - - 0 0 - 

3.5. Summary 
A vast amount of cross-layer adaptations and optimizations have been proposed 
in the recent past spanning all layers of popular protocol stacks. Most of these 
single mechanisms do not consider an architectural framework though. The 
actual cross-layer interactions are not the primary focus of most publications and 
are generally assumed to be somehow available. The sheer amount of cross-layer 
adaptations suggests though that a sound architectural design would not only 

Criterion 

Architecture 
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greatly reduce the design and implementation complexity of new and existing 
approaches but it would also clearly be a necessity to have a common 
architectural framework to support these cross-layer optimizations efficiently. 
The architectures presented all try to support cross-layer protocols in different 
ways and they also differ in their application scenarios. They also differ in their 
ability to detect and prevent potential risks that exists when weakening the strict 
layer separation principle. Therefore, a direct comparison is not always a straight 
forward process but can be done using criteria that abstract from the 
architectural details. 
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