
28

3. Related Work

This chapter introduces related work on cross-layer design, cross-layer
optimizations and adaptations. The main focus is on cross-layer architectures
and on single adaptation mechanisms that were introduced without specific
architectural considerations. Additionally, some criticism on cross-layer design in
general that was recently expressed and the ability of the proposed architectures
to withstand that criticism is analyzed. Most importantly, proposed architectures
are compared against each other and are discussed in detail. Related work that is
closely connected to the adaptation mechanisms introduced later in this
document will be discussed in the corresponding chapter.

3.1. Cross-layer Adaptations and Optimizations
Cross-layer adaptations are the fundamental protocol enhancements that a good
cross-layer architecture enables and supports by providing basic services such as
data exchange and accessibility. In other words, the adaptations are the
mechanisms that utilize the cross-layer architecture to improve protocol
efficiency.
Many such adaptations have been proposed in the literature for a very broad
spectrum of possible application and protocol shortcomings. At the same time
most of these adaptations leave out the actual process of cross-layer
communication and interaction. Architectural considerations are rarely found but
the sheer amount of proposed adaptations suggests that there is a definite need
for an architectural framework to base adaptations on. These single adaptations
also reveal the plethora of possible cross-layer adaptations and optimizations
that can significantly increase the performance of an ad hoc networking stack.
This section describes some of the existing cross-layer adaptation mechanisms
that have been developed.
Starting at the topmost layer, the application layer, several cross-layer
optimizations have been suggested and described. For example CrossROAD, a
peer-to-peer system based on Pastry, was proposed in [17]. CrossROAD utilizes
the network topology information provided by a proactive routing protocol that is
the core requirement for CrossROAD. It also introduces some interaction

3 Related Work 29

between CrossROAD and the routing protocol which requires a joint design. The
general idea is that by utilizing the routing state information the overlay
network construction and maintenance can be optimized as the routing protocol
already maintains complete topology information. CrossROAD does not address
further ad hoc network specific in-layer optimizations though, such as proposed
by DynaMO [5] and is restricted to proactive protocols. This restriction to a class
of protocols in general is not desirable and a good architectural design might help
to weaken these very strict requirements.
Multimedia applications are very demanding from a networking perspective as
they have very strict bounds for QoS parameters such as jitter and throughput.
On the other hand there is some flexibility and adaptability intrinsic to
multimedia applications such as streaming video as, for example, video encoding,
video resolution and others can be tuned. That is why many cross-layer
optimizations target explicitly this group of applications. An example for such an
optimization can be found in [18] where an error protection scheme for video
transmissions is described. The general idea is that channel state information is
utilized to adapt the video encoding scheme to provide the most appropriate error
protection for a given packet loss ratio. What this scheme achieves in comparison
to conventional forward error correction (FEC) is that the video quality degrades
graceful with an increasing packet loss ratio.
When it comes to QoS ad hoc networks are probably the most challenging
network variants that exist since they can be very dynamic in many respects
which makes guaranteed availability of network resources and performance
highly difficult. Hard-QoS, i.e. guaranteed bounds on delay, jitter or bandwidth
in such environments is nearly impossible to provide as many factors that affect
these metrics cannot be controlled. In [19] a QoS system was designed that
supports soft-QoS for 4 different service classes by incorporating cross-layer
interaction between the MAC, network and application layer. At the MAC layer
many statistical metrics are collected and provided to upper layers such as the
routing layer which performs load balancing by choosing the least busy route as
measured by the MAC. The metrics are further used for traffic shaping and all
system components together provide QoS in a DiffServ manner.
Other optimizations try to increase the performance of ad hoc routing protocols
as they are one major source of inefficiencies in ad hoc networks. Several cross-
layer optimizations work on the problem of node mobility. For example in [20] a
link stability metric based on an entropy concept is calculated at the MAC layer
and used for the route selection process. Some routing protocol messages have to
be altered for this and the whole approach is tailored towards on-demand
protocols which would violate two of our own system constrains as regular and
cross-layer protocols are not interoperable in one common network any more due
to the changed message format and as there are constrains on the choice of the
protocols which can be used with the developed approach. With such an approach
on cross-layering this would need to be done on a per-protocol basis which would
be a very complex task. In addition, since the message formats are changed, to
keep the network operational the protocols would need to be updated on every
participating node simultaneously. This example illustrates the importance of a
sound architectural design. Another cross-layer routing approach combines
hardware driver information such as GPS location information to derive a
priority index that is used inside the Cross-layer Route Discovery Framework

30 3.2 Cross-layer Architectures for Ad Hoc Networks

(CRDF) [21]. This framework was designed to solve two problems of on-demand
routing protocols which are the “rebroadcast redundancy” and the “next-hop
racing” problem. What this approach clearly shows is that information outside
the traditional network stack (GPS, energy etc.) should also be made available to
network protocols.
As energy is a primary concern in ad hoc networks, several cross-layer
optimizations have been proposed to conserve energy. Several power control
protocols have been proposed in [22] which connect physical and network layer in
a way where in principal several proactive routing protocols run in parallel each
at a different power level. Based on the routing table information, the power level
is chosen for data traffic that fully connects the network while using the least
energy.
The major transport protocol found on the Internet, the TCP (Transmission
Control Protocol), has been found to perform very poorly in mobile ad hoc
networks. This is due to the assumptions standard TCP makes about the
underlying network. For example, if a packet does not make it to its destination
congestion is assumed since the Internet is a very reliable, wired medium and
packet loss due to other reasons is unlikely. TCP would reduce the packet send
rate to alleviate the congestion. This assumption does not hold true in wireless
networks as packet loss is likely to be due to the interference-prone, shared
wireless medium and reducing the send rate on every lost packet degrades the
performance significantly. Many cross-layer schemes to improve the performance
of TCP in dynamic, heterogeneous networks have been proposed. One exemplary
scheme is called A-TCP which was developed in [23] using MAC layer statistics
to fine-tune the transport layer. More specifically, the MAC layer collects
statistics about the unsuccessful transmissions of RTS (Request To Send) packets.
These statistics are used to adjust the size of the maximum window size at the
sender side to prevent a sender from causing congestion at forwarding nodes.
Another TCP improvement can be found in [24] where an additional software
module generates and drops TCP acknowledgements locally to prevent
unnecessary acknowledgement exchange. The actual cross-layer interaction is
here also between the transport and MAC layer where ARQ (Automatic Repeat-
reQuest) messages already indicate the successful delivery of a packet. To add an
additional software component might not be a good design choice for the general
case as every adaptation and optimization process might require such a
component making the overall design of the communication system highly
complex.
There exist many more cross-layer optimizations and adaptations on all
traditional layers of the protocols stack, too many to describe them all in detail.
As this thesis’ focus is not on single adaptation mechanisms but on cross-layer
architectural design this section should only give an idea how many possible
adaptations exist and how such adaptations can look like. The vast amount of
single optimization mechanism itself is a key motivation for a good architectural
framework. A good general overview can be found in [25].

3.2. Cross-layer Architectures for Ad Hoc Networks
Compared to the vast amount of single cross-layer adaptations only a few cross-
layer architectures have been proposed so far. All architectures share some

3 Related Work 31

common features as the general cross-layer idea is very straight forward. What
they significantly differ in is the way the cross-layer principle is implemented,
what kind of application focus and scope the architecture has and where the
actual adaptation intelligence is situated. The following sub-sections present
proposed architectures in detail and compare the goals of these architectures
with the goals of this work.

3.2.1. Cross-layer Approach To Self-healing (CATS)
CATS [27], as the name implies, is tailored towards self-healing properties across
all layers of the network stack. The approach itself is tailored towards sensor
nodes and battlefield applications, as self-healing is crucial in those scenarios.
CATS does not require a change of the underlying infrastructure, namely the
routing protocol and the medium access control to be able to accommodate the
protocols provided by the military. The authors of [27] introduce a component
they call Management Plane containing the Cross-layer Platform which contains
protocol information and is visible across all layers. The Management Plane itself
is an active component which carries out necessary self-healing functions and
actively influences packets as they traverse the protocol stack. It can even
actively influence protocol behavior. As an example, the Management Plane can
actively change the destination of a packet or make the routing protocol stop
responding to route requests. One of the core components of the CATS approach
is that each node maintains a table containing interchangeable nodes.
Interchangeable nodes are those nodes which are in close proximity and provide
the same sensing and computational abilities. In case one of the nodes fails, an
interchangeable node can take over the responsibilities of the failed node.
The disadvantage of CATS is that the framework itself represents an active
component, i.e. the framework itself influences protocol behavior and state. This
means that for every protocol a mechanism must be developed to do this and
protocol designers must cater for service points where the framework can
actually influence protocol behavior and data. That means that as new protocols
and applications are introduced the framework has to be updated or replaced too.
That in general is not a good architectural design. In addition designing a
protocol is not independent any more from the underlying framework and the
design complexity increases significantly. The question that arises is how the
authors want to leave the routing protocol and MAC protocol unchanged and still
achieve their goals as they need to access the protocol data and in addition
change the protocol’s behavior. CATS is also a very powerful component. Failure
of CATS can result in a total failure of the network stack. Bugs, unforeseen
circumstances and attacks to CATS can easily disrupt a functioning network.
Compared to the goals of this thesis CATS also does address the issue of
unreliability in ad hoc network scenarios. Since it mainly targets at reactive self-
healing strategies and contains active functionality instead of merely providing a
generic architectural framework it does not cover per se a broader spectrum of ad
hoc networking issues. Traditional networking issues are left an open issue and
will most probably be left to in-layer adaptations. Novel application support is
not mentioned explicitly as well as metric generation and provisioning as
protocols will remain unchanged and therefore will not make use of additional
information. Also static parameterization is not addressed. Instead some

32 3.2 Cross-layer Architectures for Ad Hoc Networks

parameters mentioned are static for CATS like the number of nodes in the table
of interchangeable nodes. Also network-wide optimizations are not dealt with or
envisioned. In fact none of the architectures presented in this chapter do. Up to
now, CATS was never exemplary evaluated, i.e. it was never actually used to
demonstrate its operation.

3.2.2. ECLAIR
In [28] ECLAIR is presented, which is loosely based on previous work described
in [29]. ECLAIR is a two tier architecture consisting of an Optimization
SubSystem (OSS) and so called Tuning Layers (TL). A Tuning Layer provides
access to the data structures held in a specific protocol. For example, the
Network TL or more specific the IP TL would have access to the state of the IP
protocol and by altering that state the protocol behavior can be changed. A TL is
split into two parts: a generic part containing common protocol layer interfaces
that are implementation independent and an implementation specific part. That
means that for every single implementation there must be a TL that is aware of
the implementation details. TLs also provide an event notification mechanism to
notify registered components, so called Protocol Optimizers (PO), when observed
data structures change. There is also a TL for user feedback. This way the user
can directly influence the behavior of the protocol stack. In [28] an example
application of the User TL is given, where a user prioritizes file downloads and
TCP parameters are set accordingly.
The OSS is the cross-layer engine containing the optimization algorithms and
corresponding data structures. The containers for the optimization algorithms
are the aforementioned Protocol Optimizers. They take optimization actions on
events they registered for or on protocol state that they have access to.
ECLAIR shares some similarities with CATS as it splits the data part and the
active cross-layer optimization part. Both CATS and ECLAIR actively influence
protocol behavior with the result that there is no well defined separation between
framework and functionality any more. The reason behind integrating the cross-
layer optimization algorithms into the framework is that this way there are only
minor alterations necessary within the existing protocol stack which is one of the
design goals of ECLAIR. The complexity of ECLAIR is increased by this approach
as many components reside inside the architecture exhibiting complex
interactions and relationships with each other. Security and stability might
become an issue over time as the system will grow with every protocol,
application and update added to the protocol stack.
ECLAIR addresses some of the goals of this thesis. Since it actively alters
protocol state it addresses the issue of static parameterization. The User TL is a
good example of catering for novel applications. What ECLAIR leaves out
completely though are network-wide optimizations and optimization metric
generation. A handling of the more conventional network issues is not explicitly
addressed in [28] but it appears to be possible to some extend.

3.2.3. Global Resource Adaptation through CoopEration (GRACE)
The main focus of GRACE [30][31] is on mobile multimedia terminals and QoS
provisioning and at the same time resource conservation. Primarily, GRACE tries
to conserve energy as it is rated a first-class resource. Instead of restricting the

3 Related Work 33

cross-layer framework to the network stack the whole device is considered the
optimization domain. Therefore, the authors of [30] use a slightly different
terminology when talking about layers. A layer, as defined by GRACE,
corresponds with a device layer which can be the operating system, the hardware,
the network stack or applications as shown in Fig. 3.1. GRACE itself coordinates
the cooperation amongst the system layers by providing interfaces to a central
resource manager where the coordination functionality is situated. The resource
manager mediates between the layers to find a suitable combination of possible
configurations for each layer to achieve near optimal global results. It has to be
stressed that in GRACE terminology, global refers to the device and not to the
network. The way GRACE coordinates application demands and available
resources is a two stage process, one involving global adaptations and one
involving local adaptations. Global adaptations are only triggered rarely, i.e. the
system normally operates in the local adaptation mode. Global adaptations only
occur when either application demands grow significantly, new applications come
into the system or resource availability changes, violating certain thresholds.
Global adaptations work as follows. Applications need to specify their resource
requirements together with the corresponding associated utility at certain
operation points the application provides. To be more specific each application
must provide a set of different requirement/utility configurations to the resource
manager. Utility can be some application specific metric such as frame rate for a
multimedia application and resource requirements are metrics such as CPU
utilization. To acquire resource requirements at certain operation points,
applications query the system layers through resource monitors. Having received
all possible system configuration sets from all applications, the resource manager
picks the configurations that meet the resource constrains at the highest possible
utility and assigns the resources to the applications. In other words the resource
manager mediates between the available resources and application demands
guaranteeing fairness to the applications and preventing over-utilization of
system resources.

Applications

Architecture and
hardware

Operating system

Network protocols
Netw

ork

pro
toc

ols
Applications

Coordinator

Operating

system Arch
ite

ctu
re

an
d

ha
rdw

are

(a) Current systems (b) Future vision
Fig. 3.1 GRACE’s view of a device’s system components [30]

As already mentioned the expected steady state mode is GRACE’s local
adaptation mode. Local adaptation does not involve the central resource manager.

34 3.2 Cross-layer Architectures for Ad Hoc Networks

Once resources are allocated, the systems layers have some degree of freedom to
locally adapt to minor changing conditions and fluctuations as long as they do not
excess the previously allocated resource allowance or reduce the overall system
utility.
GRACE is a fairly complex framework as it addresses the whole device and its
resources. The global adaptation process is by far the most complex task and at
the same time the most important one. Every application that wants to make use
of the GRACE framework must include some kind of cost model and should allow
for multiple operation points. Without multiple operation points GRACE would
not make much sense since there is no coordination possible. The cost model
itself can become quite complex and difficult to predict since many applications
vary drastically in resource consumption over time. This results in a pre-assessed
operation point to be violated which in turn would trigger many expensive global
adaptations, disrupting an unobstructed operation of the applications. Local
adaptations are also very difficult since very often it is not possible to assess the
effect of an adaptation exactly prior to applying it. This might not apply that
much to the hardware, for example, as the effect of stepping the processor speed
up or down is well known and easily quantifiable. But it is especially true for the
network layer since the communication medium is shared and a node only has
partial control over it. This is why network-related utility violations can be
expected more frequently making global adaptations necessary. The question
arises whether it is practicably possible to provide several network stack pre-
configurations exposing well predictable performance measures for the complex
global adaptation process.
Since GRACE does not focus on the network stack alone, actual cross-layer
network optimizations are not a primary concern. That especially includes
network-wide optimizations and also more traditional networking issues. What it
does though is providing a framework for novel applications that are adaptable to
the dynamics found in ad hoc networks and that run on typical devices found in
such environments. Very positively to be mentioned is that there is a limited
functionality GRACE prototype implementation called GRACE-1 [32]. The
authors’ application focus is very narrow and important for the framework. It is
on multimedia applications that have periodic tasks such as video decoding has,
as it can operate on a per-frame basis. GRACE-1 only adapts inside the operating
system layer, the application layer and the hardware layer. The obvious
problematic layer, the network layer, is not part of the prototype. The overall
overhead of GRACE-1’s global adaptations in terms of CPU stress is low
compared to the computation of a MPEG frame but increases linearly with the
number of applications running as can be expected. Additional performance gains
can be achieved for process groups as described in [33]. Unfortunately, GRACE-1
does not utilize the local adaptations in most of the experiments as the ones that
are applicable to their demonstrator application are considered to be to
heavyweight by the authors. Therefore, GRACE-1 was further refined in [34] and
renamed GRACE-2. GRACE-2’s main focus is to show the effectiveness of another
introduced local adaptation mechanism, the per-application mechanism, but still
has the same application focus. The network layer is still non-adaptive and the
network itself is a static simulated one. It was shown though that those per-
application adaptations are much more lightweight compared to global ones as

3 Related Work 35

can be expected. They also yield relatively good energy savings in scenarios with
restricted network bandwidth.

3.2.4. The MobileMAN (Mobile Metropolitan Ad hoc Network)
architecture

The MobileMAN [35] project itself is a European research effort funded under the
5th Information Society Technologies (IST) Framework Programme of the
European Community. Being a very big project, MobileMAN tries to explore the
various aspects and potentialities of a wireless, self-organizing metropolitan area
ad hoc network including social and economical aspects. Building a cross-layer
architecture is only one of their many objectives though fundamental to the
overall project and therefore a primary concern. They very strictly follow the
cross-layer idea as their main design objective is to let protocols share data freely
but at the same time conserve layer separation. MobileMAN, as well as the other
proposed approaches tries to solve the performance problems found in ad hoc
environments and also has a focus on connecting this new technology with the
existing Internet.

Fig. 3.2 The MobileMAN architecture [35]

[35] and [36] describe the conceptual MobileMAN cross-layer design and the
general structure of the architecture as depicted in Fig. 3.2. They identify some
general objectives which are cross-layer by nature, i.e. which are relevant at each
layer of the network stack, such as security, energy management and cooperation.
The core component, enabling the data sharing, is called Network Status (NetSt).
Protocols of all network layers can store their collected data within the Network
Status, acting as a general purpose data container. The access to the Network
Status is well defined, regulating the way protocols actually access the stored
information, i.e. write and read operations on the data are strictly governed by

36 3.2 Cross-layer Architectures for Ad Hoc Networks

the Network Status itself. By placing this component including the interaction
with it in juxtaposition to the network stack, a normal operation is guaranteed.
Or in other words, within a stack, purely layered network protocols and protocols
making use of the Network Status can coexist. In [37] this characteristic is
termed loosely-coupled cross-layering as the Network Status introduces a level of
indirection and acts as a mediator between layers. The more purely layered
protocols operate within the network stack the less optimization potentialities
exist as the protocols do not make use of the additional information provided by
the Network Status and at the same time do not provide any information. That
means that in order to fully exploit the advantages of the MobileMAN
architecture, network protocols must be redesigned to provide their information
and also make use of information from other layers. Within the MobileMAN
project also a peer-to-peer middleware, CrossROADS [17], was designed which
makes use of the cross-layer framework. Interestingly, the authors of [35] and
[36] already make certain assumptions about the suitability of certain protocols
classes to make use of MobileMAN as a cross-layer architecture. Reactive routing
protocols for example are seen as much less suitable since topology information
which could potentially be shared is not necessarily available at all times or
largely incomplete.
In the 10th deliverable [37] of the MobileMAN project the authors mention to
continue working with a layered architecture and only explore as much as
possible the cross-layer design in parallel. The design itself is further refined in
subsequent deliverables [37][38][39]. Two types of interaction are supported by
the NetSt, synchronous and asynchronous. Synchronous interaction simply
means that a protocol requests data from the NetSt whereas asynchronous
interaction is an event notification system the NetSt provides and protocols need
to register for. Events are classified as internal and external where internal
events refer to events generated inside a protocol and external events are
triggered by the NetSt itself. The data inside the NetSt is abstracted to
accommodate for the various protocols which internally represent their data
differently. In other words, the abstraction the NetSt provides is an agreement
about the common representation of data inside the NetSt. The transfer of
protocol internal data into the NetSt is done by using call-backs. They are
provided by the protocols and transform internal data into the abstracted form of
NetSt, which actually invokes the call-backs.
The MobileMAN cross-layer framework fulfills some of the requirements that are
the basis for the work described in detail later in this document. Seamless
integration for example is guaranteed as layered and cross-layer protocols can
coexist in the same protocol stack. Clearly, MobileMAN has a focus to solve the
problems that are unique to ad hoc networks such as energy efficiency of which
some are an issue across layers by nature. A problem of the MobileMAN
architecture is that it already limits the amount of possible protocols running
inside the framework. For example, a proactive routing protocol must exist that
maintains complete topology information if CrossROAD should be used.
Additionally, that protocol must be able to disseminate CrossROAD service
information. This somehow violates the aforementioned goals of the MobileMAN
architecture. Another difference is that more significant data is not generated but
instead very complex data abstractions are provided by the architecture which
potentially should accommodate every kind of information which can be produced

3 Related Work 37

by a protocol of the network stack. Also, the framework itself does also not cater
for network-wide objectives and optimizations and per se.

3.2.5. WIDENS (WIreless DEployable Network System)
The WIDENS (WIreless DEployable Network System) project [40], also
supported by the European Community’s research fund under the Sixth
Framework Programme, includes cross-layering as a fundamental principle into
the system design. The WIDENS architecture is an ad hoc communication system
for future public safety, emergency and disaster applications and is therefore
intended for very well defined deployment scenarios. The advantage is that
certain assumptions can be made such as the existence of a central server and a
hierarchical organizational structure of public safety organizations. WIDENS
makes use of these known environmental and organizational specifics in their
systems design. In addition to that, specific protocols are already chosen for the
architecture but the fundamental ideas are still in principle generic even if the
chosen solution is not as there exist many protocol dependencies. The project
itself comprises many objectives ranging from MAC/PHY layer co-design to
network layer design.

State Info &
Parameters

State Info &
Parameters

State Info &
Parameters

State Info &
ParametersApplication

Transport

MAC/Phy

Network

System
Constraints
&
Network/
Application
Characteristics

At deployment On operation

M
ap

pi
ng

Protocol Stack Cross-Layer
Extension

Protocols Auto
Configuration

Fig. 3.3 The WIDENS architecture [40]

A special focus of the cross-layer functionality is on the routing problem in ad hoc
networks under Quality of Service (QoS) constraints [41][42]. In [43] the cross-
layer interactions are described which are realized through well defined
interfaces between adjacent layers. These cross-layer extensions provide state
information and parameter mapping between adjacent layers to increase protocol
reconfigurability and adaptability [44] as can be seen in Fig. 3.3. The cross-layer
information is utilized in the case that in-layer optimizations cannot prevent
performance degradation. Potential adaptation loops are avoided by only allowing
interactions between adjacent layers. Information from non-adjacent layers can
only be accessed through the mapping functions of the layer above or below. This

38 3.2 Cross-layer Architectures for Ad Hoc Networks

can only be done if the cross-layer adaptations at the adjacent layer are
insufficient and other layers need to adapt in addition to achieve a satisfactory
networking performance. Furthermore, this way, unnecessary and unintended
cross-layer operations can be avoided.
The scope of the WIDENS project is rather narrow as it targets a very specific
application domain. Cross-layering is a little more restricted compared to other
approaches such as MobileMAN since only adjacent layers perform cross-layer
interactions at first and only in cases where these adaptations are not sufficient
other layers gain access to lower layer information. This potentially leaves out
possible performance gains. In addition, it is not necessarily true that
neighboring layers are the optimal choice for adaptations if only one layer is
chosen to adapt.
The general goals of the WIDENS are comparable with the MobileMAN project.
As such, it has similar limitations compared to the design goals in section 1.2.
These include that network-wide optimizations are not a primary design goal and
mechanisms to achieve them explicitly are missing. Additionally, the architecture
does not utilize basic protocol information to compute more relevant and
meaningful metrics for protocol adaptations. On goal is reconfigurability, but
basic protocol characteristics are set at deployment time. Protocol
parameterization might therefore be rather static which might be a valid
assumption for a system such as WIDENS as its deployment scenario is rather
well defined.

3.2.6. TinyCubus
TinyCubus [45][46][47][48] is a cross-layer framework especially targeted at a
very specific type of ad hoc networks, sensor networks. More specifically
TinyCubus targets sensor networks that consist of nodes running the TinyOS
operating system narrowing down the application domain of TinyCubus greatly.
One of the core motivations for a cross-layer architecture solely designed for
sensor networks is their data-centric nature making them unique in some
respects. Also some special requirements, not limited to but especially
pronounced in sensor networks such as energy efficiency can justify a focus on
such networks only.
TinyCubus consists of three major components which are the Tiny Cross-layer
Framework, the Tiny Configuration Engine and the Tiny Data Management
Framework. The cross-layer framework provides two basic functions. One is data
management in the sense that a layer can provide information that is stored in a
data repository that in turn can be accessed by any other layer. The other
function allows the execution of custom code through callbacks. Application-
specific code can be invoked this way at lower layers.
The configuration engine is responsible for distributing and installing code in the
network as TinyCubus allows changing components running inside the
framework to be replaced or added at run-time. The configuration engine
contains a topology manger which beyond being responsible for the self-
organization of the network handles the node’s role assignment. A role a node has
can depend on factors like hardware capabilities, location and others. For
example a node with a virtually unlimited energy source can act as a data sink,
gateway or cluster head. The code distribution entity of the configuration engine

3 Related Work 39

makes sure that updating components is done in an energy efficient and reliable
manner.
The last component, the Tiny Data Management Framework, is where the name
TinyCubus has its origin. The core component is called Cubus as it represents a
three dimensional data management structure. Those three dimensions are:
system parameters, application requirements, and optimization parameters.
Algorithms are classified according to the three aforementioned dimensions. For
example a routing algorithms is chosen that can be used in high mobility (system
parameter), is reliable (application requirement) and energy efficient
(optimization parameter). This way the most appropriate algorithm from the set
of available algorithms is chosen according to the various requirements. This
requires either that many algorithms of the same type (e.g. routing, time
synchronization) are available or different parameterizations of one protocol are
classified differently. Since sensors are tiny devices in the sense that they are
very limited in terms of computational capabilities and storage only the code for a
specific requirement set is installed on a device. If conditions change, code has to
be downloaded onto the sensor to adapt to the changes.
As already pointed out the TinyCubus project has a very limited scope as it only
targets sensor networks running the TinyOS operating system. The Cubus of the
framework can grow extremely large as each dimension can already be very large
itself. Defining the parameters of each dimension therefore becomes a very
difficult task. For example, the question arises if mobility as a system parameter
is enough or if it should rather be low, medium and high mobility or any other
subdivision. Then the question arises how to classify if an algorithm is suitable in
a particular situation. The authors suggest to do that either via simulation or
real-world analysis. But then, the tested scenarios must exactly match to make
results comparable and a vast amount of parameters must be tested to fully
evaluate an algorithm. And how to choose between two algorithms that expose
the same classification also remains an open question. Furthermore, with each
added dimension holes in the Cubus might be created and adding dimensions as
such after the system is deployed might be difficult. The idea of downloading code
might also be a problem in fast changing environments as it is not very efficient
to do so to adapt to changes and during installation of the code the network
might be non-functional. If an algorithm is changed at a node in the network that
might also mean that the code has to be changed network wide as two completely
different protocols or algorithms are not necessarily compatible any more and
that single node would not be able to communicate any more.
Due to the narrow focus many of the goals of TinyCubus cannot be directly
compared to the goals of this thesis. The Tiny Cross Layer Framework represents
the general cross-layer idea of inter-layer information exchange but does not
seem to be the central component of TinyCubus and is not described in much
detail. One goal is slightly overlapping as static parameterization in TinyCubus
is indirectly addressed by having a different parameterization of an algorithm to
be represented at a different position in the Cubus. The parameterization though
is discrete and coarse grained depending on the granularity of the different
dimensions.

40 3.3 Potential Weaknesses of Cross-layer Design

3.3. Potential Weaknesses of Cross-layer Design
Cross-layer design is one way to meet the challenges of highly dynamic
networked environments such as ad hoc networks. Considering the fact that
some standard protocols such as TCP do not perform very well in such
environments and that many protocols have to be reinvented completely such as
routing and time synchronization protocols, introducing cross-layer optimizations
seems to be feasible as protocols need to be created or adapted already. But
besides feasibility of the introduction of cross-layer optimizations or even a cross-
layer architecture the question arises whether cross-layer design exposes certain
weaknesses as apposed to the layered approach.
In [49] the general cross-layer principle is analyzed and compared against the
layered approach from a higher level view, i.e. in a more abstract way. The key
advantage of a layered architecture is argued to be the modular nature and its
simplicity which allows for future improvements of the business logic of the
network protocols without tempering with the architectural framework itself. In
[49] many well designed and in their nature simplistic architectures are
presented as examples of good architectural design. What all of these
architectures have in common is the impact they had on their respective
application domain. For a technological development, good architectural design is
the warrant for its long existence and its widespread use and application. On the
other hand, architectural short-cuts might lead to significant performance
improvements. Compared to the long-lasting impact of a well designed
architecture the impact of these performance improvements might be short-
termed. Therefore, cross-layer optimizations should always be embedded within
or supported by an architectural framework.
The interaction between layers and independent optimization processes which
act on information provided by other protocols might yield certain unintended
consequences. As the principle of protocol independence and separation does not
exist as such any more, at least not as strict as it is in a layered architecture,
protocols influence each other. In a worst case scenario adaptation loops can be
created between two or more protocols resulting in a dysfunctional or poorly
performing network node. To counteract such unintended consequences, the
authors of [49] suggest the usage of a dependency graph where each node is a
parameter shared between protocols and the edges represent the respective
dependency relations. To further improve the stability of the cross-layer protocol
stack time scale separation can be introduced where different protocols can
control one parameter but under different time scales. Only for closed loops in the
dependency graph which act at similar time scales additional analysis is needed
to proof system stability.
Finally, the authors of [49] fear that the implementation of cross-layer
optimizations might lead to, what they call, spaghetti-like code, i.e. code that is
difficult to maintain. Consequences of such code include difficulties to update the
network stack, slow development and an increase in cost which ultimately will
end up on the consumer side. As a result, the cost and potential instabilities
might hinder the widespread adoption of ad hoc networks.
Some of the criticism is addressed by the architectures in section 3.2. Consider
MobileMAN for example. The interaction between protocols is handled by the
NetSt through well defined interfaces. By only allowing protocols to interact

3 Related Work 41

through this mediator the creation of hard-to-maintain spaghetti-like code should
be prevented as modularity is preserved. Another example is the WIDENS
architecture. Some adaptation loops can be prevented as the access to protocol
parameters is regulated by adjacent layers. This way, if a lower layer is able to
achieve satisfactory performance, the parameter is not passed on to higher layers,
which in turn might prevent a possible adaptation loop but not necessarily all
possible unintended consequences as some examples in [49] demonstrate. On the
other hand, ECLAIR would be a negative example as the framework can actively
influence protocol behavior. Co-design between protocols and the architecture are
therefore necessary making the development of network protocols a more
complex and time consuming task in addition to architectural alterations.
The goal of a cross-layer architecture must therefore be that it is simple in its
design and modular in nature to guarantee the longevity of any technology
implementing such a framework. Furthermore, it should allow identifying or
detecting possible unintended consequences and as a result it should not utilize
the cross-layer optimizations that affect the overall network performance
negatively. And finally, the layer separation principle should be kept intact as
much as possible by not directly having interactions between protocols but by
providing a level of abstraction where protocols do interact through a mediator.
This way implementation independent interfaces to the mediator can be designed
which provides control over the cross-layer interactions and allows designing
protocols in a clear, modular and structured way.

3.4. Assessment of the Presented Architectures
In this section the architectures presented in section 3.2 are compared against
each other concerning selected criteria. Although it is sometimes difficult to
directly compare the architectures, the table below is intended to give a rough
overview of the complexity, applicability and optimization potential of the
architectures presented before. These chosen representative criteria are the basis
for the following comparison:

Application generality: Application generality comprises the aspect of the
application domain of the architecture, i.e. in what kind of networks and for what
kind of scenarios an architecture can be used. Or in other words, it is a measure
of how generic an architecture is in terms of its applicability (Excellent/++
very poor/--).

Functional complexity: The functional complexity comprises the amount of
complexity introduced by the architecture that accounts for the cross-layer
optimization processes and the amount of cross-layer functionality inside the
architecture excluding the data and information side (Very high/-- very low/++).

Data management complexity: This is a metric for the amount of effort put
into holding, sharing, representing, evaluating and accessing data including
mechanisms such as XML representation, data abstraction and cost models (Very
high/-- very low/++).

42 3.5 Summary

Network optimization potential: The network optimization potential
expresses how many network optimizations can be supported by an architecture.
This includes for example, local network adaptations and network-wide
adaptations (Excellent/++ very poor/--).

Protocol complexity: Represents a measure for the amount of effort that has to
be put into creating, maintaining or updating a protocol for the given
architecture and the degree of complexity for interactions with the architecture
(Very high/-- very low/++).

Protocol assumptions and preconditions: Is a measure of the assumptions
and preconditions that protocols must or should fulfill to be able to work inside
the respective architecture (many/-- no/0).

The above described criteria are weighed using the following symbols in the table
below:

++ : Excellent, very low
+ : Good, low, high
0 : N/a, medium, no
- : Poor, high, some
-- : Very poor, very high, many

Table 3.1 Assessment of the architectures described in 3.2

A
pp

lic
at

io
n

ge
ne

ra
lit

y

Fu
nc

tio
na

l
co

m
pl

ex
ity

D
at

a
m

an
ag

em
en

t
co

m
pl

ex
ity

N
et

w
or

k
op

tim
iz

at
io

n
po

te
nt

ia
l

Pr
ot

oc
ol

co

m
pl

ex
ity

A
ss

um
pt

io
ns

an

d
pr

ec
on

di
tio

ns

CATS - - - + 0 -

ÉCLAIR ++ -- - + -- 0

GRACE + - -- + - -

MobileMan ++ + 0 + + -

WIDENS 0 0 - 0 - -

TinyCubus -- - - 0 0 -

3.5. Summary
A vast amount of cross-layer adaptations and optimizations have been proposed
in the recent past spanning all layers of popular protocol stacks. Most of these
single mechanisms do not consider an architectural framework though. The
actual cross-layer interactions are not the primary focus of most publications and
are generally assumed to be somehow available. The sheer amount of cross-layer
adaptations suggests though that a sound architectural design would not only

Criterion

Architecture

3 Related Work 43

greatly reduce the design and implementation complexity of new and existing
approaches but it would also clearly be a necessity to have a common
architectural framework to support these cross-layer optimizations efficiently.
The architectures presented all try to support cross-layer protocols in different
ways and they also differ in their application scenarios. They also differ in their
ability to detect and prevent potential risks that exists when weakening the strict
layer separation principle. Therefore, a direct comparison is not always a straight
forward process but can be done using criteria that abstract from the
architectural details.

	Title Page, Abstract and TOC
	1. Introduction
	2. Background
	3. Related Work
	3.1. Cross-layer Adaptations and Optimizations
	3.2. Cross-layer Architectures for Ad Hoc Networks
	3.2.1. Cross-layer Approach To Self-healing (CATS)
	3.2.2. ECLAIR
	3.2.3. Global Resource Adaptation through CoopEration (GRACE)
	3.2.4. The MobileMAN (Mobile Metropolitan Ad hoc Network)
architecture
	3.2.5. WIDENS (WIreless DEployable Network System)
	3.2.6. TinyCubus

	3.3. Potential Weaknesses of Cross-layer Design
	3.4. Assessment of the Presented Architectures
	3.5. Summary

	4. The CrossTalk Architecture
	5. Applications, Results and Analysis
	6. Conclusions
	7. Outlook and Future Work
	Refrences and Appendix

