
 17 

2. Background 

The first part of this chapter briefly introduces several design alternatives to the 
cross-layer design. It evaluates their advantages and disadvantages when 
applied to mobile ad hoc networks. The second part thoroughly describes the 
fundamental properties of the cross-layer paradigm and explains its particular 
applicability in dynamic environments. 

2.1. Design Alternatives 
The probably most basic design option for a network architecture is to have one 
monolithic stack comprising the full network functionality such as reliable 
transport, addressing and routing to only name a few. Architecturally being 
extremely simple, it is clear that there are many disadvantages making a 
monolithic solution unattractive. Software complexity issues are one of the main 
challenges and therefore monolithic systems might be deployed if at all to 
extremely resource constrained systems (e.g. sensor nodes) or in systems where 
most functions are carried out by hardware rather than software. Other 
disadvantages become clear when compared with the second architectural choice, 
the layered protocol stack. 
Layered protocol stacks as used in almost all modern communication systems 
have a number of key characteristics that make them the primary architectural 
choice when it comes to designing a new network system. Sharing the same 
architectural framework, those systems differ in number, behavior and possibly 
function of the different layers. The underlying concept of layer separation is 
intuitive and simple. Each layer has a well defined functionality making them 
independent of each other. Such a function could be the routing of a message over 
multiple hops from a source node to some destination node(s) through the 
network for example. The routing layer would be responsible for performing 
anything that has to do with the task of determining the most appropriate path 
or next hop for a packet. That could include such operations as routing table 
maintenance, route optimization and addressing. This functional encapsulation 
allows separate operations to be offered to upper layers as a service. With this 
approach the level of abstraction grows towards upper layers as they build upon 



18  2.2 DynaMO: An Example for In-layer Adaptations 

 

lower layers and can offer a higher degree of flexibility on the service they 
provide. The highest degree of flexibility is offered by the topmost layer, the 
application layer, as an application can have any arbitrary function. 
Layer interaction is reduced to service invocation through well defined interfaces. 
Data that is passed from one layer to the next is not interpreted but instead 
treated as payload. Each layer adds header and/or trailer information containing 
control information. As a packet travels through the network the control 
information found in the headers are interpreted at the corresponding layers on 
its way to the final destination. In other words the network layer header is only 
interpreted at the network layer of other nodes. This way only peer layers 
communicate directly with each other to perform their function. 
There are several advantages a layered approach has as opposed to a purely 
monolithic alternative. The overall design complexity is greatly reduced. Since a 
layer has to perform a certain function, the design effort can only be focused on 
that single function without concerning upper or lower layers. Teams of 
developers only need to define interfaces so that the service(s) a layer is providing 
can be accessed by upper layers. The modularity, the layers provide, allows for 
potential arbitrary combination of protocols. From an architectural point of view 
it also improves the maintainability as a new version of a protocol can be inserted 
without having to alter the rest of the network stack. This of course can be more 
complicated in a real implementation where the functionality might be deeply 
embedded into the operating system, for example. Still, a layered network stack 
is advantageous in many respects. Furthermore, the longevity and widespread 
use of this kind of reference model demonstrates its benefits and generic 
applicability. 
A third design alternative, which is only rarely found, can be seen as a 
combination of the monolithic and layered approach. Two or more functions are 
combined in a single layer which potentially would be separated by several layers 
in a traditional protocol stack. A good example for this approach is MADPastry 
[4]. MADPastry combines network layer routing with an application layer 
peer-to-peer substrate based on a distributed hash table (DHT) to efficiently 
realize a key-based routing overlay for ad hoc networks. This combination still 
provides the functions of both concepts only in a much more efficient and 
modified way but at the same time layer separation is given up to some degree. 

2.2. DynaMO: An Example for In-layer Adaptations 
The most intuitive approach to counteract the various ad hoc network system 
dynamics would be to tailor protocols and applications towards the special 
circumstances found in those environments on a per-protocol or per-application 
basis. The fact that there are already many protocols explicitly designed for ad 
hoc networks is a good indicator for the intuitiveness of the approach. At the 
same time it shows that there is no easy, generally applicable solution. Protocols 
are simply not adaptive enough to operate in a broad spectrum of scenarios and 
therefore many alternative protocols were designed, many of which are tailored 
towards special networking environments. Most of them do not have a directly 
comparable functional counterpart in infrastructure based networks. Therefore, 
an application called Dynamic Mobility-Aware Overlay, short DynaMO 
([5][6][7][8][9]), was designed based on an existing system for the Internet but 



2 Background 19 

explicitly modified to be suitable for the special needs found in ad hoc networks. 
This way DynaMO serves as a good example for the process of protocol and 
application adaptation for ad hoc networks as it can directly be compared against 
the Internet version of the application. DynaMO is also a good and interesting 
case study as it serves as a peer-to-peer (P2P) substrate which can potentially 
support other services found in today’s Internet such as DNS and file sharing. As 
these P2P systems share a good number of key characteristics with ad hoc 
networks they seem to be suitable to be deployed in environments that are 
distributed and dynamic in nature. These characteristics include the self-
organizational properties, the decentralized operation mode and resilience and 
robustness in the face of the failure of participants. 
DynaMO is a peer-to-peer system or overlay network based on a distributed hash 
table (DHT). To be more precise, DynaMO is based on Pastry [10][11] which has 
been used to implement several Internet applications on top of it such as group 
communication [12][13] or storage systems [14][15]. A DHT comprises an 
extremely large ID space (typically in the order 2120 to 2160). Every node 
participating in the overlay network needs to assign itself an ID within that 
range. This is done by hashing some unique node specific value such as the 
medium access control (MAC) address using a common hash function used by all 
participating nodes. Due to the extremely large ID space collisions are avoided, 
i.e. the assignment of two identical overlay IDs to different nodes in the network. 
Objects that are added to the overlay network are also assigned an ID from the 
same ID space using the same hash function. In Pastry, the node with an ID 
numerically closest to an object’s ID is responsible for that given object. This 
scheme might be different for other DHTs but a unique assignment from node ID 
to object ID range is fundamental to all DHTs. The basic operation that each 
DHT provides is lookup(key) node, i.e. the DHT is able to locate the node 
that is responsible for a given key within the network or in other words a DHT 
provides a mechanism for key-based routing. The most significant properties of 
Pastry and other DHTs are the upper bound given for the amount of routing 
state needed to guarantee routing convergence and the total amount of hops in 
the overlay network until the node responsible for a given key is reached. Both 
upper bounds are typically in an order of O(log n) where n is the number of 
participating nodes. 
The way Pastry achieves this efficiency is quite simple. In every routing step 
Pastry increases the matching prefix length between the lookup key and the next 
node in the routing process by at least one until the final destination node is 
reached. To be able to do this, a Pastry node maintains a small routing table that 
maps overlay IDs to network addresses. The table consists of b columns and d 
rows where b is the base of the overlay ID and d is the ID’s number of digits. As 
an example a Pastry DHT routing table with 120 bit hexadecimal IDs would have 
16 columns and 30 rows. Each row ri with i ∈ [0,d) contains nodes with IDs that 
have a matching prefix length of i. For the first row (r0) that would mean that the 
IDs in that row have no matching prefix at all and for the last row (rd-1) all but 
the last digit match the key. The columns ci with i ∈ [0,b) are organized in a way 
that the digit following the matching prefix is equal to i. In a routing process the 
key lookup message is forwarded to a node in the routing table that has the 
longest matching prefix. Additionally, every node maintains a set of nodes that 
are the numerically closest nodes called the leaf set. The leaf set contains l nodes 



20  2.2 DynaMO: An Example for In-layer Adaptations 

 

with l/2 nodes that are the numerically closest nodes bigger than the node’s ID 
and l/2 nodes which are the numerically closest but smaller than the node’s ID. 
This information is needed at a node, so that it is able to conclude whether it is 
the final destination or not. 

3

4

8

1
5

6

7

 
Fig. 2.1 Overlay lookup example 

In addition to the similar characteristics, the small footprint and the efficiency of 
Pastry suggests that it is a very good system to be deployed in ad hoc networks as 
they are extremely resource constrained. But it turns out that there is one 
intrinsic problem with Pastry and other DHTs that make them unsuitable for 
wireless multi-hop environments. The routing bound of O(log n) described above 
is only applicable to the overlay routing process, i.e. the bound only concerns the 
virtual links in the overlay network. Each of these virtual links typically consists 
of multiple hops in the real physical network. Consider a key-based routing 
process on the Internet as displayed in Fig. 2.1. A source node S tries to route 
towards a key k. The routing process might go from node S located in Germany to 
the USA from there to Japan back to somewhere Europe and so forth just to end 
up somewhere in Germany again where the target node T is responsible for k. On 
the overlay network this process seems to be efficient as only a few virtual links 
are traversed to find node T but in the real physical network the message 
criss-crossed the Internet several times inducing a lot of traffic. This discrepancy 
between the physical accumulated path length of the overlay lookup process and 



2 Background 21 

the direct physical path length to the destination, in the example above node T, is 
called the overlay stretch. 
The overlay stretch might not be a problem in infrastructure-based networks 
such as the Internet since routing is a very efficient and fast process but in 
mobile ad hoc networks routing is much more problematic. Nodes are mobile 
making routes instable which in turn will reduce the packet delivery ratio. The 
longer a route is the higher is the probability of message loss due to topological 
changes. Such a route failure can trigger broadcast based mechanisms to repair 
the route or find a completely new one congesting the network. Therefore, long 
routes should be avoided. Additionally, due to the unreliable medium messages 
will fail due to collisions on the medium and due to bit errors in the packets cause 
by interference. In summary this means that the overlay routing efficiency in ad 
hoc networks is not the primary concern but the total length of the physical path 
traveled during a lookup process must be minimized. In other words, the overlay 
stretch must be as small as possible for a lookup process to successfully deploy 
DHTs in ad hoc networks. 
DynaMO was designed to reduce the length of the overlay stretch. It exploits 
physical locality in the construction of the overlay network which translates into 
an optimized overlay stretch. In a DynaMO network, nodes that are physically 
close are also likely to be numerically close on the overlay which in Pastry 
networks only rarely happens and only due to chance. DynaMO has two 
mechanisms to achieve physical locality whereas only the random landmarking 
approach will be discussed here. DynaMO’s approaches differ primarily from 
Pastry’s approach by the way in which overlay IDs are assigned. Pastry’s overlay 
construction basically works in a top-down fashion, i.e. Pastry randomly assigns 
overlay IDs regardless of the underlying physical topology. This is reflected in the 
total randomness of the spatial overlay ID distribution as can be seen on the left 
side of Fig. 2.2. Subsequently it tries to make the physical proximity fit into the 
overlay routing state through the join process and overlay routing table 
maintenance. Proximity is achieved by choosing the physically closest node 
among candidate nodes for a routing table entry. Since with a growing matching 
prefix length the amount of candidate nodes is significantly reduced, the 
probability of an overlay hop inducing a large amount of physical hops increases 
significantly with the increasing matching prefix. That means that the last hop of 
a lookup process is most likely the longest whereas the first one is most likely the 
shortest. 
In contrast, DynaMO constructs the overlay network in a bottom-up fashion, i.e. 
the overlay is built considering locality information from the underlying network. 
Before a node joins the overlay, it gathers information concerning its physical 
neighborhood and uses it to assign itself an appropriate overlay ID. One way to 
do this is random landmarking. Conventional landmarking, as introduced in [16] 
and [26], suffers from the limitation that it assumes a set of fixed, stationary 
landmark nodes such as the DNS root servers. All overlay nodes are expected to 
know the landmark nodes and to measure their respective distances to those 
landmarks. This, obviously, reintroduces the client-server concept into the 
bootstrap process. Especially in networks where nodes are expected to fail or 
leave frequently, as it is the case for ad hoc networks, there are usually no sets of 
fixed nodes available, which renders this approach infeasible. Therefore, 
DynaMO introduces random landmarking (RLM) into the overlay construction 



22  2.2 DynaMO: An Example for In-layer Adaptations 

 

process. RLM utilizes the overlay lookup capabilities to locate overlay nodes 
responsible for a fixed set of landmark keys (overlay IDs). These nodes serve as 
temporary landmarks for a joining node. It is important to understand that the 
keys have to be chosen in a way that they divide the overlay ID space into equal 
portions. For example, in a network with an ID base of 16, an appropriate set of 
landmark keys would be: 000..00, 100..00, 200..00, . . . , F00..00. The joining node 
then measures the distances to those temporary landmarks and assigns itself an 
ID based on its landmark ordering. The advantage of this approach is that 
“landmark nodes” can fail and others will simply step in as Pastry will 
automatically redirect future key lookups to those nodes now responsible for the 
landmark keys. After having measured its landmark distances, the joining node 
adopts an ID prefix of a certain length from the landmark node closest to itself. 
The ID remainder can be assigned randomly or can be based on an algorithm 
that further takes into account the physical neighborhood. The length of the ID 
prefix that the new node shares with its closest landmark node can be 
determined using the following formula: 
 

prefix length = ⎣ ⎦kblog  
 
where b is the ID base and k the number of landmark keys. As can be seen, the 
number of landmark keys should preferably equal to a power of b. 

Pastry DynaMO

 
Fig. 2.2 Spatial prefix distributions as generated by Pastry and DynaMO. Equal 

symbols and colors represent equal prefixes. 

This approach has the following effects. First of all, it leads to physically close 
nodes forming regions with common ID prefixes as shown on the right side in Fig. 
2.2., which means these nodes are also likely to be numerically close to each other 
in the overlay ID space. This, in turn, leads to the desired effect that nodes 
having a certain matching prefix length in the routing state are likely to 
reference physically close nodes. This way the closer a routing process is 
approaching the lookup key and therefore a prefix cluster, the shorter the overlay 



2 Background 23 

hops will be in terms of induced physical hops. Note that there are still less and 
less candidate nodes to choose from to fill a certain overlay routing table entry as 
the row number increases, but with DynaMO the likelihood of these candidates 
being physically close to the current node also increases from row to row. 
RLM needs to deal with mobility-induced topology changes as they lead to 
disintegration of the ID clusters. Every node periodically re-measures its distance 
to the current landmark nodes. If its ID prefix is still congruent with the prefix of 
its closest landmark node, it uses some coarse grained mechanism to adjust the 
re-measurement interval by some factor. Otherwise, it will re-assign itself a new 
overlay ID based on the same strategy as used during its bootstrap and will 
rejoin the network under its new ID. 
There are more mechanisms to make the landmarking process more efficient but 
the general description of the process should suffice here to give an idea how 
applications and protocols must be changed in order to make them work in ad hoc 
networks. These, what we call in-layer adaptations are only one aspect of the 
protocol design, which by its own is not sufficient but eventually necessary. 

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 2 4 6 8 10 12 14 16 18 20 22 24

time [h]

ov
er

la
y 

st
re

tc
h Pastry, None

Pastry, 30s
Pastry, 1min
RLM, 1min
RLM, 5min
RLM, 10min

 
Fig. 2.3 Overlay stretch change over time with Pastry and RLM 

DynaMO was tested in a vast amount of ad hoc networking scenarios and was 
always compared against Pastry’s performance (for a complete set of results refer 
to appendix B). Using RLM in static scenarios it was possible to drop the overlay 
stretch significantly compared to Pastry. Using the same optimization techniques 
Pastry utilizes it was even possible to drop the overlay stretch below Pastry’s 
theoretical optimal performance. Looking at the same overlay stretch 
performance, DynaMO was far more lightweight than Pastry by up to a factor of 
7. This clearly shows the superiority of DynaMO. It outperforms Pastry in the 
two key factors mentioned before. Firstly, the shortened overlay lookup lengths 
reduce the probability for packet loss due to route changes, collisions and 



24  2.2 DynaMO: An Example for In-layer Adaptations 

 

interference. Secondly, the overhead is reduced when comparing equal overlay 
stretches of both Pastry and DynaMO, which causes the collisions and 
interference in the first place. In mobile network scenarios DynaMO also clearly 
outperforms Pastry. Pastry is not able to maintain a good overlay stretch, even 
when it utilizes its routing state optimization technique as can be seen in Fig. 2.3. 
The overlay stretch degrades significantly over time. Even with a routing table 
maintenance interval of 30 s and 1 min in low mobility networks (average nodal 
speed of 0.6 m/s) the overlay stretch quickly degrades. DynaMO on the other 
hand is able to stabilize the overlay stretch in the face of node mobility at an 
excellent low level depending on the landmark key re-measurement interval used 
to maintain the prefix clusters. 
DynaMO is a good example of in-layer adaptations to tailor applications or 
protocols towards the special circumstances of ad hoc networking environments. 
What DynaMO also clearly shows is that in-layer adaptations are necessary but 
they are only partially able to overcome the problems found in ad hoc networks 
as [9] shows. The design of new protocols and applications and the re-design of 
those found on the Internet is therefore only one aspect of their successful 
integration into dynamic environments. The two main problems that remain are 
the ability to adapt to existing and to changing networking conditions on the one 
hand and a mechanism to let a node evaluate its own status against the network-
wide status according to some metric such as mobility or energy. Let us consider 
DynaMO as an example. Obviously the stability of the ID prefix clusters depends 
on the re-measurement interval of the DynaMO nodes which counteracts the 
disintegration of the clusters due to the mobility of the participants. DynaMO 
uses a fixed re-measurement interval which is set prior to deployment. To find 
the optimal re-measurement interval is difficult. Prior to joining a network, a 
metric for the average topological link change rate must be known to do this 
which might not be a realistic assumption. But even if the interval can be set to 
an optimal value at deployment time the conditions can change or the nodes 
might roam between different networks with different characteristics as they 
move. Another aspect is the choice of the node that becomes a temporary 
landmark. A fast moving node should never become a temporary landmark as it 
could result in many ID changes which would generate a huge amount of control 
messages. In a scenario where cars, pedestrians and others participate in the 
overlay network, a fast moving vehicle should assign itself an ID relatively far 
away from a landmark ID. But how does a node know that it is relatively fast? If 
it is a car it might use its speedometer. But if the whole network consists of cars 
it still does not know whether it is moving fast in comparison with the others. 
What is needed is some global knowledge about the topological mobility of nodes 
so that each node can estimate its relative mobility compared to the rest of the 
network. A different example would be energy. A landmark node has to handle 
more traffic as compared to none-landmark peers since it has to handle 
measurement traffic. Nodes that have relatively good energy resources should 
then assign themselves an ID closer to a landmark key as they will then most 
likely become a landmark node or take over the role of a landmark in case the 
current landmark fails. Again, some form of global knowledge is needed to be 
able to locally decide whether the local energy resources are good as compared to 
the rest of the network. 



2 Background 25 

2.3. Cross-layer Design 
As already mentioned layered architectures have certain desirable properties. 
Other than the reduced design complexity, such architectures exhibit a high 
degree of modularity which allows an easy replacement and theoretically an 
arbitrary combination of protocols. This is important for rapidly updating or 
replacing protocols. It also plays an important role in maintaining a system. 
Errors can be tracked back fast and efficiently as they can easily be associated 
with a certain protocol. These properties are predominantly of importance in 
commercially operated, large-scale, infrastructure-based, centrally administrated 
networks. In those kinds of networks, performance is usually increased by 
hardware means whereas potential increases through architectural alterations 
are not considered attractive enough or too cumbersome to a certain extend. A 
changed architecture could also potentially be less stable and secure and would 
also need some time to reach a sufficient maturity. In addition, these networks do 
not suffer from such rapid changes in the networking environment, coordination 
problems and intrinsic bottlenecks as found in ad hoc networks. That means that 
in reliable, high performance, infrastructure-based networks, there is no 
fundamental need to switch to a new network architecture that is able to 
alleviate the problems mentioned above.  
In ad hoc networks performance and scalability are key issues. They are affected 
by many factors intrinsic to ad hoc networks, such as the shared, unreliable 
medium resulting in bit errors, collisions, high delays and lowered throughput. In 
addition, the fact that devices in such networks are likely to be battery-driven 
and relatively weak in terms of computational power imposes special constraints 
on the protocol stack. The mobility of nodes also plays a significant role. It affects 
the stability of routes through the network, possibly resulting in broadcast 
storms which consume large amounts of the available and scarce bandwidth. In 
such dynamic environments, a more flexible approach is promising since the 
possible performance gains can significantly improve the scalability, the delay 
performance and the throughput. The solutions to these issues are the 
cornerstones to make ad hoc networks attractive for an actual deployment and a 
ubiquitous use in the future. 
Cross-layer approaches are the most promising design models to serve as a 
blueprint for dynamic network architectures. The concept behind cross-layering 
is rather intuitive. Instead of treating a layer as a completely independent 
functional entity, information can be shared amongst layers. This information 
can be used to adapt protocol functionality in the presence of changing 
networking conditions, for decision processes such as route selection and as input 
for algorithms. Through sharing information, mechanisms of different protocols 
can be combined such as network layer topology maintenance and physical layer 
power control for example. It is even possible to create new kinds of adaptive 
applications such as multimedia applications which are sensitive to changing 
networking conditions. The ability to share information across layers is the 
central aspect of cross-layer design. So instead of a mere replacement, cross-
layering can be seen as an enhancement of the layered approach. The ultimate 
goal is to preserve the aforementioned key characteristics of a layered 
architecture and in addition to allow for performance improvements and a new 
form of adaptability. 



26  2.3 Cross-layer Design 

 

Fig. 2.4 illustrates the general concept of cross-layer design. It shows possible 
information that can be shared such as topology information at the network layer 
generated from the routing state or information about received signal strength 
form the lowest layer. The figure also shows a possible adaptation at the network 
layer. The path selection process could be enhanced by the information provided 
by the other layers. QoS requirements of an application could determine the most 
suitable path amongst a number of candidates or the bit error rate could be used 
to determine the most reliable next hop. Considering DynaMO as an example the 
topology information provided by a network layer protocol could be used for the 
ID assignment process, as a landmark ID should preferably be assigned to a node 
that is well connected (a large amount of one-hop neighbors) to prevent 
disconnections. 

 
Fig. 2.4 Possible cross-layer adaptations at the network layer 

As only being a framework, a cross-layer architecture should not actively steer 
protocol behavior or influence the state of a protocol or application actively. It 
should instead only provide certain services to protocols and applications. These 
services comprise everything that has to do with cross-layer data management 
such as gathering of the data, event notification on data change, data composition 
and formatting and providing interfaces for data access. The active adaptations 
should only occur within the protocols and applications themselves as this helps 
to preserve the properties of the layered approach. 
As ad hoc networks only start to emerge, introducing cross-layer concepts into 
the network architecture should be done simultaneously to let them evolve 
together. Right from the start protocol designers should include cross-layer 
capabilities so that the general cross-layer concept can be tested and mature over 
time. 
As already mentioned, cross-layer approaches are more adaptive compared to 
purely layered architectures. From an architectural view, they are also preferable 
to approaches such as MADPastry that combine functionality from different 
layers into one functional entity. This is due to the fact that this approach is 
highly complex when many functions are combined. A question that arises is how 
to identify functions that should be combined and those that shouldn’t. This kind 



2 Background 27 

of approach might also lead to frequent updates as new protocols are introduced. 
Ultimately, it might lead towards a small layered architecture where a layer 
exposes the drawbacks of a monolithic stack. 

2.4. Summary 
Amongst the existing design alternatives for network protocol stacks the layered 
approach is the de facto standard adopted by almost all existing networks. Its 
simplicity and modularity are the key reasons for its widespread adoption. To 
make layered protocols work in dynamic networked environments in-layer 
adaptations are the first step to a successful deployment of existing protocols in 
ad hoc networks. Good cross-layer design does not replace the layered approach 
but weakens the strict layering to some degree by allowing protocols to share 
information. In other words, cross-layer design can be seen as an enhancement of 
a layered protocol stack with the goal to preserve its characteristics and provide a 
mechanism for performance improvements and adaptations at the same time. 
 


	Title Page, Abstract and TOC
	1. Introduction
	2. Background
	2.1. Design Alternatives
	2.2. DynaMO: An Example for In-layer Adaptations
	2.3. Cross-layer Design
	2.4. Summary

	3. Related Work
	4. The CrossTalk Architecture
	5. Applications, Results and Analysis
	6. Conclusions
	7. Outlook and Future Work
	References and Appendix

