Elektronentransfer- und Solvatisierungsdynamik in Eis adsorbiert auf Metalloberflächen

Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

Cornelius Gahl

Mai 2004

Eine elektronische Version dieser Arbeit (PDF) ist ab November 2004 auf dem Dissertationsserver der Freien Universität Berlin (http://www.diss.fu-berlin.de) verfügbar.

 $email: \ cornelius@mulch-gahl.de$

Diese Arbeit entstand in der Arbeitsgruppe von Prof. Dr. Martin Wolf in der Zeit von Mai 2000 bis August 2001 am Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Physikalische Chemie, unter der Leitung von Prof. Dr. Gerhard Ertl und bis Mai 2004 am Fachbereich Physik der Freien Universität Berlin.

Berlin, im Mai 2004

Erstgutachter: Prof. Dr. Martin Wolf

Zweitgutachter: Prof. Dr. Karl-Heinz Rieder

Datum der Disputation: 25. Juni 2004

Kurzfassung

Mittels zeit- und winkelaufgelöster Zwei-Photonen-Photoemissionsspektroskopie (2PPE) ist die Dynamik von Überschusselektronen in molekular dünnen Eisschichten auf Metalloberflächen untersucht worden. Ziel dieser Arbeit ist es, zum Verständnis fundamentaler Wechselwirkungsmechanismen zwischen einem Elektron und einer molekularen Umgebung beizutragen. Insbesondere wird der Einfluss der Struktur auf die Elektronendynamik aufgezeigt. Es wurden unterschiedliche Lokalisierungsphänomene in amorphen und in kristallinen Eisschichten gefunden. In amorphen Schichten findet eine Solvatisierung lokalisierter Zustände am Leitungsbandboden der Eisschicht statt. Der Solvatisierungsprozess äußert sich einerseits in einer kontinuierlichen energetischen Verschiebung des elektronischen Zustands, die auf der Cu(111)-Oberfläche über 1.5 ps verfolgt werden konnte. Darüber hinaus ist die Stabilisierung mit einer zunehmenden räumlichen Einschnürung der Wellenfunktion verknüpft, die sich in einer Verbreiterung der Impulsverteilung parallel zur Oberfläche und in einer Verringerung der Rücktransferrate solvatisierter Elektronen ins Metallsubstrat äußert. Die Solvatisierungsdynamik zeigt eine ausgeprägte Bedeckungsabhängigkeit, die darauf zurückgeführt wird, dass bei Bedeckungen <2 BL vermehrt Wassermoleküle an der Solvathülle beteiligt sind, die nicht mit 4 Wasserstoffbrückenbindungen koordiniert sind und dementsprechend schneller auf die Ladung reagieren können. Ferner wird die Solvatisierungsdynamik durch die Relaxationsdynamik angeregter Elektronen im Substrat beeinflusst. So findet man auf der Ru(001)-Oberfläche nicht nur einen deutlich schnelleren Zerfall der Population, sondern auch eine schnellere Stabilisierung lokalisierter Elektronen. Das Solvatisierungsverhalten unterscheidet sich in amorphen und kristallinen Eisschichten ähnlich wie das Lösungsverhalten von Ionen in flüssigem Wasser und kristallinem Eis. In letzterem wird auf der Femtosekundenzeitskala keine Solvatisierung beobachtet. Stattdessen werden an speziellen Defekten in der Grenzschicht zum Vakuum eingefangene Elektronen nachgewiesen, die Lebensdauern bis in den Minutenbereich aufweisen. Lebensdauern in dieser Größenordnung sind für elektronische Zustände wenige Angström vor einer Metalloberfläche bei einer Energie von 2 eV über dem Fermi-Niveau nicht mehr in einem Einteilchenbild zu verstehen. Als Erklärung wird vorgeschlagen, dass das Elektron an Solvatmoden ankoppelt und sich so ein Komplex mit hoher effektiver Masse bildet. Auf derselben Zeitskala wie der Populationszerfall erfolgt eine Stabilisierung um mehrere 100 meV, die entsprechend einem dielektrischen Relaxationsprozess stark temperaturabhängig ist. Es werden erste Experimente vorgestellt, die auch die Umkehrung des Stabilisierungsprozesses nach Photoemission des Elektrons zugänglich machen. Außerdem wird gezeigt, dass eingefangene Elektronen als Auslöser chemischer Reaktionen eingesetzt werden können.

Inhaltsverzeichnis

Kurzfassung				i
Abbildungsverzeichnis				vii
1	Einl	inleitung		
2	Grun 2.1 2.2 2.3 2.4 2.5	ndlagen Wasse 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 Elektr 2.2.1 2.2.2 2.2.3 Modifi Lichtin Zwei-H 2.5.1 2.5.2 2.5.2	r und Eis bei Normaldrücken	7 7 8 9 10 14 18 20 25 30 30 31 32 35 37 42 44 45 46
3	Exp 3.1 3.2	eriment Probe 3.1.1 3.1.2 3.1.3 Zwei-H 3.2.1	npräparation und -charakterisierung	 49 50 50 54 57 60 60 61 63

		3.2.2	Elektronenflugzeitspektrometer		68
			Signalverarbeitung, Flugzeitmessung		68
			Energiemessung		71
			Parallelimpulsmessung		73
		3.2.3	Grundlegende Analyse der 2PPE-Spektren und Messprinzipien .		77
4	Elektronensolvatisierung in amorphen Eisschichten				83
	4.1	Elektro	onendynamik in amorphem Eis auf $Cu(111)$ im Überblick		84
	4.2	Elektro	onische Struktur der statischen amorphen Eisschicht		85
	4.3	Bildung	g solvatisierter Elektronen		89
		4.3.1	Lokalisierung		89
		4.3.2	Stabilisierung		90
		4.3.3	Konkurrenzprozess Rücktransfer ins Substrat		91
		4.3.4	Entwicklung der Linienform		92
		4.3.5	Räumliche Ausdehnung der lokalisierten Zustände		93
		4.3.6	Respons der Solvathülle		99
		4.3.7	Diskussion der Bildung solvatisierter Elektronen		101
	4.4	Bedeck	ungsabhängigkeit der Solvatisierung		104
	4.5	Elektro	onensolvatisierung in amorphem Eis auf $\operatorname{Ru}(001)$	•••	108
5	Dele	okalisiert	te Zustände in kristallinen Eisschichten		113
	5.1	Elektro	onendynamik in kristallinen Eismultilagen auf $Ru(001)$		115
	5.2	Bedeck	ungs- und Temperaturabhängigkeit		117
	5.3	Bildlad	ungszustände auf der Bilage $D_2O/Ru(001)$		119
		5.3.1	Energetik und Dynamik		119
		5.3.2	Dispersion	•••	122
6	Elek	tronene	infang in kristallinen Eisschichten		125
6.1 Populations- und Depopulationsmechanismus		tions- und Depopulationsmechanismus		128	
	6.2	Popula	tionsdynamik		129
		6.2.1	Pump-Probe-Spektroskopie auf der Sekundenzeitskala		133
		6.2.2	Diskussion des Lokalisierungs- und Stabilisierungsprozesses		134
	6.3	Bedeck	ungsabhängigkeit und photoinduzierte Strukturänderung		139
	6.4	Einflus	s der Temperatur		142
		6.4.1	Temperaturabhängigkeit der Bindungsenergie		143
		6.4.2	Temperaturabhängigkeit der 2PPE-Intensität		146
	6.5	Relaxa	tionsdynamik der Solvathülle		150
	6.6	Einflus	s von Edelgas-Deckschichten auf eingefangene Elektronen		153
	6.7	Photoc	hemie mit eingefangenen Elektronen		154
7	Zusammenfassung und Ausblick				157
Α	Bild	ladungs	zustände vor der Ru(001)-Oberfläche		161
Lit	Literaturverzeichnis 16				

Apparative Komponenten	
Abkürzungen	185
Publikationen	187
Danksagung	189
Akademischer Lebenslauf	191

In halts verzeichnis

Abbildungsverzeichnis

1.1	Schematische Darstellung der 2PPE-Experimente	3
2.1	Aufbau des Wassermoleküls	8
2.2	Wasserstoffbrückenbindung	9
2.3	Kristallstruktur von Eis I_h	11
2.4	Struktur von Eis I_h und Eis XI \ldots	12
2.5	Protonische Punktdefekte und DV-Defekt	13
2.6	Vereinfachtes Phasendiagramm für den Niederdruckbereich	15
2.7	Skizze zur Struktur von amorphem Eis	16
2.8	Diffusivität von Wasser und Eis	17
2.9	UV-Absorptionsspektren von Eis	18
2.10	Bandstruktur eines amorphen Festkörpers	19
2.11	Absorptionsspektrum solvatisierter Elektronen in D_2O	20
2.12	Cavity-Modell des solvatisierten Elektrons	22
2.13	Absorptions- und Photoelektronenspektrum von Clustern	23
2.14	Absorptionsspektren lokalisierter Elektronen in D_2O -Glass	24
2.15	Struktur der idealen adsorbierten Wasserbilage	25
2.16	Struktureller Isotopeneffekt der Wasserbilage auf $Ru(001)$	27
2.17	Molekulardynamikrechnungen zur Grenzflächenstruktur von Eis	28
2.18	Projizierte Cu-Bandstruktur	30
2.19	Bandstruktur von Ruthenium	32
2.20	Wellenfunktionen der Bildladungszustände $n=1$ und 2 auf Cu(111)	33
2.21	Wellenfunktionen der Bildladungszustände $n=3-7$	35
2.22	Modifiziertes Bildladungspotential nach dem DCM	36
2.23	Anregungs- und Zerfallsmechanismen	38
2.24	MGR-Modell	39
2.25	Polaronenbildung	40
2.26	Intrabandstreuung	41
2.27	Schema der zeitaufgelösten 2PPE	42
2.28	2PPE-Anregungsprozesse	43
3.1	Experimenteller Aufbau (schematisch)	49
3.2	Aufbau des UHV-Systems (FUB)	51
3.3	Probenhalterung	52
3.4	Gasdosiersystem	53
3.5	TDS zur Temperatureichung	54

3.6	Cu(111): LEED und 2PPE-Spektrum	55
3.7	LEED-Bild und Auger-Elektronenspektrum der Ru(001)-Oberfläche	56
3.8	TDS von $CO/Ru(001)$	56
3.9	TDS von $D_2O/Cu(111)$	57
3.10	TDS-Serie von $D_2O/Ru(001)$ präpariert bei $T=100 \text{ K} \dots \dots \dots \dots$	58
3.11	TDS-Serie von $D_2O/Ru(001)$ für verschiedene Präparationstemperaturen .	59
3.12	TDS von $D_2O/Ru(001)$ bei 164 K	59
3.13	Aufbau des Lasersystems an der FUB	61
3.14	Spektren von Mira und RegA	63
3.15	Laserspektren der OPAs	66
3.16	Laserspotprofile am Ort der Probe	67
3.17	Elektronen-Flugzeitspektrometer	68
3.18	Datenaufnahme und Experimentsteuerung	69
3.19	Geometrie der Dispersionsmessungen	74
3.20	Skizze zur Winkelauflösung des TOF	75
3.21	Winkel- und Impulsauflösung des TOF	75
3.22	Korrektur der Absaugspannung	76
3.23	Energieskalen eines 2PPE-Spektrums	77
3.24	exemplarische 2PPE-Spektren	79
3.25	Geometrie der Polarisationsmessungen	79
3.26	exemplarische zeitaufgelöste 2PPE-Messung	81
4.1	Schema zur Elektronendynamik in adsorbierten Eisschichten	83
4.2	Elektronendynamik in 4 BL $D_2O/Cu(111)$	84
4.3	Winkelabhängige 2PPE-Spektren von 3 BL $D_2O/Cu(111)$	86
4.4	Zerlegung winkelabhängiger 2PPE-Spektren in 2 Peaks	87
4.5	DCM für Eis/Cu(111) \ldots	89
4.6	Stabilisierungs- und Populationsdynamik solvatisierter Elektronen	90
4.7	Linienform solvatisierter Elektronen	92
4.8	Winkelaufgelöste Photoemission aus einem lokalisierten Zustand in k -Raum	94
4.9	Polarisationsabhängigkeit	95
4.10	Vergleich Dispersionsmodell mit Experiment	97
4.11	Intensitätsverteilung im k_{\parallel} -Raum	98
4.12	Isotopeneffekt in der Solvatisierung	99
4.13	Temperaturabhängigkeit der Solvatisierung	100
4.14	Schematische Darstellung der Solvatisierung	101
4.15	zeitabhängige 2PPE-Spektren für verschiedene Bedeckungen	105
4.16	STM-Untersuchungen an amorphem $D_2O/Cu(111)$	106
4.17	Bedeckungsabhängigkeit der Solvatisierung	107
4.18	Veranschaulichung der Solvatisierung im Volumen und an der Eisoberfläche	108
4.19	Elektronendvnamik in amorphem Eis auf Ru(001)	109
4.20	Vergleich der Solvatisierungsdynamik auf Cu(111) und Ru(001)	110
= 5		- 9
5.1	2PPE+TDS von 5 BL $D_2O/Ru(001)$	114
5.2	Elektron endynamik in a morphem und kristallinem Eis auf $\operatorname{Ru}(001)$	116

5.3	Θ -Abhängigkeit der elektronischen Struktur von kristallinem D ₂ O/Ru(001)	118
5.4	Dynamik der Bildladungszustände auf 1 BL $D_2O/Ru(001)$	120
5.5	XCs der Bildladungszustände auf 1 BL	121
5.6	Dispersions messung von 1 BL $\rm D_2O/Ru(001)$	122
6.1	2PPE-Spektrum langlebiger Elektronen in kristallinem Eis	125
6.2	Abhängigkeit der 2PPE-Intensität von der Länge der UV-Pulse	126
6.3	Dispersion von e_T	127
6.4	Photonenenergieabhängigkeit von e _T	128
6.5	Schema des Anregungs- und Depopulationsprozesses von e_T	129
6.6	Depopulation von e_T mit 0.83 eV (1500 nm)	129
6.7	Populations- und Depopulationsdynamik von e _T	130
6.8	Fluenzabhängigkeit langlebiger Elektronen	132
6.9	$Pump-Probe-Messungen von e_T \dots \dots$	133
6.10	Stabilisierung lokalisierter Elektronen	134
6.11	Skizze zur Abschätzung der Energiebarriere	135
6.12	XC-Vergleich zwischen amorpher und halbkristalliner Schicht	138
6.13	Einfluss von UV-Licht auf e_T und Φ	139
6.14	Temperaturabhängigkeit von e_T : konstante Position	142
6.15	Temperaturabhängigkeit von e_T : variable Position	143
6.16	Temperaturabhängigkeit der Bindungsenergie von e _T	144
6.17	Simulation der Peakverschiebung von e_T mit der Temperatur	145
6.18	Temperaturabhängigkeit der Intensität von e _T	146
6.19	Schema zur Relaxationsdynamik der Solvathülle	150
6.20	Relaxation der Umgebung von e_T nach der Depopulation $\ldots \ldots \ldots$	151
6.21	Vergleich zwischen Stabilisierung und Destabilisierung von e_T	152
6.22	Einfluss von Xe-Deckschichten auf eingefangene Elektronen	153
6.23	Einfluss von O_2 in der Gasphase \ldots	155
6.24	Skizze des Reaktionsmechanismus von \mathcal{O}_2 mit eingefangenen Elektronen $\ .$.	156
A.1	Bildladungszustände auf Ru(001)	162
A.2	Bildladungszustände auf Ru(001): Spektren und Kreuzkorrelationen \ldots	163
A.3	Quantenschwebungen zwischen Bildladungszuständen $\hfill \ldots \ldots \ldots \ldots$	164