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Many real world applications like, e.g., molecular docking, CAD/CAM, terrain compar-
ison for GIS, etc., give rise to geometric pattern matching problems in three-dimensional
space. In most of these applications the patterns are modeled by triangulated simple (i.e.,
not self-intersecting) polyhedral surfaces; such surfaces can be seen as sets of triangles with
the additional property that any two distinct triangles in the set do not intersect in their
relative interiors.

Definition 6.1 (∆-pattern). A finite set P of triangles in R
3 with the property, that

any two distinct triangles in P do not intersect in their relative interiors will be called a
∆-pattern. The size of the ∆-pattern P is the number of triangles in the set P .

In this part the similarity of ∆-patterns will be assessed with the aid of the Hausdorff
distance δH (c.f., Definition 1.4 on page 7) and a generalization thereof, the so-called LB-
Hausdorff distance which is defined with respect to a centrally symmetric convex body
B ⊆ R

3 .
Recall that such a body B defines a metric on R

3 in the following way:

Definition 6.2 (LB-distance, LB-norm). Let x and y be two points in R
3 . Then

dLB
(x, y) denotes the LB-distance between x and y,

dLB
(x, y) := ||x − y||LB

,

with ||z||LB
being the LB-norm of z ∈ R

3 ,

||z||LB
:= min{c ≥ 0 | z ∈ c · B}.

By modifying the Definition of δH (c.f., Definition 1.4) accordingly to use the LB-
distance instead of the Euclidean distance to measure the distance between points in R

3

we can define a distance measure that constitutes a generalization of the Hausdorff distance
δH :

Definition 6.3 (LB-Hausdorff distance, one-sided LB-Hausdorff distance). Let
P and Q be compact sets in R

3 . Then δB
H(P, Q) denotes the LB-Hausdorff distance between

P and Q, defined as

δB
H(P, Q) := max

(
δ̃B
H(P, Q), δ̃B

H(Q, P )
)
, with

δ̃B
H(P, Q) := sup inf

x∈P y∈Q

dLB
(x, y), the one-sided LB-Hausdorff distance from P to Q.

Variants of the Hausdorff distance that are frequently considered for comparing geo-
metric patterns are obtained by choosing B = B1 = {(x, y, z) ∈ R

3 | |x|+ |y|+ |z| ≤ 1}, or
B = B∞ = {(x, y, z) ∈ R

3 | max(|x|, |y|, |z|) ≤ 1}, the unit balls of the L1 and L∞ metric,
respectively. For B = B2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 ≤ 1} (the three-dimensional unit
ball) the resulting distance is the Hausdorff distance δH .

In the following we give an algorithm that computes δH(P, Q) in
Oε((mn)15/16+ε(m17/16 + n17/16)) randomized time for given ∆-patterns P and Q of
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size m and n, respectively (c.f., Theorem 6.19 on page 68). We also present an algorithm
that decides whether the Hausdorff distance with respect to a polyhedral distance function
between P and Q is at most δ in Oε((m + n)2+ε + mn(

√
m1+ε +

√
n1+ε)) randomized time

(c.f., Theorem 6.12 on page 66).
Some of the material has already been published in [11].
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In the following we develop efficient algorithms for the measuring problem for ∆-
patterns in R

3 with respect to the Hausdorff distance.

Problem 6.4 (∆-pattern δH-measure problem – optimization version).

Given two ∆-patterns P, Q ⊆ R
3 .

Compute δH(P, Q).

In the course of that we will first devise efficient methods to tackle the corresponding
decision problem.

Problem 6.5 (∆-pattern δH-measure problem – decision version).

Given two ∆-patterns P, Q ⊆ R
3 , and some δ > 0.

Decide, whether δH(P, Q) ≤ δ.

Godau [35] gives a randomized algorithm that computes δH(P, Q) in Oε(mn(n1+ε +
m1+ε)) expected time, where m and n denote the size of P and Q, respectively; this
algorithm is cubic in the diagonal case, where m = Θ(n).

In section 6.3 below, we improve upon these results and give an algorithm that computes
δH(P, Q) in Oε((mn)15/16+ε(m17/16 +n17/16)) randomized expected time (c.f., Theorem 6.19
on page 68); in the diagonal case this becomes Oε(n

47/16+ε) ≈ O(n2,9375) and constitutes the
first subcubic solution for Problem 6.4. For variants of the Hausdorff distance, which we get
when using a polyhedral distance function instead of the Euclidean distance to measure
the distance between points in R

3 , we improve our results in section 6.2 and obtain an
algorithm that solves the decision problem in Oε((m + n)2+ε + mn(

√
m1+ε +

√
n1+ε)) time

(c.f., Theorem 6.12 on page 66); in the diagonal case, where m = Θ(n), this becomes
Oε(n

5/2+ε) ≈ O(n2,5). Again the algorithm of Godau was the most efficient procedure
known thus far for that problem.

For the remainder of this chapter, P and Q are ∆-patterns of size m and n, respectively,
and δ > 0 is fixed. As before, P 0 will denote the set of vertices of P .

6.1 Outline of the method

The basic idea is best illustrated if we consider the problem in a somewhat simplified
setting. To this end we make use of a different distance function, which we get when using
a polyhedral distance function instead of the Euclidean distance to measure the distance
between points in R

3 . For the remainder of this chapter, B will be a centrally symmetric
convex body, BP will be a centrally symmetric convex polyhedron and B2 = {(x, y, z) ∈
R

3 | x2 + y2 + z2 ≤ 1} will be the three-dimensional unit ball.

We have that δ̃B
H(P, Q) ≤ δ iff for each point of P there is a point of Q that is δ-close

(wrt the LB-distance). Therefore it makes sense to look at the set of all points that are
δ-close to Q:
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Definition 6.6 (LB-δ-neighborhood, LB-δ-boundary). Let Q be a compact set in R
3 .

Then nhB
δ (Q) denotes the LB-δ-neighborhood of Q, defined as

nhB
δ (Q) := {x ∈ R

3 | dLB
(x, Q) ≤ δ} = Q ⊕ (δ · B), and

bdB
δ (Q) denotes the boundary of the LB-δ-neighborhood of Q, i.e.,

bdB
δ (Q) := {x ∈ R

3 | dLB
(x, Q) = δ}.

Our results are based on the following simple observation that is subsumed in Lemma 6.7
below: The one-sided LB-Hausdorff distance from P to Q is at most δ iff all vertices of P
are contained in the LB-δ-neighborhood of Q and none of the triangles in P intersects the
boundary bdB

δ (Q).

Lemma 6.7 (The connection between δ̃B
H and bdB

δ ). Let and P , Q be ∆-patterns in
R

3 , and δ > 0. Then

δ̃B
H(P, Q) < δ ⇐⇒ P ⊂ nhB

δ (Q) ⇐⇒ P 0 ⊂ nhB
δ (Q) and P ∩ bdB

δ (Q) = ∅.

So we are left with the task of verifying whether P 0 ⊂ nhB
δ (Q) (’inclusion property’)

and P ∩ bdB
δ (Q) = ∅ (’intersection property’) hold. The first property can be checked in

O(mn) steps by computing the distance of each vertex in P 0 to each triangle in Q in O(1)
time. Note that this method can also compute the triangles ∆ ∈ P that contain a vertex
outside of nhB

δ (Q).

Lemma 6.8 (Checking the inclusion property). For B ∈ {BP ,B2} we can decide
whether P 0 ⊂ nhB

δ (Q) in O(mn) time.

In the following two sections we will describe efficient algorithms to verify the second
property when B is a convex polyhedron or a ball. The basic approach will be the same
in both cases, but the details (and the runtime) will differ marginally.

6.2 The LBP
-Hausdorff distance of ∆-patterns

For a triangle ∆ ∈ Q, the set nhBP
δ (∆) is the convex hull of three copies of δ ·BP centered

at the vertices of ∆. Its boundary is a convex polyhedron and, since bdBP
δ (Q) is contained

in the union of these boundaries, it is a polyhedral set, i.e., it is the union of a finite set of
trinagles that do not intersect in their relative interiors.
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Figure 6.1: The LB1-δ-neighborhood of a triangle in R
3 .

The complexity of bdBP

δ (Q) is the number of its vertices, edges, and 2-faces.

Theorem 6.9 (Computation of bdBP
δ , Aronov/Sharir, [19, 20]). The boundary bdBP

δ (Q)
has complexity O(n2) and can be computed in O(n2 log2 n) randomized expected time.

The algorithm of Aronov/Sharir computes a description of bdBP
δ (Q) where each 2-face

is partitioned into triangles. In order to verify the intersection property we need a method
to detect triangle-triangle intersections:

Theorem 6.10 (Triangle intersection queries for bdBP
δ , Pellegrini, [42]). Let T be a set of

k triangles in R
3 with disjoint interiors. We can build a data structure of size Oε(k

4+ε)
in Oε(k

4+ε) time, such that for any query triangle ∆ we can decide in Oε(k
ε) time if ∆

intersects T .

Lemma 6.11 (Checking the intersection property – polyhedral case). We can
decide whether P ∩ bdBP

δ (Q) = ∅ in Oε(n
2+ε + mn3/2+ε) randomized expected time.

Proof. In a first step we compute a description of bdBP
δ (Q) with the algorithm from The-

orem 6.9. This can be done in O(n2 log2 n) time and yields a set of O(n2) triangles that
partition the boundary of nhBP

δ (Q). Now we distinguish two cases:

m2 ≤ n: We run the algorithm of Theorem 6.10 to build a data structure of size
Oε(m

4+ε) in Oε(m
4+ε) time that supports triangle intersection queries to P in Oε(m

ε)
time and then we query this data structure with all triangles in bdBP

δ (Q) to test for
intersections in Oε(n

2mε) steps. The total time spent is

Oε(m
4+ε + n2mε) = Oε(n

2+ε + n2mε) = Oε(n
2+ε).

n ≤ m2: We partition P into g = dm/n1/2e groups of k = n1/2 ≤ m triangles each.
For each group, we run the algorithm of Theorem 6.10 to build a data structure of
size Oε(k

4+ε) in Oε(k
4+ε) time that supports triangle intersection queries in Oε(k

ε)
time and then we query this data structure with all triangles in bdBP

δ (Q) to test for
intersections in Oε(n

2kε) steps. The total time spent is

Oε(g(k4+ε + n2kε)) = Oε(gn2+ε/2) = Oε(mn3/2+ε).
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By applying Lemmas 6.8 and 6.11 twice we get the main result of this section:

Theorem 6.12 (∆-pattern δBP
H -measure problem – decision version). We can de-

cide whether δBP
H (P, Q) ≤ δ in Oε((m+n)2+ε +mn(

√
m1+ε +

√
n1+ε)) randomized expected

time.

6.3 The Hausdorff distance of ∆-patterns

In the Euclidean case we follow the same basic approach as in the previous section. How-
ever, since the geometric structure of the boundary bdB2

δ (Q) is more complicated, we have
to resort to data structures that do not match the efficiency of the ones we used in the
polyhedral case. Therefore the runtime of the algorithm will be slightly worse.

For a triangle ∆, the set nhB2
δ (∆) is the convex hull of three copies of a δ-ball centered at

the vertices of ∆; it is the (non-disjoint) union of three balls of radius δ around the vertices
of ∆, three cylinders of radius δ around the edges of ∆, and a triangular prism of height
2δ around ∆. The complexity of bdB2

δ (Q) is the number of vertices, edges, and 2-faces

Figure 6.2: The LB2-δ-neighborhood of a triangle in R
3 .

of bdB2

δ (Q). A 2-face of the boundary is a maximal connected closed subset of bdB2

δ (Q),
contained in one spherical, cylindrical, or triangular portion of bdB2

δ (∆), for some ∆ ∈ Q.
An edge of bdB2

δ (Q) is a maximal connected subset of bdB2
δ (Q) contained in two 2-faces

and a vertex of bdB2

δ (Q) is contained in three 2-faces.

Theorem 6.13 (Computation of bdB2
δ , Agarwal/Sharir, [3, 4]). The boundary bdB2

δ (Q)
has complexity Oε(n

2+ε) and can be computed in Oε(n
2+ε) randomized expected time.

The algorithm of Agarwal/Sharir computes a description of bdB2

δ (Q) where each 2-face
is partitioned into semialgebraic surface patches of constant description complexity. Each
of these surface patches is contained in one spherical, cylindrical, or triangular portion
of bdB2

δ (∆) for some ∆ ∈ Q (the same ∆ that contains the corresponding 2-face) and is
bounded by at most four arcs. Each arc in turn is part of the intersection of the portion
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of the boundary that contains the patch with either a plane, or an δ-sphere, or an δ-
cylinder. A polynomial expression defining a patch is formed by the conjunction of five
atomic expressions of degree at most two: one polynomial equation describing the portion
of bdB2

δ (∆) that contains the patch (i.e., a cylinder, a sphere, or a plane) and at most four
polynomial inequalities defining the arcs (again these are equations describing a cylinder,
a sphere, or a plane).

In order to verify the intersection property we need a method to detect intersections
between the triangles in P and the surface patches of bdB2

δ . We will apply a standard
approach suggested in [27] and [25] and transform this problem to a semialgebraic point-
location problem.

Lemma 6.14 (Triangle intersection queries for bdB2
δ ). Let Ω be a set of k semialge-

braic sets of constant description complexity in R
3 . We can build a data structure of size

Oε(k
16+ε) in Oε(k

16+ε) randomized expected time, such that for any query triangle ∆ we
can decide in Oε(k

ε) time if ∆ intersects Ω.

Proof. Let ∆(p1,p2,p3;x) be a polynomial expression that defines a triangle ∆ depending
on its three vertices p1,p2, and p3, i.e., ∆ = {x ∈ R

3 | ∆(p1,p2,p3;x) holds}; we can
form ∆ as the conjunction of three linear inequalities and one linear equation. Let Γ(x) be
a polynomial expression that defines a set Γ ∈ Ω, i.e., Γ = {x ∈ R

3 | Γ(x) holds}. For some
fixed Γ, consider the set CΓ = {(p1,p2,p3) ∈ R

9 | (∃x : ∆(p1,p2,p3;x) ∧ Γ(x)) holds}.
If we look at R9 as the configuration space of the set of all triangles in 3-space, then CΓ

is the set of (the parameters of) all triangles that intersect Γ. By quantifier elimination
[30] we can find a polynomial expression CΓ(p1,p2,p3) that defines CΓ; therefore this set
is semialgebraic, too.

Let F = {f 1
Γ, . . . , f l

Γ | Γ ∈ Ω} denote the set of O(k) many polynomials that appear
in the atomic polynomial expressions forming the expressions CΓ. With the algorithm of
Theorem 3.2 we can compute a point-location data structure of size Oε(k

16+ε) in Oε(k
16+ε)

time for the arrangenment of the varieties f i
Γ = 0 defined by F . Since the signs of all

polynomials in F and therefore the validity of each polynomial expression CΓ is constant
for each cell of the decomposition of R9 induced by these varieties, the claim follows.

Lemma 6.15 (Checking the intersection property – Euclidean case). We can
decide whether P ∩ bdB2

δ (Q) = ∅ in Oε(mnε + n2+εm15/16+ε) randomized expected time.

Proof. In a first step we compute a description of bdB2
δ (Q) with the algorithm from Theorem

6.13. This can be done in Oε(n
2+ε) time and yields a set of Oε(n

2+ε) semialgebraic surface
patches of constant description complexity that partition the boundary of nhB2

δ (Q). Now
we distinguish two cases:

n32 ≤ m: We run the algorithm of Lemma 6.14 to build a data structure of size
Oε(n

32+ε) in Oε(n
32+ε) time that supports triangle intersection queries to bdB2

δ (Q) in
Oε(n

ε) time and then we query this data structure with all triangles in P to test for
intersections in Oε(mnε) steps. The total time spent is

Oε(n
32+ε + mnε) = Oε(mnε).



68 Computing the Hausdorff distance between polyhedral surfaces in R
3

m ≤ n32: We partition bdB2
δ (Q) into g = dn2+ε/m1/16e groups of k = m1/16 ≤ n2

surface patches each. For each group, we run the algorithm of Lemma 6.14 to build a
data structure of size Oε(k

16+ε) in Oε(k
16+ε) time that supports triangle intersection

queries in Oε(k
ε) time, and then we query this data structure with all triangles in P

to test for intersections in Oε(mkε) steps. The total time spent is

Oε(g(k16+ε + mkε)) = Oε(gm1+ε/16) = Oε(n
2+εm15/16+ε).

Note that this algorithm can also compute the triangles ∆ ∈ P that intersect bdB2
δ (Q).

Putting Lemma 6.8 and Lemma 6.15 together, we obtain

Lemma 6.16 (∆-pattern δ̃H-measure problem – decision version). We can com-
pute the set X = {∆ ∈ P | δ̃H(∆, Q) > δ} in Oε(mn + n2+εm15/16+ε) randomized expected
time.

By applying Lemma 6.16 twice we get an algorithm for Problem 6.5:

Theorem 6.17 (∆-pattern δH-measure problem – decision version). We can de-
cide whether δH(P, Q) ≤ δ in Oε((mn)15/16+ε(m17/16 + n17/16)) randomized expected time.

With the result described in the following Theorem and the well known Clarkson/Shor
technique, c.f. [28], we can easily turn the algorithm for the decision problem into a
randomized procedure that actually computes the minimal distance.

Theorem 6.18 (Computing δ̃H of a triangle to a ∆-pattern, Godau, [35]). Let ∆ be a tri-
angle in R3 . There is a randomized algorithm that computes δ̃H(∆, Q) in Oε(n

2+ε) expected
time.

Theorem 6.19 (∆-pattern δH-measure problem – optimization version). We
can compute δH(P, Q) in Oε((mn)15/16+ε(m17/16 + n17/16)) randomized expected time.

Proof. First we give a randomized algorithm to compute δ̃H(P, Q). We follow a strategy
similar to that proposed in [2]. Initially we set δ = 0 and X = P . Then we repeat the
following steps until X becomes empty:

Choose a random triangle ∆ ∈ X and compute δ′ = δ̃H(∆, Q) in Oε(n
2+ε) time with

the algorithm from Theorem 6.18. Set δ to max(δ, δ′). Now compute the set X ′ = {∆ ∈
X | δ̃H(∆, Q) > δ} in Oε(mn + n2+εm15/16+ε) time with the algorithm from Lemma 6.16.
Finally set X to X ′.

Obviously the last value of δ will be δ̃H(P, Q). As is shown in [28], the expected number
of iterations is O(log m) and therefore the expected time to compute δ̃H(P, Q) with this
algorithm is Oε((n

2+ε + mn + n2+εm15/16+ε) log m).


