
Chapter 4

Matching polygonal curves with
respect to the Fréchet distance

In this chapter we will develop exact and approximation algorithms for the following prob-
lem:

Problem 4.1 (Matching problem – optimization version).
Given two polygonal curves P, Q ∈ K0.

Find a translation τ such that δF (τ(P ), Q) (δ̃F (τ(P ), Q)) is as small as possible.

To be more precise, we will provide an approximation algorithm in section 4.3 which
does not necessarily compute the optimal transformation, but one that yields a Fréchet
distance which differs from the optimum value by a factor of (1 + ε). To this end, we
observe that it is easy to generalize the notion of a reference point to the Fréchet metric
and apply the machinery of reference point based matching. The algorithm will run in time
O(ε−2mn), where m and n denote the number of vertices of P and Q, respectively (c.f.,
Theorem 4.29 on page 40); it constitutes the first approximation algorithm for Problem 4.1.
We conclude the section with a proof of the fact that there are no reference points for affine
maps (c.f., Theorem 4.31 on page 41)

In section 4.2 we will consider the decision problem version of the exact matching
problem:

Problem 4.2 (Matching problem – decision version).
Given two polygonal curves P, Q ∈ K0, and δ ≥ 0.
Decide, whether there exists a translation τ such that δF (τ(P ), Q) ≤ δ

(δ̃F (τ(P ), Q) ≤ δ).

We describe the first algorithm that solves the decision problem; it runs in O
(
(mn)3(m+

n)2
)

(O
(
(mn)3

)
) time (c.f., Theorem 4.23 on page 37 and Theorem 4.24 on page 38). Efrat

et al. [33] have independently developed an algorithm for the decision problem. However
we should point out, that the runtime they achieve is by a factor mn slower than ours;
furthermore their result is rather complicated and relies on complex data structures. Their
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work is based on [49], where an algorithm is presented that solves the decision problem for
translations in a fixed direction in O((mn)2(m + n)) time.

4.1 Computing the Fréchet distance

Let us first describe how to compute the (weak) Fréchet distance between two polygonal
curves, according to Alt and Godau, [13]. This will provide us with some of the main
ingredients of our algorithm. For the remainder of this Part, P : [0, m] → R2 and Q :
[0, n] → R2 will be polygonal curves, δ ≥ 0 is a fixed real parameter, and T2 denotes the
set of planar translations. By slightly generalizing our notation, we will assume that a
polygonal curve P is parametrized over [0, n], where n is the number of segments of P , and
P |[i,i+1] is affine for all 0 ≤ i < n.

A translation τ = 〈(x, y) 7→ (x+δx, y+δy)〉 ∈ T2 can be specified by the pair (δx, δy) ∈ R2

of its parameters. The set of parameters of all translations in T2 is called the parameter
space of T2, or translation space for short, and we identify T2 with its parameter space R2 .

In the sequel we will use the notion of a free space which was introduced in [13]:

Definition 4.3 (Free space, Alt/Godau, [13]). The set Fδ(P, Q) := {(s, t) ∈ [0, m] ×
[0, n] | ||P (s) − Q(t)|| ≤ δ}, or Fδ for short, denotes the free space of P and Q.

Sometimes we refer to [0, m]× [0, n] as the free space diagram; the feasible points p ∈ Fδ

will be called ‘white’ and the infeasible points p ∈ [0, m] × [0, n]− Fδ will be called ‘black’
(for obvious reasons, c.f. Figure 4.1). Consider [0, m] × [0, n] as composed of the mn cells
Ci,j := [i − 1, i] × [j − 1, j] 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then Fδ(P, Q) is composed of the mn
free spaces for each pair of edges Fδ(Pi−1, Qj−1) = Fδ(P, Q) ∩ Ci,j. By L and R, we will
denote the lower left and the upper right corner of Fδ, respectively, i.e., L := (0, 0), and
R := (m, n).

The following results from [13] describe the structure of the free space and link it to
the problem of computing δF and δ̃F .

Lemma 4.4 (Properties of the free space, Alt/Godau, [13]).

1. The free space of two line segments is the intersection of the unit square with an
affine image of the unit disk, i.e., with an ellipse, possibly degenerated to the space
between two parallel lines.

2. For polygonal curves P and Q we have δ̃F (P, Q) ≤ δ, exactly if there exists a path
within Fδ(P, Q) from L to R.

3. For polygonal curves P and Q we have δF (P, Q) ≤ δ, exactly if there exists a path
within Fδ(P, Q) from L to R which is monotone in both coordinates; such a path will
be called bi-monotone.

Definition 4.5 (δF -path, δ̃F -path). A path π in Fδ from L to R will be called a δ̃F -path.
If π is also bi-monotone, it will be called a δF -path.
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For a proof of the Lemma we refer to [13]. Figure 4.1 shows polygonal curves P, Q, a
distance δ, and the corresponding diagram of cells Ci,j with the free space Fδ. Observe
that the curve π as a continuous mapping from S0 to [0, m] × [0, n] directly gives feasible
reparametrizations, i.e., two reparametrizations α and β, such that maxt∈S0||P (α(t)) −
Q(β(t))|| ≤ δ.

P

Q

δ

P

Q

π

Figure 4.1: Two polygonal curves P and Q and their free space diagram for
a given δ. An example δF -path π in the free space is drawn bold.

For (i, j) ∈ {1, . . . , m} × {1, . . . , n} let Li,j := {i − 1} × [ai,j, bi,j ] (Bi,j := [ci,j, di,j] ×
{j − 1}) be the left (bottom) line segment bounding Ci,j ∩ Fδ (see Figure 4.2). The
segment αi,j := {(i − 1, y) | j − 1 ≤ y < ai,j} ⊆ F̄δ is called a bottom-spike, and the
segment βi,j := {(i − 1, y) | bi,j ≤ y < j} ⊆ F̄δ is called a top-spike. Likewise, the
segment γi,j := {(x, j − 1) | i − 1 ≤ x < ci,j} ⊆ F̄δ is called a left-spike, and the segment
δi,j := {(x, j − 1) | di,j ≤ x < i} ⊆ F̄δ is called a right-spike. A bottom-spike αi,j and a
top-spike βk,j will be called aligned, if ai,j = bi,j. Likewise, a left-spike γi,j and a right-spike
δk,j will be called aligned, if ci,j = di,j.

By induction it can easily be seen that those parts of the segments Li,j and Bi,j which
are reachable from L by a bi-monotone path in Fδ are also line segments. Using a dynamic
programming approach one can compute them, and thus decide if δF (P, Q) ≤ δ. For details
we refer to the proof of the following Theorem in [13]:

Theorem 4.6 (Computing the Fréchet distance (decision problem), Alt/Godau, [13]).
One can decide in O(mn) time, whether δF (P, Q) ≤ δ (δ̃F (P, Q) ≤ δ).

As we have already mentioned, each (possibly clipped) ellipse in Fδ is the affine image
of a unit disk. Each such ‘ellipse’ in Fδ varies continuously in δ; to be more precise, the
cell boundaries ai,j(δ), bi,j(δ), ci,j(δ), and di,j(δ) are continuous functions of δ. This implies
that when δ is as small as possible, i.e., δ = δF (P, Q) (δ = δ̃F (P, Q)), all δF -paths (δ̃F -
paths) in the diagram have to contain some (in fact at least two) of the extremal points of
the free space, i.e., the extreme points of the cell boundaries: ai,j , bi,j , ci,j, and di,j.

Definition 4.7 (Clamped path). Let π be a δ̃F -path in Fδ. We call π clamped in the
j-th row (column) if ai,j = bk,j (cj,i = dj,k) for some i ≤ k, i.e., if αi,j and βk,j (γj,i and
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Figure 4.2: Intervals of the free space on the boundary of a cell.

δj,k) are aligned, and (i, ai,j) as well as (k, bk,j) ((cj,i, i) as well as (dj,k, k)) lie on π. We
call π horizontally (vertically) clamped if it is clamped in some j-th row (column). We
call π clamped if it is horizontally or vertically clamped. We call π clamped in cell (j, i) if
i = k.

A

B

Ci,j

Ck,j

ai,j bk,j
π

Figure 4.3: The path π is horizontally clamped in the j-th row.

Figure 4.3 shows an excerpt of Fδ and a horizontally clamped path in the j-th row of
the diagram. The following Lemma from [13] subsumes our observations.

Lemma 4.8 (Each δF -path in FδF (P,Q) is clamped, Alt/Godau, [13]).

1. If δ = δF (P, Q), then Fδ(P, Q) contains at least one δF -path, and each such path is
clamped.

2. If δ = δ̃F (P, Q), then Fδ(P, Q) contains at least one δ̃F -path, and each such path is
clamped in some cell.

A clamped path also has a geometric interpretation. Figure 4.4 shows the geometric
situations that correspond to a (horizontally) clamped path. In case (a) the reparametriza-
tion (i.e., the path) maps the point P (i − 1) to the only point on the edge Qj that has
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distance δ from P (i − 1). This corresponds to a δ̃F -path that is clamped in cell (i, j). In
case (b) it maps the part of P between P (i−1) and P (k−1) to the only point on the edge
Qj that has distance δ from P (i − 1) and P (k − 1). This corresponds to a δF -path that
is clamped in the j-th row. These situations cover the case of horizontally clamped paths.
The geometric situations that involve a vertically clamped passage are similar, with the
roles of P and Q interchanged.

P (i − 1)

P

Q

Qj

δ δ

Qj

P (k − 1)

Q

P
P (i − 1)

(a) (b)

Figure 4.4: The geometric situations corresponding to a horizontally clamped
path.

4.2 Minimizing the Fréchet distance

First we give a rough sketch of the basic idea of our algorithm: Assume that there is at
least one translation τ≤ that moves P to a Fréchet distance at most δ to Q. Then we
can move P to a position τ= where the Fréchet distance to Q is exactly δ. According to
Lemma 4.8 the free space diagram Fδ(τ=(P ), Q) then contains at least one clamped path.
As a consequence, one of the geometric situations from Figure 4.4 must occur. Therefore
the set of translations that attain a Fréchet distance of exactly δ is a subset of the set of
translations that realize at least one of those geometric situations. The set of translations
that create a geometric situation involving the two different vertices P (i−1) and P (k−1)
from P and the edge Qj from Q consist of two segments in transformation space, i.e., it
can be described geometrically.

Now assume that the geometric situation from above is specified by the two vertices
P (i − 1) and P (k − 1) and the edge Qj. When we move P in such a way that P (i − 1)
and P (k − 1) remain at distance δ from a common point on an edge of Q (i.e., we shift
P ’along’ Q), we will preserve one geometric situation (namely the one involving P (i− 1)
and P (k − 1) and some edge of Q). During this process the Fréchet distance may vary,
but at some point we will reach a placement τ ′

= where it becomes δ again. According to
Lemma 4.8 the free space diagram Fδ(τ

′
=(P ), Q) then also contains a clamped path and

another geometric situation from Figure 4.4 must occur. So whenever there is a translation
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that attains a Fréchet distance of exactly δ, there is a translation that realizes at least two
such geometric situations. Moreover it can be shown that the number of translations that
realize at least two such situations is only polynomial.

After this informal description of the basic ideas let us go into more detail now. Let us
first take a look at the free space Fδ(τ(P ), Q) as τ varies over T2:

Lemma 4.9 (Continuity lemma I). δF (τ(P ), Q) and δ̃F (τ(P ), Q) are continuous func-
tions of (the parameters of) τ .

Proof. Let δ := δF (P, Q) and consider two reparametrizations α and β of P and Q, such
that ||P (α(t)) − Q(β(t))|| ≤ δ for all t ∈ [0, 1]. The triangle inequality implies that
||τ(P (α(t)))−Q(β(t))|| ≤ δ + ||τ || for all t ∈ [0, 1], so that δF (τ(P ), Q) ≤ δF (P, Q) + ||τ ||.
The same argument yields that δF (P, Q) = δF (τ−1(τ(P )), Q) ≤ δF (τ(P ), Q) + ||τ−1|| =
δF (τ(P ), Q) + ||τ ||, so that |δF (τ(P ), Q) − δF (P, Q)| ≤ ||τ ||, which proves the claim. The
same reasoning applies for the weak Fréchet distance.

Lemma 4.10 (Continuity lemma II). The cell boundaries ai,j, bi,j, ci,j, and di,j in Fδ

are continuous partial functions of (the parameters of) τ . The domains of these functions
are closed sets.

Proof. Let us focus on a cell Ci,j of the free space diagram Fδ(τ(P ), Q) as τ varies. We
will show that ai,j and bi,j are continuous partial functions of (the parameters of) τ . A
symmetric argument proves the claim for ci,j , and di,j.

Consider the point p = P (i− 1) and the segment s = Qj . Let pδ denote the circle with
center p and radius δ . Recall that Li,j denotes the left boundary of the free space of the
cell Ci,j. This boundary essentially corresponds to the intersection of pδ and s. To be more
precise a point y ∈ Li,j corresponds to a point q = Q(y) ∈ s with ||p− q|| ≤ δ, i.e., a point
in pδ ∩ s, and vice versa.

Since ai,j and bi,j are defined whenever Li,j is non-empty we see that the domain of
these two functions is the set of all translations τ such that τ(pδ) and s intersect, or —
equivalently — such that τ(p) lies in the Minkowski sum of s with a circle of radius δ, i.e.,
dom(ai,j) = dom(bi,j) = s ⊕ (δ · S1) − p. This is a closed set. Of course pδ ∩ s changes
continuously in τ .

The following result is an immediate consequence of the previous Lemma:

Corollary 4.11. There exists ε > 0 such that for each translation τ with ||τ || < ε the
following holds for all i, j, k with i ≤ k:

1. If Li,j = ∅, then Li,j(τ) = ∅.

2. If Li,j 6= ∅, Lk,j 6= ∅, then

(a) Li,j(τ) = ∅ and ai,j = bi,j, or

(b) Lk,j(τ) = ∅ and ak,j = bk,j, or
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(c) Li,j(τ) 6= ∅, Lk,j(τ) 6= ∅.

3. If Li,j 6= ∅, Lk,j 6= ∅, Li,j(τ) 6= ∅, Lk,j(τ) 6= ∅, and

(a) ai,j > bk,j, then ai,j(τ) > bk,j(τ).

(b) ai,j < bk,j, then ai,j(τ) < bk,j(τ).

The corresponding statement holds for ci,j, dk,j, Bi,j, and Bk,j.

Definition 4.12 (Configuration). A triple c = (p, p′, s) that consists of two (not neces-
sarily distinct) vertices p and p′ of Q (P ) and an edge s of P (Q) is called an h-configuration
(v-configuration) of P and Q. A configuration is an h-configuration or a v-configuration.

If p = p′ then c is called degenerate. Otherwise it is called non-degenerate.
Let τ be a translation. If c is an h-configuration, then τ(c) := (p, p′, τ(s)), whereas if c

is a v-configuration, then τ(c) := (τ(p), τ(p′), s).

Let us briefly rephrase the statement of Lemma 4.8 and the discussion following it:

Observation 4.13.

1. If δ = δF (P, Q), then there is a configuration c = (p, p′, s) of P and Q such that there
exist at most two points q ∈ s with ||p − q|| = ||p′ − q|| = δ.

2. If δ = δ̃F (P, Q), then there is a degenerate configuration c = (p, p, s) of P and Q
such that there exist at most two points q ∈ s with ||p − q|| = δ.

Definition 4.14 (δ–critical translation). A translation τ is called δ–critical for a con-
figuration c of P and Q, if τ(c) = (p, p′, s) and there exist at most two points q ∈ s
s.th. ||p − q|| = ||p′ − q|| = δ. A translation is called δ-critical if it is δ-critical for some
configuration. The set of all translations that are δ–critical for c will be denoted by T δ

crit(c).

Observation 4.15. Let c = (P (i − 1), P (k − 1), Qj), with i ≤ k, be an h-configuration.
Then T δ

crit(c) ⊆ dom(ai,j) ∩ dom(bk,j) and ai,j(τ) = bk,j(τ) for all τ ∈ T δ
crit(c).

Of course the statement of this observation remains true if we consider v-configurations
(where the roles of P and Q are interchanged).

Lemma 4.16 (Characteristic feasible translations - weak version). If there is a
translation τ≤ such that δF (τ≤(P ), Q) ≤ δ (δ̃F (τ≤(P ), Q) ≤ δ) then there is a transla-
tion τ= that is δ–critical such that δF (τ=(P ), Q) = δ (δ̃F (τ=(P ), Q) = δ).

Proof. We formulate the proof in terms of the Fréchet distance only. The proof for the case
of the weak Fréchet distance can be copied verbatim. Pick any translation τ> such that
δF (τ>(P ), Q) > δ. Since δF (τ(P ), Q) is a continuous function of τ according to Lemma
4.9, there exists a translation τ= on any curve between τ≤ and τ> in translation space
such that δF (τ=(P ), Q) = δ. By Observation 4.13 the translation τ= is critical for some
configuration.
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This result states that in order to check if there is a translation that moves P into
Fréchet distance at most δ to Q, it is sufficient to check all the δ–critical translations.

So let us take a closer look at the set of δ–critical translations in T2: Let c = (P (i −
1), P (k − 1), Qj), with i ≤ k, be an h-configuration. Consider the points p = P (i − 1),
p′ = P (k − 1) and the segment s = Qj .

First assume that i < k, i.e., c is non-degenerate. By definition a translation τ is
δ–critical for c iff there exist at most two points q ∈ s s.th. ||τ(p) − q|| = ||τ(p′) − q|| = δ,
i.e., one of the two points τ(pδ)∩ τ(p′δ) = τ(pδ ∩p′δ) lies on s. So if pδ ∩p′δ = {r, r′} we have
that T δ

crit(c) = {τ | τ(r) ∈ s or τ(r′) ∈ s} = (s − r) ∪ (s − r′). Thus for a non-degenerate
configuration (which corresponds to case (b) in Figure 4.4) the set of δ–critical translations
is described by two parallel line segments in translation space, where each line segment is
a translate of s.

In case that i = k, i.e., c is degenerate, a translation τ is δ–critical for c iff d(τ(p), s) = δ,
i.e., the circle τ(pδ) ’touches’ s, or — equivalently — such that τ(p) lies on the boundary
of the Minkowski sum of s with a circle of radius δ, i.e., T δ

crit(c) = bd(s ⊕ (δ · S1)) − p =
bd(dom(ai,j)). Thus, for a degenerate configuration (which is case (a) in Figure 4.4) the
set of δ–critical translations is described by a ’racetrack’ in translation space, which is the
locus of all points having distance δ to a translate of s. Such a ’racetrack’ consists of two
parallel line segments in translation space, where each line segment is a translate of s and
two semicircles of radius δ.

Again a similar statement remains true if we consider v-configurations (where the roles
of P and Q are interchanged). These results are subsumed in the following

Observation 4.17. For a non-degenerate configuration involving the segment s, the set of
δ–critical translations is described by two parallel line segments in translation space, where
each line segment is a translate of s. For a degenerate configuration involving the segment
s, the set of δ–critical translations consists of two parallel line segments in translation
space, where each line segment is a translate of s and two semicircles of radius δ. The
critical translations of two different configurations either overlap or intersect at most four
times.

Lemma 4.18 (Characteristic feasible translations for δF - strong version). Let c
be a configuration and assume that there is a translation τ= ∈ T δ

crit(c) s.th. δF (τ=(P ), Q) =
δ. Let s be the segment or semicircle of T δ

crit(c) containing τ= and assume that for the two
endpoints τ1, τ2 of s we have that δF (τ1(P ), Q) > δ and δF (τ2(P ), Q) > δ.

Then there is a configuration c′ 6= c with |T δ
crit(c) ∩ T δ

crit(c
′)| ≤ 4, and a translation

τ ′
= ∈ T δ

crit(c) ∩ T δ
crit(c

′), such that δF (τ ′
=(P ), Q) = δ.

Proof. Let us assume wlog that c = (P (i−1), P (k−1), Qj), with i ≤ k is an h-configuration.
The case that c is a v-configuration is analogous.

It follows from Lemma 4.9 that the set {τ | δF (τ(P ), Q) ≤ δ} is a closed set. Therefore
the set s≤ := {τ ∈ s | δF (τ(P ), Q) ≤ δ} consists of segments or circular arcs on s whose
endpoints also belong to s≤ (loosely speaking, s≤ is a closed subset of s). Let s0

≤ denote
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the set of these endpoints; this set is non-empty since τ= ∈ s≤. Lemma 4.9 also implies
that for any τ ∈ s0

≤ we have that δF (τ(P ), Q) = δ. Pick any τ ′
= ∈ s0

≤.
Since {τ1, τ2}∩s≤ = ∅ there is an ε′ > 0 such that for all 0 < µ < ε′ there is a τ> ∈ s\s≤

with ||τ ′
= − τ>|| ≤ µ.

We have for all τ ∈ s that (c.f. Observation 4.15)

Li,j(τ) 6= ∅, Lk,j(τ) 6= ∅, and ai,j(τ) = bk,j(τ). (4.1)

Let ε > 0 be such that a translation that is at most ε away from τ ′
= does not change

the relative position of all spikes that are not aligned. Such an ε indeed exists according
to Corollary 4.11.

We can conclude that for all 0 < µ < min(ε, ε′) there exists some τ> ∈ s \ s≤ with
||τ ′

=−τ>|| ≤ µ that does not change the relative position of any spikes that are not aligned
(in the sense of Corollary 4.11).

Since Fδ(τ>(P ), Q) does not contain any δF -paths, the diagram must differ from
Fδ(τ

′
=(P ), Q). The only possibilities that prevent such paths are

1. Lr,t(τ
′
=) 6= ∅, but Lr,t(τ>) = ∅ for some r, t, or

2. ar,s(τ
′
=) = bt,s(τ

′
=), but ar,s(τ>) > bt,s(τ>) for some r, s, t.

3. Br,t(τ
′
=) 6= ∅, but Br,t(τ>) = ∅ for some r, t, or

4. cr,s(τ
′
=) = dt,s(τ

′
=), but cr,s(τ>) > dt,s(τ>) for some r, s, t.

In the first case Corollary 4.11 yields that ar,t(τ
′
=) = br,t(τ

′
=) and our considerations

(4.1) above show that (r, t) 6= (i, j) and (r, t) 6= (k, j). Thus we get a new h-configuration
c′ = (P (r − 1), P (r − 1), Qt) for which τ ′

= is critical.
In the second case our considerations (4.1) above show that (r, s, t) 6= (i, j, k). Thus we

get a new h-configuration c′ = (P (r − 1), P (s − 1), Qt) for which τ ′
= is critical.

In any case τ> 6∈ T δ
crit(c

′), so in the neighbourhood of τ ′
= the two sets T δ

crit(c) and T δ
crit(c

′)
do not overlap. Since τ ′

= ∈ T δ
crit(c) ∩ T δ

crit(c
′) we can conclude that they do not overlap at

all.
The other two cases are analogous and yield a v-configuration c′ for which τ ′

= is critical.

The proof of this Lemma is easily modified to yield the corresponding result for the weak
Fréchet distance; in fact only the cases 1. and 3. need to be taken into account. This yields:

Lemma 4.19 (Characteristic feasible translations for δ̃F - strong version). Let c
be a degenerate configuration and assume that there is a translation τ= ∈ T δ

crit(c) s.th.
δ̃F (τ=(P ), Q) = δ. Let s be the segment or semicircle of T δ

crit(c) containing τ= and assume
that for the two endpoints τ1, τ2 of s we have that δ̃F (τ1(P ), Q) > δ and δ̃F (τ2(P ), Q) > δ.

Then there is a degenerate configuration c′ 6= c with |T δ
crit(c) ∩ T δ

crit(c
′)| ≤ 4, and a

translation τ ′
= ∈ T δ

crit(c) ∩ T δ
crit(c

′), such that δ̃F (τ ′
=(P ), Q) = δ.
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The previous two results show that the translations that correspond to the endpoints
of s deserve special attention:

Definition 4.20 (δ–supercritical translation). Let c be a configuration and assume
that T δ

crit(c) is the disjoint union of the sets h, h′, s, and s′ where s and s′ are parallel
line segments, and h and h′ are either empty (if c is non-degenerate) or semicircles of
radius δ (if c is degenerate). The translations that correspond to the endpoints of s and
s′ will be called δ–supercritical. By T ′

crit
δ(c) we denote the set of the four translations that

are δ–supercritical for c.

Lemma 4.21 below summarizes our considerations: In order to decide whether there is
a translation τ s.th. δF (τ(P ), Q) ≤ δ, we can restrict our attention to translations that
are δ–critical for two different configurations or that are δ–supercritical.

Lemma 4.21 (Characteristic feasible translations for δF ). If there is a translation
τ≤ such that δF (τ≤(P ), Q) ≤ δ then

1. either there is a configuration c and a translation τ ′
≤ ∈ T ′

crit
δ(c), such that

δF (τ ′
≤(P ), Q) ≤ δ,

2. or there are two different configurations c 6= c′ with |T δ
crit(c) ∩ T δ

crit(c
′)| ≤ 4, and a

translation τ ′
= ∈ T δ

crit(c) ∩ T δ
crit(c

′), such that δF (τ ′
=(P ), Q) = δ.

Proof. By Lemma 4.16 there is a translation τ= with δF (τ=(P ), Q) = δ that is δ–critical
for some configuration c, i.e., τ= ∈ T δ

crit(c). Let s be the segment or semicircle of T δ
crit(c)

containing τ= and let τ1, τ2 ∈ T ′
crit

δ(c) be the two endpoints of s.

1. If δF (τ1(P ), Q) ≤ δ or δF (τ2(P ), Q) ≤ δ the claim of part 1. follows with τ ′
≤ := τ1 or

τ ′
≤ := τ2, respectively.

2. If δF (τ1(P ), Q) > δ and δF (τ2(P ), Q) > δ the claim of part 2. follows from
Lemma 4.18.

Again, the proof of this Lemma is easily modified to yield the corresponding result for the
weak Fréchet distance:

Lemma 4.22 (Characteristic feasible translations for δ̃F ). If there is a translation
τ≤ such that δ̃F (τ≤(P ), Q) ≤ δ then

1. either there is a degenerate configuration c and a translation τ ′
≤ ∈ T ′

crit
δ(c), such that

δ̃F (τ ′
≤(P ), Q) ≤ δ,

2. or there are two different degenerate configurations c 6= c′ with |T δ
crit(c)∩T δ

crit(c
′)| ≤ 4,

and a translation τ ′
= ∈ T δ

crit(c) ∩ T δ
crit(c

′), such that δ̃F (τ ′
=(P ), Q) = δ.
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So in order to solve the decision problem for a given δ it is sufficient to check all
translations τ that correspond either to δ–supercritical translations or to the intersection
of the set of non-overlapping δ–critical translations of two distinct configurations.

Algorithm Fréchet Match(P, Q, δ)
Input: Two polygonal curves P, Q ∈ K0, and δ ≥ 0.
Output: Decides whether there exists a translation τ such that δF (τ(P ), Q) ≤ δ.
1. for all configurations c
2. do Compute τ ′

crit, the δ–supercritical translations for c
3. for τ ∈ τ ′

crit

4. do if δF (τ(P ), Q) ≤ δ
5. then return (True)
6. for all pairs of configurations c and c′

7. do Compute τcrit, the δ–critical translations for c
8. Compute τ ′

crit, the δ–critical translations for c′

9. for τ ∈ τcrit ∩ τ ′
crit

10. do if δF (τ(P ), Q) ≤ δ
11. then return (True)
12. return (False)

The correctness of Algorithm Fréchet Match follows from Lemma 4.21. The complexity
of the algorithm depends on the number of configurations. There are O(m2n) many h-
configurations and O(n2m) many v-configurations. We thus have altogether O

(
(mn)2(m+

n)2
)

translations for each of which we check in O(mn) time if it brings P into Fréchet
distance at most δ to Q. This solves Problem 4.2 for the Fréchet distance and yields the
following Theorem:

Theorem 4.23 (Correctness and complexity of Fréchet Match). In O
(
(mn)3(m +

n)2
)

time Algorithm Fréchet Match decides, whether there is a translation τ ∈ T2 such
that δF (τ(P ), Q) ≤ δ.

We can copy Algorithm Fréchet Match almost verbatim to devise a procedure for solv-
ing the corresponding decision problem for the weak Fréchet distance.

Algorithm Weak Fréchet Match(P, Q, δ)
Input: Two polygonal curves P, Q ∈ K0, and δ ≥ 0.
Output: Decides whether there exists a translation τ such that δ̃F (τ(P ), Q) ≤ δ.
1. for all degenerate configurations c
2. do Compute τ ′

crit, the δ–supercritical translations for c
3. for τ ∈ τ ′

crit

4. do if δ̃F (τ(P ), Q) ≤ δ
5. then return (True)
6. for all pairs of degenerate configurations c and c′

7. do Compute τcrit, the δ–critical translations for c
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8. Compute τ ′
crit, the δ–critical translations for c′

9. for τ ∈ τcrit ∩ τ ′
crit

10. do if δ̃F (τ(P ), Q) ≤ δ
11. then return (True)
12. return (False)

The correctness of Algorithm Weak Fréchet Match also follows from Lemma 4.22. Since
there are only O(mn) many degenerate configurations, we altogether have O

(
(mn)2

)
trans-

lations for each of which we check in O(mn) time if it brings P into weak Fréchet distance
at most δ to Q.

Theorem 4.24 (Correctness and complexity of Weak Fréchet Match). The algo-
rithm Weak Fréchet Match decides in O

(
(mn)3

)
time whether there is a translation

τ ∈ T2 such that δ̃F (τ(P ), Q) ≤ δ.

In order to find a translation that minimizes the (weak) Fréchet distance between the
two polygonal curves one can apply the parametric search paradigm of Megiddo [40] and
the improvement by Cole [29]. Details can be found in [17] and [50]. The latter also gives
a generalization of our technique to other sets of transformations, like, e.g., rigid motions.

4.3 Approximately minimizing the Fréchet distance

The algorithms we described so far cannot be considered to be efficient. To remedy this
situation, we present approximation algorithms which do not necessarily compute the op-
timal transformation, but one that yields a (weak) Fréchet distance which differs from
the optimum value by a constant factor only. To this end, we generalize the notion of a
reference point, c.f. [9] and [8], to the Fréchet metrics and observe that all reference points
for the Hausdorff distance are also reference points for the (weak) Fréchet distance.

We first need the concept of a reference point that was introduced in [8]. A reference
point of a figure is a characteristic point with the property that similar figures have reference
points that are close to each other. Therefore we get a reasonable matching of two figures
if we simply align their reference points.

Definition 4.25 (Reference point, [8]). Let K be a set of planar figures and δ : K → R

be a distance measure on K. A mapping R : K → R2 is called a δ–reference point for K
of quality c > 0 with respect to a set of transformations T on K, if the following holds for
any two figures P, Q ∈ K and each transformation τ ∈ T :

(Equivariance) R(τ(P )) = τ(R(P )) (4.2)

(Lipschitz continuity) ||R(P ) − R(Q)|| ≤ c · δ(P, Q). (4.3)

The set of δ–reference points for K of quality c with respect to T is denoted R(K, δ, c, T ).
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So if δ is a metric on K, a reference point is a Lipschitz-continuous mapping between
the metric spaces (K, δ) and (R2 , || · ||) with Lipschitz constant c, which is equivariant
under T . Various reference points are known for a variety of distance measures and classes
of transformations, like, e.g., the centroid of a convex polygon which is a reference point
of quality 11/3 for translations, using the area of the symmetric difference as a distance
measure, see [12]. However, most work on reference points has focused on the Hausdorff
distance, see [8].

We will only mention the following result that provides a δH–reference point for polyg-
onal curves with respect to similarities, the so called Steiner point. The Steiner point of
a polygonal curve is the weighted average of the vertices of the convex hull of the curve,
where each vertex is weighted by its exterior angle divided by 2π.

Theorem 4.26 (Steiner point, Aichholzer et al., [8]). The Steiner point is a δH–reference
point with respect to similarities of quality 4/π. It can be computed in linear time.

Note that the Steiner point is an optimal δH–reference point with respect to similarities,
i.e., the quality of any δH–reference point for that transformation class is at least 4/π, see
[8].

Two feasible reparametrizations α and β of P and Q demonstrate, that for each point
P (α(t)) there is a point Q(β(t)) with ||P (α(t)) − Q(β(t))|| ≤ δ (and vice versa), thus
δH(P, Q) ≤ δ̃F (P, Q) ≤ δF (P, Q). This is summarized in the following:

Observation 4.27. Let c > 0 be a constant and T be a set of transformations on K0∪K1.
Then each δH–reference point with respect to T is also a δ̃F –reference point with respect to
T , and each δ̃F –reference point is also a δF–reference point of the same quality, i.e.,

R(K0 ∪ K1, δH , c, T ) ⊆ R(K0 ∪ K1, δ̃F , c, T ) ⊆ R(K0 ∪ K1, δF , c, T ).

This shows that we can use the known δH–reference points to obtain δ̃F –reference points
and δF –reference points. However, since for non-closed curves each reparametrization has
to map P (0) to Q(0), the distance ||P (0) − Q(0)|| is a lower bound for δ̃F (P, Q) as well
as δF (P, Q). So we get a new reference point that is substantially better than all known
reference points for the Hausdorff distance.

Observation 4.28. The mapping

Ro :

{
K0 → R2

P 7→ P (0)

is a δ̃F –reference point for curves of quality 1 with respect to translations, i.e.,

Ro ∈ R(K0, δ̃F , 1, T2).

The quality of this reference point, i.e., 1, is better than the quality of the Steiner point,
which is 4/π. Since the latter is an optimal reference point for the Hausdorff distance, this
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shows that for the Fréchet distance substantially better reference points exist. For closed
curves however, Ro is not defined at all, so we have to stick to the reference points we get
from Observation 4.27.

Based on the existence of these reference points for T2 we obtain the following algorithm
for approximate matchings of (closed) curves with respect to the (weak) Fréchet distance
under the group of translations, which is the same procedure as already used in [8] for the
Hausdorff distance. In what follows, C ∈ {K0,K1}, and δ ∈ {δ̃F , δF}.

Algorithm Approx Fréchet Match(P, Q, R)
Input: Two polygonal curves P, Q ∈ C and a reference point R ∈ R(C, δ, c, T2).
Output: A value δapprox and a translation τapprox such that

1. δapprox = δ(τapprox(P ), Q), and

2. δapprox ≤ (c + 1) · δopt, where δopt = minτδ(τ(P ), Q).

1. Compute R(P ) and R(Q)
2. τapprox := R(Q) − R(P )
3. δapprox := δ(τapprox(P ), Q)
4. return (δapprox, τapprox)

Theorem 4.29 (Correctness and complexity of Approx Fréchet Match). Suppose
that R can be computed in O(TR(n)) time. Then Algorithm Approx Fréchet Match pro-
duces a (c+1)-approximation to Problem 4.1 in O

(
mn logk+1(mn)+TR(m)+TR(n)

)
time,

where k = 0 if δ = δF , and k = 1 if δ = δ̃F .

Proof. The correctness of this procedure follows easily from the results of [8]. The proof
of the claimed time bounds follows from the results (Theorems 6, 7b, and 11) of [13].

Note that with an idea from [45] it is possible to reduce the approximation constant
for reference point based matching to (1 + ε) for any ε > 0; the idea places a sufficiently
small grid of size O(1/ε2) around the reference point of Q and checks each grid point as
a potential image point for the reference point of P . The runtime increases by a factor
proportional to the grid size.

4.3.1 Reference points for affine maps

We conclude this chapter with a negative result on the approximate matching problem.
We have already seen that – compared to the Hausdorff distance – better reference points
for the Fréchet distance exist (for polygonal curves), i.e.,

R(K0, δH , T2) ( R(K0, δ̃F , T2),

where R(K0, δ, T2) :=
⋃

c>0 R(K0, δ, c, T2) is the set of all δ–reference points for K0 with
respect to T2.

Note that we can easily strengthen Observation 4.28 as follows:



4.3 Approximately minimizing the Fréchet distance 41

Observation 4.30. Let Ro be as above, and T be a set of transformations on K0, such
that Ro is equivariant under T . Then Ro is a δ̃F –reference point for K0 of quality 1 with
respect to T , i.e.,

Ro ∈ R(K0, δ̃F , 1, T ).

In particular this implies that R(K0, δ̃F ,A2) 6= ∅, where A2 is the set of affine trans-
formations of the plane. This is complemented by the following result:

Theorem 4.31 (Non-existence of δH-reference points for affine maps). There are
no δH-reference points for affine maps, i.e.,

R(K0 ∪ K1, δH ,A2) = ∅.

Proof. First observe that for two curves P1, P2 ∈ K0∪K1 with P1 6= P2 and δH(P1, P2) = 0,
and a reference point R ∈ R(K0 ∪ K1, δH , T ), we have that ||R(P1) − R(P2)|| = 0, so
R(P1) = R(P2); this means that δH–reference points only take the geometry of the curves
into account.

In the following c(X) denotes the center of gravity of the vertices of the convex hull of
X. Assume R is a δH–reference point with respect to affine maps.

Let ∆ be a curve in the shape of an equilateral triangle. Let αr be the affine map that
rotates ∆ around c(∆) by an angle of 2π/3 in counterclockwise order. Let ∆r = αr(∆)
denote the image of ∆ under αr. Note that c(∆) is the only fixpoint of αr. Now since R
is a δH–reference point, and δH(∆, ∆r) = 0, we can conclude from our initial remark that

R(∆) = R(∆r) = R(αr(∆)) = αr(R(∆)),

so R(∆) is a fixpoint of αr, and thus R(∆) = c(∆). Now consider an arbitrary triangle ∆′.
Since ∆′ is the image of an equilateral triangle ∆ under some affine transformation α′,

R(∆′) = R(α′(∆)) = α′(R(∆)) = α′(c(∆)).

Since c is invariant under affine maps,

R(∆′) = c(α′(∆)) = c(∆′).

However, as Figure 4.5 illustrates, c is not a δH–reference point, since it is not Lipschitz-
continuous. To this end, observe that

lim
h→0
w→∞

δH(∆1, ∆2) = 0, whereas lim
h→0
w→∞

||c(∆1) − c(∆2)|| = ∞.
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Figure 4.5: The center of gravity of the vertices of the convex hull is not a
δH–reference point.


