
Chapter 1

Introduction

Geometric pattern matching deals with important practical as well as interesting theoretical
problems. The basic pattern matching problems read as follows:

Problem 1.1 (δ-measure problem for Π).
Given two patterns P, Q from a set of valid patterns Π, and

a distance measure δ : Π × Π → R on Π.
Compute the distance δ(P, Q).

Problem 1.2 (Equivalence problem for Π with respect to T ).
Given two patterns P, Q from a set of valid patterns Π, and

a set of admissible transformations T of Π.
Decide, whether there is a transformation τ ∈ T such that τ(P ) = Q.

Problem 1.3 (δ-matching problem for Π with respect to T ).
Given two patterns P, Q from a set of valid patterns Π,

a distance measure δ : Π × Π → R on Π, and
a set of admissible transformations T of Π.

Find a transformation τ ∈ T such that δ(τ(P ), Q) is as small as possible.

Needless to say that these problems and their variants have numerous applications in
a wide variety of scientific disciplines like character recognition, geographical information
systems, computer aided design, to name just a few.

In the field of geometric pattern matching, the patterns Π are modelled by ’simple’
geometric objects like point sets, sets of line segments, polygons, or polyhedral surfaces,
in d-dimensional Euclidean space R

d for some d > 0, with the cases d = 2, 3 being the
most prominent choices here (for obvious reasons). The distance measure that is used,
like the Hausdorff distance δH (c.f. Definition 1.4 on page 7) or the Fréchet distance δF

(c.f. Definition 3.10 on page 23), is usually a metric on Π (or on a larger class of sets) and
the admissible transformations T are ’natural’ transformations of the underlying space Rd

like translations, Euclidean motions, or affine mappings. This provides a mathematically
sound and rigorous foundation for the pattern matching problem — something that many
’classical’ approaches like, e.g., neural nets, syntactic matching, or feature based techniques



2 Introduction

fail to achieve. Moreover it is possible to apply the powerful machinery and the techniques
from computational geometry; as it turns out this is indeed a very good approach —
the field has developed interesting connections to a variety of mathematical subjects and
produced nice algorithmic as well as mathematical results over the last years. The survey
article of Alt and Guibas [15] provides an excellent and extensive overview; the interested
reader is referred to this paper and the references therein.

We should note that in order to apply results from geometric pattern matching to
problems that arise in ’real world applications’, where one has to handle, e.g., pixel images
from a digital camera, point clouds from a laser scanner, or volumetric data from a magnetic
resonance scanner, it is necessary to convert the input data to the abstract mathematical
objects that are used to model the problem, in a ’reasonable’ manner. This gives rise to
various interesting problems and questions and constitutes an active field of research on
its own. However, we will not look into this preprocessing step in this thesis; instead we
concentrate on the geometric pattern matching problem from a purely theoretical point of
view and try to develop efficient algorithms for various incarnations of it.

Preliminaries The model of computation we adopt in this thesis is the real RAM as
proposed by [43]. It constitutes a suitable adaption of a classical machine model com-
monly used in algorithmics (the so-called random-access machine — RAM for short —
described, e.g., in [5]) to the field of computational geometry. The main difference is that
each register of the machine can hold a single real number, and that arithmetic opera-
tions, comparisons, as well as the application of analytic functions (like, e.g., k-th roots,
trigonometric functions, exponentiation, or logarithms) are all available at unit cost.

Some of our algorithms are randomized; thus we assume that the machine provides
access to a random bit generator. All randomized algorithms in this thesis are of the
Las Vegas type, i.e., they always return the correct result, but their runtime is a random
variable; when we specify the runtime of a randomized algorithm as a function of the input
size only, we mean the expectation of that random variable.

Throughout this thesis the Oε-notation will be employed to emphasize that the con-
stants involved may depend on a parameter ε > 0[a]. A statement of the form ‘We can
compute ... in Oε(T (n, ε)) time.’ actually means ‘We can compute ... in Oε(T (n, ε)) time,
for any ε > 0.’.

Most of the major definitions are contained in the introductory sections of the indi-
vidual parts. Some less important ones are provided only when needed and are dispersed
throughout the text and footnotes. For easier reference the appendix contains an index
and a glossary that repeats most of the crucial definitions. The reader is referred to – by
now – standard textbooks about computational geometry like [43], [32] for reference to
basic definitions, notions and techniques from that field.

[a]To be more precise, we have that T (n) = Oε(f(n, ε)) iff there is a function C(ε), and for any ε > 0 we
have that for all n, T (n) ≤ C(ε) · f(n, ε) holds.
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Overview This thesis is roughly organized as follows: It consists of three parts that
(essentially) can be read independently of each other. Each of the parts deals with pattern
matching problems for different kinds of geometric objects. More specifically, patterns are
modelled with finite sets of points in Part I, with plane polygonal curves in Part II, and
with polyhedral surfaces in Part III. Throughout this work P and Q will denote sets of m
and n such ’simple’ geometric objects.

The introduction to each of the parts gives a short problem description and motivation
and provides the necessary definitions. A survey of previous results on the problem under
consideration follows, and finally a summary of our own results is given.

Our main contributions are the following (we omit all necessary definitions and refer
to the introductory sections of the individual parts):

• In chapter 2 we present an algorithm for the d-dimensional congruence test problem
of finite point patterns that runs in O(ndd/3e log n) time (c.f. Theorem 2.2 on page 13).

• In chapter 3 we present efficient algorithms to measure the one-sided Hausdorff dis-
tance of a d-dimensional m-point set P to a set Q of n geometric objects of constant
’size’ each. To be more precise we look at the case where Q is a set of n semialgebraic
sets in Rd , each of constant description complexity. We develop an algorithm to com-

pute δ̃H(P, Q) in Oε(mnε log m + m1+ε− 1
2d−2 n) randomized time (c.f. Theorem 3.8 on

page 20).

• In chapter 4 we present exact and approximation algorithms to solve the δF -matching
problem for polygonal curves with respect to translations. To be more precise, we
describe an algorithm that solves the corresponding decision problem in O

(
(mn)3(m+

n)2
)

time when we consider the Fréchet distance and in O
(
(mn)3

)
when we look at

the weak Fréchet distance (c.f. Theorem 4.23 on page 37 and Theorem 4.24 on
page 38). We complement the exact solution with an O(ε−2mn) time approximation
algorithm that yields a Fréchet distance which differs from the optimum value by
a factor of (1 + ε) only (c.f. Theorem 4.29 on page 40). To this end we describe
reference points for the Fréchet distance, and use them to obtain the aforementioned
approximation algorithms. We conclude with a negative result that shows that no
such reference points for affine maps exist (c.f. Theorem 4.31 on page 41).

• In chapter 5 we show that for a certain class of curves — the so called κ-straight curves
— there is a close relationship between the Fréchet and the Hausdorff distance (c.f.
Theorem 5.3 on page 44). The parameter κ ≥ 1 – roughly speaking – measures how
much these curves ‘resemble’ a straight line. This result gives rise to a randomized
approximation algorithm that computes an upper bound on the Fréchet distance
between two such curves that is off from the exact value by a multiplicative factor of
(κ+1). The algorithm runs in O((m+n) log2(m+n)2α(m+n)) time (c.f. Theorem 5.6
on page 46 and Corollary 5.8 on page 49). We also provide an O(n log2 n) time
algorithm to decide for any κ ≥ 1, if a given polygonal curve on n vertices is κ-
straight (c.f. Theorem 5.9 on page 49).
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• In partIII we develop efficient algorithms for the δH -measure problem for sim-
ple polyhedral surfaces in R

3 . We give an algorithm that computes δH(P, Q) in
Oε((mn)15/16+ε(m17/16 + n17/16)) randomized time (c.f. Theorem 6.19 on page 68).
For variants of the Hausdorff distance, which we get when using a polyhedral
distance function, we obtain an algorithm that solves the decision problem in
Oε((m + n)2+ε + mn(

√
m1+ε +

√
n1+ε)) time (c.f. Theorem 6.12 on page 66).

All of these results improve upon earlier approaches to the problems under considera-
tion; some of them even constitute the first non-trivial algorithmic solution. Most of the
results presented in this thesis have been published in [24], [16], [17], [1], and [11].
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