Glossary

- L: The lower left corner of F_{δ} , 28
- \boldsymbol{R} : The upper right corner of $\boldsymbol{F}_{\boldsymbol{\delta}}$, 28

 $||z||_{L_{\mathbf{B}}}$: The $L_{\mathbf{B}}$ -norm of z, $||z||_{L_{\mathbf{B}}} := \min\{c \ge 0 \mid z \in c \cdot \mathbf{B}\}, 61$

$$A(k,n): A(k,1) = 2$$
 for $k = 1, A(k,n) = A(k-1,A(k,n-1))$ for $k \ge 2, 46$

 \mathcal{A}_2 : The set of affine transformations of the plane, 41

- $\alpha(n):\min\{k\geq 1\mid A(k,k)\geq n\},\,46$
- atomic polynomial expression : Expression of the form $P(\mathbf{x}) \leq 0$, where $P \in \mathbb{R}[x_1, \ldots, x_d]$, 8
- **B**: A centrally symmetric convex body, 63
- B_2 : The three-dimensional unit ball, 63
- \mathbf{B}_{P} : A centrally symmetric convex polyhedron, 63
- $\mathsf{bd}^{\mathbf{B}}_{\delta}(Q)$: The boundary of the $L_{\mathbf{B}}$ - δ -neighborhood of Q, i.e., the set of all x such that $\mathbf{d}_{L_{\mathbf{B}}}(x,Q) = \delta$, 63
- $\delta(P)$: The detour of P; $\delta(P) = \max_{x \in X, y \in Y, x \neq y} \delta_P(x, y)$, 49
- $\delta_P(X,Y)$: The *P*-detour between *X* and *Y*; $\delta_P(X,Y) = \max_{x \in X, y \in Y, x \neq y} \delta_P(x,y)$, 49
- $\delta_P(x,y)$: The *P*-detour between x and y; $\delta_P(x,y) = \mathrm{d}_P(x,y)/||x-y||$, 49
- $\mathbf{d}_{L_{\mathrm{B}}}(x,y)$: The L_{B} -distance between x and y, $\mathbf{d}_{L_{\mathrm{B}}}(x,y):=||x-y||_{L_{\mathrm{B}}}$, 61
- $\mathbf{d}_{P}(x, y)$: The arclength of the piece of the curve **P** between x and y, 43
- d_{discr} : The discrete metric, i.e., $d_{discr}(P,Q) = 0$ if P = Q and $d_{discr}(P,Q) = 1$ otherwise, 7

 δ_F -path : A bi-monotone curve within $F_{\delta}(P,Q)$ from L to R, 28

- $\delta_F(P,Q)$: The Fréchet distance between P and Q, 23
- $\delta_H(P,Q)$: The Hausdorff distance between P and Q, 7
- $\delta^{\mathrm{B}}_{H}(P,Q)$: The L_{B} -Hausdorff distance between P and Q, 61
- $\mathsf{nh}_{\delta}(Q)$: The δ -neighborhood of Q, i.e., the set of all x such that $\mathsf{d}(x,Q) \leq \delta$, 19
- $ilde{\delta}_{H}(P,Q)$: The one-sided Hausdorff distance from P to Q, 7
- $\tilde{\delta}^{\mathrm{B}}_{H}(P,Q)$: The one-sided L_{B} -Hausdorff distance from P to Q, 61
- $ilde{\delta}_F$ -path : A curve within $F_{\delta}(P,Q)$ from L to R, 28
- $\delta_F(P,Q)$: The weak Fréchet distance between P and Q, 23
- Davenport-Schinzel sequence: A sequence $U = \langle u_1, \ldots, u_m \rangle$ over $\{1, \ldots, n\}$ such that any two consecutive elements of U are distinct, and U does not contain a subsequence of length s + 2 of the form $ababab \ldots$ for $a \neq b$, 48
- Δ -pattern: A finite set of triangles with the property, that any two distinct triangles in the set do not intersect in their relative interiors, 61
- description complexity (of a semialgebraic set): This accounts for the number and the maximum degree of the polynomials in a polynomial expression defining the set, 8
- $F_{\delta}(P,Q)$: The free space of P and Q, 28
- \mathcal{K}^1 : The set of all closed plane curves, 23
- κ -straight curve: A curve P s.th. $\max_{x \neq y} d_P(x, y) / ||x y|| \leq \kappa$, 43
- \mathcal{K}^{0} : The set of all plane curves, 23
- $\lambda_s(n)$: The maximum length of a Davenport-Schinzel sequence of order s over an n-element alphabet, 48
- $\mathsf{nh}^{\mathbf{B}}_{\delta}(Q)$: The $L_{\mathbf{B}}$ - δ -neighborhood of Q, i.e., the set of all x such that $\mathsf{d}_{L_{\mathbf{B}}}(x,Q) \leq \delta$, 63
- $\mathcal{O}_{\epsilon}(f(n,\epsilon))$: The set of all functions T(n) such that there is a function $C(\epsilon)$, and for any $\epsilon > 0$ and for all $n, T(n) \leq C(\epsilon) \cdot f(n,\epsilon)$ holds, 2
- p_{δ} : The circle with center p and radius δ , 32
- polynomial expression : Any finite boolean combination of atomic polynomial expressions, 8
- $\mathcal{R}(\mathcal{K}, \delta, \mathcal{T})$: The set of δ -reference points for \mathcal{K} with respect to \mathcal{T} , 40

 $\mathcal{R}(\mathcal{K}, \delta, c, \mathcal{T})$: The set of δ -reference points for \mathcal{K} of quality c with respect to \mathcal{T} , 38

semialgebraic set: a set satisfying a polynomial expression, $8\,$

- $\mathcal{T}^{\delta}_{crit}(c)$: The set of all translations that are $\delta\text{-critical}$ for c, 33
- \mathcal{T}_2 : The set of planar translations, 28
- $\mathcal{T}_{crit}^{\prime \ \ \delta}(c)$: The set of all translations that are δ -supercritical for c, 36
- Tarski sentence : A polynomial expression prefixed by a finite number of \exists and \forall quantifiers, 18