Glossary

$\boldsymbol{L}:$ The lower left corner of $\boldsymbol{F}_{\boldsymbol{\delta}}, 28$
$\boldsymbol{R}:$ The upper right corner of $\boldsymbol{F}_{\boldsymbol{\delta}}, 28$
$\|\boldsymbol{z}\|_{\boldsymbol{L}_{\mathrm{B}}}$: The $\boldsymbol{L}_{\mathrm{B}}$-norm of $\boldsymbol{z},\|\boldsymbol{z}\|_{\boldsymbol{L}_{\mathrm{B}}}:=\min \{c \geq 0 \mid \boldsymbol{z} \in c \cdot \mathrm{~B}\}, 61$
$A(k, n): A(k, 1)=2$ for $k=1, A(k, n)=A(k-1, A(k, n-1))$ for $k \geq 2,46$
$\boldsymbol{\mathcal { A }}_{\mathbf{2}}$: The set of affine transformations of the plane, 41
$\boldsymbol{\alpha}(\boldsymbol{n}): \min \{\boldsymbol{k} \geq \mathbf{1} \mid \boldsymbol{A}(\boldsymbol{k}, \boldsymbol{k}) \geq \boldsymbol{n}\}, 46$
atomic polynomial expression : Expression of the form $\boldsymbol{P}(\mathrm{x}) \leq \mathbf{0}$, where $\boldsymbol{P} \in$ $\mathbb{R}\left[\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{d}}\right], 8$

B: A centrally symmetric convex body, 63
$\mathbf{B}_{\mathbf{2}}$: The three-dimensional unit ball, 63
$\mathbf{B}_{\mathbf{P}}$: A centrally symmetric convex polyhedron, 63
$\mathrm{bd}_{\boldsymbol{\delta}}^{\mathrm{B}}(\boldsymbol{Q})$: The boundary of the $\boldsymbol{L}_{\mathbf{B}^{-}} \boldsymbol{\delta}$-neighborhood of \boldsymbol{Q}, i.e., the set of all \boldsymbol{x} such that $\mathrm{d}_{L_{\mathrm{B}}}(\boldsymbol{x}, \boldsymbol{Q})=\boldsymbol{\delta}, 63$
$\boldsymbol{\delta}(\boldsymbol{P})$: The detour of $\boldsymbol{P} ; \boldsymbol{\delta}(\boldsymbol{P})=\max _{\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{x} \neq \boldsymbol{y}} \boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y}), 49$
$\boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{X}, \boldsymbol{Y})$: The \boldsymbol{P}-detour between \boldsymbol{X} and $\boldsymbol{Y} ; \boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{X}, \boldsymbol{Y})=\max _{\boldsymbol{x} \in \boldsymbol{X}, \boldsymbol{y} \in \boldsymbol{Y}, \boldsymbol{x} \neq \boldsymbol{y}} \boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y})$, 49
$\boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y})$: The \boldsymbol{P}-detour between \boldsymbol{x} and $\boldsymbol{y} ; \boldsymbol{\delta}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y})=\mathrm{d}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y}) /\|\boldsymbol{x}-\boldsymbol{y}\|, 49$
$\mathrm{d}_{\boldsymbol{L}_{\mathrm{B}}}(\boldsymbol{x}, \boldsymbol{y})$: The $\boldsymbol{L}_{\mathrm{B}^{\prime}}$-distance between \boldsymbol{x} and $\boldsymbol{y}, \mathrm{d}_{\boldsymbol{L}_{\mathrm{B}}}(\boldsymbol{x}, \boldsymbol{y}):=\|\boldsymbol{x}-\boldsymbol{y}\|_{\boldsymbol{L}_{\mathrm{B}}}, 61$
$\mathbf{d}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y})$: The arclength of the piece of the curve \boldsymbol{P} between \boldsymbol{x} and $\boldsymbol{y}, 43$
$\mathbf{d}_{\text {discr: }}$: The discrete metric, i.e., $\mathrm{d}_{\text {discr }}(\boldsymbol{P}, Q)=\mathbf{0}$ if $\boldsymbol{P}=\boldsymbol{Q}$ and $\mathrm{d}_{\text {discr }}(P, Q)=\mathbf{1}$ otherwise, 7
$\boldsymbol{\delta}_{\boldsymbol{F}}$-path: A bi-monotone curve within $\boldsymbol{F}_{\boldsymbol{\delta}}(\boldsymbol{P}, \boldsymbol{Q})$ from \boldsymbol{L} to $\boldsymbol{R}, 28$
$\boldsymbol{\delta}_{\boldsymbol{F}}(\boldsymbol{P}, \boldsymbol{Q})$: The Fréchet distance between \boldsymbol{P} and $\boldsymbol{Q}, 23$
$\boldsymbol{\delta}_{\boldsymbol{H}}(\boldsymbol{P}, \boldsymbol{Q})$: The Hausdorff distance between \boldsymbol{P} and $\boldsymbol{Q}, 7$
$\boldsymbol{\delta}_{\boldsymbol{H}}^{\mathrm{B}}(\boldsymbol{P}, \boldsymbol{Q}):$ The $\boldsymbol{L}_{\mathrm{B}}$-Hausdorff distance between \boldsymbol{P} and $\boldsymbol{Q}, 61$
$\operatorname{nh}_{\boldsymbol{\delta}}(\boldsymbol{Q})$: The $\boldsymbol{\delta}$-neighborhood of \boldsymbol{Q}, i.e., the set of all \boldsymbol{x} such that $\mathrm{d}(\boldsymbol{x}, \boldsymbol{Q}) \leq \boldsymbol{\delta}, 19$
$\tilde{\boldsymbol{\delta}}_{\boldsymbol{H}}(\boldsymbol{P}, \boldsymbol{Q}):$ The one-sided Hausdorff distance from \boldsymbol{P} to $\boldsymbol{Q}, 7$
$\tilde{\boldsymbol{\delta}}_{\boldsymbol{H}}^{\mathrm{B}}(\boldsymbol{P}, \boldsymbol{Q}):$ The one-sided $\boldsymbol{L}_{\mathbf{B}}$-Hausdorff distance from \boldsymbol{P} to $\boldsymbol{Q}, 61$
$\tilde{\boldsymbol{\delta}}_{\boldsymbol{F}}$-path: A curve within $\boldsymbol{F}_{\boldsymbol{\delta}}(\boldsymbol{P}, \boldsymbol{Q})$ from \boldsymbol{L} to $\boldsymbol{R}, 28$
$\tilde{\boldsymbol{\delta}}_{\boldsymbol{F}}(\boldsymbol{P}, \boldsymbol{Q}):$ The weak Fréchet distance between \boldsymbol{P} and $\boldsymbol{Q}, 23$
Davenport-Schinzel sequence: A sequence $\boldsymbol{U}=\left\langle\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{m}}\right\rangle$ over $\{1, \ldots, \boldsymbol{n}\}$ such that any two consecutive elements of \boldsymbol{U} are distinct, and \boldsymbol{U} does not contain a subsequence of length $\boldsymbol{s}+\mathbf{2}$ of the form $\boldsymbol{a b a b a b} \ldots$ for $\boldsymbol{a} \neq \boldsymbol{b}, 48$
Δ-pattern: A finite set of triangles with the property, that any two distinct triangles in the set do not intersect in their relative interiors, 61
description complexity (of a semialgebraic set): This accounts for the number and the maximum degree of the polynomials in a polynomial expression defining the set, 8
$\boldsymbol{F}_{\boldsymbol{\delta}}(\boldsymbol{P}, \boldsymbol{Q}):$ The free space of \boldsymbol{P} and $\boldsymbol{Q}, 28$
$\mathcal{K}^{\mathbf{1}}$: The set of all closed plane curves, 23
$\boldsymbol{\kappa}$-straight curve: A curve \boldsymbol{P} s.th. $\max _{\boldsymbol{x} \neq \boldsymbol{y}} \mathrm{d}_{\boldsymbol{P}}(\boldsymbol{x}, \boldsymbol{y}) /\|\boldsymbol{x}-\boldsymbol{y}\| \leq \boldsymbol{\kappa}, 43$
\mathcal{K}^{0} : The set of all plane curves, 23
$\boldsymbol{\lambda}_{\boldsymbol{s}}(\boldsymbol{n})$: The maximum length of a Davenport-Schinzel sequence of order \boldsymbol{s} over an \boldsymbol{n}-element alphabet, 48
$\mathrm{nh}_{\boldsymbol{\delta}}^{\mathrm{B}}(\boldsymbol{Q})$: The $\boldsymbol{L}_{\mathrm{B}} \boldsymbol{\delta} \boldsymbol{\delta}$-neighborhood of \boldsymbol{Q}, i.e., the set of all \boldsymbol{x} such that $\mathrm{d}_{\boldsymbol{L}_{\mathrm{B}}}(\boldsymbol{x}, \boldsymbol{Q}) \leq \boldsymbol{\delta}$, 63
$\mathcal{O}_{\boldsymbol{\epsilon}}(\boldsymbol{f}(\boldsymbol{n}, \boldsymbol{\epsilon}))$: The set of all functions $\boldsymbol{T}(\boldsymbol{n})$ such that there is a function $\boldsymbol{C}(\boldsymbol{\epsilon})$, and for any $\boldsymbol{\epsilon}>\mathbf{0}$ and for all $\boldsymbol{n}, \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{C}(\boldsymbol{\epsilon}) \cdot \boldsymbol{f}(\boldsymbol{n}, \boldsymbol{\epsilon})$ holds, 2
$\boldsymbol{p}_{\boldsymbol{\delta}}:$ The circle with center \boldsymbol{p} and radius $\boldsymbol{\delta}, 32$
polynomial expression : Any finite boolean combination of atomic polynomial expressions, 8
$\boldsymbol{\mathcal { R }}(\mathcal{K}, \boldsymbol{\delta}, \boldsymbol{\mathcal { T }}):$ The set of $\boldsymbol{\delta}$-reference points for \mathcal{K} with respect to $\boldsymbol{\mathcal { T }}, 40$
$\boldsymbol{\mathcal { R }}(\mathcal{K}, \boldsymbol{\delta}, \boldsymbol{c}, \boldsymbol{\mathcal { T }}):$ The set of $\boldsymbol{\delta}$-reference points for \mathcal{K} of quality \boldsymbol{c} with respect to $\boldsymbol{\mathcal { T }}, 38$ semialgebraic set: a set satisfying a polynomial expression, 8
$\boldsymbol{\mathcal { T }}_{\boldsymbol{c r i t}}^{\boldsymbol{\delta}}(\boldsymbol{c})$: The set of all translations that are $\boldsymbol{\delta}$-critical for $\boldsymbol{c}, 33$
\mathcal{T}_{2} : The set of planar translations, 28
$\boldsymbol{\mathcal { T }}_{\boldsymbol{c r i t}}^{\boldsymbol{\prime}}{ }^{\boldsymbol{\delta}}(\boldsymbol{c})$: The set of all translations that are $\boldsymbol{\delta}$-supercritical for $\boldsymbol{c}, 36$
Tarski sentence : A polynomial expression prefixed by a finite number of \exists and \forall quantifiers, 18

