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5. Summary and outlook 
 
The preparation and structural elucidation of the metathesis catalyst Mo(π-C3H5)4 have been 

carried out . Thin epitaxial films of Al2O3 have been prepared and characterised with the 

help of a wide range of electron as well as photon spectroscopic methods. The metal 

complex was also synthesised and characterised with the aid of magnetic resonance and 

inductively coupled mass spectroscopies. Lastly, the catalyst system was studied and 

preliminary catalysis tests were performed. The most important results we obtained are 

summarised in the few paragraphs below: 

 
• The combined XPS, LEED, AES and LEIS measurements show that controlled 

growth of Al2O3 on a Cr2O3(0001) substrate could lead to epitactic growth of planar 

and well ordered films of the former on the latter.  

 
• Evaporation of Al with the substrate maintained 300 K does lead to the formation of 

an ultra thin oxide film, a process that tends to destroy the underlying oxide 

structure due to reaction between Al and substrate oxygen atoms. Further deposition 

of Al and annealing in oxygen to higher temperatures (up to 923 K) does not 

improve the situation. AES results show that metallic Al predominates the films and 

epitactic growth is difficult to achieve. 

 
•  Co-deposition on the other hand at 825 K and 5×10-7 mbar oxygen led to the 

epitactic growth of thin (up to 30 Å) films of Al2O3 as shown by LEED, AES, XPS 

and LEIS. Furthermore, the results show that there is no mixing between the two 

oxides with increasing Al2O3 coverage and that there is a layer-by-layer (Frank-van-

der- Merwe) growth of the deposited film under these conditions. LEIS results 

convincingly exclude the presence of Cr in the uppermost atomic layers at a 

coverage of about 13 Å. CO adsorption results also show that the films may be O-

terminated due to their complete inertness towards CO (9 and 25 L) in vacuum.  

 
• XAFS and NMR results have shown a perfect agreement in that the allyl groups are 

bound to the Mo atom in the form of a symmetric π-system, whilst ICP-MS results 

reveal that the complex was very clean. A co-ordination number of 3.6 and Mo-C 



 

distance of 2.35 Å are acceptable values and compare well with values found in the 

literature for similar compounds. A small modification of the synthesis procedure  

(0 °C instead of -20 °C; eqn. 3.1) helped to increase the yield from 28% to 33%. 

 
• Our newly developed transfer system proved to be a simple but very efficient way 

of combining UHV and wet chemistry. With the aid of this system, a successful 

transfer of the complex on the thin alumina was accomplished as revealed by 

evidence from XPS, UPS, TID and MS. As far as we know, this is the first time 

such a reaction was undertaken and successfully executed. This combination is not 

only useful for such purposes; it could also be of immense use to synthetic organic 

chemists who are very much dependent on NMR. Very useful qualitative elemental 

(see the XP spectra of the Grignard reagent, fig. 3.25) analysis is possible with this 

system. 

 
• Thermally induced desorption results indicate that up to 798 K, the active complex 

is still present in a hydrocarbon form on the surface and does not seem to have 

undergone any observable changes in its structural and chemical integrity in this 

temperature range studied as revealed by XPS and UPS. The major fragments H2, 

C2H4, C3H5
+, C3H6, C4H8 and C4H10 were similar to those observed for the real 

catalyst system in the same temperature range and therefore agree remarkably well 

with the literature. 

 
• Dosing 3500 L propene at 300 K in the environment of the active complex hints at 

selective catalysis with butene and butane, i.e., C4-units being the main products. 

No definite conclusions can be drawn at this point, as these experiments need to be 

reproduced. Control reactions without the allyl complex under similar conditions 

would be necessary. 

  
This work has paved the way for future work on the Mo(C3H5)4/Al2O3 system based on 

model catalysis. Initial catalytic testing on the active catalyst has shown promising activity. 

However, these results are only in their infancy, as further control tests using pure recipient 



 

and pure support under similar conditions need to be carried out in order to relate the 

observed metathesis activity to the active complex species prepared. 

 
Lastly but not least, XAFS experiments need to be carried out on the active complex 

species so as to shed some light on the bonding scenario between Mo and the allyl units on 

the one hand and the alumina support on the other. In-situ XAFS monitoring of the 

catalysis is also necessary. Temperature programmed desorption (TPD) measurements are 

necessary for a thorough look at the energetics of the desorption process. Also, angle 

resolved photoemission (XPS, UPS) investigations on the active complex would be very 

useful. 
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