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Zusammenfassung

Ziel des Airline Revenue Managements ist es, den Umsatz einer Fluggesellschaft aus
kurzfristiger, taktischer Sicht zu maximieren. Durch die gezielte Verfügbarkeitssteue-
rung einzelner Preispunkte sollen Auslastung und mittlerer Erlös pro Fluggast optimiert
werden. Die Vielzahl möglicher Reisewege durch das Netzwerk einer großen Fluggesell-
schaft, die große Zahl unterschiedlicher Buchungsklassen und die Tatsache, dass Kunden
bis zu einem Jahr im Voraus reservieren können, führen dazu, dass Fluggesellschaften
die Verfügbarkeit von Hunderten von Millionen Preispunkten steuern müssen. Dies ist
daher nur mit Hilfe von mathematischen Optimierungsmodellen und weitreichender IT-
Unterstützung möglich.

Ein Großteil der Revenue Management Optimierungsmodelle aus der Literatur setzt
voraus, dass ein Modell der Marktnachfrage existiert und bekannt ist. In der Praxis
jedoch ist dies nicht der Fall: die Nachfrage muss aus beobachteten Verkaufs- und Ver-
fügbarkeitsdaten geschätzt werden. Die Qualität dieser Nachfrageschätzung ist dabei
häufig ausschlaggebend für die Gesamtleistung eines Revenue Management Systems.

In dieser Arbeit werden die Probleme der Nachfrageschätzung und der Umsatzopti-
mierung als ein Zustandsraum-Modell formuliert, und es wird gezeigt, wie existierende
Schätzmethoden für solche Modelle für das Airline Revenue Management nutzbar ge-
macht werden können. Darüber hinaus wird die Berechnung der Cramér-Rao Schran-
ke für dieses Modell erläutert, die eine untere Schranke für den mittleren quadrierten
Schätzfehler, ungeachtet der verwendeten Schätzmethode, darstellt. Eine Simulations-
studie zeigt, dass die vorgeschlagenen Methoden größtenteils besser abschneiden als be-
stehende Schätzverfahren und einen Schätzfehler aufweisen, der nahe an der Cramér-Rao
Unterschranke liegt.

Mit komplexer werdenden Revenue Management Systemen steigt die Zahl der Parame-
ter des Nachfragemodells, während die Gesamtzahl der Buchungen der Größenordnung
nach konstant bleibt. Wir zeigen, dass für jene Parameter, die das Kundenwahlverhalten
beschreiben, jede Schätzmethode einem beliebig großen mittleren quadrierten Schätz-
fehler unterliegt, wenn die Zahl der Buchungen, auf denen die Schätzung basiert, gegen
null tendiert. Mit Hilfe einer Simulation wird dieses theoretische Ergebnis bekräftigt und
ein Umsatzverlust von etwa 1,5% durch diesen “Effekt der kleinen Zahlen” gemessen.

Um dem Kleine-Zahlen-Effekt entgegenzutreten, wird in dieser Arbeit eine Methode
zur Verschmelzung von Nachfrageprognosen vorgeschlagen, die auf den strukturellen Ei-
genschaften der Cramér-Rao Schranke basiert und das Wissen über die Unsicherheit in
der aktuellen Nachfrageprognose ausnutzt. Eine Simulationsstudie zeigt, dass die vor-
geschlagene Prozedur den oben genannten Umsatzverlust in großen Teilen vermeiden
kann.
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Abstract

The objective of airline revenue management is the maximization of an airline’s revenue
on a tactical, short-term level. This is achieved by controlling the availability of individ-
ual posted prices to find an optimal trade-off between utilization and average yield per
passenger. The large number of potential itineraries through a large airline’s network,
the number of different booking classes and the fact that tickets are sold up to one year
in advance imply that airlines need to control the availability of hundreds of millions of
such price points. This creates the necessity for mathematical optimization models and
pervasive IT support.

A majority of revenue management optimization models in the literature assumes that
some model of market demand is known. In practice however, this model is in fact never
known and has to be estimated from observed bookings and availabilities, the quality
of these estimates being crucial for the overall performance of the revenue management
system. We formulate the demand estimation and revenue optimization problem as
a state-space model and illustrate how existing and well-known state-space estimation
methods can be adapted for the airline revenue management problem. Moreover, we
describe how to compute the Cramér-Rao bound for the estimation problem which pro-
vides a lower bound on the mean-squared estimation error of any estimation procedure.
In a simulation study we show that one of the proposed methods compares favorably to
existing approaches in most cases and features an estimation error that is close to the
theoretical lower bound.

As revenue management systems become increasingly sophisticated, the number of
parameters in the demand model grows while the total number of booking events remains
roughly constant. Specifically for parameters describing customer choice, we show that
any estimation procedure must exhibit an arbitrarily large mean-squared estimation
error as the number of booking events that the estimate is based on tends to zero.
Simulation results confirm this theoretical result and predict an overall revenue loss of
about 1.5% due to this effect.

Finally, we propose a so-called forecast merging procedure which makes use of the
structural properties of the Cramér-Rao bound and exploits information about the un-
certainty of current demand estimates provided by our proposed estimation method. A
simulation study shows that the merging procedure can mitigate the negative revenue
effect described above to great extent.
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1. Introduction to Revenue
Management

The goal of revenue management is the maximization of a company’s profits on a tactical,
short- to medium-term level. Variable costs are commonly assumed to be negligible, such
that profit maximization is equivalent to revenue maximization; hence, the term revenue
management. The potential of revenue management is greatest when there is customer
heterogeneity in the market, such that prices can be set individually for different demand
segments. Figure 1.1 depicts the value of customer segmentation graphically: achieved
revenue is given by the gray area, which becomes larger when an additional price point
is used to sell to a subset of customers.

In the airline industry, for example, there are two main demand segments: business
and leisure travelers. Customers, especially those from the high-value business segment,
have little incentive to reveal which segment they belong to. Therefore, airlines use
a variety of mechanisms to prevent business customers purchasing products intended
for the leisure segment. These so-called fences or restrictions include advance purchase
rules, itinerary restrictions and stricter cancellation policies for leisure products. While
these restrictions decrease product value for all customer segments, the assumption is
that leisure customers are more willing to purchase their ticket early, stay longer at the
destination and need not rebook nor cancel their ticket; business travelers, in contrast,
will prefer the more expensive business products in the face of these conditions. This
mechanism will never segment the market perfectly and moreover it alienates some
segments of demand completely, e.g. leisure travelers who want to book late, stay only
for a day, or need more flexibility. However, it has served the airline industry well in the
past, as we will see in the example of American Airlines.

Sales structure to facilitate market segmentation and posted price points are usually
determined in the medium-term, adjusting to changing market conditions and competi-
tor behavior. The short-term, tactical component arises when production capacity is
fixed in the medium-term while demand fluctuates. Then, the availability of cheaper
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1. Introduction to Revenue Management
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Figure 1.1.: Graphical representation of additional revenue generated by selling at dif-
ferent prices to separate customer segments (Adapted from Talluri & Ryzin
2005)

products has to be carefully controlled, in order to avoid stock-outs before demand for
the higher priced products has been exhausted. Forecasting the demand to come for
different products and deducing the optimal availability of all products is the purpose
of revenue management in a stricter sense and is also the focus area of this thesis.

The stochastic nature of demand and the interdependence of different demand seg-
ments via the capacity limit create the need for automated decision support systems
in the practice of revenue management. The first such system in wide-spread use was
the Dynamic Inventory Allocation and Maintenance Optimizer (DINAMO), which went
live in 1985 at American Airlines (Talluri & Ryzin 2005, p. 9). In the preceding years,
American Airlines had already introduced new fare products directed at leisure travelers,
the so-called (Ultimate) Super-Saver Fares with strong restrictions but low prices, which
often undercut all competitors’ prices, even those of the newly established low-cost car-
rier PeopleExpress. These new fares were now quantity controlled by DINAMO, such
that more Super-Saver tickets could be sold on flights with low utilization and only few
or none would be sold on flights that had high utilization from business travelers alone.
This strategy proved to be highly successful, generating about $700 million in additional
revenue from dynamic quantity control for American Airlines between 1988 and 1991
(Smith et al. 1992), and forced PeopleExpress into bankruptcy in less than two years.

Today, revenue management is considered an essential practice for every airline, pro-
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1. Introduction to Revenue Management

viding about 4-5% additional revenue, which is in many cases about as large as the whole
profitability margin (Talluri & Ryzin 2005, p. 10). Many other service industries start
adopting revenue management practices as well, including hotels, cruise lines, car rental
companies, theme parks, etc.

1.1. Complements and Substitutes

For the most part, early revenue management systems assumed a one-to-one relationship
between products and resources, i.e. each sold product corresponds to one unit of used
capacity on a single resource. In many industries, however, this is not the case. Airlines
for example, sell multiple connecting flights on a single ticket, hotels sell multiple con-
secutive nights in a room. From the customers’ point of view, the multiple services that
make up such a compound product have complementary values: the customer is only
willing to purchase the complete bundle, or nothing at all.

This quality links the revenue management decision between multiple resources in in-
tricate ways. The availability of a low fare product on a short-haul flight may strongly
influence sales on a connecting long-haul flight. Network-based revenue management
methods have emerged to explicitly address these interdependencies from complemen-
tary products. Talluri & Ryzin (2005, p. 82) report expected revenue gains of 1.5-3%
from network-based revenue management. However, this comes at the cost of increased
complexity, in both forecasting and optimization. Demand has now to be forecasted
for all sold resource combinations, increasing the number of forecasted entities by or-
ders of magnitude. Now, an airline has to forecast demand for every possible itinerary
through its network, instead of just forecasting the aggregated demand per flight. Mas-
sively more data has to be processed, and often data sparsity issues arise, since many
origin-destination combinations are only rarely sold.

The complexity of the optimization problem also increases drastically. While exact and
computationally efficient algorithms exist to find the optimal seat allocation for a single
resource, this is no longer true for the multi-resource case. In practice, airlines usually
resort to heuristic decomposition strategies, where the network problem is decomposed
into a number of single resource problems. Nevertheless, the potential revenue gains
had already prompted 38% of the airlines surveyed by Weatherford (2009) to convert to
network-based revenue management systems.

As outlined by Dunleavy & Phillips (2009), low-cost carriers operate with far fewer
fare restrictions than traditional carriers, often relying solely on the time of purchase
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1. Introduction to Revenue Management

for price differentiation. While greatly diminishing their ability to segment the market,
this allows them to sell to customer segments that were previously excluded from the
market by too many fare restrictions. In the face of this competition, many traditional
carriers reconsider the heavy use of fare restrictions on their products. Especially on
short- to medium-haul markets, where competition with low-cost carriers is strong, tra-
ditional carriers are increasingly removing their fare restrictions to keep their products
competitive.

Traditional revenue management systems assumed that demand for each product was
independent of the demand for other products. However, the lack of strong demand
segmentation lets customers choose more freely between the different products that an
airline offers for a single origin-destination combination. These products are perfect
substitutes from the customers’ point of view, i.e. a customer will purchase at most
one of the products in her consideration set. This choice behavior of customers poses
serious issues to traditional revenue management systems: Cooper et al. (2006) show
that forecast quality will degrade and revenues will decrease over time. This is known
as the spiral-down effect.

To avoid spiral-down and re-align the revenue management model with reality, choice-
based revenue management systems have been developed that model the choice behavior
of customers explicitly. Fiig et al. (2009) show that existing optimization procedures can
still be used for choice-based revenue management when properly transforming the in-
puts. The main challenge is therefore in forecasting. Now, not only the volume of
customers per product has to be estimated, but also the parameters of the customer
choice model. These parameters are usually not directly observable, but manifest them-
selves only indirectly in booking behavior over time. This adds a whole new level of
complexity and difficulty to the forecasting process, especially so, when combined with
the data-sparsity issues that arise in network-based revenue management.

This complexity seems to slow-down the implementation of choice-based revenue man-
agement in practice. Weatherford & Ratliff (2010) report in their literature review
that choice-based revenue management promises more than 5% revenue increase, yet
the adoption rate is relatively low. The share of surveyed airlines that run “low-fare
competitor modules” is 22%; a category that includes full-scale choice-based revenue
management systems, but also much simpler manual or rule-based approaches.

The low adoption rate despite significant potential revenue gains is evidence that there
is a gap between the state of the art in the literature and what is needed to implement
choice-based revenue management systems in practice. We believe that this gap is mainly
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to be found in the issue of demand estimation, especially from sparse booking data, and
the goal of this thesis is to fill this gap.

1.2. Industries

This thesis focuses on the issues that arise in revenue management when both comple-
mentary and substitutable products exist, i.e. at the intersection of network-based and
choice-based revenue management. Additionally, we assume that revenue management
is quantity-based, and not price-based.

Table 1.1 summarizes the applicability of these three assumptions to a number of
industries. We used the following rules to compile table 1.1: Complementary products
exist whenever a customer wishes to purchase multiple resources in one bundle. Sub-
stitutable products exist when customers can chose between different prices or product
categories. This is almost always the case, however in business to business relationships,
there are often only few large customers with whom prices are often negotiated, such
that modeling demand by a continuous function seems inappropriate. As another ex-
ception, casinos, theaters and sporting events implement strong demand segmentation
such that there is mostly only one rate available to a particular customer. Finally, in
many industries it is more natural to control prices directly instead of controlling the
availability of a set of price points, as done in quantity-based revenue management.

Table 1.1 shows that airlines fulfill all three key assumptions and therefore provide a
good environment to evaluate potential solutions to our research questions. Therefore,
this thesis is based on the application of revenue management in the airline industry and
our simulation models are calibrated towards that. However, other industries fulfill the
key assumptions as well and, in principle, our proposed methods should be applicable
to such industries as well.

1.3. Outline

In the remainder of the first part of this thesis, we review the relevant literature in
chapter 2 and identify the research gap that this thesis aims to fill in chapter 3. Then,
part II investigates demand estimation in the presence of customer choice, but without
complementary products, such that data sparsity is not yet an issue. Before analyzing
concrete demand estimation procedures in chapter 6, we introduce our model of the
revenue management process in chapter 4 and set up a simulation environment in chapter
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Industry Complementary Substitutable Quantity-based

Airlines + + +
Hotels + + +
Car Rental + + +
Retail - + -
Advertising o o -
Natural Gas Transmission + o -
Electricity - + -
Tour Operators + + +
Casinos + - +
Cruise Ships - + +
Passenger Railways + + +
Air Cargo & Freight + o -
Theaters & Sporting Events - - o
Manufacturing + o -

Table 1.1.: Applicability of three key assumptions – the existence of complementary
products, substitutable products and quantity-based control – in a variety of
industries with an existing practice of revenue management(compiled from
Talluri & Ryzin 2005, chapter 10); applicable (+), somewhat applicable (o)
or not applicable (-)

5. Next, in part III of this thesis, complementary products – and alongside those the
issue of data sparsity – enter the picture. Chapter 7 studies and quantifies the impact
of data sparsity on estimation quality and achieved revenue, while chapter 8 presents
a potential mitigation strategy. Finally, chapter 9, part IV concludes this thesis by
summarizing our findings and elaborating on limiting assumptions and future research.
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Littlewood (1972) is commonly regarded as the first publication on revenue management,
focusing on selling a single resource at two distinct prices. In the 40 years since then, a
wide body of literature has developed and we refer the reader to the text books of Talluri
& Ryzin (2005) and Phillips (2005) for a general overview. Furthermore, McGill & Ryzin
(1999) and Chiang et al. (2007) provide extensive reviews of the field, the former also
including a glossary of revenue management terminology. Here, we present those articles
from the revenue management literature that explicitly consider demand estimation or
learning. Moreover, we review publications on the problem of small numbers and data
sparsity in revenue management and statistics. Literature that provides the background
for specific methods proposed in this thesis is deferred to the respective sections.

2.1. Revenue Management with Demand Learning

In much of the existing revenue management literature, the underlying demand model is
assumed to be known and the focus is on improving the optimization methodology. This
gap in the literature is – among others – acknowledged by Weatherford et al. (2003) and
later re-stated by Lin (2006) and Bobb et al. (2008). However, there is a small stream
of articles concerned with dynamic pricing problems that is closely related to our work
in that it considers the problem of demand learning explicitly.

Bitran & Wadhwa (1996) consider a dynamic pricing problem for seasonal products.
They model customer arrivals by a Poisson process with known, but potentially time-
variant rate. Each customer has a reservation price that is drawn from a probability
distribution with a potentially unknown parameter and may also vary over time. There
is only a single product, which an arriving customer will purchase if her willingness-
to-pay exceeds the price of the product. Bitran & Wadhwa develop a Bayesian update
procedure for the parameter of the reservation price distribution while assuming that
the arrival rate is known. They allow for some demand changes between time periods,
but these changes cannot be random and have to be known to the modeler.
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Lobo & Boyd (2003) also consider a dynamic pricing problem, using a linear demand
model with an intercept and one coefficient corresponding to price. The parameters of
the model are unknown and drawn from a Gaussian distribution. The authors provide
equations of the Bayesian update, equivalent to the Kalman Filter equations. They
consider the active learning problem in this setting. In traditional learning, demand
estimation is passive in that it only observes prices or availabilities and has no direct
influence on them. There can be an incentive however, to select prices or availabilities
that facilitate better demand estimation. This will of course result in short-term revenue
losses, but these may be outweighed by future revenue gains due to the improved de-
mand estimates. Lobo and Boyd develop an approximate solution to the active learning
problem in this setting, making use of convex semi-definite programming techniques.
Our work on demand estimation is closely related to this, however we consider rev-
enue management, instead of dynamic pricing and allow for additional flexibility in the
specification of the demand model.

Carvalho & Puterman (2004) assume a log-linear demand function with unknown pa-
rameters and rely on the Kalman Filter equations for Bayesian learning. They develop a
one-step-look-ahead strategy based on a second degree Taylor expansion of the expected
future revenue as a heuristic solution to the active learning problem. The authors com-
pare this pricing policy to various other schemes, including a myopic strategy, random
price variation and a "softmax" strategy, in Monte Carlo simulations. In their setting,
the myopic policy clearly underperforms compared to the other pricing policies, and the
one-step-look-ahead strategy yields slightly higher expected revenues than the remaining
pricing schemes. Modifying the model to consider binomial demand, such that only a
single customer may arrive in each time-period, leads to qualitatively identical results
(Carvalho & Puterman 2005). While Carvalho & Puterman developed this model with
web traffic in mind, it can also be a reasonable assumption for very low-volume airline
markets.

Aviv & Pazgal (2005) provide a model of Bayesian demand learning where customers
arrive in a Poisson process with unknown rate. They model the uncertainty about the
arrival rate as a Gamma distribution to achieve a simple update rule for the belief
distribution. Price-sensitivity is modeled with an exponential distribution with a known
mean. The authors focus on the distinction between active learning and passive learning.
In their setting, they show that the benefits of active learning are minor as long as the
level of uncertainty is not too high, in contrast to the results in (Carvalho & Puterman
2004). Thus, they conclude that the passive learning approach is a reasonable heuristic.
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Intuitively, this result seems to stem from the fact that only the arrival rate is uncertain,
but price-sensitivity is known.

Şen & Zhang (2009) also model demand as a Poisson process with unknown arrival
rate and a distribution of reservation prices that is unknown, but from a finite set of
candidate distributions. They provide a Bayesian learning model to estimate the arrival
rate and the reservation price distribution jointly. The information requirements of
their method increase with the number of candidate distributions, making it crucial for
practical implementations to restrict the candidate set as much as possible.

Araman & Caldentey (2009) also model demand as a Poisson process and evaluate
both linear and exponential dependence on price. Price elasticity is assumed known,
but the overall arrival rate is unknown, but restricted to a finite set of potential values.
Using this demand model, they consider a dynamic pricing problem, in this case however
for non-perishable products.

Vulcano et al. (2010) consider a model where customers arrive in a Poisson process
and then choose among the subset of currently available products according to a multi-
nomial logit choice model. They use an expectation-maximization (EM) procedure to
find a maximum-likelihood estimate of the demand parameters, both from simulated and
from real-world data. Vulcano et al. (2012) present a re-formulation of this estimation
problem in terms of so called Primary Demand that is the demand for a product in case
all products were available. The re-formulation yields a much simplified EM procedure to
estimate both of the arrival rate and the product valuations. The method developed here
is not a demand learning method per se, however, since it does not allow for incremental
updates in the demand estimates. Instead, all historical data has to be processed every
time an updated demand estimate is required.

Gallego & Talebian (2012) examine a similar model, with Poisson arrivals and a multi-
nomial logic choice model. However, here the seller is assumed to offer different “versions”
of a single product with related utilities. They present a method to jointly estimate the
common utility value of all versions, the “core value”, and the overall arrival rate using
maximum-likelihood estimation. As Vulcano et al. (2012), this procedure does not allow
for incremental updates. Furthermore, there is no demand censoring, since the seller
observes lost sales due to exhausted capacity, opposed to the practice in airline revenue
management.

A slightly different approach in modeling the demand is taken by Stefanescu (2009) and
Kwon et al. (2009). Stefanescu models demand as a multivariate Gaussian distribution.
She argues that customer choice modeling may not be appropriate in the face of customer
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heterogeneity or missing data, e.g. about the choices offered by competitors. Time and
inter-product dependence can be modeled through demand correlation in her model.
The author develops an EM-algorithm to estimate this model given censored data which
shows promising results. Again, this is not strictly demand learning, since the EM-
algorithm requires the complete data set to update the current estimate. Moreover,
the descriptive nature of this demand model seems less suited as an input for revenue
optimization.

Kwon et al. (2009) consider ”non-cooperative competition among revenue maximizing
service providers” in a dynamic pricing context. Each firm uses a Kalman Filter to
estimate the parameters of the demand model. Demand is deterministic and independent
between different products, but it depends exclusively on past and current market prices
in a linear fashion. The authors assume that the coefficients of their demand model
evolve according to a random walk, similar to the assumption in this thesis. However,
they model the dynamics of demand parameters only over a single, continuous selling
horizon. While this model seems appropriate in a retail setting, it does not realistically
capture demand dynamics in airline revenue management, where demand evolves both
over the selling horizon of a particular flight and between consecutive flights.

Li et al. (2009) and Chung et al. (2012) extend the model of Kwon et al. (2009) by
allowing for a much more general form of demand evolution over the selling horizon.
Moreover, they highlight the notion of a state-space model to formulate the dynamic
pricing and demand estimation problem and use a Markov chain Monte Carlo technique
for parameter estimation. Yet, their demand model is still very limited, in that it does
not include stochastic demand, dependence between products nor demand evolution
between consecutive flights.

Similarly, Lin (2006) assumes that there is an existing, but somewhat uncertain fore-
cast in the form of a Gamma distribution over potential customer arrival rates and focus
on learning demand over the selling horizon. They propose a method to update the initial
forecast in real-time and show through numerical experiments that their method can sig-
nificantly improve revenue. Applicability to the airline revenue management problem is
limited however by the assumption of a known, constant willingness-to-pay distribution
and a known arrival rate trajectory over the selling horizon.

Besbes & Zeevi (2006) split the selling horizon in an initial learning period, in which a
general, non-parametric demand function is estimated from a Poisson customer arrival
process. After the initial learning period, a static price is computed from the infor-
mation gathered up to that point. The authors show that this two-part strategy is
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asymptotically optimal when both capacity and customer arrival rate tend to infinity.
Nevertheless, in our setting of small arrival rates and gradually changing demand, this
strategy seems inappropriate.

While demand learning during the selling horizon may offer additional benefit in the
area of airline revenue management, as noted by Lin (2006), the primary concern is
to update demand estimates between consecutive flights, which is therefore the focus
of this thesis. Despite of this fundamental difference, we model the demand estimation
problem as a state-space model, similar in spirit to Chung et al. (2012), and an additional
real-time update procedure as in Lin (2006) might be a possible extension of our work.

The thesis of Boyer (2010) is most closely related to our work. In the context of the
Passenger Origin Destination Simulator (PODS), Boyer analyzes methods for estimating
passenger willingness-to-pay from booking data and also proposes a clustering method
to find the appropriate aggregation level for demand estimation. We extend his work
in several directions. First, his estimation methods focus solely on the price-sensitivity
parameter of demand and uses a two-step procedure, which first estimates parameters
per time-period and then fits a curve to these initial estimates. We propose methods
that produce estimates for all demand parameters simultaneously and in a single step,
combining all available information to find the best overall estimate. Second, Boyer
employs a standard clustering algorithm (k-Means), using the difference between his
regression parameters as the distance metric. We develop the theory that allows us to
assess the impact of data size on the quality of our forecasts, and use that to derive a
clustering algorithm that strives to minimize forecast error explicitly.

2.2. Data Sparsity and Small Numbers in Forecasting

As Talluri & Ryzin (2005, p. 83) note, data sparsity issues enter the practice of revenue
management once the move from flight-based to network-based revenue management is
made. This problem has been acknowledged multiple times in the revenue management
literature – for airlines and other industries (see Bartke et al. 2013). In that article,
we also present data on the number of forecasted entities in a large airline network:
It is orders of magnitude higher than the number of booking events and grows with
increasing sophistication of the underlying revenue management model. Vulcano et
al. (2010) briefly investigate the effect of two different base arrival rates on demand
estimation and find that forecast quality is greatly diminished for smaller arrival rates.
However, with the exception of Boyer (2010), we are unaware of explicit inquiries into
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how to avoid the impact of data sparsity in the revenue management literature. In this
thesis, we aim to provide such an investigation in chapter 7.

In the statistics literature the related problem of small sample size is well-known.
Schmid (2011) reviews methods for small area or small domain estimation. In this
model, sample size per area or domain is too small to yield reliable estimates directly.
To overcome this, correlations between spatially close areas are exploited to improve
estimation accuracy.

The data sparsity problem in airline revenue management, however, does not stem
from small sample sizes. Each available product/price-point combination that is offered
by an airline for some fixed period of time constitutes an observation or sample. Data
sparsity implies that most of these observations will be of zero bookings. Yet, they are
still observations. In that sense, sample size is large, but observed numbers are small.
Therefore, we call our problem the problem of small numbers. The distinction between
small sample size and small observation size is discussed in more detail in chapter 7.

A similar problem also arises in other application areas where empirical data is col-
lected. Since the collection of samples or the conduction of experiments is usually costly,
the goal is to extract as much information as possible from a given set of data. Here,
similar to the problem of small numbers in revenue management, the question arises
how far the data set can be broken down before sampling noise starts to dominate the
results. A number of authors have acknowledged this fact and proposed techniques spe-
cific to their respective fields, e.g. Roff & Bentzen (1989) for inference from contingency
tables in biology, Agarwal et al. (2007) for analysis of click-stream data, or King & Zeng
(2001) for analysis of rare events in the political sciences. These articles are concerned
with estimation of event rates, their confidence intervals and statistical inference on
those rates. Unfortunately, our problem is slightly more involved since we are not only
interested in estimating arrival rates, but need to find the parameters of an underlying
demand model that generates those rates. Therefore, we were unable to directly transfer
any of the proposed methods to our problem.

Duncan et al. (1993) face a similar problem in the context of economic time-series
forecasting. They wish to forecast a number of related time-series, e.g. from adjacent
geographical areas similar to Schmid (2011), and create a hierarchical model to describe
the relationship between these individual time-series. Their method lets them combine
information from each observed time-series with cross-sectional information to yield more
accurate forecasts. In chapter 8, we describe how our assumptions and our forecast
merging method differs from that of Duncan et al..
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In addition to small arrival rates, other effects may further increase the number of
zero-observations. For example, inaccurate availability information may lead to zero
observed bookings for products that were thought to be available for sale when in fact
they were not. Ridout et al. (1998) review approaches to model such situations where
the number of zero-observations is larger than the Poisson distribution would suggest.
In this thesis, however, we assume that historical availability information is sufficiently
accurate such that the impact of any remaining inaccuracies is negligible.
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While the issue of data sparsity in airline revenue management has been acknowledged
as early as 2005 in the well-known book by Talluri & Ryzin (2005), little research has
been published on the details of this problem and on how to solve it. As noted above,
the exception here is Boyer (2010) who proposes a standard clustering algorithm to
address the problem of small numbers. However, even here, no thorough investigation
into the structure and root causes of the problem of small numbers is conducted, and
consequently the proposed solution cannot exploit any of that special structure of the
problem. This is the research gap that this thesis primarily addresses: Proving the
existence of the problem of small numbers, revealing its structure and build improved,
practical solution strategies based on that.

Before the data sparsity issues can be considered, the general question of how to ade-
quately estimate demand, independent of data sparsity, needs to be answered. As evident
from section 2.1, a number of authors have proposed methods to estimate demand from
booking data in their specific setting. Yet, no systematic treatment of the demand es-
timation problem for general, choice-based revenue management systems along with a
thorough comparison of competing methods exists. While a truly comprehensive treat-
ment in this sense is beyond the reach of a single thesis, we aim to fill this gap in the
literature to the point where we can start to address the primary research question of
this thesis: the problem of small numbers. At the same time, we wish to provide a
foundation on which other authors can build to complete the picture.

Thus, following this introductory part, the second part of this thesis addresses the
demand estimation problem in general. First, in chapter 4, we develop a new repre-
sentation of the revenue management process in general and the demand estimation
problem in particular. The goal of this model is to abstract away from any concrete
revenue management method by assuming no specific demand model or optimization
method. Such a model allows us to formulate new demand estimation procedures that
are not tied to a specific demand model, and lets us examine the structure of the demand
estimation problem independently of a particular revenue management method.

29



3. Research Gap

Then, chapter 5 introduces the simulation model that all simulation studies in this
thesis are based on. The objective of this chapter is to build a test-bed for our proposed
methods that produces results that can be confidently generalized to real-world settings.
A strong focus is therefore on building life-like scenarios that are still abstract and
general enough that the simulation results are not governed by particularities of the
specific scenarios.

Concluding the part on demand estimation, chapter 6 finally addresses the demand
estimation problem itself. Here, we aim to find new demand estimation procedures that
significantly improve on existing methods and perform relatively close to the theoretical
optimum. Using the framework developed in chapter 4, two novel demand estimation
procedures are presented and evaluated in the simulation setting from chapter 5.

The third part then focuses on the overarching research question of this thesis, the
problem of small numbers in demand estimation. First, in chapter 7, we pose the
question whether such a problem of small numbers really exists and how to precisely
define it. We answer this question in the theoretical framework from chapter 4 to yield a
general statement that does not depend on any particular revenue management method
and with a simulation study to assess the practical implications.

The objective of chapter 8 is then to mitigate the problem of small numbers as much
as possible. The results from chapter 7 provide the insight that there is a fundamental
trade-off between forecast granularity and stability, which cannot be broken by improved
estimation procedures. The more specific goal of chapter 8 is therefore to find the optimal
trade-off between the two such that the negative impact of the problem of small numbers
in terms of forecast accuracy and achieved revenue is minimized. We propose a method
to accomplish this and evaluate it in a simulation study.

Finally, in the fourth part of this thesis, we summarize our findings, provide insight
on potentially limiting assumptions and set directions for future research in chapter 9.
The appendix in chapter 10 contains additional technical details and charts that have
been left out of the main text since they were not central to the discussion.

Figure 3.1 provides a high-level overview of the respective objectives of part II and
part III of this thesis. Leaving classical revenue management methods in the top-left
corner behind, part II addresses the issue of choice-based demand estimation, under
the assumption that data sparsity is not an issue. Subsequently, part III lifts that
assumption, and focuses on the problems that arise through data sparsity and how they
can be mitigated. Since data sparsity really only becomes a serious issue under choice-

30



3. Research Gap

Simple demand model 
and lack of granularity 

allow for relatively 
simple demand 

estimation 	



Complex demand 
model requires sophis-

ticated estimation 
methods; amount of 

data generally sufficient 
to yield stable estimates	



Simple demand model 
allows for simple demand 
estimation methods that 
are relatively stable even 

when data is sparse	



Complex demand model 
requires sophisticated 
estimation methods; 

insufficient amount of data 
requires trade-off between 
granularity and stability	



Fl
ig

ht
-b

as
ed
	



N
et

w
or

k-
ba

se
d	



Co
m

pl
em

en
ta

ry
 P

ro
du

ct
s	



Independent Demand	

 Choice-based Demand	


Substitutable Products	



Part II	



Part 
III	



Figure 3.1.: Conceptual overview of the research objectives of the two central parts of
this thesis.
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based demand models1, the path this thesis takes through figure 3.1 splits the overall
problem more evenly than the path over the bottom-left corner would do.

1A point for which chapter 7 provides evidence
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Demand Estimation
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4. State-Space Model for Demand
Estimation

This chapter introduces a state-space model for demand estimation. Towards that, we
first formulate a general and abstract model of the revenue management process as a
whole. Then, we zoom in on the demand estimation problem, providing a consistent
terminology in section 4.2, developing the actual state-space model in section 4.3 and
investigating its information structure in section 4.4.

4.1. A General Model of Revenue Management

We consider an abstract revenue management system in which the estimation and fore-
casting module is embedded. The revenue management system is general, in the sense
that it assumes no specific methods for demand estimation, forecasting, optimization
or inventory control. We do assume however that there is a separation into forecaster,
optimizer and inventory modules and that the system controls the availability of booking
classes, instead of setting prices directly. There are forecast-less revenue management
methods, such as reinforcement learning, and there is a large body of literature on dy-
namic pricing, both of which violate the above assumptions. In the traditional airline
industry, nevertheless, the additional value of demand forecasts beyond revenue man-
agement (e.g. for fleet assignment) and the pervasive use of the booking class standard
throughout the distribution, booking and check-in processes has so far prevented the
adoption of these newer methods in practice (Talluri & Ryzin 2005, p. 176) and will
likely do so in the foreseeable future. For that reason, we believe our framework of a
revenue management system is general enough to describe the general workings of most
airline revenue management systems used by traditional network carriers. Figure 4.1
provides an overview of the complete revenue management system. In the remainder of
this section we will provide descriptions of the individual parts.
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Figure 4.1.: Model of a traditional airline revenue management system

4.1.1. The Forecaster

The forecaster module is defined by a demand model and an estimation procedure for
that demand model. The demand model provides a mapping Ha from product avail-
abilities a and a vector of demand parameters x to an expected number of bookings for
each product Ha(x). Here, a product is any individually salable offering of the airline,
typically a specific booking class for a specific itinerary through the airline’s network on
a particular date and time, sold a specific number of days before departure in a particu-
lar country. The availability of a certain product will usually depend on the number of
seats already sold for that product or on the flights involved in the itinerary. Hence, we
express the availability as a function of the current vector of bookings b.

The choice model Ha(x) can be any function of a and x, as long as the restrictions
on permitted sales for each product as prescribed by a are obeyed. E.g., Ha(x) could
assume independent demand, in which the demand for a certain product only depends
on the availability of the product itself. In the most general case, demand for some
product could depend on the availabilities of all other products. The former is not
a very realistic assumption but has been used in practice due to its simplicity. The
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complete model provides the most flexible description of demand, but with billions of
offered products for a large airline, this model quickly becomes intractable. Realistic
demand models will therefore severely restrict the set of dependencies, e.g. to the set
of booking classes for the same itinerary or to a set of similar itineraries for the same
origin and destination pair.

The parameter vector x encapsulates whatever is a priori unknown about the demand
model. The length of the vector and the interpretation of its components depends on
the concrete demand model. In an independent demand model, x may simply represent
the expected bookings per product if said product is available. For dependent demand
models, at least some components of x have to describe the dependency of demand for a
certain product on other products availabilities. This may be implemented, for instance,
by including a price-sensitivity parameter in x or by modeling demand overlaps, that is
demand that will realize in the cheapest available product from some set of products.
Additionally, x may also contain seasonality factors or weekday patterns.

Since x is unknown to the modeler, it has to be estimated from observed sales data.
That is, we try to find the probability distribution of x, conditional on the history of
booking vectors B = {b1, . . . , bT} and the history of availabilities A = {a1, . . . , aT}.
Alternatively, we might only obtain some property of this distribution, such as its mode
which would yield the maximum-likelihood estimate, or its mean which would yield the
expected value of x conditional on the observations. We defer further discussion of the
estimation problem to sections 4.2–4.4 and continue with the assumption that we have
some estimate of x, either in form of a probability distribution or a point-estimate.
Finally, the forecaster will compute the expected bookings (or the distribution thereof)

for all feasible availability functions using the current demand estimate x. Availability
functions are feasible if they obey the capacity constraints and are implementable by
the inventory. The predictive power of the demand model is crucial for this step, since
it allows the forecaster to provide the number of expected bookings even for availability
situations which were never observed in the past. In practice, no forecaster simply
iterates over all feasible availability functions and computes a list of expected booking
vectors. Such a list would be prohibitively long. However, the structure of concrete
demand models such as limited dependence between products usually allows for a much
more efficient encoding of this information. Moreover, the optimization method used
may also limit the amount of information that is relevant for the optimization step.
Information that isn’t used by the optimizer need obviously not be computed by the
forecaster in practical implementations.
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4.1.2. The Optimizer

The optimizer combines the expected bookings Ha(x) for all a received from the fore-
caster with a vector of prices of each product f . It then finds the availability a∗ that
maximizes fTHa∗(x). This conceptually simple step can usually not be solved to op-
timality in practice due to the very large number of potential availability functions a.
Hence, in actual implementations heuristic methods are used to find an approximate
solution to the optimization problem.

The output of the optimizer is the optimal availability function a∗ which is sent to
the inventory.

4.1.3. The Inventory

The inventory implements the availability function a∗: It offers all products for which
a∗(b) is true and prevents the sale of all other products, b being the current vector
of booking on hand. Actual inventory systems will constrain the set of availability
functions that can be implemented. In practice, inventory systems may constrain the
number of bookings in a certain booking class on a particular flight by booking limits or
protection limits. Alternatively, they can set a bid-price for each flight and only make
those products available for which the price exceeds the sum of bid-prices of the flights
in the itinerary. Combinations are also possible and in practical use.

After some pre-defined time-period, the booking history B and the availability history
A are updated and augmented by the new observations. This will then trigger a new
loop through the complete revenue management system, from estimation to prediction
to optimization to implementation.

4.1.4. The Feedback Loop

The fact that revenue management systems have a feedback loop renders their long-
term, dynamic behavior non-trivial. Even for the case of relatively simple constituting
components the overall behavior may be complicated and hard to predict. Choosing
an availability now will influence the observations in the upcoming time-period which
will influence the new demand estimate. This may in turn lead to a revised availability.
Specifically, if something akin to price-sensitivity is to be estimated, it may well be worth
it to occasionally set availabilities that are not short-term optimal in order to learn more
about this price-sensitivity. If instead only the short-term optimal availability would be
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used at all times, no new information about the price-sensitivity parameter is gained.
In this case, the system might get stuck in a state far away from the actual optimum.

In control theory, the problem of simultaneously optimizing an objective function now
and improving knowledge about process parameters for future optimization is known
as dual control. For linear systems with additive Gaussian noise and quadratic objec-
tive functions, the certainty-equivalence principle holds (Water & Willems 1981). It
states that despite the feedback loop, optimization and estimation can be treated inde-
pendently, since the optimum is independent of forecast uncertainty. In our problem,
the optimum is the solution of a complex optimization problem, and as such is not a
simple quadratic function of the demand estimate. Therefore, the certainty-equivalence
principle cannot be expected to hold in our case.

Easley & Kiefer (1988) analyze the general problem in which a decision maker’s action
influence both an immediate reward as well as future knowledge about an unknown
parameter of the reward function. They focus on the asymptotic behavior of this learning
problem, and show that the decision maker may be content with incomplete knowledge
of the demand parameter. However, in a realistic revenue management system the
analysis of the feedback loop may be close to impossible. As Wittenmark (1995) notes,
finding the optimal dual control is very difficult, even for relatively simple problems,
and we are aware of only three articles (Lobo & Boyd 2003; Carvalho & Puterman 2004;
Aviv & Pazgal 2005) that consider the feedback loop explicitly in a pricing or revenue
management context. In our work, we evaluate the option of using a simple “active
estimation” heuristic that randomly perturbs the estimates when uncertainty is high.
Results are reported in section 6.5.1.

4.1.5. Choice Functions

While the general discussion remains independent of a particular choice function, it is
illustrative to consider a few examples. Moreover, the simulation study has to use a
particular choice function, which will also be introduced here.

Independent Choice The simplest conceivable choice function is the independent
choice function. Here, demand for each of the airline’s products is independent from
demand for the airline’s other products. As a consequence, expected bookings for a
single product i only depend on the availability of that particular product i: if it is
available, we expect xi bookings to occur and otherwise none. This can be written as
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the product between a diagonal "availability matrix" and the parameter vector x:

Ha(x) = diag(a) · x (4.1)

where diag(a) is the matrix with the vector a as its diagonal and zeroes everywhere else.
Assume, e.g. there are three products sold by the airline, represented by the booking

classes A, B and C. If the airline made all booking classes available for sale, they’d
expect 1, 3 and 5 bookings in those classes, respectively; i.e. x = (1, 3, 5)T . Now assume
that only A and B were available. Then a = (1, 1, 0)T and

Ha(x) =

 1 0 0

0 1 0

0 0 0

 ·
 1

3

5

 =

 1

3

0

 . (4.2)

Independent choice functions were and are widely used in the practice of revenue
management. E.g. the first widely deployed revenue management algorithm, EMSR
(Belobaba 1989), relies on the independent demand assumption. As argued in section
1, this was justifiable by the relatively strong fencing mechanisms used by traditional
carriers in the past. However, the more flexible fare structures that are being introduced
currently, make the independent demand assumption much more problematic.

Market-sensitive Choice Winter (2010, 2012) presents an approach to handle so-
called buy-down behavior. The demand parameter vector x has two parts. First, it gives
the expected bookings for each class, in the case that this class was the only available
one. These numbers are called “attainable demand”. Additionally, there is a buy-down
graph which has a node for every booking class and directed edges between those classes
where buy-down can occur. The set of class-pairs between which buy-down can occur
is determined from prices and restrictions of the respective classes, the exact derivation,
however, is quite involved and beyond the scope of this section. The important point
for our purposes is, that the second part of x contains a buy-down value for each edge in
the buy-down graph. This buy-down will realize if the destination class of the buy-down
edge is available. In that case the buy-down demand is subtracted from the attainable
demand of the originating class to yield the final number of expected bookings.

This choice function can still be written as a matrix product, i.e. it is a linear function
in x. However, here the matrix is no longer diagonal, but may contain negative ones off
the diagonal to encode realized buy-down.

39



4. State-Space Model for Demand Estimation

A 

B 

C 

2 

4 

5 

1 

1 

Figure 4.2.: Example of a buy-down graph for three booking classes with attainable
demand and buy-down numbers

Assume again, that there are three booking classes A, B and C. Figure 4.2 shows a
potential buy-down graph for this scenario, along with attainable and buy-down num-
bers. The demand parameter vector would then be x = (2, 4, 5, 1, 1)T . If only class A
and B were available, i.e. a = (1, 1, 0)T , then

Ha(x) =

 1 0 0 −1 0

0 1 0 0 0

0 0 0 0 0

 ·


2

4

5

1

1

 =

 1

4

0

 . (4.3)

The advantage of this choice function is that it can explain any choice behavior given
an appropriate buy-down graph. In contrast to other approaches, it does not aim to
explain customer behavior from latent variables, such as price-sensitivity and (dis-)utility
for product restrictions. In that sense, market-sensitive forecasting is a non-parametric
approach. However, the afforded flexibility is also a disadvantage. First, the demand
parameter vector depends on the buy-down graph and through that on product prices
and restrictions. However, these change frequently in the airline industry, and with
every such change the parameter vector has to be either discarded entirely or adapted to
the new buy-down graph. Second, there is no clear distinction between parameters that
describe demand volume and parameters that describe customer choice. In chapter 7 we
will show that there is a fundamental difference between how those two parameter sets
behave in the face of data sparsity. Thus, a separate treatment of these parameter sets
is appropriate in that situation. This, however, is only possible when the choice model
affords the separation into volume and choice parameters.

40



4. State-Space Model for Demand Estimation

Price-sensitive Choice A large number of choice functions can be constructed by
combining a demand volume parameter xvol with a discrete choice model Ca(xchoice).
The choice function then has the form

Ha(x) = xvol · Ca(xchoice). (4.4)

A particularly simple example of this type of choice function is the price-sensitive
choice function. Here, the only choice parameter is a price-elasticity parameter. Cus-
tomers are assumed to ignore all booking class restrictions and thus always purchase the
cheapest available product or not purchase at all. Hence, Ca(xchoice) is

Ca(xelast) =

exp
(
−xelast( fi

fbase
− 1)

)
i is cheapest available product in a,

0 otherwise.
(4.5)

where fi is the price of product i and fbase is the price of the cheapest product overall.
This choice function is also known under the name of Q-forecasting, described in detail
by Cléaz-Savoyen (2005), and has also been used by Gallego & Ryzin (1994, 1997).

Again, assume there are three classes A, B and C with only the first two being avail-
able. Further let the prices be 300, 200 and 100, xvol = 5 and xelast = 1. Then,

Ha(x) = 5 · Ca(1) = 5 ·

 0

exp
(
−1 · (200

100
− 1)

)
0

 ≈
 0

1.84

0

 . (4.6)

The appeal of this choice function is its simplicity. Customer behavior is explained by
just two parameters, demand volume and price-elasticity. If an airline uses no or very
few booking class restrictions, this simplistic model may yet be justified.

Hybrid Choice In practice, an additive combination of a price-sensitive and an inde-
pendent choice function is used under the name of Hybrid Demand (Walczak et al. 2009)
or Hybrid Forecasting (Reyes 2006).
Formally, the Hybrid choice function has the form

Ha(x) = xvol · Ca(xchoice) + diag(a) · xproduct. (4.7)

where Ca(xchoice) is the price-sensitive choice function, defined in equation 4.5. Since
it is both simple and of practical relevance, we use the hybrid choice function in the
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simulation studies throughout this thesis.

4.2. Demand Estimation, Forecasting and Expected

Bookings

In the very early literature on revenue management little distinction was made between
expected bookings, demand estimates and forecasts. This was appropriate since less
complexity in the demand models allowed for this direct identification. For the purpose
of this article however, a clear distinction will be useful:

• Demand Estimate: The current belief about the parameters of the demand model,
given all past observations. This can be represented as a probability distribution
over the parameter space of the demand model, conditional on all past observa-
tions: p(xt|Bt, At). Finding this distribution is the problem of demand estimation.
With an independent demand assumption, there is a simple relationship that maps
the parameters xt of the demand model and the availabilities At to the observed
bookings Bt. In this case, demand estimation is straight-forward. When the re-
lationship becomes more complex, more sophisticated statistical methods will be
required.

• Forecast: Given the current belief about the parameters of the demand model at
time t, what is the belief about the parameters at some time t′ > t? In the simplest
case, we would assume that there are no systematic demand changes over time, such
that the forecast equals the demand estimate, that is p(xt+k|Bt, At) = p(xt|Bt, At)

for any k ≥ 0. In an industry with strong seasonal effects and weekly demand
patterns, this will rarely be appropriate. So in general, the former equation will
not be true. Instead the probability distribution of the demand model parameters
at some future point in time, conditional on the current belief p(xt+k|p(xt)) 6= p(xt)

has to be considered. In this thesis, however, we ignore seasonal or other such
effects, and therefore demand estimates and forecast will be identical. Thus, we
also use both terms interchangeably.

• Expected Bookings: For revenue optimization, we will essentially be interested in
the expected bookings in some future period for any given availability situation,
such that we can find the revenue optimizing one. The demand model chosen
will prescribe the relationship between the parameters of the demand model and
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the expected bookings. Since the parameters are not known and we only have
distributional information about them, there will also be uncertainty about the
expected bookings. This can be expressed as a probability distribution conditional
on the parameter distribution: p(E[Bt+k]|p(xt)).

The act of estimating and forecasting demand can be interpreted in a Bayesian frame-
work. When adding a new observation to the booking and availability histories, the
forecast distribution p(xt+1|Bt, At) acts as a prior distribution for the Bayesian update.
Similarly, the one-step forecast p(xt+1|Bt, At) can be derived from the current demand
estimate p(xt|Bt, At) and the time-evolution distribution p(xt+1|xt) using Bayes’ rule.
The new, posterior belief p(xt+1|Bt+1, At+1) can thus be found as

p(xt+1|Bt+1, At+1) ∝ p(bt+1, at+1|xt+1) · p(xt+1|Bt, At)

∝ p(bt+1, at+1|xt+1) · p(xt+1|xt) · p(xt|Bt, At)
(4.8)

In the following time step, this posterior distribution will act as the new prior distribu-
tion.
Equation 4.8 shows that it is not necessary to keep track of the booking and availability

histories Bt and At, as long as the belief distribution p(xt|Bt, At) is known. In that
sense, all available historic information is compressed into the belief distribution. At
each time-step, only the new observations (bt+1, at+1) and the current belief distribution
need to be processed to compute the new demand estimate. This is an attractive feature
with regard to practical applications: real-world observation histories may contain vast
amounts of data and it quickly becomes infeasible to process all of that data whenever
demand estimates are updated. Both of the estimation methods we propose in chapter
6 make use of the Bayesian update rule. They primarily differ in the way that the belief
distributions are approximated, since these have no closed analytical form in general.

4.3. State-Space Model for Demand Estimation

The idea of a state-space model is to describe the dynamics of an observed quantity bt
with the help of an unobserved, hidden quantity xt. The hidden quantity xt is known as
the state of the system. Both the observed quantity bt and the state xt can be vector-
valued. The state-space model defines how the state evolves over time, i.e. the map that
takes xt to xt+1, and how the state manifests itself in the observed quantity bt, i.e. the
map that takes xt to bt. Both maps need not be independent of the time parameter t and
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it is common to include stochastic terms in those maps. Stochastic terms in the state
evolution map capture non-systematic changes in the state, unknown to the modeler
a priori, while stochastic terms in the observation function represent non-systematic
imperfections in the observation or measurement process.

As argued by Åström & Murray (2008, chapter 2), state-space models were developed
in the context of control theory in the late 1950s. In these models, dynamic models,
previously known from mechanics, were merged with input/output models, known from
electrical engineering. Additionally, error terms were added to model disturbances and
inaccuracies in the model. One initial application was space flight in which a space craft
has to be precisely controlled given imprecise and indirect measurements of its position,
orientation, velocity etc. State-space models have been used in the context of dynamic
pricing by Kwon et al. (2009) and in a related paper by Chung et al. (2012). Our model
differs from that of Kwon et al. (2009) and Chung et al. (2012) by allowing for a very
general demand function and for stochastic demand. Moreover, our state-space model
captures demand dynamics between consecutive flights, while demand over the selling
horizon is modeled using the demand function – as appropriate in an airline revenue
management setting. In contrast, Kwon et al. (2009) and Chung et al. (2012) describe
demand learning exclusively within the selling horizon, a model that is more suited for
retail revenue management.

A state-space representation is useful whenever it leads to a simpler description of the
system than directly capturing the dynamics of the measured values. In our context,
a direct description would mean to directly describe the relationship between subse-
quent booking results. This is difficult, however, since observed bookings depend on the
underlying demand, on booking class availability and are subject to stochastic fluctua-
tions. A state-space model on the other hand yields a much more natural description by
representing these effects individually. We identify the hidden state xt with the under-
lying and unobserved market demand and the observed quantity bt with the observed
number of bookings. The dynamics of demand itself are then captured in the state evo-
lution equation, while the influence of different availabilities and stochastic fluctuation
in booking numbers are represented in the observation function.

In general, state-space models can be time-continuous or time-discrete. Depending on
the problem domain, either form can be more natural. In our case, we opt for the time-
discrete variant. While it would be natural to assume that demand evolves continuously
over time, we only observe bookings at discrete points in time (e.g. once for each offered
flight). Hence, demand is only relevant at these same discrete points in time and thus a
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time-discrete model is sufficient.
In the demand estimation problem, we assume that the real parameters of the demand

model are the hidden state x and are the realizations of an AR(1)-process:

xt+1 = xt + wt wt ∼ N(0, Q) (4.9)

In other words, the change of demand parameters from time t to time t+ 1 is described
by a multi-variate Gaussian random variable wt with zero mean and covariance matrix
Q. This is one of the simplest state dynamics possible, since there is no systematic
change over time and a simple form of random disturbance. Yet it captures the essential
problem that demand changes unpredictably over time, such that historic information
on demand gradually looses its value. More elaborate models might include systematic
demand changes, such as known trends or seasonalities, but this is referred to future
research.

Some of the values in xt might have to be constrained to some range of valid values
to be meaningful inputs for the demand model. In that case we would have to assume
a truncated normal distribution for wt. We will assume in the following discussion that
the real parameter values are far enough away from the bounds of the valid range such
that a truncation of the normal distribution would only have a minor effect and can thus
be ignored.

To complete the state-space representation, we now add the observation equation.
As noted earlier, this relationship includes both the dependency of expected bookings
on availabilities and underlying demand, as well as the random fluctuations in booking
numbers. The demand model Ha is exactly the function that maps the demand param-
eters x to expected bookings E[bt] for each offered product and for a given availability
a. As such, since the actual availability may differ between different time-steps, the
observation equation is time-independent in our setting.

The second part of the observation equation describes the mapping from expected
bookings E[bt] to (the distribution of) actually observed booking numbers bt. Here,
we assume that bookings, conditional on their mean, follow a Poisson distribution with
mean E[bt]. Poisson distributions are commonly used to model customer arrivals, e.g.
in queuing theory (Kleinrock 1975). The underlying assumption is that there is a very
large pool of potential customers, where each customer decides to book with constant
probability in any given period of time. This implies that customers arrive independently
of each other, meaning that a customer arrival now does not make it any more or less
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likely that a customer will arrive in a subsequent time-period. As in many other settings,
this is a natural assumption for our case.

However, Walczak (2006) argues that it could be beneficial to allow the fact that
some customer arrivals lead to more than a single booking, e.g. when a customer books
multiple seats for his family. As noted by Walczak (2006), the resulting compound
Poisson distribution would lead to an increased variance of bookings, but it does not add
anything that’s structurally new to our model. Therefore, in the interest of simplicity,
we restrict our investigation to the regular Poisson distribution, leaving the extension
to a compound Poisson distribution for future research.

The booking distribution might have to be censored if the availability function a only
allows for a finite number of available seats. Since usually many products compete for
the same seats and a majority of products requires more than one seat, this censoring
may link the booking distribution of almost all products of an airline in a non-trivial
way. This is the case, even if the demand model itself has no such dependencies.

We use the following heuristic to approximate the situation: We assume that we know
the fraction si of the observation period that product i was available and the arrival rate
λi for product i for the complete time period. Then, we let the bookings for product i
be Poisson distributed with an arrival rate of si · λi.
Summarizing the above, we have the following state-space model:

xt+1 = xt + wt wt ∼ N(0, Q) (4.10)

bt ∼ Poi(Ha(xt)) (4.11)

Here, equation 4.10 describes the evolution of demand over time, or – in terms of a state-
space model – the evolution of the system state. Equation 4.11 is the measurement or
observation equation, it describes the dependence between the state xt of the system
and the corresponding observation bt. As such, the state-space model combines the de-
mand model Ha, time evolution equation 4.9 and the assumption of Poisson-distributed
bookings.

Alternatively, the Poisson distribution in equation 4.11 can be approximated by ad-
ditive Gaussian noise, which yields a slightly modified state-space model:

xt+1 = xt + wt wt ∼ N(0, Q) (4.12)

bt = Ha(xt) + vt vt ∼ N(0, R) (4.13)

The covariance matrix R can be chosen, such that the measurement variance is iden-

46



4. State-Space Model for Demand Estimation

tical to that of the Poisson model. However, bookings are no longer modeled as being
integer, but could now theoretically take any value, even negative ones, which certainly
seems counter-intuitive. Nevertheless, demand has been modeled successfully as such in
the revenue management literature (see e.g. Belobaba 1989), and only the simulation
experiments will be able to reveal whether this assumption is workable in practice.

Some authors might prefer to include an exponentiation operation into the observation
equation to avoid the problem of negative arrival rates, i.e. bt = expHa(xt) + vt. While
this might be conceptually cleaner, we believe that the additional non-linearity intro-
duced here causes more problems during demand estimation than it solves. It would also
eliminate the direct correspondence between demand parameters and expected bookings
that some of the simpler demand models afford. As mentioned earlier, we largely ignore
the issue of negative expected bookings during estimation. Only if the final demand
estimate used for optimization falls outside of the permissible range will those values be
adjusted until they are back in the valid region.

Each of these two variants of the state-space model, the original one with Poisson
bookings and the modified one with additive Gaussian noise, will result in one demand
estimation procedure in chapter 6. Before moving on, however, we inquire into the
information dynamics of this state-space model, independently of any specific demand
estimation procedure.

4.4. The Posterior Cramér-Rao Bound and the

Information Matrix

One question to ask of a state-space model is whether the observations provide enough
information such that the hidden state can be estimated reliably. A way to answer such
a question is to analyze the Fisher information matrix of the system, or its inverse the
Posterior Cramér-Rao Bound (PCRB).

The Cramér-Rao bound provides a lower bound on the mean squared error of an
estimate which has to hold for any concrete estimation method. The original Cramér-
Rao bound is based on time-invariant models, however there exists an extension, the
Posterior Cramér-Rao bound (PCRB), which is applicable in the context of this paper.
The dynamics of this bound over time for the discrete-time nonlinear filter problem were
derived by Tichavsky et al. (1998). This lower bound can be computed for many models
in which an exact solution to the estimation problem is not available and can thus
serve as an absolute benchmark to compare approximate estimation methods against.
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A closely related concept is the Fisher information matrix (Fisher 1925) which is the
inverse of the PCRB.

Formally, let g(Bt) be some estimator of the demand parameters xt operating on the
booking history up to time t: Bt = {b1, . . . , bt}. Then, under mild regularity conditions,

MSE = E[(g(Bt)− xt)(g(Bt)− xt)T ] ≥ I−1t (4.14)

where “≥” means that the difference between the matrices is a positive semi-definite
matrix. It is the Fisher information matrix and evolves according to

It+1 = Mt+1 + (I−1t +Q)−1 (4.15)

or, equivalently 1,

It+1 = Mt+1 +Q−1 −Q−1(It +Q−1)−1Q−1, (4.16)

where It−1 is the Fisher information matrix from the last time step, Q is the covariance
matrix from equation 4.9 and Mt is the Fisher information matrix of the observation at
time t. The measurement information Mt is defined as

Mt = −E[∆xt
xt log pat(bt|xt)] (4.17)

where ∆x
y = (∇x)(∇y)

T = ( ∂
∂x1
, . . . , ∂

∂xn
)T ( ∂

∂y1
, . . . , ∂

∂yn
). Here, we assume that the real

xt are fixed, but unknown parameters. The expectation in equation 4.17 is therefore
taken over zt conditioned on xt.
Using the Poisson distribution, as discussed above, the likelihood pat(bt|xt) becomes2

pat(bt|xt) =
∏

i:hat,i(x)>0

(hat,i(x))bt

bt!
· e−hat,i(x) (4.18)

1To see the equivalence, note that (A−1 +B)−1 = (1 +AB)−1A = B−1(B−1 +A)−1A = B−1(B−1 +
A)−1(B−1 +A−B−1) = B−1 −B−1(B−1 +A)−1B−1, provided that all the inverses exist.

2We only include terms with hat,i(x) > 0 in the product, that is with arrival rates > 0. If the arrival
rate hat,i(x) is zero, the only possible realization is bt,i = 0 with likelihood 1. These terms can
therefore be ignored.
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which yields the following measurement information matrix

Mt = E

 ∑
i:hat,i(x)>0

(∇xthat,i(xt))(∇xthat,i(xt))
T

hat,i(xt)

 . (4.19)

Equation 4.16 is a direct specialization of the equation given by Tichavsky et al.
(1998). It is efficient for computing the Fisher information matrix since it requires only
one matrix inversion per iteration (Q is constant and can be inverted once at the start of
the iteration). For the case of constant Mt, it is also useful to compute the steady-state
of the information matrix evolution, that is when It+1 = It. The steady-state equation

X = Mt +Q−1 −Q−1(X +Q−1)−1Q−1, (4.20)

is a discrete, algebraic Riccati equation and there are efficient numerical methods to
solve such equations (see Laub 1979). We will use this equation to find an approximate
steady-state to initialize our forecaster, see section 6.4.2.

Equation 4.15 is computationally less attractive, but much simpler to interpret intu-
itively: We compute the minimum variance of the last time step I−1t , add the additional
noise introduced by the time-evolution of xt with the covariance Q, convert that back to
an information matrix by inversion and then add the information gained by observing
at time t+ 1.

Being a strict lower bound on forecast error, the PCRB provides us with a way to
measure forecast accuracy in absolute terms, and not just relatively by comparing differ-
ent methods. An estimation procedure with a mean squared forecast error equal to the
PCRB necessarily has the lowest forecast error among all estimation methods. Such an
estimation procedure is called efficient. In many situations however, an efficient estima-
tor is not known. Still, heuristic estimation methods can be gauged by measuring how
much their mean squared estimation error exceeds the PCRB. We define this efficiency
measure as:

E =
tr(PCRB)

tr(MSE)
(4.21)

where tr(M) is the trace, i.e. the sum of diagonal elements, of matrix M . Since PCRB
and MSE both have the form of covariance matrices, their diagonal elements are non-
negative. Therefore, E ≥ 0. Moreover, since MSE ≥ PCRB, no diagonal element of
MSE can be smaller than the corresponding diagonal element of PCRB. Hence, E ≤ 1.
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The efficiency measure allows us to decompose the overall mean squared estimation
error into the inherent difficulty of the estimation problem – captured by the PCRB –
and the performance of the estimation procedure itself – captured by forecast efficiency.
Without the PCRB, we would not be able to distinguish if a high forecast error is the
result of an unsuitable estimation procedure or the fundamental difficulty of estimating
the demand parameters.
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Theoretical performance guarantees for estimation methods can usually only be given
for restrictive classes of problems and only if the assumptions underlying the estimator
are actually true for the data at hand. In general, as Elliott & Timmermann (2008)
argue, a good forecast is not a value in itself. Instead, it generates value by leading to
better decisions – in this case better revenue optimization results, and thus ultimately
more revenue. Moreover, Elliott & Timmermann note, that the forecast that models
the true causal relationships most extensively and accurately is not necessarily the best
forecast in the above sense. Therefore, expert judgement on the forecasting model by
itself is not a sufficient predictor of its real-world performance.

While testing new estimation methods in live airline revenue management systems
arguably provides the most reliable performance indicator, these live tests are usually
costly to implement and carry a high risk of foregone revenue. This is especially true
when evaluating forecasting methods, where the effectiveness of the demand estimation
methodology will usually only manifest itself after a prolonged learning period. More-
over, changing demand conditions in the real world will overlay with the effects of a new
estimation method. In a simulation environment, on the other hand, conditions can be
exactly replicated. Cleophas et al. (2009) argue in more detail for the use of simulation
studies to evaluate forecasting methods.

We therefore resort to a simulation study to compare and evaluate our demand esti-
mation approaches, in line with a majority of authors in the field of revenue management
(Frank et al. 2008). To maximize the likelihood that our simulation results carry over
to the real world, we carefully calibrate our simulation scenarios using real world data.
In this section, we describe this calibration and the general experiment design.

5.1. Simulation Environment

As part of an ongoing research cooperation with Lufthansa German Airlines, we had
access to the REMATE simulation environment developed at Lufthansa for research,
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training and decision support purposes, see Cleophas (2009), Zimmermann et al. (2011)
and Gerlach (2013). REMATE allows for highly flexible scenario definitions, such that
real-world scenarios can be easily modeled. As part of this thesis, we have extended
REMATE with a new demand model, our proposed estimation and forecast merging
algorithms, and the capability to compute the PCRB.

5.2. Simulation Scenarios

There are three base scenarios, representing domestic, continental and intercontinental
markets, respectively. The number of fare classes and their prices are taken from real
world Lufthansa data for exemplary markets. To simplify the subsequent analysis of the
results, we restrict ourselves to a single compartment on each flight, with capacity of 100
for domestic and continental flights, and a capacity of 200 for intercontinental flights.
Furthermore, there are neither cancellations nor no-shows.

A dynamic programming (DP) approach with fare transformation is used for avail-
ability optimization. Fare transformation transforms a dependent demand model into
a, for optimization purposed equivalent, independent demand model. Any standard,
independent demand optimization procedure can then be used to find optimal availabil-
ities. The dynamic programming approach explicitly models the stochastic and time-
dependent nature of demand and produces a so-called bid price, which depends on the
time remaining before departure and the number of seats still available. The bid price
is the minimum price for which the next seat is sold, so all fare classes with a lower
price will not be available while all fare classes with a higher price will be. See Talluri
& Ryzin (2005) for details on the DP in general, and Fiig et al. (2009) for a description
of fare transformation.

For each base scenario, there are high demand, medium demand and low demand
variants. In the latter, the capacity restriction is mostly irrelevant, such that bid prices
are zero and optimization is purely focused on exploiting price-sensitivity. In high de-
mand variants, on the other hand, bid prices are positive and optimization has to exploit
price-sensitivity while being constrained by limited capacity. Each simulation runs for
100 departures, to give the estimation algorithms enough time to settle into a stable
state. Each simulation is repeated 10 times, such that the results are averages over 10
independent demand realizations.
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5.3. Customer Choice

Customer Choice behavior is modeled using the Hybrid demand model from section
4.1.5. As customary in the airline industry, we split the one-year period before a flight’s
departure, the booking horizon, into a set of discrete time periods, in this case 22.
These time periods are not equally spaced throughout the booking horizon, but instead
are scaled such that expected bookings in each one are of the same order of magnitude.
For example, the first time period is 178 days long, while the last one consists of a single
day only.

Demand is expected to change significantly over the booking horizon as the customer
mix tends to include more and more business travelers closer to departure. Thus, we
estimate an almost completely separate set of parameters for each of the 22 time peri-
ods. We have completely separate product demand and price-sensitive demand volume
parameters, since the values of those parameters heavily depend on the length of a time
period. It is therefore not appropriate to model these as a smooth function in time.

In contrast, the price-sensitivity parameter does not scale with the length of a time-
period and can therefore be expected to change smoothly over time. We model the price
elasticity parameter xelast as a degree-two Lagrange polynomial in the square root of the
number of days before departure. This function has three parameters, price elasticity at
the beginning of the bookings horizon xelast360, 60 days before departure xelast60 and at
departure xelast0. 1 At any number of days d before departure, the price elasticity is the
following linear combination of the three parameters

xelast(d) = s360(d) · xelast360 + s60(d) · xelast60 + s0(d) · xelast0 (5.1)

s360(d) =

√
d−
√

0√
360−

√
0
·
√
d−
√

60√
360−

√
60

(5.2)

s60(d) =

√
d−
√

0√
60−

√
0
·
√
d−
√

360√
60−

√
360

(5.3)

s0(d) =

√
d−
√

60√
0−
√

60
·
√
d−
√

360√
0−
√

360
(5.4)

This functional form has been chosen, since it has just enough degrees of freedom to fit
the empirical data well, which we present in section 5.4.3.

In total, the complete demand parameter vector has 333 entries in domestic and

1The choice of 360, 60 and 0 days as ”anchor points” is arbitrary, approximately equal spacing on the√
t axis improves numerical stability however.
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continental scenarios: for each of the 22 time periods, there are 15 parameters; product
demands for each of the 14 booking classes, and one price-sensitive demand volume
parameter; additionally, there are 3 parameters to describe the trajectory of the price-
elasticity parameter. In intercontinental scenarios, there are only 12 booking classes,
yielding a demand parameter vector with 289 entries.

Equation 4.5, which is also part of the Hybrid demand model, contains a so far un-
defined reference price parameter fbase. Analytically, the choice of the reference price is
completely arbitrary, since the demand parameters xvolume and xelast can be adapted to
recover the identical choice behavior for any reference price. Setting the reference price
to the lowest existing price ensures that exp

(
−xelast( f

fbase
− 1)

)
≤ 1 such that this quan-

tity can be interpreted as a buy-up probability. In fact, the term can be reinterpreted
as a willingness to pay distribution from which each customers individual willingness to
pay is drawn. This choice of reference price is therefore used for generating customers
in the simulation.

Numerical stability considerations, on the other hand, suggest to use a reference price
that is in the middle of the overall price range. This is therefore done during estimation.
To compare results of the estimation methods to the actual demand parameters, the
parameters have to be converted to the same reference price fbase. When changing the
reference price fbase to f ′base, the new demand parameters are

x′volume = xvolume · exp

(
−xelast(

f ′base
fbase

− 1)

)
(5.5)

x′elast = xelast ·
f ′base
fbase

(5.6)

The current demand model of REMATE does not allow for the exact customer be-
havior described here. Therefore, we have extended REMATE such that it can generate
Hybrid demand, that changes over the booking horizon according to equation 5.1 and
between departures according to the time evolution equation 4.9.

5.4. Approximating Demand Parameters from Real

World Data

Aside from defining the demand model itself, its parameters need to be set as well, such
that realistic demand can be generated in the simulation. Therefore, the goal of this
section is to find realistic demand parameters for use in this simulation study. However,
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we’re not aiming at estimating the demand parameters from real world booking and
availability data. First, this would require using one of our proposed estimation methods,
the quality of which we cannot ascertain before conducting this simulation study. So
using these methods may lead to a circular argument. Second, acquiring the data on the
necessary level of detail and with high quality is a difficult undertaking in itself. Last,
and most importantly, good estimation methods should work for any set of demand
parameters in a realistic range. Therefore, we focus on finding this realistic range from
readily available airline data, with special attention to how fast these parameters change
over time.

5.4.1. Analysis of Yield Data

As part of the research cooperation with Lufthansa German Airlines, we have access to
twelve-year time-series (2001-2012) of monthly yields (average revenue per passenger)
and monthly passenger counts per origin-destination pair for the ten largest 2 domestic,
continental and intercontinental routes. Yields are measured from the passengers’ view-
point, since the goal is to explain passengers’ behavior with the help of this variable.
Yields from the airline perspective are usually lower, since fees and taxes received from
customers are immediately passed on to other entities, and as such are irrelevant to the
airline’s internal accounting.

We first discuss how to find an approximate value for price elasticity xelast and its lag-1
variance var(xelast,t − xelast,t−1). We have to make the assumption that all customers
are price-sensitive, that the yield is a proxy for the lowest available price and that this
lowest available price was optimal. It can easily be derived that the optimal price for
price-sensitive demand only is p∗ = fbase

xelast
. Consequently, we find that xelast,t = fbase

Yieldt

where fbase is the reference price of our choice. The mean of the xelast,t, provides us
with a rough estimate of the true elasticity parameter. Furthermore, we can analyze
how fast xelast,t changes over time. Seasonal effects are usually present in airline data
and real-world forecasters usually have dedicated modules to handle seasonalities. This
is not in the scope of this work however, so seasonal effects have to be removed from
the data beforehand. We use the stl() function of the R programming language (R Core
Team 2012) to accomplish this. This yields a new times series yt which equals time series
xelast,t, but with seasonal effects removed.

We assume that we do not observe the price elasticity perfectly, but that there is

2as measured by total revenue in the complete time period
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random observation noise. The state-space model is as follows:

xt = xt−1 + wt wt ∼ N(0, σ2
w) (5.7)

yt = xt + vt vt ∼ N(0, σ2
v) (5.8)

Both, σ2
v and σ2

w are unknown, but for our purposes we are only interested in the latter.
The variances of the lag-k differences var(yt−yt−k) = 2σ2

v +kσ2
w (called ”lag-k variances”

in the remainder) are a linear function of k in this model and the variance of interest σ2
w

is the slope of this function. A simple linear regression over the lag-k sample variances
therefore yields an estimate for σ2

w. The deviation from linearity in the actual data will
also be a hint at how closely the data match the state-space model above.

In the simulation, variances are specified as relative standard deviations and describe
the change between consecutive departures and not between months. As such, the value
used in the simulation and reported in this section is

σrel =

√
σ̂2
w

4 · 1
T

∑
t yt

. (5.9)

Figure 5.1 shows the lag-k sample variances for the ten largest intercontinental routes
in the Lufthansa network. Almost all curves are nearly linear for k ≤ 10, after that
the slope of some of the curve decreases, and in many cases the variances will start to
fall again. This suggests that in the short term, within about one year, price elasticities
evolve in agreement with our model. In the longer term however, there is a negative auto-
correlation that reduces the lag-k variances for large k. Although the exact reason for
this remains unclear, one possible explanation is that airlines will adjust their schedule
and capacities to long-term demand changes. This would create a negative feedback
loop on average prices and thus explain the long-term negative autocorrelation observed
here. We therefore conjecture that these effects are not driven by demand changes but
by adjustments of the supply, which can be ignored for our purposes. The respective
charts for continental and domestic routes show qualitatively the same picture and have
been referred to the appendix, section 10.2.

The almost linear parts of the lag-k variance curves yield an estimate of the variance
σ2
w, as described above. A criterion based on the r2-measure of the linear regression

determines the cut-off k below which each curve is regarded as linear. Figure 5.2 shows
a box plot and a point cloud of the estimates elasticity parameters xelast and their
respective relative standard deviations.
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Figure 5.1.: Lag-k variances of elasticity estimate for the ten largest intercontinental
routes; fbase = 500
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Figure 5.2.: Boxplot and point cloud of the estimated elasticity parameter xelast and
its relative standard deviation; fbase = 500 for intercontinental routes and
fbase = 100 for all others
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Figure 5.3.: Lag-k variances of volume estimate for the ten largest intercontinental
routes; fbase = 500

5.4.2. Analysis of Passenger Count Data

The analysis of Passenger Count Data focuses on the relative standard deviation of the
passenger counts. The overall volume itself has to be adjusted to the capacities used
in the simulation and is calibrated to meet realistic seat load factors (= number of
passengers / number of seats) instead.

The observed volumes are a function of the base volume xvolume, which is the focus of
this analysis, and the buy-up probability given by the customer choice function. Under
the same assumptions as in the previous section, the optimal price p∗ can be substituted
into the customer choice function, resulting in the buy-up probability exp (xelast − 1).
We therefore divide the observed passenger counts by this buy-up probability, using the
estimated x̂elast for each route and month from the previous step. The resulting time
series are processed as in the previous section. Figure 5.3 shows the lag-k sample vari-
ances of the volume estimate xvolume for the ten largest intercontinental routes. Again,
for k ≤ 10, we observe almost linear behavior for nearly all routes, and for higher k
the slopes of more and more curves start to level off. The interpretation is analogous
to the one for the elasticity estimates. Figure 5.4 is a box plot of the estimated relative
standard deviation of the volume parameter xvolume.
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Figure 5.4.: Boxplot and point cloud of the estimated relative standard deviation of
the volume parameter xvolume; fbase = 500 for intercontinental routes and
fbase = 100 for all others

5.4.3. Price Elasticity over the Booking Horizon

The customer choice model in this simulation uses a particular function to model the
change of the price elasticity parameter over the booking horizon (see section 5.3, equa-
tion 5.1). Under the assumptions from above, the trajectory of real-world yields over the
booking horizon can be used to estimate the price elasticity parameter over the booking
horizon. Figure 5.5 shows a comparison of estimated price elasticities and fitted values,
according to equation 5.1. From a visual inspection, the fit seems quite good for all three
curves. We were unable to achieve comparable results with fewer degrees of freedom or
other functional forms.

5.4.4. Number of Price-Sensitive Customers

The relative shares of price-sensitive customers and product customers per booking
class is another required input for the simulation. The assumption is that bookings in
published fares are price-sensitive, while bookings in corporate, bulk, or target group
fares are product customers. These customers don’t see the regular, published fares,
so it would not be adequate to use the price-sensitive buy-up model which is based on
published fares. Furthermore, for these customer groups fares usually exist only in a
subset of booking classes, such that full buy-down or buy-up behavior is not realistic.
Thus, we use fare type data to define the number of product customers in relation to

price-sensitive customer, keeping in mind that both parts of the assumption are certainly
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Figure 5.6.: Sold tickets in corporate, bulk and target group fares per fareclass as a
percentage of all sold tickets on all routes in the dataset of the respective
region

not entirely true: not all customers of published fares are completely price-sensitive and
not all customers in special groups are only interested in a single booking class.

Figure 5.6 shows the number of sold tickets with special fares as a percentage of all
sold tickets in each region. In the simulation, these percentages are used to set the
number of product customers as a fraction of overall demand.

5.5. Summary

As mentioned at the beginning of this section, the results of this data analysis should
be regarded as very rough estimates of the real demand parameters due to the set
of restrictive assumptions that were necessary. Nevertheless, the shape of the lag-k
variances offers some justification for the model used and the values of the final estimates
seem robust in that they are all within the same order of magnitude. Moreover, the
general level of price-elasticities and their path over the booking horizon roughly agrees
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Property Domestic Continental Intercontinental

Volume: Rate of Change High Low High
Elasticity:
Value High Medium Low
Rate of Change High Low High
Change over Booking Horizon High Low High

Product Demand: Volume Low Low High

Table 5.1.: Overview of the qualitative properties of the three simulation scenarios Do-
mestic, Continental and Intercontinental.

with the values reported by Gwartney et al. (2008, p. 429), which are comparable to
our values at the base price. We are therefore confident that the results fulfill the initial
goal of finding parameters in a realistic range.

Table 5.1 summarizes the qualitative differences between the three scenarios Domestic,
Continental and Intercontinental. Note that elasticity values are only directly compara-
ble if they refer to the same base price. For the ratings given here, all elasticity values
were converted to the same base price and are therefore not in the same order as reported
in figure 5.2. The overall demand volume is a separate parameter and is therefore not
reported in this table. Many more combinations of parameters are obviously possible,
however, for our simulation study we had to restrict ourselves to this small set.
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6. New Methods for Demand
Estimation

Once an airline has settled for a particular demand model Ha (see chapter 4), the
question arises of how to set the parameters x of that demand model. The airline only
observes sales numbers, and the relationship between those and the underlying demand
parameters is often indirect – at least for choice-based demand models – and noisy.
Moreover, demand is also expected to change over time, such that parameter estimation
has to be a continuous effort, embedded into the overall revenue management process.

This chapter proposes two novel approaches to demand estimation, based on the state-
space representation developed in chapter 4. Additionally, we introduce a heuristic for
active estimation that deliberately introduces price fluctuations to improve the estima-
tion of price elasticities. Using the simulation model from chapter 5, we then compare
our proposed methods to a set of benchmark methods.

6.1. Unscented Kalman Filter

6.1.1. Background

For state-space models with linear state transition and observation functions and with
only additive Gaussian noise, the estimation problem can be solved analytically to opti-
mality. If in the state-space model of equations 4.12 and 4.13, the demand function Ha

is required to be linear, we have just such a simple model. The analytical solution to
the demand estimation problem is called the Kalman Filter (Kalman 1960), and has a
number of desirable properties: The Kalman Filter

• is the minimum mean-squared error (MMSE) estimator and it attains the PCRB
exactly.

• is computationally fast
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• can be computed recursively, that is only the last estimate x̂t−1, its covariance Pt−1
and the current observation bt is required to produce the next estimate x̂t and its
covariance Pt. Observation data can be discarded after it was used once in the
estimate update.

• produces not only a point estimate, but the complete and exact posterior distri-
bution of xt – given the observation history – by providing the covariance of the
estimate Pt. This may be useful in optimization, e.g. to explore the state-space in
the direction of greatest uncertainty.

Due to these advantages, the Kalman Filter is used in a wide array of applications,
including dynamic pricing (Kwon et al. 2009). However, it is by itself not applicable to
the original model from equations 4.12 and 4.13, since in general and in our particular
simulation setting, the demand function Ha is not linear. This is in contrast to the
model of Kwon et al. (2009) who employ a linear demand function and thus were able to
use the Kalman Filter directly. For our purposes, the Kalman Filter has to be extended
to cover the case of a non-linear observation function.

Starting with the original paper of Kalman (1960) a tremendous amount of work has
been put into extending the model in various directions and adapting it to numerous
areas of application. Here, we just give an overview of the articles that are of particular
relevance to our work.

The so-called Extended Kalman Filter is the straight-forward extension of the Kalman
Filter to non-linear models, using a first-order, linear approximation of the original model
(Wan & Merwe 2000). It addresses non-linearity, both in the state evolution function
as well as in the observation function. Julier & Uhlmann (1997) propose a different
approximation based on an alternative parameterization of the normal distribution, this
approach is called the Unscented Kalman Filter (UKF). While still conceptually simple
and computationally efficient, this method outperformed other methods for overcoming
the linearity restriction, specifically the Extended Kalman Filter, in the numerical exper-
iments of Julier & Uhlmann. For this reason, we decided to use the Unscented Kalman
Filter for our setting. Julier later extends his results, introducing a scaling factor and
correction term that accounts for non-linearities above the second order (Julier 2002).
Our version of the Unscented Kalman Filter is based on the formulation of Wan &
Merwe (2000) who further extend the results of Julier to a more general class of filtering
problem.
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As noted in chapter 4, equations 4.12 and 4.13 also introduce the assumption of Gaus-
sian error terms, which in turn result in potentially negative and non-integer booking
predictions. There are extensions to the Kalman Filter that address these shortcomings.

The issue of non-negativity is treated by Simon (2010) who considers Kalman filter-
ing under state constraints. These constraints can be set up such that the expected
observations cannot be negative. However, due to the Gaussian measurement error,
individual observation could still be negative. Brankart (2006) extends the Kalman Fil-
ter with linear inequality constraints and shows that an optimal, MMSE estimator can
still be derived if the error terms are assumed to be drawn from truncated Gaussian
distributions.

Finally, the case of integer-valued measurements or quantized measurement is con-
sidered by Duan et al. (2008) and Karlsson & Gustafsson (2005). The introduction of
quantized measurement complicates the estimation tremendously, Duan et al. employ
a sophisticated approximate numerical approach while Karlsson & Gustafsson resort to
a Particle Filter, which is essentially a Monte Carlo method for state estimation. The
quantization model in both cases corresponds to rounding the outcomes of the obser-
vation function before they can be observed. This seems to be a somewhat unnatural
assumption compared to, say, assuming a Poisson distribution for the booking data.

Due to the limitations of these approaches and their significant additional complexity,
we did not include any of them in our proposed Unscented Kalman Filter for demand
estimation. Instead, we will directly incorporate the assumption of Poisson bookings in
our second proposed demand estimation method in section 6.2.

6.1.2. Unscented Kalman Filter for Demand Estimation

The Unscented Kalman Filter proposed by Julier & Uhlmann (1997) and extended by
Wan & Merwe (2000) can handle non-linearities both in the state evolution equation and
the observation equation. Here, we only make use of the latter since the state evolution
equation (eqn. 4.10) of the original model is already linear. The UKF is a heuristic, i.e.
an inexact method. Therefore, it is not necessarily the MMSE estimator.

We formulate the UKF for a generalized Hybrid choice function that can be decom-
posed into a linear part La and a non-linear part HN

a :

Ha(x) = Lax
L +HN

a (xN) (6.1)

where x = (xL, xN). Separating out the linear part of Ha allows for much more efficient
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implementation by essentially combining a regular Kalman Filter for the linear part with
the UKF for the non-linear part. In case the demand function is not separable, we can
simply set La = 0. In the other extreme, if the demand function is linear such that
HN
a (xN) = 0, our formulation is identical to the original Kalman Filter.
The UKF assumes Gaussian, though not necessarily additive, observation errors.

Thus, we implicitly assume the following observation equation:

bt = Lax
L
t +HN

a (xNt ) + vt vt ∼ N(0, diag(Ha(xt))) (6.2)

where diag(Ha(x)) is the matrix with Ha(xt) on its diagonal and all other entries zero.
Thus, the variance of the observation equals its expectation, consistent with a Poisson
distribution.

At every time step t, the UKF will produce an estimate x̂t for the demand parameters
and a covariance matrix Pt that together define the (approximate) current belief about
the real demand parameters. In other words, x̂t and Pt are the parameters of the
(approximate) posterior distribution of xt, given all observations up to time t.

Our formulation of the UKF is a direct specialization of that given by Wan & Merwe
(2000). We can simplify the computation of the update equations somewhat by ex-
ploiting the linearity of the state-space evolution equation and the decomposition of Ha

into a linear and non-linear part. As such, our version gives identical numerical results
to what the algorithm of Wan & Merwe (2000) would produce, however with reduced
computational effort. In our simulation setting, this reduction in computational effort
was necessary to keep running times practicable. Here, we only reproduce our final
formulation of the UKF. The derivation from the equations of Wan & Merwe (2000) is
given in the appendix, section 10.1.2.

The algorithm is as follows: First, decompose1 the covariance matrix Pt into an upper
triangular matrix U such that UUT = Pt. From this, compute the set of 2nN + 1 sigma
points σi, where nN is the number of demand parameters of the non-linear part of the
choice function:

σ0 = x̂t (6.3)

σi = x̂t +
√
n+ κ Ui i = 1, . . . , nN (6.4)

σi = x̂t −
√
n+ κ Ui−nN i = nN + 1, . . . , 2nN (6.5)

1See section 10.1.1 in the appendix on how to compute this decomposition.
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Here, Ui is the i-th column of U , n is the number of demand parameters for the complete
demand function and κ = α2 ·n−n. Parameter α is a scaling parameter that determines
the distance of the sigma points from their mean x̂. Additionally, in equation 6.10, there
is a second parameter, β, which can be used to incorporate knowledge of the distribution
of x̂. We use the values α = 10−3 and β = 2 as suggested by Wan & Merwe (2000).

Next, apply the non-linear part of the choice function to each sigma point to obtain

gi = HN
a (σi) i = 0, . . . , 2nN . (6.6)

From this, compute the expected bookings from the non-linear part zN , the linear part
zL and their sum z:

zN =
κ+ nL

κ+ n
g0 +

1

2(n+ κ)
·
2nN∑
i=1

gi (6.7)

zL = Lax̂
L
t (6.8)

z = zL + zN (6.9)

Additionally, find the booking covariance matrix from the non-linear part

PzNzN =

(
κ+ nL

κ+ n
+ (1− α2 + β)

)
· (g0 − zN)(g0 − zN)T

+
1

2(n+ κ)
·
2nN∑
i=1

(gi − zN)(gi − zN)T
(6.10)

and the cross-covariance between the complete state xt and the non-linear bookings zN

PxzN =
1

2(n+ κ)
·
2nN∑
i=1

(σi − x̂t)(gi − zN)T . (6.11)

Let PL be the upper left nL × nL block of Pt and PxLzN be the first nL rows of PxzN .
Then, compute the total booking covariance

Pzz = LaP
LLTa + PzNzN + 2 · La · PxLzN + diag(Ha(x̂t)) (6.12)

and with the left n× nL block PNL of Pt, construct the total cross-covariance

Pxz = PNLLTa + PxzN . (6.13)
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The values obtained for z, Pzz and Pxz are now used for the regular Kalman Filter
update and predict equations. Hence, we compute the Kalman gain K = PxzP

−1
zz and

from that the new demand estimate

x̂t+1 = x̂t +K · (bt − z) (6.14)

Pt+1 = Pt −KPzzKT +Q (6.15)

Improved performance in this formulation results from fewer evaluation of the demand
function. In the original version, there would be 2n + 1 sigma points, each resulting in
one evaluation of the demand function, whereas in our specialized version there are only
2nN + 1 sigma points. In one of our simulation settings, there are n = 333 parameters,
with nN = 25 parameters of the non-linear part, such that our formulation reduces the
number of demand function evaluations from 667 to 51. Depending on the complexity of
the demand function, this can have a large impact on overall performance. The remaining
parts of the algorithm remain unchanged in complexity, since they are dominated by the
O(n3) Cholesky decomposition.

6.2. Particle Filter

6.2.1. Background

The Particle Filter (PF) is a Monte-Carlo approach to state-space estimation. It has the
advantage that no assumptions have to be made on the dependence of xt on xt−1, nor
on the form of the observation function, nor on the distribution of the noise terms. In
this general setting the belief distribution of state xt has no closed-form. The Particle
Filter solves this by approximating the continuous belief distribution by a large number
of randomly chosen, discrete points. Each of these so-called particles has a location in
state space and a weight that represents the likelihood of this particle explaining the
observations.

Handschin & Mayne (1969) propose this technique for the first time, however not
using the term Particle Filter yet. Doucet et al. (2000) review numerous Particle Filter
methods proposed in the literature and develop a general framework. They note that the
various Particle Filter variants from the literature primarily differ in the choice of im-
portance weighting function. This importance function guides the creation of particles,
such that most particles are in areas of high interest, i.e. where the belief distribution
has non-negligible probability density. Moreover, Doucet et al. (2000) argue that “one
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obtains poor performance when the importance function is not well chosen”.
We therefore investigate two variants of importance function in this thesis. The first

uses a fixed and easy to evaluate importance function. It was used in the original work
of Handschin & Mayne (1969), and – among others – by Gordon et al. (1993) and
Kitagawa (1996). Our method is closely related to that of Gordon et al. (1993), since
not only the same importance function is used, but also the same re-sampling algorithm.
Re-sampling becomes necessary when the particle set degrades such that most weight is
concentrated on very few particles. While a well chosen importance function will slow
down this process, it will eventually happen regardless of the importance function, as
shown by Doucet et al. (2000) using a result of Kong et al. (1994). The re-sampling
method Gordon et al. (1993) and by extension we use is based on a result by Rubin
(1988).

The second variant we evaluate aims to approximate the optimal importance function,
which was introduced by Zaritskii et al. (1975). This function has no analytical form for
our model, so we use a local linearization as proposed by Doucet et al. (2000) to sample
from it. We use the same resampling method as above, but resampling is less frequent
here, since the optimal importance function minimizes the particle weights’ variance
(Doucet et al. 2000).

The Particle Filter is a more general extension of the Kalman Filter, in that it can
handle almost any state-space model. This flexibility however comes at the price of
computational effort. The Particle Filter starts with a large number of hypotheses
(=particles) about the real parameters and updates the likelihood of these hypotheses
as new observations arrive. The treatment of a large number of particles makes this
approach computationally more demanding. Conceptually however, the method is very
straight-forward and easy to implement.

The Particle Filter method is closely related to Monte Carlo integration methods
with importance sampling. Therefore, this type of filter is also known as a Sequential
Importance Resampling (SIR) Filter. Asymptotically, when the number of particles
tends to infinity, the Particle Filter is the minimum mean squared error filter and the
approximated posterior density converges to the real posterior density (see e.g. Gordon
et al. 1993). However, for a finite number of particles, little can be said about the quality
of the filter and thus the required number of particles can only be found in experiments.
In practice, there will be a trade-off between filter quality and required computational
resources. It is noteworthy though, that the Particle Filter is very well suited for highly
parallel implementation.
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6.2.2. Particle Filter for Demand Estimation

Since the Particle Filter puts no restrictions on the state-space model, we use our original
formulation of the state-space model, repeated here for the reader’s convenience:

xt+1 = xt + wt wt ∼ N(0, Q) (6.16)

bt ∼ Poi(Ha(xt)) (6.17)

Let N be the number of particles used. At every time step, the Particle Filter holds a set
of particles Pt = {x̂tk, k = 1, . . . , N} and a corresponding set of weights Wt = {ωtk, k =

1, . . . , N}. Each particle represents a potential parameter vector for the demand function
H, and its corresponding weight is the likelihood of that parameter vector being the true
parameter vector.

The weights and particles together form a discrete distribution that approximates
the actual continuous posterior distribution. The expected value for the parameter
estimate at time t can be computed as the mean of the particles at time t, such that
x̂t = 1

N

∑
ωtkx̂tk.

When a new set of observed bookings bt and availabilites at arrives, a new set of
particles is generated and their respective likelihoods are evaluated. The new set of par-
ticles could theoretically be drawn from a uniform distribution over the whole parameter
space. This, however, would lead to large number of particles with very small likelihoods,
and therefore unnecessarily large computation time and memory requirements. The key
idea in importance sampling is to put most particles in regions of ”high interest”. These
regions are described by a so-called importance function π(x|x0:t−1,k, b0:t), which assigns
a weight to each point in the parameter space, based on the particle’s past trajectory
and the history of observations. There are multiple choices for the importance function,
and most variants of the Particle Filter found in the literature differ primarily in this
choice (Doucet et al. 2000).

Regardless of the choice of importance function, the general algorithm is as follows:

• For i = 1, . . . , N : Sample x̂tk ∼ π(x|x̂0:t−1,k, b0:t)

• For i = 1, . . . , N : Compute importance weights

ω′t,k = ωt−1,k ·
pa(bt|x̂tk) · p(x̂tk|x̂t−1,k)
π(x̂tk|x̂0:t−1,k, b0:t)

(6.18)

• For i = 1, . . . , N : Normalize importance weights ωt,k =
ω′t,k∑
ω′t,k
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The conditional probability pa(bt|x̂tk) is given by the Poisson probability distribution
function and the choice function H:

pat(bt|x̂tk) =
∏
i

(ha,i(x̂tk))
bt,i

bt,i!
· e(ha,i(x̂tk) (6.19)

The conditional probability p(x̂tk|x̂t−1,k) describes the state evolution. From equation
6.16, we find that this is a multivariate Gaussian distribution with mean x̂t−1,k and
covariance Q.

We evaluate two different choices for the importance function. The first one is the
one-step update distribution p(xt|xt−1) which was used by Gordon et al. (1993). The
advantage of this choice is that in our model this is just a multivariate Gaussian dis-
tribution from which samples can be drawn easily. Additionally, the update equation
for the particle weights simplifies to ω′t,k = ωt−1,k · pa(bt|x̂tk), making it one of the com-
putationally most efficient variants. Doucet et al. (2000) note however that this choice
of importance function ”is often inefficient in simulations as the state space is explored
without any knowledge of the observations.”
As mentioned above, it is desirable to keep the particle weights as evenly distributed

as possible. This can be measured by the particle weights’ variance. It can be shown
that the importance function π(x|x0:t−1,k, b0:t) = pa(x|xt−1,k, bt)) minimizes the variance
of the particle weights (Doucet et al. 2000). It is therefore called the optimal importance
function and is the base of the second candidate importance function. In our model how-
ever, sampling from this function is not possible analytically. As proposed by Doucet et
al., we therefore approximate the importance function locally around x by a multivariate
Gaussian distribution. Towards this, define the log-likelihood l(x) = log pa(x|xt−1, bt).
We can then compute the first two derivatives

l(x) = const.− 1

2
(x− xt−1)TQ−1(x− xt−1)

+
∑

i:hi(x)>0

(bti log hi(x)− hi(x))
(6.20)

∇xl(x) = −Q−1(x− xt−1) +
∑

i:hi(x)>0

∇xhi(x) · ( bt,i
hi(x)

− 1) (6.21)

∂2

∂x∂xT
l(x) = −Q−1 +

∑
i:hi(x)>0

(
∂2

∂x∂xT
hi(x) · ( bt,i

hi(x)
− 1)−∆x

xhi(x) · bt,i
h2i (x)

)
(6.22)

A second order Taylor expansion yields the covariance Σ = −l′′(x)−1 and mean m =
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x+Σ·l′(x). The point x around which the log-likelihood function is approximated locally
should be the mode of pa(x|xt−1, bt) which can be found numerically with Netwon’s
iterative method. Constructing this importance function is computationally expensive
when the number of parameters becomes large. In our setting it is prohibitively expensive
to compute individually for each particle, which is implied by pa(x|xt−1,k, bt)). Instead
we compute the covariance matrix and mean displacement vector once for the average
x̂t−1 of the current set of particles, and then sample from that distribution for each
particle xtk. Still, this variant is computationally more expensive than the first, yet it
does have the advantage of putting more weight in areas of the parameter space that
are in agreement with the current observation.

In principle, this already describes a working Particle Filter. In real-world implemen-
tations, however, the particle cloud will degenerate at some point, as analytically proven
by Doucet et al. (2000). That is, most of the particle weight will be concentrated on a
single particle. To overcome this, the particles have to be resampled from time to time.
We employ the resampling strategy presented by Doucet et al.. If the estimated number
of effective particles Neff = 1∑

ω2
tk

is smaller than some minimum fraction of the total
number of particles N , the particle weights are degenerated and resampling should be
performed.

During resampling, each particle x̂′t,k is replaced by an existing particle x̂tr, where the
index r is drawn randomly with replacement from the set 1, . . . , N with probabilities
ωtk. The new weights are ω′t,k = 1

N
. It can easily be verified that the moments of the

particle distribution remain unchanged in expectation by this operation. Furthermore,
the number of effective particles Neff now equals the total number of particles N .
The simulation results in section 6.5.1 compare the two Particle Filter variants de-

scribed here, as well as two different sizes N of the particle cloud.

6.3. Active Estimation

Up to this section, we have ignored the revenue management feedback loop described
in section 4.1.4. This is not necessarily a valid assumption. The revenue impact of
methods for active learning, which aim to include the effect of an improved forecast on
future revenues, varies between minor (Aviv & Pazgal 2005) and very high (Carvalho
& Puterman 2004) in the literature. We therefore evaluate our own heuristic for active
learning that we call Active Estimation.
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6.3.1. Background

The dynamics of information acquisition and loss over time is the basis of active learning
approaches. Apart from Aviv & Pazgal (2005) and Carvalho & Puterman (2004) from the
dynamic pricing literature, there is a number of articles form inventory management that
also consider informational dynamics and active learning. Lariviere & Porteus (1999) and
Ding et al. (2002) consider the newsvendor problem and show that the optimal stocking
level with active learning is higher than the myopic stocking level. Since demand above
the stocking level is censored and thus unobserved the increased stocking level provides
additional information about the demand distribution which leads to better inventory
decisions in subsequent periods. Chu et al. (2008) show how to compute the optimal
stocking level for a wide range of demand distributions.

Kiefer & Nyarko (1989) analyze a firm that learns the coefficients of a linear model
from observed data and which controls the value of the regressor variable. Again, this
value influences both current revenue and future rewards through improved information
on the coefficients. Kiefer & Nyarko show under few additional assumptions that the
optimal strategy typically differs from the myopic strategy that ignores the informational
dynamics. Only in the limit of infinitely many observations, does the optimal strategy
converge on the myopic strategy. The demand model that we wish to estimate in this
thesis is not linear, however, and our model parameters evolve over time, such that it is
unlikely that these structural results apply in our case.

In control theory, there are two streams of literature related to the active learning
problem. One is that of measurement scheduling which aims at finding a set of costly
measurements (from a set of candidates) that maximizes the Fisher information or some
other measure of estimation quality within a budget constraint. See Shakeri et al. (1995)
or Gupta et al. (2006) for example applications. However, measurement scheduling
does not explicitly consider the trade-off between optimizing an objective function now
and acquiring more information to improve that optimization in future periods. This
trade-off is considered in the dual control problem. Wittenmark (1995) gives a problem
definition and reviews various methods for solving it approximately.

In this thesis, we evaluate a heuristic that adds additional price variation specifi-
cally where demand estimates are highly uncertain. It is highly related to the simplest
heuristic mentioned by Wittenmark (1995): Perturbation signals.
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6.3.2. New Active Estimation Heuristic

With Active Estimation (AE), we exploit the information about estimate uncertainty
provided by the filtering methods2. The goal is to selectively increase the variability
of availabilities where demand uncertainty is high. Instead of using the best current
demand estimate for optimization, we randomly draw a demand parameter vector from
the uncertainty distribution. The intuition is, that when demand uncertainty is small,
active learning is not required and we will draw demand parameters close to the cur-
rent estimate. If, on the other hand, demand uncertainty is large, we draw demand
parameters further away from the current estimate, which let the optimizer compute
more strongly varying availabilities. The increased variability in availabilities improves
demand estimation, reducing demand uncertainty in future runs.

While we always expect a reduction of mean-squared estimation error from using Ac-
tive Estimation, the effect on revenue is less clear. In the short-term, Active Estimation
reduces revenue by not using the current best estimate in optimization. However, this
may be offset by an increase in revenue due to the increased forecast quality later on.
The relative size of these effects determines the overall profitability of Active Estimation.
We investigate this in a simulation study and report the results in sections 6.5.1 and
6.5.3.

6.4. Simulation Setup

The overall simulation model used here, has been described in chapter 5. For the simu-
lation study in this chapter, we additionally implemented the Unscented Kalman Filter,
the two variants of the Particle Filter and Active Estimation in REMATE.

6.4.1. Baseline Methods

To evaluate the performance of the proposed estimation algorithms, we need benchmark
methods to compare against. The PCRB provides the best-case scenario in terms of
mean-squared error, and optimization using real demand parameters yields the optimal
expected revenue, the true parameter revenue. We extended REMATE, such that the
PCRB and the true parameter revenue can be computed for any given simulation sce-
nario. Additionally, we implemented three baseline demand estimation methods, that

2If an estimation method is used that does not yield uncertainty information, then the PCRB can
serve as an approximation. Thus, Active Estimation is independent of any particular estimation
and optimization method.
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use a simple heuristic, a method from the literature, and maximum-likelihood estima-
tion, respectively, to estimate demand parameters. These methods are explained in turn
in this section.

Simple Estimation

In Simple Estimation (SE), each demand parameter is estimated independently. For each
parameter, we find a value that is most consistent in least-squares sense with the current
observations, holding all other parameters constant. Combining all these individual
parameter estimates, yields a new parameter vector which obviously ”overshoots” the
true parameters, since the change in each parameter alone could explain the observation.
Exponential smoothing is used to avoid the overshoot. However, choosing a smoothing
factor that works globally is difficult, here we used a value of 0.2, which is in the typical
range of values used in revenue management applications (Talluri & Ryzin 2005, p.
437). Even with exponential smoothing, non-linear choice functions can produce extreme
estimates. This is avoided by using a simple outlier detection that limits the maximum
change of a parameter value between time steps.

Forecast Prediction

Forecast Prediction (FP) is an estimation method developed for the Passenger Origin-
Destination Simulator (PODS) to forecast price-sensitive demand. Boyer (2010) and
Guo (2008) describe both the simulator itself and the Forecast Prediction method. They
report that this method performed best among the estimation methods implemented in
PODS. We re-implemented Forecast Prediction in the REMATE simulation environment
to compare it with our methods.

Forecast Prediction estimates the price-sensitivity parameter separately for each dis-
crete time period of the booking horizon. In PODS, these individual estimates are
subsequently smoothed using either linear regression or a logistic fitter on a transformed
choice parameter (Boyer 2010). However, neither of these options is a good fit for our
demand model in which the price-sensitivity parameter is a degree-two polynomial. Us-
ing an inadequate regression model might reverse any positive results from the Forecast
Prediction method itself. A comparison to our methods might then be considered unfair,
since our methods know the true functional form. Therefore, in our implementation of
Forecast Prediction, we fit a degree-two polynomial to the price-sensitivity parameters
estimated by Forecast Prediction using ordinary least-squares regression.
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Forecast Prediction exclusively estimates price-sensitive demand. The product de-
mand component is estimated in the same way as in Simple Estimation, using exponen-
tial smoothing with a learning rate of 0.2.

Maximum-Likelihood Estimation

A standard solution to this type of estimation problem is maximum-likelihood estimation
(MLE). For example, Vulcano et al. (2012) use maximum-likelihood estimation, albeit
resorting to an EM-algorithm to find the maximum, due to a more complex choice
function. In our setting, it is feasible to numerically find the maximum of the likelihood
function directly.

Given the joint probability pA(B,X), find a demand parameter trajectory X =

(x0, . . . , xT ) that maximizes pA(B,X) for the observed availability and booking histories
A and B. From the original state-space model in equations 4.10 and 4.11, pA(B,X) can
be decomposed into

pA(B,X) = p(x0)
T∏
t=1

pat(bt|xt) · p(xt|xt−1). (6.23)

Maximizing equation 6.23 (or its logarithm) over X is a very high dimensional problem.
As an example, in the scenarios of this simulation study, each individual x alone has
dimension 333. After 100 simulation runs, the dimension of X will be 333 · 100 = 33300.
Maximizing any non-trivial function over that many parameters is a major challenge.
To make this problem more tractable, we limit the availability and booking histories

to a rolling history of a fixed number of observations (here 25). Further, we assume that
x remained constant within this limited observation history and that the initial x0 is
known and equals the estimate from the preceding time step, i.e. x0 = x̂t−1. The joint
probability function then becomes

pA(B, x) = p(x|x̂t−1)
T∏
t=1

pat(bt|x). (6.24)

where the term p(x|x̂t−1) is given by the multivariate normal distribution with mean x̂t−1
and covariance matrix Q. The conditional probability pat(bt|x) is the product of Poisson
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probability distribution functions with rates λi = ha,i(x). This yields the log-likelihood

L(x) = log pA(B, x) =− 1

2
(x− x̂t−1)TQ−1(x− x̂t−1)

+
∑
τ

∑
i,hi>0

bτi · log (hi,aτ (x))− hi,aτ (x)

+ const.

(6.25)

This function is maximized by finding a root of the first derivative with the iterative
Newton method. L(x) is not concave in general and therefore a global maximum is not
guaranteed. In practice, this doesn’t seem to be an issue, since the maximum is expected
to be close to x̂t−1 which is therefore an excellent starting value.

Implementation Note Newton’s method requires the first and second derivative of
L(x), ∇xL(x) and ∆x

xL(x) in the notation of section 4.4. A straight-forward implemen-
tation requires a large number of evaluations of the choice function H and its first two
derivatives, a number that is linear in the length of the booking history. Evaluation
of the Hessian matrices ∆x

xhi(x) is computationally expensive when the number of pa-
rameters is large and the booking vector is long. In the implementation we exploit the
special structure of the hybrid choice function, namely that for fixed x

• product bookings in a class depend linearly and exclusively on the availability of
that class, and

• price-sensitive bookings in a class depend linearly and exclusively on the amount
of time for which that class was the lowest available.

Together, these two facts make it sufficient to evaluate the derivative and Hessian ma-
trices of H once per iteration, independent of the length of the booking history. From a
computational perspective there is thus little incentive to keep the history short. How-
ever, the assumptions that demand was constant over the history – and in practice data
storage requirements – still call for a reasonable compromise when choosing the history
length.

6.4.2. Forecast Initialization

In simulations, as well as in real life, forecasting methods have to be initialized in some
way. However, we are mainly interested in the long-term behavior of an estimation or
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forecasting method, after any initialization effects have vanished. The standard method
is to use a burn-in phase, where the simulation is executed for a number of runs until
a steady state is reached. Only after that burn-in phase statistics are collected. The
simulation runs during the burn-in phase are therefore ”wasted” computation time, and
it should be a goal to keep the required length of the burn-in phase to a minimum.

To accomplish this, we initialize the forecast with a given mean squared error, by
starting with the perfect forecast (i.e. the real demand) and adding an error term to
it. The solution to equation 4.20 from section 4.4 lets us approximate the steady state
Posterior Cramér-Rao Bound I−1∞ , which we use as the initial mean squared forecast
error. R This is only an approximation of the true steady state for two reasons. First,
the actual mean squared forecast error will be larger than the PCRB, this is especially
true for the baseline methods. Second, equation 4.20 assumes a constant measurement
information matrix Mt = M , which is not the case during actual simulation. We use a
weighted average of all nested availability situations, to compute an approximate M to
use in equation 4.20.

Preliminary simulation runs showed that the approximation is quite good. Thus, with
this method, simulations start much closer to the desired steady state, and therefore a
relatively short burn-in phase of 50 simulation runs seems adequate. To solve equation
4.20 in REMATE, we implemented the method of Laub (1979) by porting the LAPACK
(Anderson et al. 1999) routine STREXC and its dependencies to the Java language,
which lets us perform the necessary re-ordering of eigenvalues in a Schur decomposition.

6.5. Simulation Results

This section presents the first simulation results. Summarizing the previous sections,
there are 3 demand volumes, 3 traffic types, 10 estimation method variants and 10
independent demand realizations with 100 runs each, for a total of 900 simulations and
90000 simulation runs. Total running time was about 100 hours on a laptop computer
with an Intel Core i5 2.6 GHz processor and 4GB of RAM.

We analyze performance in term of both forecast quality and achieved revenue. Fore-
cast quality is measured with the so-called estimator efficiency, defined in equation 4.21.
Revenue results are reported as a revenue loss in percent, compared to the revenue that
is achievable using the real demand parameters as a forecast, the true parameter revenue.
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Abbreviation PFa
no
AE

PFa
with
AE

PFb
no
AE

PFb
with
AE

PFc
no
AE

PFc
with
AE

UKF
no
AE

UKF
with
AE

Filter PF UKF
Importance Func. Simple Approx. Opt. -
Particle Count 1000 10000 1000 -
Active Estimation No Yes No Yes No Yes No Yes

Table 6.1.: Overview of the eight different filtering method variants evaluated in this
section.

6.5.1. Comparison of Filter Design Parameters

As with most heuristics, not all design decision of the filtering methods can be made
from purely theoretical considerations. Therefore, we first compare six variants of the
Particle Filter (PF) and two versions of the Unscented Kalman Filter (UKF) to each
other. From this, we select the best PF variant and the best UKF variant and evaluate
them against our benchmark methods in section 6.5.2.

Filter Variants

As noted in section 6.2, we consider two choices for the importance sampling function:
an approximation to the optimal importance sampling function and a lower quality,
but simple to compute one. To keep computation time to a manageable and realistic
amount, we had to limit the number of particles to 1000 for the approximately optimal
importance function. For the simpler variant, we could raise that limit to 10000, but also
included a version with only 1000 particles in order to separate the effects of importance
function and particle count. Finally, for all these and the UKF, we have a variant with
and without active estimation3. Table 6.1 summarizes this paragraph.

Forecast Quality

Figure 6.1 compares estimator efficiency for the eight variants. For each data point, the
estimated mean and approximate 95% confidence intervals are given4 The figure shows
aggregated data over all demand levels and traffic type scenarios, since we did not find

3see section 6.3
4Here the data points are in fact ratios of two experiments. We use the R-package pairwiseCI
(Froemke et al. 2012), which implements a method proposed by Ogawa (1983), to compute the
(approximate) confidence intervals.
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Figure 6.1.: Estimator efficiency E = tr(PCRB)/tr(MSE) for filter variants, aggregated over
all scenarios; the boxes represent the mean value and its 95% confidence
interval; see table 6.1 for an overview over the estimation methods in this
figure.

any large qualitative differences between them. The most pronounced difference exists
between the UKF variants and the PF variants, with the UKF being the more efficient
estimator, in many cases with statistical significance.
Among the respective filter variants, however, differences are much more subtle and

do not rise to statistical significance in our study. Nevertheless, we observe a few trends:
Moving from the simple importance function to the approximately optimal one (PF a to
PF c), does not seem to have any measurable effect. Increasing the number of particles
by a factor of 10 (PF a to PF b), however, does have a noticeable positive effect, which
is on the border to statistical significance.
Active Estimation has little effect on estimator efficiency in general, with a slight neg-

ative effect for all PF variants and a small positive effect for the UKF. The expected
result is an increase in estimator efficiency in all cases, since the estimators should ben-
efit from increased variability in availabilities. This improved forecast accuracy could
then offset any negative revenue effect resulting from randomizing availabilities to some
extent. Our simulation study shows, however, that the positive effect on forecast accu-
racy is very small for the UKF and non-existent for all three PF variants. We therefore
do not expect a positive revenue effect from Active Estimation.
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Figure 6.2.: Revenue loss compared to true parameter revenue for filter variants, aggre-
gated over all scenarios; the boxes represent the mean value and its 95%
confidence interval; see table 6.1 for an overview over the estimation meth-
ods in this figure.

Revenue

Figure 6.2 shows revenue loss compared to the true parameter revenue. Again the UKF
variants perform significantly better than all PF variants, in most cases with statistical
significance. As is the case for estimator efficiency, there is no perceivable difference
between the two importance functions for the PF (PF a to PF c), and we observe a
positive, yet not statistically significant effect when the number of particles is increased
tenfold (PF a to PF b). Active Estimation has a slightly negative impact on revenue in
all cases, which is the expected outcome given the results on estimator efficiency.

Conclusion

Among the PF variants, we select the simple importance function with 10000 particles
(PF b) without Active Estimation. It has the best performance in both indicators, while
being the conceptually simpler method at the same time. For the UKF, the decision is
not as clear-cut, since the results of not agree between the two indicators. Here, we opt
for the UKF without Active Estimation, since Active Estimation adds complexity to the
method without showing a clear advantage. Going forward these two selected variants
will simply be called PF and UKF, respectively.

Our results on Active Estimation mirror those of Aviv & Pazgal (2005), while opposing
the conclusion of Carvalho & Puterman (2004), albeit in a slightly different setting.
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Figure 6.3.: Estimator efficiency E = tr(PCRB)/tr(MSE), aggregated over all scenarios; the
boxes represent the mean value and its 95% confidence interval; SE = Simple
Estimation, FP = Forecast Prediction, MLE = Maximum-Likelihood, UKF
= Unscented Kalman Filter, PF = Particle Filter

Our Active Estimation procedure was not able to provide additional revenue, despite
improving forecast error in some cases. Since we used a simple heuristic, however, this
does not imply that our estimation problem cannot benefit from active learning per se:
a more refined method for active learning might lead to increased revenues after all.

6.5.2. Comparison to Benchmark Methods

In this section, we compare the selected PF and UKF variants from the previous section
to our benchmarking methods. Except for the selected estimation methods, simulation
setup is identical to the previous section, such that the result sets are comparable to
each other. The split in two distinct results sets is merely to facilitate analysis.

Forecast Quality

Figures 6.3, 6.4 and 6.5 show the estimator efficiency obtained in the simulation. Figure
6.3 provides an aggregated overview over all demand volumes and scenarios. SE and FP
produce a mean squared error that is orders of magnitude higher than the PCRB and
thus efficiency is close to 0. The PF’s mean squared error is about 3 times as high as
the PCRB, which leads to an estimator efficiency that is lower than that of the UKF
and MLE; in both cases the result is just below the border to statistical significance (the
confidence intervals overlap slightly). The UKF is slightly more efficient than MLE, but
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Figure 6.4.: Estimator efficiency E = tr(PCRB)/tr(MSE) by demand volume; the boxes
represent the mean value and its 95% confidence interval; SE = Simple
Estimation, FP = Forecast Prediction, MLE = Maximum-Likelihood, UKF
= Unscented Kalman Filter, PF = Particle Filter

this result is far from significant.
Figure 6.4 splits the data by demand volume. FP performs worst in the medium

demand case, for low and high demand it yields a significantly lower forecast error than
SE. Both filter methods suffer from a loss of efficiency in the high demand case. That
loss is least pronounced for the PF, but even in the high demand case its efficiency is
still slightly lower than that of the UKF and MLE.

A possible explanation is quality of availability information which degrades as the
demand volume increases. If bid prices are constant zero, then availability is solely
determined by fare transformation. These availabilities will thus be constant over a
time period, providing perfect availability information to the estimator. If bid-prices
are positive, availability may change each time a booking occurs and every time the bid
price vector gets updated (once per day in the simulation). The estimators, however,
are not aware of these within-time-period availability changes, they only get a rough
approximation of the total amount of time a class was available during a time period,
based on a linear interpolation of the bid prices at the beginning and the end of the time
period.

Figure 6.5 splits the data by traffic type. For intercontinental traffic all methods show
reduced estimator efficiency compared to the other two scenarios, an effect that is sta-
tistically significant for MLE and the UKF, but only partially for the PF. Qualitative
results are the same for all three scenarios, with the exception that the ordering of MLE
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Figure 6.5.: Estimator efficiency E = tr(PCRB)/tr(MSE) by traffic type; the boxes represent
the mean value and its 95% confidence interval; SE = Simple Estimation,
FP = Forecast Prediction, MLE =Maximum-Likelihood, UKF = Unscented
Kalman Filter, PF = Particle Filter

and UKF changes between the intercontintental and the other two scenarios. In all
cases, however, the difference between UKF and MLE is not statistically significant. FP
showed very large variations in mean-squared error, which precluded us from computing
confidence intervals in this case: since mean-squared error is in the denominator of esti-
mator efficiency and we assume mean-squared errors to be Gaussian, too much variance
causes problems by allowing a non-positive denominator with non-negligible probability.
Therefore, only the means are shown for FP in figure 6.5.

Revenue

Figures 6.6 through 6.8 show the relative loss in revenue of each estimation method
compared to the true parameter revenue. Figure 6.6 displays the aggregated data over
all traffic types and demand volumes, while figures 6.7 and 6.8 provide more detail by
splitting the data by demand volume and traffic type, respectively. Again, for each data
point the mean and its 95% confidence interval are shown.

SE yields significantly less revenue than all other methods, with a total loss of about
15%, followed by FP with about 5% loss. In the aggregate over all scenarios, MLE and
UKF lead to the highest revenues, with only a slight loss (≈ 0.22% and ≈ 0.32%) com-
pared to the true parameter revenue, with no significant difference between them. The
PF has a noticeably higher revenue loss of close to 1%, which is statistically significant
compared to MLE, but just below the threshold to significance compared to the UKF.
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Figure 6.6.: Revenue loss in percent compared to true parameter revenue, aggregated
over all scenarios; the boxes represent the mean value and its 95% confi-
dence interval; SE = Simple Estimation, FP = Forecast Prediction, MLE
= Maximum-Likelihood, UKF = Unscented Kalman Filter, PF = Particle
Filter
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Figure 6.7.: Revenue loss in percent compared to true parameter revenue, by demand
volume; the boxes represent the mean value and its 95% confidence interval;
SE = Simple Estimation, FP = Forecast Prediction, MLE = Maximum-
Likelihood, UKF = Unscented Kalman Filter, PF = Particle Filter
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Figure 6.8.: Revenue loss in percent compared to true parameter revenue, by traffic
type; the boxes represent the mean value and its 95% confidence interval;
SE = Simple Estimation, FP = Forecast Prediction, MLE = Maximum-
Likelihood, UKF = Unscented Kalman Filter, PF = Particle Filter

The more detailed views in figures 6.7 and 6.8 confirm that the qualitative results
are the same over all demand volumes and traffic types for the revenue loss indicators.
While this does not lead to any new insights, it suggests that our results and conclusions
from this section are robust under various perturbations of the scenario parameters.

6.5.3. Faster Demand Change

In this section, we analyze the impact of faster demand change on the estimation meth-
ods. This is done for the domestic scenario with medium demand only. Using that setting
as a baseline, we increased the rate of demand parameter change for all parameters by
factors of 2 and 4. The domestic scenario was already the one with the highest rate of
demand change, and the twofold and fourfold rates are well above anything we observed
in our data analysis in section 5.4. From this perspective, the estimation environment of
this study is therefore more challenging than anything we would expect in a real-world
network. Yet, the performance of our estimation methods under these conditions may
provide useful hints towards their robustness under less favorable conditions.

Figure 6.9 shows estimator efficiency for the three rates of demand change. MLE and
UKF without Active Estimation loose efficiency as the rate of demand change increases.
Only the UKF with Active Estimation remains roughly constant over the different change
rates. This suggests that availabilities vary enough without Active Estimation to track
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Figure 6.9.: Estimator efficiency E = tr(PCRB)/tr(MSE) in the domestic scenario for the
original rate of demand change, twice that rate and four times that rate;
the boxes represent the mean value and its 95% confidence interval; MLE
= Maximum-Likelihood, UKF = Unscented Kalman Filter.

the slow changing demand parameters in the original scenario, but increased variability
is necessary to follow the faster changing signal in the other two scenarios.

Figure 6.10 depicts revenue loss compared to the true parameter revenue for the three
rates of demand change. Revenue loss increases for all methods as the rate of demand
change grows. This is the expected result, since the PCRB will grow with increasingly
fast changing demand. So even if estimator efficiency is constant, mean-squared error
will increase and thus more revenue loss is to be expected. The relative performance
of both UKF methods improves slightly compared to MLE, however the effect is very
small and not statistically significant. Again, the positive impact of Active Estimation
on estimator efficiency does not translate to reduced revenue loss.

6.6. Discussion of Simulation Results

The simulation results in this chapter show that both proposed filtering methods perform
generally well over a range of scenario parameters. Their estimation errors are at least an
order of magnitude smaller and achieved revenue is significantly higher when compared
to the SE and FP benchmark methods. Between the UKF and the PF, there is a
clear advantage for the UKF in terms of both revenue and estimator efficiency. While
individual results were not always statistically significant, the fact that the same pattern
was present in all our different simulation scenarios makes us confident that this is the
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Figure 6.10.: Revenue loss in percent compared to true parameter revenue in the domes-
tic scenario for the original rate of demand change, twice that rate and four
times that rate; the boxes represent the mean value and its 95% confidence
interval; MLE = Maximum-Likelihood, UKF = Unscented Kalman Filter.

correct conclusion. Comparing the UKF to MLE, however, leads to more ambiguous
results. The UKF has a slight advantage over MLE in terms of estimator efficiency, but a
small disadvantage in revenue loss. However, both of these effects are far from statistical
significance and we consider the performance of UKF and MLE in this simulation study
to be equivalent.

Thus, the results of this chapter clearly suggest the use of either MLE or the UKF for
demand estimation. Yet, no recommendation for choosing between those two methods
can be given from the simulation results alone. However, the UKF has one additional
benefit: It provides an approximation of the estimator’s uncertainty in the form of
the covariance matrix Pt5. This additional information can be useful in several contexts.
Estimator uncertainty can for example be accounted for during optimization, can inform
a human analyst about the confidence in the system forecast she should have, and can
also be used to dynamically adapt the level of detail for forecasting. This latter option
will be explored further in chapter 8.

Given the generally excellent performance of the UKF and its additional utility over
the MLE, the UKF is our estimation method of choice for the simulation studies in
subsequent chapters. The general discussion however will remain independent of any
particular estimation method. Thus, if it turns out that for a different demand model,
say, the PF is a better choice, the methods and theoretical results in the remainder of

5see section 6.1
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this thesis still apply.
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Part III.

The Problem of Small Numbers
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7. Quantifying the Problem of
Small Numbers

The simulation results presented in chapter 6 promise estimation and revenue perfor-
mance close to their theoretical upper bounds – the PCRB and true parameter revenue,
respectively. This chapter will show that the results presented so far come from a very
favorable scenario where all demand is concentrated on a single origin-destination pair
(O&D). In real airline networks, demand is distributed over a large number of such O&Ds
and it is considered appropriate to estimate demand for each of those origin-destination
pairs individually in practice (Boyd & Kallesen 2004). Moreover the distribution of de-
mand over O&Ds is highly non-uniform, varying over several orders of magnitude, with
some very large markets and many extremely small markets.

As briefly argued in section 2.2, the problem of small numbers is different from the
problem of small sample size. When demand estimation is done at a finer level of
detail, and sales data is collected at a finer level as well, this actually increases sample
size. Even if no bookings occur for a given combination of product, price point and
period of time this still constitutes an observation or sample. Such an observation also
carries meaningful information, namely that there was probably little demand for the
given product, at the given price point, in the observed period of time. One might
be inclined to believe that a zero booking observation provides information on overall
demand volume, but that no additional information on customer choice behavior can
be gained without an actual booking event. Yet, this is not the case either. Say, an
airline has offered a product at a low price for some time in the past and observed
positive demand for it. Now, it stops offering the low price point, and instead only a
much higher price is available. If we now observe zero bookings instead of some positive
number, this provides information on the willingness-to-pay of the airline’s customers,
namely that it is lower than the new high price point. Therefore, observations of zero
bookings are not necessarily inferior to observations of a positive number of bookings.

Nevertheless, we show that estimating the parameters of a choice model is funda-
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mentally more difficult for small volume markets than for large volume markets. While
estimation error may still remain close to its theoretical bound, this bound becomes
arbitrarily large for small volume markets. A simulation study shows further that this
results in large revenue losses compared to the true parameter revenue.

7.1. A Property of the Posterior Cramér-Rao Bound

The PCRB, introduced in section 4.4, gives rise to a structural result that we call the
”Problem of Small Numbers”. It arises in practical implementations of revenue man-
agement methods: Increasingly sophisticated revenue management optimizers require
greater amounts of input data on finer detail levels (Bartke et al. 2013). This input data
usually has to be estimated from booking data and projected into the future. There is
a common, yet often vague understanding among practitioners that the quality of this
input data will decrease as more and more parameters have to be estimated from the
available booking data. This decrease in quality will at some point offset any additional
benefit from a more sophisticated revenue management optimizer.

In our particular framework, we can prove the first part of the assertion, namely that
the mean-squared error of choice parameter estimates will tend to infinity as the number
of bookings observed per data point goes to zero. The subsequent interplay with the
optimizer is far from trivial, and will not be treated rigorously in this work. However,
it seems reasonable to assume that an arbitrarily large variance in the input parameters
can lead to highly sub-optimal optimization results.

Theorem 1 Let the choice function Ha(x) be parameterized such that it can be written
as the product of an overall arrival rate λ and a choice probability function Ca(x):

Ha(λ, x) = λ · Ca(x),

where 0 ≤
∑

i ca,i(x) ≤ 1, λ > 0 and all parameters are identifiable from the set of
available observations. Formally, the latter condition is true if and only if the matrix J
with rows (

ca,i(xτ ) (∇ca,i(xτ ))T
)

for τ ≤ t and i : ca,i(xτ ) > 0

has full column rank. Further, assume that there is no initial information1: I0 = 0.

1The case when I0 > 0 holds similarly if we let t → ∞. Intuitively this is the case since any initial
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Then, for any estimator g of the choice parameters x (excluding λ), the mean-squared
error will become arbitrarily large as the arrival rate λ tends to zero:

E[(g(Bt)− xt)(g(Bt)− xt)T ]→∞ for λ→ 0. 2

Proof Inserting the choice function into equation 4.19 yields the measurement infor-
mation matrix

Mt = E

(
1
λt

∑
i ca,i(xt)

∑
i (∇ca,i(xt))T∑

i∇ca,i(xt) λt
∑

i
(∇xtca,i(xt))(∇xtca,i(xt))T

ca,i(xt)

)
(7.1)

The sum of the measurement information matrices up to time T is an upper bound
to the information matrix at time T , because the influence of time evolution can only
decrease the information on hand. In formulas, since It ≤ (I−1t + Q)−1 (using Q ≥ 0,
since it is a covariance matrix), we have that IT ≤

∑T
t=1Mt. We will use this to compute

a lower bound on the estimator error: I−1T ≥
(∑T

t=1Mt

)−1
.

Define λt = λ · st, the matrix J ′ with rows(
sτ · ca,i(xτ ) λ · sτ · (∇ca,i(xτ ))T

)
for τ ≤ t and i : ca,i(xτ ) > 0

and the diagonal matrix ∆ with diagonal entries 1
ca,i(xτ )

, τ ≤ t and i : ca,i(xτ ) > 0. Then,
using equation 7.1, we find that the right-hand side has the form:(

T∑
t=1

Mt

)−1
= (E[J ′T ·∆ · J ′])−1 =

(
1
λ
a bT

b λD

)−1

=

(
λ

a−bTD−1b
−bT (aD − bbT )−1

−(aD − bbT )−1b a
λ
(aD − bbT )−1

) (7.2)

where the scalar a, the vector b and the matrix D are all independent of λ. Since J has
full column rank by assumption and J ′ equals J except for a rescaling of its rows and
columns, J ′ also has full column rank. This guarantees that J ′T ·∆ · J ′ is invertible and
furthermore strictly positive-definite. The lower right block of equation 7.2, (aD−bbT )−1,
is therefore also positive-definite. With that, letting λ → 0 shows that the lower right
block of the PCRB will become arbitrarily large. �

information will loose its value over time and in the limit it will be zero. We provide no formal proof
however.
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As stated above, this loss of estimation accuracy cannot be explained by small sample
size. Instead, we try to provide some intuition based on the ratio of two Poisson pro-
cesses. In order to gain insight on customer choice behavior, e.g. to find the fraction of
customers willing to buy-up to a higher price point, we essentially need to estimate the
ratio of two arrival rates from observed booking counts. Say we have a Poisson count
with arrival rate λ in the denominator and one with arrival rate s · λ in the numerator.
Now, consider the distributions of booking counts in terms of their means and standard
deviations. In the denominator we have λ ±

√
λ, and in the numerator s · λ ±

√
s · λ.

Hence, the ratio is

s · λ±
√
s · λ

λ±
√
λ

=
s±

√
s
λ

1±
√

1
λ

. (7.3)

For constant s and decreasing λ the standard deviations in both the numerator and
denominator start to dominate the equation. As such, estimating the ratio of the two
arrival rates s·λ

λ
= s becomes increasingly more error-prone. More precisely, Price &

Bonett (2000) examine methods for constructing (approximate) confidence intervals for
the ratio of two Poisson rates. The size of these intervals grows when both observed
counts become smaller proportionally, which is particularly easy to see in their method
based on the Poisson log-linear model. Accordingly, the problem of small numbers in
revenue management is a consequence of the combination of:

1. Estimating the ratios of arrival rates

2. Increasing relative standard deviation of Poisson counts as arrival rate becomes
small

Again, the first point seems to be inevitable when estimating customer choice models.
Concerning the second point, even the discrete distribution with the smallest variance
for an arrival rate 0 < λ < 1, the Bernoulli distribution, has a variance of λ − λ2,
which tends to λ, the variance of the Poisson process, as λ tends to zero. Moreover,
practitioners mostly believe that the Poisson assumption errs on the side of too little
variance, rather than too much (Walczak 2006).

Finally, note that the choice probability function Ca(x) may represent a customer’s
choice between multiple products, but also other modulations of the overall arrival rate,
such as seasonal or weekly patterns.2 Hence, estimating the parameters of any of such
effect becomes arbitrarily error-prone as the arrival rate tends to zero.

2This was pointed out to us by Karl Isler of SWISS Airlines.
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7.2. Simulation Study

In this section, we confirm the theoretical results on forecast error from the previous
section and investigate the revenue implications.

7.2.1. Simulation Setup

Basic scenario and demand setup remains as described in chapter 5. The scenarios have
to be expanded however, to include multiple O&Ds. The focus remains on a single leg
with capacity 100, but now there are also 29 feeder flights for this leg. Thus, there is one
local O&D and 29 transfer O&Ds for a total of 30 O&Ds. The number 30 was chosen
such that the simulation remains computationally tractable while still providing enough
opportunities for forecast merging. In practice, there are many more O&Ds traversing a
single leg (more than 500 in our data set), however many of them are so small that the
probability of having a passenger from that O&D on a particular flight is almost zero.
The capacities of the feeder flights are large enough that they have no limiting influence
during optimization and can therefore be considered infinite for all practical purposes.

We analyze two distinct scenarios: “continental” and “intercontinental” where the
trunk legs are continental or intercontinental flights, respectively. Note that the con-
tinental scenario therefore contains both continental and intercontinental traffic, while
the intercontinental scenario only contains intercontinental traffic. Therefore, the band
of price elasticities is expected to be wider in the continental than the intercontinental
case.

The UKF is exclusively used to estimate demand according to the conclusions from
chapter 6.

Passenger Volume Distribution

To find the variation in price-sensitivity and passenger volume over the O&Ds, we an-
alyzed real-world O&D data from two outbound flight legs for the complete year of
2012, a continental and an intercontinental leg. We found a total of 536 and 961 O&Ds
traversing those two legs, respectively. Figure 7.1 shows the distribution of passenger
volume over these O&Ds, excluding the local O&D which accounts for roughly two thirds
of all passengers on the continental leg and one third on the intercontinental leg. Still,
even without local traffic, the distribution of passenger volumes is highly uneven, with
few large O&Ds and many small O&Ds. In fact, on the majority of O&Ds there is on
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Figure 7.1.: Distribution of passenger volume over the O&Ds traversing a single leg, by
type of leg, excluding the local O&D; data from 2012.

average less than one booking per departure, underlining the prevalence of the issue of
small numbers for a typical airline network.

In the simulation scenario, we keep the share of local traffic exactly as in the data and
then sample 29 O&Ds from the total set of O&Ds and use their relative passenger vol-
umes. The sampling is deterministic, selecting every sixth O&D until the total number
of 29 is reached. The smallest O&D in the simulation then has a booking probability
of about 1 in 1000, such that we expect about one booking on that O&D over all 10
replications of the 100 simulation runs. Consequently, selecting even smaller O&Ds in
addition to the present ones should only have a negligible impact on our simulation
results. Nevertheless, our sampling of O&Ds tends to exaggerate O&D size in our sim-
ulation, such that small number effects in real life could be even more pronounced than
in our simulation.
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Figure 7.2.: Distribution of approximate price-sensitivity parameter over the O&Ds
traversing a single continental leg, split by O&D traffic type and leg type;
the figure shows a density estimate of the original data with each O&D
weighted by its passenger volume; data from 2012.

Price-sensitivity Distribution

The available data set also includes average revenue per passenger for each O&D. Using
the same method as in section 5.4, we computed approximate price-sensitivity param-
eters from that. The distribution of these, shown as a density estimate weighted by
passenger volume, is plotted in figure 7.2. Since a different base price is used for inter-
continental traffic, the data has been split in intercontinental traffic and in domestic and
continental traffic. While the peak of the distribution is roughly Gaussian, it has a fat
right-tail, which is especially pronounced for the intercontinental case.

The available data does not include the booking horizon dimension. We therefore
compute a price-sensitivity factor for each O&D, which is the quotient of the O&Ds price-
sensitivity parameter over the average of all O&Ds. The same deterministic sampling of
O&Ds as above is used to determine price-sensitivity factors for each of the 30 O&Ds in
the simulation. These factors are then applied to the price-elasticity curve from section
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Figure 7.3.: Relative estimation error
√
MSE(x)

E(x)
of price elasticity parameters over O&Ds

and by type of trunk leg; O&Ds are sorted by size in descending order;
data points represent the mean of ten independent trials; smoothed line is
a visual aid.

5.4 to yield the final price-sensitivity parameters for each O&D in the simulation.
Both, the volume and the elasticity parameters defined here are merely initial values

for the first departure. Subsequent values are again the realizations of an AR(1) process
as described in section 4.3 with the parameters from section 5.4.

7.2.2. Simulation Results

Figure 7.3 shows the relative estimation error of the price elasticity parameters over
the 30 O&Ds and by type of trunk leg. The data points represent the mean of ten
independent trials and the smooth line has been added as a visual aid. We define
relative estimation error as the square-root of mean-squared error divided by the mean
of the parameter. The measure is as such related to the relative standard deviation and
is invariant under scale or unit transformations. Estimator efficiency which was used
in the previous chapter to gauge estimation performance is inadequate for the purposes
of this study: the effect of small numbers can not be seen in the estimator efficiency
measure (see equation 4.21) since numerator and denominator are influenced in the same
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Figure 7.4.: Percentage revenue loss compared to true parameter revenue over O&Ds
and by type of trunk leg; O&Ds are sorted by size in descending order:
data points represent the mean of ten independent trials: smoothed line is
a visual aid.

way.
Figure 7.3 confirms the prediction from theorem 1 that estimation error rises signif-

icantly with smaller O&D size. The relative estimation error is about 5 and 12 times
larger for the smallest O&D compared to the largest O&D for the intercontinental and
continental trunk legs, respectively. Moreover, with estimation errors over 100%, achiev-
ing optimal revenue results seems highly unlikely.

This manifests itself in figure 7.4 which depicts relative revenue loss compared to the
true parameter revenue over O&Ds. The relative gap between the simulated revenue
and the true parameter revenue becomes larger with decreasing O&D size. For both
scenarios, revenue loss is around 30% for the smallest O&Ds, which represents a very
significant revenue loss in the practice of revenue management. Since this loss is concen-
trated on the smallest O&Ds however, the overall revenue loss is much smaller. It totals
to 1.96±0.34% and 1.89±0.39% over all O&Ds for the intercontinental and continental
scenarios, respectively3. Given that the revenue loss in the single O&D scenarios of
chapter 6 was much smaller at roughly 0.3% for the UKF, the effect of small numbers

3The ranges mark the bounds of the 95% confidence interval.
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7. Quantifying the Problem of Small Numbers

causes a loss of revenue of more than 1.5% in our simulation study.

7.3. Chapter Conclusion

The practitioners’ intuition on the problem of small numbers is clearly supported by
theorem 1 and our simulation results. Theorem 1 suggests that this issue arises for
customer choice parameters, in particular. So, while O&D-based revenue management
systems with independent demand face data sparsity as well, the negative impact of
small numbers really only arises with the introduction of choice-based demand models.
It has been observed that the adoption of choice-based revenue management systems
has been reluctant, even though they have been discussed in the research community for
numerous years and its revenue potential has been shown in multiple simulation studies
(Weatherford & Ratliff 2010). The problem of small numbers may well be one of the
reasons for this.

Unfortunately, theorem 1 tells us that the problem of small numbers cannot be solved
by simply finding a better estimation method. Strictly speaking, the problem of small
numbers cannot be solved at all, but it can be, at least partially, avoided. In the following
chapter, we propose a forecast merging or clustering method that increases the passenger
volume per elasticity estimate by merging the information from multiple O&Ds. We will
show that this can mitigate the problem of small numbers to a great extent.
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In chapter 7 on the problem of small numbers, we showed that estimation errors for
customer choice parameters become arbitrarily large as the overall market volume de-
creases. Moreover, a simulation study revealed that this reduction in forecast quality
leads to a measurable loss in overall revenue. In this section, we aim to mitigate this
problem by merging multiple individual estimates to form a single new estimate. The
objective is to reduce the overall mean squared estimation error as far as possible and
thus regain lost revenue.

8.1. Multiple Levels of Clustering and Aggregation

For typical dependent demand models, estimation will be the computationally most in-
tensive step. If computational tractability was of no concern, no clustering or aggregation
would be required: the estimation procedure would read in all booking events (Passen-
ger Name Records) and create a demand estimate for the airline’s complete network.
A mixture model would help reduce the estimation error for O&Ds with low passenger
volume. However, this overall estimation problem would have billions of parameters and
millions of observations. Reliably finding the global optimum in the likelihood function
of such a problem seems intractable. Therefore, in practice, the estimation problem is
split into a large number of smaller problems and sales data is often aggregated to a
certain level. We call each of these smaller estimation problems an estimation cluster.
In our simulation study, each O&D is a separate estimation cluster, in line with airline
practice (Boyd & Kallesen 2004). Figure 8.1 illustrates the structure of this approach.

By dividing the problem into smaller sub-problems, the estimation step becomes
tractable, however some drawbacks come attached. First, information is lost when ag-
gregating bookings and availability, that is when the “depth” of the data is reduced.
Intuitively, when the bookings of several different availability situations get aggregated,
the information of which number of bookings happened under which particular availabil-
ity situation is lost. This can be illustrated with the Fisher measurement information
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Figure 8.1.: Demand estimation in real-world applications: the global demand estima-
tion problem is partitioned in many small and independent sub-problems to
keep it computationally tractable.

matrix:

Msep = E

[∑
i

(∇xhai,i(x))(∇xhai,i(x))T

hai,i(x)

]

≥ E

[
(
∑

i∇xhai,i(x))(
∑

i∇xhai,i(x))T∑
i hai,i(x)

]
= Magg

(8.1)

where Msep is the measurement information matrix when bookings bi are observed sepa-
rately for each availability situation ai and Magg is the measurement information matrix
when only the sum of bookings

∑
i bi over all availabilities ai is known. Note that the

act of aggregating the observations simply switches the order of summation and di-
vision/multiplication in the equation. Intuition strongly suggests that the inequality
Msep ≥Magg holds, because aggregating observations should never increase the amount
of information in the data. A formal proof is given in section 10.3 of the appendix. In
practice, a reasonable balance between information content, computational tractability
and data storage requirement will have to be found. The properties of the Fisher mea-
surement information matrix reported above could potentially guide such a trade off.
This is however not in the scope of this work.

Instead, we focus on the second issue: there is no information exchange between
estimation clusters. In a real-world airline network, many markets will have similar cus-
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Figure 8.2.: Introduction of the proposed forecast merging step between estimation and
optimization to re-enable a simple form of information exchange between
estimation clusters.

tomer choice characteristics. As evident from figure 7.2, the support of the distribution
of price elasticity over O&Ds is much smaller than that of O&D volumes, with most
price elasticities in the same order of magnitude and many of them concentrated around
the modal value. In the theoretical, complete estimation problem prior knowledge about
this similarity can be used to improve the individual estimates. This ability is lost when
estimation takes place individually for each estimation cluster, since each of the estima-
tion sub-problems is assumed to be independent from the others. In the remainder of
this section, we introduce a heuristic to re-enable a simple form of information exchange
between estimation clusters by merging the estimates from several estimation clusters.
We call a set of merged estimation clusters a ”merging cluster”. Figure 8.2 is a modified
version of figure 8.1, introducing the additional forecast merging step between estimation
and optimization.

8.2. Background

Combining separate forecast methods to form a new, more accurate combined forecast
has been studied extensively since the seminal article by Bates & Granger (1969). D. W.
Bunn (1988) and Clemen (1989) provide reviews of the then current literature, the latter
being the more extensive and including more than 200 annotated references. Timmer-
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mann (2006) has surveyed the field more recently. Our work in chapter 8 is related
insofar as the goal of improving forecast accuracy is identical and much of the involved
equations are also the same. However, in our work, all forecasts come from the same
forecasting method but have been made for separate, yet related entities. Furthermore,
these forecasts are multi-variate and we wish to combine them only partially.

Our methodology is related to the article of Bates & Granger (1969). They propose
a linear combination of individual forecasts to form a new, more accurate combined
forecast. The weighting factors that they chose are such that the combined forecast has
minimum variance. We start with a different interpretation, namely that of forming a
conditional distribution, however the resulting factors are identical to those of Bates &
Granger (1969). While we explicitly use the information on error variances available, we
ignore their correlation. This is justified by D. Bunn & Topping (1984) who show through
theoretical considerations and a simulation study that ignoring the error correlation
between the combined forecasts can actually improve forecast performance when sample
size is small. This is confirmed by Winkler & Makridakis (1983) whose results indicate
that while variances should be considered during forecast combination, error correlations
should not.

Anandalingam & Chen (1989) show that combining forecasts with a joint multivariate
normal error distribution can be equivalent to Kalman filtering. Since our individual
estimates already come from variants of the Kalman Filter, we can regard our overall
forecasting technique, including estimation and combination, as a hierarchy of filters.

Most of the literature is focused on forecasting economic time series. Lemke & Gabrys
(2008) and Lemke et al. (2013), however, propose the use of forecast combinations in
airline revenue management, to forecast demand and cancellations. Again, in contrast
to our work, they combine forecasts from different forecasting methods.

Both, Clemen (1989) and Lemke & Gabrys (2008) note that combined forecasts almost
universally outperform single forecasts in empirical studies, even when simple combina-
tion rules - such as the simple average - are used.

Duncan et al. (1993) describe an approach to forecasting a set of univariate time-
series, which are related through a hierarchical model: they assume that the parameters
of the individual time-series are drawn from a common, Gaussian distribution. Duncan
et al. propose a method that uses a variant of the Kalman Filter (a multi-state Kalman
Filter) to estimate each individual time-series and then adjusts the individual estimates
towards the overall mean. The size of the adjustment is dependent on the variance of
the individual estimates and the variance between them.
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Our approach differs from that of Duncan et al. (1993), since in our model the low-level
time-series are already multivariate. Additionally, we do not believe that all forecasted
entities are related to the same degree. Instead, we assume that some entities are known
to be more closely related than others. This fact suggests the use of a clustering method,
which we propose in this chapter. Within each cluster, we follow the general approach of
Duncan et al. (1993), in the sense that we start with the individual estimates and then
apply a relatively simple correction to them that depends on their respective variances.

8.3. Our Method for Forecast Merging

In this section, we present a method for merging estimates from different estimation
clusters. Initially, the algorithm performs a hierarchical clustering of the estimation
clusters to form a set of merging clusters. This hierarchical clustering is based on the
expected reduction in mean-squared estimation error. Estimation clusters that offer
the highest such reduction are merged first, continuing to the point where no further
reduction can be expected.

Neither hierarchical clustering nor forecast merging are entirely new concepts. The
novelty of this approach comes from the context to which it is applied and from combin-
ing the two. Traditionally, forecasts from different forecasting methods are combined,
and in that case usually all available forecasts are used. In our case, forecasts come from
the same estimation method but from a range of related, yet not identical entities. Due
to that, combining all forecasts into a single one is certainly not ideal. Therefore, we add
the hierarchical clustering procedure to determine which forecasts to merge and which
to keep separate. While hierarchical clustering is not new in itself, we develop a new
linkage criterion that determines the sequence in which clusters are formed. Since the
objective is to reduce mean-squared estimation error as much as possible, this linkage
criterion is defined such that those forecasts are merged first, for which the reduction in
mean-squared error is highest.

As described below, computing the expected reduction in mean-squared estimation
error requires the use of external data sources, such as long-term time-series and expert
opinions for best results. We therefore assume that, in practice, this clustering hierarchy
is determined offline and held constant for longer periods of time. To model this in
the simulation, the clustering hierarchy is computed at the start of the simulation using
perturbed true data and then held fixed for the remaining simulation runs. Subsequently,
we use the new current demand parameter estimates and covariances and merge them
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in the order prescribed by the initial clustering hierarchy.
Our forecast merging algorithm requires an estimate of the demand parameters for

each estimation cluster in the form of a multivariate Gaussian distribution, given by
its parameters: mean x and covariance P . When using a Kalman filtering method for
estimation these parameters are directly provided by the estimation procedure. For other
estimation methods, the provided posterior distribution may not be Gaussian (e.g. the
Particle Filter) or no distributional information may be provided at all (e.g. Maximum-
Likelihood Estimation). In the former case, we can still find a Gaussian distribution that
approximates the provided posterior distribution as good as possible. If no distributional
information is available at all from the estimation method, the PCRB can be a last resort
to find an approximation, assuming that the estimation method’s variance is reasonable
close to this lower bound.

In chapter 6, the UKF outperforms all other estimation methods, except MLE, for
which results are mixed. Since the UKF directly delivers the required Gaussian dis-
tribution, we prefer it over MLE and exclusively use it for this chapter’s simulation
study.

The remainder of this section is organized as follows. First, we present the merging
procedure itself, that is how to merge two clusters given the mean and covariance of
their parameter estimates. Then, we develop a criterion for determining whether a given
merger is beneficial in terms of mean-squared error, by comparing the errors before and
after merging. Finally, we describe the hierarchical clustering algorithm based on this
criterion.

8.3.1. Merging two Estimation Clusters A and B

Assume we have the demand estimates (x̂A, PA) and (x̂B, PB) for estimation clusters A
and B, respectively. Additionally, both estimates can be decomposed into a volume part
x̂vol, Pvol, a customer choice part x̂choice, Pchoice and the cross-covariance between the two
Pcross . The simulation uses the Hybrid choice model as in the previous chapters. Here,
the price elasticity parameter is the customer choice part x̂choice, whereas price-sensitive
demand volume and product demand is grouped into the volume part x̂vol.
We now consider the joint distribution of both estimates, conditional on x̂Achoice =

x̂Bchoice. That is, we add additional information by assuming that the choice parameters
for the two estimation clusters are in fact equal. The resulting conditional distribution is
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again a multivariate Gaussian distribution, with parameters (see e.g. Kotz et al. 2004):

x =

 x̂Avol
x̂Bvol
x̂Achoice

+

 −P
A
cross

PB
cross

−PA
choice

 · (PA
choice + PB

choice

)−1 · (x̂Achoice − x̂Bchoice) (8.2)

P =

 PA
vol 0 PA

cross

0 PB
vol 0

(PA
cross)

T 0 PA
choice



−

 −P
A
cross

PB
cross

−PA
choice

 · (PA
choice + PB

choice

)−1 · ( −(PA
cross)

T (PB
cross)

T −PA
choice

) (8.3)

For subsequent merging steps, only the last block column of P is required, such that
only those part needs to be updated in the actual implementation. Although the inter-
pretation is slightly different, equation 8.2 is the straight-forward generalization of the
forecast combination procedure of Bates & Granger (1969) to multi-variate forecasts.

Implicitly, the correlation between both estimates is assumed to be zero. This as-
sumption is valid if the observed availabilities and sales are independent for the two es-
timation clusters. Of course, strictly speaking, network-based availability optimization
and customer choice behavior between separate itineraries introduce such dependencies.
Especially the feedback loop between optimization and subsequent estimation quality
is very complex (see section 4.1.4) and therefore hard to foresee. Thus, our simulation
study will have to reveal whether the assumption made here is reasonable.

8.3.2. Comparing the Mean-squared Errors before and after

Merging

Equation 8.3 shows that the estimator variance will always be reduced by the merging
operation, since all elements on the diagonal of P become smaller. In general however,
the true choice parameters xAchoice and xBchoice are not identical. If we produce a single
estimate for both, this estimate is necessarily biased when compared to one of the true
sets of choice parameters individually. Hence, mean-squared error will reduce during the
merging operation if the reduction in variance outweighs the newly introduced bias.

Before any merging operations took place, each estimated parameter vector x̂Achoice
corresponds to exactly one true parameter vector xAchoice. This is no longer true, after
the first estimation clusters have been merged. Then, the estimated parameter vector
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x̂Achoice of a merging cluster corresponds to multiple true parameter vectors, namely to
all true parameter vectors of the constituent estimation clusters. We write this set of
true parameter vectors as {xichoice : i ∈ A} with cardinality |A|. All of these have to be
considered when evaluating the mean-squared error before and after merging..

Formally, the mean-squared error for the choice parameters of estimation cluster A
before merging is

MSEA
choice,1 = E

[∑
i∈A

(x̂Achoice − xichoice)2
]

= |A| · PA
choice +

∑
i∈A

E[x̂Achoice − xichoice]2.
(8.4)

After merging, the mean-squared error for estimation cluster A becomes

MSEA
choice,2 = E

[∑
i∈A

(
x̂Achoice − PA

choice · F · (x̂Achoice − x̂Bchoice)− xichoice
)2]

= MSEA
choice,1 + |A| · PA

choice · F · E
[
(x̂Achoice − x̂Bchoice)2

]
· F · PA

choice

− 2
∑
i∈A

E
[
(x̂Achoice − xichoice)(x̂Achoice − x̂Bchoice)T

]
· F · PA

choice

(8.5)

where F =
(
PA
choice + PB

choice

)−1 and x2 = xxT . To simplify further, note that

E
[
(x̂Achoice − x̂Bchoice)2

]
= PA

choice + PB
choice + E

[
x̂Achoice − x̂Bchoice

]2 (8.6)

= F−1 + E
[
x̂Achoice − x̂Bchoice

]2 (8.7)

and – given x̂Achoice and x̂Bchoice are independent – that∑
i∈A

E
[
(x̂Achoice − xichoice)(x̂Achoice − x̂Bchoice)T

]
= |A| · PA

choice + |A| · E[x̂Achoice]
2 − |A| · E[(x̂Achoice)(x̂

B
choice)

T ]−
∑
i∈A

xichoiceE[x̂Achoice − x̂Bchoice]T

= |A| · PA
choice +

∑
i∈A

E[x̂Achoice − xichoice]E[x̂Achoice − x̂Bchoice]T .

(8.8)

Here, we further assume that the estimated parameter vector x̂Achoice is unbiased when
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compared to the average of all true parameter vectors:

E[x̂Achoice −
1

|A|
∑
i∈A

xichoice] =
1

|A|
∑
i∈A

E[x̂Achoice − xichoice] = 0 (8.9)

In general, this is only approximately true, since the merged estimate is a weighted aver-
age of the individual estimates and not the simple average required here. Nevertheless,
we believe this is a valid approximation here on the basis of our simulation results.

Finally, we have a compact expression for MSEA
choice,2:

MSEA
choice,2 = MSEA

choice,1 + |A| · PA
choice · F · E

[
(x̂Achoice − x̂Bchoice)2

]
· F · PA

choice

− |A| · PA
choice · F · PA

choice

(8.10)

Now consider the difference MSEA
choice,1 −MSEA

choice,2 between the two values. If this
difference is positive, i.e. a positive definite matrix, then merging the two estimation
clusters will reduce the mean-squared error of estimation cluster A. This difference is

∆A
MSE = MSEA

choice,1 −MSEA
choice,2

= |A| · PA
choice ·

(
F − F · E

[
x̂Achoice − x̂Bchoice

]2 · F) · PA
choice

(8.11)

The positive term in equation 8.11 corresponds to variance reduction and the negative
term to increased bias. We will use this difference to decide which estimation clusters
should be merged.

8.3.3. Initial Clustering

The above discussion suggests the trace of ∆A
MSE + ∆B

MSE, tr(∆A
MSE + ∆B

MSE), as a
criterion for clustering, since only a matrix with a positive trace can be positive-definite.
The value of this criterion may change after each departure. However, as argued in
the beginning of this section, we want to find a stable clustering that can be held fixed
over many departures. Therefore we need to know if merging two estimation clusters
is beneficial in the long run. To do this, we first replace the covariance matrix PA

choice

by the estimated steady-state PCRB (see section 6.4.2) in equation 8.11. Assuming
unbiased estimates and an efficient estimation procedure, the steady-state PCRB equals
the steady-state covariance matrix.
Additionally, we need a value for E

[
x̂Achoice − x̂Bchoice

]
. In practice, one would use a

secondary source of information to estimate this difference, such as long-term time-series
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or expert opinions. We observed in section 5.4 that the real-world time series on price
sensitivity showed a negative auto-correlation in the long-term. This negative auto-
correlation suggests that the time-series is stationary in the long term, which in turn
justifies using the long-term average to approximate E

[
x̂Achoice − x̂Bchoice

]
. This can be

combined with expert opinions on the similarity or dis-similarity of markets. Numerous
approaches exist in the literature to combine expert forecasts with other, data-driven
estimates (for an overview see Clemen 1989). Boyer (2010) explores using various re-
gression techniques to predict willingness-to-pay from overall market properties, such as
whether there is low-cost competition, the share of business passengers, etc. However, a
detailed treatment of this issue along with a comprehensive empirical study is a research
project in itself and outside the scope of this thesis. We do suggest future research on
this topic.

In our simulation study, we have no secondary sources of information. Instead we use
the true values xA0,choice and xB0,choice at the beginning of the simulation and perturb the
squared difference by a multiple of the time-evolution covariance matrices QA

choice and
QB
choice:

E
[
x̂Achoice − x̂Bchoice

]2
=
(
xA0,choice − xB0,choice

)2
+m · (QA

choice +QB
choice). (8.12)

The matrices QA
choice and QB

choice are those blocks of the time-evolution covariance matri-
ces QA and QB (see section 4.3), which correspond to the customer choice parameters.
Intuitively, equation 8.12 corresponds to a situation, where we knew the exact parame-
ters at t = 0 and then these vectors changed by m one-step standard deviations. In the
simulation, we use m = 75.

With that, the initial clustering algorithm proceeds as follows: first, compute dAB =

tr(∆A
MSE + ∆B

MSE) for all estimation clusters A and B. Then merge those estimation
clusters A and B with the highest dAB to form a merging cluster C, using equations
8.2 and 8.3. With the merged estimates for merging cluster C, compute dAC for all
estimation clusters A. Keep merging and updating d until all d’s are negative. Then
stop and record the resulting clustering hierarchy for use at all future departures.

Our clustering method is an agglomerative hierarchical clustering (see e.g. Hastie et al.
2009, p. 520ff.) with a custom linkage criterion. This linkage criterion is the maximum
reduction in mean-squared error. The resulting hierarchy is incomplete, since it stops at
some point before creating a single, all-encompassing cluster, namely when no reduction
in mean-squared error is possible. It would be feasible to complete the clustering when
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allowing for increases in mean-squared error; this seems of little practical use though.

8.3.4. Merging Estimates

After each estimation step, the estimates are merged in the order of the clustering hi-
erarchy determined during the initial clustering step. This is done using the parameter
values x̂choice and the covariance Pchoice from the estimation method, again using equa-
tions 8.2 and 8.3. The merged estimates are finally used to compute the conditional
demand matrices that are passed on to the optimizer. For history building though, the
original un-merged estimates are kept, since the merging step might introduce undesir-
able biases on the estimation cluster level. Feeding those biases back into the estimation
algorithm could have undesirable consequences on its performance.

8.4. Simulation Study

Simulation setup is identical to the one in section 7.2.1, however here we additionally
implemented our Forecast Merging procedure described above. The results from the
previous chapter serve as the benchmark for the results in this chapter. As noted earlier,
an initial clustering is performed at the beginning of each simulation using the estimated
steady-state PCRB from section 6.4.2 and perturbed demand parameters according to
equation 8.12. Then, in each of the 100 runs of a simulation, estimation clusters are
merged according to section 8.3.4.

The forecast merging algorithm generated a total of five merging clusters for both
scenarios, with 2-12 O&Ds per cluster. Figure 8.3 shows the individual merging steps in
the form of dendrograms. Mergers marked by a lower horizontal line happen earlier in
the merging process and promise a higher reduction in mean-squared error than mergers
with a higher horizontal line. In total, the merging algorithm expected reductions in
mean-squared error for the elasticity parameter of 0.101 and 0.142 which is reasonably
close to the observed reduction in the simulation of 0.126 and 0.134, respectively. This
helps justifying the assumptions made in the derivation of the merging algorithm.

Figure 8.4 shows the percentage change in mean-squared error when forecast merging
is applied. The data is split by type of demand parameter and type of trunk leg. The
improvement in mean-squared error is most pronounced (more than 95%) for the elas-
ticity parameter. Qualitatively, this is the expected result, since the merging algorithm
focuses on that number and because the PCRB suggests that the elasticity parameter
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Figure 8.3.: Dendrograms of the forecast merging operation by type of trunk leg; the
expected reduction in mean-squared error from the merging operation is
shown on the y-axis; O&Ds are numbered by passenger volume.
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Figure 8.4.: Percentage change in mean-squared error due to forecast merging by type
of demand parameter and type of trunk leg; the boxes represent the mean
value and its 95% confidence interval.

is the one that can benefit from a larger number of observations.
Interestingly, the product volume parameters also benefit significantly from the merg-

ing operation, while price-sensitive volume parameters remain largely unchanged. Corre-
lations in the parameter estimates may lead to adjustments of non-elasticity parameters
during forecast merging. If there are strong correlations between two parameters, im-
proving the accuracy of one will also improve the accuracy of the other.

Revenue loss in percent compared to the revenue under a perfect forecast is shown
in figure 8.5. Without forecast merging, we observe a revenue loss of about 2%. This
number is much higher than the revenue loss from section 6.5.2 where we had only one
O&D in the scenario. Without forecast merging, the increased number of O&Ds but
same total volume reduces the overall revenue due to the effect of small numbers. With
the help of forecast merging, however, revenue loss goes back down to about 0.25%,
which is roughly the value observed in section 6.5.2 where data sparsity issues were not
present.
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Figure 8.5.: Revenue loss in percent compared to true parameter revenue with and with-
out forecast merging, by type of trunk leg; the boxes represent the mean
value and its 95% confidence interval.

Figure 8.6 shows relative estimation errors for the elasticity parameters. The circles
and the solid line represent results without forecast merging, while triangles and the
dashed line are results with forecast merging. O&Ds are sorted by initial passenger
volume. Even though the data is relatively noisy at this level, there is a clear and
significant reduction in forecast error over all O&Ds when forecast merging is enabled.
This reduction is greatest for the smallest O&Ds on the right, but it also exists for
the larger O&Ds to the left. With forecast merging, a small number effect is barely
noticeable.

Figure 8.7 plots revenue loss over O&Ds compared to the revenue under a perfect
forecast. Again, points and the solid line represent data without forecast merging, while
triangles and the dashed line show data with forecast merging. The improved perfor-
mance due to forecast merging translates from forecast accuracy to revenue. Revenue
increases for almost all O&Ds, with the largest relative increases for the smallest O&Ds
on the right. The effect of small numbers, so clearly visible without forecast merging,
is significantly reduced for the intercontinental scenario and almost eliminated for the
continental scenario.

Note however, that care has to be taken interpreting figure 8.7. An improved revenue
management system need not necessarily increase revenue on each O&D. In fact, a good
O&D revenue management system will deliberately reduce availability and thus revenue
for some O&Ds for the benefit of other O&Ds and total revenue. Figure 8.6 is therefore
a much better performance indicator on the O&D basis, even if mean-squared forecast
error is less tangible than revenue in general.
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Figure 8.6.: Relative estimation error
√
MSE(x)

E(x)
of elasticity parameters by O&D and

with or without forecast merging; O&Ds are sorted by size with the largest
O&D, the local O&D, first; points represent the simulation data, averaged
over ten independent demand draws, lines are a smoothed estimate of the
points and serve as a visual aid.
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8.5. Discussion of Forecast Merging

In both scenarios, forecast merging clearly improved overall revenue with high statistical
significance. The average revenue gain is about 1.75%, completely offsetting the negative
revenue impact of “small numbers”. Reassuringly, revenue increase is highest for small
O&Ds and corresponds to similar improvements in forecast accuracy. These results are
therefore very promising, demonstrating high potential revenue gains from an easy to
implement method that improves the existing forecast system. Boyer (2010) reports
revenue gains of about 1%, when moving from separate O&D forecasts to a k-means
clustering method. His method does not take estimate uncertainty into account and
is not directly minimizing forecast error, which explains why we observe a much larger
revenue gain.

Although we do not assume a particular choice model in our derivation, forecast
merging requires that the demand parameter vector can be split into a volume and a
choice part. This is essential for our method, since we expect only the choice parameters
to be similar between different O&Ds and not the volume parameters, according to our
findings in chapter 7, in particular figures 7.1 and 7.2. Moreover, motivated by theorem
1 of chapter 7 and the simulation results of section 7.2, we expect forecast merging
to only improve the accuracy of choice parameters, since only those are subject to the
small number effect. Hence, a demand model where one parameter describes aspects of
demand volume and choice simultaneously is not compatible with our forecast merging
procedure. The market-sensitive choice model of section 4.1.5 is an example of this.

This problem can be fixed, if a re-parameterization of an incompatible choice model
is possible to form an equivalent choice model with distinct parameters for volume and
choice. There is another issue however: choice parameters of different O&Ds have to
be directly comparable, i.e. similar choice behavior on different O&Ds has to imply
similar choice parameters and vice versa. Again, consider the market-sensitive choice
model of section 4.1.5 as an example. Here, we can easily imagine a re-parameterization
where we extract an overall volume parameter and express the attainable demand and
buy-down values as percentages of that overall demand. These modified attainable
demand and buy-down values can then legitimately be considered choice parameters.
However, these values do not only depend on customer behavior, but also on prices and
restrictions. These are rarely the same between separate O&Ds such that the associated
choice parameters are not necessarily the same even if customer behavior is identical. In
fact, the whole structure of the buy-down graph could be different. The problem here is
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that the market-sensitive choice model does not describe customer choice behavior per
se, but the result of customer choice behavior interacting with the airline’s offerings. In
conclusion, we require a choice model that describes choice behavior itself, such that
choice parameters are comparable between O&Ds.

In the simulation, we use the Hybrid choice model of section 4.1.5, which fulfills
both criteria: The parameter vector can be split in volume parameters xvol, xproduct and
choice parameters xchoice. Moreover, the choice parameter is a price-elasticity parameter,
describing the customers reaction to price in relation to a base price. It is therefore not
specific to concrete sets of prices, is independent of fare restrictions and even independent
of the choice of currency. The choice parameters in the Hybrid choice model are therefore
transferable between different O&Ds.

Finally, as noted in the beginning of section 8.3, forecast merging requires the current
demand estimate as a multi-variate Gaussian belief distribution. An estimation method
that delivers exactly this, is obviously best suited to work in conjunction with forecast
merging, and it was such a method, the UKF, that was used in this simulation. The out-
put of other estimation methods can be adjusted accordingly, however, the inaccuracies
introduced by this might reduce the benefit of forecast merging.
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9. Conclusion

9.1. Summary of Findings

The central research objective of this thesis is to investigate the effect of data sparsity
on demand estimation in airline revenue management. As a prerequisite, we developed
a general model of an airline revenue system in chapter 4 at the beginning of part II of
this thesis. It defines the task of each system component and the conceptual data flows
between them, yet leaves concrete methods for optimization, demand estimation and
availability control, as well as the underlying demand model unspecified. By append-
ing this model with assumptions about demand evolution over time and a probability
distribution of bookings, we arrived at a state-space model for the demand estimation
problem. This model served as the basis to accurately formulate our ideas and algo-
rithms without the need to assume a specific revenue management methodology from
the start. It also let us clearly see and describe the scope of our methods and findings,
such as to which general class of choice models they pertain.

In chapter 5, we introduced the simulation setting that we use to evaluate our proposed
methods. While complexity is kept as low as possible by restricting the scenario to a
single compartment and a single flight, great care has been taken to model the customer
choice process as accurately as possible. This has been accomplished by calibrating the
parameters of the demand model with real world data and using true fare class prices.
This simulation model was used throughout this thesis, however we later extended this
model to include a larger flight network with a total of 30 origin-destination pairs.
Here, we again used real world data to define the relative market volumes of these 30
connections and the distribution of their price elasticity parameters. Given the strong
reliance on actual data, we believe that our simulation setup yields results that can be
confidently generalized to real world settings.

Before we were able to zoom in on the issue of data sparsity, we analyzed the problem
of demand estimation free from data sparsity issues in chapter 6. These state-space
models have been widely studied in the field of control theory. We therefore surveyed
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available methods from control theory that are applicable to our class of state-space
model. Because no exact solution to the general problem with a nonlinear choice function
is known, we proposed two heuristics that are applicable in our case and have shown
good performance in other applications: the Unscented Kalman Filter and the Particle
Filter. With a simulation study we evaluated the performance of these heuristics in a
revenue management application, comparing them to benchmark methods and to each
other. In a simulation study, we found our proposed methods to clearly outperform
two existing methods, Simple Estimation and Forecast Prediction, and to deliver similar
results as direct maximization of the likelihood function. Among each other, the UKF
lead to higher forecast accuracy and more revenue than the PF. The proposed heuristic
for Active Estimation, however, did not show a positive impact on revenues, in fact,
the effect was slightly negative in all cases. In conclusion of chapter 6 and part II, we
argue for the use of the UKF without Active Estimation, on the basis of these simulation
results and auxiliary considerations that make the UKF preferable to MLE.

In part III, we investigated the effect of data sparsity on demand estimation and how
it can be avoided. First, chapter 7 answered the question whether a problem of small
numbers exists at all and analyzes its structure. Given a demand model that separates
between demand volume and customer choice parameters, we showed analytically that
the choice parameter forecast error necessarily becomes arbitrarily large when the rate
of booking events tends to zero. This result holds regardless of the chosen estimation
method. Therefore, this problem of small numbers cannot be alleviated by selecting a
different estimation method. Only raising the number of booking events that an estimate
is based on can mitigate the negative effect. In that sense, there is a fundamental trade-
off between forecast granularity and stability that cannot be broken by finding a better
demand estimation method.

While our theoretical result is very general with regard to the set of demand models
it applies to and holds for any estimation method, it is only an asymptotic result for the
arrival rate tending to zero and furthermore makes no claim on the impact on revenue.
We therefore supplemented this result by a simulation study. We observed the expected
effect of increasing forecast error for smaller O&Ds, which led to an overall revenue
loss of almost 2% compared to 0.3% in chapter 6 where small-number effects were not
present.

In conclusion, chapter 7 showed that the problem of small numbers is an inherent
property of the demand estimation problem and has the potential for incurring a signif-
icant revenue loss in practice. In turn, developing and deploying methods that reduce
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the effect offers great potential for revenue increases.
Consequently, in chapter 8, we proposed a method to mitigate the impact of data

sparsity. Since chapter 7 showed that a different choice of estimation method cannot be
the solution and that forecast inaccuracies arise only for customer choice parameters,
we proposed a method that merges customer choice information from multiple, similar
markets. This increases the effective number of booking events that individual estimates
are based on, while keeping separate the estimation of demand volume, which is often
vastly different between markets. Our method exploits the fact that our estimation
method, the UKF, provides estimation uncertainty information and features a mean-
squared error in the same order of magnitude as its theoretical lower bound, the PCRB.

From this, we developed a hierarchical clustering algorithm that automatically stops
when no further reduction in forecast error is to be expected. In that way, our Forecast
Merging method dynamically adjusts the level of detail for demand estimation, optimiz-
ing the trade-off between granularity and stability of the forecast. In a simulation study
that uses the same setting as in chapter 7, we showed that Forecast Merging reduces the
effect of small numbers to a great extent. This is evident both in forecast error and in
revenue with revenue loss back down to the level of chapter 6 where data sparsity issues
were not present.

Moreover, it is simple to compute and the clustering hierarchy can be generated of-
fline and inspected manually before implementation. Forecast Merging is therefore a
very promising addition to the demand estimation process in practice. However, a sim-
ulation study can only ever partially reflect reality. To provide some perspective on
the applicability of our results to the real world, we summarized the assumptions and
limitations of our simulation study in the following section.

More briefly, the contributions of this thesis can be summarized in the four following
items:

1. We formulated the demand estimation and revenue optimization problem as a
state-space model. This facilitated the adaptation of state estimation methods,
originally developed in control theory, to the airline revenue management problem.
(Chapter 4)

2. We showed specifically how two such methods can be adjusted to our problem and
compare their performance to existing methods in a simulation study. (Chapter
6)

3. We introduced the “problem of small numbers”, which describes the degradation
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of forecast accuracy when the number of booking events per estimate becomes
smaller and smaller. This is shown to be an inevitable structural property of the
estimation problem and observable in a simulation. (Chapter 7)

4. We proposed a forecast merging procedure that mitigates the problem of small
numbers by selectively adjusting the level of detail for demand parameter estima-
tion. We evaluated the performance of the proposed procedure in a simulation
study. (Chapter 8)

Answering the central research question of this thesis, we showed that revenue manage-
ment systems that are both network- and choice-based, suffer from a significant negative
revenue impact of data sparsity when this issue is not accounted for explicitly. Our pro-
posed Forecast Merging procedure is one such method that addresses data sparsity and
can almost completely evade the negative revenue effect.

9.2. Limitations

In this section we review the assumptions and limitations of the simulation studies in this
thesis that affect the applicability of our results to real-world revenue management sys-
tems. These can be broadly categorized into demand assumptions, supply assumptions,
and general limitations of simulation experiments.

Demand Assumptions The simulation employs the Hybrid demand model not only
as the customer choice function in forecasting, but also to generate actual demand in the
simulation. In reality, demand will not exactly follow the Hybrid demand model, and
we chose that model not for its level of realism, but for its simplicity. Using identical
demand models in demand generation and forecasting has the advantage of isolating
the effect of sub-optimal demand parameter estimation from model misspecification.
Furthermore, the “perfect” forecast is clearly defined as the true demand parameters.
We relied on this definition throughout this thesis when computing forecast errors and
the true parameter revenue.

In a real-world airline revenue management system, the demand model will almost
never capture the full complexity of actual demand. In that sense, the demand model
will always be mis-specified to some extent. Different estimation methods might be
more or less robust towards this. Some methods may find a set of parameters that
approximates the true demand as good as possible, but this is certainly not guaranteed.
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It may even be true that some estimation methods that perform exceptionally well when
true demand follows the model are less robust to model mis-specification. The reason
is that these estimation methods heavily exploit the structure of the demand model to
achieve their performance under perfect conditions. When this structure is no longer
strictly valid, they may suffer more than less sophisticated methods.

This calls for including model mis-specification in a simulation study. Apart from the
advantages mentioned above – effect isolation and a defined perfect forecast – there is
the issue of not knowing the exact form of model mis-specification. For if the structure
of mis-specification was predictable and known, we might just adapt the demand model
accordingly. In that sense, we cannot know exactly how true demand differs from our
model. Yet, we have to define exactly this to include model mis-specification in the
simulation study, and the different choices here may lead to different relative performance
of the estimation methods.

Since a demand model can be mis-specified in myriad ways, a comprehensive sensi-
tivity analysis would be extremely time-consuming and is therefore outside the scope of
this thesis. Nevertheless, for the reasons mentioned above, it could lead to interesting
insights, especially for practitioners. We suggest such a sensitivity analysis for future
research.

Apart from defining the demand model itself, its true parameters in the simulation also
need to be specified. In a real-world airline network there are thousands of O&D markets
with different demand characteristics. Preferably, an estimation method performs well
over the complete range. A simulation study should therefore aim to cover this demand
variety. It is therefore not a priority to exactly mimic individual real-world markets
in the simulation, but instead identify the general range of parameter values and vary
the simulation demand in that range. We did just that in sections 5.4 and 7.2.1. As
summarized in table 5.1, we varied a number of demand parameters over the three
traffic type scenarios “Domestic”, “Continental” and “Intercontinental”, in addition to
overall demand volume. However, from table 5.1 it also becomes evident that many
more parameter combinations would be possible, and probably exist in a large airline’s
network. Again, this is mostly a question of simulation time. Since we did not observe
marked differences in estimation performance between our three scenarios, we considered
it unlikely that more combinations would create significant additional insight.

Supply Assumptions In contrast to real-world demand, flight schedules and pricing
structures are known and publicly posted. Thus, at least in principle, an airline’s supply,
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and that of all its competitors, can be perfectly modeled in a simulation study. Yet, this
is not necessarily desirable, as some degree of abstraction and simplification actually
increases the utility of a simulation. We discuss the general point in a little more detail
below, in the paragraph on general limitations of simulation experiments. In terms of
supply, this means that we chose to model the airline’s network as small as possible
for the research question at hand. In part II, we were mainly interested in demand
estimation performance. Since demand estimation is traditionally done separately by
O&D, the estimation problems from different O&Ds only interact very loosely through
optimization and resulting availabilities. We therefore decided that it suffices to consider
only a single O&D and flight in this case. This speeds up the simulation, reduces the
amount of produced data and therefore simplifies analysis. Then, in part III, we were
explicitly concerned with multiple O&Ds and we therefore had to include them in our
simulation. But even here, we limited the number of O&Ds to 30, which is well below
the observed number of O&Ds traversing a single flight in the real world. Again, we
believe that this number is sufficient to demonstrate the effect of forecast merging, while
still keeping simulation time and amount of data to manageable levels.

Pricing structure has also been considerably simplified. While we did use true posted
prices, we restricted ourselves to a single compartment, the economy compartment.
Furthermore, we modeled the extreme case of no fare restrictions at all. While there is
a trend to fewer restriction as argued in section 1, there is still a significant number of
fare restrictions present in many airlines’ pricing structures.

The strongest assumption on the supply side is the omission of competition. Dennis
(2010) analyzes competition in the European airline market, and finds that for non-stop
service out of their respective hubs, some network carriers have no competition on up
to two thirds of their destinations. Thus, the case of no competition is not completely
irrelevant or unrealistic. Yet, on the remaining third of destinations, plus on many
connecting markets there is at least one competitor, and other network carriers face
much more competition in general. To some degree, a monopolistic revenue manage-
ment system can handle competition: if competitor behavior is relatively static, then
its influence can be included in the customer choice function as a reduced willingness
to pay. If the competitor dynamically adjusts its prices however, then the parameters
of the customer choice function would have to change accordingly. Unless this happens
slowly and gradually, demand estimation from observed data becomes infeasible without
explicitly including the competitors behavior in the model. Extending a RM system in
such a way is no trivial task though. Apart from the necessity to forecast competitor
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demand and behavior, game theoretic aspects enter the picture. Competition was there-
fore outside the scope of this thesis. We refer the reader to Zimmermann (2013) for an
in-depth treatment of these issues.

General limitations of simulation experiments Simulations are a widely used and
accepted method to evaluate new approaches in revenue management (Frank et al. 2008).
However, any simulation is an abstraction and simplification of the real world in many
respects. This is generally an advantage, since their greater simplicity facilitates analysis
and reveals effects that would otherwise be lost in the noise and complexity of the real
world. Therefore, as Frank et al. (2008) argue, a simulation model should only be
as accurate as necessary, not as accurate as possible. Finding this level of necessary
accuracy, however, is not trivial and requires a combination of good judgement and
experience. Even then, there is never a guarantee that some aspect that was judged to
be inconsequential and therefore kept out of the simulation, is in fact a significant factor.
This is, we believe, an inherent limitation of simulation experiments.

9.3. Directions for Future Research

This thesis focuses on demand estimation when booking data is sparse, abstracting
away from other obfuscating factors where possible. This naturally leaves some open
questions that stand between our proposed methods and their application in the real
world. Furthermore, the simulation setup that we use to obtain or illustrate our results
is very specific in the demand model it assumes. Both aspects lead to a number of
interesting starting points for future research throughout this thesis which we outline in
this section.

Our proposed demand estimation methods in chapter 6 are theoretically applicable to
any type of demand function. Our simulation results, however, are based on a particular
choice of demand function – the Hybrid Demand function. As such, the conclusions
we draw about their relative performance in terms of forecast accuracy and revenue are
only valid with respect to the Hybrid Demand function, which we had mostly chosen
for its simplicity. A straight-forward extension of our work is therefore to repeat our
experiments with other demand functions. Moreover, different estimation methods might
suggest themselves for other types of demand functions. Consider e.g. a linear demand
model, such as Market-sensitive demand from section 4.1.5, for which the basic Kalman
Filter is a natural choice.
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Our simulation model is a much simplified image of the real world. While this is
desirable when we want to understand the results, and not just observe them, it also
means that additional steps have to be taken before our demand estimation methods
can be applied to the real world. For example, real world data is often inaccurate,
has seasonalities, week-day patterns and does not strictly obey a mathematical demand
model. We believe that our state-space formulation of the demand estimation procedure
offers a straight-forward path to incorporating these effects in our estimation methods.
Instead of using ad-hoc heuristics, data inaccuracies can be treated by adding additional
noise terms to the observation equation 4.11; periodic patterns can be explicitly modeled
as additional coefficients in the demand function; deviations from the analytical demand
model can be partially accounted for as in the Hybrid Demand model, by adding an
independent demand function.

At this level of detail, it becomes possible – and probably judicious – to test the de-
mand estimation methods on real world data. Unfortunately, in real world data, the
true demand parameters are not known. More accurately, they don’t even exist, given
that real demand does not follow analytical demand models exactly. Yet, comparing
actual sales data to expected bookings from the demand estimate does yield a measure
of forecast accuracy, the so-called reconstrained forecast error. While this measure can
be skewed due to the interdependence between demand estimates and observed avail-
abilities, it still gives an indication of whether a demand estimation method can capture
real demand characteristics sufficiently. Additionally, using our knowledge of demand
estimate uncertainty and booking variance, the expected value of the reconstrained fore-
cast error can be determined. An observed value that differs significantly from this
expectation would be a strong indication for model mismatch.

As mentioned in chapter 2, an additional real-time update procedure could further
improve demand estimation, by additionally updating demand parameter estimates dur-
ing the booking horizon, in the spirit of Lin (2006). This could lead to faster adaptation
of the forecast, e.g. in the case of unforeseen events.

In chapter 8, we mentioned that our Forecast Merging procedure requires some initial
estimate of customer choice similarities between markets. We suggested to combine
offline sources, such as long-term time-series and expert opinions. In our simulation
model there are no such outside sources, so we were unable to explore these options in
our setting. This is again a case where additional steps are required before our proposed
method can be applied in a real world scenario. Moreover, extensions to the demand
model, such as seasonalities, should be considered in Forecast Merging as well, since
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they suffer from small-number effects too, as mentioned in chapter 7. This could be
accomplished alongside the choice parameters, or within a separate clustering hierarchy.
Again, at this level, it is appropriate to also evaluate the method directly on real world
data.

Considering the overall revenue management process, it might be possible to use de-
mand uncertainty information provided by the UKF or PF during optimization. Since
revenue optimization is not a linear operation, there is a difference between optimiza-
tion using a complete belief distribution vs. optimization on the expected values only
(Water & Willems 1981). Therefore, an optimization method that takes demand uncer-
tainty explicitly into account might reduce the negative revenue impact of that demand
uncertainty.

Including the human revenue management analyst in the picture, an investigation into
the value of providing forecast uncertainty information is missing from the literature.
We believe that this value could be very high, given that humans are prone to be
overconfident in small number settings, and are as such not able to correctly estimate
forecast uncertainty intuitively. This has been shown by Tversky & Kahneman (1971) for
professional psychologists who should have at least a similar level of statistical training
as revenue management analysts.

We developed our methods and ideas in the context of airline revenue management.
Concerning the application to other industries, table 1.1 in the introduction shows that
our results are most readily transferable to the hotel, rental car, tour operator and
passenger railway industries, which fulfill all three of our key assumptions. Still, each
of these industries has its own distinct characteristics such that a thorough examination
and new simulation studies are needed, before any of our methods can be recommended
for implementation in one of these industries.
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10.1. Technical Details for the Unscented Kalman

Filter

10.1.1. Upper Triangular Cholesky Decomposition

The standard Cholesky decomposition of a matrix A produces a lower triangular matrix
G with GGT = A. Define the permutation

P =


0 0 1

0
... 0

1 0 0

 .

Since P is a permutation it is ortho-normal such that P−1 = P T . Since P is also
symmetric, we can further find that P = P T = P−1. Let X be the (regular) Cholesky
decomposition of PAP . Then U = PXP is upper triangular and UUT = PXPPXTP =

PXXTP = PPAPP = A.

10.1.2. Unscented Kalman Filter for Hybrid Choice Models

In this section we derive our formulation of the Unscented Kalman Filter from the
equations given by Wan & Merwe (2000).

Let U be the upper triangular Cholesky decomposition of Pt: Pt = UUT . The pa-
rameter vector x of length n can be decomposed into a linear part xL and a non-linear
part xN of length nL and nN , respectively, such that x = (xL, xN)T . Originally, there
are 2n+ 1 sigma points (as opposed to 2nN + 1):

σ0 = x (10.1)

σi = x+
√
n+ κ Ui i = 1, . . . , n (10.2)

σi = x−
√
n+ κ Ui−n i = n+ 1, . . . , 2n (10.3)
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Each sigma point can be decomposed into its linear the non-linear part:

σi = (σLi , σ
N
i )T (10.4)

Due to the fact that U is upper triangular, the non-linear part of some of the sigma points
remains unchanged: σNi = xN for i ∈ I = 0, . . . , nL, n+ 1, . . . , n+ nL. Projecting the
sigma points through the observation function yields

gi = Ha(σi) = Laσ
L
i +HN

a (σNi ) = gLi + gNi i = 0, . . . , 2n (10.5)

The main performance advantage of this formulation comes from a reduction in the
number of sigma points that leaves the numerical results unchanged. In this section, we
show that it is sufficient to consider σ0, g0 and σi, gi for i /∈ I. The σi’s and gi’s in the
main text are already renumbered, such that only the relevant ones are computed.

Define the weights

W 0
s =

κ

n+ κ
(10.6)

W 0
c =

κ

n+ κ
+ (1− α2 + β) (10.7)

W i
c = W i

s =
1

2(n+ κ)
i = 1, . . . , 2n (10.8)

Then compute the expected bookings

z =
2n∑
i=0

W i
sgi =

2n∑
i=0

W i
s(Laσ

L
i + gNi )

= La

(
2n∑
i=0

W i
sσ

L
i

)
+ gi0

∑
i∈I

W i
s +

∑
i/∈I

W i
sg
N
i

= Lax
L +

κ+ nL

κ+ n
gN0 +

1

2(n+ κ)

∑
i/∈I

gNi

= zL + zN

(10.9)
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and the booking covariance matrix

Pzz =
2n∑
i=0

W i
c(gi − z)2 +R =

2n∑
i=0

W i
c(g

L
i − zL + gNi − zN)2 +R

=
2n∑
i=0

W i
c(g

L
i − zL)2 +

2n∑
i=0

W i
c(g

N
i − zN)2 + 2

2n∑
i=0

W i
c(g

L
i − zL)(gNi − zN)T +R

(10.10)

where we use the shorthand xxT = x2 and where R is the covariance of the error
term in the measurement equation, i.e. R = diag(Ha(x)). Now consider the individual
summands in above equation:

2n∑
i=0

W i
c(g

L
i − zL)2 = La

(
2n∑
i=0

W i
c(σ

L
i − xL)2

)
LTa = La

(
2n∑
i=1

W i
c(
√
n+ κ Ui)

2

)
LTa

=
n+ κ

2(n+ κ)
La
(
2 · PL

)
LTa = LaP

LLTa

(10.11)

where PL is the upper left nL × nL block of Pt;

2n∑
i=0

W i
c(g

N
i − zN)2 =

∑
i∈I

W i
c(g

N
i − zN)2 +

∑
i/∈I

W i
c(g

N
i − zN)2

=

(
nL + κ

n+ κ
+ (1− α2 + β)

)
(gN0 − zN)2 +

1

2(n+ κ)

∑
i/∈I

(gNi − zN)2

(10.12)

2
2n∑
i=0

W i
c(g

L
i − zL)(gNi − zN)T = 2La

∑
i∈I

W i
c(σ

L
i − xL)(gN0 − zN)T

+ 2La
∑
i/∈I

W i
c(σ

L
i − xL)(gNi − zN)T

=
1

n+ κ
La
∑
i/∈I

(σLi − xL)(gNi − zN)T

(10.13)
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Finally, consider the demand-booking cross-covariance

Pxz =
2n∑
i=0

W i
c(σi − x)(gi − z)T =

2n∑
i=0

W i
c(σi − x)(gLi − zL)T

+
∑
i∈I

W i
c(σi − x)(gN0 − zN)T +

∑
i/∈I

W i
c(σi − x)(gNi − zN)T

=
1

2(n+ κ)

2n∑
i=1

(σi − x)(σLi − xL)TLTa +
1

2(n+ κ)

∑
i/∈I

(σi − x)(gNi − zN)T

= PNL · LT + PxzN

(10.14)

where PNL is the left-most n× nL block of Pt. Now all final equations only require σ0,
gN0 and σi, gNi for i /∈ I. Re-indexing i, such that the required indices are in consecutive
order, and renaming gN to g yields the equations from the main text.

10.2. Data Analysis: Additional Charts
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Figure 10.1.: Lag-k variances of elasticity estimate for the ten largest continental routes;
fbase = 100
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Figure 10.2.: Lag-k variances of elasticity estimate for the ten largest domestic routes;
fbase = 100
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Figure 10.3.: Lag-k variances of volume estimate for the ten largest continental routes;
fbase = 100
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Figure 10.4.: Lag-k variances of volume estimate for then ten largest domestic routes;
fbase = 100

10.3. Fisher Information: Aggregating Observations

In this section we show that the inequality in

Msep = E

[∑
i

(∇xhai,i(x))(∇xhai,i(x))T

hai,i(x)

]

≥ E

[
(
∑

i∇xhai,i(x))(
∑

i∇xhai,i(x))T∑
i hai,i(x)

]
= Magg

holds. Let m be the total number of observations and n the number of demand param-
eters. As usual, only observations with expected bookings hai,i(x) > 0 are considered.
Define the n×m matrix H as

H =


(∇xha1,1(x))T

...
(∇xham,m(x))T

 ,

the diagonal m×m matrix ∆ as

∆ = diag(
1

ha1,1(x)
, . . . ,

1

ham,m(x)
),

the vector a = (1, . . . , 1)T of length m and the sum σ =
∑m

i=1 hai,i(x).
The inequality above holds if the difference between the two Fisher information ma-
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trices is positive semi-definite. Using the definitions this difference can be written as

Msep −Magg = HT∆H − 1

σ
(aTH)T (aTH)

= HT (∆− aaT

σ
)H

It now suffices to show that (∆ − aaT

σ
) is positive semi-definite. First, observe that

each diagonal element is non-negative, since 1
hai,i(x)

− 1
σ
≥ 0 ⇔ hai,i(x) ≤

∑m
i=1 hai,i(x).

Second, each off-diagonal element is smaller in absolute value than the square root of
the product of its corresponding diagonal elements. Consider the off-diagonal element
at row i and column j: √

(
1

hai,i(x)
− 1

σ
)(

1

haj ,j(x)
− 1

σ
) ≥ 1

σ

⇔
√

1

hai,i(x) · haj ,j(x)
− 1

σ · hai,i(x)
− 1

σ · haj ,j(x)
+

1

σ2
≥ 1

σ

⇔ 1

hai,i(x) · haj ,j(x)
≥ (

1

hai,i(x)
+

1

·haj ,j(x)
) · 1

σ

⇔ hai,i(x) + haj ,j(x) ≤
m∑
i=1

hai,i(x)

Together, these two properties show that (∆− aaT

σ
) has the form of a covariance matrix

and is therefore positive semi-definite.
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