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Abstract

The colorful Carathéodory theorem is an existence theorem that implies several statements
on convex intersection patterns such as Tverberg’s theorem, the centerpoint theorem, the
first selection lemma, and the colorful Kirchberger theorem. Interestingly, these proofs can be
interpreted as polynomial-time reductions to COLORFULCARATHÉODORY, the computational
search problem that corresponds to the colorful Carathéodory theorem. We exploit this
existing web of reductions by developing approximation algorithms and complexity bounds
on COLORFULCARATHÉODORY that also apply to its polynomial-time descendants.

Let C1, . . . ,Cd+1 ⊂ Rd be finite point sets such that 0 ∈ conv(Ci ) for i ∈ [d +1]. Then, the
colorful Carathéodory theorem asserts that we can choose one point from each set Ci such
that the chosen points C contain the origin in their convex hull. COLORFULCARATHÉODORY

is then the computational problem of finding C . Since a solution always exists and since it
can be verified in polynomial time, COLORFULCARATHÉODORY is contained in total function
NP (TFNP), the class of NP search problems that always admit a solution. We show that
COLORFULCARATHÉODORY belongs to the intersection of two important subclasses of TFNP:
the complexity classes polynomial-time parity argument on directed graphs (PPAD) and
polynomial-time local search (PLS). The formulation of COLORFULCARATHÉODORY as a PPAD-
problem is based on a new constructive proof of the colorful Carathéodory theorem that
uses Sperner’s lemma. Moreover, we show that already a slight change in the definition of
COLORFULCARATHÉODORY results in a PLS-complete problem.

In the second part, we present several constructive results. First, we consider an approxi-
mation version of COLORFULCARATHÉODORY in which we are allowed to take more than one
point from each set Ci . This notion of approximation has not been studied before and it
is compatible with the polynomial-time reductions to COLORFULCARATHÉODORY. For any
fixed ε> 0, we can compute a set C with 0 ∈ conv(C ) and at most dεde points from each Ci in
dO(ε−1 logε−1) time by repeatedly combining recursively computed approximations for lower-
dimensional problem instances. Additionally, we consider a further notion of approximation
in which we are given only k < d +1 sets Ci with 0 ∈ conv(Ci ), and we want to find a set C with
at most d(d +1)/ke points from each set Ci . The existence of C is a direct implication of the
colorful Carathéodory theorem. Using linear programming techniques, we can solve the case
k = 2 in weakly polynomial time. Moreover, we show that COLORFULCARATHÉODORY can be
solved exactly in quasi-polynomial time when given poly(d) sets Ci that contain the origin in
their convex hulls instead of only d +1. Finally, we consider the problem of computing the
simplicial depth. The simplicial depth σP (q) of a point q ∈Rd w.r.t. a set P is the number of
distinct d-simplices with vertices in P that contain q . If the dimension is constant, we show
that σP (q) can be (1+ε)-approximated w.h.p. in time Õ

(
nd/2+1

)
, where ε> 0 is an arbitrary

constant. Furthermore, we show that the problem becomes #P-complete and W[1]-hard if
the dimension is part of the input.
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1 Introduction

Centerpoints are a generalization of the median to higher dimensions with many applications
in statistics [17]. Let P ⊂ Rd be a point set. We say a point c ∈ Rd has Tukey depth [75] τ ∈N
with respect to P ⊂Rd if all closed halfspaces that contain c also contain at least τ points from
P . The centerpoint theorem [65] guarantees that there always exists a point with Tukey depth
d|P |/(d +1)e and we call such a point a centerpoint for P . Although the computational problem
of finding centerpoints (CENTERPOINT) is well-studied, its complexity remains elusive.

In general it is coNP-complete [74, Theorem 8.8] to verify whether a given point is a center-
point. However, certain centerpoints have a polynomial-time checkable certificate. A Tverberg
m-partition of P is a partition into m ∈N sets whose convex hulls have a nonempty intersec-
tion. Tverberg’s theorem [76] guarantees the existence of a Tverberg (|P |/(d +1))-partition
and we call a point in the intersection of such a partition a Tverberg point. A Tverberg point c
is a centerpoint since every halfspace that contains c has to contain at least one point from
each element of the corresponding Tverberg (|P |/(d +1))-partition. The complexity of finding
Tverberg (|P |/(d +1))-partitions (TVERBERG) is not settled.

Related to the Tukey depth, the simplicial depth is a further notion of data depth. The
simplicial depth of a point q ∈ Rd with respect to a set P ⊂ Rd is the number of distinct d-
simplices with vertices in P that contain q . The first selection lemma guarantees that there
always exists a point with simplicial depthΩ

(
f (d)nd+1

)
, where f :N 7→R+ is a function. If d

is constant, this is asymptotically the best possible. The complexity of finding a point with
simplicial depth Ω

(
f ′(d)nd+1

)
(SIMPLICIALCENTER), where f ′ : N 7→ R+ is an arbitrary but

fixed function, is unknown.
All three computational problems, finding centerpoints, finding Tverberg partitions, and

finding points with large simplicial depth, have in common that no efficient algorithms
are known and only related computational problems have been properly categorized into
the family of complexity classes. Interestingly, by interpreting Sarkaria’s proof of Tverberg’s
theorem [69] algorithmically, it can be easily seen that all three problems are polynomial-time
reducible to COLORFULCARATHÉODORY: given d +1 sets C1, . . . ,Cd+1 ⊂Qd that all contain the
origin in their convex hulls, we want to compute a set C that contains one point from each
Ci and that also contains the origin in its convex hull. The colorful Carathéodory theorem
guarantees the existence of such a set C . The focus of this thesis is to derive new upper bounds
on the complexity of COLORFULCARATHÉODORY and hence for CENTERPOINT, TVERBERG and
SIMPLICIALCENTER. On the constructive side, we want to develop approximation algorithms
for COLORFULCARATHÉODORY that are compatible with the reductions from CENTERPOINT,
TVERBERG, and SIMPLICIALCENTER in the sense that a precise enough approximation of
COLORFULCARATHÉODORY results in approximation algorithms for the others.

1



1. Introduction

1.1. Notation and Computational Model

We denote with

R+ = {x ∈R | x ≥ 0} the set of nonnegative reals;

N0 =N∪ {0} the natural numbers with 0;

[k] the set {1, . . . ,k} and with [k]0 = [k]∪ {0}.

Throughout this thesis, symbols of vectors or points are set in boldface. The origin is
denoted by 0, the canonical basis of Rd is denoted by e1, . . . ,ed , and the all-ones vector

∑d
i=1 ei

is denoted by 1. For a set of points P = {
p1, . . . , pn

}⊂Rd , we denote by

span(P ) =
{∑n

i=1φi p i

∣∣φi ∈R
}

its linear span and the subspace orthogonal to span(P )
by span(P )⊥ = {

v ∈Rd
∣∣∀p ∈ span(P ) : 〈v, p〉 = 0

}
;

aff(P ) = {∑n
i=1αi p i

∣∣αi ∈R,
∑n

i=1αi = 1
}

its affine hull;

pos(P ) = {∑n
i=1ψi p i

∣∣ψi ∈R+
}

all linear combinations with nonnegative coefficients.
We call pos(P ) the positive span of P and we call a combination with nonnegative
coefficients a positive combination;

conv(P ) = {∑n
i=1λi p i

∣∣λi ∈R+,
∑n

i=1λi = 1
}

its convex hull;

dimP the dimension of span(P );

and we call 1
n

∑n
i=1 p i the barycenter of P .

We say a set Q ⊆ Rd embraces a point p ∈ Rd if p ∈ conv(Q) and we say Q ray-embraces
p if p ∈ pos(Q). Furthermore, we denote with intQ = {

x ∈Q |∃ε> 0 such that Bε(x) ⊆Q
}

the
interior of Q, where Bε(x) ⊂Rd denotes the d-ball with radius ε that is centered at x . Similarly,
we denote with relintQ = {

x ∈Q |∃ε> 0 such that Bε(x)∩aff(Q) ⊆Q
}

the relative interior of Q.
If not otherwise noted, the algorithms in the first part of the thesis are analyzed in the

WORD-RAM with logarithmic costs to comply with the definitions of the respective complexity
classes (see [3, Theorem 1.4]). In the second part of the thesis, the algorithms are analyzed in
the REAL-RAM [63, Section 1.4].

1.2. Descendants of the Colorful Carathéodory Theorem

Roughly 100 years ago, Carathéodory [16] proved a fundamental result about convex sets: every
point in the convex hull of a point set P ⊂Rd is also contained in a d-simplex with vertices in
P . There are several elementary proofs and we repeat here a well-known constructive proof
that leads to a polynomial-time algorithm for computing such a d-simplex.

Theorem 1.1 (Carathéodory’s theorem). Let P = {p1, . . . , pn} ⊂Rd be a set of n points.

(Convex version) If P embraces the origin, there is an affinely independent subset P ′ ⊆ P that
embraces the origin.

2



1.2. Descendants of the Colorful Carathéodory Theorem

(Cone version) If P ray-embraces a point b ∈Rd , there is a linearly independent subset P ′ ⊆ P
that ray-embraces b.

In the WORD-RAM, the set P ′ can be computed in both versions in O
(
poly(d ,n,L)

)
time, where

L is the length of the input in binary. In the REAL-RAM, we assume to be given the coefficients of
the convex combination of 0 with the points in P in case of the convex version, or the coefficients
of the positive combination of b in case of the cone version. Then, we can compute P ′ in
O

(
d 3n +n2

)
time.

Proof. The convex version can be easily reduced to the cone version as follows. Let P ⊂
Rd−1 be a 0-embracing set and let P̂ ⊂Rd denote the point set that we obtain by appending
a 1-coordinate to the points in P . Then, a linearly independent subset P̂ ′ of P̂ that ray-
embraces the point (0, . . . , 0,1)T ∈Rd corresponds to an affinely independent subset P ′ of P
that embraces the origin.

We prove the cone version by showing that if there is linear dependency among P , one point
can be removed while preserving the property that b is ray-embraced. A repeated invocation
of this argument implies the first part of the statement. First, if P is linearly independent, we
have |P | ≤ d , so assume otherwise. Let p1, . . . , pn denote the points in P and let φ1, . . . ,φn ∈R
be coefficients of a nontrivial linear combination of the origin, i.e.,

0 =φ1p1 +·· ·+φn pn (1.1)

and not all φi , i ∈ [n], are 0. We can assume without loss of generality that at least one φi is
strictly greater than 0, since otherwise we can multiply all coefficients with −1. Furthermore,
because b ∈ pos(P ), there are coefficients ψ1, . . . ,ψn ∈R+ such that

b =ψ1p1 +·· ·+ψn pn . (1.2)

Let c ∈R be a factor that is to be specified. Scaling (1.1) by c ∈R and subtracting it from (1.2),
we obtain

b =
n∑

i=1
ψi p i − c

n∑

i=1
φi p i =

n∑

i=1
ψ′

i p i ,

where ψ′
i =ψi −cφi . Let i? = argmin

{
ψi /φi

∣∣ i ∈ [n],φi > 0
}

, where ties are broken arbitrarily,
and set c =ψi?/φi? . Note that i? is well defined since there exists at least one φi that is strictly
greater than 0. Then,

∑n
i=1ψ

′
i p i is a positive combination of b that involves at most n −1

points from P . Indeed by definition of i?, we have ψ′
i? = (ψi? − cφi?) = 0 and for i 6= i?, we

have ψ′
i = (ψi − cφi ) ≥ 0.

It remains to show the running time. We begin with the WORD-RAM. In each iteration,
we compute the coefficients φi and ψi , i ∈ [n], with linear programming. Using the algo-
rithm from [4], this takes O

(
d 1.5n1.5L

)
time, where L is the length of the input in binary.

Then, the coefficients are encoded with O
(
poly(d ,n,L)

)
bits, and hence finding the point

p i? needs O
(
poly(d ,n,L)

)
time. Because there are O (n) iterations, the total running time is

O
(
poly(d ,n,L)

)
.

In the REAL-RAM, we compute in each iteration a linear dependency by Gaussian elimination
in O

(
d 3

)
time. By our assumption, we know the positive coefficients ψ1, . . . ,ψn and thus, we

3



1. Introduction

can find the point p i? ∈ P in O (n) time. Furthermore, we can compute the new coefficients
ψ′

i ∈R+, i ∈ [n] \ {i?}, from ψ1, . . . ,ψn , the coefficients of the linear dependency, and the index
i? in O (n) time. Hence, one iteration takes O

(
d 3 +n

)
time and since there are O (n) iterations,

the algorithm needs in total O
(
d 3n +n2

)
time. �

Note that while the proof of Theorem 1.1 gives a polynomial-time algorithm, Knauer et
al. [43] showed that deciding whether there exists a 0-embracing (d −1)-simplex is already
NP-complete and W[1]-hard. In addition, it is known that for any ε > 0, there is a subset
Q ⊆ P of size only O

(
1/ε2

)
with d2(0,conv(Q)) = O (1/ε). Surprisingly, the constant in the

O (·)-notation does not depend on d . There is a particularly nice proof of this result by Blum et
al. by a direct reduction to the analysis of the perceptron algorithm [13, Remark 2.8].

In 1982, Bárány [9] generalized Carathéodory’s theorem by introducing colors: instead of
only one set P that contains 0 in its convex hull, we now consider d +1 sets C1, . . . ,Cd+1 ⊂Rd

with 0 ∈ conv(Ci ) for i = 1, . . . ,d +1. We call the sets Ci color classes and we say a point p has
color i if p ∈Ci . Then, we say a set C ⊆⋃d+1

i=1 Ci a colorful choice if it contains at most one point
from each color class.1 Bárány showed that there is always a 0-embracing colorful choice.
This result is usually referred to as the colorful Carathéodory theorem [9, Theorem 2.1]. In the
same publication, he also presented a further generalization: the cone version of the colorful
Carathéodory theorem [9, Theorem 2.2]. To distinguish both versions, we refer to the first one
as just the colorful Carathéodory theorem or the convex version of the colorful Carathéodory
theorem. See Figure 1.1 for an example in two dimensions.

0

(a)
0

b

(b)

Figure 1.1.: (a) Example of the convex version of Theorem 1.2 in two dimensions. All color
classes embrace the origin and the marked points form a 0-embracing colorful
choice. (b) Example of the cone version of Theorem 1.2 in two dimensions. The
two color classes ray-embrace b and the marked points form a colorful choice that
ray-embraces b, too.

Theorem 1.2 (Colorful Carathéodory theorem [9, Theorems 2.1 and 2.2]).

1If the color classes are not pairwise distinct, a colorful choice has to be defined more carefully. We say C is a
colorful choice if it can be partitioned into d +1 sets C ′

i , i ∈ [d +1], such that C ′
i ⊆Ci and |C ′

i | ≤ 1.

4



1.2. Descendants of the Colorful Carathéodory Theorem

0

c

c i×

Φ(C ) Φ(C ′)

h−

conv(C )

conv(C ′)

Figure 1.2.: Proof of the colorful Carathéodory theorem. If the potential function is larger than
0, it can always be decreased by swapping one point with another point of the
same color.

(Convex version) Let C1, . . .Cd+1 ⊂ Rd be d +1 finite sets that each embrace the origin. Then,
there exists a 0-embracing colorful choice C .

(Cone version) Let C1, . . . ,Cd ⊂Rd be d finite sets that ray-embrace a point b 6= 0. Then, there
exists a colorful choice C that ray-embraces b.

Proof. The convex version can be reduced to the cone version by using a similar lifting as
described at the beginning of the proof of Theorem 1.1. For completeness, we sketch the
proofs of both the convex version and the cone version as presented by Bárány.

We start with the convex version. Let C , |C | ≤ d + 1, be a colorful choice of C1, . . . ,Cd+1.
Let Φ(C ) be the minimum `2-distance of a point in conv(C ) to the origin. If Φ(C ) = 0, then
0 ∈ conv(C ) and there is nothing left to show, so assumeΦ(C ) > 0. Let c be the point in conv(C )
with minimum `2-distance to the origin. Furthermore, let h− be the halfspace that contains
the origin and that is bounded by the hyperplane through c that is orthogonal to c interpreted
as a vector. Since c minimizes the distance to the origin, it is contained in a facet of conv(C ).
Note that c is not necessarily contained in the interior of a facet. Then, Theorem 1.1 implies
that there is a d-subset F ⊂ C of C with c ∈ conv(F ). Let i× be the color of the point that is
missing in F . The halfspace h− contains the origin and thus it contains at least one point
c i× ∈Ci× with color i×. Now, set C ′ = (F ∪ {c i×}). Since it contains c and a point in h−, we have
Φ(C ′) <Φ(C ). Thus, the potential function Φ can always be strictly decreased if it is strictly
larger than 0. The situation is depicted in Figure 1.2. Because there are only finitely many
colorful choices, there exists then at least one colorful choice C? withΦ(C?) = 0.

We continue with the cone version. Again, let C , |C | ≤ d , denote some colorful choice. Here,
letΦ(C ) denote the minimum distance of a point in pos(C ) to b. Similar to the above argument,

5



1. Introduction

one can show that either Φ(C ) = 0 (in which case we are done) or that Φ(C ) can be strictly
decreased by swapping one point with another point of the same color. Again, since there is a
finite number of colorful choices, this implies the statement. �

Note that Carathéodory’s theorem can be obtained directly from the colorful Carathéodory
theorem by setting C1 = ·· · =Cd+1 = P . We define the corresponding computational problem
as follows.

Definition 1.3 (COLORFULCARATHÉODORY).

(Convex version)

GIVEN d +1 sets C1, . . .Cd+1 ⊂Qd that embrace the origin,

FIND a colorful choice that embraces the origin.

(Cone version)

GIVEN a point b ∈Qd , b 6= 0, and d sets C1, . . .Cd+1 ⊂Qd that ray-embrace b,

FIND a colorful choice that ray-embraces b.

Algorithmic problems related to the colorful Carathéodory theorem have been first investi-
gated by Bárány and Onn [11] in 1997. We discuss the results in more detail in Part II.

There are several generalizations of the colorful Carathéodory theorem. Independently,
Arocha et al. [5, Theorem 1] and Holmsen et al. [37, Theorem 8] showed that it is enough if the
origin is contained in the convex hull of each pair of color classes Ci ,C j for 1 ≤ i < j ≤ d +1
to guarantee the existence of a 0-embracing colorful choice. This was further generalized by
Meunier and Deza [53, Theorem 3] who showed that a 0-embracing colorful choice already
exists if for each pair of color classes Ci ,C j , 1 ≤ i < j ≤ d+1, there exists a color class Ck , k 6= i , j ,
such that for all p ∈Ck the ray originating at p through the origin intersects conv(Ci ∪C j ) in
a point different from p . Moreover, they showed that an ever weaker assumption suffices.
Given a d-set P ⊂ Rd , we denote with h−(P ) the halfspace that contains 0 and is bounded
by aff(P ). Furthermore, we call a set Tī that contains exactly one point from color classes
C1, . . . ,Ci−1,Ci+1, . . . ,Cd+1 and no point from color class Ci an ī -traversal. Now, a 0-embracing
colorful choice exists if for all pairs of color classes Ci ,C j , 1 ≤ i < j ≤ d +1, and all ī -traversals
Tī at least one point of Ci ∪C j is contained in h−(Tī ) [53, Theorem 4]. These generalizations
form in fact a strict hierarchy in the order as presented here [53]. Note that the preconditions
of the generalizations except for the last one are polynomial-time checkable.

Theorem 1.2 itself only guarantees the existence of at least one 0-embracing colorful choice.
Let us denote by µ(d) the minimum number of 0-embracing colorful choices over all con-
figurations of color classes C1, . . . ,Cd+1 ⊂ Rd such that for all i ∈ [d +1], the set Ci has size
d +1 and embraces the origin, and such that the set {0}∪⋃d+1

i=1 Ci is in general position (i.e.,
no k + 2 points lie in a common k-flat for k ∈ [d − 1]). Bárány already showed that each
point p ∈C1 ∪·· ·∪Cd+1 is contained in some colorful 0-embracing colorful choice [9, The-
orem 2.3]. This directly implies µ(d) ≥ d +1. In 2006, Deza et al. improved the lower bound
to µ(d) ≥ 2d [29, Corollary 3.10] and gave examples where the origin is contained in only
d 2 +1 colorful choices that embrace the origin [29, Section 3.4]. They conjectured d 2 +1 to be
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1.2. Descendants of the Colorful Carathéodory Theorem

the true value of µ(d), which became known as the colorful simplicial depth conjecture. One
year later, Bárány and Matoušek [10, Theorem 1.2] proved this conjecture asymptotically by
showing that µ(d) ≥ 1

5 d(d +1). In 2014, Deza et al. [30, Proposition 5.2] proved the conjecture
for d = 4 and a year later, Sarrabezolles [71, Theorem 1] proved the conjecture for all d ∈N.

A result that can be seen as a dual to the cone version of the colorful Carathéodory theorem
is the colorful Helly theorem due to Lovász [47]. First, we shortly restate the non-colorful Helly
theorem [36]. Let C be a finite family of compact convex sets in Rd such that every subfamily
C′ ⊆ C of size d +1 has a nonempty intersection, then the complete family C has a nonempty
intersection. Now, Lovász proved the following colorful generalization.

Theorem 1.4 (Colorful Helly theorem [47]). Let C1, . . . ,Cd+1 be finite families of compact convex
sets in Rd such that for all colorful choices C = {K1, . . . ,Kd+1}, where Ki ∈ Ci for i ∈ [d +1], we
have

⋂d+1
i=1 Ki 6= ;. Then, there is a set family Ci whose sets have a nonempty intersection, where

i ∈ [d +1].

We prove Theorem 1.4 by a reduction to the cone version of the colorful Carathéodory
theorem, where we follow Bárány’s presentation. The following two lemmas are the key
component to relate both theorems. The first one enables us to approximate convex sets by
halfspaces.

K1 K2

h1 h2

h−
1 h+

1 h+
2h−

2

Figure 1.3.: Proof situation of Lemma 1.5 for n = 2.

Lemma 1.5 ([Folklore]). Let K1, . . . ,Kn ⊂ Rd , n ≥ 2, be compact convex sets with
⋂n

i=1 Ki = ;.
Then, there exist halfspaces h−

1 , . . . ,h−
n such that Ki ⊆ h−

i for i ∈ [n] and
⋂n

i=1 h−
i =;.

Proof. We first consider the case n = 2. Since both sets K1, K2 are compact convex sets,
the separation theorem [48, Theorem 1.2.4] guarantees the existence of a strictly separating
hyperplane h1 such that K1 ⊂ h−

1 and K2 ⊂ h+
1 , where h−

1 and h+
1 denote the two halfspaces

that are bounded by h1. Furthermore, since h1 and K2 are convex sets and since K2 is compact,
there exists a strictly separating hyperplane h2 such that h1 ⊂ h−

2 and K2 ⊂ h+
2 , where h−

2 and
h+

2 denote the two halfspaces that are bounded by h2. Note that h1 and h2 must be parallel.
Hence, h−

1 ∩h+
2 =; and K1 ⊂ h−

1 , K2 ⊂ h+
2 as desired. Please see Figure 1.3.
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Now let n > 2. We iteratively construct halfspaces h−
1 , . . . ,h−

j , j ∈ [n]0 while maintaining the
invariant that

Ki ⊆ h−
i for i ∈ [ j ] and

(
j⋂

i=1
h−

i

)
∩

(
n⋂

i= j+1
Ki

)
=;.

Assume we have already constructed h−
1 , . . . ,h−

j for some fixed j ∈ [n −1]0 and we want to

construct the halfspace h j+1 such that K j+1 ⊆ h−
j+1 and

(⋂ j
i=1 h−

i

)
∩

(⋂n
i= j+1 Ki

)
=;. Let K ×

j+1
denote the intersection

K ×
j+1 =

(
j⋂

i=1
h−

i

)
∩

(
n⋂

i= j+2
Ki

)

that misses K j+1. Since
(⋂ j

i=1 h−
i

)
∩

(⋂n
i= j+1 Ki

)
=;, we have K j+1 ∩K ×

j+1 =;. By the above

argument, there then exists a halfspace h−
j+1 such that K j+1 ⊆ h−

j+1 and

;= h−
j+1 ∩K ×

j+1 =
(

j+1⋂
i=1

h−
i

)
∩

(
n⋂

i= j+2
Ki

)
.

Hence, there exist halfspaces h−
1 , . . . ,h−

n such that Ki ⊆ h−
i for i ∈ [n] and

⋂n
i=1 h−

i = ;, as
claimed. �

The next lemma shows that if a set of halfspaces has an empty intersection, then the dual
point set contains a specific point in its positive span.

Lemma 1.6 ([Folklore]). Let H= {h−
1 , . . . ,h−

n } be a set of halfspaces, where each halfspace h−
i ⊂

Rd is defined as h−
i = {

x ∈Rd
∣∣ai x ≤αi

}
with ai ∈Rd and αi ∈R. Let H denote the set of points{

ai = (ai ,αi )T ∈Rd+1
∣∣h−

i ∈H}
dual to H. Then, the point b = (0, . . . ,0,−1)T is contained in

pos
(
H

)
if and only if the intersection of halfspaces

⋂n
i=1 h−

i is empty.

Proof. Assume that b ∈ pos(H). Then, there exist coefficients ψ1, . . . ,ψn ∈R+, not all 0, such
that b = ∑n

i=1ψi ai . In particular, we have
∑n

i=1ψi ai = 0 and
∑n

i=1ψiαi = −1. This directly
implies that the following system of linear inequalities

a1x ≤α1

...

an x ≤αn

is inconsistent and hence the intersection of the halfspaces h−
1 , . . . ,h−

n is empty.

Now assume that b ∉ pos(H). We show that this implies a nonempty intersection
⋂n

i=1 h−
i of

the halfspaces. By our assumption, there exists a strictly separating hyperplane

h =
{

x ∈Rd+1
∣∣∣ y T x = γ

}
, y ∈Rd+1, γ ∈R+,

with y T b > γ and y T ai < γ for i ∈ [n]. For λ ∈ [0,1], let hλ ⊂ Rd+1 denote the hyperplane{
x ∈Rd+1

∣∣ y T x =λγ}
. Choose λ ∈ [0,1] maximum such that hλ intersects pos(H) and assume

8



1.2. Descendants of the Colorful Carathéodory Theorem

for the sake of contradiction that λ > 0. Then, we have y T ai = λγ for some i ∈ [n]. Thus,
h contains the point λ−1ai ∈ pos(H), a contradiction to h strictly separating b and pos(H).
Hence, the hyperplane h? = {

x ∈Rd+1
∣∣ y T x = 0

}
contains the origin and separates b and

pos(H).
Let now y ′ ∈Rd denote the first d coordinates of y and let γ′ denote the (d +1)th coordinate

of y . Because γ≥ 0, we have y T b > 0 and hence γ′ < 0. Since y T ai ≤ 0, we have

(
y ′)T ai ≤−γ′αi =

∣∣γ′
∣∣αi for i ∈ [n].

Hence, that the point y ′/
∣∣γ′

∣∣ is contained in the intersection of all halfspaces h−
1 , . . . ,h−

n . �

Equipped with Lemmas 1.5 and 1.6, we are now ready to prove the colorful Helly theorem.

Proof of Theorem 1.4. We show the contrapositive of the statement, i.e., if the sets of each
color class Ci , i ∈ [d + 1], have an empty intersection, then there exists a colorful choice
C = {K1, . . . ,Kd+1} with

⋂d+1
i=1 Ki =;.

In a first step, we replace each color class Ci , i ∈ [d +1], by at most d +1 halfspaces as follows.
Helly’s theorem [48, Theorem 1.3.2] states we can find a subset C′

i = {Ki ,1, . . . ,Ki ,ni } ⊆ Ci , where
ni ≤ d +1, whose sets have an empty intersection. By applying Lemma 1.5, we obtain a set of
ni halfspaces Hi = {h−

i ,1, . . . ,h−
i ,ni

} with an empty intersection and each halfspace h−
i , j contains

its corresponding convex set Ki , j . Furthermore, we color the halfspaces in Hi with color i for

i ∈ [d +1]. Now, for each set of halfspaces Hi , i ∈ [d +1], let Ci =Hi ⊂Rd+1 denote the set of
points dual to Hi as in Lemma 1.6. Since each set Hi , i ∈ [d +1], has an empty intersection,
the dual set Ci ray-embraces b = (0, . . . ,0,−1)T ∈ Rd+1. We color the points in Ci , i ∈ [d +1],
with color i . Then, the cone version of Theorem 1.2 guarantees the existence of a colorful
choice C ⊂⋃d+1

i=1 Ci that ray-embraces b. Again by Lemma 1.6, the colorful choice C of dual

points corresponds to a colorful choice HC ⊂⋃d+1
i=1 Hi of halfspaces with HC =C that has an

empty intersection. Then, HC corresponds in turn to a colorful choice C ⊂⋃d+1
i=1 C′

i of convex
sets that has an empty intersection, which concludes the proof. �

Note that Helly’s theorem can be obtained from the cone version of Carathéodory’s theorem
in the same fashion as in the proof of Theorem 1.4.

A surprising application of the colorful Carathéodory theorem appears in the context of
Tukey depth. Rado [65] showed in his well-known centerpoint theorem that there always exist
a point with Tukey depth linear in the size of P , a centerpoint.

Theorem 1.7 (Centerpoint theorem [65, Theorem 1]). Let P ⊂ Rd be a point set. Then, there

exists a point q ∈Rd with Tukey depth τ≥
⌈

|P |
d+1

⌉
. �

It can be easily seen that this bound is tight: consider a regular simplex σ⊂Rd and replace
each vertex of the simplex by a “small” point cloud of size n

d+1 , where n ∈N is some multiple
of d +1. Then any point q in σ is contained in a halfspace that only contains the point cloud
of one vertex.

Teng [74, Theorem 8.4] showed that given a point set P ∈Rd and a candidate centerpoint
q ∈Rd it is coNP-complete to decide whether q is a centerpoint of P if d is not constant. For
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d = 1, a centerpoint is equivalent to a median of a set of numbers and hence can be computed
in O (|P |) time [14]. Jadhav and Mukhopadhyay [38] showed that linear time is even sufficient
in two dimensions. For d ≥ 3 fixed, the best known algorithm is by Chan [17] who showed how
to compute a point with maximum Tukey depth in expected time O

(
nd−1

)
.

As stated at the beginning, Tverberg partitions serve as a polynomial-time checkable cer-
tificate for a subset of centerpoints: Tverberg points. In recent years, this property has been
exploited algorithmically to derive efficient approximation algorithms for centerpoints [57,59].
The existence of Tverberg points is guaranteed by Tverberg’s theorem [76].

Theorem 1.8 (Tverberg’s theorem [76]). Let P ⊂Rd be a point set of size n. Then, there always

exists a Tverberg
⌈

|P |
d+1

⌉
-partition for P. Equivalently, let P be of size (m −1)(d +1)+1 with

m ∈N. Then, there exists a Tverberg m-partition for P.

While Tverberg’s first proof is quite involved, several simplified subsequent proofs [67,69,77,
78] have been published. Here, we present Sarkaria’s proof [69] with further simplifications
from Bárány and Onn [11], and Arocha et al. [5]. The main tool is the next lemma that
establishes a notion of duality between the intersection of convex hulls of low-dimensional
point sets and the embrace of the origin of corresponding high-dimensional point sets. It was
extracted from Sarkaria’s proof by Arocha et al. [5]. In the following, we denote with ⊗ the
binary function that maps two points p ∈Rd , q ∈Rm to the point

p ⊗q =




(q)1p
(q)2p

...
(q)m p



∈Rdm .

It is easy to verify that ⊗ is bilinear, i.e., for all p1, p2 ∈Rd , q ∈Rm , and α1,α2 ∈R, we have

(
α1p1 +α2p2

)⊗q =α1
(
p1 ⊗q

)+α2
(
p2 ⊗q

)

and similarly, for all p ∈Rd , q 1, q 2 ∈Rm , and α1,α2 ∈R, we have

p ⊗ (
α1q 1 +α2q 2

)=α1
(
p ⊗q 1

)+α2
(
p ⊗q 2

)
.

Lemma 1.9 (Sarkaria’s lemma [69], [5, Lemma 2]). Let P1, . . . ,Pm ⊂Rd be m point sets and let
q 1, . . . , q m ⊂Rm−1 be m vectors with q i = e i for i ∈ [m −1] and q m =−1. For i ∈ [m], we define

P̂i =
{(

p
1

)
⊗q i

∣∣∣∣p ∈ Pi

}
⊂R(d+1)(m−1).

Then, the intersection of convex hulls
⋂m

i=1 conv(Pi ) is nonempty if and only if
⋃m

i=1 P̂i em-
braces the origin.

Proof. Assume there is a point p? ∈ ⋂m
i=1 conv(Pi ). For i ∈ [m] and p ∈ Pi , there then exist

coefficients λi ,p ∈ R+ that sum to 1 such that p? = ∑
p∈Pi

λi ,p . Consider the points p̂ i ∈

10
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0
p1 p2

p ′
2p ′

1

p̂2 =
(

p2
1

)
⊗1p̂1 =

(
p1
1

)
⊗1

p̂ ′
2 =

(
p ′

2
1

)
⊗ (−1) p̂ ′

1 =
(

p ′
1

1

)
⊗ (−1)

1

−1

Figure 1.4.: An example of Sarkaria’s lemma for d = 1 and m = 2. The set P1 consists of the red
points and the set P2 consists of the blue points. Since the convex hulls of P1 and
P2 intersect, the lifted points embrace the origin.

conv
(
P̂i

)
, i ∈ [m], that we obtain by using the same convex coefficients for the points in P̂i ,

i.e., set

p̂ i =
∑

p∈Pi

λi ,p

((
p
1

)
⊗q i

)
∈ conv

(
P̂i

)
.

We claim that
∑m

i=1 p̂ i = 0 and thus 0 ∈ conv
(⋃m

i=1 P̂i
)
. Indeed, we have

m∑

i=1
p̂ i =

m∑

i=1

∑

p∈Pi

λi ,p

((
p
1

)
⊗q i

)
=

m∑

i=1

(
∑

p∈Pi

λi ,p

(
p
1

))
⊗q i =

m∑

i=1

(
p?

1

)
⊗q i

=
(

p?

1

)
⊗

(
m∑

i=1
q i

)
=

(
p?

1

)
⊗0 = 0,

where we use the fact that ⊗ is bilinear.
Assume now that

⋃m
i=1 P̂i embraces the origin and we want to show that

⋂m
i=1 conv(Pi ) is

nonempty. Then, we can express the origin as a convex combination
∑m

i=1

∑
p̂∈P̂i

λi ,p̂ p̂ with

λi ,p̂ ∈R+ for i ∈ [m] and p̂ ∈ P̂i , and
∑m

i=1

∑
p̂∈P̂i

λi ,p̂ = 1. Hence, we have

0 =
m∑

i=1

∑

p̂∈P̂i

λi ,p̂

((
p
1

)
⊗q i

)
=

m∑

i=1


 ∑

p̂∈P̂i

λi ,p̂

(
p
1

)
⊗q i ,

where we use again the fact that ⊗ is bilinear. By the choice of q 1, . . . , q m , there is (up to
multiplication with a scalar) exactly one linear dependency: 0 =∑m

i=1 q i . Thus,

∑

p̂∈P̂1

λ1,p̂

(
p
1

)
= ·· · =

∑

p̂∈P̂m

λm,p̂

(
p
1

)
=

(
p?

c

)
,
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where p? ∈Rd and c ∈R. In particular, the last equality implies that

∑

p̂∈P̂1

λ1,p̂ = ·· · =
∑

p̂∈P̂m

λm,p̂ = c.

Now, since for all i ∈ [m] and p̂ ∈ P̂i , the coefficient λi ,p̂ is nonnegative and since the sum∑
i∈[m]

∑
p̂∈P̂i

λi ,p̂ is 1, we must have c = 1/m ∈ (0,1]. Hence, the point mp? is common to all
convex hulls conv(P1) , . . . ,conv(Pm). �

Please refer to Figure 1.4 for an example of Sarkaria’s lifting argument. Little work is now left
to obtain Tverberg’s theorem from Lemma 1.9 and the colorful Carathéodory theorem.

Proof of Theorem 1.8. Let P = {
p1, . . . , pn

}⊂Rd be a point set of size n = (d+1)(m−1)+1 and
let P1, . . . ,Pm denote m copies of P . For each set P j ⊂Rd , j ∈ [m], we construct a ((d+1)(m−1))-
dimensional set P̂ j as in Lemma 1.9, i.e.,

P̂ j =
{

p̂ i , j = p i ⊗q j

∣∣∣p i ∈ P
}
⊂R(d+1)(m−1) =Rn−1.

For i ∈ [n], we denote with Ĉi ⊆
⋃m

j=1 P̂ j the set of points
{

p̂ i , j

∣∣∣ j ∈ [m]
}

that correspond to

p i ∈ P and we color these points with color i . For i ∈ [n], note that Lemma 1.9 applied to m
copies of the singleton set

{
p i

} ⊆ P guarantees that the color class Ĉi ∈ Rn−1 embraces the
origin. Hence, we have n color classes Ĉ1, . . . ,Ĉn that embrace the origin in Rn−1. Now, by
Theorem 1.2, there is a colorful choice Ĉ = {ĉ 1, . . . , ĉ n} ⊆⋃n

i=1 Ĉi with ĉ i ∈ Ĉi that embraces the
origin, too. Because Ĉ embraces the origin, Lemma 1.9 guarantees that the convex hulls of

the sets T j =
{

p i ∈ P
∣∣∣ p̂ i , j ∈ Ĉ

}
, j ∈ [m], have a point in common. Moreover, since all points in

⋃m
j=1 P̂ j that correspond to the same point in P have the same color, each point p i ∈ P appears

in exactly one set T j , j ∈ [m]. Thus, T = {
T1, . . . ,T j

}
is a Tverberg m-partition of P . �

Interestingly, to prove the centerpoint theorem already Helly’s theorem (and thus the cone
version of Carathéodory’s theorem) is sufficient.

Even less effort is required to obtain the colorful Kirchberger theorem from Lemma 1.9.
Let A,B ⊂ Rd be two point sets. Kirchberger’s theorem [42] states that if for all subsets C ⊂
A∪B of size at most d +2, the sets conv(A∩C ) and conv(B ∩C ) have an empty intersection,
then conv(A) and conv(B) have an empty intersection. It can be proven using a Helly-type
theorem [64, Section 2] or a Carathéodory-type theorem [81]. Arocha et al. [5] presented a
generalization based on the colorful Carathéodory theorem.2

Theorem 1.10 (Colorful Kirchberger theorem [5, special case of Theorem 3]). Let C1, . . . ,Cn ⊂
Rd be n = (m −1)(d +1)+1 pairwise disjoint color classes and let Ti =

{
Ti ,1, . . . ,Ti ,m

}
denote a

Tverberg m-partition for Ci , where i ∈ [n]. Then, there exists a colorful choice C , |C | = n, such

2Actually, Arocha et al. present an even stronger result (the “very colorful Kirchberger theorem” [5, Theorem 3])
using a generalization of the colorful Carathéodory theorem. Here, we consider the weaker version that can be
obtained from Theorem 1.2.
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1.2. Descendants of the Colorful Carathéodory Theorem

that the family of sets

TC =
{

C ∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C .

Proof. We lift each Tverberg partition to Rn−1 as in Lemma 1.9: for i ∈ [n] and j ∈ [m], we
denote with T̂i , j the set

T̂i , j =
{

p ⊗q j

∣∣∣p ∈ Ti , j

}
⊂Rn−1.

By Lemma 1.9 and since each set Ti , i ∈ [n], is a Tverberg partition, the sets Ĉi =
⋃m

j=1 T̂i , j ,

i ∈ [n], capture the origin. We color the points in Ĉi with color i . Since there are n color
classes that capture the origin in n −1 dimensions, Theorem 1.2 guarantees the existence
of a colorful choice Ĉ that embraces the origin. For j ∈ [m], let T̂ j = Ĉ ∩ (⋃n

i=1 T̂i , j
)

denote
all points from a j th element in a Tverberg partition in C . Since Ĉ = ⋃m

j=1 T̂ j embraces the

origin, Lemma 1.9 implies that the convex hulls of the sets T j =
{

p ∈⋃n
i=1 Pi

∣∣∣p ⊗q j ∈ T̂ j

}
have

a nonempty intersection. Further, since for j ∈ [m], the set T̂ j is a subset of
⋃n

i=1 T̂i , j , we have
T j ⊂

(⋃n
i=1 Ti , j

)
. Moreover, since all points that correspond to the Tverberg partition Ti , i ∈ [n],

have color i , exactly one of the sets T1, . . . ,Tm contains a point from Ci . �

Similar to the Tukey depth, the simplicial depth [46] is a notion of data depth. Given a set of
points P ⊂Rd , the simplicial depth σP (q) ∈N of a point q ∈Rd with respect to the set P is the
number of d-simplices with vertices in P that contain q . More formally, the simplicial depth is
defined as

σP (q) =
∣∣{S ⊆ P

∣∣q ∈ conv(S) , |S| = d +1
}∣∣ .

Let σ(n,d) = minP⊂Rd ,|P |=n maxq∈Rd σP (q) denote the minimum simplicial depth that can
always be achieved by some point for point sets of size n in d dimensions. The first selection
lemma guarantees that there is always a point with simplicial depth Ω

(|P |d+1
)

if d is fixed.
This is asymptotically tight as there are only O

(|P |d+1
)

candidate simplices in total. In fact,
as we discuss below, centerpoints maximize asymptotically the simplicial depth. The first
selection lemma for arbitrary but fixed d was first shown by Bárány [9, Theorem 5.1]. There are
several ways to prove this lemma: Bárány’s proof employs Tverberg’s theorem and the colorful
Carathéodory theorem to show that every Tverberg point has simplicial depthΩ

(|P |d+1
)
. A

different proof [48, Theorem 9.1.1 (second proof)] is based on Tverberg’s theorem and the
fractional Helly theorem, however it only shows existence of such a point and does not relate
it with the Tukey depth.

The main argument of Bárány’s proof of the first selection lemma is the following lemma.

Lemma 1.11. Let P ⊂Rd be a point set and let T be a Tverberg m-partition of P, where m ∈N.

Then any point c ∈⋂
T∈T conv(T ) has simplicial depth σP (c) at least

⌈
md+1

(d+1)d+1

⌉
.

Proof. Let Ti denote the i th element of T and color it with color i . Now by Theorem 1.2, there
exists for every (d +1)-subset I ⊆ [m] a colorful choice C I with respect to the color classes
Ti , i ∈ I , that embraces c . Furthermore, each index set I induces a unique colorful choice C I .

Thus, there are at least
( m

d+1

)≥ md+1

(d+1)d+1 distinct c-embracing d-simplices with vertices in P . �
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1. Introduction

Note that Lemma 1.11 also shows that a point c ′ with Tukey depth τ has simplicial depth

Ω
(
τd+1

d 2d+2

)
. This can be seen as follows: by repeatedly applying Theorem 1.1, we can build a

Tverberg partition T of size bτ/dc such that c ′ ∈⋂
T∈T conv(T ). Then, Lemma 1.11 guarantees

that c ′ has the claimed simplicial depth. This observation is folklore and its algorithmic
implications have been recently explored by Rolnick and Sobéron [66].

The first selection lemma is now an immediate consequence of Lemma 1.11 and Theo-
rem 1.8, or of Lemma 1.11 and Theorem 1.7.

Theorem 1.12 (First selection lemma [9, Theorem 5.1]). Let P ⊂ Rd be a set of points and
consider d constant. Then, there exists a point q ∈Rd with σP (q) =Ω(|P |d+1

)
.

The constant cd in the Ω (·)-notation is not yet settled. Wagner [80, Section 4.4] showed
that for centerpoints, cd is lower bounded by d 2+1

(d+1)!(d+1)d+1 . Bukh, Matoušek, and Nivasch [15,

Theorem 1.3] proved that cd ≤ 1/(d +1)d+1 and they conjectured this bound to be tight. In
particular, it coincides with the known value for c2 = 1/27 in the plane. See Figure 1.5 for an
overview of the presented proofs.

We conclude the introduction by defining the computational problems that correspond to
the presented implications of the colorful Carathéodory theorem.

Definition 1.13. We define the following search problems:

CENTERPOINT

GIVEN a set P ⊂Qd of size n,

FIND a centerpoint.

TVERBERG

GIVEN a set P ⊂Qd of size n,

FIND a Tverberg
⌈ n

d+1

⌉
-partition.

COLORFULKIRCHBERGER

GIVEN n = (m −1)(d +1)+1 pairwise disjoint color classes C1, . . . ,Cn ⊂Qd , each of size
n, and for each color class Ci , i ∈ [n], a Tverberg m-partition Ti =

{
Ti ,1, . . . ,Ti ,m

}
,

FIND a colorful choice C , |C | = n, such that the family of sets

TC =
{

C ∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C .

SIMPLICIALCENTER

GIVEN a set P ⊂Qd of size n,

FIND a point q ∈Qd with σP (q) ≥ f (d)nd+1, where f :N 7→R+ is an arbitrary but fixed
function.

14



1.3. Previous Work

Interpreting the presented proofs of the centerpoint theorem, Tverberg’s theorem, the
colorful Kirchberger theorem, and the first selection lemma as algorithms, we obtain the
following lemma.

Lemma 1.14. In the following, let L denote the length of the input in binary. In the WORD-RAM,
given access to an oracle for COLORFULCARATHÉODORY, TVERBERG can be solved in O

(
m2L

)

additional time. Furthermore, COLORFULKIRCHBERGER can be solved in O (mL) additional
time, and both CENTERPOINT and SIMPLICIALCENTER can be solved in O

(
n3L

)
additional time.

Proof. As shown in the proof of Theorem 1.8, to compute a Tverberg partition, it suffices
to lift m = ⌈ n

d+1

⌉
copies of the input point set P ⊂ Qd with Lemma 1.9 and then query the

oracle for COLORFULCARATHÉODORY. Lifting one point set needs O (mL) time and hence we
need O

(
m2L

)
time in total. Then, any point in the intersection of the computed Tverberg

m-partition T = {T1, . . . ,Tm} is a solution to CENTERPOINT and SIMPLICIALCENTER. Using the
algorithm from [4], we can compute a Tverberg point in O

(
n3L

)
time by solving the linear

system




−1 0

T1 0
. . .

0 −1
1 . . . 1 0 . . . 0

. . .
...

−1 0

0 Tm
. . .

0 −1
1 . . . 1 0 . . . 0




x =




0
...
0
1
...
0
...
0
1




, x ≥ 0,

where L is the length of the input in binary.
To solve COLORFULKIRCHBERGER, we need to lift all points in

⋃n
i=1 Ci with Lemma 1.9 and

then query the oracle for COLORFULCARATHÉODORY, as presented in the proof of Theorem 1.10.
This needs O (mL) time in total. �

From now on, we refer to CENTERPOINT, TVERBERG, COLORFULKIRCHBERGER, and SIMPLI-
CIALCENTER as the descendants of COLORFULCARATHÉODORY. See Figure 1.6 for an overview
of the reductions.

1.3. Previous Work

Chapters 3, 4, and 8, as well as Section 5.1 are based on joint work with Frédéric Meunier,
Wolfgang Mulzer, and Pauline Sarrabezolles and have been published in [54].

Chapter 7, Chapter 9, and Section 5.2 are based on joint work with Wolfgang Mulzer and
have been published in [58].

Chapter 10 is based on joint work with Peyman Afshani and Donald R. Sheehy and is based
on the technical report [2].
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colorful Carathéodory theorem (Thm. 1.2)
(cone version)

Carathéodory’s theorem (Thm. 1.1)

C1 = ·· · =Cd+1 = P
Helly’s theorem

Lemmas 1.5 and 1.6
(cone version)

colorful Kirchberger theorem (Thm. 1.10)

Sarkaria’s lemma (Lem. 1.9)

colorful Helly theorem (Thm. 1.4)

Helly’s Thm., Lemmas 1.5 and 1.6

Ci = C for i ∈ [d +1]

Tverberg’s theorem (Thm. 1.8)

Sarkaria’s lemma (Lem. 1.9)

centerpoint theorem (Thm. 1.7)

Tverberg points are centerpoints

first selection lemma (Thm. 1.12)

Lemma 1.11

Figure 1.5.: Implications of the colorful Carathéodory theorem. Arrows represent implications.

COLORFULCARATHÉODORY

COLORFULKIRCHBERGERTVERBERG

CENTERPOINT

SIMPLICIALCENTER

Figure 1.6.: Web of reductions. Arrows represent polynomial-time reductions.

16



I

The Complexity of
COLORFULCARATHÉODORY





2 Introduction to Part I

The complexity of COLORFULCARATHÉODORY and its descendants is still widely open apart
from a trivial upper bound on the complexity, the class total function NP. Our ultimate goal
in this part of the thesis is to improve this upper bound on the complexity of COLORFUL-
CARATHÉODORY and thereby to derive new upper bounds on the complexity of its descendants.

In all considered problems, we can check the preconditions that guarantee the existence of
a solution in polynomial time, however we know of no polynomial-time algorithms that can
actually find solutions. The classic way to model the computational complexity of a problem
is to study its corresponding decision problem: does there exist a solution? Or in the case of
optimization problems: does there exist a solution of a specific quality? However, in the case
of COLORFULCARATHÉODORY, the corresponding decision problem is trivial. This led to the
study of related decision problems. Meunier and Sarrabezolles [55, Theorem 2] showed that
the problem

GIVEN k color classes C1, . . . ,Ck ⊂Qd that do not necessarily embrace the origin,

DECIDE whether there exists a 0-embracing colorful choice,

is NP-complete if d is part of the input. We discuss an alternative proof for this result in
Section 5.2. Related to TVERBERG, Teng [74, Theorem 8.8] showed that the decision problem

GIVEN a point set P ⊂Qd , and a point q ∈Qd

DECIDE whether q is a Tverberg point for P ,

is NP-complete. Finally, as discussed before, Teng [74, Theorem 8.4] showed that the problem

GIVEN a point set P ⊂Qd , and a point q ∈Qd

DECIDE whether q is a centerpoint of P .

is coNP-complete if d is part of the input. Although related, hardness of these decision
problems do not necessarily tell us anything about the complexity of computing any solution
to COLORFULCARATHÉODORY or its descendants. A class designed to capture the complexity
of search problems is function NP (FNP), an analogue of NP that contains search problems
for which we can verify a solution in polynomial time. More formally, FNP consists of binary
relations R between a set of problem instances I ⊆ {0,1}? and a set of candidate solutions
S ⊆ {0,1}? such that

the length of the candidate solutions is polynomially bounded in the length of the
instances, i.e., there is a polynomial p such that for all pairs (I , s) ∈R, we have

|s| ≤ p(|I |);
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2. Introduction to Part I

I is polynomial-time verifiable;

the relation R is polynomial-time verifiable.

The computational problem that corresponds to a relation R ∈ FNP is given an instance I ∈ I ,
find a solution s ∈ S such that (I , s) ∈ R if it exists and otherwise state that there is none.
We call a relation R ∈ FNP total if for all I ∈ I there exists some s ∈ S with (I , s) ∈R. The
subclass total function NP (TFNP) [52] consists of all total relations in FNP. This class can
be seen as a search-problem analogue to NP∩coNP (as described in [52, Section 1.1]). FP,
the search-problem analogue to P and a subclass of TFNP, consists of all relations R in FNP
for which there exists a deterministic polynomial-time Turing machine that, on input I ∈ I,
outputs some s ∈S with (I , s) ∈R.

Now, given a problem instance of the cone version of COLORFULCARATHÉODORY, i.e., given
d color classes C1, . . . ,Cd ⊂Qd and a vector b ∈Qd , we can verify in polynomial time whether
each color class ray-embraces b using linear programming. Furthermore, given a colorful
choice C , we can verify in polynomial time whether C ray-embraces b. Hence, COLORFUL-
CARATHÉODORY is in TFNP. Then, Lemma 1.14 immediately puts CENTERPOINT, TVERBERG,
COLORFULKIRCHBERGER, and SIMPLICIALCENTER in TFNP. The following theorem shows that
this has already a nontrivial consequence.

Theorem 2.1 ( [52, Theorem 2.1], [39, Lemma 4]). No problem in TFNP is NP-hard or coNP-
hard unless NP= coNP.

Proof. Let R be a relation in TFNP and assume R is NP-hard (coNP-hard). Then, there is a
deterministic polynomial-time Turing machine M that can decide an NP-complete (coNP-
complete) language L when given access to an oracle that on input I ∈ I returns a solution
s ∈ S with (I , s) ∈R. We can build a non-deterministic Turing machine M ′ that decides L
as follows: M ′ simulates M until it accesses the oracle with some query I ∈ I. It guesses the
answer s ∈S of the oracle and it can verify its guess in polynomial-time since R is in FNP. If
the guess was wrong, M ′ rejects. Otherwise, M ′ continues to simulate M in this fashion until
M would either accept or reject and then inverts the answer from M . Because P is in TFNP,
there always exists some s ∈S with (I , s) ∈R and thus there always exists a correct guess for
the answer of the oracle. Then, M ′ accepts if and only if M rejects and hence M ′ decides L. �

In particular, unless NP= coNP, Theorem 2.1 implies that all of the above presented deci-
sion problems are strictly harder than computing any solution to the corresponding search
problems.

The class TFNP is called a semantic class since the promise that a relation in TFNP is total
is not a consequence of the syntactic problem definition. There are no known complete
problems for TFNP and this is attributed to the empiric observation that in general “semantic
classes seem to have no complete problems” [61, page 499]. In [61], Papadimitriou proposes to
subdivide TFNP into syntactic classes that each capture a certain existence proof technique.
At this point (even before TFNP was introduced), the class polynomial-time local search
(PLS) [39] was already defined. PLS captures computational problems corresponding to
existence theorems that can be proven with potential arguments. The pigeonhole principle is
captured by the class PPP, and several parity arguments by the classes PPAD, PPA, PPADS [61],
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and a combination of both potential and parity argument is captured in CLS [28]. Here, only
one related problem was considered so far: the problem

GIVEN d pairs of points C1, . . . ,Cd ⊂Qd and a colorful choice that embraces the origin,

FIND another colorful choice that embraces the origin,

was shown to be PPAD-complete by Meunier and Sarrabezolles [55, Proposition 2], which was
posed as an open problem in [53]. However, again this does not bound the computational
complexity of COLORFULCARATHÉODORY.

2.1. Overview

The application of Sarkaria’s lemma in the reduction from TVERBERG and COLORFULKIRCH-
BERGER to COLORFULCARATHÉODORY creates highly degenerate instances. In Chapter 3, we
discuss how to construct equivalent COLORFULCARATHÉODORY instances that satisfy several
general position assumptions. In Chapter 4, we show that the cone version of COLORFUL-
CARATHÉODORY is in the complexity class PPAD. The proof is based on a new topological
proof of the colorful Carathéodory theorem that uses Sperner’s Lemma [24] by Meunier and
Sarrabezolles [70]. Using linear programming techniques, we show how to replace noncon-
structive parts of this proof by algorithms. In Chapter 5, we give a formulation of the cone
version of COLORFULCARATHÉODORY as a PLS-problem. Finally, we show that a slight change
in the definition of COLORFULCARATHÉODORY results in a PLS-complete problem, the nearest
colorful polytope problem.

Please note that all algorithms in this part of the thesis are analyzed in the WORD-RAM

model with logarithmic costs.

Remark 2.2. Bárány and Onn [11] showed that a special case of the convex version of COL-
ORFULCARATHÉODORY can be solved in polynomial time: if each of the d +1 color classes
contains a ball of radius ρ > 0 that is centered at the origin in its convex hull, and if

all points in
⋃d+1

i=1 Ci have `2-norm between 1 and 2, and

1/ρ is polynomial in the length of the input,

then a 0-embracing colorful choice can be computed in polynomial time. Please note that
we consider the cone version of COLORFULCARATHÉODORY instead of the convex version and
more importantly, we have no general position assumptions. J

2.2. Preliminaries

2.2.1. FNP Reductions

Since FNP contains relations and not languages, a different concept of reduction is necessary
to define complete problems. We say an FNP problem A is FNP-reducible to an FNP problem
B if there exist two polynomial-time computable functions f A 7→B and fB 7→A with the following
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2. Introduction to Part I

properties. Let IA denote the set of instances of A and let SA denote the set of candidate solu-
tions of A. Define IB and SB similarly. The function f A 7→B : IA 7→ IB maps problem instances
of A to problem instances of B . The second function fB 7→A : IA × (SB ∪ {⊥}) 7→ (SA ∪ {⊥})
maps candidate solutions of B to candidate solutions of A such that the following holds: let
sB ∈ SB ∪ {⊥} be a candidate solution of B with

(
f A 7→B (I A), sB

) ∈ B or ⊥ if no such candidate
solution exists. If I A is solvable, then

(
I A , fB 7→A(I A , sB )

) ∈ A and otherwise fB 7→A(I A , sB ) =⊥.
The existence of these two functions implies that any polynomial-time algorithm for B can be
extended to a polynomial-time algorithm for A.

2.2.2. The Complexity Class PPAD

The complexity class polynomial parity argument in a directed graph (PPAD) [61] is a subclass
of TFNP that contains search problems that can be modeled as follows: let G = (V ,E) be a
directed graph in which each node has indegree and outdegree at most one. That is, G consists
of paths and cycles. We call a node v ∈ V a source if v has indegree 0 and we call v a sink if
it has outdegree 0. Given a source in G , we want to find another source or sink. By a parity
argument, there is an even number of sources and sinks in G and hence another source or sink
must exist. However, finding this sink or source is nontrivial since G is defined implicitly and
the total number of nodes may be exponential. See Figure 2.1 for an example.

standard source

Figure 2.1.: An example of a PPAD-graph problem. The given source is colored blue and we
call it the standard source. The red nodes are the solutions.

More formally, a problem in PPAD is a relation R between a set I ⊆ {0,1}? of problem
instances and a set S ⊂ {0,1}? of candidate solutions. Assume further the following.

The set I is polynomial-time verifiable. Furthermore, there is an algorithm that on input
I ∈ I and s ∈S decides in time poly(|I |) whether s is a valid candidate solution for I . We
denote with SI ⊆S the set of all valid candidate solutions for a fixed instance I .
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2.2. Preliminaries

There exist two polynomial-time computable functions pred and succ that define the
edge set of G as follows: on input I ∈ I and s ∈SI , pred and succ return a valid candidate
solution from SI or ⊥. Here, ⊥ means that v has no predecessor/successor.

There is a polynomial-time algorithm that returns for each instance I a valid candidate
solution s ∈SI with pred(s) =⊥. We call s the standard source.

Now, each instance I ∈ I defines a graph G I = (V ,E) as follows. The set of nodes V is the
set of all valid candidate solutions SI and there is a directed edge from u to v if and only if
v = succ(u) and u = pred(v). Clearly, each node in G I has indegree and outdegree at most one.
The relation R consists of all tuples (I , s) such that s is a sink or source other than the standard
source in G I .

The definition of a PPAD-problem suggests a simple algorithm, called the standard algo-
rithm: start at the standard source and follow the path until a sink is reached. This algorithm
always finds a solution but the length of the traversed path may be exponential in the size of
the input instance.

To define PPAD-hard and -complete problems, the same concept of reductions as for FNP
is used. A problem A is PPAD-hard if all problems in PPAD can be FNP-reduced to A and A is
PPAD-complete if A is PPAD-hard and A ∈PPAD. The list of PPAD-complete problems in-
cludes, among others, computational problems corresponding to several fixed point theorems
such as Sperner’s lemma in two dimensions [21], the Borsuk-Ulam theorem [61], Brouwer’s
fixed point theorem [61], as well as computing mixed Nash equilibria in 2-player games [20]
and approximating mixed Nash equilibria in k-player games for k ≥ 3 [27, Theorem 12], [19].

2.2.3. The Complexity Class PLS

The complexity class polynomial-time local search (PLS) [1, 39, 56] captures the complexity
of local-search problems that can be solved by a local-improvement algorithm, where each
improvement step can be carried out in polynomial time, however the number of necessary
improvement steps until a local optimum is reached may be exponential. The existence of
a local optimum is guaranteed as the progress of the algorithm can be measured using a
potential function that strictly decreases with each improvement step.

More formally, a problem in PLS is a relation R between a set of problem instances I ⊆ {0,1}?

and a set of candidate solutions S ⊆ {0,1}?. Assume further the following.

The set I is polynomial-time verifiable. Furthermore, there exists an algorithm that,
given an instance I ∈ I and a candidate solution s ∈S , decides in time poly(|I |) whether
s is a valid candidate solution for I . In the following, we denote with SI ⊆S the set of
valid candidate solutions for a fixed instance I .

There exists a polynomial-time algorithm that on input I ∈ I returns a valid candidate
solution s ∈SI . We call s the standard solution.

There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI returns a set
NI ,s ⊆SI of valid candidate solutions for I . We call NI ,s the neighborhood of s.
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2. Introduction to Part I

There exists a polynomial-time algorithm that on input I ∈ I and s ∈SI returns a number
cI ,s ∈Q. We call cI ,s the cost of s.

We say a candidate solution s ∈S is a local optimum for an instance I ∈ I if s ∈SI and for
all s′ ∈ NI ,s , we have cI ,s ≤ cI ,s′ in case of a minimization problem, and cI ,s ≥ cI ,s′ in case of a
maximization problem. The relation R then consists of all pairs (I , s) such that s is a local opti-
mum for I . This formulation implies a simple algorithm, that we call the standard algorithm:
begin with the standard solution, and then repeatedly invoke the neighborhood-algorithm to
improve the current solution until this is not possible anymore. Although each iteration of
this algorithm can be carried out in polynomial time, the total number of iterations may be
exponential. There are straightforward examples in which this algorithm takes exponential
time and even more, there are PLS-problems for which it is PSPACE-complete to compute
the solution that is returned by the standard algorithm [1, Lemma 15].

Similar to PPAD, each problem instance I of a PLS-problem can be seen as a simple graph
searching problem on a graph G I = (V ,E). The set of nodes is the set of valid candidate
solutions for I and there is a directed edge from u ∈SI to v ∈SI if v ∈ NI ,u and cI ,v < cI ,u if it
is a minimization problem, and otherwise if cI ,v > cI ,u . Then, the set of local optima for I is
precisely the set of sinks in G I . Because the costs induce a topological ordering of the graph, at
least one sinks exists. See Figure 2.2 for an example.

standard solution
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Figure 2.2.: An example of a PLS-graph for a minimization problem. The blue node is the
standard solution, and the red nodes denote local optima. The numbers next to
the nodes denote the costs.

We say a problem A ∈ FNP is PLS-hard if all problems in PLS can be FNP-reduced to A
and we say A is PLS-complete if A ∈ PLS and A is PLS-hard. The canonical PLS-complete
problem is FLIP [39, Theorem 1]: given a Boolean circuit of polynomial size with n inputs and
m outputs, find an input-assignment such that the resulting output interpreted as a number
in binary cannot be decreased by flipping one bit in the input. The set of PLS-complete
problems includes, among various local search variants and heuristics for NP-complete
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problems, the Lin-Kernighan heuristic for the traveling salesman problem [60], computing
stable configurations in Hopfield neuronal networks [72, Corollary 5.12], and computing pure
Nash equilibria in congestion games [32, Theorem 3].

2.2.4. Linear Programming

In this section, we briefly repeat the terminology of linear programming and establish a
common notation.

Let A ∈Rd×n be a matrix and let F denote a set of column vectors from A. Then, we denote
with ind(F ) ⊆ [n] the set of indices of the columns in F and for an index set I ⊆ [n], we denote
with AI the submatrix of A that consists of columns with indices in I . Similarly, for a vector
c ∈ Rn and an index set I ⊂ [n], we denote with c I the subvector of c that consists of the
coordinates for the dimensions in I . Now, let L′ denote a system of linear equations

L′ : Ax = b,

where b ∈Qd and A ∈Qd×n with rank(A) = k. By multiplying with the least common denomi-
nator, we may assume in the following that A and b have only integer entries. We call a set of
k linearly independent column vectors B of A a basis and we say that A is non-degenerate if
k = d and for all bases B of A, the coordinates of the corresponding basic solution x are not
0 in dimensions ind(B). In particular, if L′ is non-degenerate, then b is not contained in the
linear span of any set of d ′ < d column vectors from A and hence if d > n, the linear system L′

has no solution. In the following, we assume that L′ is non-degenerate and that d ≤ n.
We denote with L the linear program that we obtain by extending the linear system L′ with

the constraints x ≥ 0 and with a cost vector c ∈Qn :

L : minc T x

s.t. Ax = b

x ≥ 0.

We say a set of column vectors B is a basis for L if B is a basis for L′. Let x ∈ Rn be the
corresponding basic solution, i.e., let x be such that Ax = b and (x)i = 0 for i ∈ [n] \ ind(B).
We call x a basic feasible solution if x ≥ 0, and we call B a feasible basis if the corresponding
basic solution is feasible. Furthermore, we say L is non-degenerate if for all feasible bases B ,
the coordinates of the corresponding basic feasible solution are strictly greater than 0. In the
following, we assume L is non-degenerate. Now, let R = [n] \ ind(B) denote the set of indices
from columns in A that are not in B . The reduced cost vector r B ,c ∈Qn−d with respect to B and
c is then defined as

r B ,c = c R −
(

A−1
ind(B) AR

)T
c ind(B).

It is well-known that B is optimal for c if and only if r B ,c is non-negative in all coordinates [23].
For technical reasons, we consider in the following the extended reduced cost vector r̂ B ,c ∈Qn

that has a 0 in dimensions ind(B) and otherwise equals r B ,c to align the coordinates of the
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reduced cost vector with the column indices in A. More formally, we set

(
r̂ B ,c

)
j =

{
0 if j ∈ ind(B), and

(r B ,c ) j ′ otherwise,

where j ′ is the rank of j in R, that is, (r B ,c ) j ′ is the coordinate of r B ,c that corresponds to the
j ′th non-basis column with column index j in A.

Geometrically, the feasible solutions for the linear program L define an (n −d)-dimensional
polyhedron P in Rn . Let H−

n = {
hi≥0 ⊂Rn | i ∈ [n]

}
denote the set of n coordinate halfspaces,

where hi≥0 = {x ∈Rn | (x)i ≥ 0} and let HL′ denote the set of d hyperplanes that are defined by
the rows of Ax = b. Then, all feasible solutions for L are contained in the polyhedron

P =
(

⋂
h−∈H−

n

h−
)
∩

(
⋂

h∈HL′
h

)
.

Since L is non-degenerate, P is simple. Let f ⊆P be a k-face of P . Then, f is contained in
the intersection of the d hyperplanes from HL′ with n −k boundary hyperplanes (x) j1 = 0,
(x) j2 = 0, . . . , (x) jn−k = 0 from Hn , where j1, . . . , jn−k ∈ [n]. The feasible solutions in f can only
vary in the k dimensions with indices [n] \ { j1, . . . , jn−k }. This set of k dimensions is unique for
the face f and we use it to encode f combinatorially:

supp
(

f
)= [n] \

{
j1, . . . , jn−k

}
.

We call supp
(

f
)

the support of f and we say the columns in Asupp( f ) define f . In particular, f
projected onto dimensions supp

(
f
)

is the polyhedron that is defined by the linear program
Asupp( f )x ′ = b, x ′ ≥ 0. Furthermore, note that for all subfaces f̌ ⊆ f , we have supp

(
f̌
) ⊆

supp
(

f
)

and in particular, all bases that define vertices of f are d-subsets of columns from
Asupp( f ).

Moreover, we say a nonempty face f ⊆P is optimal for a cost vector c if all points in f are
optimal for c . We can express this condition using the reduced cost vector. Let B be a basis for
a vertex in f . Then f is optimal for c if and only if

(r̂ B ,c ) j = 0 for j ∈ supp
(

f
)

\ ind(B), and

(r̂ B ,c ) j ≤ 0 otherwise.

We conclude this section with the following standard lemma that bounds the number
of bits that is necessary to represent a basic feasible solutions for a linear program (e.g.,
see [73, Corollary 3.2d] for a similar statement).

Lemma 2.3. Let L : Ax = b be a linear system, where A ∈Zd×n and b ∈Zd . Furthermore, let B
be a feasible basis for L and let x be the corresponding basic feasible solution. Let m denote the
largest absolute value of the entries in A and b, and set N = d !md . Then for i ∈ ind(B), we have
|(x)i | = ni

|det Aind(B)| , where ni ∈ [N ]0 and
∣∣det Aind(B)

∣∣ ∈ [N ]. For i ∈ [n] \ ind(B), we have (x)i = 0.

Proof. Set A′ = Aind(B). By definition of a feasible basis, we have det A′ 6= 0, and by definition
of a basic feasible solution x , we have A′x ind(B) = b with x ≥ 0 and (x) j = 0 for j ∈ [n] \ ind(B).
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Applying Cramer’s rule [50], we can express the i th coordinate of x ind(B) as det A′
i /det A′, where

i ∈ [d ] and A′
i is the matrix that we obtain by replacing the i th column of A′ with b. Using the

Leibniz formula, we can bound the determinant:

∣∣det A′∣∣=
∣∣∣∣

∑

σ∈Sd

sgn(σ)
d∏

i=1

(
A′)

i ,σ(i )

∣∣∣∣≤ d !md = N .

And similarly,
∣∣det A′

i

∣∣≤ N can be obtained. Because x is a basic feasible solution, we have

det A′
i

det A′ = (x)i ≥ 0.

Moreover, since A′ and b contain only integer entries, the determinants det A′ and det A′
i are

integers. The implies the statement. �
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3 Equivalent Instances of
COLORFULCARATHÉODORY in General
Position

The application of Sarkaria’s lemma in the reductions to COLORFULCARATHÉODORY creates
color classes whose positive span does not have full dimension. To be able to transfer upper
bounds on the complexity of COLORFULCARATHÉODORY to its descendants, we need to be
able to deal with degenerate position. In this chapter, we show how to ensure general posi-
tion of COLORFULCARATHÉODORY instances by extending known perturbation techniques
for linear programming to our setting. More formally, let I = (C1, . . . ,Cd ,b) be a COLORFUL-
CARATHÉODORY instance, where b ∈Qd \{0} and each color class Ci ⊂Qd , i ∈ [d ], ray-embraces
b. Then, we want to construct in polynomial time d sets C≈

1 , . . . ,C≈
d ⊂Zd and a point b≈ ∈Zd

that have the following properties:

(P1) Valid instance with integer coordinates: The points {b≈}∪ (⋃d
i=1 C≈

i

)⊂Zd have integer
coordinates. Furthermore, the point b≈ is not the origin and each color class C≈

i , i ∈ [d ],
ray-embraces b≈ and has size d .

(P2) b avoids linear subspaces: The point b≈ is not contained in the linear span of any
(d −1)-subset of

⋃d
i=1 C≈

i .

(P3) Polynomial-time equivalent solutions: Given a colorful choice C≈ ⊆⋃d
i=1 C≈

i that ray-

embraces b≈, we can compute in polynomial time a colorful choice C ⊆ ⋃d
i=1 Ci that

ray-embraces b.

Note that by (P2), if P ⊂ ⋃d
i=1 C≈

i ray-embraces b≈, then |P | ≥ d and thus b≈ ∈ intpos(P ). In
particular by (P1), b≈ is contained in the interior of pos(C≈

i ) for i ∈ [d ].
In the next section, we develop tools to ensure non-degeneracy of linear systems by a small

deterministic perturbation of polynomial bit-complexity. The approach is similar to already
existing perturbation techniques for linear programming as in [26, Section 10-2] and [51]
but extends to a more general setting in which the matrix is also perturbed. Based on these
results, we then show in Section 3.2 how to construct COLORFULCARATHÉODORY instances
with properties (P1)–(P3).

3.1. Polynomials with Bounded Integer Coefficients

In the following, we consider equation systems

Lε : Ax = b, (3.1)
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3. Equivalent Instances of COLORFULCARATHÉODORY in General Position

where A is a (d ×n)-matrix with n ≥ d and b is a d-dimensional vector. Furthermore, the
entries of both A and b are polynomials in ε with integer coefficients. For a fixed τ ∈ R, we
denote with A(τ) and b(τ) the matrix A and the vector b that we obtain by setting ε to τ in A
and b, respectively. Similarly, we denote with Lτ the linear system Lτ : A(τ)x = b(τ). We show
that for any fixed τ> 0 that is sufficiently small in the size of the coefficients in the polynomials,
the linear system Lτ is non-degenerate.

For m ∈N, we denote with

P[m] =
{

p(ε) =
k∑

i=0
αiε

i

∣∣∣∣∣k ∈N0, and |αi | ∈ [m]0 for i ∈ [k]0

}

the set of polynomials with integer coefficients that have absolute value at most m. The
following lemma guarantees that no polynomial in P[m] has a root in a specific interval whose
length is inverse proportional to m.

Lemma 3.1. Let p ∈P[m] be a nontrivial polynomial with m ∈N. Then, for all ε ∈ (
0, 1

2m

)
, we

have p(ε) 6= 0.

Proof. We write p(ε) =∑k
i=0αiε

i . Let j = min{i ∈ [k]0 |αi 6= 0}. Since p is nontrivial, j exists.
Without loss of generality, we assume α j > 0 (otherwise, we multiply p(ε) by −1). For all
ε ∈ (

0, 1
2m

)
, we have

p(ε) =
k∑

i=0
αiε

i ≥ ε j −2mε j+1 = ε j (1−2mε) > 0

since ε< 1
2m and hence p(ε) 6= 0 for all ε ∈ (

0, 1
2m

)
. �

We now use Lemma 3.1 to prove non-degeneracy of the linear system Lε if ε is fixed but
small enough and the degrees of the monomials in Lε are sufficiently separated. We say
d polynomials p1, . . . , pd ∈ P[m] are (k1, . . . ,kd )-separated with gap g if pi has a nontrivial
monomial of degree ki and pi has no nontrivial monomial of a degree in {k j − g , . . . ,k j + g |
j ∈ [d ] \ {i }}∪ {ki − g , . . . ,ki −1}.

Lemma 3.2. Let Lε : Ax = b be a system of equations as defined in (3.1) such that the entries of
A and b are polynomials in P[m], where m ∈N. Furthermore, suppose that the polynomials in
A have degree at most k0 and (b)1, . . . , (b)d are (k1, . . . ,kd )-separated with gap (d −1)k0. Set

M = d !(k0 +1)d−1(k +1)md ,

where k is the maximum degree of (b)1, . . . , (b)d . Then, for all ε ∈ (
0, 1

2M

)
, the linear system Lε is

non-degenerate.

Proof. We show that for all fixed τ ∈ (
0, 1

2M

)
, the vector b(τ) is not contained in the linear

span of any d −1 columns from A(τ). We can ensure that A(τ) has rank d for all fixed τ≥ 0 by
extending A with the canonical basis of Rd . Then, the entries of the extended matrix are still
polynomials fromP[m] and their degrees are at most k0. Moreover, if for some fixed τ ∈ (

0, 1
2M

)
,
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3.1. Polynomials with Bounded Integer Coefficients

there are d −1 columns from the original matrix whose linear span contains b(τ), then the
same holds for the extended matrix.

Let now τ ∈ (
0, 1

2M

)
be fixed and let A′ be a submatrix of A such that A′(τ) is a basis of A(τ).

Then, the linear system
L′ : A′(τ)x = b(τ)

has a unique solution x?. By Cramer’s rule, we have

(
x?

)
j =

det A′
j (τ)

det A′(τ)
,

where j ∈ [d ] and A′
j is obtained from the matrix A′ by replacing the j th column with b. Using

Laplace expansion, we can express det A′
j as

det A′
j =

d∑

i=1
(−1)i+ j bi detCi , j ,

where bi = (b)i and Ci , j is the matrix that we obtain by omitting the i th row and the j th
column from A′

j . Next, we apply the Leibniz formula and write detCi , j as

detCi , j =
∑

σ∈Sd−1

sgn(σ)
d−1∏

i=1
(Ci , j )i ,σ(i ) = ci , j (ε),

where ci , j (ε) is a polynomial in ε. Since the polynomials in A′ have degree at most k0, the
degree of ci , j is at most (d −1)k0. Because the polynomials in A′ have integer coefficients
with absolute value at most m, the coefficients of ci , j are integers, and the sum of their

absolute values can be bounded by M ′ = (d −1)!
(
(k0 +1)m

)d−1. Hence, ci , j ∈ P
[
M ′]. Now,

since det A′(τ) 6= 0, at least one of the polynomials c1, j , . . . ,cd , j , say ci?, j , is nontrivial. Let
k ′

i? ≤ (d −1)k0 be the minimum degree of a nontrivial monomial in ci?, j . First, we observe
that since bi? has a nontrivial monomial of degree ki? and no nontrivial monomial of degree
ki?− (d −1)k0, . . . ,ki?−1, the polynomial (−1)i?+ j bi?ci?, j has a nontrivial monomial of degree
k ′ = ki? +k ′

i? . Second, for i ∈ [d ], i 6= i?, the polynomial (−1)i+ j bi ci , j has no monomial of
degree k ′ since ci , j has degree at most (d −1)k0 and the polynomials b1, . . . ,bd are (k1, . . . ,kd )-
separated with gap (d −1)k0. Thus, det A′

j is a nontrivial polynomial. Moreover, since the

polynomials bi and ci , j have integer coefficients for i ∈ [d ], so does det A′
j . Using that the

sum of absolute values of the coefficients of ci , j is bounded by M ′, we can bound the sum of
absolute values of coefficients in det A′

j by M = d(k +1)mM ′ and hence det A′
j ∈P[M ], where

k = max
{
degbi

∣∣ i ∈ [d ]
}
. Then, Lemma 3.1 guarantees that det A′

j has no root in the interval(
0, 1

2M

)
. In particular, det A′

j (τ) 6= 0 and hence (x?) j 6= 0 for all j ∈ [d ]. This means that b(τ) is

not contained in the linear span of any d−1 columns from A(τ). Since τ ∈ (
0, 1

2M

)
was arbitrary,

the claim follows. �
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3. Equivalent Instances of COLORFULCARATHÉODORY in General Position

3.2. Construction

Let C ′
1, . . . ,C ′

d ⊂ Qd be d sets that ray-embrace b′ ∈ Qd . By applying Theorem 1.1, we can
ensure that |C ′

i | ≤ d for i ∈ [d ]. First, we rescale the points to the integer grid. For a point
p ′ ∈Qd , we set z(p ′) = |ψ|p ′, where ψ ∈Z is the absolute value of the least common multiple
of the denominators of (p ′)1, . . . , (p ′)d . Clearly, z(p ′) has integer coordinates and can be
represented with a number of bits polynomial in the number of bits needed for p ′. For i ∈ [d ],
let Ci =

{
z(p ′)

∣∣p ′ ∈C ′
i

}
be the rescaling of C ′

i , and set b = z(b′). Then, the bit complexity of
the COLORFULCARATHÉODORY instance C1, . . . ,Cd ,b is polynomial in the bit-complexity of
the original instance. Moreover, since pos

(
p ′)= pos

(
z(p ′)

)
for all p ′ ∈Qd , the rescaled color

classes Ci , i ∈ [d ], ray-embrace b and if a colorful choice C ⊆⋃d
i=1 Ci ray-embraces b, then the

original points C ′ ⊂⋃d
i=1 C ′

i ray-embrace b′. By a similar rescaling, we can further assume that

‖b‖1 ≥ ‖p‖1 for all p ∈⋃d
i=1 Ci .

We now sketch how the remaining construction of the equivalent instance C≈
1 , . . . ,C≈

d ,b≈ in
general position proceeds. First, we ensure for i ∈ [d ] that b lies in the interior of pos(Ci ) by
replacing each point p in Ci by a set Pε(p) of slightly perturbed points that contain p in the
interior of their convex hull. Second, we perturb b. Lemma 3.2 then shows that in both steps a
perturbation of polynomial bit-complexity suffices to ensure properties (P2) and (P3).

For a point p ∈Rd , we denote with

Pε(p) = {
p +εe i , p −εe i | i ∈ [d ]

}

the vertices of the `1-sphere around p with radius ε. Let Ci (ε) =⋃
p∈Ci

Pε(p), i ∈ [d ], denote
the i th color class in which all points p have been replaced by the corresponding set Pε(p).
Since for i ∈ [d ], we have b ∈ pos(Ci ) and since each point p ∈Ci is contained in the interior
of pos

(
Pε(p)

)
, it follows that b ∈ intpos(Ci (ε)) for ε> 0. Next, we denote with

b(ε) = b +




εd

ε2d

...

εd 2



∈Rd

the vector b that is perturbed by a vector from the moment curve. The following lemma shows
that for ε small enough, Property (P2) holds for C1(ε), . . . ,Cd (ε) and b(ε). Let m be the largest
absolute value of a coordinate in C1, . . . ,Cd ,b and set N = d !md .

Lemma 3.3. For all ε ∈ (
0, N−2

]
, there is no (d −1)-subset P ⊂⋃d

i=1 Ci (ε) with b(ε) ∈ spanP.

Proof. Let A denote the matrix
(
C1(ε) . . .Cd (ε)

)
. Then, there exists a subset P ⊂ ⋃d

i=1 Ci (ε)
with |P | < d that contains b(ε) in its linear span if and only if the linear system Lε : Ax = b(ε)
is degenerate. The polynomials in A all have degree at most 1 and the polynomials (b(ε))i ,
i ∈ [d ], are

(
d ,2d , . . . ,d 2

)
-separated with gap d −1. Setting k0 = 1 and k = d 2 in Lemma 3.2

implies that Lε is non-degenerate for all ε ∈ (
0, 1

2M

)
, where M = d !2d−1(d 2 +1)md . Assuming
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3.2. Construction

that m ≥ 2 and that d ≥ 4, we can upper bound 2d by md and (d 2 +1) by d !. Hence, we have

2M = d !2d (d 2 +1)md <
(
d !md

)2
= N 2,

and thus the claim follows. �

In the following, we set ε0 to N−2. Note that Lemma 3.3 holds in particular for ε= ε0, and
thus a deterministic perturbation of polynomial bit-complexity suffices. In the next lemma,
we show that the perturbed color classes still ray-embrace the perturbed b.

Lemma 3.4. For i ∈ [d ], the set Ci (ε0) ray-embraces b(ε0).

Proof. Fix some color class Ci and let mε0 = b(ε)−b be the perturbation vector for b. Since
Ci ray-embraces b, we can express b as a positive combination

∑
p∈Ci

ψp p , where ψp ≥ 0 for
all p ∈Ci . Then,

b(ε0) = b +mε0 =
(

∑

p∈Ci

ψp p

)
+mε0 =

∑

p∈Ci

ψp

(
p + 1

s
mε0

)
,

where s =∑
p∈Ci

ψp . We show that p + 1
s mε0 ∈ pos

(
Pε0 (p)

)
for all p ∈Ci . Since Pε0 (p) ⊆Ci (ε0)

for all p ∈Ci , this then implies b(ε0) ∈ pos(Ci (ε0)). First, we claim that s ≥ 1. Indeed, we have

‖b‖1 =
∥∥∥∥∥

∑

p∈Ci

ψp p

∥∥∥∥∥
1

≤
∑

p∈Ci

ψp
∥∥p

∥∥
1 ≤ s‖b‖1,

where the last inequality is due to our assumption ‖b‖1 ≥ ‖p‖1, for p ∈Ci . Now,

∥∥∥∥
1

s
mε0

∥∥∥∥
1
< dεd

0 ≤ ε0,

for ε0 ≤ 1/2, and thus p + 1
s mε0 lies in the `1-sphere around p with radius ε0 for all p ∈Ci . By

construction of Pε0 (p), we then have p + 1
s mε0 ∈ conv

(
Pε0 (p)

)⊂ pos
(
Pε0 (p)

)
, as claimed. �

As a consequence of Lemma 3.3, we can show that colorful choices for the perturbed instance
that ray-embrace b(ε0), ray-embrace b if the perturbation is removed.

Lemma 3.5. Let C = {c 1, . . . ,c d } be set such that c i ∈ Ci (ε0) for i ∈ [d ] and such that b(ε0) ∈
pos(C ). Then, the set C ′ = {

p
∣∣ i ∈ [d ], c i ∈ Pε0 (p)

}
ray-embraces b.

Proof. We prove the statement by letting ε go continuously from ε0 to 0. This corresponds
to moving the points in C and b(ε) continuously from their perturbed positions back to their
original positions. We argue that throughout this motion, b(ε) cannot escape the embrace of
the colorful choice.

The coordinates of the points in C are defined by polynomials in the parameter ε, and we
write C (ε) for the parametrized points. Then, C =C (ε0) and C ′ =C (0). By Lemma 3.3, for all
ε ∈ (0,ε0], the point b(ε) does not lie in any linear subspace spanned by d −1 points from C (ε).
It follows that initially b(ε0) ∈ intpos(C (ε0)) and therefore b(ε) ∈ intpos(C (ε)) for all ε ∈ (0,ε0].
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3. Equivalent Instances of COLORFULCARATHÉODORY in General Position

Assume now that b(0) ∉ pos(C (0)). Then, there exists a hyperplane h through 0 that strictly
separates b(0) from C (0). Because the `2-distance between h and any point in C (0)∪ {b(0)}
is positive, there is a τ ∈ (0,ε0) such that h separates b(τ) from C (τ), and hence also from
pos(C (τ)). This is impossible, since we showed that b(ε) ∈ intpos(C (ε)) for all ε ∈ (0,ε0]. �

We can now combine the previous lemmas to obtain our desired result on equivalent
instances for COLORFULCARATHÉODORY.

Lemma 3.6. Let I = (
C ′

1, . . . ,C ′
d ,b′) be an instance of COLORFULCARATHÉODORY, where C ′

i ⊂Qd

ray-embraces the point b′ ∈Qd for all i ∈ [d ]. Then, we can construct in polynomial time an
instance I≈ = (

C≈
1 , . . . ,C≈

d ,b≈)
of COLORFULCARATHÉODORY with properties (P1)–(P3).

Proof. We construct the point sets C1(ε0), . . . ,Cd (ε0) and the point b(ε0) as discussed above.
Since logε−1

0 is polynomial in the size of I , this needs polynomial time. By Lemma 3.4, each
color class Ci (ε0) ray-embraces b(ε0), so we can apply Theorem 1.1 to reduce the size of
Ci (ε0) to d while maintaining the property that b(ε0) is ray-embraced. Again, we need only
polynomial time for this step. Finally, as described at the beginning of this section, we rescale
the points to lie on the integer grid in polynomial time. Let C≈

i denote the resulting point
set for Ci (ε0), where i ∈ [d ], and let b≈ be the point b(ε0) scaled to the integer grid. Then,
properties (P1)–(P3) are direct consequences of this construction and Lemmas 3.3, 3.4, and 3.5.

�
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4 COLORFULCARATHÉODORY is in PPAD

We begin by sketching a nonconstructive proof of the colorful Carathéodory theorem that
uses Sperner’s Lemma. In Section 4.1, we present the main steps of the formulation as a
PPAD-problem. A section is dedicated to each major step, and we finally combine these
results in Section 4.4 to the main theorem of this chapter.

We briefly restate the definition of a polyhedral complex before we proceed. We call a finite
set of polyhedra P in Rd a polyhedral complex if and only if

for all polyhedra f ∈P , all faces of f are contained in P , and

for all f , f ′ ∈P , the intersection f ∩ f ′ is a face of both.

Note that the first property implies that ;∈P . Furthermore, we say P has dimension k if there
exists some polyhedron f ∈P with dim f = k and all other polyhedra in P have dimension
at most k. We call P a polytopal complex if it is a polyhedral complex and all elements are
polytopes. Similarly, we say P is a simplicial complex if it is a polytopal complex whose
elements are simplices. Finally, we say P subdivides a set Q ⊆ Rd if

⋃
f ∈P f = Q. For more

details, please refer to [82, Section 5.1].
The following proof was already published in the PhD thesis of Sarrabezolles [70] and we

sketch here the main steps to provide some intuition on the approach that we are taking when
we cast COLORFULCARATHÉODORY as PPAD-problem.

Let ∆d−1 = conv(e1, . . . ,ed ) ⊂Rd denote the standard (d −1)-simplex, where e1, . . . ,ed is the
canonical basis of Rd . Furthermore, let S be a simplicial subdivision of∆d−1 and let λ : V (S) 7→
[d ] be a function that assigns to each vertex v of a simplex in S a label from [d ] such that
if v ∈ conv(e i1 , . . . ,e ik ), then λ(v) ∈ {i1, . . . , ik }. We call a labeling with this property a Sperner
labeling. For a simplex σ= conv{v 0, . . . , v k−1} ∈ S , we denote with λ(σ) = {λ(v i ) | i ∈ [k −1]0}
the set of labels of its vertices. Furthermore, we call σ almost fully-labeled if [k −1] ⊆λ(σ) and
we call it fully-labeled if [k] =λ(σ).

Lemma 4.1 (Sperner’s Lemma (Strong Version) [24]). The number of fully-labeled (d − 1)-
simplices is odd.

Proof. For i ∈ [d ], we denote with Σi the set

Σi =
{
σ ∈S

∣∣σ⊆ conv(e1, . . . ,e i ), σ is an almost fully-labeled (i −1)-simplex
}⊆S .

Note that Σ1 = {e1}. We define a graph G = (V ,E) with V = ⋃d
i=1Σi as follows. There is an

undirected edge between to nodes σ,σ′ ∈ V if and only if (i) σ,σ′ ∈ Σi , i ∈ [d ], and both
simplices share a facet qσ with λ(qσ) = [i −1], or (ii) one simplex, say σ, is contained in Σi for
some i ∈ [d −1], σ′ is contained in Σi+1, and σ is a facet of σ′. See Figure 4.1 for an example in
two dimensions.
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Figure 4.1.: An example of Sperner’s lemma in two dimensions. Fully-labeled 2-simplices are
colored yellow, and the graph that is defined in the proof of Lemma 4.1 is marked
red.

Let Σ?d ⊆ Σd be the set of fully-labeled simplices and set D1 = Σ1 ∪Σ?d . We claim that the
degree of a node σ ∈ V is 1 if and only if σ ∈ D1 and otherwise 2. First we observe that {e1}
is the single node in Σ1 and hence deg{e1} ≤ 1. Second, since S is a simplicial subdivision of
∆d−1, there exists a 1-simplex σ⊆ conv(e1,e2) with {e1} as its facet. Then, σ ∈ Σ1 and hence
deg{e1} = 1. Let now σ ∈Σ?d be a fully-labeled (d −1)-simplex. Then, σ has exactly one facet
qσ with λ

(
qσ
)= [d −1] that is either shared with another simplex in Σd or is itself a simplex in

Σd−1. Thus, degσ= 1.
Consider now a simplexσ ∈Σi \D1, i ∈ [d ]. If λ(σ) = [i ], then there exists exactly one simplex

inΣi+1 withσ as a facet. Furthermore,σ has exactly one facet with label set [i−1] and this facet
is either shared with another simplex in Σi or it is itself a simplex in Σi−1. Hence, degσ= 2.
Otherwise, if λ(σ) = [i −1], σ has exactly two facets with label set [i −1] and each facet is either
shared with another simplex in Σi or is itself a simplex in Σi−1.

Because there is an even number of nodes with odd degree, |D1| must be even. Furthermore,
since {e1} is the only simplex in D1 that is not fully-labeled, the number of fully-labeled
simplices in S is odd. �

In particular, there is at least one fully-labeled simplex.
We now prove the cone version of Theorem 1.2 using Lemma 4.1. Let C1, . . . ,Cd ⊂ Rd be

d color classes of d vectors each that ray-embrace a point b ∈ Rd , b 6= 0. Then, let A =
(C1 C2 . . . Cd ) ∈ Rd×d 2

be the matrix that has the vectors from C1 in the first d columns, the
vectors from C2 in the second d columns, and so on. We denote with LCC the linear system

LCC : Ax = b

x ≥ 0.
(4.1)
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Let PCC ⊂Rd 2
denote the polyhedron that is defined by LCC. We note that each color class Ci ,

i ∈ [d ], is a feasible basis of LCC and hence defines a vertex v i of PCC. We call a feasible basis
B of LCC colorful if B is a colorful choice of C1, . . . ,Cd . Similarly, we call the vertex v B that is
defined by a feasible basis B colorful if B is colorful. Now, we cut out a polyhedral complex F
of PCC that behaves similarly to a simplex and we show that for an arbitrary triangulation of
F and an appropriate Sperner labeling, all fully-labeled simplices have a colorful vertex. Then,
Lemma 4.1 guarantees the existence of a colorful basis.

For a subset I ⊆ [d ] of the colors, we denote with LCC
I the following linear subsystem of LCC

that is restricted to the colors in I :

LCC
I : Aind(C I )x = b

x ≥ 0,

where C I =
⋃

i∈I Ci . As described in Section 2.2.4, the polyhedron that is defined by LCC
I is

the projection of a face f I ⊆PCC. Now, we define for each k-subset of colors I ⊆ [d ] a k −1-
dimensional polyhedral subcomplex FI of f I by induction on k. We begin with k = 1 and set
F{i } = {;, f{i }} = {;, v i } for i ∈ [d ]. Let now k ≥ 2 and let I ⊆ [d ] be a set of size k. Assume we
already have defined F

qI for all qI ⊂ I with |qI | = k −1. Then, we set qFI =
⋃

qI⊂I :|qI |=k−1FqI to be the
collection of all (k −2)-dimensional polyhedral complexes that are defined by subsets of I .
Note that qFI ⊂ f I since f

qI ⊂ f I for all (k −1)-subsets qI of I . By connectedness, there exists a

(k −1)-dimensional polyhedral subcomplex FI of f I with qFI as boundary. We denote with F
the (d −1)-dimensional polyhedral subcomplex F[d ] of PCC. To apply Lemma 4.1, we fix an
arbitrary triangulation T of F and we define for each vertex v of F a label λ(v ) ∈ [d ] as follows:

λ(v ) = argmax
i∈[d ]

∣∣ind(Ci )∩ supp(v )
∣∣ . (4.2)

In case of a tie, we take the smallest i ∈ [d ] that achieves the maximum. Now, for a k-set I ⊆ [d ],
we identify the (k −1)-face g = conv{e i | i ∈ I } of the standard (d −1)-simplex ∆d−1 with the
(k −1)-face f I ∈F . Since all bases that define vertices in f I are subsets of

⋃
i∈I Ci , the label

of a vertex in f I is from I . Even though the polyhedral complex F may not necessarily be
homeomorphic to ∆d−1, it still behaves almost like a simplex and the proof of Lemma 4.1 can
be mimicked on F to show that there exists at least one fully-labeled (d −1)-simplex in T . We
conclude the proof sketch of Theorem 1.2 by showing that a fully-labeled simplex implies a
colorful feasible basis.

Lemma 4.2. Let σ ∈ T be a fully-labeled simplex. Then, one of the bases that define the vertices
of σ is colorful.

Proof. By construction, F is a (d −1)-dimensional polytopal subcomplex of PCC. Hence, σ
lies on a (d −1)-face f of PCC. The face f is defined by d + (d −1) = 2d −1 columns from
A. Since there are d colors, one color, say i?, appears at most once in f . As the simplex σ
is fully-labeled, it has a vertex with label i? and let B? be the feasible basis that defines this
vertex. By definition of the labeling λ, the basis B? has then at most one vector from each
color class, so B? is a colorful feasible basis. Note that this in particular implies i? = 1. �
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4. COLORFULCARATHÉODORY is in PPAD

4.1. Outline

Inspired by the presented proof of the colorful Carathéodory theorem using Sperner’s lemma,
we cast COLORFULCARATHÉODORY as a PPAD-problem by replacing nonconstructive steps
with algorithms. As before, we would like to navigate in a polyhedral subcomplex F of PCC

that behaves like a simplex and then adapt the constructive proof of Sperner’s lemma to find a
colorful vertex. However, instead of working directly with F , we define a polytopal subdivision
Q∆ of the standard simplex ∆d−1 that has a dual relationship to F . The polytopal complex
Q∆ has no counterpart in the proof from the previous section. We use it as a proxy for F
that enables us on the one hand to work in an easier geometric setting, namely the standard
simplex, while on the other hand, due to the dual relationship to F , it is still possible to attack
computational problems that involve Q∆ with linear programming techniques by translating
them back to F .

In Section 4.2, we define F implicitly as a solution space to a family of parametrized linear
programs. The linear programs all have the linear system LCC as constraints and differ only in
their cost vectors. The cost vectors are defined by a linear function that maps points µ ∈Rd

to a cost vector cµ ∈ Rd 2
. We call Rd the parameter space and µ ∈ Rd a parameter vector.

To each face f of PCC, we assign the set of parameter vectors Φ( f ) ⊂ Rd such that for all
µ ∈ Φ( f ), the face f is optimal for the linear program LCC

µ that has LCC as constraints and
cµ as cost vector. We call Φ( f ) the parameter region of f . The cost vector is designed to
control the colors that appear in the support of optimal faces for a specific subset of parameter
vectors. Let M= {

µ ∈Rd
∣∣µ≥ 0, ‖µ‖∞ = 1

}
denote the faces of the unit cube in which at least

one coordinate is set to 1. Then, no face f that is assigned to a parameter vector µ ∈ M
with (µ)i× = 0 has a column from A with color i× in its defining set Asupp( f ). This property
is crucial to define later on a Sperner labeling based on the colors in the support. Now, the
polyhedral complexF consists of all faces f withΦ( f )∩M 6= ;. Furthermore, the intersections
of the parameter regions with M induce a polytopal complex Q. By performing a central
projection with the origin as center of Q onto the standard simplex ∆d−1, we obtain the
polytopal subdivision Q∆ of ∆d−1.

In Section 4.3, use the barycentric subdivision sdQ∆ to obtain a simplicial subdivision of
the standard simplex. Similar to the labeling of the proof in the previous section, we assign
to a vertex v in sdQ∆ the label λ(v) = i if the i th color appears most often in the support of
the face in F that corresponds to this vertex, where ties are broken by taking the smallest
label. The color controlling property of our cost function then implies that λ is a Sperner
labeling, and a similar argument as in the proof of Lemma 4.2 shows that one of the vertices
of a fully-labeled (d −1)-simplex corresponds to a colorful feasible basis. This concludes a
new constructive variant of the topological proof. To show that COLORFULCARATHÉODORY

is in PPAD however, we need to be able to traverse sdQ∆ efficiently. For this, we introduce
a combinatorial encoding of the simplices in Q∆ such that the encoding of simplices that
share a facet differs only in one part. Finally, in Section 4.4, we combine the results from
the previous sections together with a generalization of the formulation of 2D-Sperner as a
PPAD-problem [61] to show that COLORFULCARATHÉODORY is in PPAD.
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4.2. The Polytopal Complex

4.2. The Polytopal Complex

Let I = (C1, . . . ,Cd ,b) be a fixed instance of COLORFULCARATHÉODORY. Applying Lemma 3.6,
we can assume without loss of generality that I has properties (P1)–(P3).

We begin by defining a family of linear programs {LCC
µ |µ ∈Rd }, where each linear program

LCC
µ consists of the linear system LCC (see (4.1)) with respect to the instance I and differs only

in its cost vector cµ. The cost vector cµ is defined by a linear function inµ ∈Rd . More formally,
we denote with LCC

µ the linear program

LCC
µ : minc T

µx

s.t. Ax = b

x ≥ 0,

(4.3)

and we denote with PCC ⊂Rd 2
the polyhedron that is defined by the linear system LCC. We

can think of the i th coordinate of the parameter vector µ ∈ Rd as the weight of color i , i.e.,
the costs of columns from A with color i decrease if (µ)i increases. Furthermore, we want the
cost vector to control the colors that appear in the support of optimal faces when restricted to
parameter vectors in M. More precisely, we want that if (µ)i = 0, then no optimal basis for Lµ
contains a column with color i , while (µ)i > 0 implies that color i may appear in an optimal
basis. Let N = d !md be as defined in Lemma 2.3, where m is the largest absolute value that
appears in A and b. Then, we define cµ as

(cµ) j = 1+ (
1− (µ)i

)
d N 2 +ε j , (4.4)

where j ∈ [
d 2

]
, i is the color of the j th column in A, and 0 < ε≤ N−3 is a perturbation that we

define shortly. We prove the desired color-controlling properties of the cost function at the
end of this section.

In the following, we denote for a face f ⊆PCC, f 6= ;, with

Φ( f ) =
{
µ ∈Rd

∣∣∣ f is optimal for Lµ
}

the set of all parameter vectors for which f is optimal. We call this the parameter region for f .
By our discussion from Section 2.2.4, we can expressΦ( f ) as solution space to the following
linear system, where B is a feasible basis of some vertex of f and the d coordinates of the
parameter vector µ are the variables:

LΦB , f : (r̂ B ,cµ) j = 0 for j ∈ supp
(

f
)

\ ind(B)

(r̂ B ,cµ) j ≤ 0 for
[
d 2]\ supp

(
f
)
.

Then, we define F as the set of all faces that are optimal for some parameter vector in M:

F = {
f
∣∣ f is a face of PCC,Φ( f )∩M 6= ;}

.

It is easy to see that F ∪ {;} is a polyhedral subcomplex of PCC: first, all elements from F
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4. COLORFULCARATHÉODORY is in PPAD

are faces of PCC. Second, since f ∈F , there exists a parameter vector µ ∈M for which f is
optimal. Then, all nonempty subfaces of f are also optimal forµ and hence they are contained
in F . The intersections of the parameter regions with faces of M induce a subdivision Q of
M:

Q= {
Φ( f )∩ g

∣∣ f ∈F , g is a face of M
}

.

In the remaining part of this section, we show thatQ is a (d−1)-dimensional polytopal complex
and characterize its elements. We begin with a perturbation lemma to ensure that the linear
system LΦB , f extended by the constraints µ ∈ g , where g is a face of M, is non-degenerate for

all faces f of PCC and all choices of bases B for a vertex of f .

Lemma 4.3. There exists a constant c ∈Nwith c ≥ 3 such that for ε= N−cd the following holds.
Let B be an arbitrary but fixed feasible basis of LCC. Let h j ⊂Rd denote the hyperplane

h j =
{
µ ∈Rd

∣∣∣
(
r̂ B ,cµ

)
j
= 0

}
,

and set HΦ = {
h j | j ∈ [

d 2
]

\ ind(B)
}
. Furthermore, let H� denote the set of supporting hyper-

planes for the facets of the unit cube inRd . Then, for all k-subsets H ′ of HΦ∪H�, the intersection⋂
h∈H ′ h is either empty or has dimension d −k. In particular, if k > d, the intersection must be

empty.

Proof. Let H ′ be a k-subset of HΦ ∪ H�, and suppose that
⋂

h∈H ′ h 6= ;. We denote with
H ′
Φ = H ′ ∩ HΦ the hyperplanes from HΦ and similarly, we denote with H ′

� = H ′ ∩ H� the
hyperplanes from H�. Set R = [

d 2
]

\ ind(B) and let φ1 < ·· · <φn ∈ R be the indices such that
H ′
Φ = {hφ1 , . . . ,hφn }, where n = |H ′

Φ|. Then the intersection
⋂n

i=1 hφi is the solution space to the
system of linear equations

((
cµ

)
R −

(
A−1

ind(B) AR

)T (
cµ

)
ind(B)

)

rankR (φi )
= 0 for i ∈ [n], (4.5)

where rankR (φi ) denotes the rank of φi in R. We write ind(B) = {β1, . . . ,βd }, with β1 < ·· · <βd

and ai =
(

A−1
ind(B) AR

)
rankR (φi )

, for i ∈ [n]. Then, (4.5) is equivalent to

−d N 2(µ)col(φi )+d N 2aT
i




(µ)col(β1)
...

(µ)col(βd )


=−1−d N 2−εφi +aT

i




1+d N 2 +εβ1

...
1+d N 2 +εβd


 for i ∈ [n], (4.6)

where col
(
φi

)
and col

(
βi

)
denote the colors of the columns with indicesφi andβi , respectively.

Thus, (4.6) is of the form
AΦµ= bΦ, (4.7)

where AΦ ∈Qn×d and the polynomials (bΦ)i , i ∈ [n], are (φ1,φ2, . . . ,φn)-separated with gap 0.
The entries of AΦ are not necessarily integers due to the occurrence of A−1

ind(B) in the vectors

ai . By Lemma 2.3, the fractions in A−1
ind(B) all have the same denominator: det Aind(B) ∈Z. We
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4.2. The Polytopal Complex

set A′
Φ = (

det Aind(B)
)

AΦ and b′
Φ = (

det Aind(B)
)

bΦ. Then, the linear system

A′
Φµ= b′

Φ (4.8)

is equivalent to (4.7), where A′
Φ ∈Zn×d and

(
b′
Φ

)
i is a polynomial in ε with integer coefficients

and a nontrivial monomial of degree φi for i ∈ [n]. Let m′ denote the maximum absolute value
of the coefficients of ε-polynomials in A′

Φ and b′
Φ. Since the absolute value of the entries of

AR is at most N and since by Lemma 2.3 the absolute value of the entries in A−1
ind(B) is at most

N , there exists a constant c ′ ∈N such that m′ ≤ N c ′
and c ′ is independent of the choice of B .

Set n′ =
∣∣H ′
�

∣∣. Since we assume that the hyperplanes in H ′ have a point in common and
since H ′

� ⊆ H ′, the hyperplanes in H ′
� fix the values of exactly n′ coordinates (µ) j to either 0 or

1. Let J be the indices of the fixed coordinates and let Ji ⊆ J be the indices of the (µ) j that are
set to i for i = 0,1. Combining this with (4.8), we can express the intersection of hyperplanes
in H ′ as (

A′
Φ

)
[d ]\J (µ)[d ]\J = b′

Φ−
∑

j∈J1

(A′
Φ) j . (4.9)

The matrix
(

A′
Φ

)
J is an n × (d −n′) integer matrix, whose entries have absolute value at most

N c ′
and the polynomials pi = (b′

Φ−∑
j∈J1

(A′
Φ) j )i , i ∈ [n], are (φ1,φ2, . . . ,φn)-separated with

gap 0. Then, Lemma 3.2 implies that for all ε ∈ (
0, 1

2M

)
, the right hand vector of (4.9) cannot lie

in the span of n −1 columns of the left hand matrix, where M = d !(d 2 +1)
(
N c ′)d . Thus, for c =

max(3,2c ′), we have N−cd ∈ (
0, 1

2M

)
. Since we know that (4.9) has a solution, it follows that the

rank of (4.9) must be n and thus the intersection
⋂

h∈H ′ h has dimension d −n−n′ = d −k. �

Note that since c is a constant, the number of bits needed to represent ε is polynomial in the
size of the COLORFULCARATHÉODORY instance. We continue by showing that the elements
from Q are indeed polytopes and by characterizing precisely their dimension and their facets.

Lemma 4.4. Let q = Φ( f )∩ g 6= ; be an element from Q, where f ∈F and g is a face of M.
Then, q is a simple polytope of dimension dim g −dim f . Moreover, if dim q > 0, the set of facets
of q can be written as

{
Φ

(
f
)∩ ǧ 6= ;

∣∣∣ ǧ is a facet of g
}
∪{
Φ

(
f̂
)∩ g 6= ;

∣∣ f is a facet of f̂ ∈F}
.

Proof. Let B be a feasible basis for a vertex of f . As discussed above, the solution space to the
linear system LΦB , f isΦ( f ). We denote with H=

Φ( f ) the set of hyperplanes that are given by the
equality constraints

(r̂ B ,µ) j = 0, for j ∈ supp
(

f
)

\ ind(B),

and we denote with H−
Φ( f ) the set of halfspaces that are given by the d 2−(d+dim f ) inequalities

(r̂ B ,µ) j ≤ 0, for j ∈ [
d 2]\ supp

(
f
)

in LΦB , f .
Because g is a face of M and hence of the unit cube, we can write it as the intersection of

a set H=
g of d −dim g hyperplanes and a set of halfspaces H−

g , where H=
g and the boundary
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4. COLORFULCARATHÉODORY is in PPAD

hyperplanes from the halfspaces in H−
g are supporting hyperplanes of facets of the unit cube.

We set H= = H=
g ∪H=

Φ( f ) and H− = H−
g ∪H−

Φ( f ). Now, q is the intersection of the affine space
S= =⋂

h∈H= h with the polyhedron S− =⋂
h−∈H− h−. Hence, q is a polyhedron and moreover, as

q ⊆M, it is a polytope. By Lemma 4.3, the hyperplanes in H= and the boundary hyperplanes
of H− are in general position, so q is simple.

We now prove dim q = dim g −dim f . Because |H=
g | = d −dim g , |H=

Φ( f )| = dim f , and by
Lemma 4.3, we have H=

g ∩H=
Φ( f ) =;, the set H= contains d −dim g +dim f hyperplanes. Again

by Lemma 4.3, the hyperplanes from H= are in general position, and therefore dimS= =
max(dim g −dim f ,−1), where we set dim;=−1. Since we assume that q 6= ;, it follows that
dimS= ≥ 0, so in particular dim f ≤ dim g . We show that the dimension does not decrease
by intersecting S= with the halfspaces in H−. Fix an arbitrary ordering h−

1 , . . . ,h−
m , m = |H−|,

of the halfspaces in H−. For j = 0,1, . . . ,m, let Ψ j denote the polyhedron that we obtain by
intersecting S= with the first j halfspaces h−

1 , . . . ,h−
j from H−. In particular, we haveΨ0 = S=

and Ψm = q . Assume for the sake of contradiction that dim q < dimS=, and let j? be such
that dimΨ j?−1 = dimS= and dimΨ j? = d j? < dimS=. There are three possibilities: (i)Ψ j?−1∩
h−

j? =;; (ii) h−
j? intersects the relative interior ofΨ j?−1; or (iii) h−

j? intersects only the boundary
ofΨ j?−1. Now, since q 6= ;, Case (i) is impossible. Since by our assumption, d j? < dimΨ j?−1,
Case (ii) also cannot occur. Hence, Ψ j? is a proper face of Ψ j?−1. Then, Ψ j? is contained in
the intersection of the d −dim g +dim f hyperplanes from H= with at least dimS=−d j? =
dim g −dim f −d j? boundary hyperplanes of h−

1 , . . . ,h−
j?−1, and with the boundary hyperplane

of h−
j? . Thus, the d j?-dimensional polyhedronΨ j? lies in the intersection of at least d −d j?+1

hyperplanes from H= and bounding hyperplanes from H−. Hence, the hyperplanes from H=

together with the bounding hyperplanes from H− are not in general position, a contradiction
to Lemma 4.3.

We now prove the second part of the statement. Let q̌ be a facet of q . Since dim q > 0, the
facet q̌ is nontrivial. Then, q̌ is the intersection of q with a hyperplane h? that is a boundary
hyperplane of some halfspace in H−. Let h− be the halfspace that generates h?. If h− ∈ H−

g ,
then ǧ = g ∩h is a facet of g and we have q̌ =Φ( f )∩ ǧ . Assume now h− ∈ H−

Φ( f ) and let h be

defined by the equation (r̂ B ,cµ) j = 0 for some j ∈ supp
(

f
)

\ ind(B). Let f̂ ⊆PCC be the face
that is defined by the columns from A with indices supp

(
f
)∪ { j }, and note that f is a facet of

f̂ . Then, we can write q̌ as

q̌ = h?∩q = h?∩

 ⋂

h∈H=
Φ( f )

h ∩
⋂

h−∈H−
Φ( f )

h−∩ g


=


h?∩

⋂
h∈H=

Φ( f )

h ∩
⋂

h−∈H−
Φ( f )

h−

∩ g

and thus q̌ contains all parameter vectors in g for which f̂ is optimal.
Now, let ǧ be a facet of g with q̌ =Φ( f )∩ ǧ 6= ;. Then, there exists a boundary hyperplane

h? from a halfspace in H−
g such that q̌ = h?∩ (

⋂
h∈H= h)∩ (

⋂
h−∈H− h−). Clearly, q̌ is a face of q .

Furthermore, since q̌ 6= ; the first part of the lemma implies

dim q̌ = dim ǧ −dim f = (dim g −1)−dim f = dim q −1 ≥ 0.

Hence q̌ is a facet of q . Let now f̂ ∈F be a face that has f as a facet with q̌ =Φ( f̂ )∩g 6= ;. Then
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there exists a boundary hyperplane h? of a halfspace in H−
Φ( f ) such that q̌ = h?∩ (

⋂
h∈H= h)∩

(
⋂

h−∈H− h−). As before, q̌ is a face of q and since q̌ 6= ;, we get

dim q̌ = dim g −dim f̂ = dim g − (dim f +1) = dim q −1 ≥ 0.

Thus, q̌ is a facet of q . �

In particular, Lemma 4.4 implies that within each k-face of M, the set of parameter vectors
that are optimal for some vertex v ∈F is either empty or a k-dimensional polytope and the
set of parameter vectors that are optimal for a k-face f ∈F is either empty or a single point.
Furthermore, Lemma 4.4 immediately bounds the maximum dimensions of faces in F by
d −1.

The next lemma shows that the intersection of any two polytopes in Q is again an element
in Q.

Lemma 4.5. Let q1 =Φ( f1)∩ g1 ∈Q and q2 =Φ( f2)∩ g2 ∈Q be two polytopes with q1 ∩q2 6= ;,
where f1, f2 ∈F and g1, g2 are faces of M. Then,

q1 ∩q2 =Φ
(

f̂
)∩ ǧ ,

where f̂ ∈F is the smallest face of PCC that contains f1 and f2, and ǧ = g1 ∩ g2.

Proof. We begin with showing that Φ( f1)∩Φ( f2) = Φ(
f̂
)
. Let µ ∈ Φ( f1)∩Φ( f2) be a vector.

Since f̂ is the smallest face of PCC that contains f1 and f2, the face f̂ is optimal for LCC
µ and

thus Φ( f1)∩Φ( f2) ⊆Φ(
f̂
)
. Let now µ be a parameter vector from Φ

(
f̂
)
. Since f1 and f2 are

subfaces of f̂ , the faces f1 and f2 are optimal for µ and thus we have µ ∈Φ( f1)∩Φ( f2). Hence,
Φ

(
f̂
)=Φ( f1)∩Φ( f2). Then, we can express q1 ∩q2 as

q1 ∩q2 =
(
Φ( f1)∩ g1

)∩ (
Φ( f2)∩ g2

)=Φ(
f̂
)∩ ǧ ,

where ǧ = g1 ∩ g2. Moreover, since q1 ∩q2 6= ; and ǧ is a face of M, the face f̂ is contained in
F . �

Equipped with Lemmas 4.4 and 4.5, we are now ready to show that Q is a polytopal complex.

Lemma 4.6. The set Q is a (d −1)-dimensional polytopal complex that decomposes M.

Proof. Lemma 4.4 guarantees that every element q ∈Q is a polytope in Rd of dimension at
most d −1. By the second part of Lemma 4.4, if dim q > 0, all facets of q and hence inductively
all nonempty faces of q are contained in Q. Furthermore, since ; is a face of M, it is contained
in Q as well.

Now, let q1, q2 ∈Q be two polytopes. If q1 ∩ q2 = ;, then clearly q1 ∩ q2 is a face of both
polytopes q1 and q2, so assume q1 ∩q2 6= ;. By definition of Q, there are faces f1, f2 ∈F and
faces g1, g2 of M such that q1 =Φ( f1)∩g1 and q2 =Φ( f2)∩g2. Then, we can apply Lemma 4.5
to express the intersection of q1 and q2 as Φ

(
f̂
)∩ ǧ . Since f̂ ∈F and since ǧ is a face of M,

q1 ∩q2 ∈Q. Moreover, as f̂ is a superface of f1 and ǧ is a face of g1, a repeated application
of Lemma 4.4 shows that q1 ∩q2 is a face of q1. Similarly, because f̂ is a superface of f2 and
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ǧ is a face of g2, a repeated application of Lemma 4.4 proves that q1 ∩ q2 is a face of q2, as
desired. �

A further implication of Lemmas 4.4 and 4.5 is that each polytope in Q can be represented
uniquely as the intersection of a parameter region of a face of PCC and a face of M.

Lemma 4.7. Let q ∈Q be a polytope. Then, there exists unique pair of faces f , g , where f ∈F
and g is a face of M, such that q =Φ( f )∩ g .

Proof. Let f1, f2 be two faces of PCC and let g1, g2 be two faces of M such that

q =Φ( f1)∩ g1 =Φ( f2)∩ g2.

Then, by Lemma 4.5, we can write q asΦ
(

f̂
)∩ ǧ , where f̂ ∈F is the smallest face in PCC that

contains f1 and f2 and ǧ is a face of g1 and of g2. If f̂ 6= f1 or ǧ 6= g1, then by Lemma 4.4,

dim q = dim ǧ −dim f̂ < dim g1 −dim f1 = dim q,

a contradiction. Hence, we must have f̂ = f1 and ǧ = g1. Similarly, we must have f̂ = f2 and
ǧ = g2, and thus f1 = f2 and g1 = g2. �

From now on, we denote the (d −1)-dimensional standard simplex with ∆ ⊂ Rd , and we
perform a central projection with the origin as center of Q onto ∆. It is easy to see that this
projection is a bijection. For a parameter vector µ ∈M, we denote with

∆(µ) = 1

‖µ‖1
µ

its projection onto ∆. Similarly, for a parameter vector µ ∈∆, we denote with

M(µ) = 1

‖µ‖∞
µ

the projection of µ onto M and we use the same notation to denote the element-wise pro-
jection of sets. Then, we can write the projection Q∆ of Q onto ∆ as Q∆ = {∆(q) | q ∈ Q}.
Furthermore, let S = {∆(g ) | g is a face of M} denote the projections of the faces of M onto ∆.
For f ∈F , let Φ∆( f ) =∆(Φ( f )∩M) denote the projection of all parameter vectors in M for
which f is optimal onto ∆. Please refer to Table 4.1 for an overview of the current and future
notation. The following results are immediate consequences from Lemmas 4.4, 4.6, 4.7, and
the fact that the projection is a bijection.

Corollary 4.8 (of Lemma 4.4). Let q 6= ; be an element from Q∆. Then, there exists a face
f ∈F and a face g ∈S such that q =Φ∆( f )∩ g . Moreover, q is a simple polytope of dimension
dim g −dim f and, if dim q > 0, the set of facets of q can be written as

{
Φ∆

(
f
)∩ ǧ 6= ;

∣∣∣ ǧ is a facet of g
}
∪{
Φ∆

(
f̂
)∩ g 6= ;

∣∣ f is a facet of f̂ ∈F}
.

�
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Corollary 4.9 (of Lemma 4.6). The set Q∆ is a (d −1)-dimensional polytopal complex that
decomposes ∆. �

Corollary 4.10 (of Lemma 4.7). Let q ∈Q∆ be a polytope. Then, there exists unique pair of faces
f , g with f ∈F and g ∈S such that q =Φ∆( f )∩ g . �

We conclude this section by showing the claimed color-controlling property of the cost
function. Before we proceed with the proof, we first observe the following direct implication
of Property (P2).

Observation 4.11. For any feasible basis B of LCC, the coordinates for B in the corresponding
basic feasible solution are strictly positive. Equivalently, PCC is simple.

Lemma 4.12. Let i× ∈ [d ] be a color and let µ ∈M be a parameter vector with µi× = 0. Further-
more, let B? be an optimal feasible basis for LCC

µ . Then, B?∩Ci× =;.

Proof. Let x? be the basic feasible solution for B? with respect to LCC
µ . For the sake of

contradiction, suppose that B? contains some vector of Ci× , and let k be the index of the
corresponding coordinate in x?. By Observation 4.11 and Lemma 2.3, we have

(
x?

)
k ≥ 1/N .

Hence,

c T
µx? ≥ (

cµ
)

k

(
x?

)
k ≥ (

1+d N 2)(x?
)

k ≥ d N + 1

N

since cµ ≥ 1 and x? ≥ 0. By construction, there is a color i? ∈ [d ] such that (cµ) j = 1+ε j for all

columns j with color i?. Let x (i?) be the basic feasible solution for the basis Ci? . By Lemma 2.3,(
x (i?)

)
j

is upper bounded by N for all j ∈ ind(Ci?), so we can lower bound the costs of x (i?) as

follows:

c T
µx (i?) =

∑

j∈ind(Ci?)
(cµ) j

(
x (i?)

)
j
≤

∑

j∈ind(Ci?)

(
1+ 1

N 3

)(
x (i?)

)
j
≤ d N + d

N 2 < d N + 1

N
,

where we use that 0 < ε≤ N−3. This contradicts the optimality of B?. �

4.3. The Barycentric Subdivision

The barycentric subdivision [49, Definition 1.7.2] is a well-known method to subdivide a
polytopal complex into simplices. The barycentric subdivision sdQ∆ of Q∆ consists of all
simplices conv(v 0, . . . , v k−1) such that there exists a chain q0 ⊂ ·· · ⊂ qk−1 of polytopes in Q∆

with dim qi−1 < dim qi and v i being the barycenter of qi for i ∈ [k −1]0 and k ∈ [d ]. Similarly
to the labeling from (4.2), we define the label of a vertex v ∈ sdQ∆ as follows. By Corollary 4.10,
there exists a unique pair f ∈F and g ∈S with v ∈ relint

(
Φ∆( f )∩ g

)
. Then, the label λ(v ) of v

is defined as
λ(v ) = argmax

i∈[d ]

∣∣ind(Ci )∩ supp
(

f
)∣∣ . (4.10)

Again, in case of a tie, we take the smallest i ∈ [d ] that achieves the maximum. Lemma 4.12
implies that λ is a Sperner labeling of sdQ∆: first, consider a vertex e i of ∆, where i ∈ [d ].
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4. COLORFULCARATHÉODORY is in PPAD

Symbol Definition

Ci The i th color class. The d-set Ci ⊂Rd ray-embraces b.

A The (d ×d 2)-matrix with C1 as first d columns, C2 as second d columns, and
so on.

cµ The cost vector parameterized by a parameter vector µ ∈Rd . See (4.4).

LCC; LCC
µ LCC refers to the linear system Ax = b, x ≥ 0 (see 4.1). LCC

µ denotes the linear

program maxcT
µ x s.t. LCC.

PCC The polytope defined by LCC.

f ; supp
(

f
)
; ind(B) For a face f ⊆PCC, we denote with supp

(
f
)

the indices of the columns in A
that define it. For a set of columns B of A, we denote with ind(B) the indices
of these columns.

Φ( f ); LΦB , f For a face f of PCC, Φ( f ) denotes the set of parameter vectors µ ∈ Rd such
that f is optimal for LCC

µ . The setΦ( f ) can be described as the solution space

to the linear system LΦB , f , where B is a feasible basis of a vertex of f .

M The set M contains all faces from the unit cube in Rd that set at least one co-
ordinate to 1. Parameters from M control the colors of the defining columns
of optimal faces (see Lemma 4.12).

F The set of faces f of PCC of that are optimal for some parameter vector in M,
i.e., the set of faces f withΦ( f )∩M 6= ;. F is a (d−1)-dimensional polyhedral
complex.

Q The (d −1)-dimensional polytopal complex that consists of all elements q =
Φ( f )∩ g , where f ∈F and g is a face of M.

∆; ∆[k] ∆ denotes the (d −1)-dimensional standard simplex and ∆[k] denotes the face
conv{e i | i ∈ [k]} of ∆.

S The set S contains the central projections of the faces of M onto ∆with the
origin as center.

Φ∆; Q∆ Φ∆( f ) denotes the central projection ofΦ( f )∩M onto ∆with center 0. The
(d −1)-dimensional polytopal complex Q∆ consists of the projections of the
elements in Q onto ∆. Each element q of Q∆ can be uniquely written as
q =Φ∆( f )∩ g , where f ∈F and g ∈S .

λ The labeling function, see (4.10).

Σ; Σk ; enc(σ) The set Σk , k ∈ [d ], consists of all (k −1)-simplices in sdQ∆ that are contained
in the face ∆[k] of ∆. The set Σ is the union of all Σk . For a simplex σ ∈Σ, we
denote with enc(σ) its combinatorial encoding (see (4.11)).

Table 4.1.: Notation reference.
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4.3. The Barycentric Subdivision

Lemma 4.12 states that the unique optimal feasible basis for LCC
M(e i ) = LCC

e i
is Ci and thus

λ(e i ) = i . Second, consider a vertex v ∈ sdQ∆ and let ∆I = conv
{⋃

i∈I e i
}

be a face of ∆ that
contains v , where I ⊆ [d ]. Then, (v ) j = 0 and hence (M(v )) j = 0 for j ∉ I . Thus by Lemma 4.12,
λ(v ) ∈ I . Note that λ is in fact a Sperner labeling for any fixed simplicial subdivision of ∆. Now,
Lemma 4.1 guarantees the existence of a (d −1)-simplex σ ∈ sdQ∆ whose vertices have all d
possible labels. The next lemma shows that then one of the vertices of σ defines a solution to
the COLORFULCARATHÉODORY instance. Here, we use specific properties of the barycentric
subdivision.

Lemma 4.13. Let σ ∈ sdQ∆ be a fully-labeled (d −1)-simplex and let v d−1 denote the vertex
of σ that is the barycenter of a (d −1)-face qd−1 =Φ∆( fd−1)∩ gd−1 ∈Q∆, where fd−1 ∈F and
gd−1 ∈S . Then, the columns from Asupp( fd−1) are a colorful choice that ray-embraces b.

Proof. Let q0 ⊂ ·· · ⊂ qd−1 be the chain that corresponds to σ in sdQ∆. By Corollary 4.10,
we can write each polytope qi ∈Q∆ uniquely as Φ∆( fi )∩ gi , where i ∈ [d −1]0, fi ∈F , and
gi ∈S . By the definition of the barycentric subdivision and since Q∆ is a (d −1)-dimensional
polytopal complex, qi−1 is a facet of qi for i ∈ [d −1]. Then, Corollary 4.8 states that either
gi−1 is a facet of gi or fi is a facet of fi−1 for i ∈ [d −1]. Because σ is fully-labeled, we must
have fi 6= f j for all i , j ∈ [d − 1]0 with i 6= j . Hence, fi is a facet of fi−1 for i ∈ [d − 1] and
thus g0 = ·· · = gd−1. Since dim qd−1 = d − 1, Corollary 4.8 implies that dim fi = d − 1− i
and hence

∣∣supp
(

fi
)∣∣ = 2d − 1− i for i ∈ [d − 1]0. In particular, dim fd−1 = 0 and thus the

columns from Asupp( fd−1) are a feasible basis for LCC. For i ∈ [d −1], let ai−1 ∈ [
d 2

]
denote

the column index such that supp
(

fi−1
) = supp

(
fi

)∪ {ai−1}. Since the faces f0, . . . , fd−1 have
pairwise distinct labels and since

∣∣supp
(

fi−1
)∣∣ =

∣∣supp
(

fi
)∣∣+ 1 for i ∈ [d − 1], the column

vectors Aa0 , . . . , Aad−2 have pairwise distinct colors by the definition of λ (see (4.10)). Now
assume for the sake of contradiction that the columns from Asupp( fd−1) are not a colorful
feasible basis. Then, there is some color i× ∈ [d ] that does not appear in Asupp( fd−1) and
hence there is some color i? ∈ [d ] with

∣∣ind(Ci?)∩ supp
(

fd−1
)∣∣≥ 2. Since there is at most one

column with color i× among Aa0 , . . . , Aad−2 , we have
∣∣supp

(
fi

)∩ ind(Ci×)
∣∣≤ 1 for all i ∈ [d−1]0.

Since supp
(

fi
) ⊇ supp

(
fd−1

)
for i ∈ [d −1]0 and since

∣∣ind(Ci?)∩ supp
(

fd−1
)∣∣ ≥ 2, we have

λ( fi ) 6= i× for all i ∈ [d −1]0, a contradiction to σ being fully-labeled. �

This concludes a new constructive proof of the colorful Carathéodory theorem. However,
in order to show that COLORFULCARATHÉODORY is contained in PPAD, we need to replace
the invocation of Lemma 4.1 to find a fully-labeled (d −1)-simplex in Q∆ by a PPAD-problem.
Note that it is not possible to use the formulation of Sperner from [61, Theorem 2] directly
since it is defined for a fixed simplicial subdivision of the standard simplex. In our case, the
simplicial subdivision of ∆ depends on the input instance. In the following, we generalize
the PPAD formulation of Sperner in [61] to Q∆ by mimicking the proof of Lemma 4.1. For
this, we need to be able to find algorithmically simplices in sdQ∆ that share a given facet. We
begin with a simple combinatorial encoding of simplices in sdQ∆ that allows us to solve this
problem completely combinatorially.

We first show how to encode a polytope q ∈Q∆. By Corollary 4.10, there exists a unique pair
of faces f ∈F and g ∈ S such that q =Φ∆( f )∩ g . Since M(g ) is a face of the unit cube, the
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4. COLORFULCARATHÉODORY is in PPAD

value of d −dim g coordinates in M(g ) is fixed to either 0 or 1. For j = 0,1, let I j ⊆ [d ], denote
the indices of the coordinates that are fixed to j . Then, the encoding enc

(
q
)

of q is defined as

enc
(
q
)= (

supp
(

f
)
, I0, I1

)
.

We use this to define an encoding of the simplices in Q∆ as follows. Let σ ∈Q∆ be a k-simplex
and let q0 ⊂ ·· · ⊂ qk be the corresponding face chain in Q∆ such that the i th vertex of σ is the
barycenter of qi . Then, the encoding enc(σ) is defined as

enc(σ) =
(
enc

(
q0

)
, . . . ,enc

(
qk

))
. (4.11)

In the proof of Lemma 4.1, we traverse only a subset of simplices in the simplicial subdivision,
namely (k −1)-simplices that are contained in the face ∆[k] = conv{e i | i ∈ [k]} of ∆ for k ∈ [d ].
Let Σk denote the set

Σk = {
σ ∈ sdQ∆

∣∣dim(σ) = k −1, σ⊆∆[k]
}

of (k − 1)-simplices in sdQ∆ that are contained in the (k − 1)-face, where k ∈ [d ], and let
Σ=⋃d

k=1Σk be the collection of all those simplices. In the following, we give a precise char-
acterization of the encodings of the simplices in Σk . For two disjoint index sets I0, I1 ⊆ [d ],
we denote with g (I0, I1) =

{
µ ∈M

∣∣ j = 0,1, (µ)i = j for i ∈ I j
}

the face of M that we obtain by
fixing the coordinates in dimensions I0 ∪ I1. Let now T = (Q0, . . . ,Qk−1), k ∈ [d −1], be a tuple,

where Qi =
(
S(i ), I (i )

0 , I (i )
1

)
, S(i ) ⊆ [

d 2
]
, and I (i )

0 , I (i )
1 are disjoint subsets of [d ] for i ∈ [k −1]0. We

say T is a valid k-tuple if and only if T has the following properties.

(i) We have I (k−1)
0 = [d ] \ [k],

∣∣∣I (k−1)
1

∣∣∣= 1, and the columns in AS(k−1) are a feasible basis for a

vertex f . Moreover, the intersectionΦ( f )∩ g
(
I (k−1)

0 ∪ I (k−1)
1

)
is nonempty.

(ii) For all i ∈ [k −1], we either have

(ii.a) I (i−1)
0 = I (i )

0 , I (i−1)
1 = I (i )

1 , and S(i−1) = S(i ) ∪ {ai−1} for some index ai−1 ∈
[
d 2

]
\ S(i ),

(ii.b) or S(i−1) = S(i ) and there is an index ji−1 ∈ [d ] \
(
I (i )

0 ∪ I (i )
1

)
such that either I (i−1)

0 =
I (i )

0 and I (i−1)
1 = I (i )

1 ∪{
ji−1

}
, or I (i−1)

1 = I (i )
1 and I (i−1)

0 = I (i )
0 ∪{

ji−1
}
.

Lemma 4.14. For k ∈ [d ], the function enc restricted to the simplices in Σk is a bijection from
Σk to the set of valid k-tuples.

Proof. We begin by showing that the encoding enc(σ) of a simplex σ ∈Σk is a valid k-tuple.
Let q0 ⊂ ·· · ⊂ qk−1 be the corresponding face chain in Q∆ such that the i th vertex of σ is the
barycenter of qi ∈Q∆ and qi 6= ; for i ∈ [k −1]0. By Corollary 4.10, for each qi , i ∈ [k −1]0,
there exists a unique pair of faces fi ∈ F and gi ∈ S such that qi = Φ∆( fi )∩ gi . Because

qk−1 6= ;, we have M(qk−1) =Φ( fi )∩ g
(
I (k−1)

0 , I (k−1)
1

)
6= ;. We further observe that gi ⊂∆[k].

Otherwise we would have qi =Φ∆( fi )∩ (
gi ∩∆[k]

)
with gi ∩∆[k] ∈S , a contradiction to gi , fi

being the unique pair. Since qi ⊂∆[k] for i ∈ [k −1]0 and since dim∆[k] = k −1, we must have
dim qi = i for i ∈ [k −1]. Then, Corollary 4.8 implies that dim gk−1 = k −1 and dim fk−1 = 0.

In particular, supp
(

fk−1
)

is the index set of a feasible basis and
∣∣∣I (k−1)

0 ∪ I (k−1)
1

∣∣∣ = d −k +1.
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4.3. The Barycentric Subdivision

Because gk−1 ⊂∆[k], we have [d ] \ [k] ⊆ I (k−1)
0 and since gk−1 is the projection of a face of M,

the set I (k−1)
1 is nonempty. Thus, I (k−1)

0 = [d ] \ [k] and
∣∣∣I (k−1)

1

∣∣∣= 1.

Let now i ∈ [k − 1] be a fixed index and write enc
(
qi−1

) =
(
supp

(
fi−1

)
, I (i−1)

0 , I (i−1)
1

)
and

enc
(
qi

) =
(
supp

(
fi

)
, I (i )

0 , I (i )
1

)
. Since qi−1 is a facet of qi , Corollary 4.8 implies that either

(a) fi is a facet of fi−1 and gi−1 = gi or (b) fi−1 = fi and gi−1 is a facet of gi . In Case (a),
we have supp

(
fi−1

) = supp
(

fi
)∪ {ai−1} and I (i−1)

0 = I (i )
0 as well as I (i−1)

1 = I (i )
1 , where ai−1 ∈[

d 2
]

\ supp
(

fi
)
. In Case (b), we have supp

(
fi−1

)= supp
(

fi
)
. Furthermore, since M(gi−1) is a

facet of M(gi ), we either have I (i−1)
0 = I (i )

0 ∪{
ji−1

}
and I (i−1)

1 = I (i )
1 , or I (i−1)

1 = I (i )
1 ∪{

ji−1
}

and

I (i−1)
0 = I (i )

0 , for an index ji−1 ∈ [d ] \
(
I (i )

0 ∪ I (i )
1

)
. Thus, enc(σ) is a valid k-tuple.

We now show that enc is a bijection. Let σ1,σ2 ∈Σk be two simplices. Since the barycenters
of the polytopes in a polytopal complex are pairwise distinct, the face chains in Q∆ that corre-
sponds to σ1 and σ2 must differ in at least one face. Then, (4.11) together with Corollary 4.10
directly implies that enc(σ1) 6= enc(σ2).

Let now T = (Q0, . . . ,Qk−1), k ∈ [d − 1], be a valid k-tuple, where Qi =
(
S(i ), I (i )

0 , I (i )
1

)
. For

i ∈ [k −1]0, let g ′
i = g

(
I (i )

0 ∪ I (i )
1

)
be the subset of M that is defined by the index sets I (i )

0 , I (i )
1 .

Since [d ] \ [k] ⊆ I (i )
0 for all i ∈ [k −1]0, the projection gi =∆(g ′

i ) is a subset of ∆[k]. Moreover,

since I (i )
1 6= ; for i ∈ [k −1]0, the set g ′

i is a face of M and hence gi ∈ S . Furthermore, since

the columns in AS(k−1) are a feasible basis, they define a vertex fk−1. Because S(k−1) ⊆ Si

for i ∈ [k −1]0, the index set Si is the support of a face fi ∈ F . Set qi = Φ∆( fi )∩ gi ∈Q for
i ∈ [k−1]0. Because gi ⊂∆[k], the polytope qi is also contained in∆[k]. By Property (i) of a valid
sequence, the intersectionΦ( fk−1)∩ g ′

k−1 is nonempty and hence its projection qk−1 onto ∆
is nonempty. Then, Corollary 4.8 states that dim qk−1 = k −1. Moreover by Corollary 4.8 and
properties (ii.a) and (ii.b) of T , either gi−1 is a facet of gi or fi is a facet of fi−1 for i ∈ [k −1].
Thus by Corollary 4.8, qi−1 is a facet of qi , i ∈ [k −1]. Then, dim qi = i for all i ∈ [k −1]0 and
hence the face chain q0 ⊂ ·· · ⊂ qk−1 defines a (k −1)-simplex σ ∈Σk with enc(σ) = T . �

The next lemma shows that simplices that share facets have a similar encoding.

Lemma 4.15. Let σ,σ′ ∈Σk be two simplices, where k ∈ [d ]. Then, σ and σ′ share a facet if and
only if the tuples enc(σ) and enc

(
σ′) agree in all but one position. Furthermore, let σ ∈Σk and

σ̂ ∈Σk+1 be two simplices, where k ∈ [d −1]0. Write enc(σ) as

enc(σ) =
(
Q0, . . . ,Qk−1 =

(
S(k−1), I (k−1)

0 , I (k−1)
1

))
.

Then, σ is a facet of σ̂ if and only if

enc(σ̂) =
(
Q0, . . . ,Qk−1,

(
S(k−1), I (k−1)

0 \ {k +1} , I (k−1)
1

))
.

Proof. Let σ,σ′ ∈ Σk be two simplices and let q0 ⊂ ·· · ⊂ qk−1 and q ′
0 ⊂ ·· · ⊂ q ′

k−1 be the
corresponding face chains in Q∆. Then σ and σ′ share a facet if and only if the face chains
agree on all but one position and hence if and only if enc(σ) and enc

(
σ′) agree on all but one

position.
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Let now σ ∈ Σk and σ̂ ∈ Σk+1 be two simplices. Let q0 ⊂ ·· · ⊂ qk−1 be the face chain in
Q∆ that corresponds to σ with dim qi = i for i ∈ [k −1]0. Similarly, let q̂0 ⊂ ·· · ⊂ q̂k be the
face chain in Q∆ that corresponds to σ̂ with dim q̂i = i for i ∈ [k]0. Furthermore, we write

enc
(
qk−1

)=
(
S(k−1), I (k−1)

0 , I (k−1)
1

)
and enc

(
q̂k

)=
(
S(k), I (k)

0 , I (k)
1

)
. Then, σ is a facet of σ̂ if and

only if the faces q0, . . . , qk−1 appear in the face chain of σ̂ and hence if and only if qi = q ′
i

for i ∈ [k −1]0. Moreover, since by Lemma 4.14 the encodings enc(σ) and enc(σ̂) are valid
tuples, the columns of AS(k−1) and AS(k) are feasible bases. Since S(k−1) ⊆ S(k) by Property (ii) of
valid tuples, we must have S(k−1) = S(k). Moreover, by Property (i), we have I (k−1)

0 = [d ] \ [k],

I (k)
0 = [d ] \ [k +1], and

∣∣∣I (k−1)
1

∣∣∣ =
∣∣∣I (k)

1

∣∣∣ = 1. Because of Property (ii), the index set I (k−1)
1 is a

subset of I (k)
1 and hence I (k−1)

1 = I (k)
1 . We conclude that

enc(σ̂) =
(
enc

(
q0

)
, . . . ,enc

(
qk−1

)
,
(
S(k−1), I (k−1)

0 \ {k +1} , I (k−1)
1

))
,

as claimed. �

Using our characterization of encodings as valid tuples, it becomes an easy task to check
whether a given candidate encoding corresponds to a simplex in Σ.

Lemma 4.16. Let T = (Q0, . . . ,Qk−1), k ∈ [d−1], be a tuple, where Qi =
(
S(i ), I (i )

0 , I (i )
1

)
, S(i ) ⊂ [

d 2
]
,

and I (i )
0 , I (i )

1 are disjoint subsets of [d ] for i ∈ [k −1]0. Then, we can check in polynomial time
whether T is a valid k-tuple.

Proof. Clearly, we can check if T fulfills all syntactic requirements on valid k-tuples in polyno-
mial time. Furthermore, we can check in polynomial time whether the columns B from AS(k−1)

are a feasible basis for a vertex f . Finally, we express Φ( f )∩ g
(
I (k−1)

0 , I (k−1)
1

)
as the solution

space to the linear system LCC
B , f extended by the constraints µ ∈ g

(
I (k−1)

0 , I (k−1)
1

)
. Then, we can

check in polynomial time whether this system has a solution. �

We conclude this section by showing how to traverse Σ efficiently via the respective encod-
ings.

Lemma 4.17. Let σ ∈Σk be a simplex and let q0 ⊂ ·· · ⊂ qk−1 be the corresponding face chain in
Q∆ such that the i th vertex v i of σ is the barycenter of qi , where k ∈ [d ] and i ∈ [k −1]0. Then,
we can solve the following problems in polynomial time:

Given enc(σ) and i , compute the encoding of the simplex σ′ ∈ Σk that shares the facet
conv

{
v j

∣∣ j ∈ [k −1]0, j 6= i
}

with σ or state that there is none;

Assuming that k < d and given enc(σ), compute the encoding of the simplex σ̂ ∈ Σk+1

that has σ as facet;

Assuming that k > 1 and given enc(σ), compute the encoding of the simplex σ̌ ∈ Σk−1

that is a facet of σ or state that there is none.
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4.4. The PPAD graph

Proof. We begin with the first problem. By Lemma 4.15, if there is a simplexσ′ ∈Σk that shares
the facet conv

{
v j

∣∣ j ∈ [k −1]0, j 6= i
}

withσ, the encodings enc(σ) and enc
(
σ′) agree on all but

one position. Thus, there are only polynomially many possibilities for the encoding of enc
(
σ′)

that we can check in polynomial time with the algorithm from Lemma 4.16. Furthermore,
Lemma 4.15 directly implies polynomial-time algorithms for the second and third problem.

�

4.4. The PPAD graph

Using our tools from the previous sections, we now describe the PPAD graph G = (V ,E ) for the
COLORFULCARATHÉODORY instance. The orientation of the edges is postponed until the end
of this section. The definition of G follows mainly the ideas from the formulation of Sperner as
a PPAD-problem [61, Theorem 2] and the proof of Lemma 4.1.

The graph has one node per simplex in Σ that is almost fully-labeled or fully-labeled. That
is, we have one node for each (k −1)-simplex in Σk whose vertices have as labels 1, . . . ,k or
1, . . . ,k −1. Two simplices are connected by an edge if one simplex is the facet of the other or if
both simplices share a facet that has all labels but the largest possible label. More formally, let
σ= conv(v 0, . . . , v k−1) ∈ sdQ∆ be some simplex. Then, we denote with

λ(σ) =
k−1⋃
i=0

{λ(v i )}

the collection of the labels of its vertices and we sayσ is [i ]-labeled if λ(σ) = [i ] for some i ∈ [d ].
For k ∈ [d ], we denote with

Vk = {enc(σ) |σ ∈Σk , [k −1] ⊆λ(σ)}

the set of all encodings for (k −1)-simplices in Σk whose vertices have all labels or all but the
largest possible label. Then, V is the union of all Vk for k ∈ [d ]. There are two types of edges:
edges within a set Vk , k ∈ [d ], and edges connecting nodes from Vk to nodes in Vk−1 and Vk+1.
Let enc(σ),enc

(
σ′) be two vertices in Vk for some k ∈ [d ]. Then, there is an edge between

enc(σ) and enc
(
σ′) if the encoded simplices σ, σ′ ∈Σk share a facet σ̌ with λ(σ̌) = [k −1], i.e.,

both simplices are connected by a facet that has all but the largest possible label. Now, let
enc(σ) ∈ Vk and enc

(
σ′) ∈ Vk+1 for some k ∈ [d −1]. Then, there is an edge between enc(σ)

and enc
(
σ′) if λ(σ) = [k] and σ is a facet of σ′. In the next lemma, we show that the underlying

undirected graph of G consists only of paths and cycles.

Lemma 4.18. Let enc(σ) ∈ V be a node. If enc(σ) ∈ V1 or enc(σ) ∈ Vd with λ(σ) = [d ], then
degenc(σ) = 1. Otherwise, degenc(σ) = 2.

Proof. Let enc(σ) ∈ Vk be the encoding of a simplex σ ∈ Σk . If σ ∈ Σ1 then degenc(σ) = 1
since the only adjacent node is the encoding of the simplex in Σ2 with σ as a facet. Similarly,
if enc(σ) ∈Vd with λ(σ) = [d ], then degenc(σ) = 1 since the only adjacent node is either the
encoding of the single [d−1]-labeled facet ofσ or the encoding of the simplex inΣd that shares
this facet.
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4. COLORFULCARATHÉODORY is in PPAD

If k > 1 and σ has two [k −1]-labeled facets, then degenc(σ) = 2 since each [k −1]-labeled
facet is either shared with another simplex in Σk or the facet is itself in Σk−1. Otherwise, if
k < d and λ(σ) = [k], then we have again degenc(σ) = 2 as there exists exactly one simplex in
Σk+1 with σ as a facet and either the single [k −1]-labeled facet of σ is shared with another
simplex in Σk or it is itself a simplex in Σk−1. Note that actually Lemma 4.14 implies in this
case that the [k −1]-labeled facet must be shared with another simplex in Σk . �

We continue with the orientation of the edges in G . In the following, we assume that given a
node enc(σ) ∈V , we are able to compute in polynomial time the vertices of the corresponding
simplex σ ∈ Σ. We show afterwards how to implement this step. With this assumption, the
orientation can be defined similarly as in [61].

Let enc(σ),enc
(
σ′) ∈Vd be two adjacent nodes. By definition, the encoded simplices σ=

conv(v 0, . . . , v d−1) andσ′ share a facet σ̌= conv(v 1, . . . , v d−1) withλ(σ̌) = [d−1]. Let the indices
be such that λ(v i ) = i for i ∈ [d −1]. Then, the edge between enc(σ) and enc

(
σ′) is directed

from enc(σ) to enc
(
σ′) if and only if the function dir(σ,σ′) is positive, where

dir(σ,σ′) = sgndet

(
1 1 . . . 1

v 0 v 1 . . . v d−1

)
.

Only for the sake of orientation, we define a set of d −1 vertices w 2, . . . , w d with colors 2, . . . ,d
to lift lower-dimensional simplices in order to avoid dealing with simplices of different dimen-
sions. For i = 2, . . . ,d , let w i ∈Rd denote the parameter vector

(w ) j =





2 if j < i ,

1−2(i −1) if j = i , and

0 otherwise,

where j ∈ [d ]. Furthermore, we set λ(w i ) = i . Since (w i )i < 0 for i = 2, . . . ,d , we have w i ∉∆
and for k < i , w i ∉ aff(∆[k]). However, a quick calculation shows that w i ∈ aff(∆[i ]) and that
within aff(∆[i ]), the hyperplane aff(∆[i−1]) separates e i and w i . Now, let σ= conv(v 0, . . . , v k−1)
denote a simplex that corresponds to some node in G , where k ∈ [d−1]0. Then, we denote with
σw = conv(v 0, . . . , v k−1, w k+1, . . . , w d ) the (d −1)-simplex that we obtain by lifting σ with our
additional vertices outside of ∆. Note that σw is non-degenerate by our choice of w 2, . . . , w d .
If σ is already a (d − 1)-simplex, we set σw = σ. Let now enc(σ) and enc

(
σ′) ∈ V be two

adjacent nodes. Then the two lifted simplicesσw andσ′
w share a [d−1]-labeled facet. Now, we

set dir(σ,σ′) = dir(σw ,σ′
w ) and we direct the edge between enc

(
σ′) and enc(σ) as discussed

before. The following lemma guarantees that the orientation of the edge is the same if seen
from either σ or σ′ and that the only sinks and sources remain the nodes of degree 1 that are
characterized by Lemma 4.18.

Lemma 4.19. The orientation of G is well-defined. Furthermore, enc(σ) ∈ V is a sink or a
source if and only if degenc(σ) = 1 in the underlying undirected graph.

Proof. Let enc(σ),enc
(
σ′) ∈ V be two adjacent nodes. Assume first that enc(σ),enc

(
σ′) ∈

Vk for some k ∈ [d ]. Let σ = conv(v 0, v 1, . . . , v k−1) and σ′ = conv(v ′
0, v 1, . . . , v k−1) denote
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e1 e2

e3

w 2

v 0 σ̌ v ′
0σ σ′

σw σ′
w

(a)

e1 e2

e3

w 2

v 0

v 1

σ̂

v 2
σw

σ

(b)

Figure 4.2.: (a) Two simplices of the same dimension are lifted with the same set of vertices
w i . (b) The simplices have different dimensions. The lower dimensional simplex
is lifted with an additional vertex.

the encoded simplices with λ(v i ) = i for i ∈ [k − 1]. That is, σ and σ′ share the facet σ̌ =
conv(v 1, . . . , v k−1). Because both simplices are contained in Σk , the two vertices v 0 and v ′

0
are separated within the (k −1)-dimensional affine space aff(∆[k]) by the (k −2)-dimensional
affine space aff(σ̌). Since w k+1, . . . , w d ∉ aff(∆[k]), the two vertices v 0 and v ′

0 are separated in
Rd by the hyperplane aff(v 1, . . . , v k−1, w k+1, . . . , w d ). The situation is depicted in Figure 4.2 (a).
Then, we have dir(σ,σ′) =−dir(σ′,σ), since

dir(σ,σ′) = dir(σw ,σ′
w )

= sgndet

(
1 1 . . . 1 1 . . . 1

v 0 v 1 . . . v k−1 w k+1 . . . w d

)

=−sgndet

(
1 1 . . . 1 1 . . . 1

v ′
0 v 1 . . . v k−1 w k+1 . . . w d

)

=−dir(σ′
w ,σw )

=−dir(σ′,σ).

Let now enc(σ) ∈Vk−1 and enc(σ̂) ∈Vk be two adjacent nodes for some k ∈ [d ]. By definition
of E , we then have λ(σ) = [k −1] and σ is a facet of σ̂. We write σ= conv(v 1, . . . , v k−1) and σ̂=
conv(v 0, v 1, . . . , v k−1), where the indices are such that λ(v i ) = i for i ∈ [k−1]. See Figure 4.2 (b).
Then,

σw = conv(v 1, . . . , v k−1, w k , . . . , w d ) and σ̂w = conv(v 0, v 1, . . . , v k−1, w k+1, . . . , w d ).

Hence, σw and σ̂w share the facet σ̌w = conv(v 1, . . . , v k−1, w k+1, . . . , w d ). By construction,
both vertices v 0 and w k are contained in aff(∆[k]). Within the (k −1)-dimensional affine space
aff(∆[k]), the vertex w k is separated from∆[k] by the (k−2)-dimensional affine space aff(∆[k−1])
and hence it is separated from v 0 by aff(∆[k−1]). Since σ ∈Σk−1, σ is a (k −2) simplex that is
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4. COLORFULCARATHÉODORY is in PPAD

contained in∆[k−1] and thus aff(σ) = aff(∆[k−1]) separates v 0 and w k in aff(∆[k]). Now, because
w k+1, . . . , w k ∉ aff(∆[k]), v 0 and w k are separated in Rd by the hyperplane aff(σ̌w ). Again we
have dir(σ, σ̂) =−dir(σ̂,σ), since

dir(σ, σ̂) = dir(σw , σ̂w )

= sgndet

(
1 1 . . . 1 1 . . . 1

w k v 1 . . . v k−1 w k+1 . . . w d

)

=−sgndet

(
1 1 . . . 1 1 . . . 1

v 0 v 1 . . . v k−1 w k+1 . . . w d

)

=−dir(σ̂w ,σw )

=−dir(σ̂,σ).

It remains to show the second part of the statement. Let enc(σ) ∈ V be a node with two
adjacent nodes enc

(
σ′),enc

(
σ′′). We want to show that the two incident edges are oriented

differently. In any case, the lifted simplices σw and σ′
w share a [d − 1]-labeled facet σ̌′

w
and similarly, σw and σ′′

w share a [d − 1]-labeled facet σ̌′′
w . The facets σ̌′

w and σ̌′′
w of σw

differ in exactly one vertex with the same label. Thus, the determinants in dir(σ,σ′) and
dir(σ,σ′′) differ by exactly one column-swap. The properties of the determinant now ensure
that dir(σ,σ′) =−dir(σ,σ′′), as desired. �

Our next lemma shows that for purposes of orientation, we can replace the barycenters by
arbitrary interior points in the corresponding parameter faces.

Lemma 4.20. Let q0, . . . , qk−1 ⊂Rd be k polytopes such that q0 ⊂ ·· · ⊂ qk−1 and dim qi = i for
i ∈ [k −1]0. Furthermore let v i denote the barycenter of qi for i ∈ [k −1]0 and let v ′

0, . . . , v ′
k−1 be

k −1 vectors such that v ′
i ∈ qi and aff(v ′

0, . . . , v ′
i ) = aff(qi ) for all i ∈ [k −1]0. Then,

sgndet

(
1 . . . 1 1 . . . 1

v 0 . . . v k−1 xk+1 . . . xd

)
= sgndet

(
1 . . . 1 1 . . . 1

v ′
0 . . . v ′

k−1 xk+1 . . . xd

)
,

where x i ∈Rd \ aff qk−1, i ∈ [d ] \ [k], is an arbitrary point.

Proof. The prove involves only basic linear algebra, however it is included for completeness.

We show by induction on i that aff(qi ) = aff(v ′
0, . . . , v ′

i ) and that for all j ∈ [i ]0, v ′
j =

∑ j
l=0α j ,l v l

is an affine combination of v 0, . . . , v j with α j , j > 0.
For i = 0 the induction hypothesis trivially holds since dim q0 = 0 and hence q0 = v 0 = v ′

0.
Assume now that i > 0 and that the induction hypothesis holds for all i ′ < i . Since qi−1 is a facet
of qi , within the i -dimensional affine space aff(qi ), qi lies on one side of the (i−1)-dimensional
affine space aff(qi−1) and thus it lies on one side of aff(v ′

0, . . . , v ′
i−1). Since both v i and v ′

i lie

on the same side of aff(v ′
0, . . . , v ′

i−1) in aff(qi ), we can write v ′
i as

∑i−1
l=0βl v ′

l +αi v i with αi > 0.
By our induction hypothesis, v ′

0, . . . , v ′
i−1 ∈ aff(v 0, . . . , v i−1) and hence the hypothesis holds for

i . The claim now follows directly from the properties of the determinant:
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sgndet

(
1 . . . 1 . . . 1 1 . . . 1

v ′
0 . . . v ′

i . . . v ′
k−1 xk+1 . . . xd

)

=sgndet

(
1 . . . 1 . . . 1 1 . . . 1

v 0 . . .
∑i

l=0αi ,l v l . . .
∑k−1

l=0 αk−1,l v l xk+1 . . . xd

)

=sgndet

(
1 . . . 1 . . . 1 1 . . . 1

v 0 . . . αi ,i v l . . . αk−1,k−1v k−1 xk+1 . . . xd

)

=sgndet

(
1 . . . 1 . . . 1 1 . . . 1

v 0 . . . v i . . . v k−1 xk+1 . . . xd

)
,

where the last equality holds since αi ,i > 0 for i ∈ [k −1]. �

As the next lemma shows, computing parameter vectors in the relative interior of faces in
Q∆ is computationally feasible.

Lemma 4.21. Let enc(σ) =
(
enc

(
q0

)
, . . . ,enc

(
qk−1

)) ∈ V be a node of G, where k ∈ [d ]. Then,
we can compute in polynomial time k −1 parameter vectors v 0, . . . , v k−1 such that v i ∈ qi and
aff(v 0, . . . , v i ) = aff(qi ) for i ∈ [k −1]0.

Proof. By definition of the encoding, q0 is a vertex and hence we can choose v 0 = q0. The
algorithm iteratively computes now incident edges ei = conv(v 0, v i ) to v 0 for i ∈ [k −1] such
that ei is an edge of qi and no edge of qi−1. The resulting vectors have the desired properties:
v i ∈ qi and aff(v 0, . . . , v i ) = aff(qi ) for i ∈ [k −1]0.

We construct these edges as follows. Write enc
(
q
)

i =
(
supp

(
fi

)
, I (i )

0 , I (i )
1

)
and let gi be the

face g
(
I (i )

0 , I (i )
1

)
of M that is encoded by the index sets I (i )

0 and I (i )
1 . Since enc(σ) is a valid

k-tuple, the columns B from Asupp( fk−1) are a feasible basis and moreover, since supp
(

fk−1
)⊆

supp
(

fi
)

for i ∈ [k −1]0, the set B is a feasible basis for all faces fi , i ∈ [k −1]0. Similar to the
proof of Lemma 4.16, we can express each polytope M(qi ) as the solution to the linear system
LΦB , fi

extended by the constraints µ ∈ gi , where i ∈ [k −1]0. Let Li denote the resulting linear

system. Again by the properties of a valid k-tuple, either supp
(

fi−1
)= supp

(
fi

)∪{ai−1}, where

ai ∈
[
d 2

]
\ supp

(
fi

)
. Or there is an index ji−1 ∈ [d ] \

(
I (i )

0 ∪ I (i )
1

)
such that I (i−1)

0 = I (i )
0 ∪ {

ji−1
}

and I (i−1)
1 = I (i )

1 , or I (i−1)
0 = I (i )

0 and I (i−1)
1 = I (i )

1 ∪{
ji−1

}
. This means, that the linear system Li−1

equals the linear system Li where one inequality becomes tight. In the following we call this
inequality ei . Note that L0 is then the linear system Lk−1 in which all inequalities e1, . . . ,ek−1

are tight.
Assume now that we already have computed the vectors v 0, . . . , v i−1 such that v j ∈ q j and

aff(v 0, . . . , v j ) = aff(q j ) for j ∈ [i−1]0 and we want to compute v i , where i ∈ [k−1]. We consider
the linear system L′

i that we obtain by relaxing the tight inequality ei in L0. Since the solution
space of L0 is the vertex v 0, the solution space to L′

i is an edge conv(v 0, v i ). We can compute
the other endpoint v i of this edge in polynomial time by computing the line that is defined
by the equalities in L′

i and intersect this iteratively with the halfspaces that are defined by the
inequalities in L′

i while keeping track of the endpoints. Now, we have v i ∈ qi since the solution
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4. COLORFULCARATHÉODORY is in PPAD

space of the linear system L′
i is a subset of the solution space of the linear system Li . Moreover,

since in Li−1 the inequality ei is tight, v i ∈ qi \ qi−1 and thus aff(v 0, . . . , v i ) = aff(qi ). �

The following lemma is now an immediate consequence of Lemmas 4.20 and 4.21.

Lemma 4.22. Let enc(σ),enc(σ) ∈V be two adjacent nodes. Then, we can compute dir(σ,σ′)
in polynomial time. �

With the tools from the last sections, little is left to show that COLORFULCARATHÉODORY is in
PPAD.

Theorem 4.23. COLORFULCARATHÉODORY, CENTERPOINT, TVERBERG, SIMPLICIALCENTER,
and COLORFULKIRCHBERGER are in PPAD.

Proof. We give a formulation of COLORFULCARATHÉODORY as PPAD-problem. Lemma 1.14
then implies the statement for the other problems.

The set of problem instances I consists of all tuples I = (C1, . . . ,Cd ,b), where d ∈N, the set
Ci ⊂Qd ray-embraces b ∈Qd , and b 6= 0. Let I≈ = (C≈

1 , . . . ,C≈
d ,b≈) denote then the COLORFUL-

CARATHÉODORY instance that we obtain by applying Lemma 3.6 to I . The set of candidate

solutions S consists of all tuples (Q0, . . . ,Qk−1), where k ∈ N and Qi is a tuple
(
S(i ), I (i )

0 , I (i )
1

)

with S(i ), I (i )
0 , I (i )

1 ⊂ N. Furthermore, S contains all d-subsets C ⊂ Qd for d ∈ N. The set of
valid candidate solutions SI for the instance I consists of all valid k-tuples with respect to the
instance I≈ that encode fully-labeled and almost fully-labeled simplices, as well as all colorful
choices with respect to I that ray-embrace b, where k ∈ [d ].

The set SI is polynomial-time recognizable: let s ∈S be a candidate solution. If it is a tuple,
we first use the algorithm from Lemma 4.16 to check in polynomial time in the length of I≈ and
hence in the length of I whether s ∈SI . If affirmative, we check whether the simplex has all or
all but the largest possible label. Using the encoding, this can be carried out in polynomial
time. If s is a set of points, we can determine in polynomial time with linear programming
whether the points in s ray-embrace b.

We set as standard source the 0-simplex {e1}. We can assume without loss of generality that
{e1} is a source (otherwise we invert the orientation).

Given a valid candidate solution s ∈SI , we compute its predecessor and successor with the
algorithms from Lemma 4.17 and Lemma 4.22. However, to ensure that the sources and sinks
of the graph do not only encode colorful choices with respect to I that ray-embrace b but
actually are those colorful choices, we modify the computation of the predecessor and the
successor as follows. If a node s ∈V is a source different from the standard source in the graph
G , it encodes by Lemmas 4.13, 4.18, and 4.19 a colorful choice C≈ that ray-embraces b≈. Let C
be the corresponding colorful choice for I that ray-embraces b. Then, we set the predecessor
of s to C . Note that since I≈ has Property (P3) by Lemma 3.6, we can compute C in polynomial
time. Similarly, if s is a sink in G , we set its successor to the corresponding solution for the
instance I . �
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After having established that COLORFULCARATHÉODORY and its descendants are contained in
PPAD, we continue with showing that these problems are in fact contained in the intersection
of PPAD with the complexity class PLS [39]. In Section 5.2, we further show that already a
slight modification of COLORFULCARATHÉODORY results in a PLS-complete problem.

5.1. A PLS Formulation of COLORFULCARATHÉODORY

The proof of the colorful Carathéodory theorem by Bárány as presented in Chapter 1 admits
a straightforward formulation of COLORFULCARATHÉODORY as a PLS-problem. The only
difficulty resides in the computation of the potential function: given a set of d points C ⊂Qd

and a point b ∈ Qd , we need to be able to compute the point p? ∈ pos(C ) with minimum
`2-distance to b in polynomial time. This problem can be solved with convex quadratic
programming.

We say a matrix B ∈Rn×n is positive semidefinite if B is symmetric and for all x ∈Rn , we have
xT B x ≥ 0. Then, a convex quadratic program is given by

Q : minc(x)

s.t. Ax = b,

x ≥ 0,

where x ∈Rn , b ∈Qd , A ∈Qd×n , and the cost function c :Rn 7→R is defined as

c(x) = 1

2
xT B x +q T x ,

where the matrix B ∈ Qn×n is positive semidefinite and q ∈ Qn . We say a vector x ∈ Rn is
a feasible solution for Q if Ax = b and x ≥ 0. Furthermore, we say feasible solution x ∈
Rn is optimal for Q if there is no feasible solution x ′ ∈ Rn such that c(x ′) < c(x). Convex
quadratic programs are known to be solvable in O

(
poly(d ,n)L

)
time, where L is the length of

the quadratic program in binary [40, 44].

Lemma 5.1. Let C ⊂Qd be a set of size d and let b ∈Qd be a point such that C and b can be
encoded with L bits. Then, we can compute the point p? ∈ pos(C ) with minimum `2-distance
to b in O

(
poly(d)L

)
time.

Proof. First, we observe that it is sufficient to compute the point p? ∈ pos(C ) such that

∥∥p?−b
∥∥2

2 =
d∑

i=1
(p?−b)2

i
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is minimum. Let A be the matrix

A =




1 −1 0
1 −1 C −b

. . .

0 1 −1
0 · · · 0 1



∈Q(d+1)×(3d+1)

and let b′ denote the vector

b′ =




0
...
0
1



∈Qd+1.

Furthermore, let x ∈R3d+1 be a feasible solution to the linear system

Ax = b′, x ≥ 0 (5.1)

and let c 1, . . . ,c d denote the points in C ordered according to their respective column indices
in A. Write x as

x = (
x+

1 x−
1 x+

2 x−
2 . . . x+

d x−
d ψ1 . . . ψd xb

)T ∈R3d+1,

where x+
i , x−

i ∈R+ for i ∈ [d ], ψi ∈R+ for i ∈ [d ], and xb ∈R+. Since x ≥ 0, the point

p =
d∑

i=1
ψi c i

is contained in the positive span of C . Furthermore, by the last equality of (5.1), we have xb = 1
and thus for i ∈ [d ], the i th equality of (5.1) is equivalent to

x+
i −x−

i = (p)i − (b)i . (5.2)

Now, let B ′ denote the matrix

B ′ =




1 −1 0
−1 1

1 −1
−1 1

. . .

1 −1
0 −1 1




∈Q(2d)×(2d)

and set

B =
(

2B ′ Z(2d)×(d+1)

Z(d+1)×(3d+1)

)
∈Q(3d+1)×(3d+1),
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where Za×b ∈ Qa×b denotes the all-0 matrix with a rows and b columns. We claim that
1
2 xT B x = ‖p −b‖2

2. Indeed, by definition of B and using (5.2), we have

1

2
xT B x =

d∑

i=1
x+

i

(
x+

i −x−
i

)+x−
i

(
x−

i −x+
i

)=
d∑

i=1

(
x+

i −x−
i

)2 =
d∑

i=1

(
(p)i − (b)i

)2 =
∥∥p −b

∥∥2
2 .

Because B is symmetric, this further implies that B is positive semidefinite.
Let now x? be an optimal solution to the convex quadratic program

min
1

2
xT B x

s.t. Ax = b,

x ≥ 0.

Then, the point

p? =
3d∑

i=2d+1

(
x?

)
i c i ∈Qd

is contained in the positive span of C . Moreover, since 1
2 (x?)T B x? = ‖p?−b‖2

2 is minimum
over all feasible solutions and hence over all points in the positive span of C , p? is the point in
pos(C ) with minimum `2-distance to b. Using the algorithm from [40] or [44], we can compute
p? in O

(
poly(d)L

)
time. �

Having an algorithm to compute the potential function in polynomial time, we only need to
translate the above proof of the colorful Carathéodory theorem to the language of PLS.

Theorem 5.2. The problems COLORFULCARATHÉODORY, CENTERPOINT, TVERBERG, SIMPLI-
CIALCENTER, and COLORFULKIRCHBERGER are in PPAD∩PLS.

Proof. By Theorem 4.23, COLORFULCARATHÉODORY is in PPAD. We now give a formulation of
COLORFULCARATHÉODORY as a PLS-problem. Then statement is then implied by Lemma 1.14.

The set of problem instances I consists of all tuples (C1, . . . ,Cd ,b), where d ∈ N, b ∈ Qd ,
b 6= 0, and for all i ∈ [d ], we have Ci ⊂ Qd and Ci ray-embraces b. The set of candidate
solutions S then consists of all d-sets C ⊂Qd , where d ∈N. Furthermore, for a given instance
I = (C1, . . . ,Cd ,b), we define the set of valid candidate solutions SI as the set of all colorful
choices with respect to C1, . . . ,Cd . Using linear programming, we can check whether a given
tuple I = (C1, . . . ,Cd ,b) is contained in I and clearly, we can check in polynomial time whether
a set C ⊂Qd is a colorful choice with respect to I and hence whether C ∈SI .

Let now I ∈ I be a fixed instance and s ∈SI a valid candidate solution. We then define the
neighborhood NI ,s of s as the set of all colorful choices that can be obtained by swapping one
point in s with another point of the same color. The set NI ,s can be constructed in polynomial
time.

We define the cost cI ,s of a colorful choice s as the minimum `2-distance of a point in pos(s)
to b. Using the algorithm from Lemma 5.1, we can compute cI ,s in polynomial time. Finally,
we set the standard solution the colorful choice that consists of the first point from each color
class. �
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5. COLORFULCARATHÉODORY is in PLS

5.2. A PLS-Complete Generalization of COLORFULCARATHÉODORY

Even more interestingly in the light of Theorem 5.2, we can show that a generalization of
COLORFULCARATHÉODORY, the local search nearest colorful polytope problem (L-NCP) that
is motivated by Bárány’s original proof [9], results in a PLS-complete problem. Additionally,
using a variant of the PLS-completeness proof, we prove that finding a global optimum for
NCP (G-NCP) is NP-hard. This answers a question by Bárány and Onn [11, p. 561]. We note that
this question has been answered independently by Meunier and Sarrabezolles [55, Theorem 2].

Let C1, . . . ,Cm ⊂Qd be m color classes that do not necessarily embrace the origin. For a given
set C ′ ⊂Qd , let δ(C ′) = min

{‖c‖1 | c ∈ conv(C ′)
}

denote the minimum `1-norm of a point in
conv(C ′). In L-NCP, we want to find a colorful choice C such that δ(C ) cannot be decreased
by swapping a single point with another point of the same color. In the global search variant
G-NCP, we want to find a colorful choice C such that δ(C ) is minimum.

In the language of PLS, L-NCP is defined as follows.

Definition 5.3 (L-NCP).

Instances. The set of problem instances I consists of all tuples (C1, . . . ,Cm), where d ∈N and
for i ∈ [m], we have Ci ⊂Qd .

Candidate solutions. The set of candidate solutions consists of all sets C ⊂Qd , where d ∈N.
For a fixed instance I = (C1, . . . ,Cm) ∈ I , we define the set of valid candidate solutions SI

of I to be the set of all colorful choices with respect to C1, . . . ,Cm .

Cost function. Let s ∈ SI be a colorful choice. Then, the cost cI ,s of s with respect to I is
defined as δ(s). We want to minimize the costs.

Neighborhood. Let I ∈ I be an instance and let s ∈ SI be a valid candidate solution. Then,
the set of neighbors NI ,s of s consists of all colorful choices that can be obtained by
swapping one point with another point of the same color in s.

We reduce the PLS-problem MAX-2SAT/FLIP [72] to L-NCP. In MAX-2SAT/FLIP, we are
given a 2-CNF formula, i.e., a Boolean formula in conjunctive normal form in which each
clause consists of at most 2 literals, and for each clause a weight. The problem is to find an
assignment such that the weighted sum of unsatisfied clauses cannot be decreased by flipping
the value of one variable. More formally, MAX-2SAT/FLIP is defined as follows.

Definition 5.4 (MAX-2SAT/FLIP).

Instances. The set of instances I ′ consists of all tuples I = (n,K1, . . . ,Km) such that n ∈ N
and for i ∈ [n], the tuple Ki has the form (wi ,Ti ,Fi ), where wi ∈Z and Ti ,Fi ⊆ [n] with

|Ti∪Fi | ≤ 2 for all i ∈ [n]. Then, we identify with Ki the clause K̂i =
(∨

j∈T j
x j

)
∨

(∨
j∈F j

x j

)

with weight wi and we identify with I the 2-CNF formula K̂1 ∧·· ·∧ K̂m with variables
x1, . . . , xn .

Candidate solutions. The set of candidate solutions S ′ contains all tuples A = (v1, . . . , vn),
where n ∈ N and vi ∈ {0,1} for i ∈ [n]. Given an instance I ∈ I ′ in which n variables
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5.2. A PLS-Complete Generalization of COLORFULCARATHÉODORY

x1, . . . , xn appear, we define the set of valid candidate solutions S ′
I for I as the set of all

n-tuples from S ′. We interpret the i th entry of a tuple A ∈S ′
I as an assignment to xi and

we denote it with A(xi ).

Cost function. Let I ∈ I ′ be an instance. Then, we define the cost c ′I ,s of a valid candidate
solution s ∈S ′

I as the sum of the weights of all unsatisfied clauses. We want to minimize
the cost.

Neighborhood. Let I ∈ I ′ be an instance and s ∈S ′
I a tuple of size n. Then, the set of neighbors

N ′
I ,s of s consists of all tuples that can be obtained by replacing the i the entry A(xi ) with

1− A(xi ), where i ∈ [n].

The following theorem is due to Schäffer and Yannakakis.

Theorem 5.5 ( [72, Corollary 5.12]). MAX-2SAT/FLIP is PLS-complete.

We continue with the reduction from MAX-2SAT/FLIP to L-NCP.

Theorem 5.6. L-NCP is PLS-complete.

Proof. Let I ′ = (n,K1, . . . ,Kd ) ∈ I ′ be a fixed instance of MAX-2SAT/FLIP. We construct an
instance I ∈ I of L-NCP in which each colorful choice C encodes an assignment AC such that
the cost cI ,C of C equals the cost c ′I ′,AC

.

For each variable xi , we introduce a color class Xi = {x i , x i } consisting of two points inQd

that encode whether xi is set to 1 or 0. We assign the j th dimension to the j th clause and set

(x i ) j =
{
−nw j if xi = 1 satisfies K̂ j , and

w j otherwise,

where j ∈ [d ]. Similarly, we set

(
x i

)
j =

{
−nw j if xi = 0 satisfies K̂ j , and

w j otherwise,

where j ∈ [d ]. Then, a colorful choice C of X1, . . . , Xm corresponds to the assignment AC ∈S ′
I ′

that sets xi to 1 if x i ∈C and otherwise to 0.
In the following, we construct an instance of L-NCP such that the convex hull of a colorful

choice C contains the origin if projected onto the dimensions corresponding to clauses that
are satisfied by AC (and hence do not contribute to the cost of C ). Moreover, if projected
onto the subspace corresponding to the unsatisfied clauses, δ(C ) equals the total weight of
unsatisfied clauses which then defines completely the cost of C .

We introduce additional helper color classes to decrease the distance to the origin in dimen-
sions that correspond to satisfied clauses. In particular, we have for each clause K̂i , i ∈ [m], a
color class Hi = {hi } consisting of a single point, where

(hi ) j =
{

(d +1)
(
(n +2)− d

d+1

)
wi if j = i , and

w j otherwise,
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5. COLORFULCARATHÉODORY is in PLS

where j ∈ [d ]. The last helper color class Hd+1 = {hd+1} again contains a single point, but now
all coordinates are set to the clause weights, i.e.,

(hd+1) j = w j for j ∈ [d ].

See Figure 5.1 for an example.
Let now I = (X1, . . . , Xn , H1, . . . , Hd+1) ∈ I denote the constructed L-NCP instance. We con-

tinue with showing that the cost of a colorful choice equals the cost of the corresponding
assignment by proving the following two inequalities.

(i) for every colorful choice C ∈ SI , the cost are lower bounded by the cost of the corre-
sponding assignment:

cI ,C ≥ c ′I ′,AC
.

(ii) for every colorful choice C ∈ SI , the cost are upper bounded by the cost of the corre-
sponding assignment:

cI ,C ≤ c ′I ′,AC
.

Note that (i) and (ii) directly imply that L-NCP is PLS-complete. To see this, consider a
local optimum s? ∈ SI of the L-NCP instance I . By definition, the costs of all other colorful
choices that can be obtained from s? by swapping one point with another of the same color
are greater or equal to cI ,s? . Then, the total weight of unsatisfied clauses by the corresponding
assignment As? ∈S ′

I ′ cannot be decreased by flipping a variable. Thus, As? is a local minimum
of the MAX-2SAT/FLIP instance I ′.

(i) Let C ∈SI be a colorful choice and assume some clause K̂ j is not satisfied by the corre-
sponding assignment AC ∈S ′

I ′ . By construction, the j th coordinate of each point p in C is at
least w j . Thus, the j th coordinate of every convex combination of the points in C is at least
w j and hence cI ,C ≥ cI ′,AC .

(ii) Let C ∈SI be a colorful choice. In the following, we construct a convex combination of
the points in C that results in a point p whose `1-norm is exactly the total weight of unsatisfied
clauses in the corresponding assignment AC ∈S ′

I ′ and thus cI ,C ≤ cI ′,AC . For k = 0,1,2, let Sk

denote the set of clauses that are satisfied by exactly k literals with respect to the assignment
AC . As a first step towards constructing p , we show the existence of an intermediate point in
the convex hull of the helper classes.

Lemma 5.7. There is a point h ∈ conv(H1, . . . , Hd+1) whose j th coordinate is (n +2)w j if j ∈ S2

and w j otherwise.

Proof. Take h = ∑
i∈S2

1
d+1 hi +

(
1− |S2|

d+1

)
hd+1. Then, for j ∈ S0 ∪S1, we have

(h) j =
∑

i∈S2

1

d +1
(hi ) j +

(
1− |S2|

d +1

)
(hd+1) j

j∉S2=
∑

i∈S2

1

d +1
w j +

(
1− |S2|

d +1

)
w j = w j .
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x

y

x1, x2 = (−9,6)

x2, x3 = (3,−18)

x1, x3,h3 = (3,6) h1 = (39,6)

h2 = (3,78)

Figure 5.1.: Construction of the point sets corresponding to the MAX-2SAT/FLIP instance(
x1 ∨x2

)∧ (x2 ∨x3) with weights 3 and 6, respectively.

63



5. COLORFULCARATHÉODORY is in PLS

And for j ∈ S2, we have

(h) j =
∑

i∈S2

1

d +1
(hi ) j +

(
1− |S2|

d +1

)
(hd+1) j

= 1

d +1
h j +

∑

i∈S2\{ j }

1

d +1
(hi ) j +

(
1− |S2|

d +1

)
(hd+1) j

=
(
(n +2)− d

d +1

)
w j +

d

d +1
w j = (n +2)w j ,

as desired. �

Let now l i be the point from Xi in the colorful choice C and consider the point

p = 1

n +1

(
n∑

i=1
l i +h

)
,

where h is the point from Lemma 5.7. We show that (p) j = w j if j ∈ S0, and otherwise (p) j = 0.
Let j be an clause index from S0. Since AC does not satisfy K̂ j , the j th coordinate of the points
l 1, . . . , l n is w j . Also, (h) j = w j by Lemma 5.7. Thus, (p) j = w j . Consider now some clause
index j ∈ S1 and let b ∈ [2] be the index of the point l b that corresponds to the single literal
that satisfies K̂ j . Then, we have

(p) j =
n∑

i=1

1

n +1
(l i ) j +

1

n +1
(h) j

= 1

n +1
(l b) j +

n∑

i=1,i 6=b

1

n +1
(l i ) j +

1

n +1
(h) j =

−n

n +1
w j +

n

n +1
w j = 0.

Finally, consider some clause index j ∈ S2 and let b1,b2 be the indices of the two literals that
satisfy K̂ j . Then, we obtain

(p) j =
n∑

i=1

1

n +1
(l i ) j +

1

n +1
(h) j

= 1

n +1
(l b1 ) j +

1

n +1
(l b2 ) j +

n∑

i=1,i∉{b1,b2}

1

n +1
(l i ) j +

1

n +1
(h) j

= −2n

n +1
w j +

n −2

n +1
w j +

n +2

n +1
w j = 0,

and thus ‖p‖1 = cI ′,AC , as claimed. �

A straightforward modification of the reduction from Theorem 5.6 shows that finding a
globally optimal solution for an L-NCP instance is NP-hard by a reduction from 3SAT.

Theorem 5.8. G-NCP is NP-hard.

Proof. The proof of Theorem 5.6 can be adapted easily to reduce 3SAT to G-NCP. Given a set
of clauses K1, . . . ,Kd , we set the weight of each clause to 1 and construct the same point sets as
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5.2. A PLS-Complete Generalization of COLORFULCARATHÉODORY

in the PLS reduction. Additionally, we introduce for each clause K j a new helper color class
H ′

j = {h′
j }, where

(h′
i ) j =

{
(d +1)

(
(2n +2)− d

d+1

)
if i = j , and

1 otherwise.

Let now C be a colorful choice and let AC be the corresponding assignment. As in the PLS-
reduction, for k = 0, . . . ,3, let Sk contain all clauses that are satisfied by exactly k literals in
the assignment AC . Then, the following point h is contained in the convex hull of the helper
points:

h =
∑

i∈S2

hi

d +1
+

∑

j∈S3

h′
j

d +1
+

(
1− |S2|

d +1

)
hd+1.

Again, the convex combination p =∑n
i=1

1
n+1 l i + 1

n+1 h results in a point in the convex hull of C
whose distance to the origin is the number of unsatisfied clauses, where l i denotes the point
from Xi in C . Together with (i) from the proof of Theorem 5.6, 3SAT can be decided by knowing
a global optimum C? to the NCP problem: if δ(C?) = 0, AC? is a satisfying assignment. If not,
there exists no satisfying assignment at all. �

As mentioned in the introduction, we can adapt the proof of Theorem 5.8 to answer a
question by Bárány and Onn [11]. Again, this result was obtained independently by Meunier
and Sarrabezolles [55, Theorem 2].

Corollary 5.9. Let C1, . . . ,Cm ⊂ Qd be an input for G-NCP. Then, G-NCP remains NP-hard
even if m = d +1.

Proof. Let F be a 3SAT formula with d clauses and n variables. As in the proof of Theorem 5.8,
we construct n + 2d + 1 =: d ′ + 1 point sets in Qd such that there is a colorful choice that
embraces the origin if and only if F is satisfiable. Since d ′ > d , we can lift the point sets to
Qd ′

by appending 0-coordinates. Then, we have d ′+1 point sets such that there is a colorful
choice that embraces the origin if and only if F is satisfiable. �
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6 Introduction to Part II

Since there are no polynomial-time algorithms for COLORFULCARATHÉODORY known, ap-
proximation algorithms are of interest. This was first considered by Bárány and Onn [11]
who described how to find a colorful choice whose convex hull is “close” to the origin under
several general position assumptions. We call a set ε-close to the origin if its convex hull
has `2-distance at most ε to 0. Let in the following ε,ρ > 0 be parameters. Given d +1 sets
C1, . . . ,Cd+1 ∈Qd such that

(i) each Ci , i ∈ [d +1], contains a ball of radius ρ centered at the origin in its convex hull,

(ii) all points p ∈Ci , i ∈ [d +1], fulfill 1 ≤ ‖p‖ ≤ 2, and

(iii) the points in all sets can be encoded using L bits.

Then, the algorithm by Bárány and Onn iteratively computes a sequence of colorful choices
whose `2-distances of their convex hulls to the origin strictly decrease until a colorful choice
that embraces the origin is found. In particular, if stopped earlier, a colorful choice that is
ε-close to 0 can be computed in time poly(L, log(1/ε),1/ρ) on the WORD-RAM with logarithmic
costs. Note that if 1/ρ = O

(
poly(L)

)
, the algorithm actually finds a colorful choice with the

origin in its convex hull in polynomial-time. The Bárány-Onn algorithm is essentially the
algorithm from the proof of the convex version of Theorem 1.2 and the main contribution is a
careful analysis.

In the same spirit, Barman [12] showed that if the points have constant norm, a colorful

choice that is ε-close to the origin can be found in O
(
dO(1/ε2)L

)
time, where L is the length

of the binary encoding of the color classes. The algorithm uses the following approximative
version of Carathéodory’s theorem as main ingredient: let P ⊂ Rd be a 0-embracing point
set. Then, for any ε > 0, there exists a subset P ′ ⊆ P of size cε = O

(
mP /ε2

)
that is ε-close to

0, where mP = maxp∈P ‖p‖. This immediately implies a simple brute-force algorithm: let
C1, . . . ,Cd+1 ⊂ Qd be point sets with 0 ∈ conv(Ci ) for i ∈ [d +1] and assume all points have
constant norm. Let further C ⊆ ⋃d+1

i=1 Ci be a 0-embracing colorful choice whose existence
is guaranteed by Theorem 1.2. Then, the approximative version of Carathéodory’s theorem
asserts that there is a subset C ′ ⊆C of size cε that is ε-close to the origin. We can now guess
C ′ by trying out all

(d+1
cε

)
possibilities for the colors in C ′ and for each color i , we try all |Ci |

possibilities of picking a point with color i . For each choice of C ′, we can check whether it is
ε-close to the origin by solving a convex quadratic program. Solving one convex quadratic
program needs O

(
poly(d)L

)
time [40, 44]. Hence, assuming that each color class is of size

O (d), we can compute ε-close colorful choice in O
(
dO(1/ε2)L

)
time.

Both approaches relax the requirement that the computed colorful choice embraces the
origin. However, to apply Sarkaria’s lemma (Lemma 1.9), it is crucial that lifted points embrace
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the origin. If the convex hull is only close to the origin but does not contain it, the proof of
Sarkaria’s lemma breaks. As this is the main tool of the reductions in Section 1.2 to COLORFUL-
CARATHÉODORY, it is not immediate how the two above approximation algorithms can be used
to obtain approximation algorithms for the descendants of COLORFULCARATHÉODORY. On the
other hand, allowing multiple points from each color class may have a natural interpretation
in the reduction. This is true for both the proof of Tverberg’s theorem (Theorem 1.8) and the
proof of the colorful Kirchberger theorem (Theorem 1.10). In TVERBERG, we are given a set
P ⊂Qd of n = (m−1)(d +1)+1 points and we want to find a Tverberg partition T = {T1, . . . ,Tm}
of P . Now, in the reduction to COLORFULCARATHÉODORY, each point p i ∈ P is mapped to
a color class Ci in Qn−1. The color class Ci consists of m points, where the j th point in Ci

represents the choice of assigning p to T j . A set Ck ⊆ ⋃n
i=1 Ci with at most k points from

each color class Ci , i ∈ [n], has a clear interpretation: it encodes a family T̃ = {T̃1, . . . , T̃m} of
subsets of P such that

⋂m
j=1 conv(T j ) 6= ; and each point p i ∈ P may appear in up to k sets. By

removing sets from T̃ until each point from P appears at most once, we can construct out of T̃
a Tverberg partition of P of smaller size. In the case of COLORFULKIRCHBERGER, we are given
n = (m −1)(d +1)+1 Tverberg partitions T1, . . . ,Tn inQd and we want to merge them into one
Tverberg partition by taking one point from each T . Here, each color class Ci in the reduction
to COLORFULCARATHÉODORY corresponds to a Tverberg partition Ti and a set Ck ⊆⋃n

i=1 Ci

with at most k points from each Ci , i ∈ [n], corresponds to a Tverberg partition T̃ that contains
at most k points from each Ti . These applications motivate a different approximation problem:
given d +1 sets C1, . . . ,Cd+1 ⊂Qd that embrace the origin and a parameter k, we want to find a
0-embracing set C ⊆⋃d+1

i=1 Ci such that |C ∩Ci | ≤ k for i ∈ [n]. We call such a set a k-colorful
choice and we want to minimize k. Surprisingly, this notion of approximation has not been
studied so far.

6.1. Overview

In Chapter 7, we show that an dεde-colorful choice can be computed in polynomial time
for any fixed ε> 0. We discuss possible applications of the approximation algorithms to the
descendants of COLORFULCARATHÉODORY in Section 7.3.

Moreover, we consider a further notion of approximation that is motivated by our formula-
tion of COLORFULCARATHÉODORY as a PPAD-problem in Chapter 4. Here, we are given only
k ≤ d +1 color classes C1, . . . ,Ck ⊂Qd with 0 ∈ conv(Ci ) for i ∈ [d +1] and we want to find a
d(d +1)/ke-colorful choice that embraces the origin. Even the case k = 2 is already nontrivial
and we show how to apply the techniques from Chapter 4 to compute such a set C in weakly
polynomial time.

In Chapter 9, we consider the problem of computing an exact solution for COLORFUL-
CARATHÉODORY. We show that having a large amount of color classes helps: given color
classes C1, . . . ,Cn ⊂Qd for n =Θ(

d 2 logd
)

that all embrace the origin, a 0-embracing colorful
choice can be computed in quasi-polynomial time by a repeated invocation of our tools from
Chapter 7.

Finally, we consider in Chapter 10 the problem to compute the simplicial depth of a point
with respect to a given point set. We present a new approximation algorithm that computes
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6.1. Overview

a (1+ ε)-approximation with high probability in time Õ
(
nd/2+1

)
if the dimension is fixed,

where Õ (·) hides polylog-factors. Furthermore, we show that the problem of computing the
simplicial depth exactly when the dimension is part of the input becomes #P-complete [6, 79]
and W[1]-hard [25, 31]. This also implies that the problem of computing the colorful simplicial
depth is W[1]-hard. Here, only #P-completeness was known.

Please note that, if not otherwise noted, algorithms in this part of the thesis are analyzed in
the REAL-RAM model.
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7 k-Colorful Choices

In Section 7.2, we present two approximation algorithms that follow the same strategy. In the
first algorithm, we begin with a complete color class and then replace a subset by points from
other color classes while maintaining the property that the origin is embraced. The second
algorithm performs this replacement step repeatedly, each time decreasing the maximum
number of points from a color class, to further improve the approximation guarantee.

The necessary tools to implement the replacement step are presented in the next section.
Note that in contrast to the algorithm by Bárány and Onn, we do not assume the input to be in
general position but we rather ensure general position by a result similar to Carathéodory’s
theorem.

7.1. Embracing Equivalent Points

Let C ⊂ Rd be a 0-embracing point set. We say C is minimally 0-embracing if C \ {c} is not
0-embracing for all points c ∈C . We begin by showing several useful properties of minimally 0-
embracing sets and we present an algorithm that, given C , computes a minimally 0-embracing
subset. Based on these results, we then show how to efficiently replace points in a 0-embracing
simplex while preserving the embrace of the origin.

0
h

conv(C )

c×

conv(C )

Figure 7.1.: The blue points constitute the linearly dependent set C . The removal of c× main-
tains the embrace of the origin.

Lemma 7.1. Let C ⊂Rd be an affinely independent 0-embracing set. Then, a subset C ′ of C is
linearly dependent if and only if C ′ embraces the origin.

Proof. First, we observe that all 0-embracing subsets of C must be linearly dependent. Let
now C ′ be a linearly dependent subset of C . We want to show that then C ′ is 0-embracing,
too. Assume without loss of generality that C ′ is a proper subset and let c× ∈ C \ C ′ be a
missing point. We prove that the set C =C \ {c×} is 0-embracing. A repeated application of this
argument then implies the statement.
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Since C ′ ⊆ C , the set C is linearly dependent. Thus, we can write 0 as a nontrivial linear
combination

∑
c∈C φc c of the points in C , where φc ∈R for all c ∈C . Furthermore, since C is

affinely independent, so is C , and hence
∑

c∈C φc 6= 0. By rescaling the coefficients, we obtain

an affine combination of 0. This implies aff(C ) = span(C ). Now, because C = C \ {c×} and
because C is affinely independent, the point c× is not contained in the affine hull of C and thus
not in the linear span of C . Then, there exists a hyperplane h that contains span(C ) but not c×.
See Figure 7.1. Because conv(C ) is on one side of h, the intersection h ∩conv(C ) = conv(C ) is
a face of conv(C ). Since h and conv(C ) both contain the origin, the face conv(C ) must contain
the origin, too. Hence, C is 0-embracing. �

Lemma 7.2. Let C ⊂Rd be a minimally 0-embracing set. Then, the following holds:

(i) C is affinely independent and all proper subsets of C are linearly independent.

(ii) For all c ∈C , the point −c is ray-embraced by C \ {c}.

In particular, dimC = |C |−1 and pos(C ) = span(C ).

Proof. If C is affinely dependent, then by Theorem 1.1 there exists a proper subset that
embraces the origin. Thus, C must be affinely independent. Hence, (i) is implied by Lemma 7.1.
Write now C as c 1, . . . ,c n and let λ1, . . . ,λn ∈ R+ be coefficients that sum to 1 such that 0 =∑m

i=1λi c i . Then, −λi c i ∈ pos(C ) for all i ∈ [n]. Because C \ {c} does not embrace the origin for
any c ∈C , we have λi > 0 for i ∈ [n]. This implies (ii). �

Using the fact that all proper subsets of a minimally 0-embracing set C are linearly indepen-
dent, we show how to compute for each point in the positive span of C the coefficients of the
positive combination.

Lemma 7.3. Let C ⊂Rd be a minimally 0-embracing set and let q ∈ pos(C ) be a point. Then,
we can compute the coefficients of the positive combination of q with the points in C in O

(
d 4

)

time.

Proof. First assume that q = 0. Let c ∈C be an arbitrary point and denote with C =C \ {c} the
remaining points. By Lemma 7.2, −c is ray-embraced by C . Thus, the linear system Ax =−c ,
where A is the matrix whose columns are the points from C , has a solution. By Lemma 7.2 (i),
the set C is linearly independent and hence this solution is unique. Thus, we can compute the
coefficients ψc ∈R, c ∈C , such that −c =∑

c∈C ψc c in O
(
d 3

)
time with Gaussian elimination.

Moreover, since the solution is unique, we must have ψc ≥ 0 for all c ∈C . Set ψc to 1. Then,
0 =∑

c∈C ψc c and all coefficients are nonnegative.
Now assume that q 6= 0. We iterate through all points in c ∈C and solve the linear system

Lc : Ax = q , where the columns of A are the points in C \ {c}. Again by Lemma 7.2 (i), the
columns of A are linearly independent and hence the solution xc to Lc is unique if it exists. If
xc ≥ 0, we have found the desired coefficients. By Theorem 1.1, there exists a proper subset C ′

of C that ray-embraces q and thus there exists a point c× ∈C for which xc× ≥ 0. Solving the
linear system Lc takes O

(
d 3

)
time for each point c ∈C with Gaussian elimination, and hence

we need O
(
d 4

)
time in total before finding the q-embracing subset C \ {c×} together with the

coefficients of the positive combination. �
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We can now combine the previous results to show that given a 0-embracing set, we can
find a minimally 0-embracing subset in polynomial time together with the coefficients of the
convex combination of the origin.

Lemma 7.4. Let C ⊂ Rd be a 0-embracing set of size n. Given the coefficients of the convex
combination of 0 with the points in C , we can find a minimally 0-embracing subset C ′ ⊆C and
the coefficients of the convex combination of 0 with the points in C ′ in O

(
n2 +nd 3 +d 4

)
time.

Proof. First, we apply Theorem 1.1 to obtain an affinely independent subset C ′ of C that
embraces the origin. Then, we iteratively test for each point c ∈C ′ whether the set C ′ \ {c} is
linearly dependent. If so, we remove c from C ′. After iterating through all points, the resulting
set still embraces the origin by Lemma 7.1 and moreover, since no proper subset is linearly
dependent, it is minimally 0-embracing.

The initial application of Theorem 1.1 needs O
(
nd 3 +n2

)
time. Then, checking for one

point c ∈C ′ whether C ′ \ {c} is linearly dependent takes O
(
d 3

)
time with Gaussian elimination.

Because C ′ is affinely independent, we have |C ′| ≤ d +1 and thus the claimed running time
follows. �

Let now Q ⊂Rd be a set and let C ⊂Rd as before be a 0-embracing set. We say a subset C ′ of
C is 0-embracing equivalent to Q with respect to C if (C \C ′)∪Q embraces 0. In the following,
we show that if Q embraces the origin when orthogonally projected onto span(C )⊥, there is
always at least one point in C that is 0-embracing equivalent to Q. See Figure 7.2 (a).

0 span(C )⊥

Q

Q⊥

c

(a)

0

r 2

C1

r 1

C2

(b)

Figure 7.2.: (a) An example of Lemma 7.5. The red points constitute the minimal 0-embracing
set C and the blue points constitute the set Q that embraces the origin when
projected onto span(C )⊥. The point c ∈C is 0-embracing equivalent to Q. (b) An
example of Lemma 7.6. The set C consists of the vertices of the simplex, and the
two representative points are with respect to the indicated partition.

Lemma 7.5. Let C ⊂Rd be a 0-embracing set and let Q be a set whose orthogonal projection Q⊥

onto span(C )⊥ embraces 0. Then, there exists a point c ∈C that is 0-embracing equivalent to Q
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with respect to C . Furthermore, if both C and Q⊥ are minimally 0-embracing, we can compute
c together with the coefficients of the convex combination of 0 with the points in Q ∪C \ {c} in
O

(
d 4

)
time.

Proof. We first prove that there is always a point in C that is 0-embracing equivalent to Q and
then show how to find this point efficiently. We can assume without loss of generality that C is
minimally 0-embracing since otherwise the statement holds trivially. Let now q 1, . . . , q m ∈Rd

denote the points in Q and write each q i , i ∈ [m], as the sum of a vector p i ∈ span(C ) and a
vector p⊥

i ∈ span(C )⊥. Because Q projected onto span(C )⊥ is 0-embracing, there are coeffi-
cients λ1, . . . ,λm ∈R+ that sum to 1 such that 0 =∑m

i=1 p⊥
i . Consider the convex combination

q =∑m
i=1λi q i of the points in Q with the same coefficients. Since

q =
m∑

i=1
λi

(
p i +p⊥

i

)=
(

m∑

i=1
λi p i

)
+

(
m∑

i=1
λi p⊥

i

)
=

m∑

i=1
λi p i ,

the point q is contained in span(C ). By Lemma 7.2, we have pos(C ) = span(C ) and hence −q
is ray-embraced by C . Now, the cone version of Theorem 1.1 states that there is a linearly
independent subset C ′ of C that ray-embraces −q . Because dimC = |C |−1 by Lemma 7.2, the
set C ′ must be a proper subset. Then, Q is 0-embracing equivalent to all points in C \C ′ 6= ;.

It remains to show how to find a point in C \C ′. We assume that both C and Q⊥ are minimally
0-embracing, where Q⊥ is the orthogonal projection of Q onto span(C )⊥. Using the algorithm
from Lemma 7.3, we compute the coefficients of the convex combination of the origin with
the points in Q⊥ and hence the point −q in O

(
d 4

)
time. Applying Lemma 7.3 again, we can

determine the coefficients of the positive combination of −q with the points in C in O
(
d 4

)

time. We use the algorithm from Lemma 7.4 to find a minimally (−q)-embracing subset C ′

from C in O
(
d 4

)
time. Then, we can choose any point in C \C ′ as c . Finally, since we know

the coefficients of the convex combination of q with the points in Q and since we can apply
Lemma 7.3 to compute the coefficients of the positive combination of −q with the points in
C ′, we can compute the coefficients of the convex combination of the origin with the points in
C ′∪Q by rescaling appropriately. The algorithm takes in total O

(
d 4

)
time, as claimed. �

Lemma 7.5 itself does not yet lead to a nontrivial approximation algorithm due to the weak
guarantee that only a single point in C is 0-embracing equivalent to Q. To amplify the number
of points that can be replaced, we conclude this section by showing how to compute a set of
representative points R for C that each stand for a specific subset of C such that if a point in R
is 0-embracing equivalent to a set Q with respect to R, then the corresponding subset of C is
0-embracing equivalent to Q with respect to C , too. See Figure 7.2 (b).

Lemma 7.6. Let C ⊂Rd be a minimally 0-embracing set and let C1, . . . ,Cm be a partition of C
into m ≥ 2 sets with |Ci | ≥ 1 for all i ∈ [m]. Then, we can compute in O

(
d 4

)
time a set of points

R = {r 1, . . . ,r m} ⊂Rd with the following properties:

(i) R is minimally 0-embracing.

(ii) Let Q ⊂Rd be a set that is 0-embracing equivalent to some point r j ∈ R with respect to R.
Then, Q is 0-embracing equivalent to C j with respect to C .
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We call the points in R representative points for C with respect to the partition C1, . . . ,Cm .

Proof. Since C is minimally 0-embracing, we can write 0 as a convex combination
∑

c∈C λc c
such that all λc are strictly greater than 0 and sum to 1. With the algorithm from Lemma 7.3,
we can compute these coefficients in O

(
d 4

)
time. For i ∈ [m], set r i to

∑
c∈C j

λc c . Clearly, R
is 0-embracing. Moreover, for all j ∈ [m], the set

{
r i

∣∣ i ∈ [m], i 6= j
}

is not 0-embracing since
otherwise the set

⋃m
i=1, i 6= j Ci , a strict subset of C , is 0-embracing, a contradiction to C being

minimally 0-embracing. Let now Q be a set that is 0-embracing equivalent to some point
r j ∈ R with respect to R . That is, the set Q∪(

R \ {r j }
)

embraces the origin. Because r i ∈ pos(Ci )

for i ∈ [m], then the set Q ∪
(⋃m

i=1, i 6= j Ci

)
is 0-embracing as well, and hence Q is 0-embracing

equivalent to C j with respect to C . �

7.2. Computing k-Colorful Choices

Lemmas 7.5 and 7.6 suggest a simple approximation algorithm. Let C1, . . . ,Cm ⊂Rd be m color

classes that each embrace the origin for i ∈ [m] and set k = max
(
d −m +2,

⌈
d+1

2

⌉)
. Then, the

following algorithm recursively computes a 0-embracing k-colorful choice. First, we prune
C1 with Lemma 7.4 and partition it into two sets C ′

1, C ′
2 of size at most d(d +1)/2e. Using

Lemma 7.6, we compute two representatives points r 1, r 2 for this partition of C1. Then, we
project the remaining m−1 color classes onto the (d −1)-dimensional space that is orthogonal
to span(r 1,r 2)⊥ and we recursively compute a 0-embracing k-colorful choice Q with respect
to the projections of C2, . . . ,Cm . By Lemmas 7.5 and 7.6, one of the two sets C ′

1,C ′
2, say C ′

1,
is 0-embracing equivalent to Q with respect to C1. Since Q is a k-colorful choice that does
not contain points from C1 and since |C ′

1|, |C ′
2| ≤ k, the set C ′

1 ∪Q is a 0-embracing k-colorful
choice. The recursion stops once only one color class is left. Then, we are in dimension
d −m+1. Since d −m+2 ≤ k, pruning the single remaining color class with Lemma 7.4 results
already in a 0-embracing k-colorful choice. For details, see Algorithm 7.1.

Algorithm 7.1: Simple Approximation

Input: m sets C1, . . . ,Cm ⊂Rd that each embrace the origin, and for each Ci , i ∈ [m], the
coefficients of the convex combination of 0 with the points in Ci

Output: 0-embracing max
(
d −m +2,

⌈
d+1

2

⌉)
-colorful choice

1 C ← prune C1 with Lemma 7.4;
2 if m = 1 then return C ;

3 C ′
1, C ′

2 ← partition of C into two sets, each of size at most
⌈

d+1
2

⌉
;

4 Compute representative points r 1, r 2 for C ′
1, C ′

2;

5 qC2, . . . , qCm ← orthogonal projection of C2, . . . ,Cm onto span(r 1,r 2)⊥;

6 qQ ← recurse(qC2, . . . , qCm);
7 Q ← replace projected points in Q by original points from

⋃m
i=2 Ci ;

8 Determine which point r i× ∈ {r 1,r 2} is 0-embracing equivalent to Q;
9 return

(
C \C ′

i×
)∪Q pruned with Lemma 7.4;
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Theorem 7.7. Let C1, . . . ,Cm ⊂ Rd be m ≤ d color classes such that Ci is a 0-embracing set of
size O (d) for i ∈ [k]. On input C1, . . . ,Cm and given the coefficients of the convex combination

of the origin for each set Ci , Algorithm 7.1 computes a 0-embracing max
(
d −m +2,

⌈
d+1

2

⌉)
-

colorful choice in O
(
d 5

)
time. In particular, for m = bd/2c + 1, the algorithm computes a

(dd/2e+1)-colorful choice.

Proof. The correctness of Algorithm 7.1 is a direct consequence of Lemmas 7.5 and 7.6. It
remains to analyze the running time. In each step of the recursion except for the last one, we
prune two times a set of size O (d) with Lemma 7.4. This needs O

(
d 4

)
time. Furthermore, by

Lemma 7.6, computing two representative points takes O
(
d 4

)
time, too. Finally, given the set

Q, determining which representative point is 0-embracing equivalent to Q takes also O
(
d 4

)
by

Lemma 7.5. Thus, we need O
(
d 4

)
time per step of the recursion and there are O (d) recursion

steps in total. Hence, the total running time is O
(
d 5

)
. �

Although nontrivial, the fact that we can take in polynomial time half of the points from each
color class to construct a 0-embracing (dd/2e+1)-colorful choice may not be too surprising.
In the remainder of this chapter, we present a generalization of Algorithm 7.1 that computes
0-embracing dεde-colorful choices in polynomial time for any fixed ε > 0. The improved
approximation guarantee is achieved by repeatedly replacing subsets of C with Lemmas 7.5
and 7.6 in each step of the recursion. To still ensure polynomial running time, we reduce the
dimensionality by a constant fraction in each step of the recursion. Additionally, we slightly
worsen the approximation guarantee in each level of the recursion, i.e., if the current recursion
level is j and the dimensionality is d ′, then we do not compute an

⌈
εd ′⌉-colorful choice but a⌈

(1−ε/2)− j /2εd ′⌉-colorful choice. As we will see, this additional “slack” in the approximation
guarantee limits the recursion depth to a constant depending only on ε as after only O (1)
recursion steps even a complete color class pruned with Lemma 7.4 is already a good enough
approximation.

In more detail, let C1, . . . ,Cd+1 ⊂Rd be d +1 sets that each embrace the origin and let ε> 0
be a parameter. We want to compute an dεde-colorful choice that embraces the origin. Set

d j =
⌈(

1− ε

2

) j
d

⌉
and k j =

⌈
ε
(
1− ε

2

) j /2
d

⌉

for j ∈ N. The sequence d j controls the dimension reduction argument with Lemmas 7.5
and 7.6, i.e., in the j th recursion level, the dimensionality of the input will be d j . The sequence
k j defines the approximation guarantee in the j th recursion level. Note that d0 = d and
k0 = dεde. Assume now we are in recursion level j . That is, the input consists of d j +1 color
classes C1, . . . ,Cd j+1 ⊂Rd j that each embrace the origin together with the coefficients of their
convex combinations of the origin and we want to compute a 0-embracing k j -colorful choice.
As in the previous algorithm, we begin by computing a minimal 0-embracing subset C of
C1 with Lemma 7.4. If k j ≥ d j +1, then C is already a valid approximation. Otherwise, we
repeatedly replace subsets of C until it contains at most k j points from each color as follows.
Set m = d j −d j+1 +1. We partition C into sets C ′

1, . . . ,C ′
m by distributing the points from each

color in C equally among these m sets and we compute representative points r 1, . . . ,r m for

this partition. Let C?
1 , . . . ,C?

d j+1+1 ∈
{

C2, . . . ,Cd j+1

}
be d j+1 +1 color classes, where we discuss
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shortly how they are chosen. Then, we recursively compute a k j+1-colorful choice Q for
C?

1 , . . . ,C?
d j+1+1 that embraces the origin when projected on U = span(r 1, . . . ,r m)⊥. Note that

dimU = d j − (m −1) = d j+1 and hence the dimensionality of the input in recursion level j +1
is d j+1, as desired. Then, by Lemmas 7.5 and 7.6, at least one reference point r i× and hence at
least one of the sets C ′

i× is 0-embracing equivalent to Q. We set C to (C \Ci×)∪Q and prune it
with Lemma 7.4. We repeat these steps until C is a k j -colorful choice. To ensure progress, m
should be smaller than k j so that Ci× is guaranteed to contain a point from each color that
appears more than k j times in C . Furthermore, Q should not contain points with colors that
appear “often” in C . We call a color class Ci light with respect to C if |C ∩Ci | ≤ k j −k j+1 and
otherwise heavy. For the recursion, we only use light color classes. A k j+1-colorful choice with
light colors can be added safely to C without increasing any color over the threshold k j . In
particular, since we start with C =C1 and only use light color classes, no other color class can
ever occur more than k j times in C and hence we are finished once the number of points from
C1 is at most k j . Please refer to Algorithm 7.2 for details.

Algorithm 7.2: dεde-Approximation

Input: recursion depth j ∈N0 (initially 0), original dimension d ∈N, approximation
parameter ε> 0, d j +1 sets C1, . . . ,Cd j+1 ⊂Rd j that each embrace the origin, and
for each Ci the coefficients of the convex combination of 0 with the points in Ci

Output: 0-embracing k j -colorful choice

1 k j ←
⌈
ε
(
1− ε

2

) j d
⌉

;

2 d j+1 ←
⌈(

1− ε
2

) j+1 d
⌉

;

3 m ← d j −d j+1 +1;
4 C ← prune C1 with Lemma 7.4;
5 while |C ∩C1| > k j do
6 C ′

1, . . . ,C ′
m ← partition of C s.t. the points from each color class are evenly distributed;

7 Compute representative points r 1, . . . ,r m for C ′
1, . . . ,C ′

m with Lemma 7.6;

8 Find d j+1 +1 light color classes C?
1 , . . . ,C?

d j+1+1 ∈
{

C2, . . . ,Cd j+1

}
;

9 qC1, . . . , qCd j+1+1 ← orthogonal projection of C?
1 , . . . ,C?

d j+1+1 onto span(r 1, . . . ,r m)⊥;

10 qQ ←recurse( j +1, d, ε, qC1, . . . , qCd j+1+1);

11 Q ← replace projected points in Q by original points from
⋃d j+1+1

i=1 C?
i ;

12 Determine which point r i× ∈ {r 1, . . . ,r m} is 0-embracing equivalent to Q with
Lemma 7.5;

13 C ← (
C \C ′

i×
)∪Q pruned with Lemma 7.4;

14 return C ;

The next lemma states that for ε fixed, the number of necessary recursions before a trivial
approximation with Lemma 7.4 suffices is constant.

Lemma 7.8. For any ε=Ω(
d−1

)
there exists a j =Θ(

ε−1 lnε−1
)

such that k j ≥ d j +1.
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Proof. Replacing d j with its definition, we obtain

d j +1 =
⌈(

1− ε

2

) j
d

⌉
+1 ≤

(
1− ε

2

) j
d +2. (7.1)

Using − ln
(
1− ε

2

)≤ ε if ε≤ 1, we have for j =O
(
ε−1 lnd

)

(
1− ε

2

) j
d ≥ 1. (7.2)

Furthermore, using the fact that − ln
(
1− ε

2

)≥ ε
2 , we have for j =Ω(

ε−1 lnε−1
)

3
(
1− ε

2

) j /2
≤ ε. (7.3)

Combining (7.2) and (7.3) with (7.1), we get

d j +1 ≤ 3
(
1− ε

2

) j
d ≤ ε

(
1− ε

2

) j /2
d ≤

⌈
ε
(
1− ε

2

) j /2
d

⌉
= k j

and hence, if d =Ω(
ε−1

)
and j =Θ(

ε−1 lnε−1
)
, we have d j +1 ≤ k j . �

Next, we show that if the recursion depth is not too large, then we can always find enough
light color classes.

Lemma 7.9. Let j ∈ N and let C1, . . . ,Cd j+1 ⊂ Rd j be d j + 1 color classes. Furthermore, let

C ⊆ ⋃d j+1
i=1 Ci be a set of size at most d j +1. For all j = O

(
ε−1 lnε3d

)
, there exist d j+1 +1 light

color classes with respect to C .

Proof. We recall that a color class Ci , i ∈ [d j +1], is light with respect to C if |C ∩Ci | ≤ k j −k j+1.
Then, the number of heavy color classes h is bounded by

h ≤
⌈

d j +1

k j −k j+1

⌉
≤ 2d j

k j −k j+1
+1, (7.4)

since d j ≥ 1 for all j ∈N. We can bound the denominator as follows

k j −k j+1 =
⌈
ε
(
1− ε

2

) j /2
d

⌉
−

⌈
ε
(
1− ε

2

)( j+1)/2
d

⌉

≥ ε
(
1− ε

2

) j /2
d −ε

(
1− ε

2

)( j+1)/2
d −1

= ε
(
1− ε

2

) j /2
d

(
1−

√
1− ε

2

)
−1 ≥ ε2

4

(
1− ε

2

) j /2
d −1, (7.5)

where we apply 1−
√

1− ε
2 ≥ ε

4 in the last inequality. Using that − ln
(
1− ε

2

)≤ ε if ε≤ 1, we have

for j =O
(
ε−1 lnε2d

)

ε2

4

(
1− ε

2

) j /2
d ≥ 2 (7.6)
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and hence (7.5) can be simplified to

k j −k j+1 ≥
ε2

8

(
1− ε

2

) j /2
d . (7.7)

Plugging (7.7) into (7.4) and using (7.6), we obtain

h ≤
2
⌈(

1− ε
2

) j d
⌉

ε2

8

(
1− ε

2

) j /2 d
+1 ≤

2
(
1− ε

2

) j d

ε2

8

(
1− ε

2

) j /2 d
+3 = 16

ε2

(
1− ε

2

) j /2
+3.

Then, the number of light color classes ` is at least

`= d j +1−h ≥
⌈(

1− ε

2

) j
d

⌉
− 16

ε2

(
1− ε

2

) j /2
−2

≥
(
1− ε

2

) j
d

(
1− 16

ε2
(
1− ε

2

) j /2 d
− 2

(
1− ε

2

) j d

)
. (7.8)

For j =O
(
ε−1 lnε3d

)
, we have

16

ε2
(
1− ε

2

) j /2 d
+ 2

(
1− ε

2

) j d
≤ ε

4

and thus (7.8) implies

`≥
(
1− ε

4

)(
1− ε

2

) j
d . (7.9)

For j =O
(
ε−1 lnεd

)
, we can bound

ε

4

(
1− ε

2

) j
d ≥ 2. (7.10)

Combining (7.10) with (7.9), we get

`≥
(
1− ε

4

)(
1− ε

2

) j
d +

(ε
4
− ε

4

)(
1− ε

2

) j
d ≥

(
1− ε

2

) j+1
d +2 ≥

⌈(
1− ε

2

) j+1
d

⌉
+1 = d j+1 +1.

Thus, for j =O
(
ε−1 lnε3d

)
, there are at least d j+1 +1 light color classes with respect to C . �

Before we finally prove correctness, we show if the recursion depth j is not too large, then
each set of the partition of C contains at least one point from C1 until C is a k j -colorful choice.
This implies that each iteration of the while-loop decreases the amount of points from C1 in C .

Lemma 7.10. For all j =O
(
ε−1 lnεd

)
, we have m = d j −d j+1 +1 ≤ k j +1.
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Proof. First, we upper bound m as follows:

m = d j −d j+1 +1 =
⌈(

1− ε

2

) j
d

⌉
−

⌈(
1− ε

2

) j+1
d

⌉
+1

≤
(
1− ε

2

) j
d −

(
1− ε

2

) j+1
d +2 = ε

2

(
1− ε

2

) j
d +2.

(7.11)

For j =O
(
ε−1 lnεd

)
, we can lower bound ε

2

(
1− ε

2

) j d by 1. Using this in (7.11), we get

m ≤ ε
(
1− ε

2

) j
d +1 ≤

⌈
ε
(
1− ε

2

) j
d

⌉
+1 = k j +1,

as desired. �

Theorem 7.11. Let C1, . . . ,Cd+1 ⊂Rd be d +1 sets such that Ci is a 0-embracing set of size O (d)
for i ∈ [d +1] and let ε =Ω(

d−1/4
)

be a parameter. On input 0, d, ε, C1, . . . ,Cd+1, and given
the coefficients of the convex combination of the origin with the points in Ci for i ∈ [d +1],
Algorithm 7.2 computes a 0-embracing dεde-colorful choice in dO(ε−1 lnε−1) time.

Proof. We begin by showing that if the algorithm enters the while loop in recursion level j ,
it is always possible to find d j+1 +1 light color classes and that the projections qC1, . . . , qCd j+1+1

of these color classes are 0-embracing subsets of Rd j+1 (Line 9). In other words, we show that
recursion is possible if C is not a k j -colorful choice. Assume now the algorithm enters the while
loop in recursion level j . Then, C is a minimally 0-embracing subset of C1 ⊂Rd j and has size at
least k j +1. In Line 6, we partition C into m sets C ′

1, . . . ,C ′
m by distributing the points from each

color class equally. By Lemma 7.10, we have m ≤ k j +1 for j =O
(
ε−1 lnεd

)
, and hence each

set C ′
i is nonempty. Thus, the algorithm from Lemma 7.6 can be applied in Line 7 to compute

the representative points r 1, . . . ,r m . Moreover dimspan(r 1, . . . ,r m) = m −1 by Lemma 7.6
and Lemma 7.2. Thus, dimspan(r 1, . . . ,r m)⊥ = d −m +1 = d j+1. Now, Lemma 7.9 guarantees
that we can always find d j+1 +1 light color classes C?

1 , . . . ,C?
d j+1+1 if j =O

(
ε−1 lnε3d

)
. Because

each color class C?
i , i ∈ [d j+1 +1], is 0-embracing, so are their orthogonal projections onto

span(r 1, . . . ,r k )T . Thus, recursion is possible if j =O
(
ε−1 lnε3d

)
. By Lemma 7.8, the recursion

depth is limited toΘ
(
ε−1 lnε−1

)
since then pruning C1 with Lemma 7.4 in Line 4 is already a

0-embracing k j -colorful choice. In this case, the while loop is never executed. We conclude
that for ε=O

(
d−1/4

)
, recursion is always possible as long as C is not a k j -colorful choice.

Next, we prove that the algorithm computes in recursion level j a 0-embracing k j -colorful
choice. As discussed above, the recursion terminates after O

(
ε−1 lnε−1

)
steps when the set C

from Line 4 is already a 0-embracing k j -colorful choice. If C is not already a valid approxima-
tion, the while loop is executed. In each iteration of the while loop, C is partitioned into m sets
C ′

1, . . . ,C ′
m by distributing the points from each color equally among the C ′

i . By Lemma 7.10,
m ≤ k j +1 for j =O

(
ε−1 lnεd

)
and hence each set C ′

i , i ∈ [m], contains at least one point from
C1. Applying Lemmas 7.5 and 7.6, one of these sets, say C ′

i× , is replaced in C by a recursively
computed k j+1-colorful choice Q that is 0-embracing when projected onto span(r 1, . . . ,r m)⊥.
Since we use in the recursion only light color classes with respect to C , and since C1 is not
a light color class, each iteration of the while loop strictly decreases the number of points
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from C1 in C . Moreover, because Q contains only points from light color classes and since
it is a k j+1-colorful choice, (C \Ci×)∪Q contains at most k j points from the color classes
C2, . . . ,Cd j+1. Thus, after O (d) iterations, C is a 0-embracing k j -colorful choice.

It remains to analyze the running time. The initial computation of C in Line 4 and each
iteration of the while loop except for the recursive call takes O

(
d 4

)
time. Since the while loop

is executed O (d) times and since the recursion depth is bounded by O
(
ε−1 lnε−1

)
, the total

running time of Algorithm 7.2 is dO(ε−1 lnε−1). �

7.3. Applications

Our main motivation to study algorithms for k-colorful choices was their potential application
to approximate the descendants of COLORFULCARATHÉODORY. We now give precise bounds
on the quality and the running time of approximation algorithms that we obtain by combining
algorithms for k-colorful choices with the presented reductions to COLORFULCARATHÉODORY

from Chapter 1. Unfortunately, the approximation guarantee of Algorithm 7.2 is too weak to
obtain a nontrivial approximation algorithm for TVERBERG and therefore also for CENTER-
POINT and for SIMPLICIALCENTER. On the positive side, it leads to a nontrivial approximation
algorithm for COLORFULKIRCHBERGER.

In the following, let A be an algorithm that given d + 1 color classes C1, . . . ,Cd+1 ⊂ Rd ,
each embracing the origin and of size O (d), and for each Ci the coefficients of the convex
combination of the origin, outputs a 0-embracing k(d)-colorful choice in T (d) time, where
k,T :N 7→N are arbitrary but fixed functions.

Corollary 7.12. Let P ⊂Rd be a point set of size n and let A be as above. Set

m̃ =
⌈

n

(d +1)2
(
k(n −1)−1

)+d +1

⌉
=Ω

(
n

d 2k(n −1)

)
.

Then, a Tverberg m̃-partition T of P and a point p ∈∈ ⋂
T∈T conv(T ) can be computed in

O
(
(d 2 +m)n2 +T (n −1)

)
time.

Proof. Set m = dn/(d +1)e. In the proof of Theorem 1.8 on Page 12, we lift m copies of
P with Lemma 1.9 to Rn−1. Lifting one point needs O (dm) = O (n) time and hence lifting
all m copies takes O

(
mn2

)
time. Then, each point p i ∈ Rd from P corresponds to a color

class Ci =
{

p̂ i , j

∣∣∣ j ∈ [m]
}
⊂ Rn−1 of size m and a 0-embracing colorful choice of C1, . . . ,Cn

corresponds to the Tverberg partition T = {T1, . . . ,Tm} that we obtain by assigning p i ∈ P to
T j if p̂ i , j ∈C . By construction of the color classes in the proof of Theorem 1.8, the barycenter
of Ci is the origin for i ∈ [n]. Since we know then for each color class the coefficients of the
convex combination of the origin, we can apply A to obtain a 0-embracing k(n −1)-colorful
choice C̃ ⊆⋃n

i=1 Ci together with the coefficients of the convex combination of the origin with
the points in C̃ . Let T̃ = {

T̃1, . . . , T̃m
}

be a family of subsets of P that we construct as before
by assigning p i to T̃ j if p i , j ∈ C̃ . Here, T̃ is a multiset, i.e., we allow T̃i = T̃ j for i 6= j . Since C̃

embraces the origin, Lemma 1.9 guarantees that the intersection
⋂m

i=1 conv
(
T̃i

)
is nonempty.

Moreover, because we know the coefficients of the convex combination of the origin with
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the points in C̃ , we can compute in O (dn) time a point p? ∈⋂m
i=1 conv

(
T̃i

)
together with the

coefficients of the convex combination of p? with the points in T̃i for i ∈ [m], as described in
the proof of Lemma 1.9.

Now, we construct a Tverberg partition for P out of T̃ by a greedy strategy that iteratively
removes sets from T̃ . Let T̃ ∈ T̃ be some set and remove it from T̃ . Since we know the
coefficients of the convex combination of p? with the points in T̃ , Theorem 1.1 can be applied
to prune T̃ to a p?-embracing set of size at most d+1 in O

(
d 3n +n2

)
time. Then, for each point

p ∈ T̃ , we remove the at most k(n −1)−1 other sets from T̃ that contain p . We continue with
the next set in T̃ that has not yet been removed until T̃ =;. Let T ? ⊆ T̃ be the family of sets
that we obtain by this process. Clearly, T ? is a Tverberg partition and because T ? ⊆ T̃ , we have
p? ∈⋂

T̃∈T ? conv
(
T̃

)
. Moreover, for each set T̃i ∈ T ?, we remove at most (d +1)(k(n −1)−1)

other sets from T̃ . Thus, the size of the Tverberg partition T ? is at least

∣∣T ?
∣∣≥

⌈
m

(d +1)(k(n −1)−1)+1

⌉
≥

⌈
n

(d +1)2(k(n −1)−1)+d +1

⌉
.

Constructing the COLORFULCARATHÉODORY instance takes O
(
mn2

)
time. Using A, we need

T (n−1) time to compute a k(n−1)-colorful choice C̃ . Pruning every set of T̃ with Theorem 1.1
to at most d +1 points needs O

(
m(d 3n +n2)

)=O
(
(d 2 +m)n2

)
time. Finally, constructing T ?

out of T̃ takes O
(
n2

)
time with the naive algorithm. This results in the claimed running time

of O
(
(d 2 +m)n2 +T (n −1)

)
. �

The next corollary is a direct consequence of Corollary 7.12 and Lemma 1.11.

Corollary 7.13. Let P ⊂Rd be a set of size n and let A be as above. Furthermore, let m̃ be as in
Corollary 7.12. Then, we can compute a point with simplicial depth at least

⌈
m̃d+1

(d +1)d+1

⌉
=Ω

(
nd+1

d 3d+3 (k(n −1))d+1

)

with respect to P.

Proof. Using the algorithm from Corollary 7.12, we can compute a Tverberg m-partition T for
P together with a point p? ∈⋂

T∈T conv(T ) in O
(
(d 2 +m)n2 +T (n −1)

)
time. Then, the point

p? has simplicial depth at least

⌈
m̃d+1

(d +1)d+1

⌉
=Ω

(
nd+1

d 3d+3 (k(n −1))d+1

)

with respect to P by Lemma 1.11. �

Furthermore, we can use A to approximate COLORFULKIRCHBERGER. In Theorem 1.10, we
are only allowed to take one point from each Tverberg partition. Here however, we allow to
take multiple points from each Tverberg partition.

Corollary 7.14. Let A be as above and let C1, . . . ,Cn ⊂ Rd be n = (m −1)(d +1)+1 pairwise
disjoint color classes that are each of size n. Furthermore, for i ∈ [n], let Ti =

{
Ti ,1, . . . ,Ti ,m

}
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denote a Tverberg m-partition for Ci . Then, given for each Tverberg partition Ti , i ∈ [n], a point
p i ∈

⋂m
j=1 conv

(
Ti , j

)
, and for all i ∈ [n] and j ∈ [m], the coefficients of the convex combination

of p i with the points in Ti , j , we can compute in O
(
n3 +T (n −1)

)
time a k(n−1)-colorful choice

C ⊆⋃n
i=1 Ci such that

TC =
{

C ∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C .

Proof. In the proof of Theorem 1.10 on page 12, we lift the points
⋃n

i=1 Ci to Rn−1 such that the
set of points Ĉi that corresponds to the color class Ci still embraces the origin, where i ∈ [n].
Moreover, if Ĉ ′ ⊆⋃n

i=1 Ĉi is a 0-embracing colorful choice of the lifted points, then there is a
corresponding colorful choice C ′ with respect to C1, . . . ,Cn such that

TC ′ =
{

C ′∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C ′. Similarly, a 0-embracing k(n −1)-colorful choice Ĉ of the
lifted color classes corresponds to a k(n −1)-colorful choice C with respect to C1, . . . ,Cn such
that

TC =
{

C ∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C .
Computing the function p⊗q , where p ∈Rd+1 and q ∈Rm−1, needs O (dm) =O (n) time and

hence lifting the point sets C1, . . . ,Cn ⊂Rd to Rn−1 with Lemma 1.9 needs O
(
n3

)
time in total.

Since we know for each Tverberg partition Ti , i ∈ [n], a point p i ∈
⋂m

j=1 conv
(
Ti , j

)
together

with the coefficients of the convex combination of p i with the points in Ti , j for j ∈ [m], we
can compute in O (n) time the coefficients of the convex combination of the origin with the
points in Ĉi as described in the proof of Lemma 1.9. Then, A can be applied to compute a
0-embracing k(n −1)-colorful choice Ĉ with respect to the lifted point sets in T (n −1) time.
Finally, constructing C and TC out of Ĉ needs O (n) time. Hence, the total time needed is
O

(
n3 +T (n −1)

)
. �

Now, given d+1 color classes C1, . . . ,Cd+1 ⊂Rd that embrace the origin, we can compute with
Algorithm 7.2 an dεde-colorful choice that embraces the origin in polynomial time. Combining
this with Corollary 7.12, we obtain an algorithm that computes Tverberg partitions of size O (1)
in polynomial time, a trivial result. Since Corollary 7.13 reduces to Corollary 7.12, we also do
not obtain a nontrivial approximation algorithm for SIMPLICIALCENTER. However, combining
Algorithm 7.2 with Corollary 7.14, we do obtain a nontrivial approximation algorithm for
COLORFULKIRCHBERGER: given n = (m − 1)(d + 1)+ 1 color classes C1, . . . ,Cn , each of size
n, and for each color class a Tverberg m-partition Ti =

{
Ti ,1, . . . ,Ti ,m

}
together with a point

p i ∈
⋂m

j=1 conv
(
Ti , j

)
and the coefficients of the convex combination of p i with the points in
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Ti , j for all j ∈ [m], we can compute in nO(ε−1 lnε−1) time an dεne-colorful choice C such that

TC =
{

C ∩
(

n⋃
i=1

Ti , j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C , where ε> 0 is arbitrary but fixed.
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8 Few Color Classes

In the last chapter, we relaxed the problem of finding a 0-embracing colorful choice by taking
multiple points from each color class. In this chapter, we consider a further natural relaxation
of COLORFULCARATHÉODORY that is closely related to k-colorful choices. Let C1, . . . ,Cm ∈Qd

be m color classes and let C ⊆⋃m
i=1 Ci be a set. We call C an (k1, . . . ,km)-colorful choice with

respect to C1, . . . ,Cm if there are m subsets C ′
1 ⊆ C1, . . . ,C ′

m ⊆ Cm with |C ′
i | ≤ ki for i ∈ [m]

such that C = ⋃m
i=1 C ′

i . Now, given m color classes C1, . . . ,Cm ⊂ Qd that each ray-embrace a

point b ∈ Qd , b 6= 0, and given m numbers k1, . . . ,km ∈ N that sum to d , we want to find a
(k1, . . . ,km)-colorful choice that ray-embraces b. It is a straightforward consequence of the
colorful Carathéodory theorem that a (k1, . . . ,km)-colorful choice that ray-embraces b always
exists.

Corollary 8.1 (of Theorem 1.2). Let C1, . . . ,Cm ⊂Rd be m finite sets that ray-embrace a point
b ∈Rd , b 6= 0. Furthermore, let k1, . . . ,km ∈N be m numbers that sum to d. Then, there exists an
(k1, . . . ,km)-colorful choice that ray-embraces b.

Proof. Let C1, . . . ,Cm ∈ Rd be m color classes that ray-embrace b ∈ Rd and let k1, . . . ,km ∈N
be m numbers that sum to d . We set Ci ,1, . . . ,Ci ,ki to Ci for i ∈ [m]. Then, we have d color
classes C1,1, . . . ,C1,k1 , . . . ,Cm,1, . . . ,Cm,km that each ray-embrace b. Thus by Theorem 1.2, there
are d points c 1,1 ∈ C1,1, . . . ,c 1,k1 ∈ C1,k1 , . . . ,c m,1 ∈ Cm,1, . . . ,c m,km ∈ Cm,km that ray-embrace b.
Set C ′

i =
{

c i , j
∣∣ j ∈ [ki ]

}
for i ∈ [m]. Then, the set

⋃m
i=1 C ′

i is a (k1, . . . ,km)-colorful choice that
ray-embraces b. �

Clearly, for m = d , the problem coincides with COLORFULCARATHÉODORY. Surprisingly, even
if m = 2 and we are allowed to take half of each of the two color classes, it is already nontrivial
to find a solution. Using our techniques from Chapter 4, we present a weakly polynomial-time
algorithm on a WORD-RAM for this case. As described in Section 4.2, we construct implicitly a
1-dimensional polytopal complex, where at least one edge corresponds to a solution. Then,
we apply binary search to find this edge. Since the length of the edges can be exponentially
small in the length of the input, this results in a weakly polynomial-time algorithm.

In the following, we use the same notation as in Chapter 4 (see Table 4.1 on page 46 for an
overview). Let C1,C2 ⊂Qd be two color classes, each of size d , let b ∈Qd , b 6= 0, be a point
that is ray-embraced by C1 and by C2, and let k ∈ [d −1] be a number. Although not needed
in the algorithm, to comply with the formulations of our results in Chapter 3 and Chapter 4,
we introduce d −2 “dummy” color classes C3, . . . ,Cd that trivially ray-embrace b by setting
C3 = ·· · =Cd = {b}. Let (C ′

1, . . . ,C ′
d ,b′) be the instance of COLORFULCARATHÉODORY in general

position that we obtain by applying Lemma 3.6 to (C1, . . . ,Cd ,b). Then, let PCC ⊂Qd 2
denote

the polyhedron that is defined by the linear system LCC (see (4.1) on page 36) for the instance
(C ′

1, . . . ,C ′
d ,b′). Furthermore, let ∆1 =∆∩conv(e1,e2) denote the edge of the standard simplex
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∆d−1 that connects e1 with e2 and set Q∆1 = {
q ∈Q∆

∣∣q ⊆∆1
}
. Note that by Corollary 4.9,

the set Q∆1 is a 1-dimensional polytopal complex that decomposes ∆1. We begin with the
following basic lemma on Q∆1 .

Lemma 8.2. Let e,e ′ ∈Q∆1 , e 6= e ′, be two adjacent edges with e =Φ∆( f )∩g and e ′ =Φ∆( f ′)∩g ′,
where f , f ′ ∈ F and g , g ′ ∈ S . Then, f and f ′ are vertices of PCC with supp

(
f
)
, supp

(
f ′) ⊆

ind
(
C ′

1 ∪C ′
2

)
and supp

(
f
)
, supp

(
f ′) differ in at most one column index.

Proof. By Corollary 4.8, the faces f , f ′ are vertices of PCC. Furthermore, since M(e),M(e ′) ⊂
span(e1,e2), Lemma 4.12 implies that supp

(
f
)
, supp

(
f ′)⊆ ind

(
C ′

1 ∪C ′
2

)
. Now, since e and e ′

are adjacent, they share a vertex v =Φ∆( fv )∩ gv ∈Q∆1 , where fv ∈F and gv ∈ S . Then, by
Corollary 4.8, either f is a facet of fv and g = gv , or f = fv and gv is a facet of g . Similarly,
either f ′ is a facet of fv and g ′ = gv , or f ′ = fv and gv is a facet of g ′. Then, Observation 4.11
implies the statement. �

Using Lemma 8.2, we now present a polynomial-time checkable criterion whether an interval
[µ1,µ2] ⊂ ∆1 intersects an edge e? = Φ∆( f ?)∩ g? ∈Q∆1 , where f ∈ F and g ∈ S , such that
supp

(
f ?

)
defines a (k,d −k)-colorful choice that ray-embraces b′.

Corollary 8.3. Let k ∈ [d −1], be a number and let e,e ′ ∈Q∆1 be two edges with e =Φ∆( f )∩ g
and e ′ =Φ∆( f ′)∩ g ′, where f , f ′ ∈F and g , g ′ ∈ S . If |ind(C1)∩ supp

(
f
)| < k and |ind(C1)∩

supp
(

f ′)| > k, then there exists an edge e? = Φ∆( f ?)∩ g? ⊂ conv(e,e ′), e? ∈Q∆1 , such that
supp

(
f ?

)
defines a (k,d −k)-colorful choice of C1 and C2 that ray-embraces b′, where f ? ∈F

and g? ∈S .

Proof. By Lemma 8.2, the supports of the faces in F that corresponds to two adjacent edges in
Q∆1 differ in at most one column. Since |ind(C1)∩supp

(
f
)| < k, |ind(C1)∩supp

(
f ′)| > k, and

since Q∆1 is a polytopal complex, there must be an edge e? =Φ∆( f ?)∩g? ∈Q∆1 between e and
e ′ such that |ind(C1)∩supp

(
f ?

)| = k. By Corollary 4.8, f ? is a vertex and hence |supp
(

f ?
)| = d .

In particular, then |ind(C2)∩ supp
(

f ?
)| = d −k. �

The algorithm to find this (k,d −k)-colorful choice is now a straightforward application
of binary search. Initially we set µ1 = e1 and µ2 = e2 and we maintain the invariant that
the interval [µ1,µ2] contains an edge e? =Φ∆( f ?)∩ g? ∈Q∆1 such that supp

(
f ?

)
defines a

(k,d −k)-colorful choice that ray-embraces b′. The single optimal feasible basis for e1 is C1

and similarly, the single optimal feasible basis for e2 is C2. Then, Corollary 8.3 implies the
invariant for the initial interval. We repeatedly proceed as follows: set µ′ = 1

2 (µ1 +µ2) and
solve the linear program LCC

M(µ′). Let supp
(

f ′) be the support of the maximum face f ′ ∈F that

is optimal for LCC
M(µ′). First assume that |supp

(
f ′)| = d , i.e., assume that f ′ is a vertex of PCC.

If |ind(C1)∩ supp
(

f ′)| = k, we have found the desired solution. If |ind(C1)∩ supp
(

f ′)| < k,
we set µ2 =µ′ and otherwise, if |ind(C1)∩ supp

(
f ′)| > k, we set µ1 =µ′. By Corollary 8.3, the

invariant is maintained. Now, assume that |supp
(

f ′)| = d +1, i.e., assume that f ′ is an edge
of PCC. Then, by Corollary 4.8, µ′ =Φ∆( f ′)∩ g is a vertex of Q∆1 and since µ′ ∈ relint∆1, it is
incident to two edges e1,e2 ∈Q∆1 with e1 =Φ∆( f1)∩g and e2 =Φ∆( f2)∩g , where f1 and f2 are
the two incident vertices to the edge f ′. We compute both supports supp

(
f1

)
and supp

(
f2

)
by

checking every d-subset of supp
(

f ′) whether it constitutes a basis. Then, we check whether
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one of the two supports is a (k,d −k)-colorful choice. If not, then by Lemma 8.2, either both
supports contain less than k columns from C1 or both contain more than k columns from C1.
In the first case, we set µ2 = µ′ and in the second case, we set µ1 = µ′. Again, Corollary 8.3
guarantees that the invariant is maintained.

Clearly, each update of the interval [µ1,µ2] needs weakly polynomial time since O (d) linear
programs are solved. Furthermore, the number of the steps needed before a solution is
found is logarithmic in the length of the shortest edge. The following lemma shows that
the minimum length of an edge in Q∆1 is at least exponentially small in the length of the
COLORFULCARATHÉODORY instance.

Lemma 8.4. Let L be the length of the binary encoding of the COLORFULCARATHÉODORY in-
stance (C ′

1, . . . ,C ′
d ,b′) and let e = [µ1,µ2] ∈Q∆1 be an edge. Then, − log‖µ2 −µ1‖ =Ω

(
polyL

)
.

Proof. We write e as Φ∆( f )∩ g and the two incident vertices as µ1 = Φ∆( f1)∩ g1 and µ2 =
Φ∆( f2)∩ g2, where

{
f , f1, f2

} ⊆F and
{

g , g1, g2
} ⊆ S . We denote with µ̂1 =M(µ1) and with

µ̂1 = M(µ1) the vertices in Q whose central projections onto ∆ resulted in µ1 and µ2, re-
spectively. Since e is an edge, µ̂1 6= µ̂2 and hence there is a j ∈ [d ] with

(
µ̂1

)
j 6=

(
µ̂2

)
j . By

Corollary 4.8, f is a vertex of PCC and supp
(

f
) ⊆ supp

(
fi

)
for i = 1,2. Let B denote the

columns in Asupp( f ). Then, we can express µ̂i , i = 1,2, as the unique solution to the linear

system LΦB , fi
extended by the constraints µ ∈M(gi ). Now, Lemma 2.3 guarantees that the

logarithm of
(
µ̂i

)
j , i ∈ [2], is a polynomial in the size of the linear system and hence in L. Since

(µ1) j 6= (µ2) j , we have =− log‖µ2 −µ1‖ =Ω
(
polyL

)
, as claimed. �

The described binary-search algorithm needs therefore only polynomial time in L to com-
pute a (k,d −k)-colorful choice C ′ for C ′

1 and C ′
2. Since L is polynomial in the length of the

of the original instance (C1, . . . ,Cd ,b), the running time is weakly polynomial in the length of
the original instance. Furthermore, we can obtain a (k,d −k)-colorful choice C for C1 and C2

by replacing the perturbed points in C ′ with the original points in C1 ∪C2. Lemma 3.5 then
guarantees that C ray-embraces b.

Theorem 8.5. Let b ∈Qd be a point and let C1,C2 ⊂Qd be two sets of size d that ray-embrace
b. Furthermore, let k ∈ [d −1] be a parameter. Then, there is an algorithm that computes a
(k,d −k)-colorful choice C that ray-embraces b in weakly polynomial time on a WORD-RAM.

For Sperner’s lemma, it is well-known that a fully-labeled simplex can be found by binary
search if there are only two colors. And this is essentially what the presented algorithm does:
reducing the problem to Sperner’s lemma and then applying binary search to find the right
simplex. Since the computational problem Sperner is PPAD-complete even for d = 2, a
polynomial-time generalization of this approach to three colors must use specific properties
of the colorful Carathéodory instance under the assumption that no PPAD-complete problem
can be solved in polynomial time.
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9 Exact Algorithms for
COLORFULCARATHÉODORY

In contrast to the past chapters, we now focus on the problem of computing an exact solution
for the convex version of COLORFULCARATHÉODORY. Let C1, . . . ,Cd+1 ⊂Qd be d +1 sets that
embrace the origin and assume all are of size at most d +1. The naive algorithm checks for
all O

(
d d+1

)
possible colorful choices whether they embrace the origin. This can be further

improved by using the following result by Bárány.

Theorem 9.1 ( [9, Theorem 2.3]). Let C1, . . . ,Cd ⊂Rd be d sets that all embrace the origin and
let c ∈Rd be a point. Then, there exist d points c 1 ∈C1, . . . ,c d ∈Cd such that the set {c ,c 1, . . . ,c d }
embraces the origin. �

In particular, Theorem 9.1 implies that every point c ∈ ⋃d+1
i=1 Ci participates in some 0-

embracing colorful choice and hence we can fix a point from one color class and check only
all O

(
d d

)
possibilities of extending it to a colorful choice.

We now consider two related settings that allow for further improvement. We begin with the
simple case in which each color class consists of only two points. Then basic linear algebra
suffices to compute a 0-embracing colorful choice in polynomial-time. In Section 9.2, we show
that many color classes help. Using an approach similar to the algorithm by Miller and Sheehy
for approximating Tverberg partitions [57], we present a quasi-polynomial time algorithm that
computes a 0-embracing colorful choice when given Θ

(
d 2 logd

)
color classes instead of only

d +1.

9.1. A Simple Special Case

In the following, we assume that |C1| = · · · = |Cd+1| = 2 and let c i ,1,c i ,2 denote the two points
in Ci for i ∈ [d +1]. Clearly, for all i ∈ [d +1], the point −c i ,1 must be contained in the positive
span of c i ,2. Furthermore, we assume without loss of generality that all points are different
from the origin, as otherwise computing a 0-embracing colorful choice is trivial. Then, the
set

{
c i ,1

∣∣ i ∈ [d +1]
}

is linearly dependent and hence there exist coefficients φ1, . . . ,φd+1 ∈R,
not all 0, such that 0 = ∑d+1

i=1 φi c i ,1. Now, since −c i ,1 ∈ pos
(
c i ,2

)
for all i ∈ [d + 1], the set

C = {
c i ,1

∣∣ i ∈ [d +1], φi ≥ 0
}∪{

c i ,2
∣∣ i ∈ [d +1], φi < 0

}
embraces the origin and it is a colorful

choice. Since the computation of the coefficients of the linear dependency can be carried out
in O

(
d 3

)
time with Gaussian elimination, finding C takes O

(
d 3

)
time in total. The following

theorem is now immediate.

Theorem 9.2. Let C1, . . . ,Cd+1 ⊂Rd be d +1 pairs of points that all embrace the origin. Then, a
0-embracing colorful choice can be computed in O

(
d 3

)
time.
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9. Exact Algorithms for COLORFULCARATHÉODORY

9.2. Many Colors

In the following, we assume that we are given Θ
(
d 2 logd

)
instead of only d +1 color classes

that all embrace the origin. The algorithm repeatedly combines k-colorful choices to one
0-embracing dk/2e-colorful choice until a 0-embracing 1-colorful choice is obtained. This
approach is similar to the Miller-Sheehy approximation algorithm for Tverberg partitions [57]
and leads to an algorithm with total running time dO(logd).

Lemma 9.3. Let C ′
1, . . . ,C ′

d+1 ⊂ Rd be 0-embracing k-colorful choices of size O (d) such that
each color appears in a unique k-colorful choice. Then, given the coefficients of the convex
combination of the origin for each set C ′

i , i ∈ [d +1], a 0-embracing dk/2e-colorful choice C ′ can
be computed in O

(
d 5

)
time.

Proof. First, we prune each k-colorful choice C ′
i , i ∈ [d+1], with Lemma 7.4 and then partition

it into two sets C ′
i ,1,C ′

i ,2 by distributing the points from each color equally among both sets.
Then, we apply the algorithm from Lemma 7.6 to obtain two representative points r i ,1,r i ,2 and
set Ri = {r i ,1,r i ,2}. Since the sets R1, . . . ,Rd+1 each embrace the origin and consist of only two
points, we can compute a 1-colorful choice R with respect to R1, . . . ,Rd+1 with the algorithm

from Theorem 9.2. Now, consider the set C ′ =
{

C ′
i , j

∣∣∣r i , j ∈ R
}

. Since R is 0-embracing, so is C ′.
Moreover, because a color j appears only in one of the k-colorful choices, say C ′

i , and since
each set of the partition C ′

i ,1,C ′
i ,2 contains at most dk/2e points with color j , the set C ′ is a

dk/2e-colorful choice.
Pruning each k-colorful choice with Lemma 7.4 and then computing the two representa-

tive points per partition takes O
(
d 5

)
time in total. This dominates the time needed for the

computation of R and thus, we can compute C ′ in O
(
d 5

)
time. �

Note that Lemma 9.3 actually implies a second algorithm to compute d(d +1)/2e-colorful
choices that embrace the origin: let C1, . . . ,Cd+1 ⊂Rd be 0-embracing color classes and assume
the sets have size d +1. Set C ′

i =Ci in Lemma 9.3 for i ∈ [d +1]. Then, C ′
i is trivially a (d +1)-

colorful choice and hence the set C ′ is a d(d +1)/2e-colorful choice.
Now, we apply Lemma 9.3 repeatedly until we obtain a 1-colorful choice as follows. Let

C1, . . . ,Cn ⊂ Qd be n = Θ
(
d 2 logd

)
color classes such that Ci is 0-embracing and has size

O (d) for i ∈ [n]. We create an array A of size m =Θ(
logd

)
that initially contains all n color

classes in A[0]. Set c0 = d +1 and for i ∈ [k], set ci = dci−1/2e. Throughout the algorithm, we
maintain the invariant that the i th cell contains only 0-embracing ci -colorful choices and
that each color appears in at most one set in all of A. Since c0 = d +1, the invariant holds in
the beginning. We repeatedly improve k-colorful choices with Lemma 9.3 as follows: let i
be the maximum index of a cell in A that contains at least d +1 sets C ′

1, . . . ,C ′
d+1 and remove

them from A[i ]. By our invariant, these sets are 0-embracing ci -colorful choices. Applying
Lemma 9.3, we can combine C ′

1, . . . ,C ′
d+1 to one ci+1-colorful choice C ′ that embraces the

origin. We prune it with Lemma 7.4 and check whether it is a 1-colorful choice. If so, we
have found a solution. Otherwise, we add it to A[i +1]. Furthermore, we check for colors
that appeared in the removed sets C ′

1, . . . ,C ′
d+1 but not in C ′ and add the corresponding color

classes back to A[0]. The invariant is maintained since these colors only appeared in the
removed sets. See Algorithm 9.1 for a detailed description of the algorithm.
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9.2. Many Colors

Algorithm 9.1: Exact algorithm for many color classes.

Input: color classes C1, . . . ,Cn ⊂Rd and for each set Ci , the coefficients of the convex
combination of 0, where n =Θ(

d 2 logd
)

1 A ← Array of size m =Θ(
logd

)
;

2 A[0] ← {C1, . . . ,Cn};
3 while no 0-embracing colorful choice was found do
4 i ← maximum index with |A[i ]| ≥ d +1;
5 Remove d +1 sets C ′

1, . . . ,C ′
d+1 from A[i ];

6 C ′ ← combine C ′
1, . . . ,C ′

d+1 with Lemma 9.3;

7 Prune C ′ with Lemma 7.4;
8 if C ′ is a colorful choice then
9 return C ′;

10 Add C ′ to A[i +1];

11 Add all color classes Ci with Ci ∩
(⋃d+1

i=1 C ′
i

) 6= ; and Ci ∩C ′ =; to A[0];

We conclude this chapter by proving correctness of Algorithm 9.1 and analyzing its running
time.

Theorem 9.4. Let C1, . . . ,Cn ⊂Rd be n =Θ(
d 2 logd

)
sets such that Ci embraces the origin and

|Ci | =O (d), where i ∈ [n]. Then, given the coefficients of the convex combination of the origin
for each set Ci , i ∈ [n], Algorithm 9.1 computes a 0-embracing colorful choice in dO(logd) time.

Proof. We have already argued that the i th cell of the array A contains only 0-embracing
ci -colorful choices. First, we observe that progress is always possible, i.e., that it is always
possible to find a cell of A that contains at least d +1 sets: the array has m =Θ(

logd
)

levels
and within each set in A, at most d colors appear. Thus, for d 2m +1 =Θ(

d 2 logd
)

colors, the
pigeonhole principle guarantees a cell with at least d +1 sets.

Set now m = dlog(d +1)e+1. We claim that a combination of d +1 sets in A[m] results in
a 0-embracing colorful choice. Now, since ci ≤ d+1

2i +2, the sets in A[m −1] are 0-embracing
3-colorful choices, the sets in A[m] are 2-colorful choices and the combination of d +1 sets in
A[m] gives a 1-colorful choice, as claimed.

To compute a set in level i , we have to compute d +1 sets in level i −1. Since one application
of Lemma 9.3 takes O

(
d 5

)
time, we need dO(i ) time in total to compute a set in level i and

hence the total running time of the algorithm is bounded by dO(logd). �
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10 Simplicial Depth

The simplicial depthσP (q) of a point q ∈Rd with respect to a point set P ⊂Rd is the number of
distinct d-simplices with vertices in P that embrace q . As presented in Chapter 1, the colorful
Carathéodory theorem implies the existence of a point with simplicial depthΘ

(
nd+1

)
if d is

fixed. In this chapter, we consider the problem of computing the simplicial depth of a given
point.

For two dimensions, there are several algorithms that compute the simplicial depth σP (q) in
O

(
n logn

)
time [33,41,68], where n is the size of P . Cheng and Ouyang presented an algorithm

for three dimensions that needs O
(
n2

)
time and generalized it to four dimensions at the cost

of an increased running time of O
(
n4

)
[22]. For higher but fixed dimensions, there is no

published improvement on the naive Θ
(
nd+1

)
algorithm that tests all possible d-simplices.

We show in Section 10.3 how the running time of the naive algorithm can be improved to
O

(
nd logn

)
time by using a simplex range searching data structure. Recently, although yet

unpublished, this was further improved by Pilz et al. [62] who, based on a novel dimension
reduction argument, presented an algorithm that computes the simplicial depth in O

(
nd

)

time.
In Section 10.2, we present two algorithms that each compute a (1+ε)-approximation of

the simplicial depth, however with different worst-case scenarios. A combination of these
strategies gives an algorithm that returns a (1+ ε)-approximation of the simplicial depth
with high probability in Õ

(
nd/2+1

)
time. Finally, we show in Section 10.4 that computing

the simplicial depth becomes #P-complete and W[1]-hard with respect to the parameter
d if the dimension is part of the input. This directly implies W[1]-hardness of computing
the colorful simplicial depth: here, we are given m color classes C1, . . . ,Cm ⊂Rd and a point
q ∈Rd and we want to count the number σcol

C1,...,Cm
(q) of (d +1)-sets that contain at most one

point from each color and that embrace q . By assigning each point in P its own color, we can
trivially reduce the problem of computing the simplicial depth to the problem of computing
the colorful simplicial depth. For the colorful simplicial depth, #P-completeness is already
known [11, Theorem 5.4]. We begin with a discussion on the Gale transform, a notion of duality
which we will use extensively in the remainder of this chapter, and the complexity classes #P
and W[1].

10.1. Preliminaries

10.1.1. The Gale Transform

The Gale transform (see e.g. [48, Section 5.6]) maps a sequence of n points P in Rd to a
sequence GT(P ) of n points in Rn−d−1 such that there is a bijection between the facets of
the polytope conv(P ) and the 0-embracing simplices with vertices in GT(P ). We assume that
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10. Simplicial Depth

conv(P ) is simplicial and that dimP = d . Then, the construction of the Gale transform for
P = {

p1, . . . , pn

}⊂Rd is defined as follows.

A =




P

1 . . . 1


=


 p̂1 p̂2 . . . p̂n


=




r 1

r 2
...

r d+1



∈R(d+1)×n

G =


 g 1 g 2 . . . g n−d−1


=




p1

p2
...

pn



∈Rn×(n−d−1)

Figure 10.1.: Overview of the notation for the Gale transform.

1. We lift P to a sequence P̂ ⊂Rd+1 by appending a 1-coordinate to each point:

P̂ =
{

p̂ i =
(

p i
1

)∣∣∣∣p i ∈ P

}
⊂Rd+1.

2. Let A = (
p̂1 . . . p̂n

) ∈ R(d+1)×n denote the matrix whose i th column vector is p̂ i and let
r i ∈Rn denote the i th row vector of A. Then, we take a basis g 1, . . . , g n−d−1 ∈Rn of the
orthogonal complement of span(r 1, . . . ,r d+1). Please see Figure 10.1 for an overview of
the notation.

3. Let G = (
g 1 . . . g n−d−1

) ∈Rn×(n−d−1) denote the matrix with g i as i th column vector and
let p i ∈Rn−d−1 denote the i th row vector of G . Then, we set GT(P ) = {

p1, . . . , pn

}
.

Lemma 10.1 (Gale transform). Let P = {
p1, . . . , pn

} ⊂ Rd be a sequence of points such that
conv(P ) is simplicial and dimP = d. Furthermore, let GT(P ) = {

p1, . . . , pn

}
denote the Gale

transform of P. Then, a set P ′ ⊆ P, |P ′| = d, defines a facet of conv(P ) if and only if the simplex

conv
{

p i ∈ GT(P )
∣∣p i ∈ P \ P ′}⊂Rn−d−1

embraces the origin.

Proof. Let P ′ be a d-subset of P that defines a facet of conv(P ) and let pk1
, . . . , pkd

denote the
points in P ′, where k1, . . . ,kd ∈ [n]. Furthermore, let

P̂ ′ =
{

p̂ki
=

(
pki

1

)∣∣∣∣ i ∈ [d ]

}
⊂Rd+1

denote the points from P ′ lifted to Rd+1 by appending a 1-coordinate. Then, all points of P
are on one side of the hyperplane h = affP ′ and hence all points from P̂ are one side of the
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10.1. Preliminaries

hyperplane ĥ = span P̂ ′. Let v̂ ∈ Rd+1, v̂ 6= 0, be the normal vector to ĥ and assume without
loss of generality that

v̂ T p̂ i ≥ 0 for i ∈ [n], (10.1)

and that v̂ T p̂ i = 0 for p i ∈ P ′. Consider now the coordinates of v̂ as coefficients of a linear
combination of the row vectors r 1, . . . ,r d+1 and let r ∈Rn denote its result, i.e., set

r =
d+1∑

i=1
(v̂ )i r i =

(
v̂ T p̂1 . . . v̂ T p̂1

)T ∈Rn .

Because of (10.1), all coordinates of r are nonnegative and (r )i = 0 for i ∈ {k1, . . . ,kd }. Further-
more, since g 1, . . . , g n−d−1 is a basis of the orthogonal complement of span{r 1, . . . ,r d+1}, we
have

0 = r T g i =
(

n∑

j=1
(r ) j

(
p j

)
i

)
for i ∈ [n −d −1].

Thus, thinking of the coordinates of r as the coefficients of a positive combination of the
points in GT(P ), we obtain

n∑

i=1
(r )i p i = 0,

and hence GT(P ) embraces the origin. Moreover, since (r )i = 0 for i ∈ {k1, . . . ,kd }, the simplex
conv

{
p i ∈ GT(P )

∣∣p i ∉ P ′} embraces the origin. Since the above arguments are equivalences,
the statement follows. �

Since the computation of GT(P ) involves only finding a basis for the orthogonal complement
of a linear subspace, it can be carried out in O

(
d 2n

)
time [7, Lemma 1]. Furthermore, if the

origin is the barycenter of P then there always exists a sequence of points GT−1(P ) ⊂Rn−d−1

whose Gale transform results in P . We can think of these points as inverse Gale transform of P .

Lemma 10.2 (Inverse Gale transform). Let P ⊂Rd be a point sequence of size n such that the
origin is the barycenter of P and dimP = d. Then, there exists a point sequence GT−1(P ) ⊂
Rn−d−1 such that P = GT

(
GT−1(P )

)
.

Proof. We can easily construct a point sequence GT−1(P ) ⊂ Rn−d−1 whose Gale transform
results in P by inverting the steps of the Gale transform as follows. Let p1, . . . , pn denote the
points in P and let

G =




pT
1
...

pT
n


 ∈Rn×d

be the matrix with the points from P as row vectors. Let g i ∈Rn , i ∈ [d ], denote the i th column
vector of G . Since the origin is the barycenter of P , we have

1T g i =
n∑

j=1

(
p j

)
i
= 0 for i ∈ [n],
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10. Simplicial Depth

and hence the vector 1T ∈Rn is orthogonal to g 1, . . . , g d . We set r n−d = 1T ∈Rn and complete
it to a basis r 1, . . . ,r n−d of the orthogonal complement of span

{
g 1, . . . , g d

}
. Now, let

A =




r T
1
...

r T
n−d


 ∈R(n−d)×n

denote the matrix with r 1, . . . ,r n−d as row vectors. Let p̂ i =
(
p i 1

)T ∈ Rn−d , i ∈ [n], denote
the i th column vector of A and set GT−1(P ) = {

p i

∣∣ i ∈ [n]
}

. Then, P = GT
(
GT−1(P )

)
, as claimed.

�

10.1.2. The Complexity Class #P

Let L ⊆ {0,1}? be a language. Then, L is in NP if and only if there exists a polynomial p
and a polynomial-time Turing machine M , the verifier, such that for all words w ∈L there
exists a word c ∈ {0,1}p(|w |) such that M returns on input (w,c) YES. We call c a certificate
for w . Furthermore, for all words w ∉L and for all words c ∈ {0,1}p(|w |), the Turing machine
M returns on input (w,c) NO. Deciding whether a word w ∈ {0,1}? is in L is equivalent to
deciding whether there is at least one certificate for w . Now, the complexity class #P [79]
captures the complexity of counting how many certificates there are for w . More formally, the
complexity class #P contains functions f : {0,1}? 7→N0 for which there exists a polynomial p f

and a polynomial-time Turing machine M f such that for all words w ∈ {0,1}?, we have

f (w) =
∣∣{c

∣∣c ∈ {0,1}p f (|w |) , M f returns on input (w,c) YES
}∣∣ .

To define #P-completeness, we briefly introduce oracle Turing machines based on [6,
Section 3.4]. We say a Turing machine M f has oracle access to a function f : {0,1}? 7→N0 if M f

has an additional tape and additional states fquery, f0, and f1 such that the following holds.
When M f writes (w, (i )2) on the additional tape and afterwards moves into the state fquery,
M f moves into the state f1 if the i th bit of ( f (w))2 is 1 and otherwise into f0, where w ∈ {0,1}?,
i ∈N, and (i )2 and ( f (w))2 denote the respective numbers base 2.

Now, we say a function f : {0,1}? 7→N0 is #P-hard if for all g ∈#P, there is a polynomial-

time Turing machine M f
g that has oracle access to f and computes g . We say f is #P-complete

if f ∈#P and f is #P-hard. For more information on the complexity class #P, please refer
to [6, Section 17.2].

10.1.3. The Complexity Classes FPT and W[1]

Usually, the running time of algorithms is analyzed as a function of the input length. In
the context of parameterized complexity, we analyze the running time of an algorithm as a
function of the input length and one or more additional parameters. The complexity class
fixed-parameter tractable problems (FPT) captures problems for which there is an algorithm
whose running time is a polynomial in the input length and a function in an additional
parameter. Such problems are efficiently solvable if the additional parameter is not “too large”.
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More formally, we call a relation R⊆ I×N, where I ⊆ {0,1}? is the set of problem instances,
a parameterized problem. Then, the class FPT consists of parameterized problems R for
which there exists a computable function f :N 7→N, a polynomial p, and a Turing machine
MR such that MR decides whether a pair (I ,k) ∈ {0,1}?×N is in R in O

(
f (k)p(|I |)) time.

We say a parameterized problem R is FPT-reducible to a parameterized problem R′ if
there are computable functions f , f ′ :N 7→N, a polynomial p, and a functionΦ : {0,1}?×N 7→
{0,1}?×N such that

a pair (I ,k) ∈ {0,1}?×N is in R if and only ifΦ(I ,k) ∈R′.

Let (I ,k) ∈ {0,1}?×N be a pair and writeΦ(I ,k) = (I ′,k ′). Then, we have k ′ ≤ f ′(k).

for all pairs (I ,k) ∈ {0,1}?×N,Φ(I ,k) can be computed in O
(

f (k)p(|I |)) time.

There are parameterized problems that are not believed to be in FPT. One such problem is
CLIQUE:

GIVEN a graph G and a parameter k ∈N,

DECIDE whether there is a clique in G of size at least k.

We define W[1] to be the complexity class that consists of all parameterized problems that are
FPT-reducible to CLIQUE. We say a parameterized problem R is W[1]-complete if R ∈W[1]
and all parameterized problems in W[1] are FPT-reducible to R. Furthermore, we say a
function g :N 7→N is W[1]-hard if there is a W[1]-complete parameterized problem R such
that there exists a polynomial p, a computable function f : N 7→ N, and an oracle Turing
machine M g with oracle access to g that decides whether a pair (I ,k) ∈ {0,1}?×N is in R in
O

(
f (k)p(|I |)) time.

Please refer to [25, Section 13.3] and [31, Chapter 10] for a thorough discussion of W[1] and
the W[t]-hierarchy, as well as for the alternative definition of W[1] using circuit families.

10.2. Approximation in High Dimensions

Let P ⊂Rd be a set and q ∈Rd a query point. For the remainder of this section, we consider d
to be constant. We distinguish to cases: ifσP (q) is “small”, then we enumerate all q-embracing
(d +1)-subsets of P . Otherwise, if σP (q) is “large”, we approximate the simplicial depth by
random sampling. We begin with the first case.

In the following, we assume without loss of generality that dimP = d , the point q is embraced
by P (since otherwise the simplicial depth is 0), and by rescaling the points in P , we can assume
that q is the barycenter. Furthermore, we assume that there is no q-embracing d-subset of
P . Note that this assumption is NP-complete to verify [43, Theorem 5]. However, we can
perturb the point q with the techniques from Chapter 3 in polynomial time such that for
all (d +1)-subsets S ⊂ P with q ∈ intconv(S), the perturbed point q≈ is also embraced by S.
However, if q is contained in a facet of the convex hull of some (d +1)-subset S′, then q≈ is not
necessarily embraced by S′. Thus, the simplicial depth may change by perturbing q and it is
not clear how to bound this difference.
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Now, let
∆P (q) = {

S ⊆ P
∣∣ |S| = d +1, S embraces q

}

denote the set of all q-embracing (d + 1)-subsets of P . Consider the graph GP (q) = (V =
∆P (q),E) that has one node per q-embracing (d +1)-subset and there is an edge {S,S′} ∈ E
between two vertices S,S′ ∈V if and only if S can be obtained from S′ by swapping one point
with a different point in P , i.e., if the symmetric difference of S and S′ has size 2. Before we
show that this graph is connected, we need the following simple observation.

Observation 10.3. Let P ⊂Rd be a point set and let q ∈Rd be a point such that no d-subset of
P embraces q . Then, for every q-embracing (d +1)-subset S ⊆ P and for every point p ∈ P, there
exists a unique point p ′ ∈ S such that the set S′ = (

S \
{

p ′})∪{
p

}
embraces q .

Proof. Consider the ray~r that originates at q and goes in direction q −p . Since no d-subset
of P embraces q and since S embraces q , the ray~r intersects a facet of conv(S) in its interior.
Then, the single point p ′ ∈ S that does not define this facet is the unique point from S such
that the set

(
S \

{
p ′})∪{

p
}

is q-embracing. �

In the following, we say a graph G = (V ,E) is k-connected if the removal of any k −1 vertices
does not separate G . Using Gale transform, we can show that GP (q) is isomorphic to the
1-skeleton of an (n −d −1)-dimensional polytope. Since Balinski’s theorem [8] states that the
1-skeleton of every (n −d −1)-dimensional polytope is (n −d −1)-connected, the graph GP (q)
is (n −d −1)-connected.

Lemma 10.4. Let q ∈ Rd be a point and let P ⊂ Rd be a point set of size n such that q is the
barycenter of P and such that dimP = d. Then, GP (q) is (n −d −1)-connected and (n −d −1)-
regular.

Proof. We can assume without loss of generality that q = 0. Write P = {
p1, . . . , pn

}⊂Rd . Since
the origin is the barycenter of P , by Lemma 10.2 there exists a set GT−1(P ) = {

p−1
1 , . . . , p−1

n

}⊂
Rn−d−1 such that P = GT

(
GT−1(P )

)
. Let now S,S′ be two adjacent nodes in GP (q) and consider

the two subsets S = {
p−1

i

∣∣p i ∈ P \ S
}

and S
′ = {

p−1
i

∣∣p i ∈ P \ S′}. By Lemma 10.1, the sets S and

S
′

define two facets f1 and f2 of conv
(
GT−1(P )

)
, respectively. Since S and S′ are adjacent, we

have |S ∩S′| = d and hence |S ∩S
′| = n −d −2. Thus, f1 and f2 share a ridge. Hence, GP (q) is

isomorphic to the 1-skeleton of the polytope dual to conv
(
GT−1(P )

)
. Balinski’s theorem [8]

then implies that GP (q) is (n −d −1)-connected. Moreover, Observation 10.3 directly implies
that GP (q) is (n −d −1)-regular. �

Since GP (q) is connected, the number of vertices in GP (q) can be counted by exploring the
graph with breadth-first search. The following result is now immediate.

Lemma 10.5. Let P ⊂Rd be a point set and let q ∈Rd be a point. Then, σP (q) can be computed
in O

(
nσP (q)

)
time.

If the simplicial depth is large, the enumeration approach becomes infeasible. In this case,
we apply a simple random sampling algorithm.
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Lemma 10.6. Let P ⊂ Rd be a set and let q ∈ Rd be a point. Furthermore, let ε,δ > 0 be
constants and let m ∈N be a parameter. If σP (q) ≥ m, then σP (q) can be (1+ε)-approximated
in Õ

(
nd+1/m

)
time with error probability O

(
n−δ).

Proof. Let S1, . . . ,Sk be k random (d +1)-subsets of P for

k =
⌈(

n

d +1

)
4δ logn

ε2m

⌉
.

For each random subset Si , let Xi be 1 if Si embraces q and 0 otherwise. Then, we have

µ= E
[

k∑

i=1
Xi

]
= k

σP (q)( n
d+1

) ≥ 4δσP (q)

ε2m
logn ≥ 4δ

ε2 logn.

Applying the Chernoff bound [6, Corollorary A.15], we get

Pr

[∣∣∣∣∣
k∑

i=1
Xi −µ

∣∣∣∣∣≥ εµ
]
≤ 2exp

(
−ε

2

4
µ

)
≤ 2n−δ.

Thus,
( n

d+1

)
k−1 ∑k

i=1 Xi is a (1+ε)-approximation of σP (q) with error probability O
(
n−δ).

For d = O (1), we can test in O (1) whether a given (d + 1)-subset of P embraces a point.
Hence, the running time is dominated by the number of samples. �

Now, combining both algorithms from Lemma 10.5 and from Lemma 10.6 enables us to
approximate the simplicial depth in Õ

(
nd/2+1

)
time.

Theorem 10.7. Let P ⊂ Rd and let q ∈ Rd be a point. Furthermore, let ε > 0 and δ > 0 be
constants. Then, σP (q) can be (1+ε)-approximated in Õ

(
nd/2+1

)
time with error probability

O
(
n−δ).

Proof. We apply the algorithm from Lemma 10.5 and stop it once m = ⌈
nd/2

⌉
nodes of GP (q)

are explored. This requires O
(
nd/2+1

)
time. If the graph is fully explored, we know the value

of σP (q) and return it. Otherwise, the simplicial depth σP (q) is at least m. We can now apply
the algorithm from Lemma 10.6 and compute a (1+ε)-approximation in Õ

(
nd/2+1

)
time with

error probability O
(
n−δ). �

10.3. Improving the Brute-Force Approach

We now consider the problem of computing the simplicial depth exactly. Again, we assume
that the dimension is constant. The algorithm improves on the naiveΩ

(
nd+1

)
algorithm that

tests every (d +1)-subset of the input point set by using the following simplex range searching
data structure from Chazelle et al. [18].

Theorem 10.8 ( [18, Theorem 2.1]). Let P ⊂Rd be a set of n points and let ε> 0 be an arbitrary
constant. Then there exists a data structure that, given a query simplex σ⊆Rd , supports two
type of queries: (i) it counts the number of points s in P ∩σ in O

(
logn

)
time, and (ii) it reports
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10. Simplicial Depth

the points in P ∩σ in O
(
logn + s

)
time. Furthermore, this data structure can be constructed

with O
(
nd+ε) preprocessing time and space. �

Let now P ⊂ Rd be a point set and q ∈ Rd for which we want to compute the simplicial
depth. Let h denote the hyperplane

{
x ∈Rd

∣∣ (x)d = 1
}

and let h′ denote the parallel hyperplane{
x ∈Rd

∣∣ (x)d =−1
}
. Without loss of generality, we may assume that q = 0 and that each ray

pos(p), p ∈ P , intersects one of the two hyperplanes. Now, we enumerate all possible d-subsets
P ′ = {

p ′
1, . . . , p ′

d

}
of P and for each such set, we count the number of points in P that extend P ′

to a 0-embracing (d +1)-subset of P as follows. First, we observe that all such points p ′ ∈ P
must be contained in the cone pos

{−p ′
1, . . . ,−p ′

d

}
and in particular, we must have either

(
h ∩pos

(
p ′))⊂σh = h ∩pos

{−p ′
1, . . . ,−p ′

d

}
,

or (
h′∩pos

(
p ′))⊂σh′ = h′∩pos

{−p ′
1, . . . ,−p ′

d

}
.

Let Ph = {
h ∩pos

(
p

)∣∣p ∈ P
}

denote the intersections of the rays through the points in P with
h and similarly, let Ph′ = {

h′∩pos
(
p

)∣∣p ∈ P
}

denote the intersections with h′. We construct
one data structure Dh from Theorem 10.8 for Ph and one data structure Dh′ for Ph′ . Now, we
can count the number of points in σh ∩Ph and the number of points in σh′ ∩Ph′ with the
data structures Dh and Dh′ , respectively. Please refer to Figure 10.2 (a) and (b) for an example.
Using this approach, we count each 0-embracing (d +1)-subset d +1 times, one time for each
d-subset. Hence, the total sum divided by d+1 is the simplicial depth of the origin with respect
to P . See Algorithm 10.1 for details.

0

h

h′

Ph

Ph′

(a)

0

h

h′

Ph

Ph′

h ∩pos
(
p1

)

σh

σh′h′∩pos
(
p2

)

(b)

Figure 10.2.: (a) The projection of the points from P onto the two hyperplanes h and h′. (b) To
count the number of points that extend {p1, p2} to a 0-embracing 3-set, the two
data structures are queried with the simplices σh and σh′ .

It remains to analyze the running time of Algorithm 10.1. Since we construct the two data
structures for a (d −1)-dimensional subspace, this step requires O

(
nd−1+ε) time, where ε> 0

is an arbitrarily small constant. We query the two data structures for each of theΘ
(
nd

)
choices

for d-subsets of P and each query needs O
(
logn

)
time. Hence, the total running time is

O
(
nd−1+ε+nd logn

)=O
(
nd logn

)
time for ε≤ 1. The following theorem is now immediate.

Theorem 10.9. Let P ⊂ Rd be a set of size n and let q ∈ Rd be a point. Then, Algorithm 10.1
computes the simplicial depth σP (q) of q with respect to P in O

(
nd logn

)
time.
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Algorithm 10.1: Improved brute-force algorithm to compute the simplicial depth

Input: point set P ⊂Rd

1 h ← {
x ∈Rd

∣∣ (x)d = 1
}
; h′ ← {

x ∈Rd
∣∣ (x)d =−1

}
;

2 Dh ← data structure from Theorem 10.8 for the set Ph = {
h ∩pos

(
p

)∣∣p ∈ P
}
;

3 Dh′ ← data structure from Theorem 10.8 for the set Ph′ = {
h′∩pos

(
p

)∣∣p ∈ P
}
;

4 s ← 0;
5 foreach d-subset P ′ = {

p ′
1, . . . , p ′

d

}
of P do

6 σh = h ∩pos
{−p ′

1, . . . ,−p ′
d

}
; σh′ = h′∩pos

{−p ′
1, . . . ,−p ′

d }
}
;

7 Count the number of points nh = |Ph ∩σh | with Dh ;
8 Count the number of points nh′ = |Ph′ ∩σh′ | with Dh′ ;
9 s ← s +nh +nh′ ;

10 return s/(d +1);

10.4. Complexity

If the dimension is constant, even the naive algorithm that checks all possible simplices needs
only polynomial time. We now consider the case that d is part of the input and we show
that then computing the simplicial depth is #P-complete by a reduction from counting the
number of perfect matchings in bipartite graphs. Furthermore, by a different reduction, we
show that computing the simplicial depth is W[1]-hard with respect to the dimension as
parameter.

Theorem 10.10. Let P ⊂Qd be a set and q ∈Qd a point. Then, computingσP (q) is #P-complete
if the dimension is part of the input.

Proof. For a set of points P ′ ⊂Qd , let P̃ ′ ∈ {0,1}? denote some fixed encoding as a binary string.
Similarly, we denote for a point p ∈ Qd with p̃ ∈ {0,1}? an encoding of p as a binary string.
Now, let P ⊂Qd be a set and q ∈Qd be a point, and let fσ : {0,1}? 7→N be the function that
maps the pair (P̃ , q̃) to σP (q). If the argument of fσ does not encode a pair (P, q), the value of
fσ is defined as 0. It is easy to see that fσ ∈#P. Let M be the Turing machine that on input
(P̃ , q̃ , P̃ ′) checks whether q̃ encodes a point q ∈Qd and whether P̃ and P̃ ′ encode two sets P
and P ′ ⊂Qd , respectively. Furthermore, M checks whether P ′ is a (d +1)-subset of P . If one
of the checks fails, M returns NO. Otherwise, M solves a linear program to decide whether
q ∈ conv(P ′) and it returns YES if and only if q ∈ conv(P ′) and otherwise NO. Then, fσ(P̃ , q̃) is
the number of binary strings P̃ ′ ∈ {0,1}? such that M returns on input (P̃ , q̃ , P̃ ′) YES, and M
can be defined such that it returns YES or NO in polynomial time.

Let G = (V ,E ) be a bipartite graph with |V | = n and |E | = m. It is well known that computing
the number of perfect matchings in G is #P-complete [79, Theorem 1]. Let PH ⊂Rm be the
perfect matching polytope for G [34, Chapter 30]. The polytope PH is an H-polytope that is
defined by m+2n half-spaces and its number of vertices of PH equals the number k of perfect
matchings in G . Consider the dual V-polytope PV ⊂Rm . Now, PV is the convex hull of m +2n
points P ⊂Qm and the number of facets of PV is k. Let GT(P ) ⊂R2n−1 be the Gale transform of
P . By Lemma 10.1, there is a bijection between the facets of PV and the (2n−1)-simplices with
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vertices in GT(P ) that embrace the origin. Hence, the simplicial depth σGT(P )(0) of the origin
with respect to GT(P ) equals the number k of perfect matchings in G . Since all steps can be
carried out in polynomial time and since the number of perfect matchings equals σGT(P )(0),
i.e. the reduction is parsimonious, the function fσ is #P-complete. �

By a reduction to d-Carathéodory, we further show that computing the simplicial depth
is W[1]-hard with respect to the parameter d . In d-Carathéodory, we are given a set P ⊂Qd

and we want to decide whether there is a (d −1)-simplex with vertices in P that embraces the
origin. Knauer et al. [43, Theorem 5] proved that this problem is W[1]-hard with respect to the
parameter d .

Theorem 10.11. Let P ⊂Qd be a set and q ∈Qd be a point. Then, computingσP (q) is W[1]-hard
with respect to the parameter d.

Proof. Without loss of generality let q be the origin. Assume we have access to an oracle that,
given a query point q ′ ∈Qd and a set Q ⊂Qd , returns the simplicial depth σQ (q ′) of q ′ with
respect to Q. We show that then d-Carathéodory can be decided by only two oracle queries.

For k ∈N, let ∆k denote the family of sets

∆k = {S ⊆ P |S embraces 0, |S| = k −1}

and let δk denote its size. Then, σP (0) = δd and we want to decide whether δd−1 > 0. Now, for
each point p ∈ P , we denote with

p̂ =
(

p
1

)
∈Qd+1

the (d +1)-dimensional point that we obtain by appending a 1-coordinate and we set P̂ ={
p̂

∣∣p ∈ P
}

. Set Q ′ = {(0, . . . ,0,−1)T , (0, . . . ,0,−2)T } ⊂Qd+1 and set Q = P̂ ∪Q ′. The configuration
is depicted in Figure 10.3 (a). We can relate σQ (0) with σP (0) as follows. First, we observe
that each 0-embracing (d + 2)-subset of Q corresponds to a 0-embracing subset of P : let
Ŝ = ŜP ∪ ŜQ ′ ⊂ Q be a 0-embracing set of size |Ŝ| = d + 2, where ŜP ⊆ P̂ and ŜQ ′ ⊆ Q ′. By
construction of Q, ŜP must embrace p0 = (0, . . . ,0,1)T and hence the set

{
p

∣∣ p̂ ∈ ŜP
} ⊆ P is

0-embracing. Now, each p0-embracing set ŜP ⊂ P̂ of size d +1 can be extended in two ways to
a 0-embracing (d+2)-set of Q by taking either point from Q ′. Furthermore, each p0-embracing
set ŜP ⊂ P̂ of size d can be extended in at least one way to a 0-embracing (d +2)-set of Q by
taking both points from Q ′. Hence, we obtain

σQ (0)

{
= 2δd if δd−1 = 0, and

> 2δd otherwise.

Thus, δd−1 > 0 if and only if σQ (0) − 2σP (0) > 0. Since the construction of Q takes only
polynomial time, the problem of computing the simplicial depth is W[1]-hard with respect to
the parameter d . �

As discussed at the beginning of this chapter, Theorem 10.11 implies the following corollary.
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0

p0

P̂

Q ′

(a)

0

p0

P̂

R ′

(b)

Figure 10.3.: (a) The point set Q consists of the lifted points P̂ and the two additional points
from Q ′ that each can extend a p0-embracing (d+1)-subset of P̂ to a 0-embracing
(d +2)-subset of Q. (b) The point set R consists of the lifted points P̂ and the two
additional points from R ′. Only one point from R ′ can extend a p0-embracing
(d +1)-subset of P̂ to a 0-embracing (d +2)-subset of R.
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Corollary 10.12. Let C1, . . . ,Cm ⊂ Qd be m color classes and let q ∈ Qd be a point. Then,
computing the colorful simplicial depth σcol

C1,...,Cm
(q) of q with respect to C1, . . . ,Cm is W[1]-hard

with respect to the parameter d.

We conclude this chapter by showing that although computing the simplicial depth is
#P-complete, it is possible to determine the parity in polynomial time.

Theorem 10.13. Let P ⊂Rd be a set of n points and let q ∈Rd be a point such that there is no
q-embracing d-subset of P. Then σP (q) is even if and only if n −d −1 is odd or

(n
d

)
is even.

Equivalently, σP (q) is even if and only if n −d −1 is odd or there exists an i ∈N such that the
i th bit of (n −d)2 and (d)2 is 1, where (n −d)2 and (d)2 denote the numbers n and d written in
binary, respectively.

Proof. We assume without loss of generality that q is the origin. Since there is no d-set
P ′ ⊆ P that embraces q , Lemma 10.4 states that the graph GP (0) is (n −d −1)-regular. Then,
the product (n −d − 1)|V | = (n −d − 1)σP (0) is even. If (n −d − 1) is odd, σP (q) must be
even. Assume now (n −d −1) is even. We construct a new point set R in Rd+1 similar as in
the proof of Theorem 10.11: let R ′ denote the set {(0, . . . ,0,−1)T , (0, . . . ,0,2)T } ⊂ Rd+1 and set
R = P̂ ∪R ′ ⊂ Rd+1, where P̂ is defined as in the proof of Theorem 10.11. See Figure 10.3 (b).
Let us now consider the graph GR (0). Since n −d −1 is even, (|R|− (d +1)−1) = n −d is odd.
Because there is no d-subset of P that embraces the origin, there is no (d +1)-subset of R that
embraces the origin. Then, Lemma 10.4 implies that GR (0) is (n −d)-regular and thus σR (0)
is even. Let Ŝ ⊂ R, |R| = d +2, be a subset that contains the origin in its convex hull. Then
either (i) R ′ ⊂ Ŝ or (ii) Ŝ contains the point r = (0, . . . ,0,−1)T ∈ R ′ and d +1 points ŜP ⊆ P̂ with
(0, . . . ,0,1)T ∈ conv(ŜP ). There are

(n
d

)
sets Ŝ with Property (i) and σP (0) sets Ŝ with Property

(ii). Hence, we have σR (0) =σP (0)+ (n
d

)
is even and thus σP (0) is odd if and only if

(n
d

)
is odd.

Finally, we can use Kummer’s theorem [35, 45] to obtain a precise criterion when
(n

d

)
is even.

Let p ∈N be a prime. Then, Kummer’s theorem states that the maximum power k ∈N such
that pk divides

(n
d

)
is the number of carries when we add (n−d)p and (d)p , where (n−d)p and

(d)p denote the numbers n −d and d written in base p, respectively. In particular, p divides(n
d

)
if there is at least one carry. Thus, for p = 2, the binomial coefficient is divisible by 2 and

hence even if and only if there is an index i ∈N such that the i th bit of the binary numbers
(n −d)2 and (d)2 is 1. �
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We have seen new upper bounds on the complexity of COLORFULCARATHÉODORY and its
descendants, CENTERPOINT, TVERBERG, SIMPLICIALCENTER, and COLORFULKIRCHBERGER

that put all five problems on the edge of the three complexity classes FP, PPAD, and PLS. Now,
showing that one of the above problems is PPAD- or PLS-complete would imply PPAD⊆PLS
or PLS⊆PPAD, and a polynomial-time algorithm would be interesting for its own merit. We
believe that these results are only a first step towards settling the complexity of COLORFUL-
CARATHÉODORY and its descendants and that pursuing this question will help us to improve
our understanding of the relationship between FP, PPAD, and PLS. We conclude with open
problems.

The complexity of COLORFULCARATHÉODORY. The intersection of PPAD and PLS contains
the complexity class continuous local search (CLS), which in turn then contains FP. Clearly,
the most pressing open question is whether COLORFULCARATHÉODORY is contained in CLS.
Neither the reduction of COLORFULCARATHÉODORY to Sperner nor the formulation of COLOR-
FULCARATHÉODORY as a PLS-problem can be extended directly to a formulation of COLOR-
FULCARATHÉODORY as a CLS-problem and it seems that a fundamentally different approach
would be necessary to achieve this.

Approximating COLORFULCARATHÉODORY. The dimension-reduction argument that has
been presented in Chapter 7 leads to an algorithm that computes dεde-colorful choices in
polynomial time for any fixed ε> 0. Is it possible to compute a

p
d-colorful choice in poly-

nomial time? On the other hand, is it possible to show that computing a 2-colorful choice is
as hard as solving COLORFULCARATHÉODORY exactly? Furthermore, we have seen in Chap-
ter 8 that given two 0-embracing color classes C1,C2 ⊂Qd that ray-embrace a point b ∈Qd ,
b 6= 0, and a number k ∈ [d −1], it is possible to compute a 0-embracing (k,d −k)-colorful
choice in weakly polynomial time. In the algorithm, we used a binary search approach by
reducing COLORFULCARATHÉODORY with two colors to Sperner’s lemma in one dimension. In
general, we can reduce COLORFULCARATHÉODORY with m colors to Sperner’s lemma in m −1
dimensions. However, for m > 2 it is no longer clear how to determine a part of the simplex
that contains a solution. Can the parameter space and or the cost function in the reduction
from COLORFULCARATHÉODORY to Sperner’s lemma be modified to support such a recursive
approach?

Exact solutions for COLORFULCARATHÉODORY. In Chapter 9, we discussed the problem of
solving COLORFULCARATHÉODORY exactly. Can the recent O

(
nd−1

)
algorithm for computing

the simplicial depth by Pilz et al. [62] be adapted to improve the naive algorithm for COL-
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ORFULCARATHÉODORY? Furthermore, we have seen that with Θ
(
d 2 logd

)
color classes, the

problem can be solved in quasi-polynomial time. Is it possible to solve the exact problem in
polynomial-time when given poly(d) many color classes?

Approximating the Simplicial Depth. The approximation algorithm in Section 10.2 com-
bines two different strategies: first, we traverse a graph with one node per simplex that contains
the query point until up to

⌈
nd/2

⌉
distinct nodes have been discovered. If the graph is fully

explored, we know the exact simplicial depth and otherwise we approximate the simplicial
depth with random sampling. Exploring the graph with BFS requires Ω

(
nd/2

)
space when

implemented naively. Can the need for space be improved by a careful enumeration of the
nodes in the graph? Furthermore, although we know by Lemma 10.4 that the constructed
graph is highly structured, we are only using the fact that it is connected. It seems plausible
that the high connectedness and the regularity can be further algorithmically exploited.
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Zusammenfassung

Der bunte Satz von Carathéodory ist eine Existenzaussage, die verschiedene Resultate in der
konvexen Geometrie nach sich zieht. Dazu gehören unter anderem der Satz von Tverberg,
die Existenz von Zentrumspunkten, das erste Selektionslemma und der bunte Satz von Kirch-
berger. Diese Beweise können als Polynomialzeitreduktionen auf CCP, das zu dem bunten Satz
von Carathéodory gehörende algorithmische Problem, interpretiert werden. In dieser Arbeit
werden Approximationsalgorithmen und Komplexitätsschranken entwickelt, die aufgrund der
Polynomialzeitreduktionen auf CCP auch auf die oben genannten Probleme übertragbar sind.

Seien C1, . . . ,Cd+1 ⊂Rd endliche Punktmengen, sodass der Ursprung in der konvexen Hülle
jeder Punktmenge Ci , i ∈ [d +1], enthalten ist. Der bunte Satz von Carathéodory garantiert
nun die Existenz einer Auswahl c 1 ∈ C1, . . . ,c d+1 ∈ Cd+1, welche den Ursprung ebenfalls in
der konvexen Hülle enthält. CCP beschreibt dann das Problem, diese Auswahl zu berechnen.
Da immer eine Lösung existiert und eine Kandidatenlösung in Polynomialzeit überprüfbar
ist, liegt CCP in der Komplexitätsklasse totale Funktionen NP (TFNP), die Klasse der NP-
Suchprobleme für die immer eine Lösung existiert. In dieser Arbeit wird gezeigt, dass CCP

im Schnitt zweier wichtiger Unterklassen von TFNP enthalten ist: der Komplexitätsklasse
Polynomialzeitparitätsargument in gerichteten Graphen (PPAD) und in der Komplexitätsklasse
polynomielle lokale Suche (PLS). Die Formulierung von CCP als PPAD-Problem basiert auf
einem neuen konstruktiven Beweis des bunten Satzes von Carathéodory durch Sperners
Lemma. Des Weiteren wird gezeigt, dass schon eine kleine Änderung in der Definition von
CCP zu einem PLS-vollständigen Problem führt.

Im zweiten Teil der Arbeit werden verschiedene konstruktive Resultate vorgestellt. Zuerst
wird das Approximationsproblem betrachtet, indem mehr als ein Punkt von jeder Menge Ci

ausgewählt werden kann. Dies ist mit den Polynomialzeitreduktionen auf CCP kompatibel. Es
wird gezeigt, dass für jedes feste ε> 0 eine Auswahl C mit maximal dεde Punkten von jeder
Menge Ci in Polynomialzeit gefunden werden kann, sodass 0 ∈ conv(C ). Zusätzlich wird ein
verwandtes Approximationsproblem betrachtet, in dem die Eingabe aus k < d +1 Mengen
Ci besteht mit 0 ∈ conv(Ci ) für i ∈ [k] und eine Auswahl C mit 0 ∈ conv(C ) gefunden werden
soll, die maximal d(d +1)/ke Punkte von jeder Menge Ci enthält. Die Existenz von C ist eine
direkte Implikation des bunten Satzes von Carathéodory. Mithilfe von linearen Programmen
ist es möglich, dieses Problem für den Fall k = 2 in schwach polynomieller Zeit zu lösen.
Des Weiteren wird gezeigt, dass CCP exakt in quasi-polynomieller Zeit gelöst werden kann,
falls die Eingabe aus poly(d) Mengen besteht, anstatt nur aus d +1. Abschließend wird das
Problem der simplizialen Tiefe betrachtet. Die simpliziale Tiefe σP (q) eines Punktes q ∈Rd

bezüglich einer Menge P ⊂Rd ist die Anzahl aller verschiedener d-Simplexe mit Ecken in P ,
die q enthalten. Es wird gezeigt, dass σP (q) in Õ

(
nd/2+1

)
Zeit mit hoher Wahrscheinlichkeit

(1+ ε)-approximiert werden kann für ε > 0 fest. Für den Fall, dass die Dimension Teil der
Eingabe ist, wird bewiesen, dass das Problem #P-vollständig und W[1]-schwer ist.
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