Chapter 5

Theory to Nonresonant Multiphoton
Transitions (NMT)

Nonresonant multiphoton transitions (NMT) [73] are a commrpbenomenon that occur
in many types of molecules. The theory of femtosecond spgeobpy can benefit from the
inclusion of NMT because these transitions play a significale in population transfer.
These types of transitions take place if the energy of two arenphotons is necessary to
achieve an electronic excitation, where no intermediatiestexist which facilitate single-
photon transitions. The absence of intermediate statésaited that coupling matrix el-
ements to the multitude of high-lying, off-resonant states very important. Although
NMT processes have been extensively considered in thedregudomain, attempts in
the femtosecond time regime have been limited [34, 35, 3, 37

As shown in the last chapter, several laser pulse contra@raxents on polyatomic sys-
tems have been recently demonstrated [19, 27, 115, 1161187119]. In particular ref.
[27] shows that NMT can be a route to achieve control of mdeecdynamics. Taking
both NMT and control experiments into account, the aim of ¢hapter is to develop
a theory for the description of NMT which can be combined ttiropl control theory
(OCT) [120, 121]. The structure of this chapter starts wiiti tnodel which will be ap-
plied to two descriptions of NMT: a perturbative and a notymative approach. The
perturbative approach, which is limited to the low-fieldinag and therefore not applica-
ble to standard OCT, will give some insight into the develepbof the nonperturbative
approach, which, by solving the exact form of the TDSE, ant®tdor the strong-field
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regime and is incorporated into OCT.

The theory of NMT [120] has been developed by PD Dr. May at thenHoldt Unversity
Berlin and has been applied in this work.

5.1 The Model

This section introduces the model for the description of NMTthis work, the nonadia-
batic couplings have been neglected, since they are notardléor the chosen electronic
states of the molecular system. For the sake of completetesEDSE is given below

Zh—\‘l’( ) =H()[¥(1)), (5.1)

where the complete Hamiltonian

H(t) = Huo + Hgaa(t), (5.2)
is composed of the molecul®f,,, and the fielcf{ﬁold(t) Hamiltonians, which was previ-
ously denoted a§/’(t) (see eq. 3.15). The expansion of the molecular Hamiltoniigm w
respect to the adiabatic electronic states), formerly defined as¥,,(r,; R4)) from eq.
2.4,is given as

oo = Z Ha()|pa) (@al (5.3)

wheref[a(q) are the respective vibrational Hamiltonians ani$ the set of vibrational
coordinates. The eigenvalues; are given as

€aMl = €q + Wans where M=0,1,2,..., (5.4)

where the electronic quantum numbers are denoted by the inded the vibrational
guantum numbers by the indéX. The electronic reference energy, i.e. the minimum
value of the PES plus the zero point energy is givety @s The vibrational eigenfunctions
are depicted al(..r), previously denoted g9, ;), see section 2.3.1.

The second part of eq. 5.2, which describes the couplingetodttiation field, is given by
the standard dipole approximation as

Heaa(t) = —E()a = —E(t) > poylea) (@] +h.c, (5.5)
a,b
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where /i is the molecular dipole operator, apg, are the electronic dipole matrix ele-
ments, see eq. 3.35, alilft) is the electric field which is written here as

1 4
E(t) = EnE(t)e_M +c.c (5.6)
wheren is the linear polarization unit vectoF;(t) is the field envelope, and is the

carrier frequency. The field envelope

tm

E(t) = Eysir? <t ) for  to<t<t, (5.7)

P
defines the field shape as a sine squared function, the fieltitadepis denoted ag),

and the pulse duratiom,. The abbreviations h.c. and c.c. found in egs. 5.5 and 5.6 are
the hermitian conjugate and the complex conjugate res@dgtiThe formal solution to

eqg. 5.1, which evolves the initial wave functigrit,) in time, is given as

(U (t)) = Unai(t — t0)S(t, to; E)|[¥(to)) , (5.8)

whereU,,.i(t — to) is the field-free evolution operator

Umol(t - tO) = eXp ( - %I:Imol(t - tO)) (59)

and theS-operatorS(t, to; E), couples the radiation field to the molecular system

t

sgimEy:Twp(—%/dfgLﬁT—%ﬁgm@ﬂ%d@—ug) (5.10)

g

to —R(T)E(T)

whereT’ is the time ordering operator [74]. The field Hamiltonian éided in the inter-
action picture, and therefore the transition dipole monbecbmes time dependent. The
S-operator can be expanded as

S(t,t;E) =14+ SUD(t, te; E) + SP(t, t; E) + . .. (5.11)

The first order expansion of the S-matrix is defined as

t

Smmmm:%/wﬂmmﬂ, (5.12)

to

and the second order expansion is given as

t T1
1 . .
SOt 10:8) = / in / drs f(r)E(m) fu(r) E(ro). (5.13)
to to



64 Theory to Nonresonant Multiphoton Transitions (NMT)

5.2 Perturbative Approach

Nonresonant multiphoton processes have been describéeé petrturbative framework
[39, 122]. The perturbation order is determined by the pafé¢he field strength upon a
Taylor expansion of the S-operator. Each power of the figkehgth corresponds to the
number of photons involved in the transition.

Multiphoton transitions can be described in terms of thea@spon coefficients which are
obtained in the following. The state function is expandeigims of all the electronic and
vibrational basis and gives

= Cant()[Vanr), (5.14)

a,M

where the wave function,
[Wars) = [Xars)|#a) (5.15)

is composed of the vibrationgy,,,) and electronigy,) wave functions, and’,,(t) are
the time-dependent expansion coefficients. The indicestdehe set of electronic quan-
tum numbersd = g, f,...) and the vibrational quantum number® (= 0,1,2,...).
Multiplying eq. 5.14 by the electronic-vibrational stgte,y| from the left and rearrang-
ing the expression in terms of the expansion coefficientahiich the initial state is taken
as the ground vibrational state in the ground electronie $ig,), results in

Cyn(t) = e vt (T v |S(#, 10 E) | g0) (5.16)

Moreover, the time-dependent expansion coefficients aomiéormation on the vibra-
tional wavepacket dynamics induced by this transitiongiiphoton transitions are de-
scribed by eq. 5.16 by replacing the S-opertor by its firseotdrm, see eq. 5.12. In the
same manner, two photon nonresonant transitions can belzksevithin perturbation
theory [34] in which the complete S-operator in eq. 5.16 daeed by the second order
contribution of the S-operator expansion eq. 5.13. Theirmealements for the coefficient
expression in eq. 5.16 are given as

(0[SOt 1 B) [ Wyns) = — / an / Ay (0 | [E(r2) () B () () [ W),

(5.17)
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where the ground vibrational state is replaced by the géwigrational quantum number
M. The expansion coefficients for the case of cw-excitatiaiménfrequency domain are
obtained in the limit ag, — —oo and are given below for the excited electronic state

N, e K)p(zK, gM)

Wy — Wgm — W

4 - E?
CfN(t) — _6—zwa(t—t0)—22wto 4h2 § ,u(
oK (5.18)

1 1
X - ’
(wa—ng—2w+ie wa—wa—w+ie

where the electric fieldi(t), eq. 5.6, is replaced with the contributioer,™!, and E

is the constant field envelope. The sum owéf accounts for all of the off-resonant
electronic-vibrational states. The dipole transition mxaglements are given in general
as,u(aN,bM) = (V,n|nf| ¥, ), and include the unit vectar.

The terms of the expansion coefficients from eq. 5.18 can sieunglerstood by applying
the sketch in fig. 5.1. The left set of electronic states islusedescribe a complete
description of a molecular system. If the off-resonant &eare condensed into a single
electronic staté¥,) which is placed conveniently between the initial grounctetnic
state| V) and the excited electronic state; ), as depicted in the second set of states in
fig. 5.1, then the second term in eq. 5.18 describes the sppwepulation transfer from
the ground state to the intermediate stafe,,) — |\V;) and then from the intermediate
state to the final excited statgl,) — |¥,y), both transitions occurring via a single-
photon absorption process. The first term in eq. 5.18 is resple for a direct transition
from the ground statey ), to the excited stat¢¥ sy ), without support of intermediate
states,|¥;), and gives a resonant contribution regardless of the posif |V;), as can
be seen in the representation on the far-right in fig. 5.1his tepresentation, because
|U;) is placed energetically far aboyé ), the first term in eq. 5.18 decreased jw;

(= 1/w.x) and the second in/w?(= 1/w?,), wherew, x is the transition frequency into
the off-resonant electronic states. Hence, it is the firsh ténat strongly dominates and
therefore the second term will be neglected in the following

If the single stateV,) is replaced now by the manifold of electronic-vibrationgdtss
belonging to the off-resonant electronic staf®sy), then the smallness of the overall
sum of the expansion coefficients in eq. 5.18 can be competh&at by introducing the
density of states for the manifold of states

o(Q) = 6(Q - wa) | (5.19)
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Figure 5.1: A schematic representation of the groysg,;) and excitedV ;) electronic states,
with the manifold of off-resonant staté¥, ), used to describe eq. 5.18. The first subfigure
depicts the complete space for a molecular system. The desadrof states depict a two-photon
transition from the ground sta{@,,,) to the excited statglV ;). The off-resonant state¥ )
have been condensed into a single intermediate Sigte and placed directly between the two
states to support the transition. The last set of electrstaites depicts a direct nonresonant two-
photon transition without the aid of the intermediate stdtg, which has been moved to higher
energetic values.

’qng>

where the eigenvalue,x of the off-resonant states is typically not known, dfd )
the electronic-vibrational states are spread into a deoffinal states. Implementing the
density of states into the expression for the expansiorfictgfts, eq. 5.18, yields

—iw N (t—to)—i2wito 2
e s E

SN, Q)u(Q, gM)

Q—wey —w

Cpnlt) = - o) . (5.20)

WfN — WgMm — 2w +Z€§

wheren(fN, Q) and (2, gM) denote frequency-dependent, transition dipole operator
matrix elements. The expression indicates that the effigieri the nonresonant two-
photon transition, i.e. the populatiof;y(¢)|* of the excited electronic-vibrational state,
is essentially determined by tkieintegral. It represents a summation of all off-resonant
single-photon transitions from the initial state with enefiw,,, into the nonresonant
states with energyi€2, and can be viewed as an effective two-photon transitiorrirnat
element coupled to the square of the field strength. Consdlguenly the complete
summation of all these nonresonant contributions may leaal gufficiently large two-
photon transition amplitude.



5.3 Nonperturbative Approach 67

5.3 Nonperturbative Approach

Because any power of the field strength is allowed when cerisigl multiphoton transi-
tions, it is necessary to move to a description that includesstrong-field regime. This
regime can be accounted for by solving the TDSE completelyis method has been
demonstrated for diatomic molecules at fixed-nuclear desta [123, 124] as well as
for one-dimensional model systems where the Born-OppergreApproximation was
avoided [125, 126, 127]. Solving the TDSE with inclusion o€ fground and all excited
electronic states for a molecular system would providermfdion on every optical tran-
sition, including nonresonant multiphoton transitiongnresonant population transfer,
multiphoton ionization, and high harmonic generation. ldwer, this is not possible for
polyatomic molecules, due to computational restricti@ms] therefore in order to apply
the essence of this method to nonresonant multiphotoniti@msan effective Hamilto-
nian is derived.

5.3.1 Effective Schbdinger Equation for NMT Processes

The restriction to the number of excited states that can bsuleded for polyatomic
molecules, prevents a description in which its TDSE can lheedoexactly, for NMT
processes. Therefore, the complete space is divided intotep which describes the
attainable states; the primary state space (denoted bydex &), and a portion which
describes the other states; the secondary state spaceadddryothe index x). This di-
vision of the complete space is accomplished by introduairmgojection operator, or
projector for short, for each space [74],

P o= > |ea){edl (5.21)
Q = > lea)ul (5.22)

where the operator® and() are defined as a complete sum of states in their respective
primary and secondary space. The projection operatorsiegisrm a complete space
andP + Q = 1. By applying the projectors onto an arbitrary state in thibétt space

one obtains the primany;) and secondary¥,) states.

[U(1) = (P + QU(t) = PIY() + QU(t) = [i(t)) + | Ta(1)) (5.23)
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In the same manner, the reduced Hamiltonians are introduced

+ A, (1) (5.24)
+HD (1), (5.25)

PAMP = H(t)=H)

mol

QH(Q = F,(t) =HE),

where H; (t) and H,(t) are described exclusively in the primary and secondarg stat
space, respectively. In order to obtain an equation thatites the motion of the primary

states, the square of the completeness relation is indattethe TDSE,
2w H H P10 |w 5.26
i | V(1) = (Fo + Hraa(®)) (P+Q) " [0() (5.26)

where theP( = 0 terms are zero. Multiplying equation 5.26 from the left, emdth the
primary state projectoP and once with the secondary state projeciotthe respective
coupled equations are obtained:

BONB) = AOND) + PRa(O(0) (5.27)

(1) = B Wa(1)) + QPlialr) PN (D). (5.28)

The mixed terms”?H,,Q = QH,., P = 0 are also equal to zero. It is assumed that
the system is initially located in the ground vibrationaltbé ground electronic state
W1 (to)) = |W'5)) which belongs to the primary space, and consequently, ttialiwave
function in the secondary state space is ze(t,)) = 0. Solving eq. 5.28, under the
aforementioned conditions, leads to the solution of theesawction in the secondary

state space
t

Ws(t)) = / dF Uy(t, F: E)OFLgua () 2|04 (). (5.29)

where the time nonlocality is depicted byand is due to the use of the projection opera-
tors, and contains a memory effect [128]. The newly appgdime evolution operator is
analogous to that given in eq. 5.8, and is given below in texhtisne nonlocality:

Us(t,7) = UPL(E — ) S, (1, to; E). (5.30)
The molecular time evolution operator is analogous to ejaid is given as

_ 7oA _
US(E = to) = exp (= THEL(E — t0) ). (5.31)
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The S-operator, which accounts for the field evolution ofitlage function, is given below
) t
Salf,to; B) = Texp (= % / di Ui (- AR OUD(E - 6) . (6:32)

to

and is similar to eq. 5.10, wheH;4 has been replaced with the field Hamiltonl?iﬁe)ld
for the secondary states. Inserting eq. 5.29 into eq. 5Q1teein a closed equation for
the primary stategl,)
t
3 (0) = EL (0102 (0) + [ dF Kt D1 D) (5.33)
to

where the kerneli{s.4, is defined as
i ~n . _ . n .
Khe(t, 1) = _ﬁpHﬁeld(t)QUggl(t —1)S5(t, t; E)QHgea(t) P (5.34)

and accounts for all NMT processes realized by the couptinige manifold of secondary
states.

5.3.2 Weak Field Nonresonant Multiphoton Transition

The solution of|¥,(¢)) is exact and should be identical witt¥(¢)) projected onto the
primary state space since eq. 5.33 has been derived witpplyiag an approximation.
However, in order to solve for the primary states in a comceatample, the kernel must
be approximated since thé; 4 in eq. 5.34, already includes a complete summation with
respect tde via S, cf. egs. 3.26 and 5.32. The kernel is therefore represestedsum

of terms with respect to the order of the field strength anémagated accordingly,

Kgaal(t, 1) = K& (t,1) + K& (8,7) + ..., (5.35)

Wherer(ii%d andKé?;{d are the respective second and third power terms in the fiedgth.
In order to get an expression that is second order in the fieddgth,S, in eq. 5.34 is set
to one;S,(t, t; E) ~ 1, and the following is obtained,

Kiga(t.1) = — 7 PHzaa (1) QU™ (¢t — 1) QHaaa (1) P (5.36)

which, due to its second order character of the field Hamdtonsuggests a description
for two-photon transitions. Unfortunately, there is noy apecific criterion about which
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powers of the field strengtB(¢), found in the kerneKéifd, are proper for the calculation
of the state vectow(¢). In the strong-field regime, there is no way to prove that the
dynamics that ensue convey the proper information. In thet,only criterion that may
be applied, as suggested by the limit of perturbation thesthat the powers of the field
strength may only induce a maximum fourth order dependendée population of the
excited state, i.eP; ~ E*,

In order to obtain the kernel for the third power of the fielaegth, a linear expansion of
Sy(t, t; E) is taken, which depends on the field Hamiltonian for the sdapnstates, see
egs. 5.32 and 5.25, and results in

t
1 . R . ) o .
KESL(t,1) = ~ dt; PHgaa(H)QUE, (t — 1) QHgaa (1) QU (1 — H)QHgaa ()P .

t

(5.37)
The electronic matrix elements of the kernel are given belova style consistent with
the standard form of the electric-dipole terms, written as

K1) = —pl) (t - DE(E(®) | (5.38)
and
K9 (0.0 =~ [ dnl)0, DEOBED | (5.39)

f
respectively for the second and third order terms, wheardb index the primary space.
The p,fj)) and ufg} terms are analogous to the ordinary dipole matrix elemeumtsbow
given with respect to the number of nonresonant photonsaendritten in their complete
form as

1 ~A A mo. AN
pl(t—1) = ﬁ<90a|/1'QU2( Vit —DQfl )

: N (5.40)
= % Z M’axe_ZHZT/huxb

and

1 ~ A mo A~ A mo. A A
iy (1 11.1) = 55 (0al BQUL™ (¢ — ) QAQUL™ (1 — DQirl 1)

— iz Z m e—if{z(t—tl)/hu ye_iHy(tl—a/huyb (5.41)
h aw T
':B?y
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where the second equality in both equations is obtainedtbyduacing an expansion with
respect to the secondary electronic states and in doingestrahsition dipole matrix
elements, e.gu,,, are introduced, whereis an index for the secondary space.

In order to account for nonresonant transitions with largenber of photons, the corre-
sponding order of the kernel should be taken. In the restifibrk, we will consider up
to the third order of the kernel, i.e. inclusion of two andelaphoton contributions. This
results in the following effective TDSE for the primary vabional states

m%xa(t» H,|xa(t) Zuablxb
D> / AT (¢ DB()E(D) o (D) (5.42)

-3 / df / dts ) (8, DB E (4 E (D] o D).
b to -

where the first two terms describe the evolution of the vibretl wave function within
the primary state spaceg,,, represents the transition dipole matrix elements, and
and|y;) are the vibrational state located on tie andb'™® electronic state, respectively.
The last two terms are second and third order contributidmswdescribe the possible
nonresonant two- and three- photon transitions and effdgtaccount for the secondary
state space, Whew . (t t) andp, (t, t1,t) are givenin egs. 5.40 and 5.41 respectively.

5.4 Rotating Wave Approximation

The time nonlocality that emerged from partitioning the pbete space into a primary
and secondary state space is removed by implementing thiEngptvave approximation
(RWA) to nonresonant multiphoton transitions (NMT) and lgpg the secondary space
density of states (DOS). A reasonable approximation is elsoidated for a concrete
expression of the transition matrix elements, given agnadeéerms for the nonresonant
portion in eq. 5.42. In order to arrive at the RWA the molecwlave function is ex-
panded with respect to powers of the basic oscillatiosxp(—iwt) of the applied pulse.
Accordingly, the vibrational wave function is expanded nders of the field frequency



72 Theory to Nonresonant Multiphoton Transitions (NMT)

and is given below

Xa(t) = Z e ™y a(n;t), (5.43)

n

wheren runs over all integer values. This expansion modifies th@leoltime—dependent
Schrodinger egs. 5.42 to

S et (i e — Hul s )

n

+ = Z:uab () xo(n —15t)) + E*(t)|xs(n + 1;1))] (5.44)

_ Z/dt Ko (t, 1) ™D v (n; t)>> 0.

bt0

Note the introduction ofi,, = nu,, and the abbreviation fak *)+ K'» asK,,. These
latter quantities also depend on the field amplitudés and £*(¢). The RWA has been
achieved if one assumes that the time dependence of thessigorén the large bracket in
eg. 5.44 is slow compared to the oscillations with multigles. This leads to

i o 1)) =lnho — B, s 0)

- —Zuab Ohofn= L)+ EOlofn+ L

Y / dF Ko (t, D™Dy, (ns )
b to

The requirement that the time—dependence of eq. 5.45 beisiguaranteed if a restric-
tion ton is taken where the energy difference correspondingito — ¢, is much smaller
thaniw.

5.4.1 Reuvisiting the Effective Vibrational Schibdinger Equation

The effective TDSE, eq. 5.42 is reformulated in the framdwadrthe RWA. It is accom-
plished by expanding the vibrational wave function withpes to the basic oscillations
of the applied pulse as seen in eq. 5.43 and arranging thessipn in commor~"~!
terms. This process will be conducted in two steps; first éloniique will be applied to
the nonresonant two-photon term followed by the nonresotieee-photon term of eq.
5.42.
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The Two-photon Term

Applying the expansion of the vibrational wave functionegented in eq. 5.43, as well as

the electric field, given in eq. 5.6, to the nonresonant tlwotpn term of eq. 5.42 results
in the following expression,

- [ - DB@EO D) = 1 > e Y [ e e

bto bto

(B + B (0| E@e™ + B (0Tl (n5)
(5.46)

Whereuﬁ) = p,fj,)nn has been introduced. An extra oscillating factoe e~ "«!e"t

has also been introduced into the sum over n in order to agratigerms with respect
to a common prefactar—"“*. The ordering of this equation with respect to the common
prefactor,e="*, results in a shift of the vibrational wave function from,(n; 7)) to
|xs(n £ 2;1)). Introducing the time difference term,= ¢ — ¢ results in the following

=3 [l - DEOE@RO) =~ Yo S [ dr i1t ),

b to
(5.47)
where the individual terms are condensed[;ﬁ:ﬁ)(n; t,7)) and are revealed as

1) (03, 7)) = 1y (7)
x (BBt = 7)e D7 | (n — 25t = 7))

+ E)E*(t — 7)™ V7 |y (nst — 7)) (5.48)
+ E*(t)E(t — T)ei("+1)“7|xb(n;t — 7))

+ BB (=) 0+ 28— 7)) )

The vibrational wavefunction’s expansion coefficient® eq. 5.43, take the values of
andn + 2.
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The Three-photon Term

The nonresonant three-photon term of eq. 5.42 is also expHoglapplying eq. 5.43, as
was done for the two-photon term previously. This resulthienfollowing expression

t

‘Ez/ﬁ?/d““Q“JMDE@HMhﬂmﬂu4ﬂ>:

b to
1 A I (5.49)
—inwt n inwt —iwt * wt
_§§ e Eb /dt/dtl,uab (t,tr, D™ [E(t)e ™ + B*(t)e™']
" to 3

[B(ty)e™" 4+ B (0)e | E@e " + B e e ;7).

where the term!? = 1 nnn has been introduced. New time arguments? —  and

a

t; —t = 7 can be substituted into the expression. Arranging the esje again in terms
of a common prefactor,~* results in the following form

_E:/Ei/““ﬁkﬂ%ﬂE@ﬁwwE®naa>:
e (5.50)

t—to T
1 —inw = 3 =
—§Ze tz / dT/d7'|Iéb)(n;t,7',7')),
n b 0 0

where|1$)) is given below in its full complexity:

1) (n:t.7.7)) = g (v = 7.7)
x (B@E(t - (1= )E(t = r)e ™00 |y (n - 351 — 7))

+ EE*(t — (1 — 7)) E(t — 7)™ =Dy (n — 15 — 7))

+ E*()E(t — (1 — 7)) E(t — 7)e” @04 Der|y (n — 15 — 7))
+ E*()E*(t — (1 — 7)) E(t — 7)e™™Hm+ber)y (n 4 1:¢t — 7))
+ EME({t— (1 —7)E*(t — 7)e” @™oy (n — 1.t — 7))
+ E(t)E*(t — (1 — 7)) E*(t — 7)e™H0=0T |y (n £ 158 — 7))
+ E*()E(t — (1 — 7)) E*(t — 7)e wrHim+ber)y n 4 1t — 7))
B (OB (t = (7= 7)) (¢ — ) Oy (0 4 35— 7)) )

(5.51)
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Effective Vibrational Schrodinger Equation in Terms of RWA

The previously described two-photon and three-photonesmrant terms have been an-
alyzed with respect to the expansion of the vibrational wiavestion and to the basic
oscillations of the electric field. Inserting these expi@ss back into the effective vibra-
tional Schrodinger equation, equation. 5.42, resulteénfollowing,

o xan1)) = (Ha = ) (s 1)) — 3 3 aa (BOlxaln — 1:0)) + B (0ol + 1:1)))

b
[ a0 [ ar [Carii
dr|l,, (n;t, 7)) — = / dT/ dr|l,, (n;t, 7,7
0 ’ 8~ Jo 0 ’
(5.52)

1
4

-]

which is given in terms of the basic oscillations of the fidldorder to arrive at the RWA,

it must be guaranteed that the prefao{tﬁrl — nhw) is much less thahw. Consequently,

the vibrational wave function’s expansion coefficientseteponn. For clarity it should

be noted that in a case of a two-level system, to describe @gsonant two-photon tran-
sition requires that = 0 and+2. This corresponds to the ground electronic state and the
two-photons needed to populate the excited electronie,staspectively. To describe a
nonresonant three-photon transition thes 0 and+3, again for the ground and excited
electronic states, respectively. This selectiompfvhich depends on the system being
studied, reduces the terms described in egs. 5.48 and 5viill be seen in the following
section, when the equation is applied to a two-level system.

The time nonlocality that resulted from the use of the priopecoperators is removed
based on the expansion of the vibrational states. The pain stems from eqs. 5.47
and 5.50, in which the electric field envelope and the expansoefficients are all time

ordered. In both equations, the time intervahfﬁ) andufl’) is considered to be short, at
least short in comparison to the interval of the envelopethe@xpansion coefficients and
therefore the latter two are extracted from the integraladdition, by applying the RWA

to the equations as was done for a basal three-level sydterfagt oscillating terms of the
field are removed. Therefore, the local time approximatsbased on the slow varying
behavior of the vibrational wave function as well as the fetgelope.
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Evaluation of the Transition Matrix Elements

In the following the DOS for the secondary states from equafi.19 is reintroduced in
order to investigate the dipole components of the Schgatirequation for NMT. Upon
applying the DOS to equation 5.40 the following two-photomgonent is obtained
i —1QT
k30 =5 [ 9 o@ne e ), (559
and describes the frequency dependent dipole matrix elsrf@ma transition from state

b into the continuum and from the continuum to the final stat€he three-photon dipole
component

1 - ~ . .5 _
uﬁkttht)Z;?Q/deQéKQkKQMKaADeﬂQ“4”uGIfDeﬂQm_auﬁlbﬂ554)

describes a three step transition from the an initial $tateo the continuum and from the
continuum to the final state via a continuum-continuum transition. This term depends
on three different time units ¢;, and¢ and to a dependence of two frequency tefirend

Q.

Based on eq. 5.48, the multiples of the field frequency tremt#owed whem = 0 and
n = 2 arev = +1 and3 and takingt, — —oo and definingu = pn one obtains the
following set of equations

o0 o0

/dTei”“’Tuﬁ)(T) = %/dT/dQQ(Q)ei(””_Q)Tu(a, Q)u(2, )

0 0 (5.55)
_ 1 pla, Q)p(€,0)
N ﬁ/dQQ(Q) vw—Q+1e

where the term in the denominator comes from the time integraf the exponential
term. This expression can be simplified by neglecting theueacy componentgy of
the laser field, which have a much smaller value than the &egyt? of the secondary
DOS. Applying this approximation one ends up with an expogsfor the two-photon
dipole matrix elements

1 u(a, Qpb) 1 [ o)
‘ﬁ/““mia?§;?~ﬁ/“*§W@ﬂW@@ 5.56)

SR

= Hap ~ ff

St
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whereg = | dw ) is the mean DOS for the secondary states,apds the mean tran-
sition dipole moment from one of the two primary states i@ tanifold of secondary
states. In order to arrive at a similar expression for thebtlointegration term corre-
sponding to a three-photon transition, the same steps aleedms were done for the
approximate value qﬁﬁ). Starting with the given expression

oo T

/dT /dﬂi(?}) (7. _ ,7—_7 7—_)ei~/w7+i1/w7_—

0
dr / dr / dQdQ0(Q)o(Q)e =N HELHE=DT (0 0) (0, D), f)

L [ [ d0d00(0)o(9) (e, (S, (0, feite- o T~ ]
- / (el le, D@, (@, NN s

1 o 20l 2)p(2. Du(@. £) R
a /deQ vw + Q-0 ((7+V)w—§_2+ie 7w—Q+ie>’
(5.57)

the integration over time has been carried out twice andteeisuthe denominator terms.
The frequency of) and the mean value of the frequerfeyfor the DOS are considered

to be much larger in value than the frequency componentand~w and therefore the
latter are neglected, resulting in the following expressio

1 o(o()ule, Q)u(Q, Q)u(Q, f) 1 1
Nz A0 vw+Q—Q ((7+V)w—Q+ie_7w—Q+ie>
1 0(Q)o(Q)p(e, V(R Q)p(, /) Q2 - Q
~ gz | 0 vw+ Q-0 Q0
1 0(2)o(Q) (e, (R, Q) (S, £)
~ o [ A oF :
(5.58)

where the commof — Q on the numerator and denominator cancel. The final set of
expressions given below,

1000 2D @)(e, (L, V(. f)

w2 00
L1 oo @ule, )T [ @)u(R Q)u(, )
- / ap2Ee D / 40 = (5.59)

=2
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accounts for a single dipole matrix element from the legnation and a squared dipole
matrix element from the right integration. The final expresss defined in terms of
the mean value of the DO&for the secondary states and the transition dipole moment
e CoONsidering the transition dipole matrix elements betwibe primary states and the
secondary states to be similar to the transition dipoleimatements occurring between
the secondary electronic states is a rather crude appraogma-However, because it is
not yet known how to calculate these values, eq. 5.59 preadruitable parametrization

of the effective transition matrix elements.

5.4.2 A Two-level System

In the previous section 5.4.3 the reasoning behind movimg f& time nonlocal to a time
local term was explained via the expansion of vibration&fftcients and eventually the
use of the RWA. It was also shown that the transition matexeints can be approximated
by introducing the DOS for the secondary states. Becausetiukel is being developed
step by step, a two-level system is introduced in which arr@sbone-, nonresonant two-
and three-photon transitions will be explored as can be isefmn 5.2.

=) =) o)
Figure 5.2: The scheme for the rudimep- 1 T
tary two-level system from which resonant T
single-, nonresonant two-, and three-phaton 1
transitions are explored. |9) [©9) L|9@9>

Resonant One-Photon Transitions

The resonant one-photon transition process is used hepaifposes of comparison and
will be used to exemplify our approach for NMT. Solving then8mlinger equation for a
two-level system one obtains the following equations ofiorofor the ground

”i%‘xﬂo%f» = Hylxo(0:1)) — B () s (1:1) (5.60)

and excited

ih%\Xf(l; t)) = (Hy — hw)|xs(1;1)) — %Mng(t)m(o; t)) (5.61)
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vibrational wave functions within the scope of the RWA, iveheren = 0 andn = 1
for the ground and final vibrational wave functions, resppety. The rotational wave
Hamiltonian is written as

YA (1) = FG™ + A (¢) (5.62)

mol

where the molecular Hamiltonian is defined as

AR = 7 lo) (0] + (Hy — hw)los) (e (5.63)

The field Hamiltonian has the following form

~ (RWA 1 1,
i (1) = —5EOusgler (ool — 5B (Digsles) (1] (5.64)

where the fast oscillations of the electric field have beemoneed leaving the field enve-
lope and the transition matrix elements, and,, or rather traditionally the transition
dipole matrix elements.

Nonresonant Two-photon Transitions

The equations of motion for nonresonant two-photon treorstare obtained according
to eqg. 5.52 and the approximations that followed. Givenwelee the ground

i 1 (0:0)) = Hxa 0:8)) — SuIBOP o 0:0) — u B2 (1) (2:0) (5.69)

and excited

x5 (250 = (Hy — 200) [ (250)) — 2B (2: 1)) — T (1) o 0: )

(5.66)
vibrational wave functions defined by the second order offild envelopeE(t). The
equations were obtained by applying the RWA, where: 0 andn = 2 for the ground
and final states respectively. The applied honresonanptvaden molecular Hamiltonian
is defined below

ATV = A o) (0] + (Hy — 20w)|05) (5. (5.67)

mol

The transition matrix elemenpé]? and,ufg) are givenin eq. 5.56. The effective molecular
field coupling Hamiltonian for the RWA description reads,

1

RWA—

Higa ()= —5 > [BOPul)lea)(eal-
a=g,f

1, 9
~E2 ()00 (]

1
R QIO ERIEAES,
(5.68)

4
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where the first term describes the contribution of the peenadipole moments for both
states, and the remaining terms describe the transitioneleet the ground state and the
final excited state.

Nonresonant Three-photon Transitions

The last considered scenario within the two-level systethasinteraction between two
electronic states via a nonresonant three-photon mechanise equations of motions
for the ground vibrational wave function

X 0:1)) =y, (0:1)) — g B0 (3:1) (5.69)

and the excited state vibrational wave function

ih%\xf(?);t)) = (Hy — 3hw)|x;(3:1)) — %uﬁ%’Ef‘(t)\xg(O;t»- (5.70)

are given with respect to the values= 0 andn = 3 respectively. The molecular
Hamiltonian for a nonresonant three-photon transitiorefsngéd as

AEYA = Hlo) (0] + (Hy — 3h0)|05) (5], (5.71)

The fast oscillating terms of the laser field are neglecteairags can be seen from the
molecular field Hamiltonian. The molecular field Hamiltomia now defined as

o (RWA— 1 1,
Hig (1) = —g B Ou lon ool = SEP Ol or]  (6.72)

in terms of the field envelope. The transition matrix elereemj? andu}? are given in
eq. 5.59.

5.4.3 A Three-level System

Two nonresonant processes are described in eq. 5.52. @adngié system which ac-
counts for both types of nonresonant transitions leads tasallihree-level system. Two
possibilities arise; one in which the first transition occuia two and the second transi-
tion via three photons, or vice versa, as depicted in figuse Bhe former of the two will
be investigated via the equations of motion where the thierenic states are denoted
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_ lep)
Figure 5.3: A basal system which ag-
counts for nonresonant two and three-
photon transitions. The first a twp- L e
photon followed by a three-photon
transition. L e

by a = g,i, f. These equations couple the ground state to the interneegkaited state
via a two-photon transitiorjy,) — 2, |pi) and the intermediate excited state is coupled
to the final excited state via a three-photon transﬂien) |gpf) . The application

of the RWA description to the equations of motion, corregjsoto the oscillations which
contribute multiples of 0, 2, and 5 texp(+iwt). The other multiplies are completely
neglected. This corresponds to the vibrational expansiefficients|x,(0; t)), |x:(2;t)),
and|x(5;t)),i.e. wheren = 0, 2 and5. This scenario relates to the RWA for eq. 5.52 and
is obtained by eliminating all multiples &fv which do not correspond to the Schrodinger
equation being evaluated. The neglect of these terms gieasathat any oscillation with
multiples of iw are absent in the remaining expansion coefficients, inetugingle pho-
ton transitions. This is best understood when writing oatafuations of motion for each
time local vibrational state. Starting with the ground staibrational wave function, its
evolution is defined by the following

Zﬁ%\xg(O;t» = Hyx(051)) — iué?\E(t)P\xg(O;t» - iuﬁ E2()x(2:1) (5.73)

wheren = 0. The excited vibrational state includes only those coeffits that carry the
valuen = 2, the other terms are neglected. The equation of motion foektited state
vibrational wave function, where = 2, reads

0 -~ 1
iha IXi(2:1)) =(H; — 2hw)[xi(2;1)) — 4uu NE@)Pha(2:1)
1 1 .
= g B (Do 0:1)) = g B (8) s (5:1)
which is influenced by the expansion coefficients for thermteliate and final excited
states, as can be seen from egs. 5.48 and 5.51 in which onlyvakies of 2 and 5 are
allowed. The first term is responsible for removing the resditwo-photon energy from
the intermediate state, essentially shifting the interiatedstate to the energetic region of
the ground state. Finally, the wave function belonging tofthal excited state obeys

(5.74)

m%xf(m)) = (H; — 5hw)|xs(5;t)) — %N;?;)Eg(t)‘xi@%t» (5.75)
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which is influenced only by the expansion coefficients from éxcited vibrational ex-
pansion coefficientsy;(2,t)). The final state molecular Hamiltonidi, is shifted by
five photons of energy which corresponds to a resonance batthe final state and the
ground state.

5.5 Formulation of OCT for NMT

The standard version of optimal control theory was presemeection 4.2.1 which in-
cluded in the functional, equation 4.1, the complete eletigld. In this section OCT will
be developed in terms of the RWA for NMT processes. The cparding functional is

given as
Ly

J(t5 B, EY) = (W W () — A / dt| B(1) (5.76)
to

where all multiples of the carrier frequencyare neglected. The functional then only
depends on the field envelope as well as its complex conjugétie control task will
optimize the field envelopE(t) rather than the complete electric fidld¢) and any mod-
ulation that would normally occur in the complete electreddiformulation will also be
accounted for in the field enveloge(t). The optimal pulse can then be calculated by
inserting the optimized envelope into eq. 5.6.

The control yield, see eq. 4.2, upon calculation of the oalifield, is rarely equal to one,
and depends on the allowed field strengths. The iterativersetof ref. [102, 129, 130]
as applied in this work is valid for all field strengths. Limig the field intensity to the
weak field regime drastically reduces the control yield tab& much less than one. It
is therefore of interest to quantify the amount of the driveavepacket that has reached
the position of the target wavepacket. This can be measugrdtbaenormalization of the
control yield and is defined as

_ ™ )
Ocr(tp)lxs(ty))

for a vibrational target state located on the excited edmtd:rstatejngar)).

(5.77)

In order to derive an expression for the control field, theewum of the functional
J(tp; E, E*) is determined by applying a functional derivative with resipto the conju-
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gate of the electric field enveloge*(¢). The functional derivative of the first term in eq.
4.1, yields the following
o 2 dU(tys,to)
sprp (Ve V)P = (Ve S 10 00)) (V) Vi)

W e 0] () ),
in view of the time evolution operatdr (¢, t,) which depends on the complex value of
the field envelope. These two terms appear due to the apphaaitthe product rule. The
form of the time evolution operator is given below

(5.78)

Ly
Utty.to) = Texp (— 1 [ ar FY + BED () (5.79)
to
whereT is the time ordering operator. Calculation of the functiatexivative of eq. 5.79
results in the following

SU(ts, to) R (1)
SE*(t) ﬁU(tf’t)WU(t’to) (5.80)
where the derivation has employed the following relation
RWA
/ - )y _ g () 581
5E>k field 8E*< ) .

with the assumption thag < ¢ < ¢;. Inserting equation 5.80 into eq. 5.78 and setting the
latter equal to zero, the general solution of the optimizset envelope is obtained.

i ) & FNRIC)
B(t) = - [wp w0 ety
D) OE*(t)
HHIYA) (1) 1 (5-82)
(W) (g ) 100N Tl ¥(er)
The effect of the time evolution operator acting on the tasgatelU (¢, ;)| V¢,,) iS @an
evolution backward in time, denoted [&¥(¢)), and the effect of the operator on the initial

stateU (t, to)|¥(to)) is a propagation forward in time, denoted|é&st)).

5.5.1 The Two-level System

The concepts, namely the equations of motion, for a rudiargritvo-level system dis-
cussed in section 5.4.2 will be applied here within OCT. Tihecsure remains consistent
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beginning with the derivation of the optimal electric fielavelope for a resonant one-,
nonresonant two- and three-photon transitions.

Resonant One-photon Transition

A resonant one-photon transition from the ground electratate to the final excited
state is standard and is given here for comparison to theesonant cases. According
to eq. 5.82, the derivation of the molecular field Hamiltmriﬂvlv‘” must be performed
to obtain an expression for the coupled electric field. Thavdgve with respect to the
complex electric field envelope is given below
~ (RWA)
T Cislen el (583)

as well as that with respect to the electric field envelope

JHE™ @)y 1

" field A Z 5.84
Inserting egs. 5.83 and 5.84 into eq. 5.82 results in theviallg expression for the
control field.

B(t) = BB (Ot + Dt (0 s 6)

~Oa 0 (0 P t)) + (G 1)) |

The optimal field is calculated iteratively by solving the 3B according to egs. 5.60 and
5.61, for the forwardy,(¢)) and backwardd,(t)) propagated vibrational wave functions.
The newly appearing,(t)) denotes the backward propagated vibrational wave function
given as

(5.85)

[0(t)a) = Ut 1) IX&™), (5.86)

a

whereU (¢, ¢ ;) evolves|x™) backwards in time.

Nonresonant Two-photon Transitions

The development of OCT with respect to nonresonant twoguhisiteractions is accom-
plished by first solving the derivatives for the correspagdinolecular field Hamiltonian.
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The solution to these derivatives are given below, first wegpect to the complex conju-
gate of the field envelope

HELEWA)
};ﬁgif()(t) - _%gg:fE( )2 |pa) (Pal — ;E () g oyl (5.87)

and second with respect to the ordinary field envelope

OFLE™ () 1 ) 1 @)
Tam =3 X POl - jEOnlentel 69

Inserting the solution to the derivatives, egs. 5.87 an@,5r80 the expression for the
control field, eq. 5.82, results in the following expresdsionthe field envelope

MbﬁﬂZW%wﬂZ% (DO E() + 12 0y (1) e (D) (1))
9,f

a=g,f

(D 2010 B + 15 OV E®) (D i xalty)))|

a=g,f a=g,f

(5.89)

which shows an explicit dependence on the field envelope @might—hand side of the
equation. It is therefore necessary to modify the standeindrae in which the optimal
field is calculated. The time—dependent Schrodinger emuébr the vibrational wave
functions are given by equations 5.65 and 5.66 as well ashiorespective backward
propagation.

The procedure to compute the optimal field can be put into aenedficient form if
JiZ dt |E(t)* is replaced in eq. 5.76 by the expressififi dt |E(t)[*/2. Then, the
functional derivative with respect t6*(¢) leads to the expressidi*(t) E2(t) instead of
E(t), on the right—hand side of equation. 5.89. Since the terimggstional to,ufl%? only
result in minor corrections they are neglected and the &ffecontrol field is given as

E(t) = 52 [ (Gert™) + (o)1) Bt (0)

~ (197 (0) (0 Pealtn)) + (s E)) |

(5.90)

where&(t) = E?*(t). Such a replacement is also possible in the related timerdigmt
Schrodinger eqgs. 5.65 and 5.66 and the determination afgtimal field can be done in
the standard way but with the primary focus&ft).
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Nonresonant Three-photon Transitions

The last multiphoton transition that is considered is thiegkphoton interaction in which
the molecular field Hamiltonian was given previously in eq72% In order to acquire
an expression for the control field, its derivative is takeité: once with respect to the

complex electric field envelope
OHpay (1) _ 3 :
¢ = B2t 5.91
25 (D) BT Ongrleg) sl (5.91)

and once with respect to the original field envelope

OHM () 3 50 )

67 = ——F*(t : 5.92
These equations are substituted into the general conttdldep 5.82 and lead to the
following control field

3Z,u(3 E*2( )

E(t) =
(t) = SAAG)

(O DR + Ot ™) Ga®ls(0)
~ OO0 (0 Patr) + O s t) ]

givenin terms of nonresonant three-photon interactiohg.tiimne—dependent Schrodinger
equations for the vibrational wave functions are given kg, €969 and 5.70 as well as for
the respective versions for backward propagation.

(5.93)

Again, the procedure to compute the optimal field can be patammore efficient form by
replacmgftf dt |E(t)|? ineq. 5.76 Wlthftf dt |E()|%/3. Then, the functional derivative
with respect toE*(t) leads toE£*(t)E3(t) instead of E(t) on the right-hand side of
equation. 5.93 and we arrive at

3
(1) = S5 T (D) + (ol IGE™) ) (0)

(5.94)
~ (150 (X (t)) + (O I tn)) |,

where&(t) = E3(t). Such a replacement is also possible in the related timerdmt
Schrodinger egs. 5.69 and 5.70 and the determination aftimal field can be done in
the standard way but focusing primarily xt).



