
Chapter 5

Theory to Nonresonant Multiphoton

Transitions (NMT)

Nonresonant multiphoton transitions (NMT) [73] are a common phenomenon that occur

in many types of molecules. The theory of femtosecond spectroscopy can benefit from the

inclusion of NMT because these transitions play a significant role in population transfer.

These types of transitions take place if the energy of two or more photons is necessary to

achieve an electronic excitation, where no intermediate states exist which facilitate single-

photon transitions. The absence of intermediate states indicates that coupling matrix el-

ements to the multitude of high-lying, off-resonant statesare very important. Although

NMT processes have been extensively considered in the frequency domain, attempts in

the femtosecond time regime have been limited [34, 35, 36, 37].

As shown in the last chapter, several laser pulse control experiments on polyatomic sys-

tems have been recently demonstrated [19, 27, 115, 116, 117,118, 119]. In particular ref.

[27] shows that NMT can be a route to achieve control of molecular dynamics. Taking

both NMT and control experiments into account, the aim of this chapter is to develop

a theory for the description of NMT which can be combined to optimal control theory

(OCT) [120, 121]. The structure of this chapter starts with the model which will be ap-

plied to two descriptions of NMT: a perturbative and a nonperturbative approach. The

perturbative approach, which is limited to the low-field regime and therefore not applica-

ble to standard OCT, will give some insight into the development of the nonperturbative

approach, which, by solving the exact form of the TDSE, accounts for the strong-field
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regime and is incorporated into OCT.

The theory of NMT [120] has been developed by PD Dr. May at the Humboldt Unversity

Berlin and has been applied in this work.

5.1 The Model

This section introduces the model for the description of NMT. In this work, the nonadia-

batic couplings have been neglected, since they are not relavant for the chosen electronic

states of the molecular system. For the sake of completeness, the TDSE is given below

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉, (5.1)

where the complete Hamiltonian

Ĥ(t) = Ĥmol + Ĥfield(t), (5.2)

is composed of the molecular̂Hmol and the fieldĤfield(t) Hamiltonians, which was previ-

ously denoted aŝV(t) (see eq. 3.15). The expansion of the molecular Hamiltonian with

respect to the adiabatic electronic states,|ϕa〉, formerly defined as|Ψel(ra;RA)〉 from eq.

2.4, is given as

Ĥmol =
∑

a

Ĥa(q)|ϕa〉〈ϕa|, (5.3)

whereĤa(q) are the respective vibrational Hamiltonians andq is the set of vibrational

coordinates. The eigenvaluesǫaM are given as

ǫaM = ǫa + ωaM where M = 0, 1, 2, . . . , (5.4)

where the electronic quantum numbers are denoted by the index a and the vibrational

quantum numbers by the indexM . The electronic reference energy, i.e. the minimum

value of the PES plus the zero point energy is given asǫaM . The vibrational eigenfunctions

are depicted as|χaM〉, previously denoted as|Ψv
el,j〉, see section 2.3.1.

The second part of eq. 5.2, which describes the coupling to the radiation field, is given by

the standard dipole approximation as

Ĥfield(t) = −E(t)µ̂ ≡ −E(t)
∑

a,b

µab|ϕa〉〈ϕb|+ h.c., (5.5)
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whereµ̂ is the molecular dipole operator, andµab are the electronic dipole matrix ele-

ments, see eq. 3.35, andE(t) is the electric field which is written here as

E(t) =
1

2
nE(t)e−iωt + c.c, (5.6)

wheren is the linear polarization unit vector,E(t) is the field envelope, andω is the

carrier frequency. The field envelope

E(t) = E0sin2

(
tπ

tp

)

for t0 ≤ t ≤ tp (5.7)

defines the field shape as a sine squared function, the field amplitude is denoted asE0,

and the pulse duration,tp. The abbreviations h.c. and c.c. found in eqs. 5.5 and 5.6 are

the hermitian conjugate and the complex conjugate respectively. The formal solution to

eq. 5.1, which evolves the initial wave functionΨ(t0) in time, is given as

|Ψ(t)〉 = Umol(t− t0)S(t, t0;E)|Ψ(t0)〉 , (5.8)

whereUmol(t− t0) is the field-free evolution operator

Umol(t− t0) = exp
(

− i

~
Ĥmol(t− t0)

)

(5.9)

and theS-operator,S(t, t0;E), couples the radiation field to the molecular system

S(t, t0;E) = T̂ exp
(

− i

~

t∫

t0

dτ U †
mol(τ − t0)Ĥfield(τ)Umol(τ − t0)
︸ ︷︷ ︸

−µ̂(τ)E(τ)

)

, (5.10)

whereT̂ is the time ordering operator [74]. The field Hamiltonian is defined in the inter-

action picture, and therefore the transition dipole momentbecomes time dependent. The

S-operator can be expanded as

S(t, t0;E) = 1 + S(1)(t, t0;E) + S(2)(t, t0;E) + . . . (5.11)

The first order expansion of the S-matrix is defined as

S(1)(t, t0;E) =
i

~

t∫

t0

dτ µ̂(τ)E(τ), (5.12)

and the second order expansion is given as

S(2)(t, t0;E) = − 1

~2

t∫

t0

dτ1

τ1∫

t0

dτ2 µ̂(τ1)E(τ1)µ̂(τ2)E(τ2). (5.13)
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5.2 Perturbative Approach

Nonresonant multiphoton processes have been described in the perturbative framework

[39, 122]. The perturbation order is determined by the powerof the field strength upon a

Taylor expansion of the S-operator. Each power of the field strength corresponds to the

number of photons involved in the transition.

Multiphoton transitions can be described in terms of the expansion coefficients which are

obtained in the following. The state function is expanded interms of all the electronic and

vibrational basis and gives

|Ψ(t)〉 =
∑

a,M

CaM(t)|ΨaM〉, (5.14)

where the wave function,

|ΨaM〉 = |χaM〉|ϕa〉 (5.15)

is composed of the vibrational|χaM〉 and electronic|ϕa〉 wave functions, andCaM(t) are

the time-dependent expansion coefficients. The indices denote the set of electronic quan-

tum numbers (a = g, f, . . . ) and the vibrational quantum numbers (M = 0, 1, 2, . . . ).

Multiplying eq. 5.14 by the electronic-vibrational state〈ΨfN | from the left and rearrang-

ing the expression in terms of the expansion coefficients, inwhich the initial state is taken

as the ground vibrational state in the ground electronic state |Ψg0〉, results in

CfN(t) = e−iωfN (t−t0)〈ΨfN |S(t, t0;E)|Ψg0〉 . (5.16)

Moreover, the time-dependent expansion coefficients contain information on the vibra-

tional wavepacket dynamics induced by this transition. Single photon transitions are de-

scribed by eq. 5.16 by replacing the S-opertor by its first order term, see eq. 5.12. In the

same manner, two photon nonresonant transitions can be described within perturbation

theory [34] in which the complete S-operator in eq. 5.16 is replaced by the second order

contribution of the S-operator expansion eq. 5.13. The matrix elements for the coefficient

expression in eq. 5.16 are given as

〈ΨfN |S(2)(t, t0;E)|ΨgM〉 = − 1

~2

t∫

t0

dτ1

τ1∫

t0

dτ2〈ΨfN |[E(τ1)µ̂(τ1)][E(τ2)µ̂(τ2)]|ΨgM〉,

(5.17)
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where the ground vibrational state is replaced by the general vibrational quantum number

M . The expansion coefficients for the case of cw-excitation inthe frequency domain are

obtained in the limit ast0 → −∞ and are given below for the excited electronic state

CfN(t) = −e−iωfN (t−t0)−i2ωt0
E2

4~2

∑

xK

µ(fN, xK)µ(xK, gM)

ωxK − ωgM − ω

×
( 1

ωfN − ωgM − 2ω + iǫ
− 1

ωfN − ωxK − ω + iǫ

)

,

(5.18)

where the electric fieldE(t), eq. 5.6, is replaced with the contribution,e−iωt, andE

is the constant field envelope. The sum overxK accounts for all of the off-resonant

electronic-vibrational states. The dipole transition matrix elements are given in general

as,µ(aN, bM) = 〈ΨaN |nµ̂|ΨbM〉, and include the unit vectorn.

The terms of the expansion coefficients from eq. 5.18 can be best understood by applying

the sketch in fig. 5.1. The left set of electronic states is used to describe a complete

description of a molecular system. If the off-resonant terms are condensed into a single

electronic state|Ψi〉 which is placed conveniently between the initial ground electronic

state|ΨgM〉 and the excited electronic state|ΨfN〉, as depicted in the second set of states in

fig. 5.1, then the second term in eq. 5.18 describes the step-wise population transfer from

the ground state to the intermediate state,|ΨgM〉 → |Ψi〉 and then from the intermediate

state to the final excited state,|Ψi〉 → |ΨfN〉, both transitions occurring via a single-

photon absorption process. The first term in eq. 5.18 is responsible for a direct transition

from the ground state,|ΨgM〉, to the excited state,|ΨfN〉, without support of intermediate

states,|Ψi〉, and gives a resonant contribution regardless of the position of |Ψi〉, as can

be seen in the representation on the far-right in fig. 5.1. In this representation, because

|Ψi〉 is placed energetically far above|ΨfN〉, the first term in eq. 5.18 decreases in1/ωi

(≡ 1/ωxK) and the second in1/ω2
i (≡ 1/ω2

xK), whereωxK is the transition frequency into

the off-resonant electronic states. Hence, it is the first term that strongly dominates and

therefore the second term will be neglected in the following.

If the single state|Ψi〉 is replaced now by the manifold of electronic-vibrational states

belonging to the off-resonant electronic states|ΨxK〉, then the smallness of the overall

sum of the expansion coefficients in eq. 5.18 can be compensated for by introducing the

density of states for the manifold of states

̺(Ω) =
∑

x,K

δ(Ω− ωxK) , (5.19)
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Figure 5.1: A schematic representation of the ground|ΨgM 〉 and excited|ΨfN 〉 electronic states,

with the manifold of off-resonant states|ΨxK〉, used to describe eq. 5.18. The first subfigure

depicts the complete space for a molecular system. The second set of states depict a two-photon

transition from the ground state|ΨgM 〉 to the excited state|ΨfN 〉. The off-resonant states|ΨxK〉
have been condensed into a single intermediate state|Ψi〉, and placed directly between the two

states to support the transition. The last set of electronicstates depicts a direct nonresonant two-

photon transition without the aid of the intermediate state|Ψi〉, which has been moved to higher

energetic values.

where the eigenvalueωxK of the off-resonant states is typically not known, and|ΨxK〉
the electronic-vibrational states are spread into a density of final states. Implementing the

density of states into the expression for the expansion coefficients, eq. 5.18, yields

CfN(t) = − e−iωfN (t−t0)−i2ωt0

ωfN − ωgM − 2ω + iǫ

E2

~2

∫

dΩ ̺(Ω)
µ(fN,Ω)µ(Ω, gM)

Ω− ωgM − ω
, (5.20)

whereµ(fN,Ω) andµ(Ω, gM) denote frequency-dependent, transition dipole operator

matrix elements. The expression indicates that the efficiency of the nonresonant two-

photon transition, i.e. the population|CfN(t)|2 of the excited electronic-vibrational state,

is essentially determined by theΩ-integral. It represents a summation of all off-resonant

single-photon transitions from the initial state with energy ~ωgM into the nonresonant

states with energy~Ω, and can be viewed as an effective two-photon transition matrix

element coupled to the square of the field strength. Consequently, only the complete

summation of all these nonresonant contributions may lead to a sufficiently large two-

photon transition amplitude.
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5.3 Nonperturbative Approach

Because any power of the field strength is allowed when considering multiphoton transi-

tions, it is necessary to move to a description that includesthe strong-field regime. This

regime can be accounted for by solving the TDSE completely. This method has been

demonstrated for diatomic molecules at fixed-nuclear distances [123, 124] as well as

for one-dimensional model systems where the Born-Oppenheimer Approximation was

avoided [125, 126, 127]. Solving the TDSE with inclusion of the ground and all excited

electronic states for a molecular system would provide information on every optical tran-

sition, including nonresonant multiphoton transitions: nonresonant population transfer,

multiphoton ionization, and high harmonic generation. However, this is not possible for

polyatomic molecules, due to computational restrictions,and therefore in order to apply

the essence of this method to nonresonant multiphoton transitions an effective Hamilto-

nian is derived.

5.3.1 Effective Schr̈odinger Equation for NMT Processes

The restriction to the number of excited states that can be calculated for polyatomic

molecules, prevents a description in which its TDSE can be solved exactly, for NMT

processes. Therefore, the complete space is divided into a portion which describes the

attainable states; the primary state space (denoted by the index a), and a portion which

describes the other states; the secondary state space (denoted by the index x). This di-

vision of the complete space is accomplished by introducinga projection operator, or

projector for short, for each space [74],

P̂ =
∑

a

|ϕa〉〈ϕa| (5.21)

Q̂ =
∑

x

|ϕx〉〈ϕx| (5.22)

where the operatorŝP andQ̂ are defined as a complete sum of states in their respective

primary and secondary space. The projection operators together form a complete space

andP̂ + Q̂ = 1. By applying the projectors onto an arbitrary state in the Hilbert space

one obtains the primary|Ψ1〉 and secondary|Ψ2〉 states.

|Ψ(t)〉 = (P̂ + Q̂)|Ψ(t)〉 = P̂ |Ψ(t)〉+ Q̂|Ψ(t)〉 = |Ψ1(t)〉+ |Ψ2(t)〉 (5.23)
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In the same manner, the reduced Hamiltonians are introduced

P̂Ĥ(t)P̂ = Ĥ1(t) = Ĥ
(1)
mol + Ĥ

(1)
field(t) (5.24)

Q̂Ĥ(t)Q̂ = Ĥ2(t) = Ĥ
(2)
mol + Ĥ

(2)
field(t), (5.25)

whereĤ1(t) and Ĥ2(t) are described exclusively in the primary and secondary state

space, respectively. In order to obtain an equation that describes the motion of the primary

states, the square of the completeness relation is insertedinto the TDSE,

i~
∂

∂t
|Ψ(t)〉 =

(

Ĥmol + Ĥfield(t)
)(

P̂ + Q̂
)2

|Ψ(t)〉 (5.26)

where theP̂ Q̂ = 0 terms are zero. Multiplying equation 5.26 from the left, once with the

primary state projector̂P and once with the secondary state projectorQ̂, the respective

coupled equations are obtained:

i~
∂

∂t
|Ψ1(t)〉 = Ĥ1(t)|Ψ1(t)〉+ P̂ Ĥfield(t)Q̂|Ψ2(t)〉 (5.27)

i~
∂

∂t
|Ψ2(t)〉 = Ĥ2(t)|Ψ2(t)〉+ Q̂Ĥfield(t)P̂ |Ψ1(t)〉. (5.28)

The mixed termsP̂ĤmolQ̂ = Q̂ĤmolP̂ = 0 are also equal to zero. It is assumed that

the system is initially located in the ground vibrational ofthe ground electronic state

|Ψ1(t0)〉 = |Ψ(1)
g0 〉 which belongs to the primary space, and consequently, the initial wave

function in the secondary state space is zero,|Ψ2(t0)〉 = 0. Solving eq. 5.28, under the

aforementioned conditions, leads to the solution of the wave function in the secondary

state space

|Ψ2(t)〉 = − i
~

t∫

t0

dt̄ U2(t, t̄;E)Q̂Ĥfield(t̄)P̂ |Ψ1(t̄)〉, (5.29)

where the time nonlocality is depicted byt̄, and is due to the use of the projection opera-

tors, and contains a memory effect [128]. The newly appearing time evolution operator is

analogous to that given in eq. 5.8, and is given below in termsof time nonlocality:

U2(t, t̄) = U
(2)
mol(t̄− t0)S2(t̄, t0;E). (5.30)

The molecular time evolution operator is analogous to eq. 5.9 and is given as

U
(2)
mol(t̄− t0) = exp

(

− i

~
Ĥ

(2)
mol(t̄− t0)

)

. (5.31)
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The S-operator, which accounts for the field evolution of thewave function, is given below

S2(t̄, t0;E) = T̂ exp
(

− i

~

t∫

t0

dt̄ U
†(2)
mol (t̄− t0)Ĥ

(2)
field(t̄)U

(2)
mol(t̄− t0)

)

, (5.32)

and is similar to eq. 5.10, wherêHfield has been replaced with the field HamiltonianĤ
(2)
field

for the secondary states. Inserting eq. 5.29 into eq. 5.27 results in a closed equation for

the primary states|Ψ1〉

i~
∂

∂t
|Ψ1(t)〉 = Ĥ1(t)|Ψ1(t)〉+

t∫

t0

dt̄ Kfield(t, t̄)|Ψ1(t̄)〉 . (5.33)

where the kernel,Kfield, is defined as

Kfield(t, t̄) = − i
~
P̂Ĥfield(t)Q̂U

(2)
mol(t− t̄)S2(t, t̄;E)Q̂Ĥfield(t̄)P̂ (5.34)

and accounts for all NMT processes realized by the coupling to the manifold of secondary

states.

5.3.2 Weak Field Nonresonant Multiphoton Transition

The solution of|Ψ1(t)〉 is exact and should be identical with|Ψ(t)〉 projected onto the

primary state space since eq. 5.33 has been derived without applying an approximation.

However, in order to solve for the primary states in a concrete example, the kernel must

be approximated since theKfield in eq. 5.34, already includes a complete summation with

respect toE via S2, cf. eqs. 3.26 and 5.32. The kernel is therefore representedas a sum

of terms with respect to the order of the field strength and is separated accordingly,

Kfield(t, t̄) = K
(2)
field(t, t̄) +K

(3)
field(t, t̄) + ... , (5.35)

whereK(2)
field andK(3)

field are the respective second and third power terms in the field strength.

In order to get an expression that is second order in the field strength,S2 in eq. 5.34 is set

to one;S2(t, t̄;E) ≈ 1, and the following is obtained,

K
(2)
field(t, t̄) = − i

~
P̂Ĥfield(t)Q̂U

(mol)
2 (t− t̄)Q̂Ĥfield(t̄)P̂ (5.36)

which, due to its second order character of the field Hamiltonian, suggests a description

for two-photon transitions. Unfortunately, there is not any specific criterion about which
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powers of the field strengthE(t), found in the kernelK(2)
field, are proper for the calculation

of the state vectorΨ1(t). In the strong-field regime, there is no way to prove that the

dynamics that ensue convey the proper information. In fact,the only criterion that may

be applied, as suggested by the limit of perturbation theory, is that the powers of the field

strength may only induce a maximum fourth order dependence on the population of the

excited state, i.e.Pf ∼ E4.

In order to obtain the kernel for the third power of the field strength, a linear expansion of

S2(t, t̄;E) is taken, which depends on the field Hamiltonian for the secondary states, see

eqs. 5.32 and 5.25, and results in

K
(3)
field(t, t̄) = − 1

~2

t∫

t̄

dt1 P̂ Ĥfield(t)Q̂U
(2)
mol(t− t1)Q̂Ĥfield(t1)Q̂U

(2)
mol(t1 − t̄)Q̂Ĥfield(t̄)P̂ .

(5.37)

The electronic matrix elements of the kernel are given below, in a style consistent with

the standard form of the electric-dipole terms, written as

K
(2)
ab (t, t̄) = −µ

(2)
ab (t− t̄)E(t)E(t̄) , (5.38)

and

K
(3)
ab (t, t̄) = −

t∫

t̄

dt1µ
(3)
ab (t, t1, t̄)E(t)E(t1)E(t̄) , (5.39)

respectively for the second and third order terms, wherea andb index the primary space.

The µ
(2)
ab andµ

(3)
ab terms are analogous to the ordinary dipole matrix elements but now

given with respect to the number of nonresonant photons, andare written in their complete

form as

µ
(2)
ab (t− t̄) =

i

~
〈ϕa|µ̂Q̂U (mol)

2 (t− t̄)Q̂µ̂|ϕb〉

=
i

~

∑

x

µaxe
−iĤxτ/~

µxb

(5.40)

and

µ
(3)
ab (t, t1, t̄) =

1

~2
〈ϕa|µ̂Q̂U (mol)

2 (t− t1)Q̂µ̂Q̂U
(mol)
2 (t1 − t̄)Q̂µ̂|ϕb〉

=
1

~2

∑

x,y

µaxe
−iĤx(t−t1)/~

µxye
−iĤy(t1−t̄)/~

µyb

(5.41)
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where the second equality in both equations is obtained by introducing an expansion with

respect to the secondary electronic states and in doing so the transition dipole matrix

elements, e.g.µax, are introduced, wherex is an index for the secondary space.

In order to account for nonresonant transitions with largernumber of photons, the corre-

sponding order of the kernel should be taken. In the rest of this work, we will consider up

to the third order of the kernel, i.e. inclusion of two and three photon contributions. This

results in the following effective TDSE for the primary vibrational states

i~
∂

∂t
|χa(t)〉 = Ĥa|χa(t)〉 −E(t)

∑

b

µab|χb(t)〉

−
∑

b

t∫

t0

dt̄µ
(2)
ab (t− t̄)E(t)E(t̄)|χb(t̄)〉

−
∑

b

t∫

t0

dt̄

t∫

t̄

dt1µ
(3)
ab (t, t1, t̄)E(t)E(t1)E(t̄)|χb(t̄)〉,

(5.42)

where the first two terms describe the evolution of the vibrational wave function within

the primary state space,µab represents the transition dipole matrix elements, and|χa〉
and|χb〉 are the vibrational state located on theath andbth electronic state, respectively.

The last two terms are second and third order contributions which describe the possible

nonresonant two- and three-photon transitions and effectively account for the secondary

state space, whereµ(2)
ab (t− t̄) andµ

(3)
ab (t, t1, t̄) are given in eqs. 5.40 and 5.41 respectively.

5.4 Rotating Wave Approximation

The time nonlocality that emerged from partitioning the complete space into a primary

and secondary state space is removed by implementing the rotating wave approximation

(RWA) to nonresonant multiphoton transitions (NMT) and applying the secondary space

density of states (DOS). A reasonable approximation is alsoelucidated for a concrete

expression of the transition matrix elements, given as integral terms for the nonresonant

portion in eq. 5.42. In order to arrive at the RWA the molecular wave function is ex-

panded with respect to powers of the basic oscillation∼ exp(−iωt) of the applied pulse.

Accordingly, the vibrational wave function is expanded in orders of the field frequency
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and is given below

χa(t) =
∑

n

e−inωtχa(n; t), (5.43)

wheren runs over all integer values. This expansion modifies the coupled time–dependent

Schrödinger eqs. 5.42 to
∑

n

e−inωt
(

[i~
∂

∂t
+ n~ω −Ha]|χa(n; t)〉

+
1

2

∑

b

µab[E(t)|χb(n− 1; t)〉+ E∗(t)|χb(n+ 1; t)〉]

−
∑

b

t∫

t0

dt̄ Kab(t, t̄)e
inω(t−t̄)|χb(n; t)〉

)

= 0 .

(5.44)

Note the introduction ofµab = nµab and the abbreviation forK(2)
ab + K

(3)
ab asKab. These

latter quantities also depend on the field amplitudesE(t) andE∗(t). The RWA has been

achieved if one assumes that the time dependence of the expression in the large bracket in

eq. 5.44 is slow compared to the oscillations with multiplesof ω. This leads to

i~
∂

∂t
|χa(n; t)〉 =[n~ω −Ha]|χa(n; t)〉

− 1

2

∑

b

µab[E(t)|χb(n− 1; t)〉+ E∗(t)|χb(n+ 1; t)〉]

+
∑

b

t∫

t0

dt̄ Kab(t, t̄)e
inω(t−t̄)|χb(n; t)〉 .

(5.45)

The requirement that the time–dependence of eq. 5.45 be slowis guaranteed if a restric-

tion ton is taken where the energy difference corresponding ton~ω− ǫa is much smaller

than~ω.

5.4.1 Revisiting the Effective Vibrational Schr̈odinger Equation

The effective TDSE, eq. 5.42 is reformulated in the framework of the RWA. It is accom-

plished by expanding the vibrational wave function with respect to the basic oscillations

of the applied pulse as seen in eq. 5.43 and arranging the expression in commone−inωt

terms. This process will be conducted in two steps; first the technique will be applied to

the nonresonant two-photon term followed by the nonresonant three-photon term of eq.

5.42.
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The Two-photon Term

Applying the expansion of the vibrational wave functions presented in eq. 5.43, as well as

the electric field, given in eq. 5.6, to the nonresonant two-photon term of eq. 5.42 results

in the following expression,

−
∑

b

t∫

t0

dt̄µ
(2)
ab (t− t̄)E(t)E(t̄)|χb(t̄)〉 = −1

4

∑

n

e−inωt
∑

b

t∫

t0

dt̄µ
(2)
ab (t− t̄)einωt

[E(t)e−iωt + E∗(t)eiωt][E(t̄)e−iωt̄ + E∗(t̄)eiωt̄]e−inωt̄|χb(n; t̄)〉
(5.46)

whereµ(2)
ab = µ

(2)
ab nn has been introduced. An extra oscillating factor1 = e−inωteinωt

has also been introduced into the sum over n in order to arrange all terms with respect

to a common prefactore−inωt. The ordering of this equation with respect to the common

prefactor,e−inωt, results in a shift of the vibrational wave function from|χb(n; t̄)〉 to

|χb(n± 2; t̄)〉. Introducing the time difference term,τ = t− t̄ results in the following

−
∑

b

t∫

t0

dt̄ µ
(2)
ab (t− t̄)E(t)E(t̄)|χb(t̄)〉 = −1

4

∑

n

e−inωt
∑

b

t−t0∫

0

dτ |I(2)
ab (n; t, τ)〉,

(5.47)

where the individual terms are condensed in|I(2)
ab (n; t, τ)〉 and are revealed as

|I(2)
ab (n; t, τ)〉 = µ

(2)
ab (τ)

×
(

E(t)E(t− τ)ei(n−1)ωτ |χb(n− 2; t− τ)〉

+ E(t)E∗(t− τ)ei(n−1)ωτ |χb(n; t− τ)〉
+ E∗(t)E(t− τ)ei(n+1)ωτ |χb(n; t− τ)〉

+ E∗(t)E∗(t− τ)ei(n+1)ωτ |χb(n + 2; t− τ)〉
)

.

(5.48)

The vibrational wavefunction’s expansion coefficients, see eq. 5.43, take the values ofn

andn± 2.
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The Three-photon Term

The nonresonant three-photon term of eq. 5.42 is also expanded by applying eq. 5.43, as

was done for the two-photon term previously. This results inthe following expression

−
∑

b

t∫

t0

dt̄

t∫

t̄

dt1µ
(3)
ab (t, t1, t̄)E(t)E(t1)E(t̄)|χb(t̄)〉 =

−1

8

∑

n

e−inωt
∑

b

t∫

t0

dt̄

t∫

t̄

dt1µ
(3)
ab (t, t1, t̄)e

inωt[E(t)e−iωt + E∗(t)eiωt]

[E(t1)e
−iωt1 + E∗(t1)e

iωt1 ][E(t̄)e−iωt̄ + E∗(t̄)eiωt̄]e−inωt̄|χb(n; t̄)〉,

(5.49)

where the termµ(3)
ab = µ

(3)
ab nnn has been introduced. New time argumentst− t̄ = τ and

t1− t̄ = τ̄ can be substituted into the expression. Arranging the expression again in terms

of a common prefactor,e−inωt results in the following form

−
∑

b

t∫

t0

dt̄

t∫

t̄

dt1µ
(3)
ab (t, t1, t̄)E(t)E(t1)E(t̄)|χb(t̄)〉 =

− 1

8

∑

n

e−inωt
∑

b

t−t0∫

0

dτ

τ∫

0

dτ̄ |I(3)
ab (n; t, τ, τ̄)〉 ,

(5.50)

where|I(3)
ab 〉 is given below in its full complexity:

|I(3)
ab (n; t, τ, τ̄)〉 = µ

(3)
ab (τ − τ̄ , τ̄)

×
(

E(t)E(t− (τ − τ̄ ))E(t− τ)e−iωτ̄+i(n−1)ωτ |χb(n− 3; t− τ)〉

+ E(t)E∗(t− (τ − τ̄))E(t− τ)eiωτ̄+i(n−1)ωτ |χb(n− 1; t− τ)〉
+ E∗(t)E(t− (τ − τ̄))E(t− τ)e−iωτ̄+i(n+1)ωτ |χb(n− 1; t− τ)〉
+ E∗(t)E∗(t− (τ − τ̄))E(t− τ)eiωτ̄+i(n+1)ωτ |χb(n+ 1; t− τ)〉
+ E(t)E(t− (τ − τ̄ ))E∗(t− τ)e−iωτ̄+i(n−1)ωτ |χb(n− 1; t− τ)〉
+ E(t)E∗(t− (τ − τ̄))E∗(t− τ)eiωτ̄+i(n−1)ωτ |χb(n+ 1; t− τ)〉
+ E∗(t)E(t− (τ − τ̄))E∗(t− τ)e−iωτ̄+i(n+1)ωτ |χb(n + 1; t− τ)〉

+ E∗(t)E∗(t− (τ − τ̄))E∗(t− τ)eiωτ̄+i(n+1)ωτ |χb(n+ 3; t− τ)〉
)

.

(5.51)
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Effective Vibrational Schrödinger Equation in Terms of RWA

The previously described two-photon and three-photon nonresonant terms have been an-

alyzed with respect to the expansion of the vibrational wavefunction and to the basic

oscillations of the electric field. Inserting these expressions back into the effective vibra-

tional Schrödinger equation, equation. 5.42, results in the following,

i~
∂

∂t
|χa(n; t)〉 =

(

(Ĥa − n~ω)|χa(n; t)〉 − 1

2

∑

b

µab

(
E(t)|χb(n− 1; t)〉+ E∗(t)|χb(n+ 1; t)〉

)

−1

4

∑

b

∫ t−t0

0

dτ |I(2)
ab (n; t, τ)〉 − 1

8

∑

b

∫ t−t0

0

dτ

∫ τ

0

dτ̄ |I(3)
ab (n; t, τ, τ̄)〉

(5.52)

which is given in terms of the basic oscillations of the field.In order to arrive at the RWA,

it must be guaranteed that the prefactor(Ĥa − n~ω) is much less than~ω. Consequently,

the vibrational wave function’s expansion coefficients depend onn. For clarity it should

be noted that in a case of a two-level system, to describe a nonresonant two-photon tran-

sition requires thatn = 0 and±2. This corresponds to the ground electronic state and the

two-photons needed to populate the excited electronic state, respectively. To describe a

nonresonant three-photon transition thenn = 0 and±3, again for the ground and excited

electronic states, respectively. This selection ofn, which depends on the system being

studied, reduces the terms described in eqs. 5.48 and 5.51 aswill be seen in the following

section, when the equation is applied to a two-level system.

The time nonlocality that resulted from the use of the projection operators is removed

based on the expansion of the vibrational states. The justification stems from eqs. 5.47

and 5.50, in which the electric field envelope and the expansion coefficients are all time

ordered. In both equations, the time interval inµ(2)
ab andµ(3)

ab is considered to be short, at

least short in comparison to the interval of the envelope andthe expansion coefficients and

therefore the latter two are extracted from the integrals. In addition, by applying the RWA

to the equations as was done for a basal three-level system, the fast oscillating terms of the

field are removed. Therefore, the local time approximation is based on the slow varying

behavior of the vibrational wave function as well as the fieldenvelope.
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Evaluation of the Transition Matrix Elements

In the following the DOS for the secondary states from equation 5.19 is reintroduced in

order to investigate the dipole components of the Schrödinger equation for NMT. Upon

applying the DOS to equation 5.40 the following two-photon component is obtained

µ
(2)
ab (τ) =

i

~

∫

dΩ ̺(Ω)µ(a,Ω)e−iΩτ
µ(Ω, b) , (5.53)

and describes the frequency dependent dipole matrix elements for a transition from state

b into the continuum and from the continuum to the final statea. The three-photon dipole

component

µ
(3)
ab (t, t1, t̄) =

1

~2

∫

dΩdΩ̄ ̺(Ω)̺(Ω̄)µ(a,Ω)e−iΩ(t−t1)
µ(Ω, Ω̄)e−iΩ̄(t1−t̄)

µ(Ω̄, b) (5.54)

describes a three step transition from the an initial stateb into the continuum and from the

continuum to the final statea via a continuum-continuum transition. This term depends

on three different time unitst, t1, andt̄ and to a dependence of two frequency termsΩ and

Ω̄.

Based on eq. 5.48, the multiples of the field frequency that are allowed whenn = 0 and

n = 2 areν = ±1 and3 and takingt0 → −∞ and definingµ = µn one obtains the

following set of equations

∞∫

0

dτeiνωτµ
(2)
ab (τ) =

i

~

∞∫

0

dτ

∫

dΩ̺(Ω)ei(νω−Ω)τµ(a,Ω)µ(Ω, b)

= −1

~

∫

dΩ̺(Ω)
µ(a,Ω)µ(Ω, b)

νω − Ω + iǫ
,

(5.55)

where the term in the denominator comes from the time integration of the exponential

term. This expression can be simplified by neglecting the frequency componentsνω of

the laser field, which have a much smaller value than the frequencyΩ of the secondary

DOS. Applying this approximation one ends up with an expression for the two-photon

dipole matrix elements

−1

~

∫

dΩ̺(Ω)
µ(a,Ω)µ(Ω, b)

νω − Ω + iǫ
≈ 1

~

∫

dΩ
̺(Ω)

Ω
µ(a,Ω)µ(Ω, b)

≡ µ
(2)
ab ≈

¯̺

~
µ2

eff ,

(5.56)
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where¯̺ =
∫
dω ̺(Ω)

Ω
is the mean DOS for the secondary states, andµeff is the mean tran-

sition dipole moment from one of the two primary states into the manifold of secondary

states. In order to arrive at a similar expression for the double integration term corre-

sponding to a three-photon transition, the same steps are applied as were done for the

approximate value ofµ(2)
ab . Starting with the given expression

∞∫

0

dτ

τ∫

0

dτ̄µ
(3)
ef (τ − τ̄ , τ̄)eiγωτ+iνωτ̄

= − 1

~2

∞∫

0

dτ

τ∫

0

dτ̄

∫

dΩdΩ̺̄(Ω)̺(Ω̄)ei(γω−Ω)τ+i(νω+Ω−Ω̄)τ̄µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

= − 1

~2

∞∫

0

dτ

∫

dΩdΩ̺̄(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)ei(γω−Ω)τ e
i(νω+Ω−Ω̄)τ − 1

i(νω + Ω− Ω̄)

= − 1

~2

∫

dΩdΩ̄
̺(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

νω + Ω− Ω̄

( 1

(γ + ν)ω − Ω̄ + iǫ
− 1

γω − Ω + iǫ

)

,

(5.57)

the integration over time has been carried out twice and results in the denominator terms.

The frequency ofΩ and the mean value of the frequencyΩ̄ for the DOS are considered

to be much larger in value than the frequency componentsνω andγω and therefore the

latter are neglected, resulting in the following expression

− 1

~2

∫

dΩdΩ̄
̺(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

νω + Ω− Ω̄

( 1

(γ + ν)ω − Ω̄ + iǫ
− 1

γω − Ω + iǫ

)

≈ 1

~2

∫

dΩdΩ̄
̺(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

νω + Ω− Ω̄

Ω− Ω̄

ΩΩ̄

≈ 1

~2

∫

dΩdΩ̄
̺(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

ΩΩ̄
,

(5.58)

where the commonΩ − Ω̄ on the numerator and denominator cancel. The final set of

expressions given below,

1

~2

∫

dΩdΩ̄
̺(Ω)̺(Ω̄)µ(e,Ω)µ(Ω, Ω̄)µ(Ω̄, f)

ΩΩ̄

=
1

~

∫

dΩ
̺(Ω)µ(e,Ω)

Ω

1

~

∫

dΩ̄
̺(Ω̄)µ(Ω, Ω̄)µ(Ω̄, f)

Ω̄

≡ µ
(3)
ef ≈

¯̺2

~2
µ3

eff

(5.59)
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accounts for a single dipole matrix element from the left integration and a squared dipole

matrix element from the right integration. The final expression is defined in terms of

the mean value of the DOS̺̄for the secondary states and the transition dipole moment

µeff . Considering the transition dipole matrix elements between the primary states and the

secondary states to be similar to the transition dipole matrix elements occurring between

the secondary electronic states is a rather crude approximation. However, because it is

not yet known how to calculate these values, eq. 5.59 provides a suitable parametrization

of the effective transition matrix elements.

5.4.2 A Two-level System

In the previous section 5.4.3 the reasoning behind moving from a time nonlocal to a time

local term was explained via the expansion of vibrational coefficients and eventually the

use of the RWA. It was also shown that the transition matrix elements can be approximated

by introducing the DOS for the secondary states. Because themodel is being developed

step by step, a two-level system is introduced in which a resonant one-, nonresonant two-

and three-photon transitions will be explored as can be seenin fig. 5.2.

Figure 5.2: The scheme for the rudimen-

tary two-level system from which resonant

single-, nonresonant two-, and three-photon

transitions are explored.

.

|ϕg〉|ϕg〉|ϕg〉

|ϕf〉|ϕf〉|ϕf〉

Resonant One-Photon Transitions

The resonant one-photon transition process is used here forpurposes of comparison and

will be used to exemplify our approach for NMT. Solving the Schrödinger equation for a

two-level system one obtains the following equations of motion for the ground

i~
∂

∂t
|χg(0; t)〉 = Ĥg|χg(0; t)〉 − 1

2
µgfE

∗(t)|χf (1; t)〉 , (5.60)

and excited

i~
∂

∂t
|χf(1; t)〉 =

(
Ĥf − ~ω

)
|χf(1; t)〉 − 1

2
µfgE(t)|χg(0; t)〉 (5.61)
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vibrational wave functions within the scope of the RWA, i.e.wheren = 0 andn = 1

for the ground and final vibrational wave functions, respectively. The rotational wave

Hamiltonian is written as

Ĥ(RWA)(t) = Ĥ
(RWA)
mol + Ĥ

(RWA)
field (t) (5.62)

where the molecular Hamiltonian is defined as

Ĥ
(RWA)
mol = Ĥg|ϕg〉〈ϕg|+ (Ĥf − ~ω)|ϕf〉〈ϕf |. (5.63)

The field Hamiltonian has the following form

Ĥ
(RWA)
field (t) = −1

2
E(t)µfg|ϕf〉〈ϕg| −

1

2
E∗(t)µgf |ϕg〉〈ϕf | (5.64)

where the fast oscillations of the electric field have been removed leaving the field enve-

lope and the transition matrix elementsµfg andµgf , or rather traditionally the transition

dipole matrix elements.

Nonresonant Two-photon Transitions

The equations of motion for nonresonant two-photon transitions are obtained according

to eq. 5.52 and the approximations that followed. Given below are the ground

i~
∂

∂t
|χg(0; t)〉 = Ĥg|χg(0; t)〉 − 1

2
µ(2)

gg |E(t)|2|χg(0; t)〉 − 1

4
µ

(2)
gf E

∗2(t)|χf(2; t)〉 (5.65)

and excited

i~
∂

∂t
|χf(2; t)〉 =

(
Ĥf − 2~ω

)
|χf(2; t)〉 − 1

2
µ

(2)
ff |E(t)|2|χf (2; t)〉 − 1

4
µ

(2)
fgE

2(t)|χg(0; t)〉
(5.66)

vibrational wave functions defined by the second order of thefield envelopeE(t). The

equations were obtained by applying the RWA, wheren = 0 andn = 2 for the ground

and final states respectively. The applied nonresonant two-photon molecular Hamiltonian

is defined below

Ĥ
(RWA−2)
mol = Ĥg|ϕg〉〈ϕg|+ (Ĥf − 2~ω)|ϕf〉〈ϕf |. (5.67)

The transition matrix elementsµ(2)
gf andµ(2)

fg are given in eq. 5.56. The effective molecular

field coupling Hamiltonian for the RWA description reads,

Ĥ
(RWA−2)
field (t) = −1

2

∑

a=g,f

|E(t)|2µ(2)
aa |ϕa〉〈ϕa|−

1

4
E2(t)µ

(2)
fg |ϕf〉〈ϕg|−

1

4
E∗2(t)µ

(2)
gf |ϕg〉〈ϕf |

(5.68)
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where the first term describes the contribution of the permanent dipole moments for both

states, and the remaining terms describe the transition between the ground state and the

final excited state.

Nonresonant Three-photon Transitions

The last considered scenario within the two-level system isthe interaction between two

electronic states via a nonresonant three-photon mechanism. The equations of motions

for the ground vibrational wave function

i~
∂

∂t
|χg(0; t)〉 = Ĥg|χg(0; t)〉 − 1

8
µ

(3)
gf E

∗3(t)|χf(3; t)〉 (5.69)

and the excited state vibrational wave function

i~
∂

∂t
|χf(3; t)〉 =

(
Ĥf − 3~ω)|χf(3; t)〉 − 1

8
µ

(3)
fgE

3(t)|χg(0; t)〉. (5.70)

are given with respect to the valuesn = 0 andn = 3 respectively. The molecular

Hamiltonian for a nonresonant three-photon transition is defined as

Ĥ
(RWA−3)
mol = Ĥg|ϕg〉〈ϕg|+ (Ĥf − 3~ω)|ϕf〉〈ϕf |. (5.71)

The fast oscillating terms of the laser field are neglected again as can be seen from the

molecular field Hamiltonian. The molecular field Hamiltonian is now defined as

Ĥ
(RWA−3)
field (t) = −1

8
E3(t)µ

(3)
fg |ϕf〉〈ϕg| −

1

8
E∗3(t)µ

(3)
gf |ϕg〉〈ϕf | (5.72)

in terms of the field envelope. The transition matrix elements µ(3)
gf andµ(3)

fg are given in

eq. 5.59.

5.4.3 A Three-level System

Two nonresonant processes are described in eq. 5.52. Considering a system which ac-

counts for both types of nonresonant transitions leads to a basal three-level system. Two

possibilities arise; one in which the first transition occurs via two and the second transi-

tion via three photons, or vice versa, as depicted in figure 5.3. The former of the two will

be investigated via the equations of motion where the three electronic states are denoted
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Figure 5.3: A basal system which ac-

counts for nonresonant two and three-

photon transitions. The first a two-

photon followed by a three-photon

transition.

.

|ϕg〉

|ϕf〉

|ϕi〉

by a = g, i, f . These equations couple the ground state to the intermediate excited state

via a two-photon transition,|ϕg〉 2~ω−−→ |ϕi〉 and the intermediate excited state is coupled

to the final excited state via a three-photon transition,|ϕi〉 3~ω−−→ |ϕf〉 . The application

of the RWA description to the equations of motion, corresponds to the oscillations which

contribute multiples of 0, 2, and 5 toexp(±iωt). The other multiplies are completely

neglected. This corresponds to the vibrational expansion coefficients|χg(0; t)〉, |χi(2; t)〉,
and|χf(5; t)〉, i.e. wheren = 0, 2 and5. This scenario relates to the RWA for eq. 5.52 and

is obtained by eliminating all multiples of~ω which do not correspond to the Schrödinger

equation being evaluated. The neglect of these terms guarantees that any oscillation with

multiples of~ω are absent in the remaining expansion coefficients, including single pho-

ton transitions. This is best understood when writing out the equations of motion for each

time local vibrational state. Starting with the ground state vibrational wave function, its

evolution is defined by the following

i~
∂

∂t
|χg(0; t)〉 = Ĥg|χg(0; t)〉 − 1

4
µ(2)

gg |E(t)|2|χg(0; t)〉 − 1

4
µ

(2)
gi E

∗2(t)|χi(2; t)〉 (5.73)

wheren = 0. The excited vibrational state includes only those coefficients that carry the

valuen = 2, the other terms are neglected. The equation of motion for the excited state

vibrational wave function, wheren = 2, reads

i~
∂

∂t
|χi(2; t)〉 =

(
Ĥi − 2~ω

)
|χi(2; t)〉 − 1

4
µ

(2)
ii |E(t)|2|χi(2; t)〉

− 1

4
µ

(2)
ig E

2(t)|χg(0; t)〉 − 1

8
µ

(2)
if E

∗3(t)|χf(5; t)〉
(5.74)

which is influenced by the expansion coefficients for the intermediate and final excited

states, as can be seen from eqs. 5.48 and 5.51 in which only then values of 2 and 5 are

allowed. The first term is responsible for removing the resonant two-photon energy from

the intermediate state, essentially shifting the intermediate state to the energetic region of

the ground state. Finally, the wave function belonging to the final excited state obeys

i~
∂

∂t
|χf (5; t)〉 =

(
Ĥf − 5~ω)|χf(5; t)〉 − 1

8
µ

(3)
fi E

3(t)|χi(2; t)〉 (5.75)
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which is influenced only by the expansion coefficients from the excited vibrational ex-

pansion coefficients,|χi(2, t)〉. The final state molecular Hamiltonian̂Hf is shifted by

five photons of energy which corresponds to a resonance between the final state and the

ground state.

5.5 Formulation of OCT for NMT

The standard version of optimal control theory was presented in section 4.2.1 which in-

cluded in the functional, equation 4.1, the complete electric field. In this section OCT will

be developed in terms of the RWA for NMT processes. The corresponding functional is

given as

J(tf ;E,E
∗) = |〈Ψtar|Ψ(tf)〉|2 − λ

tf∫

t0

dt|E(t)|2 (5.76)

where all multiples of the carrier frequencyω are neglected. The functional then only

depends on the field envelope as well as its complex conjugate. The control task will

optimize the field envelopeE(t) rather than the complete electric fieldE(t) and any mod-

ulation that would normally occur in the complete electric field formulation will also be

accounted for in the field envelopeE(t). The optimal pulse can then be calculated by

inserting the optimized envelope into eq. 5.6.

The control yield, see eq. 4.2, upon calculation of the optimal field, is rarely equal to one,

and depends on the allowed field strengths. The iterative scheme of ref. [102, 129, 130]

as applied in this work is valid for all field strengths. Limiting the field intensity to the

weak field regime drastically reduces the control yield to a value much less than one. It

is therefore of interest to quantify the amount of the drivenwavepacket that has reached

the position of the target wavepacket. This can be measured as the renormalization of the

control yield and is defined as

q =
|〈χ(tar)

f |χf (tf)〉|2
〈χf(tf )|χf(tf)〉

, (5.77)

for a vibrational target state located on the excited electronic state,|χ(tar)
f 〉.

In order to derive an expression for the control field, the extremum of the functional

J(tf ;E,E
∗) is determined by applying a functional derivative with respect to the conju-



5.5 Formulation of OCT for NMT 83

gate of the electric field envelopeE∗(t). The functional derivative of the first term in eq.

4.1, yields the following

δ

δE∗(t)
|〈Ψtar|Ψ(tf)〉|2 = 〈Ψtar|

δU(tf , t0)

δE∗(t)
|Ψ(t0)〉〈Ψ(tf)|Ψtar〉

+〈Ψtar|Ψ(tf)〉〈Ψ(t0)|
(δU(tf , t0)

δE(t)

)†

|Ψtar〉,
(5.78)

in view of the time evolution operatorU(tf , t0) which depends on the complex value of

the field envelope. These two terms appear due to the application of the product rule. The

form of the time evolution operator is given below

U(tf , t0) = T̂ exp
(

− i

~

tf∫

t0

dτ [Ĥ
(RWA)
mol + Ĥ

(RWA)
field (τ)]

)

. (5.79)

whereT̂ is the time ordering operator. Calculation of the functional derivative of eq. 5.79

results in the following

δU(tf , t0)

δE∗(t)
= − i

~
U(tf , t)

∂Ĥ
(RWA)
field (t)

∂E∗(t)
U(t, t0) (5.80)

where the derivation has employed the following relation

δ

δE∗(t)

tf∫

t0

dτ Ĥ
(RWA)
field (τ) =

∂Ĥ
(RWA)
field (t)

∂E∗(t)
(5.81)

with the assumption thatt0 < t < tf . Inserting equation 5.80 into eq. 5.78 and setting the

latter equal to zero, the general solution of the optimized laser envelope is obtained.

E(t) = − i

~λ

[

〈Ψ(tf)|Ψtar〉〈Θ(t)|∂Ĥ
(RWA)
field (t)

∂E∗(t)
|Ψ(t)〉

−〈Ψ(t)|
(∂Ĥ

(RWA)
field (t)

∂E(t)

)†

|Θ(t)〉〈Ψtar|Ψ(tf)〉
]

(5.82)

The effect of the time evolution operator acting on the target stateU(t, tf )|Ψtar〉 is an

evolution backward in time, denoted as|Θ(t)〉, and the effect of the operator on the initial

stateU(t, t0)|Ψ(t0)〉 is a propagation forward in time, denoted as|Ψ(t)〉.

5.5.1 The Two-level System

The concepts, namely the equations of motion, for a rudimentary two-level system dis-

cussed in section 5.4.2 will be applied here within OCT. The structure remains consistent
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beginning with the derivation of the optimal electric field envelope for a resonant one-,

nonresonant two- and three-photon transitions.

Resonant One-photon Transition

A resonant one-photon transition from the ground electronic state to the final excited

state is standard and is given here for comparison to the nonresonant cases. According

to eq. 5.82, the derivation of the molecular field Hamiltonian Ĥ
(RWA)
mol must be performed

to obtain an expression for the coupled electric field. The derivative with respect to the

complex electric field envelope is given below

∂Ĥ
(RWA)
field (t)

∂E∗(t)
= −1

2
µgf |ϕg〉〈ϕf |, (5.83)

as well as that with respect to the electric field envelope

∂Ĥ
(RWA)
field (t)

∂E(t)
= −1

2
µgf |ϕg〉〈ϕf | (5.84)

Inserting eqs. 5.83 and 5.84 into eq. 5.82 results in the following expression for the

control field.

E(t) =
iµfg

2~λ

[ (
〈χf(tf )|χtar

f 〉+ 〈χg(tf)|χtar
g 〉
)
〈ϑg(t)|χf(t)〉

−〈χg(t)|ϑf(t)〉
(
〈χtar

g |χg(tf)〉+ 〈χtar
f |χf (tf)〉

) ]
(5.85)

The optimal field is calculated iteratively by solving the TDSE according to eqs. 5.60 and

5.61, for the forward|χa(t)〉 and backward|ϑa(t)〉 propagated vibrational wave functions.

The newly appearing|ϑa(tf )〉 denotes the backward propagated vibrational wave function

given as

|ϑ(t)a〉 = U(t, tf )|χ(tar)
a 〉, (5.86)

whereU(t, tf ) evolves|χ(tar)
a 〉 backwards in time.

Nonresonant Two-photon Transitions

The development of OCT with respect to nonresonant two-photon interactions is accom-

plished by first solving the derivatives for the corresponding molecular field Hamiltonian.
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The solution to these derivatives are given below, first withrespect to the complex conju-

gate of the field envelope

∂Ĥ
(RWA)
field (t)

∂E∗(t)
= −1

2

∑

a=g,f

E(t)µ(2)
aa |ϕa〉〈ϕa| −

1

2
E∗(t)µ

(2)
gf |ϕg〉〈ϕf | , (5.87)

and second with respect to the ordinary field envelope

∂Ĥ
(RWA)
field (t)

∂E(t)
= −1

2

∑

a=g,f

E∗(t)µ(2)
aa |ϕa〉〈ϕa| −

1

2
E(t)µ

(2)
fg |ϕf〉〈ϕg|. (5.88)

Inserting the solution to the derivatives, eqs. 5.87 and 5.88, into the expression for the

control field, eq. 5.82, results in the following expressionfor the field envelope

E(t) =
i

2~λ(2)

[( ∑

a=g,f

〈χtar
a |χa(tf )〉

)( ∑

a=g,f

µ(2)
aa 〈ϑa(t)|χa(t)〉E(t) + µ

(2)
gf 〈ϑg(t)|χe(t)〉E∗(t)

)

−
( ∑

a=g,f

µ(2)
aa 〈χa(t)|ϑa(t)〉E(t) + µ

(2)
gf 〈χg(t)|ϑe(t)〉E∗(t)

)( ∑

a=g,f

〈χtar
a |χa(tf)〉

)]

(5.89)

which shows an explicit dependence on the field envelope on the right–hand side of the

equation. It is therefore necessary to modify the standard scheme in which the optimal

field is calculated. The time–dependent Schrödinger equation for the vibrational wave

functions are given by equations 5.65 and 5.66 as well as for the respective backward

propagation.

The procedure to compute the optimal field can be put into a more efficient form if
∫ tf

t0
dt |E(t)|2 is replaced in eq. 5.76 by the expression

∫ tf
t0
dt |E(t)|4/2. Then, the

functional derivative with respect toE∗(t) leads to the expressionE∗(t)E2(t) instead of

E(t), on the right–hand side of equation. 5.89. Since the terms proportional toµ(2)
aa only

result in minor corrections they are neglected and the effective control field is given as

E(t) =
iµ

(2)
gf

2~λ(2)

[ (
〈χf (tf)|χtar

f 〉+ 〈χg(tf )|χtar
g 〉
)
〈ϑg(t)|χf(t)〉

−〈χg(t)|ϑf (t)〉
(
〈χtar

g |χg(tf)〉+ 〈χtar
f |χf(tf)〉

) ]
(5.90)

whereE(t) = E2(t). Such a replacement is also possible in the related time–dependent

Schrödinger eqs. 5.65 and 5.66 and the determination of theoptimal field can be done in

the standard way but with the primary focus onE(t).
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Nonresonant Three-photon Transitions

The last multiphoton transition that is considered is the three-photon interaction in which

the molecular field Hamiltonian was given previously in eq. 5.72. In order to acquire

an expression for the control field, its derivative is taken twice: once with respect to the

complex electric field envelope

∂Ĥ
(RWA)
field (t)

∂E∗(t)
= −3

8
E∗2(t)µ

(3)
gf |ϕg〉〈ϕf | , (5.91)

and once with respect to the original field envelope

∂Ĥ
(RWA)
field (t)

∂E(t)
= −3

8
E2(t)µ

(3)
fg |ϕf〉〈ϕg| . (5.92)

These equations are substituted into the general control field eq. 5.82 and lead to the

following control field

E(t) =
3iµ

(3)
gf E

∗2(t)

8~λ(3)

[ (
〈χf(tf)|χtar

f 〉+ 〈χg(tf )|χtar
g 〉
)
〈ϑg(t)|χf (t)〉

−〈χg(t)|ϑf (t)〉
(
〈χtar

g |χg(tf )〉+ 〈χtar
f |χf(tf)〉

) ]

,

(5.93)

given in terms of nonresonant three-photon interactions. The time–dependent Schrödinger

equations for the vibrational wave functions are given by eqs. 5.69 and 5.70 as well as for

the respective versions for backward propagation.

Again, the procedure to compute the optimal field can be put into a more efficient form by

replacing
∫ tf

t0
dt |E(t)|2 in eq. 5.76 with

∫ tf
t0
dt |E(t)|6/3. Then, the functional derivative

with respect toE∗(t) leads toE∗2(t)E3(t) instead ofE(t) on the right–hand side of

equation. 5.93 and we arrive at

Ẽ(t) =
3iµ

(3)
ge

8~λ(3)

[ (
〈χf(tf )|χtar

f 〉+ 〈χg(tf)|χtar
g 〉
)
〈ϑg(t)|χf(t)〉

−〈χg(t)|ϑf(t)〉
(
〈χtar

g |χg(tf)〉+ 〈χtar
f |χf(tf )〉

) ]

,

(5.94)

whereẼ(t) = E3(t). Such a replacement is also possible in the related time-dependent

Schrödinger eqs. 5.69 and 5.70 and the determination of theoptimal field can be done in

the standard way but focusing primarily oñE(t).


