
Chapter 4

Quantum Control

The attempt to control reactions has been the goal of many forthousands of years. Often

the tactics used were what are termed passive control methods, methods such as changing

concentration levels, pressure, and temperature. Quantumcontrol uses a different tool

for directing reaction paths. Since the advent of the first working laser by T.H. Maiman

in the 1960’s, laser radiation has been used to control microscopic processes such as

bond cleavage and bond formation, taking advantage of its intense and small bandwidth

properties. In a general sense the use of laser radiation defines a way of actively guiding

chemical reactions on the microscopic level. For clarification the terms of passive and

active control methods will be discussed.

The term passive control is nicely summed up by Rice and Zhao [84]. The information

that passive control should convey is that i) the reactant molecules and solvent molecules

are not subject to manipulation by external fields during theevolution to products, and

therefore the reaction occurs under a field-free evolution of the reactants, ii) the evolution

of the reactant molecules is largely incoherent, and iii) the reaction is initiated by an

experimenter without controlling the evolution of the system at the level of molecular

dynamics.

Bond-selective Excitation Along the lines of passive control, one of the first efforts to

use laser radiation to control bond breakage, and perhaps the most obvious, was to radiate

the molecular system with a tuned frequency of the laser which matches a local mode
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of the molecule. Increasing the intensity of the laser radiation was thought to induce

the bond-selective breakage. This way of control, also known as vibrationally mediated

control, has been shown to be applicable to a few molecules such as HOOH [2], C2HD

[3], and HOD [4, 5]. This relative ”simplistic” scheme of control, has had unfortunately

relatively low success due to a phenomenon of energy redistribution which takes place on

the picosecond time scale or even faster: Intramolecular Vibrational Redistribution (IVR).

As the name indicates, the energy deposited by mode selective excitation flows to other

modes of the molecule, typically before the bond breaks.

In contrast to passive techniques, active control attemptsto guide the reaction at the

molecular level by applying short bandwidth laser fields. Some of these techniques have

shown that coherent effects, interference and time delays between laser pulses can be suc-

cessful in controlling chemical reactions. This chapter intends to give an overview of the

general methods of active control with insights to the experimental achievements. A divi-

sion of the active schemes will also be applied to differentiate between those that operate

under an iterative scheme and those that do not, starting with the latter.

4.1 General Schemes of Active Control

Phase-control In the scheme of phase-control, the coherence of laser radiation is ex-

ploited in order to control population transfer as well as the branching ratio for dissoci-

ation of small molecules [85]. The original Brumer-Shapiroscheme of coherent control

[6] employs two phase-locked c.w. lasers with different frequencies. The first field emits

a radiation frequency that is resonant with the ground stateg and the final electronic state

f , with a frequency ofω1. The second field, which induces a multiphoton transition, has a

frequency ofω3, such thatω1 = 3ω3, as is seen in figure 4.1. Applying these two lasers to

a molecular system leads to an interference term in the quantum mechanical description

of the probability amplitudes of the wave function. The interference term can be manip-

ulated by changing the phase of the two lasers, thereby controlling the branching ratio

of different products. This method of control has been experimentally verified for the

Hg atom [86], in which the population transfer to an atomic state was altered by varying

the relative phases of two laser fields. The same approach hasbeen used to control the

branching ratios of dissociation for small molecules such as IBr [87] and HCl and CO

[88, 89].
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STIRAP The STImulated Raman scattering involving Adiabatic Passage, or STIRAP

[9], is a control scheme designed to completely transfer population between specified

quantum states, and is more robust to the fast oscillations than its pi-pulse counterpart,

which is also used to invert the population [10, 90, 91, 92]. The basic version of the

approach is shown in fig. 4.1 in which the inversion of population from the ground state g

to the final state f is accomplished with the support of an intermediate state i. The design

employs two intense laser pulses in order to achieve population inversion. Sequentially,

the first pulse, the Stokes pulse, is resonant with the energydifference between the final

state f and the intermediate state i. The second pulse is the pump pulse which couples

the ground state g with the intermediate state i. This counter-intuitive sequence of pulses

is designed such that when the pump pulse is switched on during the radiation with the

Stokes pulse, a trapped state is produced which prevents populating the intermediate state,

i. The population is considered to be virtually trapped or confined to the two states, g or

f. The complete transfer from the ground to the final state occurs when the pump pulse

is applied at the tail of the Stokes pulse. The phenomenon of trapping is a consequence

of quantum interference between the two pathways leading tostate i in fig. 4.1, i.e. the

pathways induced via the pump and the Stokes pulses. Becausethe population does not

occupy the intermediate state i, the method is especially attractive for systems where the

intermediate state is plagued with decoherences or where population can be lost to other

states. This technique of control has been experimentally verified for atoms and small

molecules [9, 93, 94].

A new compounded control technique employs both the coherent control for its selectiv-

ity and the adiabatic passage for its robustness. The method, termed Coherent Controlled

Adiabatic Passage, has been computationally demonstratedfor controlling a double pro-

ton transfer in a model nucleotide base-pair with the goal ofdetecting and automatically

repairing base-pair mutations [95].

Pump-Dump The scheme introduced by Tannor, Kosloff, and Rice in the 1980’s is

known as pump-dump or pump-control method [7, 8]. In contrast to the previous two

methods which exploit quantum interference effects, this method is based on wavepacket

dynamics and an appropriate time delay between pulses.

The model system presented by Tannor and Rice is best visualized using two electronic

surfaces of a linear triatomic molecule: a model ABC molecule, see fig. 4.2. The left
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Figure 4.1: Two active control schemes: The left subfigure depicts a two c.w. laser pulse scheme

where one pulse is resonant with a single photonω1 and the second resonant with three photons

each with a frequency ofω3. The main parameter which affects the control scheme is the relative

phase of the two pulses. The second figure shows the STIRAP method of control, see text for

details.

figure pictures the model ground electronic surface which contains a minimum and away

from the equilibrium geometry the surface is dissociative along two different reaction

pathways represented by the reaction given below.

A + B− C←− A− B− C −→ A− B + C

The modeled excited electronic surface, pictured on the right of fig. 4.2, is also character-

ized by a bound region which allows for evolution of the wavepacket, as indicated by the

dashed curve, representing the wavepacket’s trajectory.

The control mechanism will be discussed in terms of the original two-level model system.

The initial wave function is located at the ground vibrational level in the ground electronic

state. The first laser pulse, the pump pulse, transfers population from the ground state to

the excited electronic state, where the wave function, no longer in a stationary state, begins

to evolve along the path of steepest decent, in a way in which both bonds are stretched

simultaneously. Due to the structure of the electronicallyexcited state, the wavepacket

moves in a complex way along the surface. The wavepacket’s trajectory is traced on the

excited state surface, see fig. 4.2. The trajectory could be superimposed directly onto the

ground state and would indicate whether the wavepacket on the excited electronic state

traverses the area directly above the dissociation channels on the ground electronic state.

Based on the trajectory, the wavepacket enters this area depicted by the overlayed circle in
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a) b)

Figure 4.2: A contour plot of the a) modeled ground and b) excited electronic states used to exem-

plify the Pump-Dump control mechanism taken from [8]. Figure a) depicts the potential surface

for the ground electronic state characterized by the two dissociation pathways. The potential in

figure b) depicts the excited electronic state. The temporalevolution of the wavepacket is projected

onto the contour plot of the electronic state.

fig. 4.2 and by applying a dump pulse at this moment in time the wavepacket is transferred

into the dissocation channel, changing the molecule’s dissociation pathway.

The pump-dump control scheme has been demonstrated experimentally on the diatomic

sodium molecule,Na2 [96, 97] in which the branching ratio ofNa++Na toNa+
2 was mod-

ified. Zewail and researchers also applied this concept to the reactionXe + I2 → XeI + I

where an extra pump pulse was applied instead of a dump pulse,in a pump-pump ap-

proach [98, 99]. In this work, the approach of Tannor and Ricehas also been extended

to a more demanding three-level system of a large polyatomicorganometallic molecule.

Figure 4.3 depicts the general scheme already extended to a three-level system in which

the pump pulse excites the initial wave function from the ground state,g to the interme-

diate excited state,i, and the dump pulse transfers population from the intermediate state,

i, to the final statef. The well-timed dump pulse has placed the wavepacket selectively in

theA− B + C dissociation channel.

Few-cycle Infra-red plus Ultraviolet (IR + UV) Another extension to the Tannor-Rice

control method is a pump-pump via an infra-red (IR) and an ultraviolet (UV) laser pulse.
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Figure 4.3: An extension of the pump-dump

mechanism of Tannor-Rice to an electronic three-

level system. Along several steps of the mecha-

nism, a wavepacket is plotted to depict the ac-

tual motion. The mechanism entails two pulses,

a pump and a dump pulse. The pump pulse trans-

fers a portion of the ground state wave func-

tion to the highest-lying intermediate electronic

state, i. The wavepacket evolves on the interme-

diate state where after some time it is located di-

rectly above a dissociation channel on the final

electronic state, f. Applying a well-timed dump

pulse, population is then transferred from the in-

termediate state to the dissociation channel on

the final state, forming the products A-B + C.
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The intent of this scheme is analogous to that of the pump-dump: laser control of chemical

reactions via time delay between two pulses. In order to describe this approach, the

general linear triatomic moleculeA− B− C of the previous section will be adopted.

As the title suggests, this method employs two few-cycle laser pulses that can be used

to control the photo-dissociation of a molecule. The first laser pulse, a few-cycle IR

pulse, aims to create a vibrational wavepacket by exciting asuperposition of vibrational

eigenstates. A wavepacket is created which moves back and forth along the vibrational

coordinates. At some instant in time, the wavepacket is localized below one of the two

dissociation channels of the excited state, e.g. under theA+B−C channel. The few-cycle

UV pulse is then applied, driving the localized wavepacket from the groundg to the final

electronic statef. The electronic excitation via the UV pulse transfers population directly

into this channel, producing the targeted products. A variation of this method, in which

the UV pulse is applied to the wavepacket when the momentum favors a dissociation

channel, has also successfully been applied [14].

The method of few-cycle IR + UV laser control has been appliedto control selective

dissociation of several systems, including the symmetric ozone molecule, in which the

selective vibrational mode is attained via a many cycle IR laser pulse that occurs on the

picosecond time scale [100], the symmetric FHF− [13] molecule, and extended to asym-

metric molecules HOD [14] and OHF− [15].
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Dynamic Stark Control The resulting Stark shifts of nonadiabatic potential energy

curves due to intense nonresonant IR laser pulses have recently been exploited by Stolow

et al. as a means in which control of molecular reactions can be achieved [101]. The

coined term for this technique is Dynamic Stark Control (DSC).

The DSC method has been exemplified theoretically and experimentally for the IBr molecule

[101]. The simulations incorporated three electronic states: the bound ground state, the

first excited state which is slightly bound and leads to the formation of I+Br, and the

second excited state, also slightly bound, leading to the formation of I+Br*. The two

latter curves exhibit an avoided curve crossing. Initiallythe wavepacket is prepared on

the second excited state, as it approaches the region near the avoided crossing, an ultra-

short intense IR laser pulse is applied which shifts the curves to values lower in energy.

A consequence of this shift is that the velocity of the wavepacket increases. Since the

wavepacket’s crossover is dependent on its velocity, the reaction will lead to more of

the Br* product. In the same way, inducing the Stark shift at the initial time will shift

and broaden the potential surfaces, so that when the wavepacket is transferred to the up-

per electronic state, the gradient is diminished, prohibiting the wavepacket from gaining

much momentum. Therefore when the wavepacket approaches the potential crossings, it

will be at a much slower velocity, thereby prefering the production of the Br product.

4.2 Iterative Active Control Schemes

Two schemes that apply iterative methods are Optimal Control Theory (OCT) and its

experimental realization via closed-loop feedback control. The former will be discussed

in general followed by a numerical iterative method for solving a set of coupled equations

as introduced in reference [102]. The latter will be described in terms of the evolutionary

algorithm which iteratively optimizes the laser pulse.

4.2.1 Optimal Control Theory (OCT)

Due to the anharmonicity of the excited state PES, the evolution of the wavepacket will,

in most cases, spread out, preventing a clean dump into the wanted dissociation channel.
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Tannor and Rice realized this limitation and included the optimization of the dump pulse,

via OCT, in order to increase the selectivity of placing population into one of the two dis-

sociation channels [7, 84]. The development of OCT has sincebeen widely developed in

order to produce tailored laser pulses which guide the wavepacket from its initial position

to its predefined final position, the target state [16].

The standard version of OCT is based on the assumption that a molecular state, the target

state|Ψtar〉, is attainable by a laser driven molecular wave function|Ψ(t)〉 at timetf . In

other words, the overlap expression|〈Ψtar|Ψ(tf)〉|2 is equal to unity, [84, 85, 103]. To

determine the laser pulse (the optimal pulse), which drivesthe system to its predefined

target state, one considers the overlap to be a functional ofthe field strengthE(t). An

extremum of this functional should be obtained by the optimal pulse. To this end, OCT

is formulated as a task which solves for the extremum with theconstraint that the field

strength has a finite value. The related control functional,is written as

J(tf ;E) = |〈Ψtar|Ψ(tf)〉|2 −
λ

2

tf∫

t0

dt
E2(t)

s(t)
, (4.1)

where the second term imposes a limit on the field strength viaλ, the penalty function

[84]. The first term determines the extent to which the control has been reached, and is

known as thecontrol yieldQ,

Q = |〈Ψtar|Ψ(tf)〉|2. (4.2)

The optimal control field is realizable by solving the extremum of the functional given in

eq. 4.1;δJ(tf ;E)/δE(t) = 0. This results in the following expression for the optimal

control field

E(t) =
s(t)i

λ~

(
〈Θ(t)|µ̂|Ψ(t)〉〈Ψ(tf)|Ψtar〉+ 〈Ψtar|Ψ(tf)〉〈Ψ(t)|µ̂|Θ(t)〉

)
, (4.3)

where the shape functions(t) has been introduced [104] and is given in eq. 3.39, andµ̂,

is the dipole operator given in eq. 3.35. The optimal controlfield is defined further by a

forward propagated wave function|Ψ(t)〉; t ≡ t0 −→ tf and a wave function that is prop-

agated backward in time,|Θ(t)〉; t ≡ tf −→ t0. The initial condition for the backward

propagated wave function is|Θ(tf )〉 = |Ψtar〉, where the initial time istf since time runs

in the reverse order. The calculation of the control field depends only on two functions,

specifically the initial|Ψ(t0)〉 and the final wave functions|Ψtar〉 propagated forward and
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backward in time respectively. The calculation of these wave functions depends simul-

taneously on the control field. The calculation of these terms are therefore coupled, and

in order to solve for the control field an iterative scheme is typically employed. In the

following, an iterative scheme will be presented for a two-level system.

Iterative Scheme for a Two-level System

This section aims to give a comprehensive overview of the iterative method applied to

a two-level system, as suggest by Zhu, Botina and Rabitz [102], which is used to solve

the set of coupled equations. The end effect of the iterationscheme is the production

of the optimal control field: the field that drives an initial wave function|Ψg(t0)〉, taken

as the ground vibrational wave function on the ground electronic state, to a specified

target state|Ψtar
f 〉 located completely on the final electronic excited state, i.e. |Ψtar

g 〉 = 0.

For clarity, a superscript is used to depict the iteration number on the control field and

the wave functions. The scheme begins with an initial forward propagation that drives

the ground state wave function to the excited state with a guessed laser field. The first

iteration step actually begins with the first backward propagation and ends with the next

forward propagation. Each of these processes will be described below.

Initial(0) Forward Propagation

The initial forward propagation of a wave function is accomplished by solving the time-

dependent Schrödinger equation, eq. 3.1. Population is transferred between the ground

g and the final excited electronic statef via laser-dipole-matter interaction, see section

3.1.3. The initial laser field,E(0)(t), is a guess field defined by the user. Its purpose is

to give a good starting point for the iterative process so that the pulse transfers at least

a small portion of the initial wave function to the position of the target wave function.

The iterative scheme requires the overlap at the final time tohave a finite value not equal

to zero〈Ψtar|Ψ(tf)〉 6= 0, otherwise the control field will remain zero throughout the

iteration process. The equations of motion are given below,

i~
∂

∂t
|Ψ(0)

g (t)〉 = Ĥg|Ψ(0)
g (t)〉 − µgfE

(0)(t)|Ψ(0)
f (t)〉

i~
∂

∂t
|Ψ(0)

f (t)〉 = Ĥf |Ψ(0)
f (t)〉 − µfgE

(0)(t)|Ψ(0)
g (t)〉

(4.4)
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where the nuclear Hamiltonian for the ground stateĤg and for the final statêHf can be

solved by applying the split operator technique given in eq.3.44. The transition dipole

moments are given asµgf andµfg which are considered to be equal. The wave functions

are denoted as|Ψ(0)
g (t)〉 and|Ψ(0)

f (t)〉 for the ground and excited state respectively. The

predefined electric field is given as

E(0)(t) = ns(t)E0cos(ωt), (4.5)

where the shape functions(t) is defined in equation 3.39,E0 is the field amplitude and

the cosine function contains the field frequencyω. The superscript(0) is used to denote the

terms which are calculated from the initial forward propagation.

First(1) Backward Propagation: t ≡ tf −→ t0

The first backward propagation initiates the iterative process. In this step the control field

is, for the first time, calculated by incorporating both the forward|Ψ(0)(t)〉 and backward

|Θ(1)(t)〉 wave functions of the previous and current iteration respectively. The initial

condition for the backward wave propagation is given as|Θf(tf)〉 = |Ψtar
f 〉 for the target

state located on the final electronic state and|Θg(tf )〉 = |Ψtar
g 〉 = 0 for the target state

located on the ground electronic state. Their temporal evolution is calculated by solving

the following equations of motion,

i~
∂

∂t
|Θ(1)

g (t)〉 = Ĥg|Θ(1)
g (t)〉 − µgfE

(1b)(t)|Θ(1)
f (t)〉

i~
∂

∂t
|Θ(1)

f (t)〉 = Ĥf |Θ(1)
f (t)〉 − µfgE

(1b)(t)|Θ(1)
g (t)〉.

(4.6)

The first term in eq. 4.6, defined by the nuclear HamiltonianĤ, can be solved again by

applying the split operator technique given in eq. 3.44, where ∆t is now replaced with

−∆t to accommodate for the reversal of time. The control field is given as

E(1b)(t) =
s(t)i

λ~

(
〈Θ(1)

g (t)|µ̂|Ψ(0)
f (t)〉〈Ψ(0)

f (tf )|Ψtar
f 〉+〈Ψtar

f |Ψ
(0)
f (tf )〉〈Ψ(0)

g (t)|µ̂|Θ(1)
f (t)〉

)

(4.7)

and is expressed in terms of the initial forward wave function |Ψ(0)(t)〉, and the current

backward wave function|Θ(1)(t)〉. The superscript(1b) is used to denote the first back-

ward calculated electric field. It now becomes evident that the wave functions that were

calculated in the set of eqs. 4.4 for the initial forward propagation must have been saved

at every time step to be used in this current stage of the iteration process.
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First(1) Forward Propagation: t ≡ t0 −→ tf

The first cycle of the iterative process is finalized upon the completion of the first forward

propagation of the wave function. The initial wave functionfor this and subsequent for-

ward propagations is the ground vibrational wave function of the ground electronic state,

|Ψ(n)
g (t0)〉 = |Ψg(t0)〉, wheren runs over the iteration steps. The equations of motion are

given again for completion

i~
∂

∂t
|Ψ(1)

g (t)〉 = Ĥg|Ψ(1)
g (t)〉 − µgfE

(1f)(t)|Ψ(1)
f (t)〉

i~
∂

∂t
|Ψ(1)

f (t)〉 = Ĥf |Ψ(1)
f (t)〉 − µfgE

(1f)(t)|Ψ(1)
g (t)〉

(4.8)

where the electric field is calculated as

E(1f)(t) =
s(t)i

λ~

(
〈Θ(1)

g (t)|µ̂|Ψ(1)
f (t)〉〈Ψ(1)

f (tf )|Ψtar
f 〉+〈Ψtar

f |Ψ
(1)
f (tf )〉〈Ψ(1)

g (t)|µ̂|Θ(1)
f (t)〉

)
,

(4.9)

and is expressed in terms of the current forward wave function |Ψ(1)(t)〉, and the previous

backward wave function|Θ(1)(t)〉, calculated in eq. 4.6. The electric field is superscripted

with (1f) to distinguish the calculated forward from the backward electric field. Again

the electric field depends on the previous stage of the iteration process and therefore the

backward wave functions in eq. 4.6 must have been saved at every time step. At this point

in the iterative process the electric fieldE(1f)(t), has already improved the control yield,

see eq. 4.2, from that of the guess field. The final optimal control field is obtained when

convergence has been reached.

The application of OCT on quantum molecular dynamics was initially developed and ap-

plied by Rabitz and co-workers [16, 102, 105]. The theory wasextended to optimize the

dump pulse for the Tannor-Rice control scheme in a two-levelsystem [17]. The optimal

electric fields that result from OCT simulations tend to be very complicated and are diffi-

cult to reproduce in the laboratory. For this reason experimentalists moved to a method of

control where the optimal field is calculated using a closed-loop feedback strategy, which

also tends to produce complex fields, and will be discussed shortly.

It should be mentioned that OCT is a method which, when applied to larger systems with

many degrees of freedom, quickly becomes exhaustive. This is understood when one

considers a simple one-dimensional two-level system with the following parameters: a

grid of 128 points, propagation time of 150 fs with a time stepof 0.01 fs. In such a
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system, the wave function consists of a vector of 128 points for each state that has to be

saved along every time step. This results in saving 128×2 values 15,000 times. Now

consider an extension of this system to two-dimensions, then instead of saving a vector

of 128 points, a matrix of 128×128 must be saved for every time step. It is clear by

increasing the number of states and the number of dimensionsthat the iterative scheme

applied to OCT quickly becomes computationally very demanding. One solution might

be to program OCT in parallel or to apply a noniterative numerical scheme in order to

solve the control field [106]. One can also apply local optimal control [17, 107, 108].

4.2.2 Closed-loop Feedback Experiments

The tailored electric fields that are produced from OCT simulations tend to be rather com-

plex and therefore difficult to reproduce for experimentation. It was for this reason that

Judson and Rabitz introduced a control scheme for the laboratory, in which the molec-

ular dynamics are steered by improvements of the electric field in what is known as a

closed-loop feedback experiment [18]. The basic components of such a scheme can be

visualized in fig. 4.4, in which a laser source, a pulse shaper, a sample, a detection de-

vice, and a computer that contains the evolutionary algorithm are shown. The scheme in

working order occurs as follows.

The laser source produces a short intense laser pulse which interacts with the sample.

The products of the reaction are analyzed by a mass spectrometer where the signal is

transferred to a computer and analyzed via an evolutionary algorithm. The modified form

of the electric field, i.e. the phase and amplitude, producedby the evolutionary algorithm

is sent to a pulse shaper where the new electric field is produced. The modified electric

field interacts again with the molecular beam producing a different ratio of products which

is fed back to the algorithm. Through this iterative or adaptive process, the algorithm

typically produces a very flexible laser pulse that optimizes the predefined target products.

The evolutionary algorithm that modifies the electric field is based on three key concepts

of biological evolution [109, 110, 111]. The first concept uses the individual’s ”fitness” as

a criterion of whether or not its genes get transferred to thenext generation. The second

concept is that the offspring’s genetics are based off the mixture from its parents, and are

characterized by a crossover rate. The last main concept used is that of small mutations
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Figure 4.4: A schematic representation of

the experimental setup for a closed-loop

feedback experiment (taken from [19]). The

femtosecond laser field interacts with the

molecular beam where a reaction occurs.

The products are recorded via the mass

spectrometer and the signal is analyzed by

a computer. The signal modifies the param-

eters in the pulse-shaper which eventually

maximizes the control task.

Mass 
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Molecular beam

Pulse 
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Laser beam
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that can make the genes of the offspring either more or less fit. Rabitzet al., applied

this algorithm to the control scheme to illustrate its efficiency in optimizing the rotational

states of KCl [18]. This scheme has also been successfully applied to several large molec-

ular systems [19, 112, 26], but as is often the case the electric field that is produced is very

complex. In a dual effort between experiment and theory, theexperimentally produced

electric field can be deciphered. This has been accomplishedby employing quantum dy-

namics onab initio potential energy curves [27] as well as to modeled curves coupled to a

bath [113] where just one degree of freedom was sufficient to decipher the experimentally

achieved control pulse.

It should be noted that the search space used to find the optimal laser pulse in closed-loop

feedback control experiments is gigantic. The search spaceis controlled by the number

N of pixels in the pulse shaper which can modify both the amplitude A and phase P

of the laser pulse and has a size of (A×P)N . Binary Pulse Shaping (BPS) reduces the

search space by neglecting the amplitude and limiting the phase to 0 orπ, and results in

a search space of 2N . The advantage of BPS is that it allows for the visualizationof the

search space in a laser control experiment and has been applied to a multitude of problems

[114].


