Chapter 4

Quantum Control

The attempt to control reactions has been the goal of marmhéwrsands of years. Often
the tactics used were what are termed passive control mgtheethods such as changing
concentration levels, pressure, and temperature. Quaotutnol uses a different tool
for directing reaction paths. Since the advent of the firstkimy laser by T.H. Maiman
in the 1960’s, laser radiation has been used to control mooq@ic processes such as
bond cleavage and bond formation, taking advantage oftémige and small bandwidth
properties. In a general sense the use of laser radiatiamegdedi way of actively guiding
chemical reactions on the microscopic level. For clarifcathe terms of passive and
active control methods will be discussed.

The term passive control is nicely summed up by Rice and Z84p [The information
that passive control should convey is that i) the reactarieoutes and solvent molecules
are not subject to manipulation by external fields duringawelution to products, and
therefore the reaction occurs under a field-free evolutfdh@reactants, ii) the evolution
of the reactant molecules is largely incoherent, and i@ thaction is initiated by an
experimenter without controlling the evolution of the ®ysatat the level of molecular
dynamics.

Bond-selective Excitation Along the lines of passive control, one of the first efforts to
use laser radiation to control bond breakage, and perhapsdkt obvious, was to radiate
the molecular system with a tuned frequency of the laser hwhiatches a local mode
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of the molecule. Increasing the intensity of the laser tamiiawas thought to induce
the bond-selective breakage. This way of control, also knagvvibrationally mediated
control, has been shown to be applicable to a few moleculgs ast HOOH [2], GHD
[3], and HOD [4, 5]. This relative "simplistic” scheme of dool, has had unfortunately
relatively low success due to a phenomenon of energy réaistsn which takes place on
the picosecond time scale or even faster: Intramoleculana¥ional Redistribution (IVR).
As the name indicates, the energy deposited by mode seentoitation flows to other
modes of the molecule, typically before the bond breaks.

In contrast to passive techniques, active control attertgptguide the reaction at the
molecular level by applying short bandwidth laser fieldsm8wf these techniques have
shown that coherent effects, interference and time deletygden laser pulses can be suc-
cessful in controlling chemical reactions. This chaptéemas to give an overview of the
general methods of active control with insights to the expental achievements. A divi-
sion of the active schemes will also be applied to diffesrtbetween those that operate
under an iterative scheme and those that do not, startifgtiatlatter.

4.1 General Schemes of Active Control

Phase-control In the scheme of phase-control, the coherence of laserti@uia ex-
ploited in order to control population transfer as well as binanching ratio for dissoci-
ation of small molecules [85]. The original Brumer-Shagaoneme of coherent control
[6] employs two phase-locked c.w. lasers with differengifrencies. The first field emits
a radiation frequency that is resonant with the ground gtated the final electronic state
f, with a frequency of;. The second field, which induces a multiphoton transiti@s, &
frequency otvs, such thaty; = 3ws, as is seen in figure 4.1. Applying these two lasers to
a molecular system leads to an interference term in the goantechanical description
of the probability amplitudes of the wave function. The rfeeence term can be manip-
ulated by changing the phase of the two lasers, therebyalbing the branching ratio
of different products. This method of control has been expentally verified for the
Hg atom [86], in which the population transfer to an atomatetvas altered by varying
the relative phases of two laser fields. The same approachdemsused to control the
branching ratios of dissociation for small molecules sughBa [87] and HCI and CO
[88, 89].
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STIRAP The STimulated Raman scattering involving Adiabatic Pgssar STIRAP
[9], is a control scheme designed to completely transferufadimn between specified
guantum states, and is more robust to the fast oscillatioas its pi-pulse counterpart,
which is also used to invert the population [10, 90, 91, 92he basic version of the
approach is shown in fig. 4.1 in which the inversion of popalafrom the ground state g
to the final state f is accomplished with the support of anrmealiate state i. The design
employs two intense laser pulses in order to achieve papualatversion. Sequentially,
the first pulse, the Stokes pulse, is resonant with the erdiffgrence between the final
state f and the intermediate state i. The second pulse isuimg pulse which couples
the ground state g with the intermediate state i. This catintaitive sequence of pulses
is designed such that when the pump pulse is switched onglthienradiation with the
Stokes pulse, a trapped state is produced which preventsgting the intermediate state,
i. The population is considered to be virtually trapped arfoceed to the two states, g or
f. The complete transfer from the ground to the final stataicehen the pump pulse
is applied at the tail of the Stokes pulse. The phenomenorapping is a consequence
of quantum interference between the two pathways leadistgte i in fig. 4.1, i.e. the
pathways induced via the pump and the Stokes pulses. Betteipepulation does not
occupy the intermediate state i, the method is especidlgdive for systems where the
intermediate state is plagued with decoherences or wherelgtoon can be lost to other
states. This technique of control has been experimentaliijied for atoms and small
molecules [9, 93, 94].

A new compounded control technique employs both the coherenrirol for its selectiv-
ity and the adiabatic passage for its robustness. The mgiroaded Coherent Controlled
Adiabatic Passage, has been computationally demonsfmatedntrolling a double pro-
ton transfer in a model nucleotide base-pair with the goaletécting and automatically
repairing base-pair mutations [95].

Pump-Dump The scheme introduced by Tannor, Kosloff, and Rice in theOXB
known as pump-dump or pump-control method [7, 8]. In comtraghe previous two
methods which exploit quantum interference effects, treshod is based on wavepacket
dynamics and an appropriate time delay between pulses.

The model system presented by Tannor and Rice is best vsdalising two electronic
surfaces of a linear triatomic molecule: a model ABC molecske fig. 4.2. The left
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Figure 4.1: Two active control schemes: The left subfigure depicts a two laser pulse scheme
where one pulse is resonant with a single phaterand the second resonant with three photons
each with a frequency @f;. The main parameter which affects the control scheme isetlagivie
phase of the two pulses. The second figure shows the STIRARodhef control, see text for
details.

figure pictures the model ground electronic surface whicttaias a minimum and away
from the equilibrium geometry the surface is dissociatileng two different reaction
pathways represented by the reaction given below.

A+B-C+«—A-B-C—A-B+C

The modeled excited electronic surface, pictured on the ogfig. 4.2, is also character-
ized by a bound region which allows for evolution of the waaehet, as indicated by the
dashed curve, representing the wavepacket’s trajectory.

The control mechanism will be discussed in terms of the palgiwo-level model system.
The initial wave function is located at the ground vibratibievel in the ground electronic
state. The first laser pulse, the pump pulse, transfers ptipalfrom the ground state to
the excited electronic state, where the wave function, ngdoin a stationary state, begins
to evolve along the path of steepest decent, in a way in whith bonds are stretched
simultaneously. Due to the structure of the electronicalgited state, the wavepacket
moves in a complex way along the surface. The wavepackaj&ctory is traced on the
excited state surface, see fig. 4.2. The trajectory couldiperanposed directly onto the
ground state and would indicate whether the wavepacket @esthited electronic state
traverses the area directly above the dissociation chaimmethe ground electronic state.
Based on the trajectory, the wavepacket enters this arectelépy the overlayed circle in



4.1 General Schemes of Active Control 51

a)

Figure 4.2: A contour plot of the a) modeled ground and b) excited eleitrstates used to exem-
plify the Pump-Dump control mechanism taken from [8]. Figa) depicts the potential surface
for the ground electronic state characterized by the twsodiation pathways. The potential in
figure b) depicts the excited electronic state. The temmwaltion of the wavepacket is projected
onto the contour plot of the electronic state.

fig. 4.2 and by applying a dump pulse at this moment in time tineapacket is transferred
into the dissocation channel, changing the molecule’sodiation pathway.

The pump-dump control scheme has been demonstrated exmeaihg on the diatomic
sodium moleculea, [96, 97] in which the branching ratio ®fa™+Na to Na; was mod-
ified. Zewalil and researchers also applied this concep&togactionXe + I, — Xel + 1
where an extra pump pulse was applied instead of a dump paolsepump-pump ap-
proach [98, 99]. In this work, the approach of Tannor and Riag also been extended
to a more demanding three-level system of a large polyatongianometallic molecule.
Figure 4.3 depicts the general scheme already extendedteelevel system in which
the pump pulse excites the initial wave function from theugb stateg to the interme-
diate excited state, and the dump pulse transfers population from the interateditate,
i, to the final staté. The well-timed dump pulse has placed the wavepacket sedfcin
the A — B + C dissociation channel.

Few-cycle Infra-red plus Ultraviolet (IR + UV)  Another extension to the Tannor-Rice
control method is a pump-pump via an infra-red (IR) and aravitlet (UV) laser pulse.



52 Quantum Control

Figure 4.3: An extension of the pump-dump 4
mechanism of Tannor-Rice to an electronic three-
level system. Along several steps of the mecha-
nism, a wavepacket is plotted to depict the ac-
tual motion. The mechanism entails two pulses,
a pump and a dump pulse. The pump pulse trans
fers a portion of the ground state wave func-
tion to the highest-lying intermediate electronic
state, i. The wavepacket evolves on the interme-
diate state where after some time it is located di-
rectly above a dissociation channel on the final
electronic state, f. Applying a well-timed dump
pulse, population is then transferred from the in-
termediate state to the dissociation channel on
the final state, forming the products A-B + C.

The intent of this scheme is analogous to that of the pumppdlaser control of chemical
reactions via time delay between two pulses. In order tordesc¢his approach, the
general linear triatomic molecule — B — C of the previous section will be adopted.

As the title suggests, this method employs two few-cyclerlgmilses that can be used
to control the photo-dissociation of a molecule. The firsetapulse, a few-cycle IR
pulse, aims to create a vibrational wavepacket by excitiegperposition of vibrational
eigenstates. A wavepacket is created which moves back atiddimng the vibrational
coordinates. At some instant in time, the wavepacket islied below one of the two
dissociation channels of the excited state, e.g. undekthB—C channel. The few-cycle
UV pulse is then applied, driving the localized wavepacketrfthe groung; to the final
electronic staté. The electronic excitation via the UV pulse transfers papah directly
into this channel, producing the targeted products. A tianeof this method, in which
the UV pulse is applied to the wavepacket when the momentwordaa dissociation
channel, has also successfully been applied [14].

The method of few-cycle IR + UV laser control has been appleedontrol selective
dissociation of several systems, including the symmetzmne molecule, in which the
selective vibrational mode is attained via a many cycle Beigulse that occurs on the
picosecond time scale [100], the symmetric FHE3] molecule, and extended to asym-
metric molecules HOD [14] and OHH15].
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Dynamic Stark Control The resulting Stark shifts of nonadiabatic potential eperg
curves due to intense nonresonant IR laser pulses havelgelsean exploited by Stolow
et al. as a means in which control of molecular reactions can beceetli[101]. The
coined term for this technique is Dynamic Stark Control (DSC

The DSC method has been exemplified theoretically and expetally for the IBr molecule
[101]. The simulations incorporated three electronicestathe bound ground state, the
first excited state which is slightly bound and leads to thenfion of I1+Br, and the
second excited state, also slightly bound, leading to theadtion of 1+Br*. The two
latter curves exhibit an avoided curve crossing. Initiallg wavepacket is prepared on
the second excited state, as it approaches the region reeaveided crossing, an ultra-
short intense IR laser pulse is applied which shifts the esite values lower in energy.
A consequence of this shift is that the velocity of the wawgpéa increases. Since the
wavepacket’s crossover is dependent on its velocity, theti@n will lead to more of
the Br* product. In the same way, inducing the Stark shifthat initial time will shift
and broaden the potential surfaces, so that when the waketgadransferred to the up-
per electronic state, the gradient is diminished, proim@ithe wavepacket from gaining
much momentum. Therefore when the wavepacket approache®tantial crossings, it
will be at a much slower velocity, thereby prefering the pretibn of the Br product.

4.2 Iterative Active Control Schemes

Two schemes that apply iterative methods are Optimal Cbiitneory (OCT) and its
experimental realization via closed-loop feedback cdnifbe former will be discussed
in general followed by a numerical iterative method for swdva set of coupled equations
as introduced in reference [102]. The latter will be destiin terms of the evolutionary
algorithm which iteratively optimizes the laser pulse.

4.2.1 Optimal Control Theory (OCT)

Due to the anharmonicity of the excited state PES, the eweolaif the wavepacket will,
in most cases, spread out, preventing a clean dump into theedidissociation channel.
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Tannor and Rice realized this limitation and included thirojzation of the dump pulse,
via OCT, in order to increase the selectivity of placing pagion into one of the two dis-
sociation channels [7, 84]. The development of OCT has diee® widely developed in
order to produce tailored laser pulses which guide the waslegt from its initial position
to its predefined final position, the target state [16].

The standard version of OCT is based on the assumption thatexutar state, the target
state|¥.,,), is attainable by a laser driven molecular wave functi()) at timet,. In
other words, the overlap expressig®¥..|¥(¢,))|? is equal to unity, [84, 85, 103]. To
determine the laser pulse (the optimal pulse), which dritiessystem to its predefined
target state, one considers the overlap to be a functiondieofield strengtlE(¢). An
extremum of this functional should be obtained by the optipudse. To this end, OCT
is formulated as a task which solves for the extremum withcthrestraint that the field
strength has a finite value. The related control functiosadkyritten as

t

J(t5:E) = |(Wea| U (1)) - %/dt E;(i’;) , (4.1)

to

where the second term imposes a limit on the field strength\vthe penalty function
[84]. The first term determines the extent to which the cdrtes been reached, and is
known as theontrol yield O,

Q = [(Wrar | ¥ (t4)) | (4.2)

The optimal control field is realizable by solving the exttemof the functional given in
eq. 4.1;0J(t;; E)/0E(t) = 0. This results in the following expression for the optimal
control field

B(t) = 7 (O W () (¥ e) + (T () (TOIEO0). (4.9

where the shape functiotit) has been introduced [104] and is given in eq. 3.39, @and
is the dipole operator given in eq. 3.35. The optimal corfieddl is defined further by a
forward propagated wave functiow (¢)); t = ¢, — t; and a wave function that is prop-
agated backward in timeQ(t));t = t; — t,. The initial condition for the backward
propagated wave function j®(t;)) = |V..), Where the initial time ig; since time runs

in the reverse order. The calculation of the control fieldedefs only on two functions,
specifically the initial U (¢,)) and the final wave functiond,,,) propagated forward and
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backward in time respectively. The calculation of theseevanctions depends simul-
taneously on the control field. The calculation of these seane therefore coupled, and
in order to solve for the control field an iterative schemeydally employed. In the
following, an iterative scheme will be presented for a tweel system.

Iterative Scheme for a Two-level System

This section aims to give a comprehensive overview of thatitee method applied to
a two-level system, as suggest by Zhu, Botina and Rabitz][1@%ch is used to solve
the set of coupled equations. The end effect of the iteraareme is the production
of the optimal control field: the field that drives an initiahwe function|U,(¢,)), taken
as the ground vibrational wave function on the ground ebmitr state, to a specified
target stateW'?") located completely on the final electronic excited stage|W;") = 0.
For clarity, a superscript is used to depict the iteratiombear on the control field and
the wave functions. The scheme begins with an initial fodyaropagation that drives
the ground state wave function to the excited state with agpetlaser field. The first
iteration step actually begins with the first backward pggien and ends with the next
forward propagation. Each of these processes will be desithelow.

Initial® Forward Propagation

The initial forward propagation of a wave function is accdistped by solving the time-
dependent Schrodinger equation, eq. 3.1. Populatiommsterred between the ground
¢ and the final excited electronic stafevia laser-dipole-matter interaction, see section
3.1.3. The initial laser fieldE(*)(¢), is a guess field defined by the user. Its purpose is
to give a good starting point for the iterative process so tia pulse transfers at least
a small portion of the initial wave function to the positiohtbe target wave function.
The iterative scheme requires the overlap at the final tinhatte a finite value not equal
to zero (V.. |¥(tf)) # 0, otherwise the control field will remain zero throughout the
iteration process. The equations of motion are given below,

0 ~
iheg (W (1)) = Hy| W) (1)) — iy B (0) 0 (1))

) (4.4)
i |09 (1)) = W (1) = gy BO (1) W0 (1))
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where the nuclear Hamiltonian for the ground stteand for the final stat#l; can be
solved by applying the split operator technique given in®244. The transition dipole
moments are given gs,, andu , which are considered to be equal. The wave functions
are denoted agr{ ()) and |9 (t)) for the ground and excited state respectively. The
predefined electric field is given as

E©(t) = ns(t) Eycogwt), (4.5)

where the shape functiofit) is defined in equation 3.33, is the field amplitude and
the cosine function contains the field frequencyThe superscript’ is used to denote the
terms which are calculated from the initial forward propama

First(") Backward Propagation: ¢t = t; — t

The first backward propagation initiates the iterative pesc In this step the control field
is, for the first time, calculated by incorporating both tberard| ¥ (¢)) and backward
|0M(t)) wave functions of the previous and current iteration reipely. The initial
condition for the backward wave propagation is given@g(t;)) = |¥*) for the target
state located on the final electronic state #ag(t;)) = |¥}*) = 0 for the target state
located on the ground electronic state. Their temporalugiani is calculated by solving
the following equations of motion,

0 A

i 1050 (6)) = Hyl6 (1)) — p, B (1) 04 (1)) “s)
0 A '
i 105 (1)) = Hy07(1)) — g B (1)|0 (1)).

The first term in eq. 4.6, defined by the nuclear HamiltorfiBrcan be solved again by
applying the split operator technique given in eq. 3.44, nelt&t is now replaced with
—At to accommodate for the reversal of time. The control fieldusmgas

B (1) = === (O (1AW g (0) (W () W) T2 () (T ()| 4107 (1)

4.7)
and is expressed in terms of the initial forward wave functid® (¢)), and the current
backward wave functio@™ (¢)). The superscript'® is used to denote the first back-
ward calculated electric field. It now becomes evident thatwave functions that were
calculated in the set of egs. 4.4 for the initial forward @gation must have been saved
at every time step to be used in this current stage of theiberprocess.
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First") Forward Propagation: ¢ = t, — t;

The first cycle of the iterative process is finalized upon tr@gletion of the first forward
propagation of the wave function. The initial wave functfon this and subsequent for-
ward propagations is the ground vibrational wave functibtihhe ground electronic state,
|\If§”) (t0)) = |¥,(to)), wheren runs over the iteration steps. The equations of motion are
given again for completion

0 A

i (W0 (6) = H [0 (1)) — p, BOD (1) 03 (1)) s)
0 ~ '
ihea |V (6) = By W (1) = g BED @) (0 (1)

where the electric field is calculated as

RO = S (00w (1) 0 ) (0 ) 1) 02 (1) 4l (1),

(4.9
and is expressed in terms of the current forward wave fun¢fié! (¢)), and the previous
backward wave functiof®™(t)), calculated in eq. 4.6. The electric field is superscripted
with (1Y) to distinguish the calculated forward from the backwardieie field. Again
the electric field depends on the previous stage of the ibergrocess and therefore the
backward wave functions in eq. 4.6 must have been savedgttave step. At this point
in the iterative process the electric fidi{'/)(¢), has already improved the control yield,
see eq. 4.2, from that of the guess field. The final optimalrobfield is obtained when
convergence has been reached.

The application of OCT on quantum molecular dynamics wagllhi developed and ap-

plied by Rabitz and co-workers [16, 102, 105]. The theory extended to optimize the
dump pulse for the Tannor-Rice control scheme in a two-lsystem [17]. The optimal

electric fields that result from OCT simulations tend to bey\amplicated and are diffi-

cult to reproduce in the laboratory. For this reason expentalists moved to a method of
control where the optimal field is calculated using a clokexy feedback strategy, which
also tends to produce complex fields, and will be discusserlgh

It should be mentioned that OCT is a method which, when agplidarger systems with
many degrees of freedom, quickly becomes exhaustive. Ehimderstood when one
considers a simple one-dimensional two-level system viighfollowing parameters: a
grid of 128 points, propagation time of 150 fs with a time sté.01 fs. In such a
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system, the wave function consists of a vector of 128 pomtgéch state that has to be
saved along every time step. This results in savingxi28alues 15,000 times. Now
consider an extension of this system to two-dimensions) th&tead of saving a vector
of 128 points, a matrix of 128128 must be saved for every time step. It is clear by
increasing the number of states and the number of dimen#iamnshe iterative scheme
applied to OCT quickly becomes computationally very denmagndOne solution might
be to program OCT in parallel or to apply a noniterative nuoarscheme in order to
solve the control field [106]. One can also apply local optiozatrol [17, 107, 108].

4.2.2 Closed-loop Feedback Experiments

The tailored electric fields that are produced from OCT satiahs tend to be rather com-
plex and therefore difficult to reproduce for experimemtati It was for this reason that
Judson and Rabitz introduced a control scheme for the l&drgran which the molec-
ular dynamics are steered by improvements of the electiid iirewhat is known as a
closed-loop feedback experiment [18]. The basic companeinsuch a scheme can be
visualized in fig. 4.4, in which a laser source, a pulse shapsample, a detection de-
vice, and a computer that contains the evolutionary algariare shown. The scheme in
working order occurs as follows.

The laser source produces a short intense laser pulse witefadts with the sample.
The products of the reaction are analyzed by a mass spec¢eombkere the signal is
transferred to a computer and analyzed via an evolutiorigoyithm. The modified form
of the electric field, i.e. the phase and amplitude, prodigetthe evolutionary algorithm
is sent to a pulse shaper where the new electric field is pestuthe modified electric
field interacts again with the molecular beam producingfadiht ratio of products which
is fed back to the algorithm. Through this iterative or adapprocess, the algorithm
typically produces a very flexible laser pulse that optimittes predefined target products.

The evolutionary algorithm that modifies the electric fieddased on three key concepts
of biological evolution [109, 110, 111]. The first concepgsishe individual's "fitness” as
a criterion of whether or not its genes get transferred tothe generation. The second
concept is that the offspring’s genetics are based off theéure from its parents, and are
characterized by a crossover rate. The last main concegtisisieat of small mutations
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Figure 4.4: A schematic representation of

the experimental setup for a closed-loop [Eouony \ Laser beam
. algorithm

feedback experiment (taken from [19]). The Pulse /{}\

femtosecond laser field interacts with the = e A

molecular beam where a reaction occurs. —)

The products are recorded via the mas% 1 J

spectrometer and the signal is analyzed by

a computer. The signal modifies the param- ..* i
Molecular beam

eters in the pulse-shaper which eventually
maximizes the control task.

that can make the genes of the offspring either more or lesRRfbitzet al., applied
this algorithm to the control scheme to illustrate its effi@y in optimizing the rotational
states of KCI [18]. This scheme has also been successfullieaito several large molec-
ular systems [19, 112, 26], but as is often the case the igléieid that is produced is very
complex. In a dual effort between experiment and theoryettperimentally produced
electric field can be deciphered. This has been accomplishedploying quantum dy-
namics orab initio potential energy curves [27] as well as to modeled curvepleduo a
bath [113] where just one degree of freedom was sufficiengétipther the experimentally
achieved control pulse.

It should be noted that the search space used to find the djpdisea pulse in closed-loop
feedback control experiments is gigantic. The search sigamentrolled by the number
N of pixels in the pulse shaper which can modify both the amgétA and phase P
of the laser pulse and has a size of{R)". Binary Pulse Shaping (BPS) reduces the
search space by neglecting the amplitude and limiting tlees@lo O orr, and results in

a search space of'2 The advantage of BPS is that it allows for the visualizatbthe
search space in a laser control experiment and has beerdjpi multitude of problems
[114].



