Chapter 3
Quantum Dynamics

This chapter sets out to solve the time-dependent Schyédiequation (TDSE). The
discussion begins with the derivation of the equations ofiondfor a time-independent
Hamiltonian. Subsequently, the formal solution for tramsfing the wave function from
an initial time to some further time will be given for a timediependent and a time-
dependent Hamiltonian. The succeeding section focusdsearoncepts needed to simu-
late UV absorption spectra, where the Hamiltonian, in taseg is time-independent. The
methodology used for transferring population from oneestatanother via laser-matter
interaction is described, thereafter, the equations ofondaire revisited for inclusion of
this perturbation. The last section introduces a numesidaition, the split-operator tech-
nique, which when implemented, allows for a simulation ofevepacket over discretized
time steps.

3.1 Time-dependent Nuclear Schisdinger Equation

The intent of this section is to derive a general equation ofion for the nuclear wave
function. The nuclear wave function evolves along the piéanergy surface, by solv-
ing the equations of motion, and describes the vibratioabblior of the molecular sys-
tem. To derive these equations we start with the TDSE

.0 ~
| W(1)) = V(1) (3.)
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where the nuclear Hamiltonian
I:Iel,nu - Tnu(RA) + vel(RA) (32)

is a sum of the nuclear kinetic energy operdib{u(RA) and the electronic potential
energyVol(RA) both of which depend on the nuclear coordinates, as theefecenergy
has already been calculated at each nuclear configuratarsi@ering a single electronic
state, the time-dependent wave function

(W (t)) = [We(ry; Ra)) |\Ilol,nu(RA§ t)) (3.3)

is given as a product of the electronik,;) and nuclear¥.,, ,,) wave functions. It should
be recalled that the electronic wave function depends orléngtronic coordinates and
parametrically on the nuclear coordinates while the nualesve function depends on the
nuclear coordinates and time. From this point onward thedtoate dependence of the
wave functions will be dropped for the sake of simplicity.drder to derive the egs. of
motion for the nuclear wave function, the expression forrthelear Hamiltonian along
with the wave function, egs. 3.3 and 3.2, are inserted irdOlBSE, eq. 3.1, and results
in the following,

L0

zha
where the nuclear Hamiltonian operator, given in eqs. 2d73a8, accounts for the elec-
tronic Hamiltonian via the electronic energy. Inserting thuclear Hamiltoniarf{eLnu
into equation 3.4 results in the following expression,

|\Ilol> |\Ilol,nu<t)> = I:Icl,nu|\Ilol> |\Ilol,nu<t)> (34)

ih%ﬁfd) [Wernu(t)) = (— EA: ;;—AVZ + vel(RA)> (Wer)[Wernu(t)) (3.5)

where the potential energy operadr (R 4), see eq. 2.5, contains the adiabatic electronic
energyE, (R 4) and the nuclear Coulomb energy term. Multiplication frora kéft with
(V| results in the following equation,

.0 h? .
Zhamlol,nu(t» = <\Ilcl’| - ; 2ma vi‘q]clﬂ\yol,nu(t» + Vol(RA)‘\IIanu(t)) (3-6)

where the electronic states are orthogonal to one anotherfiist term on the left-hand
side of this new expression is expanded by applying the mtodude twice, which is
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rewritten

o, h? 9

\I]c’ - \I]c \I]cnut = \I]c’ - \I]c \I]cnut

(Wl = 3 g P (1) = (= 3 5 0) P a0 +

adiab;?ic term

12 K,

<‘Ilel’| - Z m—AvA|‘Ilel>VA|\Ijel,nu(t)> + <\Ijel’| - Z MVA|qjel>|‘llel,nu(t)> (37)

A A

(. J/

. v .
nonadiabatic terms

as a sum of adiabatic and nonadiabatic couplings. Thesalradradic couplings are con-
sidered to be small when the surfaces do not cross and wilegkected in this work.
However, if there were avoided crossings in the potentiatgynsurfaces then one would
need to consider these coupling terms. The final form for thegon of motion for the
adiabatic nuclear wave function, excluding the non-adiabarms, is

0 ?o, )
'Lha“[[el,nu(t)) - _;QmAvA(Sel’,el|\Ijel,nu(t)>+Vel(RA)|‘Ilel,nu(t)>

== (Tnuécl’,ol + VO](RA)> ‘\Ilcl,nu(t»a (38)

where the first term on the right describes the kinetic enefglge nuclei and the second
term the adiabatic potential energy, which is simply a pééenergy surface for each
electronic state. In the remainder of the chapter, the exdf "nu” and “el” will be
removed for simplicity, and may reappear when necessargidoity.

3.1.1 Formal Solution - Time Evolution Operator

Wavepacket propagation is accomplished by solving the-tiependent Schrodinger equa-
tion. This section will explore the formal solution of the B for a time-independent
and a time-dependent Hamiltonian respectively. Firstdikeussion of the time evolution
operator will begin with the field-free or time-independetatmiltonian. In the following

it will be shown how the evolution of the wavepacket can balusebtain UV absorption
spectra. Second, the time evolution operator will be dbsdrunder the influence of the
laser-matter interaction, as is normally the case whenideriag quantum dynamics.
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Time-independent Hamiltonian

Integrating the time-dependent Schrodinger equation3€q leads to
[W(1)) = e /MW (1)) = Tt 10) | (t0)), (3.9)

where the exponential term has been designated the timeteyobperatoU(¢, t,) and
carries out the time evolution of the initial wave functiorhe state function(¢)) can
be expanded in a basis of known stationary eigenfunctiotiseoflamiltonian

W (o)) = Z (W) (W3 (2)). (3.10)

The evolution of the wave function can be described in terftkis expansion by insert-
ing eg. 3.10 into eq. 3.9,

(T(E) = [Ty g (1))

J
= D W) MBI (B (¢g)) (3.11)
J

where the last sandwiched terfw/[¥(¢,)) forms a set of initial expansion coefficients
andE; in eq. 3.11 are the energies for each eigengtaje. As can be seen the energy
of the eigenstates remains constant over the time in whiele¥blution operator acts on
the wave function. More specifically, the wave function doeslose any energy over the
propagation time, and lends itself nicely to the simulatidmbsorption spectra, as will

be seen in section 3.1.2.

The time evolution operator has a few properties which atewarthy: first, its initial
condition, eq. 3.12; second, it is unitary, equation 3.1} third, it follows the composi-
tion property, equation 3.14

Ulto, tg) = 1 (3.12)
Uf(t, 1)Ut t)) = 1 (3.13)
Ulta,to) = Ulta, t1)U(t1, o). (3.14)

The initial condition, eq. 3.12, indicates that the timelation operator at time equal to
zero (t =), does not influence the wave function, which is simply a matultiplication

of ones. The second property, eq. 3.13, allows for the mgppimne function onto an-
other, a so-called isomorphism, where the time paramegechanged but the functions,
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in this case the wave functions, remain normalized and withé Hilbert space; phys-
ically this indicates the conservation of the number of ipka$. The last property, eq.
3.14, the composition property, allows for the segmentatiiithe overall time evolution
operator into a product of operators that break up the camphae of evolution into time
segments.

Time-dependent Hamiltonian and Interaction Picture

In the previous discussion, the formal solution to the timdependent Hamiltonian was
reviewed, however, it is often the case that the Hamiltoofanterest is time-dependent.
Such a case occurs, as in this work, when one considers #dracatibn of light on the sys-
tem, via the electric-dipole approximation, where the taependent Hamiltonian takes
on the following form

H(t) = Hypo + V(t). (3.15)
The first term is the molecular HamiltoniaH, previously denoted aﬁol,nu asin eq.
3.2, and the second terf¥,(t), is the perturbation due to the electric field.

The formal solution for the evolution d?(t) is best given in the interaction (l) picture.
The wave function then corresponds to the Schrodingea@ah the following way,
[W(t)) = e~ Pttt (1)) = T (¢, 10) |97 (1)). (3.16)
Taking the time derivative results in the following equatio
ih%|‘l’(t)> = Uy(t, to) (ﬂmﬂ(t)) + m%mﬂ(m) =H(t)|¥(t)) (3.17)

and rearranging this expression, the perturbation canvam gn terms of the interaction
picture

(1)) = Rt =01 (e B0 g 1)) (3.18)

Vi)

The formal solution to the time-dependent Hamiltonian iegiby theS-operator [73]
(W (1)) = S(t, t0) | (to)) = S(t, )| (to)) (3.19)

where it should be noted thpb!(ty)) = |¥(t,)) at the initial time,. Inserting eq. 3.19
into eq. 3.16 one obtains
U(t, to) = Ugl(t, t0)S(t, to) (3.20)
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for the time evolution operator.

To investigate the form of th&-operator, the TDSE is rewritten in terms of the time
evolution operator and the time-dependent perturbatienadpr in the interaction picture.

9001, 1080, 1) (1)) = — (Ol 0)3(1, 1) (1)) (3:21)

This equation holds for any initial stat@(t,)) and therefore the operat8rmust also
satisfy the same equation [74].

Dar i
as(t,to) =3V (t)S(t, to) (3.22)

Upon integrating eq. 3.22 over time, the time evolution ap@rcan be written as

. t
S(t,t0) =1 / ¥ (1)8(m1, ) (3.23)

to

where the first term comes from the initial property desaileeq. 3.12. Its solution is
obtained by an iteration, in which the equation is insentgd itself on the right-hand side
of the equation [74]. The first "self” iteration term is

. t S\ 2 pt T ~ . .
S(t,to) = 1—%/ dTle(Tl)—F (—%) / d7'1/ dTgVI(Tl)VI(Tg)S(TQ,to) (324)
to to

to

where subsequent iterations lead to the following timesoed expansion

o AL t Tn T2 . R R
S(t, to) =1+ Z (—%) / dTn/ dTn—l .. / dTlvl(Tn)VI(Tn_l) ce VI(Tl)
n=1 to to to

(3.25)
which can be compactly written in its final form as

S(tte) = 14+ 8" (1 ty) = ¢ 1 V') (3.26)

n=1

wherer = 1,7, ...7,,. The evolution of a wave function can now be given formally in
terms of the time-dependency of the Hamiltonian as

[W(t)) = Ugl(t, 0)S(t, o) (to)). (3.27)

where the evolution operatot(t, t,) andS(t, t,), evolve the initial wave functio ()
over time, and the S-operator is taken as the first-orderwtiescribes single photon
excitations.
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3.1.2 Time-dependent UV Absorption Spectrum

The autocorrelation function maps the evolving wavepabetalculating the overlap
with its initial position

J

Surlt) = 3 55(8) = S (5t0)|W(0) (3.28)

such that the total autocorrelation function is composed setim of each autocorrela-
tion function for each electronic staje Considering for the moment only one elec-
tronic state, the autocorrelation function initially begiat unity since the wave function
has been normalized. The decay of the autocorrelationibmdepends on the rate at
which the evolving wavepacket moves away from its initiasiion. In the case that the
wavepacket dissociates directly, the autocorrelatiorction decays to zero. For bound
states or metastable states, the wavepacket tends to pamiialy in a periodic fashion
so that small recurrences appear in the overlap function.

According to Heller [75], the absorption spectrum can beotétcally calculated in a
time-dependent fashion by Fourier transforming the autetation function [76]. The
total cross section is proportional to the autocorrelatiorction as is given below

Fron () / g ED g, (1) (3.29)

[e.e]

wherew is the radiation frequency anfd) is the ground vibrational energy of the ground
electronic state. The initial wave functiow;(¢,)), is a dipole weighted projection of the
ground electronic-vibrational wave functipf) onto the dipole allowed electronic states

‘\I’j(to» = ljl'jz‘\ll?> (3-30)

where the normalized transition dipole moments are given as

5 \/ (G e
’ Zj i
The normalized dipole expression, eq. 3.31, is composeddifidual transition dipole

momentsy;; for the x, y, and z directions. The time-dependent wavepaskaves ac-
cording to

(3.31)

W5 (1)) = U(t,0)[¥;(t0)).- (3.32)
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3.1.3 Electric-dipole Approximation

The Hamiltonian’s time dependence is apparent when oneidarssthe interaction of
matter with light. In the electric-dipole approximationeooconsiders transitions from an
initial state to some other state, whether it be a vibrationaan electronic transition,
where the time-dependence originates from the electrid. fiehe Hamiltonian in such a
case is given as

H(t) = Hyo — AE(1) (3.33)

as was seen in eq. 3.15, whevgt) = —aE(t). Equation 3.33 is composed of the
molecular HamiltoniarfL,,,.;, see eq. 3.2, the dipole moment opergiormnd the time-
dependent electric fielH(¢).

The electric dipole is defined classically as the produchefgosition vector between
two electric charges;™ andg— and its moment

H=q-r (3.34)

is defined as a vectqr with a magnitude of - r [77]. For a molecule with more than two
charges, the electric dipole moment can be written as a suheandividual charges

N
po= Z%‘ 1. (3.35)
i=1

The dipole moment for a quantum mechanical calculation ol@calar system is given
now with the operator representation

trera = (Ver| = (1| Va)) + > ZaRoae - dor v (3.36)
A

where the dipole moment is the sum of the electronic and audgpole moments. The
bold character depicts the dipole moment’s vector chargael the hat depicts its quan-
tum mechanical description. The first term, a quantum medchhterm, describes the
single electron operator acting on the electronic statemdel’ and the second term,
which accounts classically for the charge of the nucleiddeal. Specifically, this equa-
tion can be written in terms of cartesian coordinates whezddllowing

N
Mcy,d = <\Ijel’| - Z Xi|\I]el> + Z ZAXA6 ' 5el,el’ (337)
=1 A
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depicts the case for the x-coordinate and can also be wfdtehe y or the z components.
The permanent dipole is then obtained wheg- eI’ and the transition dipole moment
whenel # el’.

The dipole moment gives the transition probability of tf@nsng population from one
state to another, but it is the laser pulse that containg#wgiéncy which carries popula-
tion from an initial state to some other state. This eledteld is given below

E(t) = ns(t) Egcogwt + 1) (3.38)
where the cosine term contains the transition frequanapd a phase factorwhich, for
ease, will be considered to be zero. The other terms arenbarlpolarization unit vector,
n, the shape functior(¢), and the amplitude of the electric field or the field strendth,
The shape function,

. t
s(t) = sir? C—) for  ty<t<t, (3.39)

p
used throughout this work is given as the square of a sindibmavheret is time andt,

is the pulse duration.

Re-evaluation of the equations of motion for the nuclear wag function

In view of the electric-dipole approximation, the Hamiltan acting on the nuclear wave
function has changed and so have the equations of motiomiliegcthe nuclear wave

function. Equation 3.8, which retained the electronic aélinction to remind us of the

left-multiplication with the electronic wave function, mw modified under the electric-
dipole interaction

;(f)

i (D) = (T5 +Va(Ra) —ueyﬁlE(ti) W (2)), (3.40)

'

H
wherep,, ., are the matrix elements of the dipole operator and togethkrtthe other two

operators form the matrix representation of the time-ddpanHamiltoniarf{(t). Forn
electronic states the equations of motion described in d@, 8an be written in matrix
form

W1 (2)) Hy(t) -+ Hy(t) W (2))
ih— : = : : : : (3.41)

A~ A

|\I]n(t)> Hnl(t) Hnn(t) |\IJN(t)>
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Limiting the number of electronic states to three, whicthes maximum number of states
used in this work, the equations of motion for the nuclearavfawction can be written in
the matrix form,

A0 A (1))
ihe | 10a(0) | = (H®) | 19:(6) (3.42)
W3(1)) [W3(1))

where the Hamiltonian matrix elements are given as

A ICIH — p E(t) A —pE(t) —piE(t)
H(t) = —Hy E(?) Hoy — pyyE(t) A —Hy3E () (3.43)
—p5 E(?) —p5pE(t)  His — dsE(t)

The diagonal elements consist of the molecular Hamiltoklzand the permanent dipole
momenty,,,, wheren = m, whereas the off-diagonal elements contain the transition
dipole momentgu,,,,, wheren # m and the electric-field=(¢) is found throughout the
matrix.

The time-dependent electric field in combination with tlaasition dipole moment allows
for electronic transitions. The dynamics that result frdva laser-matter interaction are
obtained by solving the TDSE, as prescribed by the time ¢esiwperator(J, eq. 3.27.
However, the solution of the nuclear equations of motionaspossible due to the fact
that the kinetic and potential operators do not commuteefbee a numerical solution is
employed.

3.1.4 Numerical Propagation Methods

There have been several numerical methods developed intorgelve the TDSE. A few
of these are the second order differencing scheme develmpkttCullough and Wyatt
[78], the split-operator method introduced by Feit and KIEt9], and the Chebyshev
polynomial expansion method [80]. In this work, the splieoator method was applied
for reasons of its ease and its unitary property, and thexefdl be briefly introduced.
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Split Operator Technique

The time evolution operator is defined by the molecular Hamian, see egs. 3.9 and
3.26. The Hamiltonian is a sum of the kinetic and the potéweteergy terms, which
do not commute, i.e.[T, V] # 0 [81]. In fact the kinetic operatol is local in the
momentum representation while the potential oper&tds nonlocal. In other words the
kinetic operator and the potential operator are diagontlgir respective representations,
namely the momentum and coordinate representations. Tganektial term can not be
split into a product of two exponential terms in which thetftlesm contains the kinetic
operator and the second term the potential operator. lhségaapproximation that uses
a symmetric splitting of the kinetic energy operator is uged is shown below

e RAE _ g AR A A O(A) (3.44)

where the error is of the third order ikt [79]. With this approximation, it is now possible
to propagate the initial wave functiof(t,) a step in time)(r;). Propagation of the wave
function occurs on a discretized time interval and is itexdibelow:

The wave function is Fourier transformed to the momentuncespéhere it is mul-
tiplied with the first half of the kinetic operatoaT#AtT.

The wave function is Fourier transformed back to coordisatee where it is mul-
tiplied by e~ # 4%V,

The wave function is Fourier transformed to the momentuncespéhere it is mul-
tiplied with the second half of the kinetic operaterz 2T,

The wave function is re-evaluated at the next time step.

The wave function is continually being Fourier transfornfiexin one space to the other
to account for the locality of each operator and upon its detign is re-evaluated at
the next time step. Implementing this method allows for eatbn of the wave function

along each time step in the simulation.
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Grid considerations

In the grid representation of quantum dynamics it is impdrthat the wave function
does not cross over the grid boundary, which can cause the firagtion to wrap around
the grid or can cause reflections of the wave function [81}such a case, the dynamics
which ensue are no longer physical and are rendered moot.nfdeenot only care for
the dynamics in position space but also in momentum spacal] sction 2.3.1, there it
was shown that the density of grid points in position spad¢erdenes the grid density in
momentum space.

Figure 3.1 shows how the density of points in position spdfexts the density of grid
points in momentum space by changing the number of grid pdintvhile holding the
grid length . = Az N) constant. The left side of the figure depicts the grid in motue
space and the right side depicts the grid in position spaaté,ib atomic units. The sub-
figures which are placed side-by-side belong with one amofftee top set of subfigures
are a scenario where the number of grid points used was axnohtN = 64x64 points,
which, along with the grid length, defines the maximum valtihe momentum grid

kmax = 7/ Ax. (3.45)

By doubling the number of points in the position space, th&imam value of the mo-
mentum grid increases by two, as can be seen from eq. 2.77.

One problem that can occur in a simulation is that the gridasgntation for the mo-
mentum space is insufficient, i.e. the maximum of the monmansunot large enough to
describe the motion of the wave function. This can be seergir8fiL where the wave
function has been plotted on the PESs at a final timeln the first scenario, the wave
function did not have enough room to migrate within the motmerspace and was forced
to wrap around the grid, ending up in another quadrant. Tdused the wave function to
misbehave by changing either the direction of its motionyadificially spreading out

over the position grid. This figure exemplifies the need te ¢ar the grid boundaries in
both the position and momentum space.

The second problem which may occur is that the wave funcganhes the grid boundary
in position space, due to long-time propagations. Thisleralzan be solved by applying
an absorbing boundary function, also known as a "gobblerthe boarder of the grid.

Essentially, the gobbler will absorb the wave function asnters into this predefined
domain, near the edge of the grid.
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Figure 3.1: This figure compares the position grid and the momentum grié fconstant length

L = AxzN. The number of grid points for the upper two grid$ix64 where the left subfigures
are in momentum spadéeand the right subfigures are in position spac&he lower two subfigures
are on a grid with128x128 points, exactly double the ones from above. Overlayingelwgegs

is a wave function at a final propagation tirhg where the above set of subfigures describes a
misbehaving wave function, while the second set descrilveslldbehaved one.

The absorbing boundary function, also known as a gobbleth&case of one-dimension,
which is easily cast into multi-dimensions, is given as a$3#&n type function

(3.46)

Gla) = exp—d(m—Nz+ngobb)2 x> Ny — Ngobp
1 r < Nx - ngobb

whered is a damping function)V the total number of points of the grie, and g,
defines the onset of the gobbler [82]. The damping functiomrgdemented in the
WavePacket program [83] is defined @s= —Iog(le‘4/n§0bb). The gobbler then acts
on the wave function as follows

U(x) =V(z) - G(x), (3.47)

where the wave function is multiplied by one unless it is wittine defined region of the
gobbler where it is then multiplied by the exponential fuoict this essentially gobbles
up the wave function in order to prevent wrapping and refbecti



