
Chapter 3

Quantum Dynamics

This chapter sets out to solve the time-dependent Schrödinger equation (TDSE). The

discussion begins with the derivation of the equations of motion for a time-independent

Hamiltonian. Subsequently, the formal solution for transforming the wave function from

an initial time to some further time will be given for a time-independent and a time-

dependent Hamiltonian. The succeeding section focuses on the concepts needed to simu-

late UV absorption spectra, where the Hamiltonian, in this case, is time-independent. The

methodology used for transferring population from one state to another via laser-matter

interaction is described, thereafter, the equations of motion are revisited for inclusion of

this perturbation. The last section introduces a numericalsolution, the split-operator tech-

nique, which when implemented, allows for a simulation of a wavepacket over discretized

time steps.

3.1 Time-dependent Nuclear Schr̈odinger Equation

The intent of this section is to derive a general equation of motion for the nuclear wave

function. The nuclear wave function evolves along the potential energy surface, by solv-

ing the equations of motion, and describes the vibrational behavior of the molecular sys-

tem. To derive these equations we start with the TDSE

i~
∂

∂t
|Ψ(t)〉 = Ĥel,nu|Ψ(t)〉 (3.1)
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where the nuclear Hamiltonian

Ĥel,nu = T̂nu(RA) + V̂el(RA) (3.2)

is a sum of the nuclear kinetic energy operatorT̂nu(RA) and the electronic potential

energyV̂el(RA) both of which depend on the nuclear coordinates, as the electronic energy

has already been calculated at each nuclear configuration. Considering a single electronic

state, the time-dependent wave function

|Ψ(t)〉 = |Ψel(ra;RA)〉|Ψel,nu(RA; t)〉 (3.3)

is given as a product of the electronic|Ψel〉 and nuclear|Ψel,nu〉 wave functions. It should

be recalled that the electronic wave function depends on theelectronic coordinates and

parametrically on the nuclear coordinates while the nuclear wave function depends on the

nuclear coordinates and time. From this point onward the coordinate dependence of the

wave functions will be dropped for the sake of simplicity. Inorder to derive the eqs. of

motion for the nuclear wave function, the expression for thenuclear Hamiltonian along

with the wave function, eqs. 3.3 and 3.2, are inserted into the TDSE, eq. 3.1, and results

in the following,

i~
∂

∂t
|Ψel〉|Ψel,nu(t)〉 = Ĥel,nu|Ψel〉|Ψel,nu(t)〉 (3.4)

where the nuclear Hamiltonian operator, given in eqs. 2.7 and 3.2, accounts for the elec-

tronic Hamiltonian via the electronic energy. Inserting the nuclear Hamiltonian̂Hel,nu

into equation 3.4 results in the following expression,

i~
∂

∂t
|Ψel〉|Ψel,nu(t)〉 =

(

−
∑

A

~
2

2mA

∇2
A + V̂el(RA)

)

|Ψel〉|Ψel,nu(t)〉 (3.5)

where the potential energy operatorV̂el(RA), see eq. 2.5, contains the adiabatic electronic

energyEel(RA) and the nuclear Coulomb energy term. Multiplication from the left with

〈Ψel′| results in the following equation,

i~
∂

∂t
|Ψel,nu(t)〉 = 〈Ψel′| −

∑

A

~
2

2mA
∇2

A|Ψel〉|Ψel,nu(t)〉+ V̂el(RA)|Ψel,nu(t)〉 (3.6)

where the electronic states are orthogonal to one another. The first term on the left-hand

side of this new expression is expanded by applying the product rule twice, which is
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rewritten

〈Ψel′| −
∑

A

~
2

2mA

∇2
A|Ψel〉|Ψel,nu(t)〉 = 〈Ψel′| −

∑

A

~
2

2mA

|Ψel〉∇2
A|Ψel,nu(t)〉

︸ ︷︷ ︸

adiabatic term

+

〈Ψel′| −
∑

A

~
2

mA
∇A|Ψel〉∇A|Ψel,nu(t)〉+ 〈Ψel′| −

∑

A

~
2

2mA
∇2

A|Ψel〉|Ψel,nu(t)〉
︸ ︷︷ ︸

nonadiabatic terms

(3.7)

as a sum of adiabatic and nonadiabatic couplings. These nonadiabatic couplings are con-

sidered to be small when the surfaces do not cross and will be neglected in this work.

However, if there were avoided crossings in the potential energy surfaces then one would

need to consider these coupling terms. The final form for the equation of motion for the

adiabatic nuclear wave function, excluding the non-adiabatic terms, is

i~
∂

∂t
|Ψel,nu(t)〉 = −

∑

A

~
2

2mA

∇2
Aδel′,el|Ψel,nu(t)〉+ V̂el(RA)|Ψel,nu(t)〉

=
(

T̂nuδel′,el + V̂el(RA)
)

|Ψel,nu(t)〉, (3.8)

where the first term on the right describes the kinetic energyof the nuclei and the second

term the adiabatic potential energy, which is simply a potential energy surface for each

electronic state. In the remainder of the chapter, the indices of ”nu” and ”el” will be

removed for simplicity, and may reappear when necessary forclarity.

3.1.1 Formal Solution - Time Evolution Operator

Wavepacket propagation is accomplished by solving the time-dependent Schrödinger equa-

tion. This section will explore the formal solution of the TDSE for a time-independent

and a time-dependent Hamiltonian respectively. First, thediscussion of the time evolution

operator will begin with the field-free or time-independentHamiltonian. In the following

it will be shown how the evolution of the wavepacket can be used to obtain UV absorption

spectra. Second, the time evolution operator will be described under the influence of the

laser-matter interaction, as is normally the case when considering quantum dynamics.
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Time-independent Hamiltonian

Integrating the time-dependent Schrödinger equation, eq. 3.1, leads to

|Ψ(t)〉 = e−i/~Ĥ(t−t0)|Ψ(t0)〉 = Û(t, t0)|Ψ(t0)〉, (3.9)

where the exponential term has been designated the time evolution operatorU(t, t0) and

carries out the time evolution of the initial wave function.The state function|Ψ(t)〉 can

be expanded in a basis of known stationary eigenfunctions ofthe Hamiltonian

|Ψ(t0)〉 =
∑

j

|Ψv
j 〉〈Ψv

j |Ψ(t)〉. (3.10)

The evolution of the wave function can be described in terms of this expansion by insert-

ing eq. 3.10 into eq. 3.9,

|Ψ(t)〉 =
∑

j

|Ψv
j〉〈Ψv

j |e−i/~Ĥ(t−t0)|Ψ(t0)〉

=
∑

j

|Ψv
j〉e−i/~Ej(t−t0)〈Ψv

j |Ψ(t0)〉 (3.11)

where the last sandwiched term〈Ψv
j |Ψ(t0)〉 forms a set of initial expansion coefficients

andEj in eq. 3.11 are the energies for each eigenstate|Ψv
j 〉. As can be seen the energy

of the eigenstates remains constant over the time in which the evolution operator acts on

the wave function. More specifically, the wave function doesnot lose any energy over the

propagation time, and lends itself nicely to the simulationof absorption spectra, as will

be seen in section 3.1.2.

The time evolution operator has a few properties which are noteworthy: first, its initial

condition, eq. 3.12; second, it is unitary, equation 3.13; and third, it follows the composi-

tion property, equation 3.14

Û(t0, t0) = 1 (3.12)

Û†(t, t0)Û(t, t0) = 1 (3.13)

Û(t2, t0) = Û(t2, t1)Û(t1, t0). (3.14)

The initial condition, eq. 3.12, indicates that the time evolution operator at time equal to

zero (t = t0), does not influence the wave function, which is simply a matrix multiplication

of ones. The second property, eq. 3.13, allows for the mapping of one function onto an-

other, a so-called isomorphism, where the time parameter has changed but the functions,
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in this case the wave functions, remain normalized and within the Hilbert space; phys-

ically this indicates the conservation of the number of particles. The last property, eq.

3.14, the composition property, allows for the segmentation of the overall time evolution

operator into a product of operators that break up the complete time of evolution into time

segments.

Time-dependent Hamiltonian and Interaction Picture

In the previous discussion, the formal solution to the time-independent Hamiltonian was

reviewed, however, it is often the case that the Hamiltonianof interest is time-dependent.

Such a case occurs, as in this work, when one considers the interaction of light on the sys-

tem, via the electric-dipole approximation, where the time-dependent Hamiltonian takes

on the following form

Ĥ(t) = Ĥmol + V̂(t). (3.15)

The first term is the molecular Hamiltonian,Ĥmol previously denoted aŝHel,nu as in eq.

3.2, and the second term,V̂(t), is the perturbation due to the electric field.

The formal solution for the evolution of̂V(t) is best given in the interaction (I) picture.

The wave function then corresponds to the Schrödinger picture in the following way,

|Ψ(t)〉 = e−iĤmol(t−t0)/~|ΨI(t)〉 = Û0(t, t0)|ΨI(t)〉. (3.16)

Taking the time derivative results in the following equation,

i~
∂

∂t
|Ψ(t)〉 = Û0(t, t0)

(

Ĥ|ΨI(t)〉+ i~
∂

∂t
|ΨI(t)〉

)

= Ĥ(t)|Ψ(t)〉 (3.17)

and rearranging this expression, the perturbation can be given in terms of the interaction

picture

i~
∂

∂t
|ΨI(t)〉 = eiĤmol(t−t0)/~V̂(t)e−iĤmol(t−t0)/~

︸ ︷︷ ︸

V̂I (t)

|ΨI(t)〉. (3.18)

The formal solution to the time-dependent Hamiltonian is given by thêS-operator [73]

|ΨI(t)〉 = Ŝ(t, t0)|ΨI(t0)〉 = Ŝ(t, t0)|Ψ(t0)〉 (3.19)

where it should be noted that|ΨI(t0)〉 = |Ψ(t0)〉 at the initial time,t0. Inserting eq. 3.19

into eq. 3.16 one obtains

Û(t, t0) = Û0(t, t0)Ŝ(t, t0) (3.20)
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for the time evolution operator.

To investigate the form of thêS-operator, the TDSE is rewritten in terms of the time

evolution operator and the time-dependent perturbation operator in the interaction picture.

∂

∂t
Û0(t, t0)Ŝ(t, t0)|Ψ(t0)〉 = − i

~
V̂I(t)Û0(t, t0)Ŝ(t, t0)|Ψ(t0)〉. (3.21)

This equation holds for any initial state|Ψ(t0)〉 and therefore the operator̂S must also

satisfy the same equation [74].

∂

∂t
Ŝ(t, t0) = − i

~
V̂I(t)Ŝ(t, t0) (3.22)

Upon integrating eq. 3.22 over time, the time evolution operator can be written as

Ŝ(t, t0) = 1− i

~

∫ t

t0

dτ1V̂
I(τ1)Ŝ(τ1, t0) (3.23)

where the first term comes from the initial property described in eq. 3.12. Its solution is

obtained by an iteration, in which the equation is inserted into itself on the right-hand side

of the equation [74]. The first ”self” iteration term is

Ŝ(t, t0) = 1− i

~

∫ t

t0

dτ1V̂
I(τ1)+

(

− i
~

)2 ∫ t

t0

dτ1

∫ τ1

t0

dτ2V̂
I(τ1)V̂

I(τ2)Ŝ(τ2, t0) (3.24)

where subsequent iterations lead to the following time-ordered expansion

Ŝ(t, t0) = 1 +

∞∑

n=1

(

− i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1V̂
I(τn)V̂I(τn−1) . . . V̂

I(τ1)

(3.25)

which can be compactly written in its final form as

Ŝ(t, t0) = 1 +
∞∑

n=1

Ŝn(t, t0) = e
− i

~

R t

t0
dτV̂I (τ) (3.26)

whereτ = τ1, τ2, ...τn. The evolution of a wave function can now be given formally in

terms of the time-dependency of the Hamiltonian as

|Ψ(t)〉 = Û0(t, t0)Ŝ(t, t0)|Ψ(t0)〉. (3.27)

where the evolution operatorŝU0(t, t0) andŜ(t, t0), evolve the initial wave functionΨ(t0)

over time, and the S-operator is taken as the first-order which describes single photon

excitations.
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3.1.2 Time-dependent UV Absorption Spectrum

The autocorrelation function maps the evolving wavepacketby calculating the overlap

with its initial position

Stot(t) =
∑

j

Sj(t) =
∑

j

〈Ψj(t0)|Ψj(t)〉 (3.28)

such that the total autocorrelation function is composed ofa sum of each autocorrela-

tion function for each electronic statej. Considering for the moment only one elec-

tronic state, the autocorrelation function initially begins at unity since the wave function

has been normalized. The decay of the autocorrelation function depends on the rate at

which the evolving wavepacket moves away from its initial position. In the case that the

wavepacket dissociates directly, the autocorrelation function decays to zero. For bound

states or metastable states, the wavepacket tends to returnpartially in a periodic fashion

so that small recurrences appear in the overlap function.

According to Heller [75], the absorption spectrum can be theoretically calculated in a

time-dependent fashion by Fourier transforming the autocorrelation function [76]. The

total cross section is proportional to the autocorrelationfunction as is given below

σtot(ω) ∝
∫ ∞

−∞

dtei(~ω+E0
0 )Stot(t) (3.29)

whereω is the radiation frequency andE0
0 is the ground vibrational energy of the ground

electronic state. The initial wave function|Ψj(t0)〉, is a dipole weighted projection of the

ground electronic-vibrational wave function|Ψ0
i 〉 onto the dipole allowed electronic states

|Ψj(t0)〉 = µ̃ji|Ψ0
i 〉 (3.30)

where the normalized transition dipole moments are given as

µ̃ji =

√

µ
2
ji,x + µ

2
ji,y + µ

2
ji,z

∑

j µji

. (3.31)

The normalized dipole expression, eq. 3.31, is composed of individual transition dipole

momentsµji for the x, y, and z directions. The time-dependent wavepacket evolves ac-

cording to

|Ψj(t)〉 = Û(t, t0)|Ψj(t0)〉. (3.32)



40 Quantum Dynamics

3.1.3 Electric-dipole Approximation

The Hamiltonian’s time dependence is apparent when one considers the interaction of

matter with light. In the electric-dipole approximation one considers transitions from an

initial state to some other state, whether it be a vibrational or an electronic transition,

where the time-dependence originates from the electric field. The Hamiltonian in such a

case is given as

Ĥ(t) = Ĥmol − µ̂E(t) (3.33)

as was seen in eq. 3.15, wherêV(t) = −µ̂E(t). Equation 3.33 is composed of the

molecular Hamiltonian̂Hmol, see eq. 3.2, the dipole moment operatorµ̂, and the time-

dependent electric fieldE(t).

The electric dipole is defined classically as the product of the position vectorr between

two electric charges,q+ andq− and its moment

µ = q · r (3.34)

is defined as a vectorµ with a magnitude ofq · r [77]. For a molecule with more than two

charges, the electric dipole moment can be written as a sum ofthe individual charges

µ̂ =
N∑

i=1

qi · ri. (3.35)

The dipole moment for a quantum mechanical calculation on a molecular system is given

now with the operator representation

µel′,el = 〈Ψel′| − µ̂|Ψel〉+
∑

A

ZARAe · δel,el′ (3.36)

where the dipole moment is the sum of the electronic and nuclear dipole moments. The

bold character depicts the dipole moment’s vector character, and the hat depicts its quan-

tum mechanical description. The first term, a quantum mechanical term, describes the

single electron operator acting on the electronic statesel and el′ and the second term,

which accounts classically for the charge of the nuclei, is added. Specifically, this equa-

tion can be written in terms of cartesian coordinates where the following

µel′,el = 〈Ψel′| −
N∑

i=1

xi|Ψel〉+
∑

A

ZAxAe · δel,el′ (3.37)



3.1 Time-dependent Nuclear Schrödinger Equation 41

depicts the case for the x-coordinate and can also be writtenfor the y or the z components.

The permanent dipole is then obtained whenel = el′ and the transition dipole moment

whenel 6= el′.

The dipole moment gives the transition probability of transferring population from one

state to another, but it is the laser pulse that contains the frequency which carries popula-

tion from an initial state to some other state. This electricfield is given below

E(t) = ns(t)E0cos(ωt+ η) (3.38)

where the cosine term contains the transition frequencyω and a phase factorη which, for

ease, will be considered to be zero. The other terms are the linear polarization unit vector,

n, the shape functions(t), and the amplitude of the electric field or the field strength,E0.

The shape function,

s(t) = sin2

(
πt

tp

)

for t0 ≤ t ≤ tp (3.39)

used throughout this work is given as the square of a sine function, wheret is time andtp
is the pulse duration.

Re-evaluation of the equations of motion for the nuclear wave function

In view of the electric-dipole approximation, the Hamiltonian acting on the nuclear wave

function has changed and so have the equations of motion describing the nuclear wave

function. Equation 3.8, which retained the electronic delta function to remind us of the

left-multiplication with the electronic wave function, isnow modified under the electric-

dipole interaction

i~
∂

∂t
|Ψ(t)〉 =

(
Ĥ(t)

︷ ︸︸ ︷

T̂δel′,el + V̂el(RA)
︸ ︷︷ ︸

Ĥ

−µel′,elE(t)

)

|Ψ(t)〉, (3.40)

whereµel′,el are the matrix elements of the dipole operator and together with the other two

operators form the matrix representation of the time-dependent Hamiltonian̂H(t). Forn

electronic states the equations of motion described in eq. 3.40, can be written in matrix

form

i~
∂

∂t






|Ψ1(t)〉
...

|Ψn(t)〉




 =






Ĥ11(t) · · · Ĥ1n(t)
...

. . .
...

Ĥn1(t) · · · Ĥnn(t)











|Ψ1(t)〉
...

|Ψn(t)〉




 . (3.41)
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Limiting the number of electronic states to three, which is the maximum number of states

used in this work, the equations of motion for the nuclear wave function can be written in

the matrix form,

i~
∂

∂t






|Ψ1(t)〉
|Ψ2(t)〉
|Ψ3(t)〉




 =

(

Ĥ(t)
)






|Ψ1(t)〉
|Ψ2(t)〉
|Ψ3(t)〉




 (3.42)

where the Hamiltonian matrix elements are given as

Ĥ(t) =






Ĥ11 − µ11E(t) −µ12E(t) −µ13E(t)

−µ21E(t) Ĥ22 − µ22E(t) −µ23E(t)

−µ31E(t) −µ32E(t) Ĥ33 − d33E(t)




 (3.43)

The diagonal elements consist of the molecular HamiltonianĤ and the permanent dipole

momentµnm wheren = m, whereas the off-diagonal elements contain the transition

dipole momentsµnm wheren 6= m and the electric-fieldE(t) is found throughout the

matrix.

The time-dependent electric field in combination with the transition dipole moment allows

for electronic transitions. The dynamics that result from the laser-matter interaction are

obtained by solving the TDSE, as prescribed by the time evolution operatorÛ, eq. 3.27.

However, the solution of the nuclear equations of motion is not possible due to the fact

that the kinetic and potential operators do not commute, therefore a numerical solution is

employed.

3.1.4 Numerical Propagation Methods

There have been several numerical methods developed in order to solve the TDSE. A few

of these are the second order differencing scheme developedby McCullough and Wyatt

[78], the split-operator method introduced by Feit and Fleck [79], and the Chebyshev

polynomial expansion method [80]. In this work, the split-operator method was applied

for reasons of its ease and its unitary property, and therefore will be briefly introduced.
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Split Operator Technique

The time evolution operator is defined by the molecular Hamiltonian, see eqs. 3.9 and

3.26. The Hamiltonian is a sum of the kinetic and the potential energy terms, which

do not commute, i.e.[T̂, V̂] 6= 0 [81]. In fact the kinetic operator̂T is local in the

momentum representation while the potential operatorV̂ is nonlocal. In other words the

kinetic operator and the potential operator are diagonal intheir respective representations,

namely the momentum and coordinate representations. The exponential term can not be

split into a product of two exponential terms in which the first term contains the kinetic

operator and the second term the potential operator. Instead, an approximation that uses

a symmetric splitting of the kinetic energy operator is usedand is shown below

e−
i
~
∆tĤ = e−

i
2~

∆tT̂e−
i
~
∆tV̂e−

i
2~

∆tT̂ +O(∆t3) (3.44)

where the error is of the third order in∆t [79]. With this approximation, it is now possible

to propagate the initial wave functionψ(t0) a step in timeψ(τ1). Propagation of the wave

function occurs on a discretized time interval and is itemized below:

• The wave function is Fourier transformed to the momentum space where it is mul-

tiplied with the first half of the kinetic operator,e−
i

2~
∆tT̂.

• The wave function is Fourier transformed back to coordinatespace where it is mul-

tiplied bye−
i
~
∆tV̂.

• The wave function is Fourier transformed to the momentum space where it is mul-

tiplied with the second half of the kinetic operator,e−
i

2~
∆tT̂.

• The wave function is re-evaluated at the next time step.

The wave function is continually being Fourier transformedfrom one space to the other

to account for the locality of each operator and upon its completion is re-evaluated at

the next time step. Implementing this method allows for evaluation of the wave function

along each time step in the simulation.
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Grid considerations

In the grid representation of quantum dynamics it is important that the wave function

does not cross over the grid boundary, which can cause the wave function to wrap around

the grid or can cause reflections of the wave function [81]. Insuch a case, the dynamics

which ensue are no longer physical and are rendered moot. Onemust not only care for

the dynamics in position space but also in momentum space, recall section 2.3.1, there it

was shown that the density of grid points in position space determines the grid density in

momentum space.

Figure 3.1 shows how the density of points in position space affects the density of grid

points in momentum space by changing the number of grid pointsN while holding the

grid length (L = ∆xN) constant. The left side of the figure depicts the grid in momentum

space and the right side depicts the grid in position space, both in atomic units. The sub-

figures which are placed side-by-side belong with one another. The top set of subfigures

are a scenario where the number of grid points used was a matrix of N = 64x64 points,

which, along with the grid length, defines the maximum value of the momentum grid

kmax = π/∆x. (3.45)

By doubling the number of points in the position space, the maximum value of the mo-

mentum grid increases by two, as can be seen from eq. 2.77.

One problem that can occur in a simulation is that the grid representation for the mo-

mentum space is insufficient, i.e. the maximum of the momentum is not large enough to

describe the motion of the wave function. This can be seen in fig. 3.1 where the wave

function has been plotted on the PESs at a final timetf . In the first scenario, the wave

function did not have enough room to migrate within the momentum space and was forced

to wrap around the grid, ending up in another quadrant. This caused the wave function to

misbehave by changing either the direction of its motion or by artificially spreading out

over the position grid. This figure exemplifies the need to care for the grid boundaries in

both the position and momentum space.

The second problem which may occur is that the wave function reaches the grid boundary

in position space, due to long-time propagations. This problem can be solved by applying

an absorbing boundary function, also known as a ”gobbler”, to the boarder of the grid.

Essentially, the gobbler will absorb the wave function as itenters into this predefined

domain, near the edge of the grid.
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Figure 3.1: This figure compares the position grid and the momentum grid for a constant length

L = ∆xN . The number of grid points for the upper two grids is64x64 where the left subfigures

are in momentum spacek and the right subfigures are in position spaceq. The lower two subfigures

are on a grid with128x128 points, exactly double the ones from above. Overlaying these grids

is a wave function at a final propagation timetf , where the above set of subfigures describes a

misbehaving wave function, while the second set describes awell behaved one.

The absorbing boundary function, also known as a gobbler, for the case of one-dimension,

which is easily cast into multi-dimensions, is given as a Gaussian type function

G(x) =

{

exp−d(x−Nx+ngobb)2 x > Nx − ngobb

1 x < Nx − ngobb

(3.46)

whered is a damping function,N the total number of points of the gridx, andngobb

defines the onset of the gobbler [82]. The damping function asimplemented in the

WavePacket program [83] is defined asd = −log(1e−4/n2
gobb). The gobbler then acts

on the wave function as follows

Ψ(x) = Ψ(x) ·G(x), (3.47)

where the wave function is multiplied by one unless it is within the defined region of the

gobbler where it is then multiplied by the exponential function, this essentially gobbles

up the wave function in order to prevent wrapping and reflection.


