Chapter 2

Quantum Chemistry

It is the goal of this chapter to describe the pertinent thebguantum chemistry in order
to obtain accurate physical information on the electrontmuclear character of a molec-
ular system: respectively, the equilibrium geometry, fleeteonic spectrum, excited elec-
tronic states, permanent and transition dipole momentsngial energy surfaces, as well
as the vibrational eigenfunctions and eigenvalues. At #rger of solving the nonrel-
ativistic time-independent Schrodinger equation (TI8&9 the Born-Oppenheimer ap-
proximation. Its application to the TISE validates a sefyancof the electrons from the
nuclei, leading to two eigenvalue equations: the electranid the nuclear Schrodinger
equations. In the following it will also be shown how one ideato (accurately) solve
these equations for the two unknowns, i.e. the energies and functions.

2.1 Time-independent Schodinger Equation

The nonrelativistic time-independent Schrodinger eigndt1] is given as
H|V) = E[W), (2.1)

where the total energyy, is obtainable by operation of the time-independent madéecu
Hamiltonian, H, onto the complete wave functioh}). The molecular Hamiltonian is
given below,
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whereV? is the Laplacian operatofp. andm, are the mass of the electron and the
nucleus, respectively, all of which are used to define thekiwetic energy termsT,, and
T... The third termV,,, represents the Coulomb attraction between an electron and a
nucleus while the remaining two ternﬁem ananu,nu, represent the repulsion between
two electrons and two nuclei, respectively. The varigblaepresents the atomic number
of nucleus4, r;, the distance between electroandb, r, 4 the distance between electron
a and nucleusi, R 45 the distance between two nuclei, agch constant: the permittivity
of vacuum. The last three terms define the potential energyatb@V, which contains
the interaction between the electrons and the nuclei, lstilee electrons, and between
the nuclei. Relativistic effects including, spin-orbitaluplings have not been considered
in this work.

2.1.1 Born-Oppenheimer Approximation

The time-independent Schrodinger equation, eq. 2.1,tiselgable for a many-electron
molecule. As a first step to circumvent this inability, thelear terms are separated from
the electronic terms [42]. This is done by invoking the B@ppenheimer approximation
[38]. The approximation takes into account the mass diffeeecbetween the electron and
the nucleus. Considering the lightest of all atoms, the bgeln atom, the mass ratio of
the nucleus to the electron is 1836, exemplifying this apionation. Furthermore, the
lagging nuclei, due to this mass difference, are so slow aptadg to the change in the
electronic configuration that the geometry of the nuclei barconsidered fixed, when
describing the electronic problem.
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2.1.2 Electronic Schbdinger Equation

The consequence of the Born-Oppenheimer approximatidreigbility to separate the
motion of the electrons from that of the nuclei. Accordinghe electronic Hamiltonian

ﬂel:_zﬁi Ve Tne (ZZZAe DI ) (2.3)
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is the part of the molecular Hamiltonian given in eq. 2.2, eihdlescribes the electrons.

The kinetic energy term for the nuclei as well as the nuclepulsion, now a constant,
are neglected. The electronic Schrodinger equation rsghen as the following,

I:Iol‘\Ilcl(ra; RA)) = E01<RA)‘\IICI(I'(1; RA)) (24)

where the electronic wave functiopl.(r,; R.)), depends directly on the electron co
ordinates,r,, and parametrically on the nuclear coordinatBs,, as do the electronic
energiesfq(R4).

It is the intendment of quantum chemical programs to soleestiationary Schrodinger
equation, eq. 2.4. In doing so, the sum of the electronicggnér, (R 4) and the nuclear

repulsion,\A/nuvnu(RA) at a specific nuclear configuratidty provides a potential energy.
The potential energy for a given electronic state - a poitth@potential energy surface -
is defined as

vel(RA) - Eel(RA) + vnu,nu(RA)~ (25)

A series of stationary points for different nuclear confagions will produce potential
energy surfaces, which will serve as the playground for yrwachics of nuclear wave
functions.

2.1.3 Nuclear Schbdinger Equation

Under the same approximation that was used for solving #atrenic Schrodinger equa-
tion, i.e. the Born-Oppenheimer approximation, it is pbkestio obtain the nuclear Schro-
dinger equation

I:I()l,nu | \Ijol,nu (RA> > = Eol,nu ‘ \Ilcl,nu (RA> > . (2 . 6)
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For the lagging motion of the nuclei it is sufficient to apgtgtaverage values of the elec-
tronic coordinates averaged over the electronic wave ioimct he nuclear Hamiltonian
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(2.7)
is defined by the effective energy of the electronic tel’@ms(RA), along with the ki-
netic energy operator for the nuclél,, as defined in eq. 2.2. Solutions of the nu-
clear Schrodinger equation, eq. 2.6, describe the vidorafirotations and translations of
a molecule, whereas the nuclear eneigy,, now represents the total enerdy,, in the
Born-Oppenheimer approximation and accounts for thereleict and vibrational energy
of a molecule.

2.2 Solution to the Electronic Schibdinger Equation

Solving the electronic Schrodinger equation, eq. 2.4,different nuclear coordinates
produces a series of single point energies that can be cthiecform potential energy
surfaces. These surfaces are where the nuclear wavepgcdeenhits will take place. Itis
therefore essential to represent the electronic wave iumsctppropriately, such that the
electronic energy approaches the exact value or in the daseltiple electronic states,
that the relative energy between states is representdtilie molecule. Of course solving
this equation exactly is possible only for the simplest ofevales. So in order to solve
these equations for larger molecules more approximatiene ko be made. The most
fundamental of these approximations is the Hartree-Fopkagmation.

2.2.1 Hartree-Fock

The Hartree-Fock (HF) method [43, 44, 45] is an approxinmatitich determines the
ground state energy and wave function for isirelectron system. It approximates the
exact wave function as a single antisymmetrized determihanis optimized by solving
the Hartree-Fock equation iteratively, in a process knoswina self-consistent field (SCF)
method. The antisymmetrized determinant is termed a Stigtirminant and from this
point the theory will be expanded.
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Slater Determinant

A Slater determinant is the simplest antisymmetrized wawetion that can be used to
describe the ground state of Alrelectron system. The Slater determinant in its complete
form,

xi(x1)  xe(x1) oo xw(xa)
) = | O e 2
xi(xn) xe(xn) .. xwv(xw)

is described by single particle functiongx), also known as spin orbitals, and the index
from eq. 2.4 is dropped for clarity. A spin orbital is formeadrh the product of a spatial
orbital, ¢/ (r), which depends on the position of the electron, with a spirction, either
ana(w) or af(w) spin

Ya(%e) = Xalr,0) = (r) - { 2.9)

and is assumed to be orthonormal

<Xa|Xb> = dap- (210)

According to the variational principle, the best wave fumetl,(x) is the one that gives
the lowest energy
Eo = (Uo(x)[Ha| o (x)). (2.11)

The minimization of the energy leads to the Hartree-Fockagqos.

Hartree-Fock Equations

The minimization of the energy in eq. 2.11 is attainable hywey the spin orbitals. The
Hartree-Fock equation

E(xa) X (%)) = €alx(xa)) (2.12)

is an eigenvalue equation whose solution provides the minmirenergy,k, and conse-
quently the optimal spin orbitalg,(x),. The Fock operator

2 €
fio) = 5, V- S g Zac +Z[Jb ) -Kix)] (219
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is defined by the single electron Hamiltonian or core Hamik, denoted af(x,),
and the effective Hartree-Fock potential operait8t (x,). The effective Hartree-Fock
potential is defined by two terms that result from the elecgtectron repulsion term
Vem of eq. 2.2. The first term is the Coulomb operator

2

%m)} xa(x1) (2.14)

Jy(x1)|Xa(x1)) = { / dx?XZ(Xz)zmor

and is described classically as the interaction of onerelecin this case electran with
the remainingV — 1 electrons. The exchange operator

A

Ruxol) = | [ dX2xz<xQ>ixa<xZ>} wx))  (215)

47'('601'12

is of purely quantum mechanical nature, i.e. it does not laaslassical counterpart. The
two-electron potential operater% describes the interaction of electron 1 with electron
2. It is termed the exchange operator, as can be seen from ¥g). \#here upon its
application, the position and spin of electremas been exchanged with that of electron
b. The exchange of position and spin between two electronslsanbe induced by the
permutation operatof?;,, and a succinct form of the Fock operator can be written as

N/2 9
f(Xl) = h(Xl) + Z/ngXZ(Xg)ﬁof‘m(l — PlQ)Xb(XQ). (216)
b#a

Restricted Closed-Shell Hartree-Fock

To solve the Hartree-Fock equation, eq. 2.12, it is necgdsagvaluate the form of the

spin orbitals. A spin orbital can be restricted or unrestdadn its spatial orbital. In the

restricted case, for a closed-shell system, the pair of @fliitals are defined to have the
same spatial function, given below,

[ B
x(x) {@bz-(r)ﬁ(w) b

where the index runs frorhto the maximum number of spatial orbitdls Inserting this
equation into the Hartree-Fock eq. 2.12 results in two sgpdiartree-Fock equations,

K (2.17)

f(xl)|¢i(rl)a(wl)> = gi|i(r)a(wr)) (2.18)
f(x1)[vi(r1)B(w1)) = eilwi(r1)Bwr)) (2.19)
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defined in terms of their spin functions(w,) and 5(w,), and results in the orbital en-
ergy,s;. In order to obtain an expression exclusively in terms ofgpatial orbitals, it is
necessary to purge the Fock operator of the spin functiors i$ldone by first replacing
the spin orbital by its spatial orbital and spin functions.

Recognizing that in a closed-shell scenario, the resuits fihe« terms are identical to
those forg, it is sufficient to multiply eq. 2.18 from the left by*(w,) and integrate over
its spin

[ o nftaaten)| ) = st 2.20)
The closed-shell Fock operator has the following form
) R N/2
f(ry) = Bir) + Y- (23a(ry) = Ra(r)) (2.21)
a=1

where the sum oveN is replaced byV/2, i.e. the number of or 3 electrons. The Fock
operator can be written in terms of the permutation opelatdrthe spatial orbitals as

A~ ~ N/2 62
f(r)) =h(r)+ ) / drzwg(r2)47r€0f12 (2 = Pra)ba(r2). (2.22)
a=1

The Coulomb and exchange operators are now defined withatetspine spatial orbitals
and are analogous to equations 2.14 and 2.15, specifically

o)) = | [ draviien - w|lnr) @29

47T€0f'12

A

62
Roe)loe)) = | [arati il @29
TEQT 12
Now that the Fock operator has been defined in terms of theabpdiitals, the Roothaan-

Hall equations, which provide an algebraic method that md®lving the Hartree-Fock
equations, will be discussed.

Roothaan-Hall Equations

As seen from the previous section, the spatial orbitals wbtained by integrating out
the spin functions. The Hartree-Fock eq. 2.12 can be remriti terms of these spatial
orbitals,

f(ro)|wi(r)) = eilwi(r)). (2.25)
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where the wave functioh);(ry)) is a molecular orbital, ang; is the corresponding en-
ergy. For molecular systems, eq. 2.25 can not be solvedtaraly, but instead is con-
verted into a set of algebraic equations by first introdu@rget of known spatial func-
tions, as introduced by Roothaan and Hall [46, 47].

The premise for the Roothaan-Hall equations is that the cotde orbitals can be ex-
panded as a linear combination of knownone-electron functions,

K
i) = Z Cm“ﬁbu) (2.26)
pn=1

where the basis functions are denoted by the Greek indicgshenmolecular orbitals
with Latin indices. Equation 2.26 can be inserted into eg5and by multiplying from
the left with¢? and integrating results in the following matrix equation

ZCuZ/drl(b I'1) (rl ¢u —5ZZsz/dr1¢ )¢u(rl)- (227)

-~ ~~

Fyu Suu

The one-electron basis functiong are not necessarily orthogonal and therefore the ma-
trix elementssS,,, describe the overlap between two functionsand i, and form the

K x K overlap matrixS. The Fock matrix¥', also X' x K, is formed from the matrix
elementd-,,,. Both matrices are Hermitian, for real orbitals, they aisd ssd symmetric.
This allows for the diagonalization ¢f,,, via a unitary transformation. Equation 2.27 can
be compactly written as

FC = SCe, (2.28)

where the matrixC contains the coefficients for the molecular orbitalsin a column
wise fashion, i.e. the first column gives the coefficientsifprthe second column those
for 1, and theK' column those for)x. The energies of each molecular orbital are
found in the diagonalized matrix

Analyzing the one-electron Fock operator in eq. 2.22 byypglthe expansion from eq.
2.26, it becomes apparent that the Fock makrigdepends on the coefficient§,. This
deems the Roothaan-Hall equations nonlinear and in orcsive a nonlinear system an
iterative approach is used: the self-consistent field gtoe However, before discussing
the SCF procedure, it is informative to review the theory pém-shell Hartree-Fock.
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Unrestricted Open-shell Hartree-Fock

In the previous section the spatial orbitals were resulitdéhaving the same value for both
thea and thes spins. In an open-shell case it is not correct to describsghgal orbitals
as restricted, but rather as unrestricted, which meanshbaipatial orbitals are different
for differing spin functions. The spin orbitals, which a@rhed from the unrestricted
spatial orbitals, are also unrestricted and are defined as,

7 (r)a(w)

i = LK 2.29
WP(r)8() b2 (2:29)

Xai(x) = {

where the index; runs from1 to the maximum number of spatial orbitalS. Inserting
this equation into the Hartree-Fock equation, eq. 2.12ilt®81 two separate equations,

oo (r)a(en)) = e[ (r)alw)) (2.30)
EGc) [0 (r)B(wn)) = &) (r)B(wr)) (2.31)
defined in terms of the spin functions(w,) and 3(w;). An unrestricted open-shell de-
scription is considered and therefore egs. 2.30 and 2.31 baukandled individually.
Following the same general procedure as was done for thvctedtclosed-shell case the
subsequent eigenvalue equations are obtained,

[ e enftxaten|lesw) = etlor) 232)
[ o festen [y = <o), 233)
The Fock operators defined in terms of the spatial coordsreate
fr)lug(r)) = /dwla*(Wl)f(xl)a(wl)lﬁ?(rl) = e ¢ (r))  (2.34)
fr)[yl(r)) = /dwlﬁ*(wl)f(xl)ﬁ(w1)¢f(r1) = e/ [y (r1)) (2.35)
and depend on the Fock operator given in eq. 2.16 which iesltige spin function vari-
able. The Fock operator defined only in terms of the spatiaitals is obtained by fol-

lowing the same steps that were used for the restricted tasenly difference being that
the sum runs over an unequal numbencnd 3 spins and is denoted in the following
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equations

OSSR TSRS SICTINES SEDED SEAUINNCED

Ng
fﬁ(rl) = ﬁ(rl) + Z (jg(rl Kﬁ I'1 ) ZJa I'1 (237)

The Coulomb and exchange operators maintain their form uaons 2.23 and 2.24,
only now the spatial functions are differentiated accogdimthe spin type.

Solving the eigenvalue equations, eqgs. 2.30 and 2.31, éashtial orbitals and hence the
energy, remains the central goal of this section. The swiub the unrestricted Hartree-
Fock eigenvalue equation is obtained by solving the Poskidt equations [48]. These
eguations are analogous to the Roothaan-Hall equationwidirize described in the suc-
ceeding subsection.

Pople-Nesbet Equations

In the previous section, the Hartree-Fock equations foutirestricted open-shell spatial
functions were described, and the energy expressions waxe i terms of their expec-

tation values. Accurate energies are completely deperatean accurate set of spatial
functions, and by replacing the unknown spatial orbitahvaibh expansion of known one-
electron functions one is able to obtain matrix equatioas$ #ne solvable through alge-
braic methods, as is seen below. The unrestricted eigemegjuations are given again
for consistency

B (r)[g (1)) = effof(r) (2.38)
P )| () = 7| (rn). (2.39)

The molecular orbitalg);(r;) are expanded as a linear combination of knarone-
electron functions,

) = Z | b (2.40)

K
W) = Y Clow (2.41)

p=1
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where the basis functions are denoted by the Greek indicethamolecular orbitals with
Latin indices. Equations 2.40 and 2.41 can be inserted o238 and 2.39 respectively
and then multiplied from the left with?, and integrating results in the following matrix
equations

-

Z / drygy (r)f (r1)9,(r1) = € Z / 0 (n)ou(rs) - (2.42)

Fg, Sa
Z / ()P ()8, (r0) = Z [ oo, @49
#, S,

The one-electron basis functiopg are generally not orthogonal and therefore the ma-
trix elementsSy, and S/, describe the overlap between two functiongnd, for their
respectivex and 5 spatial orbitals and form the KK overlap matrixS?, whereo repre-
sents the spin or 5. The Fock matrix?, also KxK, is formed from the matrix elements
Fg, and Ffu. Both matrices are Hermitian, 5 can be the diagonalized via a unitary
transformation. The Pople-Nesbet egs. 2.42 and 2.43 caorbpactly written as

F°C? =SC%¢”7, (2.44)

whereo can be either tha or the3 spin function and the matric&s® andC” contain the
coefficients for the molecular orbitals* andv’ respectively, and the energies are found
along the diagonal of the matrice$ ande?, which have been diagonalized.

The nonlinearity of these equations is due to the Fock matvhich depends on the
expansion coefficients of eq. 2.26 and therefore the matyiet4 is solved iteratively.
The iterative method is termed the Self-consistent Fielthoawhich will be described
in the next section.

Self-consistent Field

The Self-consistent Field method was introduced by Haitré28. It is used to solve
the nonlinear Hartree-Fock equations iteratively [43] hasl been applied to the nonlinear
equations of Roothaan-Hall and Pople-Nesbet. This metlegthb by solving the non-
linear equations with a guessed set of molecular orbitafficants. Because the Fock
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operator also depends on these coefficients a new set ofcieef§i will be produced

along with new energies. After each iteration the coeffisere compared to the previ-
ous values and if they have not changed within a specifiedrmit then the procedure
has reached self-consistency, and the iterative processgped.

The Hartree-Fock energy for the ground electronic stateas given as
Enp = (Uo(x)|[Hy | T (x)). (2.45)

The accuracy of the Hartree-Fock energy lies in the size amadity of the basis set ex-
pansion of egs. 2.26 or 2.40, and 2.41. The larger the basisfseparticular quality, the
more accurate are the energies. If the basis set is conbystareased until the energy
values do not change it is said that the Hartree-Fock linsthieen reached.

Basis Sets and Natural Orbitals

The basis set used to expand the Hartree-Fock spatiallsrpitasee eq. 2.9) are typically
a set of atomic functions, in a linear combination of atonigitals (LCAO), recall eq.
2.26

K
i) = Clildy). (2.46)
pn=1

The coefficients”,; are varied in order to minimize the energy and are known agenol
ular orbital expansion coefficients. The atomic orbitglswvere initially introduced as a
set of Slater-type orbitals (STO) which are proportionaltef. When evaluating the two
electron integrals, see egs. 2.14 and 2.15, STO orbitalgeayecumbersome. Gaussian-
type orbitals (GTO) are proportional to®*, and due to the property that the multipli-
cation of two 1s Gaussian orbitals produces another 1s @auesbital their use as a
basis simplifies the evaluation of the two electron integrBbys proposed to use a linear
combination of Gaussian-type functions to represent the BB]. Since that time, there
has been a wide development of different types of basis artsfor a comprehensive
overview the reader is referred to [50, 51]. The calculatiparformed in this work were
performed using the\tOLCAS [52] package. The basis sets employed are the natural
atomic orbitals [53, 54], chosen for their accuracy and cachpess which tends to reduce
the computational time [55, 56].
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2.2.2 Configuration Interaction (CI)

The Hartree-Fock method accounts for some correlationedftieins with parallel spins
but does not account for electrons with antiparallel spli correlation energ¥...

Ecorr = Lvexact — EHF (247)

is defined as the energy difference between the exact eergy (= E, from eq. 2.4),
within the bounds of the Born-Oppenheimer approximatiowl, the Hartree-Fock energy
Eyr. This "missing” energy is negative due to the Hartree-Fauodrgy defining an upper
bound to the energy. One way to account for the correlatiengsns to expand the exact
electronic wave function in terms of a linear combinatiorstdter Determinants.

From the Hartree-Fock description, a set of 2K spin orbitalsbe produced that describe
a single determinant ground-state wave function for theddtebns.

[Wo) = [xaX2 -+ XaXb--- XN) (2.48)

The configuration of the N electrons is such that the lowergnspin orbitals are oc-
cupied and the higher energized 2K-N virtual orbitals arg fadlowing a basic Aufbau
principle. It is clear however, that many other determisaain be formed from the many
different possible excitations of the electrons.

Excited determinants can be described with respect to thdetérminant. Didactically,
a singly excited determinant

W) = [xiX2- - XeXb--- XN) (2.49)

is one in which a single electron is relocated from its ocedpin orbitak: to one of
the virtual spin orbitals. And in the same manner a doubly excited determinant can be
formed

[T5) = [X1X2 - XeXs - - - XN) (2.50)

where two electrons have been relocated from their orighoaitions,a andb, to two
virtual spin orbitals or s. This procedure continues until aN electrons have been
promoted to various virtual states. The number of possibterchinants is defined by
the binomial coefficien(%]v() and are termed accordingly to the number of electrons
that have been promoted to virtual orbitals: Hartree-Fadugd state, singly, doubly,



20 Quantum Chemistry

triply, ... N-tuply excited states. The full-Cl expansidirtloe ground-state wave function

[Po) = [Wo) + Y L [WS) + ) W) + ) eS| Th) + - (2.51)
av a>b a>b>c
t>s t>5>t

is a sum of the unique possible configurations, organizedeainaderms of theV-electron
determinants, and is exact for a given basis.

The full CI wave function can be reduced in size based on sytmynpeoperties. If the
state that is being calculated is a singlet state of geraaer®try, then only the config-
urations that share those same properties are used. Infordée configurations to be
eigenfunctions of the spin and angular momentum operadarsy configuration can be
generated from a linear combination of the original confagions. These configurations
are termed configuration state functions (CSF). A CI cataathat is based on these
considerations is still termed a full-Cl, and is the bestektion one can do to recover
the correlation energy.

Evenifthe Cl wave function is represented by symmetry aeth@ISFs, for larger molecules
a full CI calculation is computationally impossible. It @rfthis reason that the CI calcu-
lation is truncated. The most common truncation is one dajlesiand doubles, a CISD
calculation. The single configurations play an insigniftcate in the determination of the
correlation energy [57] but are significant in the determoreof the dipole moments [58]
and the double configurations tend to account for the majargbshe correlation energy
but are highly dependent on the basis size [41]. For largéeentes a CISD calculation
is not sufficient in describing the correlation energy argldhlculations can incorporate
further triplet and quadruplet excitations, again at thset @d computational effort. An-
other shortcoming of this method is that once the Cl expankas been truncated the
method is no longer size consistent nor size extensive.

Size extensive and size consistent are two problems trest Ivm a truncated CI cal-
culation. A system is said to be size extensive when the grferg/N noninteracting
molecules equals the sum &ftimes the energy of the single molecule. Size consistent is
a problem that refers to the dissociation of a molecule, eliee energy of the molecule
at bond lengths of dissociation should be equal to the sumeryges of each part.

A truncated CI calculation optimizes the Cl expansion coeffitsc, see eq. 2.51. An
extra flexibility in the quest to retrieve the correlatioreeagy is obtained by allowing for
the optimization of the molecular orbital coefficients, 86, and accounts for what is
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termed static correlation. This is the essence of the noohifigurational self-consistent
field (MCSCF) method.

2.2.3 Multi-configurational Self-consistent Field

The MCSCF method is also based on the variational principhhich the minimization

of the energy,
B <\I,MCSCF|H|\I]MCSCF>

<\I/MCSCF | \I/MCSCF> (252)

is found by varying the orbital coefficients - an optimizataf the MCSCF wave function.
The MCSCF wave function is a truncated Cl expansion and srmgaguationally as

[MOSCEY =3 4| @) (2.53)
A

where the index A runs over the configuration state functions- |wa@5awbz§b ...). Each
state function is composed of a set of molecular orbitals ah& occupied by an spin
electrony; or by a3 spin electrony;. These MOs can also be expanded in a basis of
atomic orbitals as

) = Cuildy) (2.54)

giving rise to another set of coefficierds,;. Itis the task of MCSCF to optimize all the ClI
expansion coefficients,, as well as the molecular orbital coefficieiits; for the atomic
orbitals simultaneously.

Aside from the optimization of two sets of coefficients, drestdifficulty that remains in
the MCSCF method is the choice of the CSFs that should be osgescribe the wave
function. Itis imperative to include the CSFs that are mogtartant to the wanted molec-
ular properties. The daunting task of choosing the appatgpCSFs to be included in the
MCSCF wave function has been alleviated to some extent byagting the complete
active space self-consistent field approach.

Complete Active Space Self-consistent Field (CASSCF)

The complete active space self-consistent field method mssaeshdant of MCSCF and
has been developed by Raetsal. [59]. The method prevents the manual picking of every
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configuration state function which should be included in dpéimization of the wave
function. Instead, the molecular orbitals are partitiomgd two groups: the primary and
secondary orbitals, as can been seenin fig. 2.1. The primbitals are further partitioned
into two subgroups; the inactive and the active orbitalse Factive orbitals are frozen
and remain doubly occupied throughout the calculation amdle considered the core
orbitals. Contrary to the primary inactive orbitals, théitals in the secondary space
remain unoccupied. However, the active orbitals consiata@mbination of occupied and
unoccupied orbitals where every possible configuratioth wonsideration of symmetry
and spatial constraints, within this space is allowed. CBBES$herefore constitutes a
full-ClI calculation within the restricted complete actispeace.

In this way, an active space defines the realm in which thereles can form all configu-
rations. Although this method reduces the effort of pickimg CSFs, it is still not a black
box. The proper orbitals that represent the molecular sysied its properties must be
selected by hand. A state average CASSCF (SA-CASSCF) fatronlis used to calcu-
late electronic excited states for a given symmetry and, §yiminimizing the weighted
sum of their energies. The result of the minimization is thecprement of the CASSCF
wave function| U$455CF) as well as the energlg©ASSCF for each electronic state[59].
The method is good at obtaining the static correlation bywahg for partially occupied
orbitals and describes well values at dissociation butstdh#iculties in recovering the
dynamic correlation, i.e. the correlation of electron mantiThe dynamic correlation can
be accounted for either perturbationally via a CASPT2 datmn or variationally via a
multireference configuration interaction (MRCI), where tormer is used in this work.

Complete Active Space and the 2nd Order Perturbation TheoryCASPT2)

A standard approach used to recover at least part of the dgahoorrelation energy is
the Mgller and Plesset [60] method, which is size extenginksize consistent [61]. The
method is based on perturbation theory where the HamiloojeeratorH is split into
two parts: a part that is solvabi§,, the zeroth-order Hamiltonian and a part which is not
AV, the perturbation.

A0, = (Ho + AV)|8,) = Ei|W,) (2.55)
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secondary ——

Figure 2.1: Within the scope of complete
active space, the molecular orbitals are par- -

titioned into two sets of orbitals; primary - active
and secondary. The primary orbitals are fur-
ther partitioned into a set of active and inac- primary %
tive orbitals. {_F
inactive

The eigenenergies and eigenfunctions can be expanded goa Jeries for small per-
turbations to the systet < 1,

) = 10 AT ) - (2.56)
E, = EY 4+ EY + NE® ... (2.57)
where) is an ordering parameter. Once the egs. 2.56, 2.57 areadsatb the eigenvalue

equation, eq. 2.55, the terms can be ordered accordingatad the following energies
expressions are retrieved.

EY = (U Ho ") (2.58)
B = (wve”) (2.59)
E® = (wv)ey (2.60)

If the unperturbed Hamiltonian is replaced by a sum of oeetebn Fock operators, as
suggested by Mgller and Plesset [60], it can be shown thafirdteenergy correction
term is already included in the Hartree-Fock energy. Tioeegfit is the second order
energy term in eq. 2.57 that accounts for the dynamical @dioa that is missing from
the Hartree-Fock; this is termed second order perturb#tieory (PT2).

Analogously, the dynamical correlation energy that is mg$rom a CASSCF calcula-
tion can be retrieved in part by applying perturbation tggé2]. The reference wave
function is taken as the SA-CASSCF wave functigy*55CF) for a particular electronic
statei. The CASPT2 wave function ©A5PT2) is a sum of the reference wave function,
| WCASSCE) “with the first order perturbative wave functigipert)

‘\I/ZCASPT2> — |\I/Z-CASSCF> + |\ijert>. (261)
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As was seen in eq. 2.60, the second order energy correctjmends on the first order
wave function. For this purpose, the second order pertiofab the effective energy
matrix elements¢;;, can be defined as

gz'j — <\I,iCASSCF‘V‘\I]§>ort> (262)
and the complete CASPT2 energy for the electronic gtate
ESS—CASPTZ — E_CASSCF L& (263)

is then given as a sum of the reference enefjy,>>" with the second order energy cor-
rection,&;;. This single state (SS) CASPT2 energy>“45T2 refers to each electronic
statei. The SS-CASPT2 calculation also has its limitations. TheSSAF wave func-
tion is inadequate in describing the states around avoidesings and where erroneous
valence-Rydberg mixing occur, and therefore the multieStBASPT2 (MS-CASPT2) was
developed [63].

The MS-CASPT2 method [63] is able to describe well the negederate electronic
states and is also able to differentiate the valence fronRijuberg states, see e.g. refs.
[63, 64, 65]. Instead of using a single reference wave fon¢tihe method uses a "Per-
turbation Modified CASSCF” wave functig@"™“45) as the reference function: a linear
combination of the CASSCF reference wave functions. The®GASPT2 wave function
is then given below

PI,%\/IS—CASPTQ) — Z éia|‘IISASSCF> _‘_|‘I,£)ert>. (264)
t

NV
WPMCAS
K2

The Hamiltonian is reformulated with the addition of refece states and is termed the
effective Hamiltonian

1
L o 5(5@' + &) (2.65)

where the diagonal elements are the SS-CASPT2 energiebandftdiagonal elements
are the couplings between CASSCF electronic statasd j. This allows for the si-
multaneous treatment of all the electronic states beinguiated and can account for a
substantial amount of dynamic correlation energy. The femargies are obtained by
diagonalizing the effective Hamiltoniaﬁff.
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2.2.4 Density Functional Theory (DFT)

Density Functial Theory (DFT) is another method used towtate the electronic energy
of a molecular system and is based on the theorems presentédhenberg and Kohn
[66]; therein it was shown that the ground electronic staiergy can be determined by
the charge density(r). This method differs from the HF method and its decendents
by replacing the many-body electronic wave function, whdelpends on 4N coordinates
(3N spatial coordinates and the 1N spin coordinate), wiéhdlectronic density, which
depends only on the three cartesian coordinates, y, and z.

The first theorem demonstrates the one-to-one mapping gfrthend state electron den-
sity to the ground state electronic energy

p < By, (2.66)

but does not provide the means to solve for the energy. Tlod@heorem proves that the
exact ground state density minimizes the total electronergy of the molecular system.
However, because the exact charge density is typically notvk it is approximated by

the sum of the squared one-electron wave functions:

p(r) = Z_ i (r)|2. (2.67)

The ground state electronic energy calculated from thedhiarge density(r) represents
an upper-bound to the true ground electronic state energy

Elp] > Eg=et (2.68)

which would be obtained if the exact electron density wasdndhe variational theorem.

The electronic energy functional is given below,

Elp] = T[p] + Ene[p] + J[p] + Exc[p] (2.69)

and is composed as the sum of several functiorfdlgl;, which denotes the kinetic energy;
E.[p], which denotes the attraction between the nuclei and tretretes; J[p], which
represents the Coulomb repulsion between electronsiarna , the exchange term which
has no classical counterpart. From the list of functionatdy the calculation of/[p] is
known.
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The Kohn-Sham approach [67] introduces orbitals back ind [n order to calculate
exactly the non-interacting kinetic energy. Minimizingtlnergy produces a set of equa-
tions known as the Kohn-Sham equations

h2

g Vi) 4s(r) = Eals () (2.70)

which are solved iteratively. The main difference betweehiSham and the HF equa-
tions is the form of the effective potential, which for the Dmethod is defined as

e*p(r')
v — |

Veir(r) = V(r) + dr' + Vi () (2.71)

where the second term denotes the classical electrostaticeld term and the final term
V,. is the exchange correlation potential, which accountsHermany-particle interac-
tions. The exchange potential is defined as the partial akeresof the exchange energy
functional with respect to the charge density:
V() = 0 Exelp]

op(r)
If the exact form of the exchange energy,. were known, then DFT would solve for the
exact total energy of the system. Because it is not knownathef a DFT calculation
is to find a functional that describes this energy well. Fereltension of the stationary
DFT to time-dependent situations, the reader is referredftd68].

(2.72)

2.3 Solution to the Nuclear Schodinger Equation

In the previous section 2.2, the methods for solving thetea@ Schrodinger equa-

tion were discussed. In this section the focus is turned ¢osthlution of the nuclear

Schrodinger equation, eq. 2.6. The nuclear motion can\adedl up into translational,

vibrational and rotational modes. The nuclear wave fumst@and energies can be written
approximately as a product and as a sum of the individual corapts, respectively.

Werma) = [TU2 WLt W) (2.73)
Eam = Ep™+EY + Exo, (2.74)

The constant energy from the translational motion is sobyealsing the particle in the box
method [42] within the space-fixed coordinates, in contrashe internal energy, which
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involves rotational and vibrational energy. In this worke trotational motion has not
been considered, and therefore the following section w#lalibe solving the vibrational
eigenvalue equations using the Fourier Grid HamiltonigdHllF method within the body-
fixed frame, a frame that nicely describes the vibrationsiefrtuclei with respect to one
another.

2.3.1 Fourier Grid Hamiltonian Method

The bound state eigenvalues and eigenfunctions can belataidunumerically by im-
plementing the Fourier Grid Hamiltonian (FGH) method [69].7 The advantages of
the FGH method are first its simplicity and second its cajigiof generating accurate
eigenvalues and eigenfunctions. Calculation of the eigiel@s and eigenfunctions de-
pends significantly on the dimensionality of the problend antherefore restricted to a
few, depending on the grid size and the computer’s capacitiere the development of
the theory is given in one-dimension but can be extended tti-dimensions. Let us
consider a single particle of massor molecular fragments with reduced massnov-
ing along one direction, the direction. The Hamiltonian operator for such a case can be
written as o

H =T+ Va®) = 2+ Va(®), (2.75)
where the kinetic terrT’ depends on the momentum operaporand the potential term
V. depends on the position operatar Because the wave functions of the Hamiltonian
operator are calculated directly as the amplitudes of theevianction at its position on

the grid, it is necessary to discretize the space.

Space Discretization

In this case a grid is built up from a series of uniformly sghicgervals. In the coordinate
representation, by defining the total number of poikitand the spacing\x, the definite
value of the position along the grid is given as

T; = Tmin + 1A, (2.76)

wherei is a value betweefiand N — 1. The length of the grid is simply the product of
the number of points times the spacidg= (N — 1) - Az, and the maximum value of the
coordinate iStymax = Tmin + L.
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The momentum spacin§yk on a grid of NV points is inversely proportional to the uniform
spacing of the positiodhx and is given as

Ak =27 /NAz. (2.77)

In momentum space, the valuesiadre equally distributed around the central paint 0,
when considering an odd number of grid pointgfor an even number of grid points, see
ref. [70]). The number. of positive and negative momentum values is then equal to

n= % (2.78)

Thei'" discrete value of along the grid can be defined as

ki = ik + Kyin, (2.79)

wherek,,i,, = —nAk and the index runs from0 to N — 1. Because the momentum is
evenly distributed along the grid around the zero centraitpwith an equal number of

positive values and negative values, it may be more conmetoggive the discrete value
of k in terms of another indekwhich runs from—n to +n:

ki = IAF. (2.80)

Position and Momentum Operators

The discretization of the momentum and coordinate spaceadiscts the position and
momentum operators which in turn alters respectively themg@l and kinetic operators,
therefore the position and momentum operators will also iberetized. The position
operatork acting on a basis vectar;) has the following solution

R|zi) = wi|z:). (2.81)
The orthogonal and completeness relations for the infipées are
- / @) (zlde and (ze;) = O(zi — ;) (2.82)

as well as for the discretized space

N-1
L =) |v)Az(z;| and Ax(zi|z;) = d;. (2.83)
1=0
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The potential, which depends on the position operator,agahal, as exemplified by the
delta functiony;;, in the coordinate representation

VZ(.TZ)(SZJ

()| Va(®)[wi) = == (2.84)

The eigenfunctions of the momentum operator can be writtehe same fashion as for
the position operator

plki) = kihlky), (2.85)

where the orthogonal and completeness relations for thatmBpace are

I, = /OO \kY(k|dk  and  (km|kn) = 0(kp — kn) (2.86)

[e.9]

as well as for the discretized space

I =" k) Ak(k|dk  and  Ak{kylka) = Oy (2.87)

—n

The kinetic operator is nonlocal in the coordinate repregem but is diagonal in the
momentum and is represented equationally as

(lAk;)2
2m

Finally the transformation matrix elements between the ik and the coordinate
spacer can be written as

1 ; .
(kilz:) = Ee_mm] (2.89)

which lends itself for Fourier transformation (FT) [71].

Wave Function

The kinetic operator is easily solvable in momentum spaed,cnsequently the wave
function too must be represented in the same space. Keejgimthe grid representation,
the wave function in coordinate space can be transformeaetonomentum space via a
discrete Fourier transform. Starting with the definitioriled wave function in coordinate
space, and inserting the identity operator for the momergpacte one can make the
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following derivation:

~

Wa(2)) = L|Va(x)) = Z i) A | W () (2.90)
= Z_: |2;) A (| LU ()
= Y a)A > (ol k(| P (o)

-1 n

|xZ Z cilAkz; |\Ijel(k5l)>

l=—n

-
Il

=2

=2

I
[ I
;M

(wilwi) > "8k Wy () (2.91)

l=—n

(@i Wa(z)) =

Il
=)

Multiplication from the left with(x;| was carried out above in order to define the wave
function at a specific point;. In doing so, one obtains the following equation

Wi (2:)) = @ AR 1 (Ky)) (2.92)

l=—n
which is the Fourier transformation fromnspace tar space. Following the same proce-
dure, the back Fourier transform, that is from thgpace to thé& space, can be shown to
have the following form for a discretized space

N-1
|War (ki) = @ e AR W (7). (2.93)

=0
Discretization of the Hamiltonian

It is the goal of the FGH to solve the matrix elements of themiszed Hamiltonian in
coordinate space. Starting from eq. 2.75, we can consigemidtrix elements of the
Hamiltonian

Haij = (x| Hlzj) = (@] T|a;) + (@] Va(%)|z;) (2.94)
as the sum of the kinetic and potential terms. The kinetimtgnould be represented in
the momentum space where it is diagonal, therefore the ynif@erator/, is inserted
into eq. 2.94.

n

Hag= Y (wlk)TiAk(kz;) + (@i Va(®)|z;) (2.95)

l=—n
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The matrix elements for each term above have been discuasedy inserting the space
transformation eq. 2.89 as well as the matrix elements ®ptiential term, eq. 2.84, the
Hamiltonian can be rewritten in terms of a discrete grid

1 - AR (2i—x;) V()04
Haij = Ao z:z_ne Tk + == (2.96)
where the kinetic term has the following form
2 ZA 2
T, = WAk : (2.97)
2m

The method for calculating the effect of the kinetic oper&an efficient approach of ap-
plying the FT method in which the wave function is transfodnb@ the momentum space
via a forward Fourier transformation. In this representatihe kinetic term (equation
2.97) is applied by multiplication to the wave function. Tlwave function is then back
Fourier transformed for the contribution from the poteigam, which is simply the value
of the potential/’(z;) at the pointr; on the grid. The Fourier transform method used in
this work uses a fast Fourier transform algorithm that cot@pasViog, N in comparison

to FT which computes a&? [72], which saves a significant amount of computation time.

The discretized Hamiltonian can be further simplified by bamng the positive and neg-
ativel terms

Heo 5 = {N Z <l27r >) Ti + V(@) } (2.98)

and the expectation value of the energy can be written as

(U H|Ty) Zzg Ve ArHe jAxPe
(Ua|War) Az Ve ,l?
where the variational method seeks to minimize the energge@hefd,, ;; are obtained,

the vibrational states in the electronic stated can be obtained from the secular equa-
tions

B = (2.99)

> [Heij = B3dy) [W5,;) = 0 (2.100)
j
where the bound-state vibrational eigenvalues are givelijaand the eigenvectors as
|\Ijol ])

The dynamic simulations that were done in this work stannfithe vibrational ground
state wave function in the electronic ground staie), calculated from the FGH method.
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The ground electronic state eigenvalug$, used to determine the vibrational frequen-
cies were also obtained from this method. Now that both tbeteinic and nuclear terms
have been solved for, and we are equipped with the ingredliee¢ded for dynamic
simulations, attention is turned to quantum dynamics andrspthe time-dependent
Schrodinger equation.



