
Chapter 2

Quantum Chemistry

It is the goal of this chapter to describe the pertinent theory of quantum chemistry in order

to obtain accurate physical information on the electronic and nuclear character of a molec-

ular system: respectively, the equilibrium geometry, the electronic spectrum, excited elec-

tronic states, permanent and transition dipole moments, potential energy surfaces, as well

as the vibrational eigenfunctions and eigenvalues. At the center of solving the nonrel-

ativistic time-independent Schrödinger equation (TISE)lies the Born-Oppenheimer ap-

proximation. Its application to the TISE validates a separation of the electrons from the

nuclei, leading to two eigenvalue equations: the electronic and the nuclear Schrödinger

equations. In the following it will also be shown how one is able to (accurately) solve

these equations for the two unknowns, i.e. the energies and wave functions.

2.1 Time-independent Schr̈odinger Equation

The nonrelativistic time-independent Schrödinger equation [41] is given as

Ĥ|Ψ〉 = E|Ψ〉, (2.1)

where the total energy,E, is obtainable by operation of the time-independent molecular

Hamiltonian,Ĥ, onto the complete wave function,|Ψ〉. The molecular Hamiltonian is

given below,



8 Quantum Chemistry
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where∇2 is the Laplacian operator,me andmA are the mass of the electron and the

nucleus, respectively, all of which are used to define the twokinetic energy terms,̂Tel and

T̂nu. The third termV̂el,nu represents the Coulomb attraction between an electron and a

nucleus while the remaining two terms,V̂el,el andV̂nu,nu, represent the repulsion between

two electrons and two nuclei, respectively. The variableZA represents the atomic number

of nucleusA, rab the distance between electrona andb, raA the distance between electron

a and nucleusA, RAB the distance between two nuclei, andǫ0 a constant: the permittivity

of vacuum. The last three terms define the potential energy operatorV̂, which contains

the interaction between the electrons and the nuclei, between the electrons, and between

the nuclei. Relativistic effects including, spin-orbitalcouplings have not been considered

in this work.

2.1.1 Born-Oppenheimer Approximation

The time-independent Schrödinger equation, eq. 2.1, is not solvable for a many-electron

molecule. As a first step to circumvent this inability, the nuclear terms are separated from

the electronic terms [42]. This is done by invoking the Born-Oppenheimer approximation

[38]. The approximation takes into account the mass difference between the electron and

the nucleus. Considering the lightest of all atoms, the hydrogen atom, the mass ratio of

the nucleus to the electron is 1836, exemplifying this approximation. Furthermore, the

lagging nuclei, due to this mass difference, are so slow in adapting to the change in the

electronic configuration that the geometry of the nuclei canbe considered fixed, when

describing the electronic problem.
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2.1.2 Electronic Schr̈odinger Equation

The consequence of the Born-Oppenheimer approximation is the ability to separate the

motion of the electrons from that of the nuclei. Accordingly, the electronic Hamiltonian
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is the part of the molecular Hamiltonian given in eq. 2.2, which describes the electrons.

The kinetic energy term for the nuclei as well as the nuclear repulsion, now a constant,

are neglected. The electronic Schrödinger equation is then given as the following,

Ĥel|Ψel(ra;RA)〉 = Eel(RA)|Ψel(ra;RA)〉 (2.4)

where the electronic wave function,|Ψel(ra;RA)〉, depends directly on the electron co-

ordinates,ra, and parametrically on the nuclear coordinates,RA, as do the electronic

energies,Eel(RA).

It is the intendment of quantum chemical programs to solve the stationary Schrödinger

equation, eq. 2.4. In doing so, the sum of the electronic energy,Eel(RA) and the nuclear

repulsion,V̂nu,nu(RA) at a specific nuclear configurationRA provides a potential energy.

The potential energy for a given electronic state - a point inthe potential energy surface -

is defined as

V̂el(RA) = Eel(RA) + V̂nu,nu(RA). (2.5)

A series of stationary points for different nuclear configurations will produce potential

energy surfaces, which will serve as the playground for the dynamics of nuclear wave

functions.

2.1.3 Nuclear Schr̈odinger Equation

Under the same approximation that was used for solving the electronic Schrödinger equa-

tion, i.e. the Born-Oppenheimer approximation, it is possible to obtain the nuclear Schrö-

dinger equation

Ĥel,nu|Ψel,nu(RA)〉 = Eel,nu|Ψel,nu(RA)〉. (2.6)
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For the lagging motion of the nuclei it is sufficient to apply the average values of the elec-

tronic coordinates averaged over the electronic wave function. The nuclear Hamiltonian
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is defined by the effective energy of the electronic termsV̂el(RA), along with the ki-

netic energy operator for the nuclei,̂Tnu as defined in eq. 2.2. Solutions of the nu-

clear Schrödinger equation, eq. 2.6, describe the vibrations, rotations and translations of

a molecule, whereas the nuclear energy,Enu, now represents the total energy,Etot in the

Born-Oppenheimer approximation and accounts for the electronic and vibrational energy

of a molecule.

2.2 Solution to the Electronic Schr̈odinger Equation

Solving the electronic Schrödinger equation, eq. 2.4, fordifferent nuclear coordinates

produces a series of single point energies that can be connected to form potential energy

surfaces. These surfaces are where the nuclear wavepacket dynamics will take place. It is

therefore essential to represent the electronic wave functions appropriately, such that the

electronic energy approaches the exact value or in the case of multiple electronic states,

that the relative energy between states is representative of the molecule. Of course solving

this equation exactly is possible only for the simplest of molecules. So in order to solve

these equations for larger molecules more approximations have to be made. The most

fundamental of these approximations is the Hartree-Fock approximation.

2.2.1 Hartree-Fock

The Hartree-Fock (HF) method [43, 44, 45] is an approximation which determines the

ground state energy and wave function for anN-electron system. It approximates the

exact wave function as a single antisymmetrized determinant that is optimized by solving

the Hartree-Fock equation iteratively, in a process known as the self-consistent field (SCF)

method. The antisymmetrized determinant is termed a Slaterdeterminant and from this

point the theory will be expanded.
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Slater Determinant

A Slater determinant is the simplest antisymmetrized wave function that can be used to

describe the ground state of anN-electron system. The Slater determinant in its complete

form,
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is described by single particle functions,χ(x), also known as spin orbitals, and the index

from eq. 2.4 is dropped for clarity. A spin orbital is formed from the product of a spatial

orbital,ψ(r), which depends on the position of the electron, with a spin function, either

anα(ω) or aβ(ω) spin

χa(xa) = χa(r, ω) = ψ(r) ·
{
α(ω)

β(ω)
(2.9)

and is assumed to be orthonormal

〈χa|χb〉 = δab. (2.10)

According to the variational principle, the best wave function Ψ0(x) is the one that gives

the lowest energy

E0 = 〈Ψ0(x)|Ĥel|Ψ0(x)〉. (2.11)

The minimization of the energy leads to the Hartree-Fock equations.

Hartree-Fock Equations

The minimization of the energy in eq. 2.11 is attainable by varying the spin orbitals. The

Hartree-Fock equation

f̂(xa)|χ(xa)〉 = εa|χ(xa)〉 (2.12)

is an eigenvalue equation whose solution provides the minimum energy,E0 and conse-

quently the optimal spin orbitals,χ(x)a. The Fock operator

f̂(xa) = − ~
2
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∇2
a −

∑

A

ZAe
2

4πǫ0raA
︸ ︷︷ ︸
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(2.13)
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is defined by the single electron Hamiltonian or core Hamiltonian, denoted aŝh(xa),

and the effective Hartree-Fock potential operatorv̂HF(xa). The effective Hartree-Fock

potential is defined by two terms that result from the electron-electron repulsion term

V̂el,el of eq. 2.2. The first term is the Coulomb operator

Ĵb(x1)|χa(x1)〉 =

[∫

dx2χ
∗
b(x2)

e2

4πǫ0r̂12

χb(x2)

]

|χa(x1)〉 (2.14)

and is described classically as the interaction of one electron, in this case electrona, with

the remainingN − 1 electrons. The exchange operator

K̂b(x1)|χa(x1)〉 =

[∫

dx2χ
∗
b(x2)

e2

4πǫ0r̂12
χa(x2)

]

|χb(x1)〉 (2.15)

is of purely quantum mechanical nature, i.e. it does not havea classical counterpart. The

two-electron potential operator1
r̂12

describes the interaction of electron 1 with electron

2. It is termed the exchange operator, as can be seen from eq. 2.15, where upon its

application, the position and spin of electrona has been exchanged with that of electron

b. The exchange of position and spin between two electrons canalso be induced by the

permutation operator,P12, and a succinct form of the Fock operator can be written as

f̂(x1) = ĥ(x1) +

N/2
∑

b6=a

∫

dx2χ
∗
b(x2)

e2

4πǫ0r̂12

(1− P12)χb(x2). (2.16)

Restricted Closed-Shell Hartree-Fock

To solve the Hartree-Fock equation, eq. 2.12, it is necessary to evaluate the form of the

spin orbitals. A spin orbital can be restricted or unrestricted in its spatial orbital. In the

restricted case, for a closed-shell system, the pair of spinorbitals are defined to have the

same spatial function, given below,

χ2i(x) =

{
ψi(r)α(ω)

ψi(r)β(ω)
i = 1, 2, ..., K (2.17)

where the index runs from1 to the maximum number of spatial orbitalsK. Inserting this

equation into the Hartree-Fock eq. 2.12 results in two separate Hartree-Fock equations,

f̂(x1)|ψi(r1)α(ω1)〉 = εi|ψi(r1)α(ω1)〉 (2.18)

f̂(x1)|ψi(r1)β(ω1)〉 = εi|ψi(r1)β(ω1)〉 (2.19)
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defined in terms of their spin functions,α(ωa) andβ(ωa), and results in the orbital en-

ergy,εi. In order to obtain an expression exclusively in terms of thespatial orbitals, it is

necessary to purge the Fock operator of the spin function. This is done by first replacing

the spin orbital by its spatial orbital and spin functions.

Recognizing that in a closed-shell scenario, the results from theα terms are identical to

those forβ, it is sufficient to multiply eq. 2.18 from the left byα∗(ωa) and integrate over

its spin
[∫

dω1α
∗(ω1)̂f(x1)α(ω1)

]

|ψi(r1)〉 = εi|ψi(r1)〉. (2.20)

The closed-shell Fock operator has the following form

f̂(r1) = ĥ(r1) +

N/2
∑

a=1

(

2Ĵa(r1)− K̂a(r1)
)

, (2.21)

where the sum overN is replaced byN/2, i.e. the number ofα or β electrons. The Fock

operator can be written in terms of the permutation operatorand the spatial orbitals as

f̂(r1) = ĥ(r1) +

N/2
∑

a=1

∫

dr2ψ
∗
a(r2)

e2

4πǫ0r̂12
(2−P12)ψa(r2). (2.22)

The Coulomb and exchange operators are now defined with respect to the spatial orbitals

and are analogous to equations 2.14 and 2.15, specifically

Ĵa(r1)|ψi(r1)〉 =

[∫

dr2ψ
∗
a(r2)

e2

4πǫ0r̂12
ψa(r2)

]

|ψi(r1)〉 (2.23)

K̂a(r1)|ψi(r1)〉 =

[∫

dr2ψ
∗
b (r2)

e2

4πǫ0r̂12
ψi(r2)

]

|ψb(r1)〉. (2.24)

Now that the Fock operator has been defined in terms of the spatial orbitals, the Roothaan-

Hall equations, which provide an algebraic method that aidsin solving the Hartree-Fock

equations, will be discussed.

Roothaan-Hall Equations

As seen from the previous section, the spatial orbitals wereobtained by integrating out

the spin functions. The Hartree-Fock eq. 2.12 can be rewritten in terms of these spatial

orbitals,

f̂(r1)|ψi(r1)〉 = εi|ψi(r1)〉. (2.25)
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where the wave function|ψi(r1)〉 is a molecular orbital, andεi is the corresponding en-

ergy. For molecular systems, eq. 2.25 can not be solved analytically, but instead is con-

verted into a set of algebraic equations by first introducinga set of known spatial func-

tions, as introduced by Roothaan and Hall [46, 47].

The premise for the Roothaan-Hall equations is that the molecular orbitals can be ex-

panded as a linear combination of knownK one-electron functions,

|ψi〉 =

K∑

µ=1

Cµi|φµ〉 (2.26)

where the basis functions are denoted by the Greek indices and the molecular orbitals

with Latin indices. Equation 2.26 can be inserted into eq. 2.25 and by multiplying from

the left withφ∗
ν and integrating results in the following matrix equation

K∑

µ

Cµi

∫

dr1φ
∗
ν(r1)̂f(r1)φµ(r1)

︸ ︷︷ ︸

Fνµ

= εi

K∑

µ

Cµi

∫

dr1φ
∗
ν(r1)φµ(r1)

︸ ︷︷ ︸

Sνµ

. (2.27)

The one-electron basis functionsφµ are not necessarily orthogonal and therefore the ma-

trix elementsSνµ describe the overlap between two functions,ν andµ, and form the

K × K overlap matrixS. The Fock matrixF, alsoK × K, is formed from the matrix

elementsFνµ. Both matrices are Hermitian, for real orbitals, they are real and symmetric.

This allows for the diagonalization ofSνµ via a unitary transformation. Equation 2.27 can

be compactly written as

FC = SCε, (2.28)

where the matrixC contains the coefficients for the molecular orbitalsψi in a column

wise fashion, i.e. the first column gives the coefficients forψ1, the second column those

for ψ2, and theKth column those forψK . The energies of each molecular orbital are

found in the diagonalized matrixε.

Analyzing the one-electron Fock operator in eq. 2.22 by applying the expansion from eq.

2.26, it becomes apparent that the Fock matrixF depends on the coefficients,C. This

deems the Roothaan-Hall equations nonlinear and in order tosolve a nonlinear system an

iterative approach is used: the self-consistent field procedure. However, before discussing

the SCF procedure, it is informative to review the theory of open-shell Hartree-Fock.
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Unrestricted Open-shell Hartree-Fock

In the previous section the spatial orbitals were restricted to having the same value for both

theα and theβ spins. In an open-shell case it is not correct to describe thespatial orbitals

as restricted, but rather as unrestricted, which means thatthe spatial orbitals are different

for differing spin functions. The spin orbitals, which are formed from the unrestricted

spatial orbitals, are also unrestricted and are defined as,

χ2i(x) =

{
ψα

i (r1)α(ω)

ψβ
i (r1)β(ω)

i = 1, 2, ..., K (2.29)

where the index,i runs from1 to the maximum number of spatial orbitalsK. Inserting

this equation into the Hartree-Fock equation, eq. 2.12, results in two separate equations,

f̂(x1)|ψα
i (r1)α(ω1)〉 = εα

i |ψα
i (r1)α(ω1)〉 (2.30)

f̂(x1)|ψβ
i (r1)β(ω1)〉 = εβ

i |ψβ
i (r1)β(ω1)〉 (2.31)

defined in terms of the spin functions,α(ω1) andβ(ω1). An unrestricted open-shell de-

scription is considered and therefore eqs. 2.30 and 2.31 must be handled individually.

Following the same general procedure as was done for the restricted closed-shell case the

subsequent eigenvalue equations are obtained,

[∫

dω1α
∗(ω1)̂f(x1)α(ω1)

]

|ψα
i (r1)〉 = εα

i |ψα
i (r1)〉 (2.32)

[∫

dω1β
∗(ω1)̂f(x1)β(ω1)

]

|ψβ
i (r1)〉 = εβ

i |ψβ
i (r1)〉. (2.33)

The Fock operators defined in terms of the spatial coordinates are

f̂(r1)|ψα
i (r1)〉 =

∫

dω1α
∗(ω1)̂f(x1)α(ω1)ψ

α
i (r1) = εα

i |ψα
i (r1)〉 (2.34)

f̂(r1)|ψβ
i (r1)〉 =

∫

dω1β
∗(ω1)̂f(x1)β(ω1)ψ

β
i (r1) = εβ

i |ψβ
i (r1)〉 (2.35)

and depend on the Fock operator given in eq. 2.16 which includes the spin function vari-

able. The Fock operator defined only in terms of the spatial orbitals is obtained by fol-

lowing the same steps that were used for the restricted case,the only difference being that

the sum runs over an unequal number ofα andβ spins and is denoted in the following
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equations

f̂α(r1) = ĥ(r1) +
Nα∑

a

(

Ĵα
a (r1)− K̂α

a (r1)
)

+

Nβ∑

a

Ĵβ
a(r1) (2.36)

f̂β(r1) = ĥ(r1) +

Nβ∑

a

(

Ĵβ
a(r1)− K̂β

a(r1)
)

+
Nα∑

a

Ĵα
a (r1). (2.37)

The Coulomb and exchange operators maintain their form in equations 2.23 and 2.24,

only now the spatial functions are differentiated according to the spin type.

Solving the eigenvalue equations, eqs. 2.30 and 2.31, for the spatial orbitals and hence the

energy, remains the central goal of this section. The solution to the unrestricted Hartree-

Fock eigenvalue equation is obtained by solving the Pople-Nesbet equations [48]. These

equations are analogous to the Roothaan-Hall equations andwill be described in the suc-

ceeding subsection.

Pople-Nesbet Equations

In the previous section, the Hartree-Fock equations for theunrestricted open-shell spatial

functions were described, and the energy expressions were given in terms of their expec-

tation values. Accurate energies are completely dependenton an accurate set of spatial

functions, and by replacing the unknown spatial orbital with an expansion of known one-

electron functions one is able to obtain matrix equations that are solvable through alge-

braic methods, as is seen below. The unrestricted eigenvalue equations are given again

for consistency

f̂α(r1)|ψα
i (r1)〉 = εα

i |ψα
i (r1)〉 (2.38)

f̂β(r1)|ψβ
i (r1)〉 = εβ

i |ψβ
i (r1)〉. (2.39)

The molecular orbitalsψi(r1) are expanded as a linear combination of knownK one-

electron functions,

|ψα
i 〉 =

K∑

µ=1

Cα
µi|φµ〉 (2.40)

|ψβ
i 〉 =

K∑

µ=1

Cβ
µi|φµ〉 (2.41)



2.2 Solution to the Electronic Schrödinger Equation 17

where the basis functions are denoted by the Greek indices and the molecular orbitals with

Latin indices. Equations 2.40 and 2.41 can be inserted into eqs. 2.38 and 2.39 respectively

and then multiplied from the left withφ∗
ν, and integrating results in the following matrix

equations

K∑

µ

Cα
µi

∫

dr1φ
∗
ν(r1)̂f

α(r1)φµ(r1)
︸ ︷︷ ︸

F α
νµ

= εα
i

K∑

µ

Cα
µi

∫

dr1φ
∗
ν(r1)φµ(r1)

︸ ︷︷ ︸

Sα
νµ

(2.42)

K∑

µ

Cβ
µi

∫

dr1φ
∗
ν(r1)̂f

β(r1)φµ(r1)
︸ ︷︷ ︸

F β
νµ

= εβ
i

K∑

µ

Cβ
µi

∫

dr1φ
∗
ν(r1)φµ(r1)

︸ ︷︷ ︸

Sβ
νµ

. (2.43)

The one-electron basis functionsφµ are generally not orthogonal and therefore the ma-

trix elementsSα
νµ andSβ

νµ describe the overlap between two functions,ν andµ, for their

respectiveα andβ spatial orbitals and form the K×K overlap matrixSσ, whereσ repre-

sents the spinα orβ. The Fock matrixFσ, also K×K, is formed from the matrix elements

F α
νµ andF β

νµ. Both matrices are Hermitian, soSσ can be the diagonalized via a unitary

transformation. The Pople-Nesbet eqs. 2.42 and 2.43 can be compactly written as

FσCσ = SCσ
ε

σ, (2.44)

whereσ can be either theα or theβ spin function and the matricesCα andCβ contain the

coefficients for the molecular orbitalsψα andψβ respectively, and the energies are found

along the diagonal of the matricesε
α andε

β, which have been diagonalized.

The nonlinearity of these equations is due to the Fock matrix, which depends on the

expansion coefficients of eq. 2.26 and therefore the matrix eq. 2.44 is solved iteratively.

The iterative method is termed the Self-consistent Field method which will be described

in the next section.

Self-consistent Field

The Self-consistent Field method was introduced by Hartreein 1928. It is used to solve

the nonlinear Hartree-Fock equations iteratively [43] andhas been applied to the nonlinear

equations of Roothaan-Hall and Pople-Nesbet. This method begins by solving the non-

linear equations with a guessed set of molecular orbital coefficients. Because the Fock
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operator also depends on these coefficients a new set of coefficients will be produced

along with new energies. After each iteration the coefficients are compared to the previ-

ous values and if they have not changed within a specified criterion then the procedure

has reached self-consistency, and the iterative process isstopped.

The Hartree-Fock energy for the ground electronic state is then given as

EHF = 〈Ψ0(x)|Ĥel|Ψ0(x)〉. (2.45)

The accuracy of the Hartree-Fock energy lies in the size and quality of the basis set ex-

pansion of eqs. 2.26 or 2.40, and 2.41. The larger the basis set, of a particular quality, the

more accurate are the energies. If the basis set is consistently increased until the energy

values do not change it is said that the Hartree-Fock limit has been reached.

Basis Sets and Natural Orbitals

The basis set used to expand the Hartree-Fock spatial orbitals (ψi see eq. 2.9) are typically

a set of atomic functions, in a linear combination of atomic orbitals (LCAO), recall eq.

2.26

|ψi〉 =
K∑

µ=1

Cµi|φµ〉. (2.46)

The coefficientsCµi are varied in order to minimize the energy and are known as molec-

ular orbital expansion coefficients. The atomic orbitalsφµ were initially introduced as a

set of Slater-type orbitals (STO) which are proportional toe−ζr. When evaluating the two

electron integrals, see eqs. 2.14 and 2.15, STO orbitals arevery cumbersome. Gaussian-

type orbitals (GTO) are proportional toe−αr2

, and due to the property that the multipli-

cation of two 1s Gaussian orbitals produces another 1s Gaussian orbital their use as a

basis simplifies the evaluation of the two electron integrals. Boys proposed to use a linear

combination of Gaussian-type functions to represent the STO [49]. Since that time, there

has been a wide development of different types of basis sets,and for a comprehensive

overview the reader is referred to [50, 51]. The calculations performed in this work were

performed using theMOLCAS [52] package. The basis sets employed are the natural

atomic orbitals [53, 54], chosen for their accuracy and compactness which tends to reduce

the computational time [55, 56].
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2.2.2 Configuration Interaction (CI)

The Hartree-Fock method accounts for some correlation of electrons with parallel spins

but does not account for electrons with antiparallel spins.The correlation energyEcorr

Ecorr = Eexact −EHF (2.47)

is defined as the energy difference between the exact energyEexact (≡ Eel from eq. 2.4),

within the bounds of the Born-Oppenheimer approximation, and the Hartree-Fock energy

EHF. This ”missing” energy is negative due to the Hartree-Fock energy defining an upper

bound to the energy. One way to account for the correlation energy is to expand the exact

electronic wave function in terms of a linear combination ofSlater Determinants.

From the Hartree-Fock description, a set of 2K spin orbitalscan be produced that describe

a single determinant ground-state wave function for the N electrons.

|Ψ0〉 = |χ1χ2 . . . χaχb . . . χN〉 (2.48)

The configuration of the N electrons is such that the lower energy spin orbitals are oc-

cupied and the higher energized 2K-N virtual orbitals are not, following a basic Aufbau

principle. It is clear however, that many other determinants can be formed from the many

different possible excitations of the electrons.

Excited determinants can be described with respect to the HFdeterminant. Didactically,

a singly excited determinant

|Ψr

a〉 = |χ1χ2 . . . χrχb . . . χN〉 (2.49)

is one in which a single electron is relocated from its occupied spin orbitala to one of

the virtual spin orbitalsr. And in the same manner a doubly excited determinant can be

formed

|Ψrs

ab〉 = |χ1χ2 . . . χrχs . . . χN〉 (2.50)

where two electrons have been relocated from their originalpositions,a and b, to two

virtual spin orbitals,r or s. This procedure continues until allN electrons have been

promoted to various virtual states. The number of possible determinants is defined by

the binomial coefficient
(
2K
N

)
and are termed accordingly to the number of electrons

that have been promoted to virtual orbitals: Hartree-Fock ground state, singly, doubly,
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triply, ... N-tuply excited states. The full-CI expansion of the ground-state wave function

|Φ0〉 = |Ψ0〉+
∑

ar

cra|Ψr

a〉+
∑

a>b
r>s

crsab|Ψrs

ab〉+
∑

a>b>c
r>s>t

crstabc|Ψrst

abc〉+ · · · (2.51)

is a sum of the unique possible configurations, organized above in terms of theN-electron

determinants, and is exact for a given basis.

The full CI wave function can be reduced in size based on symmetry properties. If the

state that is being calculated is a singlet state of gerade symmetry, then only the config-

urations that share those same properties are used. In orderfor the configurations to be

eigenfunctions of the spin and angular momentum operators,a new configuration can be

generated from a linear combination of the original configurations. These configurations

are termed configuration state functions (CSF). A CI calculation that is based on these

considerations is still termed a full-CI, and is the best calculation one can do to recover

the correlation energy.

Even if the CI wave function is represented by symmetry adapted CSFs, for larger molecules

a full CI calculation is computationally impossible. It is for this reason that the CI calcu-

lation is truncated. The most common truncation is one of singles and doubles, a CISD

calculation. The single configurations play an insignificant role in the determination of the

correlation energy [57] but are significant in the determination of the dipole moments [58]

and the double configurations tend to account for the major part of the correlation energy

but are highly dependent on the basis size [41]. For larger molecules a CISD calculation

is not sufficient in describing the correlation energy and the calculations can incorporate

further triplet and quadruplet excitations, again at the cost of computational effort. An-

other shortcoming of this method is that once the CI expansion has been truncated the

method is no longer size consistent nor size extensive.

Size extensive and size consistent are two problems that arise from a truncated CI cal-

culation. A system is said to be size extensive when the energy for N noninteracting

molecules equals the sum ofN times the energy of the single molecule. Size consistent is

a problem that refers to the dissociation of a molecule, where the energy of the molecule

at bond lengths of dissociation should be equal to the sum of energies of each part.

A truncated CI calculation optimizes the CI expansion coefficientsc, see eq. 2.51. An

extra flexibility in the quest to retrieve the correlation energy is obtained by allowing for

the optimization of the molecular orbital coefficients, eq.2.26, and accounts for what is
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termed static correlation. This is the essence of the multi-configurational self-consistent

field (MCSCF) method.

2.2.3 Multi-configurational Self-consistent Field

The MCSCF method is also based on the variational principle,in which the minimization

of the energy,

E =
〈ΨMCSCF|Ĥ|ΨMCSCF〉
〈ΨMCSCF|ΨMCSCF〉 (2.52)

is found by varying the orbital coefficients - an optimization of the MCSCF wave function.

The MCSCF wave function is a truncated CI expansion and is given equationally as

|ΨMCSCF〉 =
∑

A

cA|ΦA〉 (2.53)

where the index A runs over the configuration state functionsΦA = |ψaψ̄aψbψ̄b . . . 〉. Each

state function is composed of a set of molecular orbitals that are occupied by anα spin

electronψi or by aβ spin electronψ̄i. These MOs can also be expanded in a basis of

atomic orbitals as

|ψi〉 =
∑

µ

Cµi|φµ〉 (2.54)

giving rise to another set of coefficientsCµi. It is the task of MCSCF to optimize all the CI

expansion coefficientscA, as well as the molecular orbital coefficientsCµi for the atomic

orbitals simultaneously.

Aside from the optimization of two sets of coefficients, another difficulty that remains in

the MCSCF method is the choice of the CSFs that should be used to describe the wave

function. It is imperative to include the CSFs that are most important to the wanted molec-

ular properties. The daunting task of choosing the appropriate CSFs to be included in the

MCSCF wave function has been alleviated to some extent by employing the complete

active space self-consistent field approach.

Complete Active Space Self-consistent Field (CASSCF)

The complete active space self-consistent field method is a descendant of MCSCF and

has been developed by Rooset al. [59]. The method prevents the manual picking of every
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configuration state function which should be included in theoptimization of the wave

function. Instead, the molecular orbitals are partitionedinto two groups: the primary and

secondary orbitals, as can been seen in fig. 2.1. The primary orbitals are further partitioned

into two subgroups; the inactive and the active orbitals. The inactive orbitals are frozen

and remain doubly occupied throughout the calculation and can be considered the core

orbitals. Contrary to the primary inactive orbitals, the orbitals in the secondary space

remain unoccupied. However, the active orbitals consist ofa combination of occupied and

unoccupied orbitals where every possible configuration, with consideration of symmetry

and spatial constraints, within this space is allowed. CASSCF therefore constitutes a

full-CI calculation within the restricted complete activespace.

In this way, an active space defines the realm in which the electrons can form all configu-

rations. Although this method reduces the effort of pickingthe CSFs, it is still not a black

box. The proper orbitals that represent the molecular system and its properties must be

selected by hand. A state average CASSCF (SA-CASSCF) formulation is used to calcu-

late electronic excited states for a given symmetry and spin, by minimizing the weighted

sum of their energies. The result of the minimization is the procurement of the CASSCF

wave function|ΨCASSCF
i 〉 as well as the energyECASSCF for each electronic statei [59].

The method is good at obtaining the static correlation by allowing for partially occupied

orbitals and describes well values at dissociation but it has difficulties in recovering the

dynamic correlation, i.e. the correlation of electron motion. The dynamic correlation can

be accounted for either perturbationally via a CASPT2 calculation or variationally via a

multireference configuration interaction (MRCI), where the former is used in this work.

Complete Active Space and the 2nd Order Perturbation Theory(CASPT2)

A standard approach used to recover at least part of the dynamical correlation energy is

the Møller and Plesset [60] method, which is size extensive and size consistent [61]. The

method is based on perturbation theory where the Hamiltonian operatorĤ is split into

two parts: a part that is solvablêH0, the zeroth-order Hamiltonian and a part which is not

λV̂, the perturbation.

Ĥ|Ψi〉 = (Ĥ0 + λV̂)|Ψi〉 = Ei|Ψi〉 (2.55)
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Figure 2.1: Within the scope of complete

active space, the molecular orbitals are par-

titioned into two sets of orbitals; primary

and secondary. The primary orbitals are fur-

ther partitioned into a set of active and inac-

tive orbitals.

..

.

secondary

active

inactive

primary

The eigenenergies and eigenfunctions can be expanded as a Taylor series for small per-

turbations to the systemλ≪ 1,

|Ψi〉 = |Ψ(0)
i 〉+ λ|Ψ(1)

i 〉+ λ2|Ψ(2)
i 〉 · · · (2.56)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i · · · (2.57)

whereλ is an ordering parameter. Once the eqs. 2.56, 2.57 are inserted into the eigenvalue

equation, eq. 2.55, the terms can be ordered according toλ and the following energies

expressions are retrieved.

E
(0)
i = 〈Ψ(0)

i |Ĥ0|Ψ(0)
i 〉 (2.58)

E
(1)
i = 〈Ψ(0)

i |V̂|Ψ
(0)
i 〉 (2.59)

E
(2)
i = 〈Ψ(0)

i |V̂|Ψ
(1)
i 〉 (2.60)

If the unperturbed Hamiltonian is replaced by a sum of one-electron Fock operators, as

suggested by Møller and Plesset [60], it can be shown that thefirst energy correction

term is already included in the Hartree-Fock energy. Therefore, it is the second order

energy term in eq. 2.57 that accounts for the dynamical correlation that is missing from

the Hartree-Fock; this is termed second order perturbationtheory (PT2).

Analogously, the dynamical correlation energy that is missing from a CASSCF calcula-

tion can be retrieved in part by applying perturbation theory [62]. The reference wave

function is taken as the SA-CASSCF wave function|ΨCASSCF
i 〉 for a particular electronic

statei. The CASPT2 wave function,|ΨCASPT2〉, is a sum of the reference wave function,

|ΨCASSCF〉, with the first order perturbative wave function,|Ψpert〉

|ΨCASPT2
i 〉 = |ΨCASSCF

i 〉+ |Ψpert
i 〉. (2.61)
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As was seen in eq. 2.60, the second order energy correction depends on the first order

wave function. For this purpose, the second order perturbation to the effective energy

matrix elements,Eij, can be defined as

Eij = 〈ΨCASSCF
i |V̂|Ψpert

j 〉 (2.62)

and the complete CASPT2 energy for the electronic statei

ESS−CASPT2
i = ECASSCF

i + Eii (2.63)

is then given as a sum of the reference energy,ECASSCF
i with the second order energy cor-

rection,Eii. This single state (SS) CASPT2 energy,ESS−CASPT2
i , refers to each electronic

statei. The SS-CASPT2 calculation also has its limitations. The CASSCF wave func-

tion is inadequate in describing the states around avoided crossings and where erroneous

valence-Rydberg mixing occur, and therefore the multi-state CASPT2 (MS-CASPT2) was

developed [63].

The MS-CASPT2 method [63] is able to describe well the near degenerate electronic

states and is also able to differentiate the valence from theRydberg states, see e.g. refs.

[63, 64, 65]. Instead of using a single reference wave function, the method uses a ”Per-

turbation Modified CASSCF” wave function|ΨPMCAS
i 〉 as the reference function: a linear

combination of the CASSCF reference wave functions. The MS-CASPT2 wave function

is then given below

|ΨMS−CASPT2
i 〉 =

∑

t

Ĉia|ΨCASSCF
a 〉

︸ ︷︷ ︸

ΨPMCAS
i

+|Ψpert
i 〉. (2.64)

The Hamiltonian is reformulated with the addition of reference states and is termed the

effective Hamiltonian

Heff
ij = ECASSCF

i δij +
1

2
(Eij + Eji) (2.65)

where the diagonal elements are the SS-CASPT2 energies and the off-diagonal elements

are the couplings between CASSCF electronic statesi and j. This allows for the si-

multaneous treatment of all the electronic states being calculated and can account for a

substantial amount of dynamic correlation energy. The finalenergies are obtained by

diagonalizing the effective HamiltonianHeff
ij .
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2.2.4 Density Functional Theory (DFT)

Density Functial Theory (DFT) is another method used to calculate the electronic energy

of a molecular system and is based on the theorems presented by Hohenberg and Kohn

[66]; therein it was shown that the ground electronic state energy can be determined by

the charge densityρ(r). This method differs from the HF method and its decendents

by replacing the many-body electronic wave function, whichdepends on 4N coordinates

(3N spatial coordinates and the 1N spin coordinate), with the electronic density, which

depends only on the three cartesian coordinatesr = x, y, and z.

The first theorem demonstrates the one-to-one mapping of theground state electron den-

sity to the ground state electronic energy

ρ⇔ E0, (2.66)

but does not provide the means to solve for the energy. The second theorem proves that the

exact ground state density minimizes the total electronic energy of the molecular system.

However, because the exact charge density is typically not known it is approximated by

the sum of the squared one-electron wave functions:

ρ(r) =
∑

i

|ψi(r)|2. (2.67)

The ground state electronic energy calculated from the trial charge densityρ(r) represents

an upper-bound to the true ground electronic state energy

E[ρ] ≥ Eexact
0 (2.68)

which would be obtained if the exact electron density was known: the variational theorem.

The electronic energy functional is given below,

E[ρ] = T [ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (2.69)

and is composed as the sum of several functionals:T [ρ], which denotes the kinetic energy;

Ene[ρ], which denotes the attraction between the nuclei and the electrons;J [ρ], which

represents the Coulomb repulsion between electrons; andExc[ρ], the exchange term which

has no classical counterpart. From the list of functionals,only the calculation ofJ [ρ] is

known.



26 Quantum Chemistry

The Kohn-Sham approach [67] introduces orbitals back into DFT in order to calculate

exactly the non-interacting kinetic energy. Minimizing the energy produces a set of equa-

tions known as the Kohn-Sham equations
[

− ~
2

2m
∇2 + Veff(r)

]

|ψKS(r)〉 = Eel|ψKS(r)〉, (2.70)

which are solved iteratively. The main difference between Kohn-Sham and the HF equa-

tions is the form of the effective potential, which for the DFT method is defined as

Veff(r) = V(r) +

∫
e2ρ(r′)

|r− r′|dr
′ + Vxc(r) (2.71)

where the second term denotes the classical electrostatic Hartree term and the final term

Vxc is the exchange correlation potential, which accounts for the many-particle interac-

tions. The exchange potential is defined as the partial derivative of the exchange energy

functional with respect to the charge density:

Vxc(r) =
δExc[ρ]

δρ(r)
. (2.72)

If the exact form of the exchange energy,Exc were known, then DFT would solve for the

exact total energy of the system. Because it is not known, theart of a DFT calculation

is to find a functional that describes this energy well. For the extension of the stationary

DFT to time-dependent situations, the reader is referred toref. [68].

2.3 Solution to the Nuclear Schr̈odinger Equation

In the previous section 2.2, the methods for solving the electronic Schrödinger equa-

tion were discussed. In this section the focus is turned to the solution of the nuclear

Schrödinger equation, eq. 2.6. The nuclear motion can be divided up into translational,

vibrational and rotational modes. The nuclear wave functions and energies can be written

approximately as a product and as a sum of the individual components, respectively.

|Ψel,nu〉 = |Ψtran
nu 〉|Ψrot

el,nu〉|Ψvib
el,nu〉 (2.73)

Eel,nu = Etran
nu + Erot

el,nu + Evib
el,nu (2.74)

The constant energy from the translational motion is solvedby using the particle in the box

method [42] within the space-fixed coordinates, in contrastto the internal energy, which
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involves rotational and vibrational energy. In this work, the rotational motion has not

been considered, and therefore the following section will describe solving the vibrational

eigenvalue equations using the Fourier Grid Hamiltonian (FGH) method within the body-

fixed frame, a frame that nicely describes the vibrations of the nuclei with respect to one

another.

2.3.1 Fourier Grid Hamiltonian Method

The bound state eigenvalues and eigenfunctions can be calculated numerically by im-

plementing the Fourier Grid Hamiltonian (FGH) method [69, 70]. The advantages of

the FGH method are first its simplicity and second its capability of generating accurate

eigenvalues and eigenfunctions. Calculation of the eigenvalues and eigenfunctions de-

pends significantly on the dimensionality of the problem, and is therefore restricted to a

few, depending on the grid size and the computer’s capacities. Here the development of

the theory is given in one-dimension but can be extended to multi-dimensions. Let us

consider a single particle of massm or molecular fragments with reduced massm mov-

ing along one direction, thex direction. The Hamiltonian operator for such a case can be

written as

Ĥ = T̂ + Vel(x̂) =
p̂2

2m
+ Vel(x̂), (2.75)

where the kinetic term̂T depends on the momentum operatorp̂, and the potential term

Vel depends on the position operatorx̂. Because the wave functions of the Hamiltonian

operator are calculated directly as the amplitudes of the wave function at its position on

the grid, it is necessary to discretize the space.

Space Discretization

In this case a grid is built up from a series of uniformly spaced intervals. In the coordinate

representation, by defining the total number of pointsN and the spacing∆x, the definite

value of the position along the grid is given as

xi = xmin + i∆x, (2.76)

wherei is a value between0 andN − 1. The length of the grid is simply the product of

the number of points times the spacing,L = (N −1) ·∆x, and the maximum value of the

coordinate isxmax = xmin + L.
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The momentum spacing∆k on a grid ofN points is inversely proportional to the uniform

spacing of the position∆x and is given as

∆k = 2π/N∆x. (2.77)

In momentum space, the values ofk are equally distributed around the central pointk = 0,

when considering an odd number of grid pointsN (for an even number of grid points, see

ref. [70]). The numbern of positive and negative momentum values is then equal to

n =
N − 1

2
. (2.78)

Theith discrete value ofk along the grid can be defined as

ki = i∆k + kmin, (2.79)

wherekmin = −n∆k and the indexi runs from0 to N − 1. Because the momentum is

evenly distributed along the grid around the zero central point, with an equal number of

positive values and negative values, it may be more convenient to give the discrete value

of k in terms of another indexl which runs from−n to +n:

kl = l∆k. (2.80)

Position and Momentum Operators

The discretization of the momentum and coordinate space also affects the position and

momentum operators which in turn alters respectively the potential and kinetic operators,

therefore the position and momentum operators will also be discretized. The position

operator̂x acting on a basis vector|xi〉 has the following solution

x̂|xi〉 = xi|xi〉. (2.81)

The orthogonal and completeness relations for the infinite space are

Îx =

∫ ∞

−∞

|x〉〈x|dx and 〈xi|xj〉 = δ(xi − xj) (2.82)

as well as for the discretized space

Îx =

N−1∑

i=0

|xi〉∆x〈xi| and ∆x〈xi|xj〉 = δij . (2.83)
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The potential, which depends on the position operator, is diagonal, as exemplified by the

delta functionδij , in the coordinate representation

〈xj|Vel(x̂)|xi〉 =
Vel(xi)δij

∆x
. (2.84)

The eigenfunctions of the momentum operator can be written in the same fashion as for

the position operator

p̂|kl〉 = kl~|kl〉, (2.85)

where the orthogonal and completeness relations for the infinite space are

Îk =

∫ ∞

−∞

|k〉〈k|dk and 〈km|kn〉 = δ(km − kn) (2.86)

as well as for the discretized space

Îk =
n∑

−n

|kl〉∆k〈kl|dk and ∆k〈km|kn〉 = δmn. (2.87)

The kinetic operator is nonlocal in the coordinate representation but is diagonal in the

momentum and is represented equationally as

〈km|T̂|kn〉 =
(l∆k)2

2m
δmn. (2.88)

Finally the transformation matrix elements between the momentumk and the coordinate

spacex can be written as

〈kl|xi〉 =
1√
2π
e−il∆kxj (2.89)

which lends itself for Fourier transformation (FT) [71].

Wave Function

The kinetic operator is easily solvable in momentum space, and consequently the wave

function too must be represented in the same space. Keeping with the grid representation,

the wave function in coordinate space can be transformed to the momentum space via a

discrete Fourier transform. Starting with the definition ofthe wave function in coordinate

space, and inserting the identity operator for the momentumspace one can make the
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following derivation:

|Ψel(x)〉 = Îx|Ψel(x)〉 =

N−1∑

i=0

|xi〉∆x〈xi|Ψel(x)〉 (2.90)

=

N−1∑

i=0

|xi〉∆x〈xi|ÎkΨel(x)〉

=
N−1∑

i=0

|xi〉∆x
n∑

l=−n

〈xi|kl〉∆k〈kl|Ψel(x)〉

=

√
2π

N

N−1∑

i=0

|xi〉
n∑

l=−n

eil∆kxj |Ψel(kl)〉

〈xi|Ψel(x)〉 =

√
2π

N

N−1∑

i=0

〈xi|xi〉
n∑

l=−n

eil∆kxj |Ψel(kl)〉 (2.91)

Multiplication from the left with〈xi| was carried out above in order to define the wave

function at a specific pointxi. In doing so, one obtains the following equation

|Ψel(xi)〉 =

√
2π

N

n∑

l=−n

eil∆kxj |Ψel(kl)〉 (2.92)

which is the Fourier transformation fromk space tox space. Following the same proce-

dure, the back Fourier transform, that is from thex space to thek space, can be shown to

have the following form for a discretized space

|Ψel(kl)〉 =

√
2π

N

N−1∑

i=0

e−il∆kxj |Ψel(xi)〉. (2.93)

Discretization of the Hamiltonian

It is the goal of the FGH to solve the matrix elements of the discretized Hamiltonian in

coordinate space. Starting from eq. 2.75, we can consider the matrix elements of the

Hamiltonian

Hel,ij = 〈xi|Ĥ|xj〉 = 〈xi|T̂|xj〉+ 〈xi|Vel(x̂)|xj〉 (2.94)

as the sum of the kinetic and potential terms. The kinetic term should be represented in

the momentum space where it is diagonal, therefore the unitary operatorIk is inserted

into eq. 2.94.

Hel,ij =

n∑

l=−n

〈xi|kl〉Tl∆k〈kl|xj〉+ 〈xi|Vel(x̂)|xj〉 (2.95)
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The matrix elements for each term above have been discussed,and by inserting the space

transformation eq. 2.89 as well as the matrix elements for the potential term, eq. 2.84, the

Hamiltonian can be rewritten in terms of a discrete grid

Hel,ij =
1

N∆x

n∑

l=−n

eil∆k(xi−xj)Tl∆k +
Vel(xi)δij

∆x
(2.96)

where the kinetic term has the following form

Tl =
~

2(l∆k)2

2m
. (2.97)

The method for calculating the effect of the kinetic operator is an efficient approach of ap-

plying the FT method in which the wave function is transformed to the momentum space

via a forward Fourier transformation. In this representation the kinetic term (equation

2.97) is applied by multiplication to the wave function. Thewave function is then back

Fourier transformed for the contribution from the potential term, which is simply the value

of the potentialV (xi) at the pointxi on the grid. The Fourier transform method used in

this work uses a fast Fourier transform algorithm that computes asN log2N in comparison

to FT which computes asN2 [72], which saves a significant amount of computation time.

The discretized Hamiltonian can be further simplified by combining the positive and neg-

ativel terms

Hel,ij =
1

∆x

{

2

N

n∑

l=1

cos

(
l2π(i− j)

N

)

Tl + Vel(xi)δij

}

(2.98)

and the expectation value of the energy can be written as

Ev
el =
〈Ψel|Ĥ|Ψel〉
〈Ψel|Ψel〉

=

∑

ij Ψ∗
el,i∆xHel,ij∆xΨel,j

∆x
∑

i |Ψel,i|2
(2.99)

where the variational method seeks to minimize the energy. Once theHel,ij are obtained,

the vibrational statesv in the electronic statesel can be obtained from the secular equa-

tions
∑

j

[Hel,ij −Ev
elδij ] |Ψv

el,j〉 = 0 (2.100)

where the bound-state vibrational eigenvalues are given asEv
el and the eigenvectors as

|Ψv
el,j〉.

The dynamic simulations that were done in this work start from the vibrational ground

state wave function in the electronic ground state,|Ψ0
0〉, calculated from the FGH method.
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The ground electronic state eigenvalues,Ev
0 , used to determine the vibrational frequen-

cies were also obtained from this method. Now that both the electronic and nuclear terms

have been solved for, and we are equipped with the ingredients needed for dynamic

simulations, attention is turned to quantum dynamics and solving the time-dependent

Schrödinger equation.


